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STRATEGY FOR SORTING NETWORKS

| " |

| | David C. Van Voorhis

| * ABSTRACT } |

With a few notable exceptions the best sorting networks known havc |

employed a '"divide-sort-merge’' strategy. That is, the N inputs are

, divided into 2 groups - - normally of size [sN] and |#N| - -

that are sorted independently and then "merged" together to form a single

sorted sequence, An N-sorter network that uses this strategy consists

of 2 smaller sorting networks followed by a merge network. The best

merge networks known are also constructed recursively, using 2 smaller

merge networks followed by a simple arrangement of [#N] - 1 comparators.

We consider a generalization of the divide-sort-merge strategy in

which the N inputs are divided into g > 2 disjoint groups that are

sorted independently and then merged together. The merge network that

‘combines these g sorted groups uses d > 2 smaller merge networks as

an initial subnetwork. The two parameters g and d together define

. what we call a " [g,d] " strategy.

* | _ * Here | x] denotes the smallest integer greater than or equal to x,
whereas |x] denotes the largest integer less than or equal to x.
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A [g,d] N-sorter network consists of g smaller sorting networks |

followed by a [g,d] merge network. The initial portion of the [g,d]

| merge network consists of d smaller merge networks; the final portion, |
which we call the ''f-network,’ includes whatever additional comparators

are required to complete the merge. When g =d = 2, the f-network is

a simple arrangement of [#N] - 1 comparators; however, for larger

g,d the structure of the [g,d] f-network becomes increasingly complicated.

In this paper we describe how to construct [g,d] f-networks for |

arbitrary g,d. For N > 8 the resulting lg,d] N-sorter networks are |
more economical than any previous networks that use the divide-sort-

merge strategy; for N > 34 the resulting networks are more economical |

than previous networks of any construction. The [4,4] N-sorter network

‘described in this paper requires I N(log,N)° ~ 3 N(1log,N) + O(N)
comparators, which represents an asymptotic improvement of Sr N(log,N)
comparators over the best previous N-sorter. We indicate that special

constructions (not described in this paper) have been found for [2F,2"]

f-networks, which lead to an N-sorter network that requires only

.25 N(logN)° - .372 N(logN) + O(N) comparators. | :

- -
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I. Introduction

: A comparator network with 4 inputs is illustrated in Fig. 1(a). |

Each of the 5 comparators, labeled A, B, C, D, and E, compares its

two inputs and emits the smaller on its higher output lead and the larger

on its lower output lead. An abbreviated diagram for this comparator net-

| work is given in Fig. 1(b), where each comparator is replaced by a vertical

line connecting the two comparands,

A comparator network with N input and output leads is called an

N-sorter network, or simply an N-sorter, if for any multiset of inputs i

I = {1,150.51}, the resulting outputs O = {01,055.50} satisfy:

1) O is a permutation of I; and 2) 0, < 0 if J < k, The net- |
work depicted in Fig, 1 is a L-sorter, since comparators A through D

- move the smallest input to °, and the largest input to 0) 5 and then

E orders the remaining two inputs,

From an engineering viewpoint it may be desirable to use as few

comparators as possible when constructing a network to sort N inputs.

(An alternative design objective would be to minimize the delay required

to sort N items.) Let S(N) represent the minimum number of compara-

tors required by an N-sorter network. R. W. Floyd and D. E. Knuth [ 2 J

| have determined S(N) for N <8 by proving a lower bound for S(N)

that is precisely equal to the number of comparators actually contained

in the most economical N-sorter network known, However, for N > 8, the

value of S(N) and even the asymptotic behavior of the function remain

- an open question. The strongest lower bound known for S(N), proved by

“ | * A multiset is like a set except that it may contain repetitions of
elements. See D. E. Knuth [ 1 ].
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D. Van Voorhis [ 3 ], increases as N(logN), whereas the strongest upper
i | bound known - - i.e, the number of comparators actually required by the

most economical N-sorter known, designed by K. E. Batcher [ 4 ] and im-

proved by M. W. Green |[ 5 ] - - increases as N(1l0g_N)".
Batcher's N-sorter network contains B(N) comparators, where

| B(N) = iN(10gN)” - iN(log,N) + N + 0(1). (1)

Although Green has been able to improve upon Batcher's networks, the net

effect of Green's modification is simply to reduce the coefficient in the

linear term of Equation (1) from unity to Ee In this paper we present
an extension of Batcher's constructions which reduces the coefficient of

. | N(1log,N) in (1) from - & to - 3 Our construction achieves an im-
| provement of ~ N(1log,N) over the best previous networks, although

the asymptotic growth is still 3N (10g N)°. We indicate that a modifi-
cation of our construction, which is too complicated to include here,

reduces the coefficient of N(1log,N) in (1) to -.372.
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II. The Divide-sort-merge Strategy

It is not always easy to determine whether a given comparator net- | )

| work is an N-sorter, For example, it can be shown that the comparator

network in Fig. 2(b) is a L-sorter whereas that in Fig. 2(a) is not. One

way to check a network is to see whether it will sort all N. permutations

of the numbers 1,2,...,N as inputs. However, the following important

theorem reduces to oN the number of input patterns required to test
the design of an N-sorter network, -

Theorem: (Zero-One Principle)

A comparator network with N inputs and N outputs is an N-sorter |
if and only if it will sort all oN combinations of N inputs for which

each input is either O or 1. (See [ 2, 5 ].)

Proof: | :

The "only if" portion of the theorem is obvious; to prove the re-

mainder of the theorem we show that if a comparator network C is not

an N-sorter network, then there is at least one combination of O's and

1's as inputs that C fails to sort.

| Suppose that C is not an N-sorter network, so that for some mul-

tiset of inputs I = {i;,i,,...,iy} it yields the incompletely ordered

outputs O(I) = {05005 c 50} This means that, although O(I) is a

permutation of I, o > Oy for some indices satisfying 1< Jj < k < N.
Now it is easily verified (by induction) that if £(x) is any non-

decreasing function (i.e. if x <y implies that f(x)< f(y), ) then

* This proof was suggested to the author by D. E. Knuth.



1 % 1 %

: 2 1 Oo

(a) (b)

Fig. 2. Which of these is a 4-sorter network?

3 1 1 1 0) . 1 0 0 0 o
1 | | 1

2 2 2 2

3 3 3 3

EE. 1 EE OE EU SE
: 4 Oy 4 4

(a) (b)

Tig. 3. Testing Comparator Networks. |

i X lo]

a . m-sorter 1 1

, network . (m,n) ]
i Xx
n merge

1 4 | Ct
. n-sorter . network .

j network . *
“mn "n mn

} Fig. 4. (mtn)-sorter network T.
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since  max[2(x),£(y)] = £(maxlx,y]),

Therefore, using

-\O, x <0;
| f(x) = | (3)

1, X > Os

we obtain the inputs I = {£(1,),£(i,),...,2(1)}, which is a combi- ”

nation of O's and 1's that C fails to sort, since f£(o.) =1>
J :

So Q.E.D.

The theorem is illustrated in Fig. 3. The inputs I = {1,0,1,0}

are applied to the 4 input leads of each network in Fig. 2. The first

network fails to arrange the inputs into non-decreasing order; therefore,

it is not a lL-sorter network. The second network is a 4-sorter since it

will order properly these inputs and also the other 15 combinations of

O's and 1's as inputs, |

| N

Although 2 grows much more slowly than N:, it is not feasible to
N |

test large networks for 2 different combinations of inputs. Therefore,

if we desire large sorting networks, we must build them 1in such a way

that we can prove "by construction’ that they will arrange all combina-

tions of inputs into non-decreasing order. The Zero-One Principle is oo

] ~~ helpful in developing such proofs.



) The most successful strategy for designing large sorting networks,

} suggested by R. C. Bose and R. J. Nelson [ 6 ], has been to build them

out of smaller sorting networks. The inputs are divided into two groups |

that are sorted separately and then combined, or merged, to form a sin-

gle sorted multiset. This divide-sort-merge strategy is illustrated in
Fig. 4 by the N-sorter network T, which consists of:

i) an m-sorter network that operates on the inputs

{11,0051 ] to produce the sorted multiset X =

EPL IPRRRPEN and -

ii) an n-sorter network, where n = N - m, that trans- |
forms the inputs {1 10 oreeesiy] into the sorted

multiset Y = {y 755000054) followed by

. | iii) an (m,n) merge network that combines X and Y into

the single sorted multiset O = {0505-0504}

| We can use the divide-sort merge strategy recursively to achieve

N-sorter networks for arbitrary N, provided we can construct the

necessary merge networks. Bose and Nelson suggested building an (m,n)

merge network out of three smaller merge networks arranged in a pattern |

resembling the final three comparators of the lY-sorter in Fig. 1, For

| example, when m and n are both even and m <n, Bose and Nelson's

(m,n) merge network consists of the following. (See Fig. 5.)

BN1: a (%m,3n) merge network that determines the smallest

im members of O, namely 019009 +504] and

- BN2: a (4m,in) merge network that determines the largest

3m members of O; followed by
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BN3: a (%n,zn) merge network that determines the remaining

- n members of O.

K. E. Batcher [ 4 ] proposed a different merging strategy which is

more economical than Bose and Nelson's, and which has not been improved

upon, The general (m,n) merge network is defined recursively, beginning

with the (1,1) merge network, which is a single comparator. When m

and n are both even integers greater than one, Batcher's (m,n) merge

network consists of the following. (See Fig. 6.)

Bl: a (#m,%n) merge network that combines the odd members

X = EFL NRRRFL SEY and Y, = S272 ZPRRTFY RY to
form the odd members of an intermediate multiset V, |

namely V_ = {VysVaree spina ds and
i B2: a (%m,%n) merge network that merges the even members

| X, and Y_ to form V_ = {(vosvyseeesvp nds followed by
B3: the $(m+n)-1 comparators V,..iVoy,qs 0 < k < g(m+n)-1,

Since Batcher's (m,n) merge network is the simplest example of a more

general strategy described in the next two sections, it is instructive to

work through the proof that the network described above and depicted in

Fig. 6 leaves the outputs 0 = {01505500050 sorted.

| Suppose that the network T depicted in Fig. L consists of any

m-sorter network, any n-sorter network, and Batcher's (m,n) merge net-

work. Clearly the (m,n) merge network orders O iff t is an (m+n)-

sorter network, Therefore, the Zero-One Principle guarantees that the

. (m,n) merge network orders O iff T sorts all combinations of mtn

O's "and 1's as inputs.



For any combination of O's and 1's as inputs to T, the m-

sorter sorts X while the n-sorter sorts Y. The sorted multiset X

| consists of r O's followed by m-r 1's, and Y contains s O's

followed by n-s 1's, where for different combinations of inputs to

T, r and s assume all combinations of the values OO <r < m;

0 <s<mn. Let n represent the number of O's that go into V_,

that is, the number of O's in X plus the number in Yo. Let n_

represent the number of O's that go into Ve- Then |

n, <n <n_+2, (4)

since each of the two sorted multisets X and Y contributes either the

- same number of O's to Vv, and V_ or else one more O to Vo.

After the odd and even members of X and Y have been merged to

form V_ and V_, the following situation exists: |

1) V, and V_ are each ordered. |

2) The first 2n_ elements of V are, therefore, all O.

3) The remaining m + n - 2n_ elements are: :

a) all 1 if n_ = Bg; or.

| b) O followed by 1's if n =n, +1; or |

c) 010 followed by 1's if n =n +2, | |

The elements of V are sorted except in Case c¢) which requires an :

additional comparator for the adjacent pair Von +2 : Ven +3° For
different combinations of inputs to T, n, and n, will assume all of }

the values O,1,...,2(m+n). Case c) can occur for each of the possible

) i values of n_ such that mn, =n + 2 < (m+n). Therefore, the comparators |



listed in B3 above are both necessary and sufficient to complete the

- merge,

Batcher's merge strategy is illustrated by the 8-sorter network in

Fig. 7. The 10 comparators in Part A comprise two L-sorters that order

X and Y. (Note that each 4-sorter consists of two 2-sorters, i.e.

comparators, followed by a (2,2) merge network.) The three comparators

in Part B merge X = {x),%.] and Y_ = {yy,75} to form V_ = {visas

VssVols while the three comparators in Part C comprise a (2,2) merge
network for Xx, and Y. The comparators in Part D are those called

for in B3, which combine v, and V to form O.e
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Part A Part B Part C Part D

Fig, 7. Batcher's 8-sorter network.



III. The [3,3] Merge Strategy

: An obvious extension of the divide-sort-merge strategy as described |

above is to partition the N inputs into g > 2 groups that are sorted

separately and then merged together. An N-sorter network that uses this

g-way divide-sort-merge strategy consists of g sorting networks of size

NysNos eos No where 25 4 N, = N, followed by an (Nps Nps eto N) merge
| network. As an extension of Batcher's merge strategy, we can design

g-way merge networks that begin with d > 2 smaller g-way merge networks,

where d is a common divisor of NysNos ewes No-
The two parameters g and d together define what we shall call

the Lg,d] merge strategy. We say, then, that Batcher's networks described

in the last section use the [2,2] strategy.

; A [g,d] (Np sNps ees N) merge network consists of d \Ny/dy. nN dy
merge networks followed by whatever additional comparators are required

to complete the merge. We shall call the network comprising these final

additional comparators the [g,d] f-network, The [2,2] f-network, namely

the comparators listed in part B3 of Batcher's merge network, is par-

ticularly simple. In the remainder of this section we illustrate a

procedure for designing [g,d] f-networks for arbitrary g,d, by con-

| sidering the case g = d = 3, |

Suppose that we wish to design an (m,n,p) merge network that will

- combine the three sorted multisets X = RIPE SURRRFEN F Y = SA SYRRRIL NE

and Z = (21520500052) into the single sorted multiset O = {01,055.40

] © tnips ° If m, np and p are all multiples of 3, then the [ ,3] merge
network consists of the following. (See Fig. 8.)
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M31: an (m/3,n/3,p/3) merge network that combines X, =

- EERE SPN ¥ Y = RAPS IFRRRPS APN P and 2, =
Z se — .

M32: an (m/3,n/3,p/3) merge network that combines X =

PITT SEF Y, = R20 FYRERE NRF and Z, = |

{202050002 4] to form V = (vorvas esos Vynipa ds
M33: an (m/3,n/3,p/3) merge network that combines X =

c

Zgyeees?p] to form V_ = {V3sVgree os Vpinapls followed by |
M34: the [3,3] f-network that we have yet to define,

Now the Zero-One Principle guarantees that, without loss of gener-

ality, we may assume that all members of X, Y, and Z are either 0

i or 1. (To see that this is so, consider an (m+ntp)-sorter network that

consists of: an m-sorter that produces the sorted multiset X; an

n-sorter that produces Y; and a p-sorter that produces Z; followed

by an (m,n,p) merge network.) When all members of X, Y, and Z are

either O or 1, we find that the number of O's in V,, V,, and

V. satisfies

+ [Jn <n <n <n 3 (5)

Therefore, after the three 3-way merges described by M31 through M33,

the following situation exists: | -

: 1) Vv, V, and V, are each ordered.

2) The first 3n_ elements of V are all O.
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3) If n = n =n, then the remaining elements of V are |

all 1; otherwise, the remaining elements exhibit one of )

the following patterns followed by 1's.

0] i — — .a) if n =n +1=n_ +1;
b = = .) 00 if n =n =n +1;

c) 0110 if n =n +2 =n + 2;
a b c

d) 0010 if n =n +1=n + 2; |
a b Cc

e) 00100 if n =n_ =n + 2;
a b c

f) 0110110 if n_ =n +3=n_ +3;
001011 = = .g) 0110 if n =n +2=mn_ +3;

1 = + = | .h) 0010010 if n =n +1=mn_ +3;

i) 00100100 if n =n =n +3.

It is readily verified that patterns <c¢) through i) are all sorted

by the following sequence of comparators,

V3n +3°V3n +7’ Om, st -2
C Cc

"3n_+2°3n_ +4 Osm st- 1;
(6)

Vin +3°V3n 5? 0 < n < t- 1, |
| Cc C

Van +3°V3n +4’ On. st-1,
Cc Cc |

where t = (mtn+p)/3. These comparators constitute the [3,3] f-network.

The [3,3] strategy is illustrated by the lZ2-sorter in Fig. 9. The

inputs are initially partitioned into the three multisets (1,i5,151), :

i igsighs {i,1g,15}, and {i501 70110) that are sorted separately.
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Fig: 9. [3.3] 12-sorter network.
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The networks required to sort these three multisets are each abbreviated

by double vertical lines connecting the appropriate comparands. The

| (6,3,3) merge network begins with three (2,1,1) merge networks that form

| Vs Vi and v. These merge networks, which are abbreviated by a

single vertical line, are simply L-sorters without the initial compara-

tor connecting the pair from X. The remaining 11 comparators constitute

the [3,3] f-network defined by (6).



IV. [g,d] Sorting Networks

. For every pair of integers g,d> 2 Wwe can construct N-sorter

| networks using g small sorting networks followed by a [g,d] merge

network which, by definition, begins with d small merge networks. A

sorting network that begins with g sorting networks and d merge net-

works will be called a [g,d] sorting network, even if the g sorting

networks and d merge networks do not employ the [g,d] strategy in-

ternally. For example, the 12-sorter in Fig. 9 is called a [3,3]

sorting network regardless of the construction of the initial 6-sorter

and the small merge networks, |
In order to facilitate the general discussion of [g,d] sorting net-

works, we adopt the following conventions,

) 1) The purpose of an N-sorter network is to accept as input the

unordered multiset I = {i500 .0051] and to produce as

output the sorted multiset O = {05055444504}, where O is

a permutation of I and 0, < 05 < eee < ox’ The Zero-One
Principle allows us to assume, without loss of generality,

that all members of I are either O or 1. We make this

assumption throughout the remainder of this paper.

| 2) The g initial sorting networks, labeled S128p7 025, each
operate on an integral multiple of d members of I. The out-

] puts of these g sorting networks together form a partially

ordered multiset X = {x 5% 005%) where x, is the smallest |

. output from Sy» X, is the second smallest output from Sy»

«.., and Xx is the largest output from Sg



3) The jtB merge network, 1 < j < d, operates on x
? - v=" (i-1)ad+j’

1<1i< N/d to produce V(i-1)d+j’ 1 <i < Nd. | .
1) The [g,d] f-network operates on V to produce O.

The transformation from the unordered multiset I to the completely

ordered multiset (Q may be summarized by

g sorting d merge 3 f-networkI X Vv —> 0.
networks networks

The [g,d] f-network is defined informally to be any network that will

complete the ordering of the intermediate multiset V achieved in the

[g,d] N-sorter network, N = td. Before giving a formal definition, let |

us examine the partial ordering in V, It is convenient to consider V

‘to be a t x d array, where ]

V - - b= Vv . + ® '(1,3) (i-1)d+j | (7)

The t rows and d columns of V are given by |

= Nt IV, . 1 <i<t; (8)Vii, ”)- 1<Jj<d mit - =
_ ur’ V,. . 1 <j <d. (9)Y(*,3) 1<igt i) -

Note that the column Vix 5)? l1< j<d, is completely ordered since
.th

its t members are the t outputs of ms the J merge network,

If the KP initial sorting network Sy accepts n, O's as )

inputs, then the uniform distribution of the elements of X among the | )



d merge networks guarantees that | (n, +a-3)/a] of these n, O's are

. passed to merge network me. Therefore, the total number of O's that
oes into m, and into V is given b

g j’ (%¥,3)° g y

n= = |(n+a-s)d], 1<3 <a | (10)(%,3) k - —
1< k<g

We may use Equation (10) to show that

n < n <...<n <n + g. 11(%,a) S P(x,a-1) 0 SP(x,1) = N(xa) TF (11)

Equations(4) and (5) are special cases of (11).

We have seen that the d columns Vix j) are each ordered. The | :J

following theorem specifies the remaining partial ordering in V.

Theorem 1:

Consider the Boolean multiset V = {vysvaseeesvyls where N = td.

Suppose that the d columns Vix 3)? given by (9), are each ordered.J

Then |

a) the t rows Vis x)? given by (8), are also each orderedJ

if- and only if the number of O's in Vix 5) satisfies2

n <n < see < Nn ; | 12(%,d) = (%,d-1) = - (%,1)’ ( )

and

b the relation n <n + implies that| ) (%,1) = (*,d) 5

V,. <V,. 1 <i< tg. (13)
: (i,d) = (i+g,1)’ - =



22 :

Proof:

a) The theorem is illustrated in Fig. 10. Since each column Vix 3) ., |

is ordered, the upper n } elements of V,,6 ., = - that is
’ (*,3) (*,3) g

V,. . l<i<n .y — — are all O and the remainin
(1,3)? =" = "(%,3) s

t - Box 9) elements are 1, If we draw a line from left toJ

right in V representing the step function h(j) =1t - Bix 3)?b

| then all elements of V above h are OO, whereas all elements

below h are 1. Now the rows Vis *) are all ordered iffbd

no 1 appears to the left of a O in any row. Clearly this is

the case iff the line h(j) separating O's from 1's is

non-decreasing, that is, iff |

| t-n < t-n < ee. < t-n . 14(#,1)= F(x,2)S00 S F(x) (14)

(See Fig. 10(b).) Equation (1k) is equivalent to Equation (12).

b) Since V is Boolean

V,. = 1 = V,. < V,. . . 1(1+g,1) > V(1,4)= V(g,1) (15)

| Also, since V . is ordered
? (*,3) ’

: V,. .\=0 <=> n,, .\>i. (16)
(1,3) (*,3)=

Therefore, if n <n +g then |
? (%,1) = (%,d) ’ )



~~ ~~
. d <T 0 0

J J - »= £

@
\ f=

. |  } Oo
| n

~ — :
™M oN 0 (3) 3
* * O ot (®

hp — hp

> be E |
~~ ~~

oN NN om wn 2
* Oo i 0
= =~ x

joe
. Fam

i it n [4] ~~ 5
* * O =

©
QO
N

Ca
0

) j=
. 0)

a
31]
©
®)
S

| — —_ .
© TT : 1] ®)

=» LJ - - |

* * O od

L L
bol = | | ha

. yo

| : V4 0

™M MM {p) 0

* *# O -l £Su” po

> = at
Oo

(QV) NW [/)]

i} * * CO — ~~
“a” Sa” oS
— © ~~

Fan ~~

=i «i 14] n
* * - —

- hg Sp”

fg <



V/s =0 = n > i+ :
(i+g,1) (¥,1) Z °78

(*,d) =

IR CH) Bl

| => V,. < V,. | 1(1,0) < V(i+g,1) (a7)

Together (1 and (1 imply that V,. <V,. .g (15) (17) ply (i,d) = V(i+g,1)
Q.E.D.

Since the columns V : are ordered, and since n satisfies

(11), Theorem 1 and the transitivity of the relation "less than or equal

to" imply the following corollary,

Corollary 1: 3

Let V = AZTAZYERRTA MP N = td, be the intermediate multiset

achieved by the [g,d] N-sorter network T. Then for any multiset of

inputs to T, V,, .\ <V if
P ’ (1,3)= (r,s) :

a) r>1i and s > Jj; OR

| | b) r > i+g. |

The partial ordering in V is illustrated in Fig. 11, for the case

- = t = 6, with an arrow from V,. ., to V representing 3, d h, = Oy (1,3) (r,s) p g
*

the relation V,. .\ <V . R. W. Floyd has pointed out that the
(i,3)= (r,s) |

partial ordering in V is exactly characterized by Corollary 1 and Fig. 11. )

- ~ % Private communication.



1res: Y6,u)
Fig. 11. Partial ordering in V

when g=3, d=L4, t=6,
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A

By this we mean that if V = (0,0 5000) is any Boolean multiset that
satisfies the partial ordering specified forV by Corollary 1, then

| there is at least one combination of inputs to T that achieves V = v
The sublety of this observation is best illustrated by a partial ordering

that is not exactly characterized. Consider the comparator network that

results from removing comparators D and E from the L-sorter in Fig. 1.

The partial ordering in the multiset O does not include either 0, < °g

or o, < 0), since o({o,1,0,1}) = {0,1,0,1} and O({1,1,0,0}) = {0,1,1,0}.
However, no combination of inputs will achieve O = {0,1,0,0]}.

We have defined a [g,d] f-network informally as a network that will §

complete the ordering of the intermediate miltiset V achieved in the

[g,d] N-sorter network, N = td. The following is a more formal |
definition.

Definition 1:

| A sequence of comparators is calleda lg,d] f-network for N = td |

items if and only if it will complete the ordering of the multiset |

V = {v svoree svi), when a) the columns Vix, 5) of Vv, given by (9), are |

each ordered and b) Box. 5) satisfies (11). |

We can construct [g,d] f-networks for arbitrary g,d by i) using

(11) to determine what unsorted patterns of O's and 1's remain in Vv;

and ii) finding a sequence of comparators that will order these
unsorted patterns. Following this procedure we have derived f-networks

for g,d < 4; the best f-networks obtained are tabulated in Table 1, .



: | ’

. A

Strategy f-network for N-sorter, N = td f (N)
lg,d]

[2,3] Vii,3) Vas, 1S ES tL; N - 3
\'4 VV, 1 <i<t-1.

| (1,3) (i+1,1)’ - =

(1,3) Vs, TEES ED

[2,4] (i,4)° 7 (i+1,2) he | N - 3 |
Y(1,2)V(1,3) TSEET

Vv :V ll <1ic<t-1;i, 2)" (i+1,1)’ - = ’

(1,3)V(12,1) SESE
Vv VV, 1 <i<t-1;i,2 i+1,1)’ - 7 = ’ L

| (1,3) V(a,2)) 0 TSESTH

(1,3) V(aa,1) PSs

Table 1, Small f-networks
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A

Strategy f-network for N-sorter, N = td f (N)[g,d]

\% :V ;
| (1,4)°7°(3,1)

Y(t-2,4) (2,1)
\' :V ;
(1,3)77(1,4) |

\' Vv ; |
(3,1) (3,2)

\' 4% ;
(t-2,3)°" (t-2,4)

: . ” 2N- =

Vii,4)V(i+e,2)? 251% £3; |

Tah) (i,z)y ESS Eh

"(4,3) Van, SEE :
. . i t- ;Vii, n) Vii+1,2)? list

Y(1,2)V(1,3 Est sEB oo

Vo aviv. ,  1<i<t-2; |
k,2) (1,2) (1+2,1) N - 3

V : 1< i t-1,
(1,2) (141,21)? 1S ES

Table 1. (cont) Small f-networks,

_ _ .



. A

Strategy f-network for N-sorter, N = td f
[g,d]

\'4 :V ;
(1,3) (4,1)

A 'V ;
(t-3,3) (t,1) -

Vii,2)V(isg,1)y 2S 1S 3
V,, \:V,. 2 <i < t-3;(1,3) V(142,2) ESSE

Cts Vii,3) Vise, LSE SER ON-12, N=12;

(1,3) (an,2)y ESTEE |

'(1,3)(aa1,1y TERETE
Vv Vv ; |
(2,1)V (2,2)

\' HAY .(t-1,2) (t-1,3)

: (1,3)V(142,10) PST SEH
. : _n.

V,. , \:V,. , 1 <i< t-1;

[h, 4] (1,4) (i+1,3) - = ON - 11.
Y(1,3) V(r, TEESE

V,. :V,. 2 <i< t-1;
(1,2) 7(1,3)’ = 3

. Table 1. (cont) Small f-networks.



Except for the [3,4] and [4,3] f-networks, each of the tabulated

f-networks is completely described by a sequence of templates of the form | -

Vii,a)  V(ity,s) -- where 1 < ap < d, Y > O, and a< yd +p =--
followed by a range for i, which is specified in terms of t = N/d. The

[3,4] and [4,3] f-networks are described by several specific comparators,

in addition to templates. Note that when N = 12, half of these specific |

comparators are redundant and may be eliminated. For example, the second

comparator listed for the [3,4] f-network, namely Viee2,1)V(t,1)’ be-

comes Vi,s)Ves, 1)’ which is the same as the first comparator listed.

Let fre, a]N) represent the minimum number of comparators required
by a [g,d] f-network for N items. (Note that this function is only de- |
fined when N is a multiple of d.) Since we have not proved that the

‘tabulated f-networks are minimal, we have labeled the number of compar-

ators that they require tg aq): For each of the tabulated f-networks, :
except the [3,4] and [4,3] f-networks, we find that

A | |

fre, a]™ } *lg,a]" i Plg, a)’ 08)

where ar gd] is (1/4) times the number of templates and bre, dl is | |
constant. The tabulated [3,4] and [L,3] f-networks are also described by

(18) for N > 12, |

For large g,d it becomes increasingly difficult to derive an eco-

nomical [g,d] f-network, since the number of patterns of O's and 1's

allowed by (11) increases rapidly. Let P(g,d) represent the number of

patterns of O's and 1's consistent with (11), that is, the number of

; ~ different combinations of values that "x,1)? Bx, 2)? cee B(x d-1) can



assume for each value of n * . With n abbreviated by n(*,d) (*,3) j’

. we observe that

P(g,d) = = )3 coe pX 1. (19)
n sn sn _+ <n _<i Tr HL r= fq*"a-1"a-2

We may obtain a recurrence relation for P(g,d) by noting that

| <n_<n +g-1 - <ar WL a Aa™"4-1""d-2

<n + < <
SR Raa-1%"a-2

- P(g-1,d) + P(g,d-1). (20)

The solution to (20), with the boundary conditions P(1,d) =d, P(g,1) = 1,

is simply

g+d-1
P(g,a) = (51500). (21)

Note that (21) yields P(2,2) = 3 and P(3,3) = 10, which agrees with

our analysis of the [2,2] and [3,3] merge networks.

When N > gd, the problem of designing an f-network that will order

P(g,d) patterns of O's and 1's represents a considerable reduction of
* N

the original problem of designing an N-sorter network that will order 2

- } different input patterns. However, for large g,d, we find that P(g,d)
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becomes too large to permit an exhaustive test of a proposed design for | |

a [g,d] f-network, Therefore, for large g,d we must build f-networks | :

| in such a way that we can prove "by construction" that they complete the

ordering of V. Suitable procedures for constructing large [g,d]

f-networks are given in the next section.

|



V. Constructing Large [g,d] f-networks | |

Our approach to the problem of deriving large sorting networks and |

large [g,d] merge networks is to build them out of smaller sorting net-

works and smaller merge networks. We use the same approach to the |

problem of designing large [g,d] f-networks. We will present two

construction methods in the form of theorems. Theorem 2 below describes

a procedure for constructing a [g,sd] f-network using d small [g,s]

f-networks and one [g,d] f-network. Theorem 3 describes a similar

procedure for building an [sg,d] f-network out of s small [g,d] and |

one [s,d] f-networks. We may use these constructions and the f-networks

given in Table 1 to achieve f-networks for arbitrarily large g,d.

Before giving the theorems, we will describe an example. Suppose

we desire to construct a [3,6] f-network for the [3,6] 1l8-sorter net-

} | work. The partial ordering in the intermediate multiset V is depicted

in Fig. 12(a). In Fig. 12(b) we have isolated the partial ordering in

the even members of V. Clearly a [3,3] f-network will order V,;

similarly, another [3,3] f-network will order V_.

The partial ordering depicted in 12(a) guarantees (by Theorem 1)

| that :

n <n <, ..<n <n + 3. (22)(*,6)= P(x,5)= S P(x,1) SP(x,6) 73

The number of O's in v, and Vy are given by

+ n = nn +n + n ’ (23)
° (*,1) © T(*,3) © (%,5)

- n = n + n + n |
) - e (*,2) (*,4) (*%,6)’



CTT

(a) V for [3,6] 18-sorter, |

(b) Partial ordering in Ve,

Fig, 12. |
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so that

0 < (nm, =n, oc ) + (n,, =n.) + (n, - n )

=n =-n < n - n . - 2oe I M(x1) 7 (xe) = 3 (24)

Therefore, a [3,2] f-network will complete the ordering of V, once Ve
and vs have each been ordered.

Since the two small [3,3] and ome full-sized [3,2] f-network will

complete the ordering of V, they together constitute a [3,6] f-network, |

The resulting {3,6] 18-sorter network is given in Fig. 13.

For Theorems 2 and 3 below it is convenient to consider the multiset

V = RSPASTYRRRPL A i N=pqr, tobea pXgqxTr array, where

. _ ,Vii, j,k) V(i-1)qr+(j-1)r+k* (25)

Submultisetsof V include the pq "rows," pr "columns," and qr

"verticals" defined, respectively, by

oo - / Vv, . 1 <ic< 1<j<q;
(1,3,%) l1<k<r es,5,00 =k =J=d
Vv, = Nt V,. . l<i<p, l<k<r; (26)(1,%,k) 1<J=d resin) - =" T= =
Vv, . - Nt V,. | l1<j<q, 1<k<r.] (*,3,k) 1<i<p 1.30 7 —- v= - =

Larger submultisets of V include the p q X r planes’, the q p X r planes,

and the r p Xx q planes defined by
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| g l1<i<p 1<Kj<aq (1,3,k)( 7

V(%,3,%) ~ rant Vii i k) y 1 <3 <q; (27)l1<i<p 1<k<r »J -

V,. |

1<j<q 1<k<r sd -

For example, if we consider the intermediate multiset V for the [3,6]

18-sorter (Fig. 12) to be a 3 x 3x 2 array, then |

| (1,2,1) 3’

Vix,2,1) = V3r¥grvas)s (28)

V(x, %,1) 0

We are now ready for Theorems 2 and 3. |

Theorem 2:.

Let the multiset V = {vysvos eee vyds where N = tsd, be considered

a t x s xd array. Then the following small f-networks together

- constitute a [g,sd] f-network for V.

i) d [g,s] f-networks for Vix, %,k)’ 1 <k <d; followed by

ii) one [g,d] f-network for V. |
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Proof: |

According to Definition l, the sequence of comparators represented |

by i) and ii) is a [g,sd] f-network for V if and only if it will

complete the ordering of V given that: a) the planes Vix j,k)’~ 33,

1<j<s, 1<k<d, are ordered; and b) n, Jk) satisfies= Los ys K)

n <n < eee <n <n q
. (%,8,d) = “(%,s,d-1) = = (*,s, 1) = (*,s-1,d) =

n < ... <n <n + g. ae(¥,8-1,d-1) = = (%,1,1) = (%,s,d) . (=) oo

Let us assume that the partial ordering in V satisfies con-

ditions a) and b). Then since the submultisets Vi,j y) of Vix xk)

- are ordered and since Box 5K) satisfies (29) a [g,s] f-network willIJ) oe -

oh i ‘both b
order Vix, x Kk) Now the number of s in Vix,» k) ( bot efore
and after the application of the [g,s] f-network) is given by |

For any two indices kis kK, “satisfying 1 < k, < k, = d, we may use

(29) to show that | |

0 < T (n y — n ND = DL YT xk

< n - n <g. (31)
= (¥,1,1) (%,s,d) —

Therefore, once the [g,s] f-networks have ordered the planes Vix x KO!J

j h (31) guarantees that a [g,d] f-network will complete the ordering of V.



We have seen that if the partial ordering in V satisfies con-

: ditions a) and b), then the d [g,s] f-networks in i) followed

by the [g,d] f-network in ii) will complete the ordering of V.

Therefore, i) and 1i) together constitute a [g,sd] f-network,

Q.E.D,

Theorem 3:

Let V be as in Theorem 2, Then the following small f-networks

together constitute an [sg,d] f-network for VV,

i) s [g,d] f-networks for Vix j,%)? 1 < j < s: followed byJ) - —

ii) one [s,d] f-network for V.

Proof:

The proof of Theorem 3 is similar to that for Theorem 2 and is.

| given in Appendix A.

The partial ordering in the intermediate multiset V for the [3.2,3]

18-sorter is given in Fig. 14. - The construction method described by

Theorem 3 requires a [3,3] f-network connecting the three odd rows

of V (Vix,1,%)) and a [3,3] f-network for the even rows (Vix, 0,5)
" followed by a [2,3] f-network., The resulting [6,3] 18-sorter network

is given in Fig. 15.

. We many count the comparators required by the f-networks constructed |

according to Theorems 2 and 3 to obtain the following important corollary.



ho | | .

/

Fig, 14, V for the [6,3] 18-sorter. |
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Corollary 2: |

f N) <d.f N/d) + £ N); 2 |

f N) < sf N/s) + £ N).[sg,d7 ) < rg,d]¢ ) [s,d]¢ ) (33)

The inequality is required in Corollary 2 since we have no guarantee

that an f-network constructed using Theorem 2 or Theorem 3 is minimal.

In fact, the [3,6] f-network exhibited by the 18-sorter in Fig. 13

is not the most economical [3,6] f-network known. We may use Theorem 2

with s = 2, d = 3, to build a [3,6] f-network out of three [3,2] and

one [3,3] f-networks. Using Table 1 we see that this f-network requires

A A A 7 |f N) =3 fF N/3) +f N) =4 N= 14 34)3,61 = 3 ¥13,2 13,3 7 3 (

comparators, whereas the f-network in Fig. 13 requires : N - 13 = 29 ;
comparators. {However, a slight modification of the [6,3] f-network

illustrated in Fig. 13 reduces the number of comparators to : N - 15.)
The number of comparators required by the best f-network that can

be constructed out of smaller f-networks using the construction of

Theorem 2 and/or Theorem 3 is neatly summarized by

| A

tr a1(™) = min min F(g,d,N,q,p) ’ (35Es l1<q<g l1<p<d |
g mod q = O 2<q +p

) d mod p =O

where

: (V(a-p) + £ (8) |F(g,d,N = q-p-f N p)) + £ N |
(€,4,8,0,P) = aPX 0o/09(W (a [ap]

; - A A i
+ q-f N + pf N/p) . 6)



. A A

Note that fg, 17M = fre, ay™ = 0, so that: a) if q = 1, then (36)
, describes a construction that uses only Theorem 2; b) if p = 1 then

(36) describes the use of Theorem 3 alone; and c¢) if p,q > 1, then (36)

describes a network built using both theorems. The case p =q =1

is not allowed, since it would reduce (35) to an identity,

We may use the construction methods of Theorems 2 and 3, along

with the f-networks in Table 1, to achieve [g,d] f-networks for all

g,d of the form otgd ¥ When g and/or d have prime factors greater
than 3, we may construct a [g,d] f-network as follows: Using Batcher's

general method we obtain a [2,d] (2d)-sorter network. This (2d)-sorter .

will, of course, exhibit all of the templates required by any [2,d] |

network. We may use the [2,d] f-network and Theorem 3 to derive a

] ay f-network, where g < 2" From Definition 1 it is clear that a

2,a] f-network is also a [g,d] f-network for all values of g < ot,

(This is because the unsorted patterns remaining in the intermediate

set V for the Lg,d] sorter are a subset of those remaining in the

(2, q) network, if g < 21) Therefore, we may construct [g,d] f-networks
for arbitrary g,d.

We will. conclude this section by calculating the number of compara-

tors required by the ret, als f-network constructed using Theorems 2

and 3. From Equation (35)we obtain | |

| ¥ Note that these construction techniques are illustrated by networks
in Table 1: the [2,4] f-network illustrates Theorem 2, while the
[4,2] f-network illustrates Theorem 3.



A . . r S a
f ij. = min min F(g,d,N,g ,d t- (37)
[g7,d"] O0<r<i 0<s<]

| O<r +s

A :

Since fre aM) is linear in N for all of the tabulated f-networks,, |

we expect a solution to (37) of the form

SES (38)f - . N = a . . N - b . . ® 3
i 3 | i J i

[g",d] (ed) [gd]

Using (36) and (38) in (37) we obtain

a = min min a + a |
i J i-r _j-s r .Slg ,a"] O<r<i 5 Le ,d9777 re’,d]

O<r +s

+ a | + a ; (39)
i-r _s r .j-sLg sd] [eg ,d | Co

b ij = max max edb i-r j-8 + b rs
[g,d"] O<r<i O0<s<]j (g" ,d" 7] [eg ,d"]

O<r +s

+ g'b ier st a°b r jest (40) |
| [eg ,d7] lg",d” 7]

Equations (38)-(40) describe the number of comparators required

by a [g,d] f-network built out of smaller f-networks using Theorem 2

and/or Theorem 3. Most of the best [g,d’] f-networks known exhibit

this construction and are, therefore, described by (38)-(40).

|
| |
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| For many values of g,d, all of the best [g",d"] f-networks known

- (0<r<i, 0<s<j, 0<r +s) are constructed from the [g,d]

f-network by repeated use of Theorems 2 and 3. In this case the solutions

: to (39) and (40) are |

| a 3 3. = 1:Jea ; (41) |
Lg ,d"] Lg,d]

| | i j
| -1)(d"-1 _

lg ,d"] (g-1)(d-1) (g,d]

From Table 1 we observe that a., =2, b = 11, whereas from
| [4,4] — 77 ThA) ’

Equations (41) and (42) (evaluated with g =d =i = j = 2) we find that

: the [4,4] f-network constructed from the [2,2] f-network according to

: ’ Theorems 2 and 3 requires a = La =2, b = 9b = 9,| qu,u] T *Ae,e] TF Pru Tee) 7
The Lh, 4] f-network given in Table 1 is the smallest example of a

k  .k

| special procedure which has been discovered for constructing [2 2 1

f-networks [ 7 1. The special procedure is too complicated to include |

in this paper. Basically, it requires; a) determining the templates

] required by the [2,2 f-network derived using Theorems 2 and 3; and

~ b) reordering these templates in such a manner that, although the result-

| ing network still orders V, some of the comparators have become

"redundant and may be removed. Since the special construction does not

| reduce the number of templates, 2 kK Kk is given by (41), evaluated with
[25,27]

g =d=2 and i =j =k, However, the constant term is increased to

k

b = : L  - 3 oK + 2 , (43)
[27,2]
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which represents a reduction (since bro a] in (38) is preceded by ab -
k

minus sign) of ~3 4" comparators. When g =d =2 and i # j, the
ij kK k

best [27,2°] f-networks known use the special [2,2 ] f-networks as

building blocks for the construction methods described by Theorems 2

and 3. The coefficient brol ody is obtained from (LO).bg
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| - VI. The Economy of [g,d] N-sorter Networks

We have defined a [g,d] N-sorter network to consist of g sorting

| networks of size NisNos ees Nos where NS is an integral multiple of

d and £2 N. = N, followed by a (g,d] (Ny, Nps. oN) merge network,
Since N, is required to be a multiple of d, we cannot construct a
[g,d] N-sorter network unless N is a multiple of d. This limitation,

which was included since it greatly simplifies the description of [g,d]

merge networks and [g,d] f-networks, can be removed. In[ 3, 5] a

procedure is given for pruning an N-sorter network, that is eliminating

one input lead, one output lead, and several comparators, to achieve an

(N-1)-sorter network, For arbitrary N we can use the [g,d] strategy |

to achieve an N-sorter network by 1) deriving the [g,d] (d[N/d])-

sorter network and 2) pruning as necessary. If we extend the defi-

nition of a [g,d] N-sorter network to include the sorting networks

” | achieved by pruning a [g,d] sorting network, then for all values of N

except N = 10,13,14,15,16, or 18, the most economical N-sorter known |

is a [g,d] sorting network. |

We can also use pruning to achieve a [g,d] (NpsNps eee, N) merge

network when not all of the N, are integral multiples of d. Let

oo Meg, a] (Nps Nos oo + oNg) represent the number of comparators contained in
the (NysNps ees) merge network achieved by pruning (if necessary) the

[g,d] (dIN,)/d1,d[Ny/dY,...,d[N /d]) merge network. Then the minimum

number of comparators required by a (Ny sNps «ees N) merge network con-
structed using any [g,d] strategy is given by

M (N,N, oes N) = min Meg a (MpoNpreeesNg)e (4h)
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It is instructive to ask which values of g and d yield the most

economical N-sorter networks. Let 5, (N) represent the number of com-
parators required by the most economical N-sorter that uses g sorting |

networks followed by a [g,d] merge network. In order to permit a valid

comparison of networks achieved with different values of g, we will

require that each of the g initial sorting networks must itself use

the g-way divide-sort-merge strategy, so that 5 (N) satisfies the
recurrence relation

| 5, (N) = min { M, (Ny ceo +sN,) + I 5, (¥;)}. (45) |
| NyFe. AN =N 1<i<g

N. > 1 | |
1 =~

| We have calculated S,(N) for g = 2,3, and 4 and N < 36; the
A

results are given in Table 2. The last column, labeled S(N), gives a.

the number of comparators contained in the most economical N-sorter known

A

of any construction. An asterisk indicates those values of S(N) which

*

represent an improvement over the most economical networks previously

reported [ 5 ].

From Table 2 we observe that 8, (N) is only occasionally smaller

‘than Batcher's result, B(N) = S,(N). However, 5) (N) < 8, (N) for all
N > 8, and the [4,d] N-sorter networks are more economical than any

previous N-sorter, for N >34. |

%¥ The improved 18-sorter, which does not use a [g,d] strategy, is given
in Fig. 16, The improved 26-,27-,28-, and 34-sorters all use two
initial sort units, one of them the particularly efficient 16-sorter
designed by M. W. Green, followed by Batcher's [2,2] merge network.
The best 35-sorter is achieved by pruning one lead from the [4,9]
36-sorter; the best 36-sorter uses the [3,12] strategy.
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2 1 1 1 1

3 3 3 3 - 3

L 5 6 5 5

> 9 9 9 9

6 12 12 12 12

7 16 17 16 | 16 |

8 19 21 19 19

9 26 25 25 25

10 31 32 | 30 29

11 37 37 35 35

| 12 41 he 39 39

| 13 48 51 LT L6

14 53 57 52 51

15 59 62 57 56 |

16 63 70 61 60

17 ( 76 73 73

18 82 ) 81 80 To*

Table 2. S, (N) for g<k4, N<36. |



| 19 91 93 89 88 |

20 7 101 95 93

21 107 108 104 103

22 114 117 110 110

23 122 125 118 118

2h. 127 131 123 123

25 138 141 ) 135 134

26 146 148 143 141%

27 155 154 151 150%

28 161 168 157 156% |

29 171 178 168 166

| 30 178 167 17h 172

31 186 197 182 180
32 191 207 | 187 185

33 207 214 203 203

34 219 226 o1l, pig
35 £32 234 205 DO5*

36 241 Coan 233 030%

Table 2 (cont.) |

%¥ This value of 8 (N) describes an N-sorter network that is more
economical than any N-sorter previously reported [ 5 ].
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We may discover the asymptotic growth of S,(N) by considering the
case N = git For all values of g tried we have found that the

minimum in the right-hand-side of (45) occurs when N, = N, = Le. = ge",
so that

k+1 k k Kk k -
Ss (g 7) = gs (g)+M(g,8 5.58) (46)
g g g

| . k Kk k
We have also found that the most economical Lg,d] (g ,8 5...58 ) merge

network known is achieved using d = g, $0 that |

| k k k k
| M PO = M eee| -(8 ’ ’ 8 ) re,g]'® ’ ’& )

= gu (eg gt) + : Cal (%7)= 8 nn? [ge]

The solutions to the recurrence relations given in (47) and (46),
N |

with the boundary condition 5, (g) = M, (1,1, 0051) = S(N), are

k k k+1M cos = (ak +a + + (g=1)v_; 48. (8 2 » 8 ) ( z = Bg) g (g Wg (48)

ky > . Kk |S = ak” +8 k + - L92 (8) (or, BX + Vg) & Ye? (49)

where |

1 _a = (50)
g 2% g,g]’

-1 A -1 -1= S - a - -1 b 1)] _ Pq g (g) 5 [e,e] g (g-1) (g,2])’ (5
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v, = (1) bo (52)
g leg,e] ’

| The asymptotic growth of 5, (N) may be obtained from (49); it is
given by

:
| S (N) = a N(log N + Nllog N;, + vy N + oOf(1g (NV) (log XN) BN (log N. fg (1)

| ~2 2

= a (log.g) N(1og,N) +

-1 |

p(ogg) = N(logN) + vy.N + 0(1). (53)

We may obtain the coefficients a and b from Table 1 and use
le,s] [ge]

© them in Equations (49)-(53) to show that

s (N) = 1 N(log N)2 - 2 N(log. N) + N + 0O(1);2 In 2 L 2

5, (N) = .265 N(1og,N)* - .315 N(log_N) + 1.25N + o(1); (54%)

1 2 1 11

| 8) (N) fp N(log,N) | > N(log.N) 5 N 0(1)

Since the leading coefficient for 8. (N) exceeds that for both 8, (N)

and 5, (N), it is not surprising that S5(N) is generally larger than
the other two. Also, although the leading coefficient is 1 for both

5, (N) and 5, (N), the coefficient for the term N(1logN) is smaller
for 5), (N). This explains why 5, (N) is smaller than S,(N) for

oo B sufficiently large N, that is, for N > 8.



From (50) and (53) we observe that the coefficient for the term

5

» N(logN) in the expansion of s_(N) is

] -2 -2
| 3 |

| a, (1og,g) = 3(loge) “lg,el’ (55)

| When g = 2°, we may use (41) to show that (55) reduces to +i. However,

for all [g,g] f-networks known, ary g] > 110g)" if g is not a’

| power of 2, Therefore, the leading coefficient in the expansion of S (N)
i g

| is minimized - - and its value is’ { - - if and only if g is a power of 2.

In view of the above observations we conclude that the most economical |

| N-sorter networks are achieved when g is a power of 2. Furthermore, we

might hope to achieve successive reductions in the asymptotic growth of

: s_(N) by choosing g = 2° (which maintains a leading coefficient of i),
for successively larger r. Therefore, we use (50)-(53), along with

b a and b iven b 1) and and

“18,87 "8,87 “16,167 16,16] Ever by (41) and (43), .
with S(8) = 19 and S(16) = 60 obtained from Table 2, to derive

| 1 2 1 9 |
N = N(log N — «= N(log N) + =N + 0O(1),| Sg( ) In ( 8, ) 3 ( g, ) 7 (1)

(56)

1 2 1,71y 59
= N(log N - st N( log N + N + O 1).

| Comparing these results with (54)we observe that for sufficiently large
*

| — large

N, Sg(N) > 8) (N) > 8 ¢(N). And, trying g = 2 for successively larger |
values of r, we find that successive improvements occur only when r 1s |

| itself a power of 2, so that the first improvement over S,¢(N) occurs .

bo ~~ when r = 03 =8, or g=2 = 256.



The most economical (2°F)-sorter network known, when r = 2° > L,
A

] uses the [2F,2"] strategy, so that s(2°7) = S (27). (see [ 7 1.)
2 |

A

We may use this observation to eliminate s(2°%) from the right-hand-

side of (51), evaluated with g = 0° thereby obtaining ]

-2r 2r |

P or = c S (2 ) - 2r .2r
2 2 [27,277]

| -2r ,.2r -1

- oe (= = 1) b 2r 2r- (57)
[277,277]

Using (41), (49), (50), (52), and some algebra we can reduce (57) to the

following recurrence relation for the coefficient §g r |
2

| B oy = 2B + (1 - "ETN (2" = 1) b a
2 ot [27,2]

2r |

= 2-1) 0 L } (58)
[27,27]

The solution to (58), with b ~~ given by (43) and with the boundary
[27,27]

condition B,, = 71/48 obtained from (51), is

1 | |

Py = ~ (zt +o.) Ty | (59)
2

S
when r = 2 and

1

cg = ; p) >= (2 +). (60)
- ° 0 <4 < Ss
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From (43) and (52) we obtain

r -2 4, Tr r

LEE LE] @
_ |

| Since 0 rapidly converges to .107 and since vy _ (4 - 2")/3,
A 2

we may achieve a growth rate for S(N) of

| A 2

| S(N) = .250 N(logN) - 372 N(log,N) + 1.333N + 0O(1). (62)

Equation (62) represents an improvement of order N(logN) over B(N) = |

5,(N), which exhibits the smallest growth rate known previously. Further-

more, the minimum growth rate of (62) is nearly achieved by 81¢(N), since

the coefficient of N(logN) in (56) is -.370.
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| VII. Conclusion

- The strategy used by most of the best previous N-sorter networks |

is to divide the N inputs into 2 groups, sort these groups separately,

and then merge the results. The best merge networks, suggested by

K. E. Batcher [ 4 ], partition each sorted multiset into 2 divisions, merge

each division of the first sorted multiset with one of the second, and

| then use FN-1 comparators to resolve the remaining ambiguities.

Our results demonstrate that greater economy can be achieved in

N-sorter networks by dividing the N inputs into g > 2 groups that

are sorted separately, and by partitioning each sorted multiset into d > 2

divisions to be combined by d merge networks. In particular, we have |

| shown that by using g = d = 4, we can achieve N-sorter networks that

- | are more economical than Batcher's for N > 8 and that are more economi-

cal than any networks previously designed for N > 34. We have indicated

that even greater savings can be achieved by using g = d = oF where

| r = 0° >4; however, these constructions are only applicable for

N>g-d = 4. |

Our N-sorter networks require order N(logN) fewer comparators

. than the best previous networks. " However, we have not been able to im-

prove upon the asymptotic growth rate of 1N(1og,N)° achieved with
Batcher's construction. As noted above, the coefficient for the term

N(log N)* with our construction is given by

a (ogg) = 3(1log,g) e.g] (63)

| . } Since ag 2] is (1/g) times the number of templates required by the| ’



[g,g] f-network, we could reduce the coefficient of the term N(10g_N)°
by constructing an improved (g,g] f-network that required fewer than

| ¥(log,g)° templates. However, in Appendix B we show that | i

-1 |
f N) > (L-d7)N - (d-1 6h

so that a > 0 and «a >0. Therefore, the [g,d] strategy must |
Le,g] g

require order N(1og N)° comparators.



Appendix A: Proof of Theorem 3

| The proof of Theorem 3 is facilitated by the following two lemmas. |

| Lemma 1: .

If the rows Vii *) of an r Xx d array V are ordered, then theJ

columns Vix 3) are also ordered if and only ifJ

n <n <...<n : 6(r,%) S P(r-1,%) = 0 S(1,%). (65)

| Proof: Lemma 1 follows from Theorem 1 by symmetry.

Lemma 2:

EC Suppose that the t x s planes Vix *,k) of the t x s Xx d array; ’")

V are ordered. Then if we sort the t d planes Vix j,%)’ the t x sbE J

planes remain ordered.

| Proof:

| Assume that V is ordered, 1 < k < d. Then the columns
(*,%,k) = =

V,. 1 <1i< t, and the verticals V l1< j<s, are also
(i,%,k)’ - - 7? ] (%,3,k)’ — -_ 7

| ordered, since they are all submultisets of Vix *,k)" Therefore, byJ) J

Theorem 1,

: ] (*%,8,k) = (*,8-1,k) = — (*,1,k)

| Summing (66) for 1 < k < d we find that

n <n < ... <n . (67)
(*,8,%) = (*,8-1,%) = = (*,1,%)



"
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Now suppose we sort the t X d planes V i , 1 <j < s. We
| (%,3,%) - =

need to show that this operation leaves the planes Vix x Kk) ordered.) I |

Clearly sorting V . does not alter the number of O's in V ; |
(*,3,%) (*,3,%)’

therefore, nox 3%) satisfies (67) after the t X d planes are sorted.AJ)

Also, once V is sorted, the n . O's are divided among the
’ (%,3,%) ’ (%,3,%) c

rows V,. . according to |
(i,3,%) S

| 0 if n, _ _ \ €[0,(i-1)d];] (*,3,%) LO )d]
n,. . = n,, . .\- (i-1)d if =n,  , ., € [(i-1)d,id]; (68)(i,3,%) (*,3,%) ( ) (*,3,%) L( 9; }

| if n,  . € [id, td]; :d (*,3,%) i ytd]

Equations (67) and (68) together imply that |

| n <n <... <n <n <
(t,s,%) = (t,s-1,%) = - (t,1,%) — (t-1,s,%) = -

(t-1,s-1,%) — — (1,1,%) ( | |

We can consider V to be a ts x d array with ts rows" Vis j,%)?FR

l1<i<t, 1<j<s, andwith d "columns" Vix ¥,k)? 1 <k <d.- - - - J 2

tin orders the "rows" V,. . because they are all sub-
Sor g Vix,3,%) (i,3,%)°
multisets of V . If V is initially ordered, then sorting

(%,3,%) (*,%,k)
if the "rows V,. . are

Vix, j,%) leads to (69). Now by Lemma 1, if the (i,3,%)
ordered and n,, |, satisfies (6 then the "columns" V are: (1,3,%) (69), (*,%,k)
also ordered. Therefore, if Vix *,k) is initially ordered, then sorting27 |

\' . leaves V ordered.(%,3,%) (*,%,k)

Q.E.D. ;



61 :

i ) We are now ready to prove Theorem 3.

Theorem 3: |

: Let the multiset V = {visvoseeeyvyids where N = tsd, be considered
a t X s Xd array. Then the following small f-networks together

constitute an [sg,d] f-network for V. |

i) s [g,d] f-networks for V, . ,\, 1 <j <s; followed by
; (*,3,%) - =

1 ii) one [s,d] f-network for VV,

1 | Proof: | |

According to Definition 1, the sequence of comparators represented

: by i) and ii) is an [sg,d] f-network for V if and only if it

will complete the ordering of V given that: a) the d planes

Vix, % Kk)’ 1<k<d, are ordered; and b) Box %, k) satisfies |

n <n <... <n <n + sg. O
1 (*,%,d) — (*,%,d-1) - = (*,%,1) = (*,%,d). 8 (7 )
| | Let us assume that the partial ordering in V satisfies con-

ditions a) and b). Then, since Vix %,k) is ordered, each of the1 27)

/ submultisets Vix j,k)’ 1 < j<s, is also ordered. In addition, the dis-33 = J =

: tribution of the n O's among the verticals V satisfies
(*,%,k) (*,3,k)

: n = n +s -3)/ s | . 1

oo We may use (70) and (71) to show that

_ : - n <n : < ... <n , <n : + g. 2(*,3,d) = (*,3,d-1) = = (%*,3,1) = (%,3,d) (72)



Since the d submultisets V : l<k<d, of V : are ordered(*,3,k)’ - =" (%,3,%) ’

and since Bk 5k) satisfies (72), a [g,d] f-network will orderJ

Vv . . |
(*,3,%)

| Lemma 2 implies that the [g,d] f-networks that order the t X d

planes V,,  . leave the t X s planes V ordered. Furthermore(%,3,%) (*,%,k) g
once V is ordered, the distribution of the n O's among(*5,3,%) g (*,3,%) .
the verticals V : satisfies

(*,3,k)

n . = n . + d~- Kk / d].oi) = Pea) ) 7 a (73)

Equation (73) implies that |

( 3,4) = ( y3,d-1) —- = T(*,3,1) = (*¥5,3,d)

Summing (74) for 1 <j <s Wwe obtain

(%,%,d) = (%,%,d-1) = — (*,%,1) = (*,%,d) ( 2

Therefore, since the [g,d] f-networks for Vix 3%) leave the planes3J) )

V(%,%,k) ordered, (75) guarantees that an (s,d] f-network will complete
the ordering of V. |

We have seen that if the partial ordering in V satisfies con-

ditions a) and b), then the s [g,d] f-networks in i) followed

by the [s,d] f-network in ii) will complete the ordering of V.

Therefore, i) and ii) together constitute an [sg,d] f-network.
Q.E.D.



Appendix B: A Lower Bound for f (N)

In this appendix we calculate a lower bound for £ ay Ns the |gs

number of comparators required by the most efficient [g,d] f-network

for the set V = Wavesvy) , where N = td, t > g > 2, Letr

and s be any two integers satisfying l <r <t-1, 2<s <d. Then,

by definition, a [g,d] f-network will complete the ordering of V if

the columns V : l < j<d, are ordered and if
(*,3)° - v= -

ox 1) = r+l; }

n. oy = r-1 s < Jj 7 d.
- (*,3) ’ -

From (76)we see that V is ordered except that the O at position

Vir+1,1) should be moved to Vir,s)® Since a [g,d] f-network will
complete the ordering of V, it must include a comparator or a sequence

of comparators that provide a path from Vir+1,1) to Vir,s)"

Now a comparator can only move a O in one position of V to a

position labeled by a smaller index. Therefore, a [g,d] f-network must

i Vv

contain either the comparator Vir,s) (r+1,1) or else the comparator
V :V .\, Where s < j < d and where the f-network includes a path
(r,s) (r,3) —

on oO Vv } . - < . .
from Vir+1,1) t V(r,3) Since r and s are arbitrary integers
satisfying 1 <r < t-1, 2 < s < d, we have shown that

f (td) > (t-1)(d-1), g,d> 2, | (77)
lg,d] = =



oh

or, using N = td,

-1 |

fg, aM) > (1 - d ) N = (d = 1), g,d < 2. (78)

For g > 2 and/or d > 2 (78) does not provide a very tight bound

for fre a1(N); indeed, it is not at all the greatest lower bound known.bj

However, (78) is sufficient to show that go] > 0 and a, > 0, so, | |

that the number of comparators required by a [g,d] N-sorter network grows

as N(log,N)°. |
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