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Abstract

We consider the numerical calculation of several eigenvalue problems

which require some manipulation before the standard algorithms may be

used. This includes finding the stationary values ofa quadratic form

subject to linear constraints and determining the eigenvalues of a matrix

which is modified by a matrix of rank one. We also consider several

inverse eigenvalue problems. This includes the problem of computing the

Gauss-Radau and Gauss-Lobatto quadrature rules. In addition, we study

several eigenvalue problems which arise in least squares.



0. Introduction and notation

In the last several years, there has been a great development in

devising and analyzing algorithms for computing eigensystems of matrix

equations. In particular, the works of H. Rutishauser and J. H. Wilkinson

have had great influence on the development of this subject. It often

happens in applied situations that one wishes to compute the eigensystem

of a slightly modified system or one wishes to specify some of the eigenvalues

and then compute an associated matrix. In this paper we shall consider some

of these problems and also some statistical problems which lead to interesting

eigenvalue problems. In general, we show how to reduce the modified problems

to standard eigenvalue problems so that the standard algorithms may be used.

We assume that the reader has some familiarity with some of the standard

techniques for computing eigensystems.

We ordinarily indicate matrices by capital letters such as A, B, A ;

vectors by lower case letters such as X , ¥ , a, and scalars by lower case

letters. We indicate the eigenvalues of a matrix as h(X) where X may be

an expression, e.g., (AZ + T) indicates the eilgenvalues of AT + T , and 1n

a similar fashion we indicate the singular values of a matrix by o(X) .

Usually we order the eigenvalues and singular values of a matrix so that

) M(B) SA(A) SL LL <$5(B) and o(A) S oy(A) S . LL op(A) . We assume
that the reader has some familiarity with singular values (cf. (91).



1. Stationary values of a quadratic form subject to linear constraints

Let A be a real symmetric matrix of order n , and c a given

vector with c L = 1 .

In many applications (cf. [10] it is desirable to find the

stationary values of

I

Xx Ax (1.1)

subject to the constraints

x'x = 1 (1.2)

Let

p(x) = XT AX - AXx + 2uxlc (1.4)

where (MN, B) are Lagrange multipliers. Differentiating (1.4), we are

led to the equation

AX - \Xx + pyc = 0 (1.5)

Multiplying (1.5) on the left by ct and using the condition that

I

HL = -c Ax . (1.6)

Then substituting (1.6) into (1.5), we obtain

PAX = NX (1.7)

where P = 1 - cel . Although P and A are symmetric, PA 1s not

necessarily so.
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Note that p? =P, so that P 1s a projection matrix. Thus

2

NPA) = N(PTA) = N(PAP).

The matrix PAP 1s symmetric and hence one can use one of the standard

algorithms for finding its eigenvalues. Then if

K = PAP

and 1f

Ka; = MZ»

it follows that

At least one-eigenvalue of K will be equal to zero, and c¢ will be

an eigenvector associated witha zero eigenvalue.

Now suppose we replace the constraint (1.3) by the set of constraints

cTx = 0 (1.8)

where C is an nxp matrixofrank =r. It can be verified that if

P=1- cc- (1.9)

where C is a generalized inverse which satisfies

CC C=C

(1.10)
-\T

cc- = (CC)

then the stationary values are eigenvalues of K = PAP . At least r

of the eigenvalues of K will be equal to zero, and hence it would be

desirable to deflate the matrix K so that these eigenvalues are

eliminated.
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By permuting the columns of C , We may compute the orthogonal

decomposition

co { od . (1.12)0

where R is an upper triangular matrix of order r , S is rx (p-r) ,

ala = I , and mm 1s a permutation matrix. The matrix Q may be
constructed as the product of r Householder transformations (cf. [8]).

A simple calculation shows

p= QF k 0 |: (1.12)0 I
n-r

T
= Q JQ

and thus

T T
M(PAP) = N(QJQAQ JQ)

T
= NJQAQ J) .

Then 1f

. SSRIT-
ar G
12 22

) where Gyq is an TrXr i and Gy, is an (n-r) x (n-r) matrix,T

JRAQ J = 1 |O G
2

Hence the stationary values are simply the eigenvalues of the

(n-r) X (n-r) matrix Goo . Finally if
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then

TT] O

3, = Q I joc A
n-r

The details of the algorithm are given in [lo].

From equation (1.13) we see that h(G) = h(A). Then by the Courant-

Fischer theorem,

A (A) < A (Gpp) < Mogy(A) (7 = 1,2,...,0-T) (1.14)
when

ri (4) < Mpa (A) and rs (Gyp) < M541(Cop)-

Furthermore, 1f the columns of the matrix C span the same space as the r

eigenvectors-associated with r smallest eigenvalues of A,

= . 1.1A 5(Gpp) Mag) (1.15)

Thus, we see that there is a strong relationship between the eigenvalues

of A and the stationary values of the function

p(x) = xAxAx xt 246%, (1.16)
where yu 1s a vector of Lagrange multipliers.
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2. Stationary values of a bilinear form subject to linear constraints

Now let us consider the problem of determining the non-negative stationary

values of

T

(ay )/Cllxlly iy,) (2.1)

where A 1s an m X n matrix, subject to the constraints

ctx = 0, Dly = 0. (2.2)

The non-negative stationary values of (2.1) are the singular values of A

(i.e., o(n) = in (aTa) 1/2). It is easy to verify that the non-negative

stationary values of (2.1) subject to (2.2) are the singular values of

2.PAP, (2.3)
where h

Po=I-cc, Pp=1T1-DD.

The singular values of PAP, can be computed using the algorithm given in

[9].

Agaln 1t 1s not necessary to compute the matrices Fa and Py explicitly.

If, as in (1.11),

ll I
O O

D=T Ry 5p
O O
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:

then

T{0 © I.

Fo = Jk I IE = QpJdpQnn-r

4 oo _T

Py = | 0 2] Ap = Ip
where r 1s the rank of C and s 1s the rank of D . Then

o(P. AP.) =O(Q%J.Q. AQ JQ)c 4% ¢ Jc % 29 Ip 9p

= a(J AQE J.)cS 49 Jp) -

Hence if

~ G G
11 12

G=Q,M] -
Gop Gp

where Gq is rxs and Goo is (m-r) x (n-s) , then

J. Q.AQLJ ° ©CC Up D 0 Gon

Thus the desired stationary values are the singular values of Gro .
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Se Some 1nverse eigenvalue problems

Suppose we are given a symmetric matrix A with eigenvalues

no (A; <N.,,) and we are given a set of values {AX nliti=1 i Til i359

(As < Nipp) with

Ao < As < Moa . (3.1)

We wish to determine the linear constraint ol x = 0 so that the

T T T, _ Tstationary values of X"Ax subject to x x = 1 and c = 0 (cc = 1)

are equal to the set of (%)3 From equation (1.5) we have

X = (a -A1)"t c ,

and hence —--

cx = pet (A - AT) TT c =0 (3.2)

Assuming Te 0, and given A = ant where A 1s the diagonal

matrix of eigenvalues of A and Q is the matrix of orthonormelized

elgenvectors, substitution into (3.2) gives

= 0

i-1 (My -h

with (5.3)
n

i=1

where Qd = ¢ . Setting A = As (3 = 1,2) 00syn=1) then leads to a
system of linear equations defining the a5 . We shall, however, give
an explicit solution to this system.
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Let the characteristic polynomial be

n-1

eM) = [T(X, =A) (3.4)
«vd
Jj=1

and let

Ton § oyy(n) = (A; =A) -
j=1 9 fz (=A

n 5 n
- 2 a TT (h-N) (3.5)

: i=1 J=1

JFL

We wish to compute d (ata = 1) so that ¥(A) =@(N) . Then

let us equate the two polynomials at npoints.Now

- n-l
o (A) = TT (A. =n)

k : J k
J=1

5 n-1

vo) = TT 04m)3

JFK

Hence P(N) = (A) for k = 1,2,..0on , if

n-1 _

2 1 Py Me
= 4 .6dye n (3 )

TT (hn -N)
j=1 JF
JFK

The condition (3.1) guarantees that the right-hand side of (3.6) will be

positive. Note that we may assign dy a positive or negative value so

that there are 2h different solutions. Once the vector d has been

computed, 1t 1s an easy matter to compute c.
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We have seen in section 1 that the stationary values of (1.16) inter-

lace the eigenvalues of A. In certain statistical applications [ 4] the
T

following problem arises. Given a matrix A and a set of constraints Cx = 0,

we wish to find an orthogonal matrix H so that the stationary values of

T T.-

p(y) = xX - AX X +p (HC)™x (3.7)

are equal to the (n-r) largest eigenvalues of A .

As was pointed out 1n the last paragraph of section 1, the stationary

values of (3.7) will be 2qual to the (n-r) largest eigenvalues of A pro-

viding the columns of HC span the space associated with the r smallest

eigenvalues of A . For simplicity, we assume that rank (C) =p . From (1.11),

we see that we may write

TI|R

Let us assume that the columns of some matrix V span the same space as

eigenvectors associated with the p smallest eigenvalues. Weé can construct

the decomposition

. where WW = I and S is upper triangular. Then the constraints
T

(HC) x =2

are equivalent to

[R': 0JQHx = 0

and thus 1f H 1s chosen to be

H= Wo
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the stationary values of (3.7) will be equal to the (n-p) largest

eigenvalues of A.
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4, Intersection of spaces

Suppose we are given two symmetricnxn matrices A andB with

B positive definite and we wish to compute the eigensystem for

Ax = ABx. (k.1)

~ -1

One ordinarily avoids computingC = B "A since the matrix C 1s not

symmetric. Since B 1s positive definite, it 1s easy to compute a

matrix F such that

FB FF=1

and we can verify from the determinantal equation that

-1
A (FTAF) = ANB A) .

The matrix FL AR 1s obviously symmetric and hence one of the standard

algorithms may be used for computing its eigenvalues.

Now let us consider the following example. Suppose

1 0 O

A= [ :, , | ’ B = 0 € 0

O 0 O

where € 1s a small positive value. Note B 1s no longer positive

definite. When <= [1,0,0] , then Ax = Bx and hence NM = 1 . When
: ” - -1

xt = [0,1,0] , then Ax = € Lox . Here N = E€ and hence as €& gets

arbitrarily small, A(E) becomes arbitrarily large. This eigenvalue 1s

- unstable; such problems have been carefully studied by Fix and Heiberger [ 5].

Finally for x = [0,0,1] , Ax = ANBx for all values of A. Thus we

have the situation of continuous eigenvalues. We shall now examine ways

of eliminating the problem of continuous eigenvalues.
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The eigenvalue problem Ax = MBX can have continuous eigenvalues

if the null space associated with A and the null space associated

with B intersect. Therefore we wish to determine a basis for the

intersection of these two null spaces. Let us assume we have determined

X and Y so that

with

X°X = 1 and Ty = 1 (k.2)
P qQ .

Let

7 = [XY] . (4.3)

Suppose H is an nXvy basis for the null space of Z with

H - *®
F

where E is pxv and F is qxv . Then

ZH = XE+YF = 0 .

Hence the nullity of Z determines the rank of the basis for the

intersection of the two spaces.

Consider the matrix

L = 7277 .

Note nullity(L) = nullity(z) . From (4.3), we see that

xy
P

I,=

YX 1
q

0 T
p

= I +

ptq T
T 0

q

= I + W (L.h)
ptq :

h-2



Since A(L) = AMI+W) = 1+A(W),

AML) = 1+ o(T) . (4.5)

Therefore if 0,(T) = 1 for J = 1,2,..0,t , from (4.5) we see that the
nullity(L) = t . Thus if we have the singular value decomposition

I =XY =USV

where

U = [gs 005m) ;

the vectors {Xu}, 5 yield a basis for the intersection of the two
t

spaces. We can use the set of vectors Xu 3 5 to deflate A and B

simultaneously by an orthogonal similarity transformation.

The singular values of XY can be thought of as the cosines between

the spaces generated by X and Y . An analysis of the numerical methods

for computing angles between linear subspaces is given in [2]. There

are other techniques for computing a basis for the intersection of the

subspaces, but the advantage of this method 1s that it also gives a way

of finding vectors which are almost in the intersection of the subspaces.
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5. Eigenvalues of a matrix modified by a rank one matrix

It 1s sometimes desirable to determine sane eigenvalues of a

diagonal matrix which is modified by a matrix of rank one. In this

section, we give an algorithm for determining 1n 0(n®) numerical

operations some or all of the eilgenvalues and eigenvectors of

D+o uu’ whereD = diag(d,) 1s a diagonal matrix of order n .
Let C = D+ouul ; we denote the eigenvalues of C by SEL : LN

[1hand we assume A, <A; ., andd, <d,, . It can be shown (cf [14])
that

(1) if oo >0, d, <A < dg, (i = 1,2,.4.,n-1) ,

d <AN <d tou u .
n— n-— n ~ ~~]

a. tou u <M <da
1 ~ a—=— 1-1"

Thus, we have precise bounds on each of the eigenvalues of C .

The eigenvalues of the matrix C satisfy the equation

T
det(D + ouu™- Al) = 0,

. which after some manipulation can be shown to be equivalent to the

characteristic equation

n n , n
o (A) = TM (&-N) + 0 Tul 1 (dN) = 0. (5.1)

JH

Now 1f we write

k k 5 k
@, (NM) = II (di-a) + oc Tui 1 (a;-7),

i=1 i=1 J=1

JL
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then 1t 1s easy to verify that

2

@ 10) _ (aqA) oN) ou, (A) (k.0,1,... ,n-1)

H(A) = (g 2) ¥(MN) (k = 1,2,...,n-1) (5.2)

with ¥o(M) _ 0n(M) = 1.

Thus 1t 1s a simple matter to evaluate the characteristic equation for any

value of A. Several well-known methods may be used for computing the eigen-

values of C. For instance, 1t 1s a simple matter to differentiate the

expressions (5.2) with respect to A and hence determine PAN) for any

value of A. Thus Newton's method can be used in an effective manner for

computing the eigenvalues.

An alternative method has been given in [1] and we shall describe that

technique. Let K be a bi-diagonal matrix of the form

1 ry

- 0

K= . .

0 © 'n-l
1

and let M = diag (u;) . Then KMK 1s a symmetric tri-diagonal matrix
2 n

+ _ — —_with elements ITE (bye Ber 1 0) SYTSVRE oo NY (r, =r =p 0)
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Consider the matrix equation

(D+ouu)x = Ax. (5.3)

Multiplying (5.3.) on the left by K and letting x = Ky , we have

K(D+ouw)Ky = NKKy

or

(KDK + gKuul K')y = ANKE y :

Let us assume that we have reordered the elements of u (and hence of D ,

also) so that

Now it 1s possible to determine the elements of K so that

0

0

Ku =| . . (5.4)

0

u,
n

Specifically

r. =0 for 1 <p,
1

= - i>AT =P

and we note I. |< 1 . Therefore if Ku satisfies (5.4), we see that
KDK +o Kuu K is a symmetric tri-diagonal matrix and so is KK |

Thus we have a problem of the form Ay =NBy where A and B are

symmetric, tri-diagonal matrices and B 1s positive definite.
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]

Peters and Wilkinson [ 13 ] have shown how linear interpolation may

be used effectively for computing the eigenvalues of such matrices when

the eigenvalues are isolated. The algorithm makes use of det(A- AB)

which is quite simple to compute when A and B are tri-diagonal. Once

the eigenvalues have been computed it 1s easy to compute the eigenvectors

by inverse iteration. Even 1if several of the eigenvalues are equal, 1t 1s

often possible to compute accurate eigenvectors. This can be accomplished

by choosing the initial vector in the inverse 1teration process to be

orthogonal to all the previously computed eigenvectors and by forcing the

computed vector after the inverse iteration to be orthogonal to the

previously computed eigenvectors. In some unusual situations, however,

this procedure may fail.

The device of changing modified eigensystems to tri-diagaonl

matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

D u

C = ) .

ot o

Again we choose K so that Ku satisfies (5.4) and thus obtain the

] eigenvalue problem Ay = ABy where

KDK" Ku KK

A= , B=

JI or

so that A and B are both tri-diagonal and B 1s positive definite.

Bounds for the eigenvalues of C can easily be established by the

terms of the eigenvalues of D and hence the linear interpolation

algorithm may be used for determining the eigenvalues of C .
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6. Least squares problems

In this section we shall show how eigenvalue problems arise in linear

least squares problems. The first problem we shall consider 1s that of

performing a fit when there 1s error in the observations and in the data.

The approach we take here is a generalization of the one in [9 ]. Let A

be a given m X n matrix and let b be a given vector with m components.

We wish to construct a vector X which satisfies the constraints

(A + E)X=Db + (6.1)

and for which

IP[E:8 14) = min (6.2)

where P 1s a diagonal matrix with p, > 0, @ is a diagonal matrix

with a; >0, and ||... | indicates the Euclidean norm of the matrix. We
rewrite (6.1) as

X X

SH + [£6] NH = 0,
or equivalently as

By + Fy = 0 (6.3)

where

B = [Ab]Q,

F =| (6-4)-1,%

Our problem now is to determine J so that (6.3) is satisfied, and

IPAI = min

Again we use Lagrange multipliers as a device for minimizing || pF]

subject to (6.3).
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Consider the function

m n+l 5 m n+l
o(F) = Z IZ BLES - 2 ENE (by + £3409; (6.5)i=1 j=1- *Y i=l toj=l

Then

olf) 2 }£f 2pfg = AY
rs

so that we have a stationary point of (6.5) when

Note that the matrix F must be of rank one. Substituting (6.6) into (6.3)

we have

Phy
A = - ——

T

- Gy)
and hence

PB yy

=-7
JJ

Thus,

5 vB TP By
| pF] TN

(yy)

and hence ||pj| = min when J is the eigenvector associated with the smallest

eigenvalue of BIB. Of course a more accurate procedure 1s to compute the

smallest singular value of PB.

Then, in order to compute X, we perform the following calculations:

(a) Form the singular value decomposition of PB, viz.,

(It 1s generally not necessary to compute U.)

(b) Let Vv be the column vector of V associated with O45 (FB)
so that v = y . Compute

z =0Qv .
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(c) From (6.4),

x 1
= ~- 7 Z .

" ntl ~

Note that min) PF|| =o , (PB) , and thatmin

’ re -1[E: 8] = - (2 fblvvig .

The solution will not be unique if the smallest singular value 1s

multiple. Furthermore, 1t will not be possible to compute the solution

if Z +1 =O . This will occur, for example, 1f P = I , OQ = Ll r
I, _
Ab =o and og, (A) < 11 bj,

Another problem which arises frequently 1s that of finding a least

squares solution with a quadratic constraint; we have considered this

problem previously in [1]. We seek a vector x such that

Ib -Ax[l, = min (6.7)

with the constraint that

[I< =a (6.8)

The condition (6.8) is frequently imposed when the matrix A is

| 1ll-conditioned. Now let

T T 6p(x) = (b -Ax) (b -Ax) + NX Xx (6.9)

. where Ais a Lagrange multiplier. Differentiating (6.9), we are led

to the equation

atax - ab + Ax = 0 (6.10)

or

(a’a + aT)x = AT | (6.11)
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Note that (6.10) represents the usual normal equations that arise in the
T

linear least squares problem, with the diagonal elements of A A

shifted by AM . The parameter AM will be positive when

+

a < |A bil,

and we assume that this condition 1s satisfied.

Since x = (ATA + AD) “aly _ we have from (0.8) that

bla(ATA+ AT) ATb - oF = 0 . (6.12)

By repeated use of the identity

=k | = det(X) det(W zh) if det(X) £0 ,
we can show that (6.12) 1s equivalent to the equation

det (ATA +I) = 02A bia) = 0 . (6.13)

Finally if A = Uv , the singular value decomposition of A , then

ata vv, viv =I (6.14)

where D = sls and (6.13) becomes

det ((D+NI)° - wu’) = 0 (6.15)

-1 TT
where u = a T Ub . Equation (6.15) has 2n roots; it can be shown

(cf. [6]) that we need the largest real root of (6.15) which we denote
* *

by NM . By a simple argument, it can be shown that A 15 the unique

root in the interval [0,uu] Thus we have the problem of determining

an eigenvalue of a diagonal matrix which 1s modified by a matrix of rank one.

As in Section 5, we can determine a matrix K so that Bu satisfies

(5.4) and hence (6.15) is equivalent to

det (K(D+M)“K - KuwkK') = 0 . (6.16)

0-4



!

The matrix G(h) = K(D + NI) °K — Kuu'K' is tri-diagonal so that it is
easy to evaluate G(h) and det G(h) . Since we have an upper and lower

bound on nN , 1t 1s possible to use linear interpolation to find N ,

even though G(h) is quadratic in A . Numerical experiments have

indicated it is best to compute G(N) = K(D + AI) °K -Kuu'K for each
approximate value of A rather than computing

G(h) = (KD°K -Kuu'K') + 2\KDK+A KK .
Another approach to solve for nN is the following: we substitute

the decomposition (6.14) into (6.12) and are led to the equation

n u®

oA) = ET —=—5-1=0, (6.17)
i=l (4, +N)

with u = oa tet Uy . It 1s easy to verify that if

k N o | k ul
bi (N) = AALS ) EZ (a, 1) ;

2 2

Veg MN) = (dy A) by (MN) “uy, 18, (2) (k=0,1,...,n-1) (6.18)

£ (V) = (a+ NE og (V) (k=1,2,...,0-1)

with

bo (N) = EN) = 1.

Thus, using (6.18) we can easily evaluate b, (MN) and vy (MN) , and hence
use one of the standard root finding techniques for determining N .

It 1s easy to verify that x = V(D+A 1) Laut D .

0-9



A similar problem arises when it 1s required to make

| X iP = min

when

where

B > min |p - Ax|| .
xX ~~ ~~

Again the Lagrange multiplier M satisfies a quadratic equation which is 1

similar to the equation given by (6.14).
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7. Gauss-type quadrature rules with preassigned nodes

In many applications 1t 1s desirable to generate Gauss type quadrature

rules with preassigned noé&s. This 1s particularly true for numerical

methods which depend on the theory of moments for determining bounds

(cf.[ 3], énd for solving boundary value problems [12]. We shall

show that it 1s possible to generate these quadrature rules as a modified

eigenvalue problem.

Let w(x) > 0 be a fixed weight function defined on the interval

[a,b]. For w(x) it is possible to &fine a sequence of polynomials

po(x), p(x)... which are orthonormal with respect to W(x) and in

which p, (x) is of exact degree n so that
. b

[ p (x) p(x) w(x) = 1 when m = n,
’ = 0 when m # n.

n

The polynomial p(x) =k 0 (x-t,), k > 0, has n distinct real roots
a < tl < t, <. 0. < Et < b. The roots of the orthogonal polynomials play
an important role 1n Gauss type quadrature.

Theorem: Let f(x) € c?N a,b]; then 1t 1s possible to determine

positive Woy so that
. b N

| f(x) w(x)ax = = Witt) + RIL]
a 3=1

where £(20) . _—
R[f] = =n J I[ T (x-t,)1° o(x)dx, a < 1 < b.) a i=1

Thus, the Gauss type quadrature rule 1s exact for all polynomials of degree

< 2N-1.

Any set of orthonormal polynomials satisfies a three term recurrence

relationship:
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i = 1,2,...,N;
= -C. )P. xX} - Bs_ p._ (x) for J [1=%)BP; (x) (x 0p ) j=1j-2 (7.1)

p_,(x) z 0, NEI = 1.

We may identify (7.1) with the matrix equation

. . 2

xp(x) _ Jp(x) + ByPn( ¥en _ (7.2)
where

[p(x)1T = [pg(x),01 (x), + -,py 1 (X)],

er =10,0,...,1],
and

% By 0
- 3 a

1 2 By

J. = . .

N . co Br-1

0 By-1 %y

Suppose that the eigenvalues of IN are computed so that

pred —_— . 00 NInd; NA (J 1,2, ,N)
with

: T
aq. = 1

525
and

T

3 = (a) 500579]

Then 1t 1s shown 1n [ll] that
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t., =A, ‘
J (7.3)

w, = (a =.
J 1J

A very effective way to compute the eigenvalues of In and the first

component of the orthonormalized eigenvectors 1s to use the Q,R method of

Francis (cf. [1Lk]).

Now let us consider the problem of determining the quadrature rule so

that

Db N M

| f(x)w(x)dx 2 Tw. f(t.) + & vi, f(z)

where the nodes (z,)y_ are prescribed. It 1s possible to determine
N M

(wyst,) , (Vicheaa so that we have for the remainder:

(20+M) b M N 5
R[f] = Ca | 0 (x-v. )[ 0 (x-t.)] w(x)dx, a <N< Db.2N+M). kK", J

a k=l J=1

ForM = 1 and 2, =a or z, = b, we have the Gauss-Radau type formula,

and for M=2 with z, =a and Z, = b, we have the Gauss-Lobatto type

formula.

First we shall show how the Gauss-Radau type rule may be computed. For

. convenience,we assume that 2, = a. Now we wish to determine the polynomial

ne so that

Py, (8) — 0.

From (7.1) we see that this implies that

or

—a-B Pu-a(%) (7.4)
Iy+1 N pla) .

From equation (7.2) we have
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(Ig -8l)p(a) = - pep (a)e,

or equivalently,

2

where

5,(a) = -(Byp 3.1 (2) /my(a) » (J = 1,2,...,N)
Thus,

Ope = 8+ 0y(8) (7 6

Hence, 1n order to compute the Gauss—-Radau type rule, we do the following:

(a) Generate the matrix Il

(b) Solve the system of equations (7.5) for 6 (@) :

(c) Compute Oy DY (7.6) and use it to replace the (N+1,N+1)

element of Il .

(d) Use the QR algorithm to compute the eigenvalues and first

element of the eigenvector of the tri-diagonal matrix

. In Py Sn

Ine = T
Prey | Gwe

Of course, one of the eigenvalues of the matrix J must be equal to a .

Since a < Nin (Ty) , the matrix Jy -al will be positive definite

and hence Gaussian elimination without pivoting may be used to solve (7.9).

+ It 1s not even necessary to solve the complete system since it 1s only

necessary to compute the element 8 (8) . However, one may wish to use

iterative refinement to compute 8 (8) very precisely since for N large,

Nod) may be close to a and hence the system of equations (7.5) may

be quite 1ll-conditioned.
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When Z, = b, the calculation of Inel 1s 1dentical except with b replacing

a in equations (7.5) and (7.6). The matrix IN - bI will be negative

definite since b > Nay)

To compute the Gauss-Lobatto quadrature rule, we need to compute a

matrix Intl such that

Minden) =a and Max Ive1) = b.

Thus, we wish to determine Py, 1 (¥) so that

Now from (7.1) we have

~Be1Pra (X) = (x = ogIp(x) = pepe (x);

so that (7.7) implies that

Op, 1Py(8) + Bypy_;(8) = apy(a)
(7.8)

0p, 2y(B) + Boy 1(P) = bpy(b)

Using the relationship (7.2), if

(Jy al )h = ey

and ( 7.9)

(Jy PIM = ey

. then

. a | Pp. bN= ot py-1(a) 1 1(P) (7.10)
iT TB. pa) 7 HiT TB pb)

N °N NN

(] =1,2,...,N).

Thus, (7.8) is equivalent to the system of equations
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2
- AN B = a

“Ne1 TEEN } ERE- a2 = bOe" HPn

Hence, 1n order to compute the Gauss-Lobatto type rule, we perform the

following calculations: I

(a) Generate the matrix In

(b) Solve the systems of equations (7.9) for Me and bye
2

(c) Solve ( 7.11) for el and By.

(d) Use the QR algorithm to compute the eigenvalues and first element

of the eigenvectors of the tridiagonal matrix

p n | Pdn |
~. Ml = T

Pry | “ved

Galant[7 ] has given an algorithm for computing the Gaussian type

quadrature rules with preassigned nodes which 1s based on a theorem of

Christoffel which gives a method for constructing the orthogonal polynomials

with respect to a modified weight function.
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