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1. INTRODUCTION

We consider some problems which arise in attempting a logical
analysis of the structure of a robot's beliefs.

A robot is an intelligent sygtem equipped with sensory capabilities,
operating in an environment similar to the everyday world inhabited by
human robots.

By belief is meant any piece of information which is explicitly
stored in the robot's memory. New beliefs are formed by (at least) two
distinct processes: thinking and observation. The former involves
operations which are purely internal to the belief system: the latter
involves interacting with the world, that is, the external environment
and, possibly, other aspects of the robot's own structure.

Beliefs will be represented by statements in a formal logical

calculus, called the belief calculus Lb' The process of inferring new

assertions from earlier ones by the rules of inference of the calculus

will represent thinking. (McCarthy 1959, 1963; McCarthy and Hayes 1969,
Green 1969, Hayes 1971).

There are convincing reasons why Lb must include Lc - classical
first-order logic. It has often been assumed that a moderately adequate
belief logic can be obtained merely by adding axioms to LC (a first-order

—-theory); however I believe that it will certainly be necessary to add extra
-rules of inference to LC, and extra richness to handle these extra rules.
One can show that under very general conditions, logical calculi

obey the extension property: If S F—— P and S € S' then S' {__ »p,

The importance of this is that if a belief p is added to a set S, then

all thinking which was legal before, remains legal, so that the robot need
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not check it all out again.

2. TIME AND CHANGE

For him to think about the real world, the robot's beliefs must
handle time. This has two distinct but related aspects.

(a) There must be beliefs qgggg_time. For example, beliefs
about causality.

(b) The robot lives in time: the world changes about him. His
beliefs must accommodate in a rational way to this change.
Of these, the first has been very extensively investigated both in A.I.
and philosphical logic, while the second has been largely ignored, until
very recently: it is more difficult. The first is solely concerned
with thinking: the second involves observation.

The standard device for dealing with (a) is the introduction of

situation variables (McCarthy 1963, et seq.) or possible worlds (Hintikka

1967; Kripke 1963). Symbols prone to change their denotations with the
passage of time are enriched with an extra argument-place which is filled
with a term (often a variable) denoting a situation which one can think of
intuitively as a time instant, although other readings are possible. In
order to make statements about the relationships between situations, and
the effects of actions, we also introduce terms denoting events, and the
—function R (read: result) which takes events and situations into new
situations. Intuitively, 'R(e,s)' denotes the situation which results
when the event e happens in the situation s. By 'event' we mean a
change in the world: "his switching on the 1light", "the explosion",

"the death of Caesar". This is a minor technical simplification of the

notation and terminology used in (McCarthy and Hayes 1969) and(Hayes 1971).
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Notice that all the machinery is defined within Lc. The situation
calculus is a first-order theory.

Using situations, fairly useful axiomatizations can be obtained
for a number of simple problems invglving sequences of actions and events

in fairly complicated worlds. (Green 1969), (McCarthy and Hayes 1969). ,

3. THE FRAME PROBLEM

Given a certain description of a situation s = that is, a
collection of statements of the form b E'S]], where the fancy brackets
mean that every situation symbol in + is an occurrence of 's' - we
want to be able to infer as much as possible about R(e,s), Of course,
what we can infer will depend upon the properties of e. Thus we require

assertions of the form:

¢, LsT & y(e) >4, CR(e,s)T (1)

Such an assertion will be called a law of motion. The frame problem can

be briefly stated as the problem of finding adequate collections of laws
of motion.

Notice how easily human thinking seems to be able to handle such
inferences. Suppose I am describing to a child how to build towers of
bricks. I say "You can put the brick on top of this one onto some other

one, if that one has not got anything else on it." The child knows that

" the other blocks will stay put during the move. But if I write the

corresponding law of motion:

(on (bl,bE,s) &V z. = on(z,bE,s)) - on(bl,bB,R(move(bg,bB),s)) (2)

then nothing follows concerning the other blocks. What assertions could

we write down which would capture the knowledge that the child has about
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the world?

One does not want to be obliged to give a law of motion for every

aspect of the new situation. For instance, one feels that it is prolix

to have a law of motion to the effect that if a block is not move'd, then

it stays where it is. And yet such laws - instances of (1) in which

¢1 = bq - are necessary in first-order axiomatizations. They are called
<

frame axioms. Their only function is to allow the robot to infer that an

event does not affect an assertion. gSuch inferences are necessary: but

one feels that they should follow from more general considerations than a
case-by-case listing of axioms, especially as the number of frame axioms
increases rapigly with the complexity of the problem. Rraphael (1971)
describes the difficulty thoroughly.

This phenomenon is to be expected. TILogically, s and R(e,s) are

simply different entities. There is no a priori justification for inferring
any properties of R(e,s) from those of s. If it were usually the case

that events made widespread and drastic alterations to the world (explosions,
the Second Coming, etc.), then we could hardly expect anything better than
the use of frame axioms to describe in detail, for each event, exactly
what changes it brings about. Our expectation of a more general solution
is based on the fact that the world is, fortunately for robots, fairly
stable. Most events - especially those which are likely to be considered
in planning - make only small local changes in the world, and are not expected

to touch off long chains of cause and effect.

4. FRAME RULES

We introduce some formalism in order to unify the subsequent

discussions. Any general solution to the frame problem will be a method
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for allowing us to transfer properties from a situation s to its
successor R(e,s); and we expect such a license to be sensitive to the
form of the assertion, to what is known about the event e, and possibly
to other facts.

Consider the rule scheme FR:

x> p OsT, y(e) F ¢ OTR(e,s)T
provided ?% (e, #, W)' (FR)

where ?é is some condition on e, ¢ and ¥ expressed of course in the
metalanguage. We will call such a rule a frame rule. The hope is that

frame rules can be used to give a general mechanism for replacing the

frame axioms, and also admit an efficient implementation, avoiding the
search and relevancy problems which plague systems using axioms (Green 1969,
Raphael 1971).

One must, when considering a frame rule, be cautious that it does
not allow contradictions to be generated. Any addition of an inference
rule to Lc’ especially if not accompanied by extra syntax, brings the
risk of inconsistency, and will, in any case, have dramatic effects on the
metatheory of the calculus. For instance, the deduction theorem fails.
Thus a careful investigation of each case is needed. In some cases, a
frame rule has a sufficiently simple ?( condition that it may be replaced

by an axiom scheme, resulting in a more powerful logic in which the

deduction theorem holds. This usually makes the metatheory easier and

implementation more difficult.

5. SOME PARTIAL SOLUTIONS USING FRAME RULES

The literature contains at least four suggestions for handling the
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problem which are describable by frame rules. In each case we need some

extra syntactic machinery.

(1) Frames (McCarthy and Hayes 1969)

One assumes a finite number of monadic second-order predicates Pi.
If F— Pi(h) for a nonlogical symbol h (predicate, function or individual
constant) then we say that h is in the ith block of the frame. The

frame rule is
Pil(hl), cosBy (), T ST Pi(e) = $CR(e,s)T (6)

where hl""’hn are all the nonlogical symbols which occur crucially

in ¢,and ikfj,l<k§n.

-

Here crucial is some syntactic relation between h and ¢ ; different

relations give different logics, with a stronger or weaker frame rule.

(2) Causal Connection (Hayes 1971)

We assume that there is a %-place predicate —a(x,y,s) (read:
X 1s connected to y in situation s) which has the intuitive meaning
that if x is not connected to y, then any change to vy does not affect
X, It seems reasonable that - should be a partial ordering on its first

two arguments (reflexive and transitive). The frame rule is:

{)D._ Sjﬂ:"l_)(hlxeis)’ e e ey —-1—>(hn,e,s)|——thIR(e,s):ﬂ (7)

_where (1) ¢ is an atom or the negation of an atom

(ii) h ..,hn are all the terms which occur crucially in #.

1’
If we insisted only that —%hi,e,s) is not provable (rather than
- _%hf,e,s) is provable) then the rule is much stronger but no longer obeys

the extension property. This is analogous to PLANNER'S method below.

(3) MICRO-PLANNER (Sussman and Winograd 1969)

The problem-solving language MICRO-PLANNER uses a subset of

6
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predicate calculus enriched with notations which control the system's
search for proofs. We will ignore the latter aspect for the present

and describe the underlying formalism. Its chief peculiarity is that it
has no negation, and is therefore not troubled by the need for consistency.

Following MICRO-PLANNER we introduce the new unary propositional

connective therase. Intuitively, therase b will mean that + is 'erased'.
We also introduce the notion of a transition: an expression

(e:#l,, "’¢n>° This means intuitively ‘'erase bl""’*n in passing from

s to R(e,s)'. The frame rule is:

x> s, (e: bpsevnsd [—4LR(e,s)T (8)

where (i) $ is an atom;
(ii) + contains no variables (other than s);
(iii) ¥, therase &1,...,therase §n|—fl therase +[[s]]

Notice the negated inference in (iii).

(4) STRIPS (Fikes and Nilsson 1971)

The problem-solving system STRIPS uses the full predicate calculus
enriched with special notations ('operator descriptions') describing
events, and ways of declaring certain predicates to be primitive. We can

use transitions to describe this also. The frame rule is:

bIsl, (e: bpsea-ubd = $IR(e,s)T (9)
where (1) ¢ is an atom or the negation of an atom

(ii) b contains no variables (other than s)

(iii) the predicate symbol in ¢ is primitive

(iv) #ﬂ;sI] is not an instance of any ¢i’ 1< i < n.

Notice the similarity to (8). Primitive can be axiomated by the use of a
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monadic second-order predicate, as in (1) above.

These four rules have widely divergent logical properties.
Rule (6) is replaceable by an axiom scheme, and is thus rather elementary.
It is also very easy to implement efficiently (theorem-proving cognoscenti
may be worried by the higher-order expressions, but these are harmless
since they contain no variables). Variations are possible: e.g., we might

have disjointness axioms for the Pi and require r$j(hk) rather than

Pf (hk) : this would be closely similar to a special case of (7).
k
Retaining consistency in the presence of (6) requires in nontrivial
problems that the Pi classification be rather coarse. (For instance, no

change in position ever affects the color of things, so predicates of
location could be classed apart from predicates of'color.) Thus frames,
although useful, do not completely solve the problem.

Rule (7) is also replaceable by an axiom scheme, and the restriction
to literals can be eliminated, with some resultant complication in the rule.

Also, there is a corresponding model theory and a completeness result (Hayes

1971), so that one can gain an intuition of what (7) _means. Retaining con-
sistency with (7) requires some care in making logical definitions.

Rules (8) and (9) have a different character. Notice that (9) is
almost a special case of (8): that in which therase § F—— therase § iff

y is not primitive or § is an instance of #. The importance of this is

"that instantiation, and probably primitiveness also, are decidable, and

conditions (iii) and (iv) in (9) are effectively determined solely by
examining the transition, whereas condition (iii) in (8) is in general not
decidable and in any case requires an examination of all of x: in

applications, the whole set of beliefs. MICRO-PLANNER uses its ability to
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control the theorem-proving process to partly compensate for both of
these problems, but with a more expressive language they would become
harder to handle. Notice also that (8) does not satisfy the extension
property, while (9) does, provided we allow at most one transition to be

unconditionally asserted for each event.

Maintaining 'consistency' with (8) is a matter of the axiom-
writer's art. There seem to be no general guidelines. Maintaining
consistency with (9) seems to be largely a matter of judicious choice of
primitive vocabulary. There is no articulated model theory underlying

(8) or (9). They are regarded more as syntactic tools = analogous to

evaluation rules for a high level programming language = than as descriptive

assertions.

6. A (VERY) SIMPLE EXAMPLE: TOY BRICKS.

Al. = above (x,x,s)

A2. x = Table vabove (x,Table,s)

A%, above(x,y,s) =. on(x,y,s) v 3 z.on(z,y,s)& above(x,z,s)
Ay, free(x,s) =.VYy — on(y,x,s)

To enable activity to occur we will have events move(x,y): the

brick x is put on top of the brick y. Laws of motion we might consider

include:
A5, free(x,s)& x # y. D on(x,y,R(move(x,y) ,s))

... free(x,s)& w # x & on(w,z,s). D on(w,z,R(move(x,y),s))

A7, free(x,s)g& w # x & above(w,z,s). D above (w,z,R(move(x,y),s))
A8. free(x,s)g w # vy & free(w,s). D free(w,R(move (x,y),s))
Of these, A6-A8 are frame axioms. (In fact, A7 and A8 are redundant, since

they can, with some difficulty, be derived from A6 and A3, Al respectively.)
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A5 assumes somewhat idealistically that there is always enough space on
y to put a new brick.

Rule (6) cannot be used in any intuitively satisfactory way to
replace A6-A8.

Rule (7) can be used. We need only to specify when bricks are
connected to events:

A9, - (x,move(y,z),s)=.x = y v above(x,y,s)
Using A9 and A3, Ak, it is not hard to show that

free(x,s)& wix % on(w,z,s). D . = - (w,move(x,y),s)& - — (z,move(x,y),s)
and thus, we can infer on(w,z,R(move(x,y),s)) by rule (7). A7 and A8
are similar but simpler. (One should remark also that Ak is an example
of an illegal definition, in the presence of (7), since it suppresses a
variable which the rule needs to be aware of. It is easy to fix this up in
various ways.)

Rule (8) can also be used, but we must ensure that therase does
a sufficiently thorough job. Various approaches are possible. The
following seems to be most in the spirit of MICRO-PLANNER. In its terms,
on and above statements will be in the data-base, but free statements will
not. The necessary axioms will be:

AlQ. therase free(x,s)

All. therase on(x,y,s) & above(y,z,s) O therase above(x,z,s)

Al2. free(x,s) D (move(x,y): on(x,z,s))
To infer statements free(x,R(e,s)), we must first generate enough on(x,y,R(e,s))

statements by rule (8), and then use A4, since by AlO, rule (8) never makes

such an inference directly. (We could omit Al0 and replace by Al2 Dby:
Al3. free(x,s) 3 (move(x,y): on(x,z,s), free(y,s)).
|
10
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This would, in MICRO-PLANNER terms, be a decision to keep free assertions
in the data base.)

Notice that MICRO-PLANNER has no negation and hence no need to
therase such assertions as = on(x,y,s). If it had negation we would
replace Al2 by

Al4.  free(x,s) D (move(x,y): on(x,z,s), - on(x,y,s))
and add

Al5. therase — on(x,y,s) & above(y,z,s) D therase — above(x,z,s)
Notice the close relations between A3, All and Al5.

Rule (9) can be used similarly to (8), but we are no longer able

to use axioms such as All and AlS5. The solution which seems closest in

spirit to STRIPS is to declare that on is primitive but that above and
free are not, and then simply use Al4. The 'world model' (Fikes and
Nilsson 1971) would then consist of a collection of atoms on(a,b), or their

negations, and the system would rederive above and free assertions when

needed. This is very similar to MICRO-PLANNER'S 'data-base', and we could

have used rule (8) in an exactly similar fashion.

7. IMPLEMENTING FRAME RULES

Some ingenuity with list structures enables one to store assertions
in such a way that
(i) Given s, one can easily find all assertions +D:s]] 5
(ii) Each symbol denoting a situation is stored only once;
(iii) The relationships between s and R(e,s), etc., are stored

efficiently and are easily retrieved;

(iv) To apply a frame rule to s, one need only;
(a) create a new cell pointing to s;

(b) move two pointers;

11
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(c) check each 4>|IS:D for condition ?{ : if it holds,
move one pointer.

In the case of a rule like (8) or the variation to (7), where ?{‘ is a
negative condition ('——), we need only examine those 4;[]: s ] for which
the condition fails resulting in greater savings.

Space does not permit a description of the method, but MICRO-
PLANNER and STRIPS use related ideas. (The authors of these systems seem
to confuse to some extent their particular implementations with the logical
description of the frame rules, even +to the extent of claiming that

a logical description is impossible.)

8. CONSISTENCY-AND COUNTERFACTUALS

Frame rules can be efficiently implemented and, in their wvarious
ways, allow the replacement of frame axioms by more systematic machinery.
But there is a constant danger, in constructing larger axiomatizations,
of introducing inconsistency. An alternative approach avoids this by
transferring properties¢ from s to R(e,s) as long as it is consistent
to do so, rather than according to some fixed-in-advance rule.

Suppose we have a set y of general laws which are to hold of
every situation , and a description of - a set of assertions about - the
situation s: H)l[[s:[] see ey ¢n[l_s:[]} Using laws of motion we will directly

infer certain properties . ¢m of R(e,s): the set of these

s1v

constitutes a partial description of R(e,s). To compute a more adequate

one, we add assertions biIIR(e,s)—_D in some order, checking at each stage

for consistency with x; if a @iEfR(e,s):D makes the set inconsistent,
it is rejected. This continues until no more 4’1 can be added. In this

way we compute a maximal consistent subset (MCS) of the inconsistent set
x U {¥p>een v $CR(e,8)T,..., $ TR(e,s0].

12
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There are two big problems. One, consistency is not a decidable
or even semi-decidable property. Thus for practicality one has to accept
a large restriction on the expressive power of the language. Two, there

are in general many different MCS's of an inconsistent set, and so we must
have ways of choosing an appropriate one. In terms of the procedure out-
lines above, we need a good ordering on the +i'

This procedure is closely similar to one described by Rescher
(1964) to provide an analysis of counterfactual reasonings ('If I had
struck this match yesterday, it would have 1lit', when in fact I didn't.)
Rescher is aware of the first problem but gives no solution. His major
contribution is to the second problem, which he solves by the use of modal
categories: a hierarchical classification of assertions into grades of
law-like-ness. One never adds +i[ R(e,s) ] unless every #iJwith a lower
classification has already been tested. This machinery is especially
interesting as in (Simon and Rescher 1966) it is linked to Simon's theory
of causality (Simon 1953). One puts *i in a lower category than +j just

in case +i causes bj (or —|#j), more or less. Space does not permit a

complete description of this interesting material which is fully covered
in the references cited. In spite of its appeal, the first problem is still
unsolved.

In unpublished work at Stanford, Jack Buchanan has independently
worked out another version of the procedure. The first problem is handled
by accepting a drastic restriction on the language. Every @i is an atom
or the negation of an atom - c.f. frame rules 7,8 and 9 - and, more

seriously, ¥ contains only assertions of the form t1 # t2 or of the

13
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form P(t t,...,tn) and P(tl,...,u,...,tn) D t = u. Under these

127
constraints, consistency is decidable and can even be computed quite
efficiently. Moreover, MCS's are unique, so the second problem evaporates.

However, it is not clear whether nontrivial problems can be reasonably stated

in such a restricted vocabulary.

9. CONCLUSIONS

In the long run, I believe that a mixture of frame rules and
consistency-based methods will be required for nontrivial problems,
corresponding respectively to the 'strategic' and 'tactical' aspects of
computing descriptions of new situations. In the short term we need to
know more abouglthe properties of both procedures.

One outstanding defect of present approaches is the lack of a
clear model theory. Formal systems for handling the frame problem are
beginning to proliferate, but a clear semantic theory is far from sight,.
Even to begin such a project would seem to require deep insight into our

presystematic intuitions about the physical world.

10. OBSERVATIONS AND THE QUALIFICATION PROBLEM

We have so far been entirely concerned with thinking. The situation
calculus is a belief calculus for beliefs about time. Observations =~ inter-
actions with the real world - introduce new problems. We must now consider

the second aspect of time (2. (b) above).

Almost any general belief about the result of his own actions may
be contradicted by the robot's observations. He may conclude that he can
drive to the airport only to find a flat tire. A human immediately says
"Ah, now I cannot go". Simply adding a new belief ('the tire is flat')

renders an earlier conclusion false, though it was a valid conclusion from

14



r

the earlier set of beliefs, all of which are still present. Thus we do

not assume that the robot had concluded 'If my tires are OK, then I can get
to the airport' since there are no end of different things which might
go wrong, and he cannot be expected to hedge his conclusions round with
thousands of qualifications. (McCarthy and Hayes 1969).

Clearly this implies that the belief logic does not obey the

extension property for observations: to expect otherwise would be to hope

for omnipotence. However, we are little nearer any positive ideas for
handling the inferences correctly.

John McCarthy recently pointed out to me that MICRO-PLANNER has a
facility (called THNOT) which apparently solves the problem nicely. I
will translate this into a slightly different notation.

We introduce a new unary propositional connective proved, which is
supposed to mean 'can be proved from the current collection of beliefs'.
Then we can write axioms like the following:

Al6. flat (tire) D kaput (car)

Al7 . — proved kaput (car) D at (robot, airport, R(drive(airport)+))
from which at (robot,airport,...) should be concluded until we add:

Al8. flat (tire)
at which point the — proved...becomes false. (- proved is PLANNER's THNOT) .

To make this work we could try the following rules of inference:

$ |— proved ¢ (p1)
X p— — proved ¢ (p2)
where X F ¢
P2 fails the extension property, as expected. (It also has the difficulties

of effectiveness which worry frame rule (8), but we will ignore these.)

Unforntunately, Pl and P2 are inconsistent. Suppose X F—f- #, but

15
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that b is consistent with X . Then by P2, = Braved #.i f w e

now add b (an observation: the flat tire), then by Pl proved b: n
overt contradiction. MICRO-PLANNER avoids this by denying Pl and treating
'b & — proved ¢' as consistent. But this is a council of despair, since
it clearly is not, according to the intuitive meanings.

The logical answer is to somehow make proved refer to the set X of
antecedents. The direct approach to this requires extremely cumbersome
notation and a very strong logic which partly contains its own methatheory,
thus coming close to Godel inconsistency. Fortunately we do not need to
describe sets X of assertions, but only to refer to them, and this can
be done with a very weak notation, similar to situation variables.

Assume that every belief is decorated with a constant symbol called
the index: we will write it as a superscript. Indices denote the robot's
internal belief states just as situation terms denote external situations.
Observations are analogous to events. Assertions proved # now have an
extra index which identifies the state of belief at the time the inference

was tested. The above rules of inference become:

+s — proved® @S P1'
X p— = proved® $° P!

where ¥ F7L #S and every member of X has index s.

- In applications we now insist that

(i) 1In applying P2', X contains all beliefs with index s;
(ii) Whenever an observation is added to the beliefs, every index

s 1is replaced by a new one s', except those on proved

assertions.

This is just enough to avoid inconsistency; it clearly does not

16



involve any Godel-ish difficulties; and (ii) can be very efficiently
implemented by frame rule methods (Section 7 above).  1ndeed, more complex
versions of (ii) which allow for direct contradiction between beliefs and
observations can be similarly implemented.

'The logic of these indices is trivial, but extensions have some
interest. For instance, if we identify indices with situation terms, +then
expressions of the form #[s ]S become legal, with the intuitive meaning
'+ is true now'.

Seen this way, the qualification problem is closely linked with the

frame problem, and one expects progress in either area to help with the

other. ~
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