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Abstract

We consider the wiual univariate linear model E(y) =~Xy , V(y) = 021
In Part One of this paver }E has full column rank, Numerically stable
and efficient computational procedures are developed for the least squares
estimation of y and the error sum of squares. We employ an orthogonal
triangular decomposition of X using Householder transformations. A lower
bound for the condition number of X is immediately obtained from this
decomposition. Similar computational procedures are presented for the
usual P-test of the general linear hypothesis L'y =0 ; L'y = m is
also considered for nl;é 0 . Updatins techniques are given for adding to
or removing from (')E, y) a row, a set of rows or a column.

In Part Two, X has less than full rank. Least squares estimates are
obtained using generalized inverses. The function ’I:'Z is estimable
whenever it admits an unbiased estimator linear in y . We show how to

~

computationally verify estimability of L'y and the equivalent testability

~ o~

of L'y =0
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PART ONE: UNLVARTATE LINEAR MODEL WITH FULL RANK

1. Least squares estimation and error sum of squares

We consider the univariate general linear model

2
(1.1) E(y) = X735 V(y) =071,

~

where E(*) denotes mothematical expectation and V(+) the variance-

covariance matrix. We take the design matrix X to be nxg of rank

g<n and-known; in part two we relax this assumption of full column

rank. The unknown vector vy of g regression coefficients is estimated

by least squares from an observation y by minimizing the sum of squares .

~

(12)  ly-xmry - .

Prime denotes transposition; bold-face capital letters denote matrices
and bold lower-case letters vectors, with rows always appearing primed.

2
In the case where V(y) = 0 A in (1.1), with A known and positive

~

definite, we may replace y b;ﬁHFy and X by FX where F satisfies

FAF* = I . The matrix F is not unique but it is possible to find an F

~~~

which is lower triangular from the Cholesky decomposition of A (cf. e.qg.,
Healy, 1968).

It is well known that the least squares estimate y satisfies the

~

normal equations

(1.3) X')ﬁz = X'y

~

and is unique when X has full rank. The matrix X'X is greatly

A BT aic o

T e N
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influenced by roundoff errors and is often ill-conditioned: by this

we mean that a relatively "small" change in X will induce a correspondingly
"large" change in (X'X)-l and in the solution §==(X'XYJX'y to (1.3).
For these reasons we prefer to work with X directly rather than X*X

[cf. e.g., Longley (1967), Wampler (1969, 1970)].

It is possible to find an nxn orthogonal matrix P such that

R R
(1.4) x = ~ ;0 P =~ s
~ “\ O - 0

where R is upper triangular of order qxq . This orthogonal triangular

decomposition (OTD) may be made in various ways; a very stable numerical _

procedure (Golub, 1965) is to obtain P as the product of g Householder
transformations.

A square matrix of the form;H =ZI-?EP', where E'E = 1, is defined
to be a Householder transformation. Clearly’ﬁ = H' and

HH' = H'H = H2 =1 , so that H is a symmetric and orthogonal matrix.
All but one of the characteristic roots of E are unity, the simple
root being -1

A vector x may be transformed by a Householder transformation to

a vector with each element zero except for the first, i.e.,

(1.5) Hx =1y ;  r#0

say, where eb is an nxl vector with each component 0 except for
the j-th which is 1 ((j = 1,2,...,n) . Premultiplying (1.5) by its
transpose yields

2gr0. = £

' = 11yt -
(1-6)  x'x = x'Hx = rieje)



Substituting H = T -2am' in  (1.5) gives

~ o~

(1.7) x -2(utx)u = re,
premultiplication by u! yields -utx = Uy where Uy = e:'LE , the

fir:l element in u . Substitution in (1.7) gives x+ Eruﬂi = re;
so *that with x = {xi},
) Qui =3 {0y = -xi/(rul) , 1 =2,0e0,n .

o

e first exprescion will always be computed positive if the square root

_1 (1.6) is taken as

1/2

(L.9) r o= ~sgn(xl)-(x'x) s

where coomn(x,) =+L i1 z, >0 and -1 otherwise. Then

T 7% e /(s { =2

. RITSR b ey 0 ma, = sen(, ) cx/(su i ceeynl
o) 0 i ‘ ]!, , 1 = ( i _L/< l) 2 2 b 2

Witer ¢

(1.11) s = +(x'x)™

~

D Al [T} [n] (]
This ives u'u = 1, for Qu{ = xE/(?s“ui) = xz/(s“+»s!xl,) , 1=2,..0,n .

o~ o~

Do D20 2
Hence 22:u; = (s“-xi)/(s + s|xl‘) = ln-(lxll/s) = 2(l-ul) . We note
i=2

that II need not be computed explicitly as Hx = x-2(u'x)u , for which

~ o~ o~

we need only u and ufx In the above form, it is necessary to compute

two square roots per Householder transformation; if, however, we write

H=1I -u(u'u)_lu' then only one square root need be calculated (Businger

and Golub, 1965;.



Applying this procedure with x replaced by Xil , We obtain

(1.12)  HK = (ryq805%9)

where r,, replaces r , and X, 1is nx (q~=1) such that

X.e. =x. . -2(ux

175 J+ d+l) M j = l,ooo,q-l and x = Xa . . This
~e ~ ~ o~

~J+l Lo+l

procedure is now repeated with XLl as x and a Householder transformation

~

Ll = E - ?Ellii ; say, with Eiflz 0 . The last n-2 elements of Xliz
are now annihilated. .o Hﬂﬁv%f—l = rllHinl = rllel , while Hl}P(e Hlxl 1

bas its last n-2 components zero. The product IEH is orthogonal.
urther repetitions, annihilating at the j-th stage the last n-j elements
in the j-th column of the matrix i( transformed previously by j-1
Householder transformations (j = 1,...,q) , realizes P as the product
of' g FHouseholder trarnsformations. The matrix P is not computed

explic it ly .  Details of thiz algorithm are given by Golub (1965), and
Businger and Golub (1¢ 5) who also give & program in Algol €0.

Partitioning P = (P,,P,) , with P, nxq and P, nx(n-q) gives

~eol sl ~l ~2
from (1.k4)
(-9 BE R L oe oo,
with PiPy =T, PiB = O andPiPy= T, n-q * Since P'P = I . If, in

the above algorithm, we¢ simultaneously apply the g Householder transfor-

mations to the observation vector y , then we have

1 4
Py ol
(L) pry = = = Z
b 4
Py Zo
say. Thus z, = Ply has expectation E(Pé y) = PLXy = 0 and covariance



2

matrix V(P y)

vector

PP,

2
oI
-n-q

i}

Hence z,. 1s an easily computed
~C

serial correlation (cf.

! 10
l.15)

~ ~ o~

~ach term on the leit

ig O ; their sum ie i
s p pt = T _*(/ *r)(\
the crror sum of squarc
compoted here as the o
The wvector of (co-

for analysis of the livear wodel (cf.

P PY + X(X'X) 1“" =1

m of

been observed bt Gentleman (1970) that computing r

0).

e.g., Grossman and Styan, 19/

-n ’

-hand. 31 e ig

amnotent with rank the sum of the ranks n-g
toand ;’._Z,. = V'P Pf'\'\ = (y -XQ)'(:{-X% is
s 8., say -- the minimum of (1.2).

squares of the n-gq elements in =z, =
~

related) residuals v =y -Xy

e.g., Draper and Smith, 1966).

av sl

of uncorrelated regrossion residuals and may be used to test for

It follows that

idempotent and their cross-product

and dg.

It is simply
t
P2y -

is often essential

computed explicitly it can be retrieved

cugonud der transformations when the corresponding

etoved (which we recommend) .

. \f(xtv) lvl Y‘ y Xy- r

o~ ~ o~ o~

A

that

Thouet: ihe natrix P
as Plaorow b
a ectore have Leoo

ﬁ, , Cince ?L’
it has
may be numerically unstable.

We also find fror (1.4)

(=

(1.16) XX = (R' O)P"" =

~ o~

Substitution in

(1.17)

R =17

gives ;

(1.3)

e

~ields R'Ry = (BT, 0)P'y =

~ ~l

This is expedited by R being upper triangular.

Hence we compute
However,

in this fashion

, so that solving



We note that R'R is a Cholesky factorization of X'X , for which
Healy (1968) has given a Fortran program.

= 02(X'X) = ; an

The estimator ; has covariance matrix V(7)
unbiased estimate is i3 (X')f) -l/(n-q) which is easily computed using
(1.17) as (ZQ,E)R (R ) */(n-gq) . The generalized variance (cf. e.q.,
Anderson, 1958) is |Vz = 02q/ |x*x| , where |+ | denotes determinant.
In optimal design theo~y a problem is to choosNe X so that J.XLX| is

maximized thus reducir - |V(?)| as much as possible. Again using (1.16)
d -
we see that lX'Xl = |» 'Rl TTrii , as R is upper triangular. Hence
~ . . q ]gl- 2
|v(7) | is estimated b, [Eégg/ (n-q) 1%/ i iy

A measure of the ill-conditioning of a matrix is its condition number

which we define as thc ratio of the largest and smallest nonzero singular
values nf the matrix. The singular values of a (possibly rectangular)
matrix A are the positive square roots of the characteristic roots of
A’A or AA' .  When te condition number far exceeds the rank we find
(cf. Wilkinson, 1967) “hat the matrix is extremely ill-conditioned.

A lower bound for the condition number »(X) of the design matrix X
is the ratio of the la-gest and smallest (in absolute value) diagonal
elements of R . To see this we note first that X and E"Z( have the
same singular values, due to the orthogonality ofNP . As 1:')5 is merely

R bordered by zeroes, sg(X) = sg(R) , where sg(+) denotes singular

value. For any square matrix A of order nxn ,
(1.18) sg (8) < |chJ.(A) | < sg (&) 5 3 = Lie.oon

with ch(*) denoting characteristic root. The subscript j indicates



j-th largest. To prove (1.18) when A has real roots, let N = chJ.(A)

with Av = AW . Then

~ e~

(1.19) sgi(A) = chl(A'A) = max[x'A'Ax/x'x] > v'ATAV/vivV =

~ s e e S

~ o~ o~ o~ o~

[}
Similarly sgi(A) < N . Thus

s, &Y)N sgL(Rz max |ch(I~{) ‘ max |rii|
(1 '20) "'(}.E) sgqNZ)Nd a qu(}j?_ 2 min]ch(nl‘{)] a min\rii‘ .

Other properties of w(A) are given by Wilkinson (1967).

Why is the condition number important and how can we use the
relationship (1.20)? Let y be the computed approximation to j which
satisfies (1.3). Suppose that we wish to determine an upper bound for

the norm of the relati e error of ¥ :

(.21 Wz =70/ h20 s

W , ey 1/2 .
wherc ﬂ‘ a”i\ indicates the Euclidean norm (a'a) . Define
(1.22) r =y - Xy,

which we can compute gquite accurately. Then

(1.23) r-T = X(¥y-7)
and hence
(1.24)  -XX( 7y -7) = -X'% ,



since X'r = 0 . Thus

~ o~

es)  N7-70 = M@ E] < en (0 TIRE| < K E/se ) -
From (1.3), H%'%iﬂ = HXZXH , so that
(1-26) eyl < |G Y0

Combining (1.25) and (1.26), we have

aen 153-70/131

IN

[sg,(X) / sg ()12 %7 |/ || %ty ||
1ML q ~ ~ ~ -

i

kSO NXE/ ey

Thus we see that the condition number may be used for determining an
upper bound for the relative error of H; | . This upper bound is the
2 . .
product of two factors; the first of which, x (X) , is independent of y .

However, the lower bound provided by (1.20) would in some circumstances

give insight into the relative error. Hence, if

(1.28) [max\rii|/ min|rii\]2|1¥jij\/\\XZY;H

is large, then it is likely that the relative error in “7 H is large.
The numerical efficiency of the above orthogonal triangular
decomposition is enhanced (cf. Golub, 1965) if the column selected for
each of the g Householder transformations maximizes the corresponding
sum of squares. That is, at the j-th stage (j = 1,...,q) we transform
that column of the g-j+1 possibilities which maximizes the sum of
squares of its last mn-j+1 components. The interchanges may be
summarized in a permutation matrix E postmultiplying X . Thus (1.4)

becomes



R R
(1.29) X = |7\ 1 ;5 P ~
~ ~({o])~ --- 0

The vector z does not change and hence neither does Se . The solution
(1.17) changes however; substituting (1.29) into (1.3) now gives

1 15 — [
Iﬂz RT'Y. IE.E;L , so that
(1.30)  R(M'y) = 2 = RO

is solved for @ , and 7 = M8 . As these interchanges only rearrange
4 2
the T.go o we still find |X'X\ = F[rii . The lower bound for the condition
- - i=1

number simplifies, however, as with these interchanges ma.x‘riil = lrlll 5

and min\riil = |r_| so that x(X) > |_rll/rqq| .

qq

Given the nxn matrix

1, -1, -1, ..., -1
o, 1, -1, ..., -1
(1.31) A = '. . : : B
.o = o @ oo@ e m=E 8 l.J
we see that ma.xlr.,.\ = minlr..| =1, and so #(A) >1 , since A =R
ii ii PR -~ o~

when no column interchanges are made. However, if column interchanges

are performed then for' n = 10. say,

lr ;] = 3.162, |r | *.005383

and x(&) > 934.8. The actual value of x(A) = 1918.5 .

The For-ban IV programs LLSQ and DLLSQ (double-precision) in the
Scientific Subroutine Package (SSP) of IBM (1968) solve the least squares
problem as described above. The SSP library is available at many IBM 360

computing centers. The SSP manual gives a write-up of the procedure and



indicates how~§ and Se are output. In addition we note that the g
diagonal elements of R are output as , AUX(g+l,...,2q) ' , with
maxlriil = AUX (g+1l) and nﬁnlriil = AUX(2q) in absolute value. The
remaining nonzero elements of R are overwritten in corresponding

~

positions of X (input as ' A '). The vector z is overwritten on b
(input as ' B ') and Se appears in ' AUX(1) *. The solution z is
output as * X '.

The number of multiplications to obtainNR is about nq2 —q373 ,
whereas approximately nq2/2 multiplications are required to form the
normal equations (1.3) with about 'q5/6 multiplications needed to solve
them. Thus when n-gq 1is small, the number of operations is roughly the
same for both algorithms, but when n-g is large, it requires about twice
as many operations to use the orthogonalization procedure.

The orthogonal triangular decomposition (1.4) or (1.29) is very
similar to the Gram-Schmidt decomposition. Indeed if n = g and there

is no roundoff error and all r. are taken positive, then the Householder

11
and Gram-Schmidt algorithms yield precisely the same transformation.
Although the modified Gram-Schmidt process (cf. e.g., Golub, 1969) may be
used for solving linear least squares problems, the computed vectors may
not be truly orthogonal! The Householder transformations, however, yield
vectors which are more nearly orthogonal (Wilkinson, 1965). Furthermore,
not only do the first g columns of Espan the same space as the
columns of X but the last n-g columns of P span the complement of

the space spanned by the columns of X . As we have seen above, this is

quite useful.

10



2. Hypothesis testing and estimation under constraints

Let us consider the general linear hypothesis
S T

for the linear model of Section 1. The contrast matrix L' is taken as
sxq of full row rank s <q . If we assume that y is normally

; ; ty t 2 t(ye _lL : 5 — ' 'Jxr
distributed then L' is N(L'7,0°L*(X'X) L) , with 7 = (X'X) vy .
The numerator of the usual F-test for (2.1) is then well known to be

(2.2) FrLL () tL Ly = s,

say, the "hypothesis sum of squares". Substituting (1.16) and (1.17)

into (2.2) gives

- -1 -1 -1, -1
(2.3) s, =2!@®@D'LILR (R )'L] L'R

h z

1

We compute (R-l)'L = G , say, by solving R'G = L , with R' lower
triangular. We then obtain an orthogonal triangular decomposition ofG ,

axs (q>s),

[ W}

(2.4) G = (R

say, where B 1is upper triangular s xs and the orthogonal matrix Q
is the product of s Householder transformations. Then G'G = B'B ;

partitioning Q =‘le:Q2) , where Ql is gx s and Q, 94X (g-s) gives

G = QB from (2.4). Substitution in (2.3) yields

~

(2.5) Sp=2199 %

-



which we compute by applying the s Householder transformations of (2.4)

to 2 simultaneously with G and then summing the squares of the

first s components 01 the transformed Zy -

~

If we test the hypothesis
(2.6) L'y = m ,

where m 1s a given ¢ x1 vector, not necessarily 0 , then we proceed

by computing L'; -m = h , say, and sum the squares of the components of

(B-l)'h ; we find the latter by solving L'y -m = h = B't , say, for t ,

~ o~

with B' lower triangular.
The described procedure can be improved upon when s > g-s . We
first obtain an orthogonal triangular decomposition of L ,

U
A U ¢

say, where T 1is orthogonal and U upper triangular. Partitioning

T =(El’22) » where T, is gx s and T, is gqx (g-s) leads to

] — . t —_
(8  1m o= U T, =0

Thus L'y = 0if and only if y = T, for some © , now unconstrained.

~

Hence

(2.9) min (y-%7)'(y~X7) _ min(y - X1,0)* (v - XT,0)
L'y =0 ~ — ~ - R

~

Using (1.4) and (1.14), we see that (2.9) reduces to

3 - t - ?
(2.10) m:.n(El 52292 (El RTQO) + zlz

)

~

p 4




so that Sh equals the first term in (2.10) which is easily computed
as in Section 1 with e replacing y and RT2 replacing X . Since

(cf. e.ge, Good (1965); p. 89),

(2.12) s (XT) < gy o (¥T) < sg, (KT,
we have
(2.13) .L.ué(XT ) < wXT) = u(x)

Thus, by eliminating tlie constraints, the linear least squares problem

may become better conditioned.

The least squares estimate y* , say, of y subject to L'y = 0 is

~ o~ ~

obtained from the solution © to (2.10) by

~

(2.1%) o =T

1 ©>

2

If the constraints have nonnull righthand side m as in (2.9) then

~

the procedure is changed as follows. Evidently L'y = m holds if and
only if y = T0+T (U—l) 'Tm =16 +T,w, say. We obtain w by solving

m = U'w , with U' lower triangular. Thus y is replaced by y-XT.w

~

and hence Zq by zl-.RT W the resulting value of Sh is therefore

~ -~

o oo
(2.15)  min(2; -RT,W -RT.8)*(z, -RT,W - RT.0)

1o

which we compute as in Section 1 with zl-RT]lr replacing y and RT2

~ ~e

replacing X .

13



The relevant F-test for the hypotheses (2.1) or (2.6) is then

computed as

Sh/s

2.16 =
( l) F — Sﬁ)(n_i)— ,

with the critical region formed by values of (2.16) exceeding the corres-
ponding tabulated value of F with s and n-g degrees of freedom.

In some special, <hough common, situations the above computations
simplify considerably.

If we test a single contrast inNy equal to 0 we obtain (2.1)

with s = 1 . Let us write this as
(2.17) 'y =0

A particular case might be testing a single regression coefficient equal

to 0 . Then (R_l)'L = K becomes (R_l)'

~

lh

= k , say, found by solving

I = R'k as before. Then (2.3) becomes

~ o~

~y2
(2.18) (7)) %% = By

and we compute the denominator in (2.18) by summing squares of components

in k . The one-sided t-test for

~

(2.19) 1ty >0

S 1/2
has critical region large positive values of £'7/ [k'k Se/(n-q)] / .
Another special case occurs with s = g-1 when L'y = 0 if and

only 1if

(2.20) 7 = ot ,

1k



where ® is now a scalar. The vector t is often found upon inspection
(without transforming L ). For example in testing for homogeneity of
coefficients of y , we have t = e , the vector with each component

unity. Substituting t for TE in (2.10) yields

(2.21) © = z!Rt/t'R'Rt ,

Eanliadit I P N

and

2
2.22) 8y = zim - (24RE)°/LIRIRL

with the denominators computed by summing squares of elements of Rt

~e~

15



e Updating procedures

After a particular set of data has been analyzed it is often
pertinent to add to or remove from X and y a row (or set of rows
or to add to or remove from X a column. This happens when new informa-
tion becomes available or when existing experimental units have been
classified as extreme, Or independent variables insignificant.

We begin by considering the addition of data from m , say, further
experimental units. Let %m and Y be the corresponding data of order

mxq and mxl respectively. Following (1.4) and (1.14) we may write

Xn Im
In O Xn o Im
(501) = § El .
0] P? X hs
0z

Applying g Householder transformations of order m+qg to the first mtq

rows of (3.1) yields

*
X Ym Ry %

(5'2) = ~l * )
Rz 0z

* *
say, where Ru is gxg upper triangular, Zq is gxl and El 1is

mx 1l . Hence

R *
Z
~1L 0
X I N
(3.3) B ={ ¢
X Yy
oz
where

16



Pi 0 I 0

| B

(G-%) - By =
0 I 0 P!
~ ~n-q ~ ~

is an orthogonal matrix formed from 2qg Householder transformations, and

. . *
has order mtn . The new residual sum of squares 1is zl'zi + zézp ,

i.e., the previous sum of squares, augmented by the sum of squares

?
Zolp v
*
of the m components of z. ,these components themselves give m
additional uncorrelated residuals.

Next, suppose we wish to add a (g+l)-t1 variable whose n values

constitute a vector x . We first compute P'x by applying in turn the

~

g Householder transformations determined by the stored vectors u

(cf. residual calculations in Section 1). We need then only one further

Householder transformation, H , say, of order n-g to annihilate the

last n-g-1 elements in P'x , i.e.,

~ o~

4 4
o 0 OB R
(3.5) P'(X,%) = - ,
14
° H 9 HEX 9 by
where P = 6%322) , as in §1, and h = x'PJEXE" the sum of squares of

the last n-g components of P'x
The procedure for removing an experimental unit is more complicated.
The method given previously by Golub and Saunders (1970), may under

certain circumstances prove unstable. We now give a new method which

should provide a more accurate solution.

7



Suppose we want to remove xi , the i-th row of X . We seek an

upper triangular matrix S , say, so that

3.6 X*X-x.x? = R'"R-x.x?2 = S'S = R*Y(I-tt")R ,
~ 1 ~ ~ ~

~ ~ ~

say, where R't = Xo 3 the vector t 1is easily computed since R' is

~

lower triangular. We now construct an orthogonal matrix Q so that
Ot = ce; ; thus c® - t't = x:!L(R'R)-lxi = e:!LX(X'X)'lx'ei <1 . We define

the quasi-diagonal matrices of order gxg :

-
~k-1

(3.7) 2y 8 5 k= Lyeeesa-1,

where

cos Gk, sin @k
(5'8) ?k — ; k = l’ -ul,q"l

-sin Qk, cos Qk

Clearly 2, and Gk are orthogonal. Let

(5'9) (B’l ’.E‘!) = §q_t (& -l’&-l) ; ! = l,o--,q_"l

with t. =t and R, = R . We choose ©, so that Z annihilates
~0 ~ 0 k “q-2
? 3 1 . _ _ .
Sq-l+iE!-l and hence fq-l+lfz 0 ; £=1..4,g-1 . Then the matrix

~

(3.10) Q= 242502,

satisfies Qt = ce, and is orthogonal. From (3.6) we may write

~

18



2
(G.11) 575 =RAI-ce) Y

~

which is positive definite if and only if c2 > 1 . It follows that

W:I_-L ] W12 3 LICN ] wl,q-l bl wlq

Vo1 2 Yoo 5w Yo g1 7 Vg

W

(3.12) 3q

]
1=
I

0, w52 ’ W3,q—1 »

) 9 9 9
9 9 9 9
L] 9 ? ¢

l
t

Sk (== «n an @

w w
4,9-1 "’ “qq

is an upper Hessenberg matrix. Thus (3.11) becomes S'S = W'DEW , with

(l_cz)l/e 0!

(5015) D = )

~ Eq—l

which is real when C2 <1l . We compute S by applying orthogonal

transformations to the upper Hessenberg matrix DW . Let

*
(3.14) S = L Sy 13 K= . . aal,
* . . * 1
with 8§, = DW and %, formed as Z, in (3.7) but with 6, replacing
*

_ Shd t - at

Qk and so chosen that %k annihilates Ek+l§.kik Sk*'lg‘i?k and thus
' _

15k % = O - Then

* zr *]DW
(3.15) S~= -iq_l = %q-l %q-e o =M ~2 §1~~ 0

2 . . .
This procedure requires about 94 /2 multiplications and 2q-1 square

roots.
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The above algorithm can also be used for adding an observation but
about twice as many numerical operations are required as in the procedure
given by (3.3) and (3.4). We also note that the problem of deleting an

observation is numerically delicate. Since

(3.16) S'S = RY(I-tt")R ,

~

it follows that

(3.11)  »(8) < x(R)/ (1-’5"5)1/2

Thus if t't is close to 1 , then x(8) could be quite large as the
right-hand side of (3.17) is attainable.
Finally suppose we wish to remove an independent variable or

column of x . If it is the last then no further calculations are

required; but suppose it is the first. Let

1n. 1o, .. Tig
0] r r
o2 ... T2 -
(3.18) R=| | w = e ®
0 r
aq

where R is gx (g-1l) and has one more row than an upper Hessenberg
matrix. We annihilate the elements Jjust below the main diagonal of E,,
l1e€oy reg,.‘@@ﬂﬂuu, by applying orthogonal transformations of the type

(3.7) with

(5'19) Bk = %k. gk_l H k = l’ oon,q-l ’

20



= R ] ' =
and Ry= R we choose 9, in % so that €1 Bro1 & Tl ket 1

- i . T = ' '
is annihilated; thus Sk+ll}kfk 0 and E,.{,q-l is the new triangular

matrix sought.
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PART Two: UNIVARIATE LINEAR MODEL WITH LESS

THAN FULL RANK

4. Least squares estimation and error sum of squares

We consider now the univariate general linear model (1.1),
(k.1) E(y) =%y , V(y) =01,

with the design matrix X of rank r < g <n . We obtain the same normal

equations as (1.3),
(4.2) X'Xy = X'

which are consistent; their solution, however, may not be unique. Consider

a solution to (4.2) which we may write
(3.3) 7 = XN Xy,

where (+) denotes generalized inverse. We follow Pringle and Rayner (1971)

and define a generalized inverse of a matrix %1, mxn , as any matrix A-

satisfying
(4.4) AA-A = A
Evidently A~ has order nxm . Such a generalized inverse exists but is

not unique in general; if, however, A- satisfies (4.4) and
(4.5) A-AA- = A- ,
(4.6) (AAT)t = AA”™

(%7) (@A) = 2-A,
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then we write A- = A' , the pseudo-inverse of A . When we only require

~ ~

that (4.4) is satisfied we will write A- = gl(A) -— a g;-inverse of A

~

Similarly when (4.4) and (4.5) are satisfied, A~ = glz(.é) 3 (b4, (L.5),

- +
and (4.6): A = g123(A) . The pseudo-inverse A = g123)+(.é) . The

~ ~ ~

~ A A +
solution 70 s, say, to (4.3) which minimizes 7'y equals X y as is
shown, for example, by Peters and Wilkinson (1970). Our concern, however,

focuses more on estimable functions of y , rather than y per se so we

~

will not discuss here computation of ;O . We define an estimable function

of Y as a vector L'Y which admits an unbiased estimator of the form

~ o~

K'y where L' is s x g , say, and K', sxn . The least squares

14
estimate is then L'y = L'(X'X) X'y so that XK' = L*(X*X) X' . We shall

see (Section 5) that when L'y is estimable, L'(X'X) X' is unique for

all (X*X)' = gl(i('g) . Rather than form X*x , find a gl()f')f) and then
postmultiply it by X' , we compute a g125(§) directly, noting that G
is a gl(é) if and only if it can be written as (é'é)—i\' for some
gl(ﬁ\'é) = (.i\'!})— [Pringle and Rayner (1971), p. 26].

We proceed as in Section 1 to orthogonally transform ~X by Householder

transformations with column interchanges. If X has rank r then after r

Householder transformations we obtain, cf. (1.29),

R S R S
(%.8) X =P~ ~qm 5 PXUM=|" T ’
~ ~lo o/~ - 0 0

where R 1s upper triangular, T XT , S is rx (g-r) , and T is a

permutation matrix of order gxq . We now claim that

. Rt o\P
(h.9) X =W T TR = g5

oéﬁ

~
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tH

o
1
t

*,
We have XX* =P P*', clearly symmetric. Hence XX X =P m*
-1
* % R 9 * _
while X XX =1 P' =X so that (4.9) is proved. The solution
~ .~ ~\ o -

[ e
1

~

; = )E*y to (4.2) afforded by (4.9) is often called a basic solution as it
contains at most g-r nonzero elements.
Thus (4.9) accomodates our purposes; moreover we do not have a
stronger g-inverse than is needed. As in Section 1 we partition
P =(§l’,132.)., , but now let P, be nx r and P nx (n-r) . From (4.8)

2
it follows, cf. (1.13), that

(4.10) PIXT = (R, S)

(k.11) PrX = O

Following (1.14) we now write

]
Py ol
()'"-12) P'y = = = Z )
T~ ' -
- %>
where Zl is now rxl and 25 (n-r) x1 . Thus 22 is again a vector

of uncorrelated residuals; moreover

' 1 tyv) T ’
(.13) B, PR +X(X'X) X' = L.

as in (1.15), with PePé idempotent rank n-r and X (X*X)-X* symmetric

~

- idempotent rank r . By (4.11) their cross—-product is 0 and so their

~

sum is idempotent rank (n-r)+r = n and hence ]Zn as claimed. Thus

2L



(L.1k) 2} z =y'(I -X(X'x)'x');z

~ o~ e~

is the residual sum of squares, computed as the sum of squares of the

n-r components in Z,

~

The vector of (correlated) residuals ¥ = ¥ -X7 = (E ‘}E()E'}E) }E')y" = P, P! y

-~ w2 L

as in Section 1, and using (%.13) it follows that (4.14) equals r'r .
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5. Estimating estimable functions and testing testable hypotheses

As mentioned in Section 4 we are not directly concerned with the

estimation per se of y . We define L'y to be an estimable function

~ o~

of y whenever it admits an unbiased estimator which is linear in y ,

Kty , say. Thus

(5.1) L'y = E(K'y) = K" X 7

helds for all » . fHeuce

Ac in Section 3 we take L' to be s xq , but now relax the

full row rank taking r(L) =t < r . We obtain
L'

(5:7) 1 R P A
X ~

directly from (5.2). Substituting (4.8) into (5.3) gives

- h 1 L!
LT -1’ e
(h ) T ~ T = r(R) = r(X) =r,
R, S R, ~ ~
pl ~ ~ ~ 2
~| 0,0

where we partition

(5.5)  L'm = (L},L})

assumption of

with L} sxr, and L} sx (q-r) . The matrix LT is the contrast

1

~ o~

matrix L' with its columns permuted according to the interchanges which
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rearrange the columns of X to make the first r columns linearly
independent. Then Iﬁ_ are the corresponding r columns of L' or L.
We apply v > r Householder transformations of order str , whose

product is V', say, so that

1 |
I:1’152 T U
(5.6) V' mo= [ ,
~ R, s |~ 0 0

where Wl is a permutation matrix, and T is upper triangular vxvVv .
If (5.0) is achieved at the r-th stage, i.e., v=r, then[P&? is
estimable. If not, then L'y is not estimable.

An alternative procedure which is often easy to verify theoretically

follows and is included for completeness.

THEOREM 5.1. The function L'y is estimable if and only if

(5.7) LY(X'X) X'X = L'

for any (X'X)™ = gl(X'X) .

Proof. We show that (5.2) and (5.7) are equivalent. Clearly (5.7)

implies 5.2) ; conversely

(5.8) LU(X'X) X'X = K'*X(X'X) X'X = K'X = L' ,

~ o~~~ ~ o~

since X(X*X) -X*X = X [cf. Pringle and Rayner (1971), p. 26].
Q.E.D.
We may use (5.7) to computationally verify estimability as follows.

Substituting (4.8) and (4.9) into (5.7), with X* = (X'X) X' gives
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(5.10) L!'R °S = L!

To verify (5.10), therefore, we solve RW = S for W , say, which equals

~e~

R-lS , with R upper triangular. We then examine L'LW -Lé and if close

enough to 0 conclude L'y estimable.

For the remainder of this section we will assume L'y estimable.

~ o~

From (%.3),

~ - *
(5.11) L'y = L'(XX) X'y = L'X y ,

~ o~

*
where X = (X*X)-X' = glEB(X) , cf. (4.9). Thus
. R o )
(5.12) Lty = L*m| ™ ~|P'y =LiR "z, ,

using (4.12) and (5.5). We compute L'; , therefore, by solving itzf a)
for W, say, which equals E-lf',l s with P:.. upper triangular. We then
premultiply by If]'. which contains the r columns of E' corresponding
to the r linearly independent columns of X which yielded Ii . We note
that ]'.fi is uniquely determined by (5.11) for any (X:)i)— = gl(?}..(.) .

To see this, set L' = K'X from (5.2),s0 that L:(X:X)-X: = 15'13()5')9‘)3' =
K'X(X’X)+§' =E'(§'X)+X' , since X(X*X)-X* is unique [cf. Pringle and

~ o~~~

Rayner (1971), p. 25].

~ o~~~
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We define the general linear hypothesis
(5.15) L'y=0

as testable whenever L'Y is estimable. The numerator of the usual F-test

~ o~

for testable (5.13) is then, cf. (2.2),
(5.14)  P'LIL*(X'’X) LIL'7 = S

To see that (5.14) is invariant over choices of (X*X)- , notice that

- - + +
LY(X'X) L = K'X(X'X) X'K = K'X(X'X) X'K = L'(X'X) L from (5.2). Moreover,

~ o~~~ ~ o~ ~ o~

(5.14) is also-invariant over choices of [L'(X'X) L] ; writing

* -
X = (x*x) X' we find that (5.14) may be written

~

* * % - *
(5.15)  y'(X)LLX (X)L LXy =8

using (5.7) and (5.11). Sh 1is uniquely defined since for any A ,

A(A*A) A' is unique [cf. Pringle and Rayner (1971), p. 25].

~ o~

To compute §, we see from (%.9) and (5.11) that (5.15) maybe written

-1

1 P N
(5:26) 8y = 2y (R)'LILIR (R ) LI LiR "2y

h

We obtain an orthogonal triangular decomposition of

B C
(5.17) =@M, =of ~ ~|m
ROy =g o T

say, where B is upper triangular t xt , with t = r(L) = r(Ll).by (5.10) .
The orthogonal matrix Q 1is the product of t Householder transformations,

while the permutation matrix ﬂ2 rearranges the columns of Ll, rxs ,
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to make the first t linearly independent. Substituting (5.17) into

(5.16) yields
(5.18) S, =z

*
where E = g123(§) is given by

% 5t o
(5.199) & =M~ ~laQ
~ =2 5 o=

We partition Q = U%]Qe) , where Ql is rxt and Q,2 rx (r-t) .

Q .] Then (5.18) reduces to

~

If t=r,8-l

— 4 1
(5.20) Sy = 21997

as at (2.5). We compute (5.20) by applying the t Householder transfor-
mations of Q in (5.17) to Zq simultaneously with G and then summing

the squares of the first t components of the transformed z

If we test the hypothesis

(5.21) L'y = m

and L' is s xq with row rank t < s then m must satisfy the same

~

s-t restrictions that apply to the rows of L', i.e., (5.21) must be

consistent. Then the numerator sum of squares is uniquely given by
(5.22)  (7'L-m")[L'(X'X) LI (L'7 -m) =8, ;

following (5.15) and (5.16) we see that

(5.23) L'(X'®)L = LIRT(RT)L = GG

~
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for which we want a gl-inverse. We use

LEMMA 5.1. If A" = gleB(A) , then

(5.24) A" = gp(ata)

Proof. From (4.4), (4.5) and (4.6) we have

*
(5.25) AA*A = A , A*AA* = A* , AA* = (A )'A!

*, % *, %
Hence A (A )'A'A = A*AA*A = A*A . Thus A'A[A (A )'A'A] = A' AA*A = AA

*, ¥ * ¥ * * ¥ *, *
and [A (A)'A'AJA (M) = A" AA(A)' = AT(A))" .
Q.E.D.

From Lemma 5 .1 we obtain

(5.26) 6" (6")" = (Lt () L

-1, -1
= T8 (87) 'Tjél

from (5.19), where we partition 112 = (11'21{1122) , with TI21 s sxt,

identifying t linearly independent columns of Ll , T'X..Hence
(5.27) s, = (3'L-m")T, B (B™) M1y, (L' - m)
‘ h ~ o~ o2l 2 ~e1ts Lot

First %I'P? -m 1s computed and rearranged to form Tfél(L"; -m) = h , say.
Then h = B'k is solved for k , where B' is lower triangular. Finally

Sh is found as the sum of squares of the components in

k = (B79)'h = (387 ', (L -m)
The relevant F-test for the hypotheses (5.13) or (5.21) is then

computed as

31



Sh/t
(5.28) F = Se — s

cf. (2.19, with the critical region formed by values of (5.28) exceeding
the corresponding tabulated value of F with t and n-r degrees of
freedom.

The above procedures simplify slightly when the contrast matrix L',
sXxq , has full rank s <r =r(X) . In that case (5.25) becomes non-

~

singular and the results of Lemma 5.1 are not needed. We use

LEMMA 5.2. When, L'y is estimable,
(5.29) r(L'(X'X) L] = r (1) ,
where r(+) denotes rank.
Proof. Using (5.7), r(L) = r[L*(X'X) X'X] < r[L'(X'X) X'] =
r[L (X)X x{(x*X) "}'L] = r[L'(X'X) L] < r(T) .
Q.E.D.

When L* , s xq , has full row rank s < r the decomposition (5.17)

becomes

[Jvv]

TTI

(5.30) Moy

1R
1]
1O
1O

say, where T,

o1 is now 88X s and may equal Is (no column interchanges).

Formula (5.27) applies with essentially no change.

We defer discussion of updating techniques for the less than full rank
case and extensions to multivariate models to a further paper. A computer
program in Fortran IV for the IBM 360 is being developed for the procedures

discussed in this paper.
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