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Abstract

We consider the numerical calculation of several eigenvalue problems
which require some manipulation before the standard algorithms may be
used. This includes finding the stationary values of a quadratic form
subject to linear constraints and determining the eigenvalues of a matrix
which is modified by a matrix of rank one. We also consider several
inverse eigenvalue problems. This includes the problem of computing the
Gauss-Radau and Gauss-Lobatto quadrature rules. In addition, we study

several eigenvalue problems which arise in least squares.



0. Introduction and notation

In the last several years, there has been a great development in
devising and analyzing algorithms for computing eigensystems of matrix
equations. In particular, the works of H. Rutishauser and J. H. Wilkinson
have had great influence on the development of this subject. It often
happens in applied situations that one wishes to compute the eigensystem
of a slightly modified system or one wishes to specify some of the eigenvalues
and then compute an associated matrix. In this paper we shall consider some
of these problems and also some statistical problems which lead to interesting
eigenvalue problems. In general, we show how to reduce the modified problems
to standard eigenvalue problems so that the standard algorithms may be used.
We assume that the reader has some familiarity with some of the standard
techniques for computing eigensystems.

We ordinarily indicate matrices by capital letters such as A, B, A ;
vectors by lower case letters such as X, Y, a; and scalars by lower case
letters. We indicate the eigenvalues of a matrix as h(X) where X may be
an expression, e.g., K(A24-I) indicates the eigenvalues of Az*'I , and in
a similar fashion we indicate the singular values of a matrix by o (X)

Usually we order the eigenvalues and singular values of a matrix so that
M) SAA) <L L L < 5(2) and 09(8) S op(A) S . . L og(A) . We assume

that the reader has some familiarity with singular values (cf. [91).



1. Stationary values of a quadratic form subject to linear constraints

Let A be a real symmetric matrix of order n , and c a given
vector with c Tc =1

In many applications (cf. [10] it is desirable to find the

stationary values of

xTAx (1.1)

~ ~

subject to the constraints

x'x = 1 (1.2)

x =0 . (1.3)
Let

p(x) = XAX - ACx + 2ux e (1.4)

where (N, B) are Lagrange multipliers. Differentiating (1.4), we are

led to the equation

Ax - Ax + uc =0 . (1.5)

Multiplying (1.5) on the left by cT and using the condition that

1¢ HQ = 1 , we have

Iax . (1.6)

=
]
]
i3]
&

Then substituting (1.6) into (1.5), we obtain

PAx = \x (1.7)
where P =1 -ccT . Although P and A are symmetric, PA is not

necessarily so.
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Note that P2 =P, so that P is a projection matrix. Thus

NPA) = A(PPA) = A(PAP).

The matrix PAP is symmetric and hence one can use one of the standard

algorithms for finding its eigenvalues. Then if

K =PAP
and if

Kz, = M.z, ,
~1 ioi

it follows that

}fi = PE:.L (i = l,2,...,n) .

At least one-eigenvalue of K will be equal to zero, and c will be

an eigenvector associated with a zero eigenvalue.

Now suppose we replace the constraint (1.3) by the set of constraints
cfx = 0 (1.8)

where C is an nxp matrixofrank r. It can be verified that if
P=1- cc- (1.9)
where C~ is a generalized inverse which satisfies

ccC=C
1.10)
T (

cc- = (CC)
then the stationary values are eigenvalues of K = PAP . At least r
of the eigenvalues of K will be equal to zero, and hence it would be

desirable to deflate the matrix K so that these eigenvalues are

eliminated.
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By permuting the columns of C , we may compute the orthogonal

decomposition

{: £§'1 m (1.11)

where R is an upper triangular matrix of order r , S is rx(p-r)
QTQ =I ,andm is a permutation matrix. The matrix Q may be
constructed as the product of r Householder transformations (cf. [8D.

A simple calculation shows

P = QT 0 0 Q (1.12)
0 I
n-r
T
= QJQ ,
and thus
T T
N(PAP) = N(QJQAQJIQ)
T
= NJQAQ™J) .
Then if
T G131 Gyo
G=04Q = | . , (1.13)
Gip Gpp
where Gll is an rxr mat and Gy, is an (n-r) x (n-r) matrix,
JQAQ J =

Hence the stationary values are simply the eigenvalues of the

(n-r) X (n-r) matrix G22 . Finally if

G‘22 VA }‘oizi (i = 1,2,...,n-r) ’

~



then

The details of the algorithm are given in [lo].
From equation (1.13) we see that h(G) = h(A). Then by the Courant-
Fischer theorem,
}\.j(A) < )\.J.(Gee) < xrﬂ.(A) (3 =1,2,...,n0-1) (1.14)

when

)\J.(A) < xjﬂ(A) and xj(Gza) < hj+l(G22).

Furthermore, if the columns of the matrix C span the same space as the r

eigenvectors-associated with r smallest eigenvalues of A,

%.J(Gza) = xr+j(A). (1.15)

Thus, we see that there is a strong relationship between the eigenvalues
of A and the stationary values of the function

o(x) = xTAxax xT+ 20757, (1.16)

where W 1s a vector of Lagrange multipliers.
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2. Stationary values of a bilinear form subject to linear constraints

Now let us consider the problem of determining the non-negative stationary

values of

(<ay )/Clixly liglly) (2.1)

where A is an m X n matrix, subject to the constraints

¢Tx = 0, Dy = 0. (2.2)
The non-negative stationary values of (2.1) are the singular values of A
(i.e., o(n) = [h(ATA)]l/E). It is easy to verify that the non-negative
stationary values of (2.1) subject to (2.2) are the singular values of

PLAP) (2.3)

-

where

Pb =1I-cc, PD =I1-DD .

The singular values of PbAPD can be computed using the algorithm given in

[91.

Again it is not necessary to compute the matrices Pb and PD explicitly.

if, as in (1.11),

C = QCT RC ¢ 1'tc )
D= _.T RD SD
QD T[D 2

2-1



then

1|
S
UC-I
&

PD=aﬁgc1)-QD

where r is the rank of C and s 1s the rank of D . Then

T T
G(PCAPD) = G(Qc Ja 8 A9y JDQD)
- (3, Q.AQTT)
o %A%y Jp) -
Hence 1if
G G
1 V12
G=QCAQ;‘§ -
G G
21 22

where Gll is rxs and G22 is (m-r) x (n-s) s then

o0 o0

T 3 L]
JoQhlpdy = 1o Gpp

Thus the desired stationary values are the singular values of G22 .
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3. Some inverse eigenvalue problems

Suppose we are given a symmetric matrix A with eigenvalues

n , - n-1
{)"i}i=l (}\i < xi+l) and we are given a set of values {)\_131:1
()\.i < )":'L+l) with

MNSA <AL (3.1)

We wish to determine the linear constraint ch = 0 so that the
. T . T, _ T, - To -
stationary values of x"Ax subject to x x = 1 and ¢ =0 (ccc=1)

~ o~

are equal to the set of [):i)?j. From equation (1.5) we have

X = —u(A - )\.I) -l C I

~

and hence -—-

ch = -|.LcT(A->~.I)-l c =0 . (3.2)
Assuming u;é 0, and given A = QAQ,T where A is the diagonal
matrix of eigenvalues of A and Q is the matrix of orthonormalized

eigenvectors, substitution into (3.2) gives

-
= 0
i=1 )\i-x
with ) (3.3)
e}
2
izl di -
- J

where Qd = ¢ . Setting A = ):j (3 = 1,2,4+4.,n-1) then leads to a
system of linear equations defining the d? . We shall, however, give

an explicit solution to this system.
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Let the characteristic polynomial be

-1

(M)

1
~~
&

. =N
j=1 * )

and let

¥(M)

I
—~
>
[N
1
b
<
>
'l-'
>

We wish to compute d so that ¥(A) =@(\)

let us equate the two polynomials at npoints.Now

n-1
? () TJTl (R =N

o n-1
V) = g TT Ay
L

ik

Hence cp()s.k) = "’(}‘k) for k = 1,2y400yn , if

n-1 -
(M. = N\)
g 3= 3 K
kK n '
N.=-N
TT 08
ik

(3.4)

(3.5)

Then

(3-6)

The condition (3.1) guarantees that the right-hand side of (3.6) will be

positive. Note that we may assign dk

a positive or negative value so

that there are 2n different solutions. Once the vector d has been

computed, it is an easy matter to compute c.
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We have seen in section 1 that the stationary values of (1.16) inter-
lace the eigenvalues of A. In certain statistical applications [ 4 ] the
T
following problem arises. Given a matrix A and a set of constraints C X = 2 ’

we wish to find an orthogonal matrix H so that the stationary values of
o(y) =xx - )\x'§+E‘(HC)£ (3.7)

are equal to the (n-r) largest eigenvalues of A

As was pointed out in the last paragraph of section 1, the stationary
values of (3.7) will be 2qual to the (n-r) largest eigenvalues of A pro-
viding the columns of HC span the space associated with the r smallest

eigenvalues of A . For simplicity, we assume that rank (C) = p . Fronl(l.llL

we see that we may write

-@[3) -

Let us assume that the columns of some matrix V span the same space as
eigenvectors associated with the p smallest eigenvalues. We can construct

the decomposition

0.

and S is upper triangular. Then the constraints
()% = 0
are equivalent to
(R'F ola'x = O
and thus if H is chosen to be

H= WO

3-3



the stationary values of (3.7) will be equal to the (n-p) largest

eigenvalues of A.
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4, Intersection of spaces

Suppose we are given two symmetric nxn matrices A and B with

B positive definite and we wish to compute the eigensystem for
Ax = ABx . (k.1)

“ _1 , ) .
One ordinarily avoids computing C =B "A since the matrix C is not
symmetric. Since B is positive definite, it is easy to compute a

matrix F such that
F%BE‘= I

and we can verify from the determinantal equation that
%.(FTAF) = x(B'lA) .

The matrix FTRF is obviously symmetric and hence one of the standard
algorithms may be used for computing its eigenvalues.

Now let us consider the following example. Suppose

>

Il

[ve}

I
o O -
O m O
o O O

where € 1s a small positive value. Note B is no longer positive

definite. When §T= [1,0,0] , then Ax = Bx and hence N =1 . When
x? =[0,1,0] , then Ax = e-le . Here N = E_l and hence as € gets
arbitrarily small, A(e) becomes arbitrarily large. This eigenvalue is

- unstable; such problems have been carefully studied by Fix and Heiberger [ 5].

Finally for xT = [0,0,1] , Ax = ABx for all values of A. Thus we

have the situation of continuous eigenvalues. We shall now examine ways

of eliminating the problem of continuous eigenvalues.
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The eigenvalue problem Ax = ka can have continuous eigenvalues
if the null space associated with A and the null space associated
with B intersect. Therefore we wish to determine a basis for the
intersection of these two null spaces. Let us assume we have determined

X and Y so that

with
XX =1 and Yy=1 (4.2)
p a .
Let
Z=[xiy] . (4.3)

Suppose H is an nxv basis for the null space of Z with

H = -
F
where E is pXxv and F is axv . Then

ZH = XE+YF =0
Hence the nullity of Z determines the rank of the basis for the

intersection of the two spaces.

Consider the matrix
T

L=22%
Note nullity(L) = nullity(z) . From (4.3), we see that
I Xy,
P
L:
T
X I
q
o T
P
= I +
P T 0
q
= I+ W (k.4)
ptq



Since A(L) = AMI+W) = 1+A(W),
ML) =1+ o(T) . (4.5)

Therefore if cj(T)== 1 for j = 1,2,...,t , from (4.5) we see that the
nullity(L) = t . Thus if we have the singular value decomposition

T =Xy =UsV

where

U = [El’“"}..lp] )

A7
the vectors {Xui}i=1 yield a basis for the intersection of the two
t
spaces. We can use the set of vectors {Xui}j_:l to deflate A and B

simultaneously by an orthogonal similarity transformation.

The singular values of XTY can be thought of as the cosines between
the spaces generated by X and Y . An analysis of the numerical methods
for computing angles between linear subspaces is given in [2]. There
are other techniques for computing a basis for the intersection of the
subspaces, but the advantage of this method is that it also gives a way

of finding vectors which are almost in the intersection of the subspaces.
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5. Eigenvalues of a matrix modified by a rank one matrix

It is sometimes desirable to determine sane eigenvalues of a
diagonal matrix which is modified by a matrix of rank one. In this
section, we give an algorithm for determining in O(ne) numerical
operations some or all of the eigenvalues and eigenvectors of

D+ouu’ where D = diag(di) is a diagonal matrix of order n

~ ~

Let C = D+ouu’ ; we denote the eigenvalues of C by Kl,?\e, . "’)\'n
and we assume M <Ay, and 4, < d,, It can be shown (cf. [14])
that
(1) if o>0, d; <xi < 4y (i = 1,2,.4.yn-1) ,
d <A <4 + u? :
n>"n>%79% v i
(2) if o< 0, dj_4 SN 24 (i = 2540ayn) ,

T
hirowpshsd

Thus, we have precise bounds on each of the eigenvalues of C

The eigenvalues of the matrix C satisfy the equation

det(D + owul- Al) =0,

which after some manipulation can be shown to be equivalent to the

characteristic equation

1 2w T (a0 (5.1)
() = T (a-\) + o Tul T(da,-N) =0. 5.1
*n s izl b g1 Y

J#i

Now if we write

k ko, k
@A) = T (di-a) + o ZTul T (dj-x),
i=1 il §=1

JH



then it is easy to verify that

with

B (M) _ (a4 M) g (0) ol (A (k. 0,1,.. . ,n-1)

Wk(x) (dk-)\') Wk_l(K) (k = 1)2)"':n‘l) (5-2)

¥o(r) = oo(A) = 1.

Thus it is a simple matter to evaluate the characteristic equation for any

value of A. Several well-known methods may be used for computing the eigen-

values of C. For instance, it is a simple matter to differentiate the

expressions (5.2) with respect to A and hence determine mL(k) for any

value of A. Thus Newton's method can be used in an effective manner for

computing the eigenvalues.

An alternative method has been given in [1] and we shall describe that

technique.

and let M

with elements

Let K be a bi-diagonal matrix of the form

= diag(pi) . Then KMK® is a symmetric tri-diagonal matrix

2 n
b e (g F g1 T3 s Tidieer (Fo = T = Bpep =0)
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Consider the matrix equation
(D+cqu)x =N . (5:3)
Multiplying (5.3.) on the left by K and letting x = K?Y ; we have

K(D+ouuT)KTy = KKIiTy

or

(KDK + cKuu' K')y = )»KKTX

Let us assume that we have reordered the elements of u (and hence of D ,

also) so that

ul =U2 = see = uP 1° 0 and 0 < \upl < ‘up+l‘ <. < |un|

Now it is possible to determine the elements of K so that

0]
Ku=| : (5.4)
0
u
n
n .
Specifically
r., =0 for 1 <p,
1
o= ouy/ug e
and we note Iri [< 1 . Therefore if Ku satisfies (5.4), we see that

KK

Thus we have a problem of the form~ Ay =~)\\By where A and B are

KDKT+C;Kuu'I|KT is a symmetric tri-diagonal matrix and so is
symmetric, tri-diagonal matrices and B is positive definite.
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Peters and Wilkinson [ 13 ] have shown how linear interpolation may
be used effectively for computing the eigenvalues of such matrices when
the eigenvalues are isolated. The algorithm makes use of det(A - AB)
which is quite simple to compute when A and B are tri-diagonal. Once
the eigenvalues have been computed it is easy to compute the eigenvectors
by inverse iteration. Even if sevefél of the eigenvalues are equal, it is
often possible to compute accurate eigenvectors. This can be accomplished
by choosing the initial vector in the inverse iteration process to be
orthogonal to all the previously computed eigenvectors and by forcing the
computed vector after-the inverse iteration to be orthogonal to the
previously computed eigenvectors. In some unusual situations, however,

this procedure may fail.

The device of changing modified eigensystems to tri-diagaonl
matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

25'_3

o

Again we choose K 80 that Ku satisfies (5.4) and thus obtain the

eigenvalue problem Ay = ABy where

KDK? Ku KK:
A = E) B =
T 01-

so that A and B are both tri-diagonal and B is positive definite.
Bounds for the eigenvalues of C can easily be established by the
terms of the eigenvalues of D and hence the linear interpolation

algorithm may be used for determining the eigenvalues of C
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6. Least squares problems

In this section we shall show how eigenvalue problems arise in linear
least squares problems. The first problem we shall consider is that of
performing a fit when there is error in the observations and in the data.
The approach we take here is a generalization of the one in [9 ]. Let A
be a given m X n matrix and let b be a given vector with m components.

We wish to construct a vector X which satisfies the constraints

(A +E)x=Db+?9 (6.1)
and for which

|l p(E:81Q] = min (6.2)
where P is a diagonal matrix with p, > 0, @ is a diagonal matrix

with qj >0, 5nd.|L..H indicates the Euclidean norm of the matrix. We

6.1) as
e . X
[A:BJ[_J + (B8 1 1=9

or equivalently as

rewrite (

BZ + Fy =0 (6.3)
where
B = [A.:E]Q}
F = [Eib]Q, (6-4)
-1, X
1=l

Our problem now is to determine y so that (6.3) is satisfied, and
I = min
Again we use Lagrange multipliers as a device for minimizing HRﬂ|
subject to (6.3).
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Consider the function

m n4l 2f2 m n+l )
o(F) = Z £ pifs. - 2 LA, T (b, + £ .)y,- (6.5)
i=1 j=L - %Y izt g2 Y R
Then
%ggF) 2

so that we have a stationary point of (6.5) when

P2F = é XT. (6-6)

Note that the matrix F must be of rank one. Substituting (6.6) into (6.3)

we have
A= -
T
(yy)
and hence T
PB yy
FF = - I;N
I3
Thus,
yTBTPgBy
2 =
lpell? =
(yy)
and hence\bﬂl = min when 2 is the eigenvector associated with the smallest

eigenvalue of BTPZB. Of course a more accurate procedure is to compute the
smallest singular value of PB.
Then, in order to compute f, we perform the following calculations:
(a) Form the singular value decomposition of PB, viz.,
PB=UZL VT,

(It is generally not necessary to compute U.)

(b) Let Vv be the column vector of V associated with g (PB)

in

so that v = § . Compute

z =Qv .
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(c) From (6.4),

X

= - z 1 2 .
| | + ~
1 ntl

Note that min|PF|| = omin(PB) , and that

(£:6] = - [»iblvvigt

The solution will not be unique if the smallest singular value is

multiple. Furthermore, it will not be possible to compute the solution

if Z41 ~O- This will occur, for example, if P = Im , O = In+1 ,
T _—
A B -2 and cmin(A) < II E”g.

Another problem which arises frequently is that of finding a least
squares solution with a quadratic constraint; we have considered this

problem previously in [1]. We seek a vector X such that
I - x|, = min (6.7)

with the constraint that
[ (6-8)

The condition (6.8) is frequently imposed when the matrix A is

ill-conditioned. ©Now let

9(x) = (b -20)T(b -ax) + N x (6.9)

~

where Ais a Lagrange multiplier. Differentiating (6.9), we are led

to the equation

ATAx - ATb + Ax = 0 (6.10)
or
(aTa + AD)x = AT | (6.11)
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Note that (6.10) represents the usual normal equations that arise in the

. . T
linear least squares problem, with the diagonal elements of A A

shifted by N . The parameter N will be positive when

a < [,

and we assume that this condition is satisfied.

Since x = (A?A*—kl)-lA¢b , we have from (6.8) that

pTa(aTa+ A1)™2 ATb - @ = 0

(6.12)
By repeated use of the identity
det[)é x] = det(X) det(W -zx‘ly) if det(X) £ 0,
we can show thét (6.12) is equivalent to the equation
det ((ATA+AI)Z - a2aTb va) = 0 . (6.13)
Finally if A =IJEVT , the singular value decomposition of A , then
Aa-vov , Vv=e1 (6.14)
where D = ZTZ and (6.13) Dbecomes
det((D+AI)° - wit) = 0 (6.15)
-1 T T . .
where u = @ £ Ub . Equation (6.15) has 2n roots;

~

it can be shown

(cf. [6]) that we need the largest real root of (6.15) which we denote

* ¥ .
- by A By a simple argument, it can be shown that A 18 the unique

root in the interval [O,uTu] . Thus we have the problem of determining

an eigenvalue of a diagonal matrix which 1s modified by a matrix of rank one.

As in Section 5, we can determine a Mmatrix K so that Ku satisfies

(5.4) and hence (6.15)

is equivalent to

aet (K(D+M)7K - Kuu'K') = 0 (6.16)
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The matrix G(h) = K(D+>\.I)2KT - KuuTKT is tri-diagonal so that it is

easy to evaluate G(h) and det G(h) . Since we have an upper and lower

* X
bound on N , 1t is possible to use linear interpolation to find A ,

even though G(h) is quadratic in A . Numerical experiments have
indicated it is best to compute G(N) = K(D*')‘-I)QKT 'KEETKT for each
approximate value of }\.* rather than computing
G(h) = (KD°K —KBBTKT) + OAKDE + A2 KK

Another approach to solve for h* is the following: we substitute

the decomposition (6.14) into (6.12) and are led to the equation

n u®
o (N = % ——-1——-2- -1 =0, (6.17)
n 1=l (d;+N)

with u = Oﬁ_lETUTb . It is easy to verify that if

~

k k u?
AN = T (d,+A y ———— -1 B
“'k( ) 5= l( + ) o1 (di R }\)2
Va1 = (41 + % § ) -u2, & (N (k=0,1,...,n-1) (6.18)
gk(x) (d.k+ }») gk 1 (k=1,2,...,n-1)

with
1N = (N = 1
Thus, using (6.18) we can easily evaluate wn(%.) and \}»I'l(?\) , and hence

use one of the standard root finding techniques for determining M

A *_y -1, T
It is easy to verify that x = V(D+A1I) "ZU Db .
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A similar problem arises when it is required to make
[xll, = min
when

HB - Af”g =B

where

p > min b - Ax|

~

Again the Lagrange multiplier M satisfies a quadratic equation which is

similar to the equation given by (6.14).
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7. Gauss—-type gquadrature rules with preassigned nodes

In many applications it is desirable to generate Gauss type quadrature
rules with preassigned no&s. This 1is particularly true for numerical
methods which depend on the theory of moments for determining bounds
(cf.[ 3 ], 4nd for solving boundary value problems [12]. We shall
show that it is possible to generate these quadrature rules as a modified
eigenvalue problem.

Let w(x) > 0 be a fixed weight function defined on the interval

[a,b]. For w(x) it is possible to &fine a sequence of polynomials
po(x), pl(x),... which are orthonormal with respect to Ww(x) and in

which pn(x) is of exact degree n so that

1l when m = n,

b
[ p (x) 2 (x) wlx)

0 when m # n.

n
The polynomial p (x) = k_ II (x-t,), k. > 0, has n distinct real roots
n ny_y 177 °n

a<tlc t2 <. . .K< tn < b. The roots of the orthogonal polynomials play

an important role in Gauss type quadrature.

Theorem: Let f(x) € C2N[a,b]; then it is possible to determine

positive Wh so that

b N
ja f(x) w(x)ax =j§lef(tj) + R[f]
@) > oW

R[f]_——(——)-—j‘ I[H(xt)] w(x)ax, a < N < b.

where

Thus, the Gauss type quadrature rule is exact for all polynomials of degree
< 2N-1.
Any set of orthonormal polynomials satisfies a three term recurrence

relationship:
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_ forj=l2.--,N;
pypy(x) = (x-aey () By-1Py-o(¥) g

(7.1)
p_,(x) =0, py(x) = 1
We may identify (7.1) with the matrix equation
xp(x) = J(x) + Bypy(x)ey - (7.2)
where
[g(x)]T = [Po(x))Pl(x)) R ’pN-l(x)]’
e£=[0,0,...,1],
and

o B O
I N By
L ) i
N o By-1
O Byl %y

Suppose that the eigenvalues of JN are computed so that

—] ] - e o 0 N
JNQ.- KJ:‘.% (7 1,2, ) )

~dJ
with
T
g, = 1
2595
and

T
3 = [yt

Then it is shown in [l1l] that

T-2



.= A )
9T , (7. 3)
)

w

5= (9
A very effective way to compute the eigenvalues of JN and the first
component of the orthonormalized eigenvectors is to use the Q,R method of
Francis (cf. [14]).
Now let us consider the problem of determining the quadrature rule so

that

=2

b M
f f(x)w(x)dx 2 Tw.£(t.) + T v £(z,)
a jep 9 9Tk KK
where the nodes [zk}ﬁ_lare prescribed. It is possible to determine

[wj,tj}N, [Vk]g=l so that we have for the remainder:

(2N+M) b M N
R[f] = %EEIEFTLHI I it (x-vk)[ it (x-tj)]ew(x)dx, a<N<b.

a k=1 J=1

For M =1 and 2z, = a or z, = b, we have the Gauss-Radau type formula,

1
and for M =2 with z, =a and z, = b, we have the Gauss-Lobatto type
formula.

First we shall show how the Gauss-Radau type rule may be computed. For
convenience, we assume that z, = a. Now we wish to determine the polynomial
pN+l(x) so that

pN+l(a) = 0.

From (7.1) we see that this implies that

0 = py..(a) = (8- )p(a) - ByPy-1(2)

or
py_;(8)

Oi‘l+l =8- BN pNZai . (T.4)

From equation (7.2) we have

1-3



(Iy -el)p(a) = - Bypy(a)ey

or equivalently,

iy -a1)8(a) = B e (7.5)
where .

8;(a) = -(Byp;_4(a))/py(a) » (3 = 1,2,...,)
Thus,

Opp = &t 8y(a) . (7 +6)
Hence, in order to compute the Gauss-Radau type rule, we do the following:

(a) Generate the matrix JN+l )

(b) Solve the system of equations (7.5) for GN(a).

(¢) Compute O41 DY (7.6) and use it to replace the (N+1,N+1)

element of JN+1 .
(d) Use the QR algorithm to compute the eigenvalues and first

element of the eigenvector of the tri-diagonal matrix

- -
. I | Pusn
S o
Py ew | w1
L. -

Of course, one of the eigenvalues of the matrix JN+1 must be equal to a .

Since a < N _.
min

and hence Gaussian elimination without pivoting may be used to solve

(JN) , the matrix Jy-al will be positive definite
(7.5).

© It is not even necessary to solve the complete system since it is only

necessary to compute the element sN(a) . However, one may wish to use

iterative refinement to compute 6N(a) very precisely since for N large,

may be close to a and hence the system of equations (7.5) may

Xmin(m
be quite ill-conditioned.
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When z) = b, the calculation of JN+l is identical except with b replacing

a in equations (7.5) and (7.6). The matrix JN-bI will be negative

definite since b > AmaX(J).

To compute the Gauss-Lobatto quadrature rule, we need to compute a

~

matrix JN+1 such that
}\.min(JN_'_l) = a and }"max(JN+l) = b.
Thus, we wish to determine pN+l(x) so that
Now from (7.1) we have
~Brp1Pran ®) = (x - o Ipe(x) - By (%),
so that (7.7) implies that
O Py(8) + Bpp o (8) = apy(a)
(7.8)
Using the relationship (7.2), if
(JN__ aI)& = ey
and ( 7.9)
(g D = 2y
. then
1P 1(8) 1 pi_(P)

- - = = - = (7.10)

(3 = 1,2,...,N).

Thus, (7.8) is equivalent to the system of equations

7-5



2
e~ APy

>
1~ PPy

H
Q

(7.11)

]
o'

Hence, in order to compute the Gauss-Lobatto type rule, we perform the

following calculations:

(a) Generate the matrix JN

(b) Solve the systems of equations (7.9) for KN and “N'

(c) Solve ( 7.11) for Qﬁ+l and B%.

(d) Use the QR algorithm to compute the eigenvalues and first element

of the eigenvectors of the tridiagonal matrix

Galant [ 7 ] has given an algorithm for computing the Gaussian type
quadrature rules with preassigned nodes which is based on a theorem of

Christoffel which gives a method for constructing the orthogonal polynomials

with respect to a modified weight function.
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