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VARIATIONAL STUDY OFNONLINEAR SPLINECURVES

by
E. H. Lee and G. E. Forsythe

Stanford University

1. Linear and nonlinear splines. Let A be a finite ordered

set of points in the euclidean plane, with Cartesian coordinates (Xr:Yf) ’
r = 1,...,n-1 , through which it is desired to pass a smooth curve. An

old technique in drafting is to use a mechanical spline to form a smooth
curve C that contains A . In the present day of automatic plotters,
numerically controlled milling machines, and so on, it 1is more important
to find a ééthematical or computationsl representation of a suitable C
than to draw it. Thus one uses some mathematical model of the mechanical
spline.

By far the most widely used model is a_linear (cubic)_splire, suitable

when the curve C in some x-y coordinate system is the graph of a

function £ , so that y = £(x) , x, < x < x . Assume that

0 n
Xy < X <L llex The linear spline can be defined as the unique
function f for which
X
n 2
]‘ £ (x) “dx (1)
%0

is minimized among all twice continuously differentiable functions assuming

the value y, at x, (r = 1,2,...,n=1) . (According to this definition,

T

f will satisfy the natural end conditions f%ﬁﬁ = f%ﬁg = (0 . There

are alternative treatments of the end conditions.)



The linear spline so defined turns out to be a (usually) different
cubic polynomial in each interval(xr{vxg , with matching values,
derivatives, and second derivatives (and hence curvatures) at each
interior node X, (r = 1,2y.4.yn-1) . The spline will actually be a

straight line segment for x, < x'< x, and x

p1 S XS ¥

-
The theory of linear splines has grown enormously in the last decade,
and these curves and various linear generalizations have both practical and
theoretical importance in the approximation of known functions, solutions
of differential equations, and so on. The reader can find an exposition,
with generalizations and applications, in Ahlberg, Nilson, and Walsh [1].
Linear splines are invariant under linear changes in the y-coordinate
alone, as Podolsky and Denmen [9] point out. Thus they are suited to
such problems as the interpolation of data, where x and y have
different meanings. On the other hand, linear splines are not invariant
under rotations of the x-y coordinate system, and hence are not well.
suited to the interpolation of geometrical points in the euclidean plane.
Moreover, linear splines cannot be used directly to define a closed curve
¢ 1in the x.y plane.
For the purposes of interpolating points in the euclidean plane it
is appropriate to find a mathematical model which is invariant under all

similarity transformations. The model we treat is sometimes called the

elastica, but we shall refer to it as a nonlinear spline. As a preliminary

to work on actually computing nonlinear splines, we have investigated their
precise definition, including variational properties, defining equations,

continuity conditions, and end conditions, both for open and closed curves.



The term nonlinear spline is used variously in the literature:
2
)

(a) If the integrand f"(x of (1) is multiplied by a nonconstant
weight factor, sometimes the function that minimizes the altered problem
is called a nonlinear spline. (b) Suppose one is given a function @(x)
to be approximated by a linear cubic spline passing through n-1 points
(xr,w(xr)) » and that the n-1 abscissas x_are varied until the spline
best approximates @ in some given norm. Sometimes the result is called
a nonlinear spline. However, in both (a) and (b) above the splines

satisfy a linear differential equation in each interval, whereas our

nonlinear splines satisfy a nonlinear differential equation.

We do not claim that computing nonlinear splines will necessarily be
an economical way to interpolate points in the x-y plane. Moreover,
nonlinear splines are not invariant under linear changes in the y-coordinate
alone, so that they seem ill-suited to the interpolation of data where x
and y are unrelated .

We have been interested only in studying as carefully as we could the
mathematical nature of these nonlinear splines. In this paper we present
a variational treatment of nonlinear splines, emphasizing the natural
boundary conditions of the problem. We believe that our treatment of

the closed nonlinear spline may be new.

2. Previous work. In the theory of elasticity, our mathematical

model of the mechanical spline is called a thin beam or elastica, and its
treatment dates back to James and Daniel Bernoulli, Euler, Kirchhoff,

and others. The history and theory are summarized by Love [7]. None of
those treatments dealt directly with the use of the nonlinear spline to

interpolate points, and there was little discussion of closed splines.



The earliest discussion that we have seen in print of the use of
nonlinear splines for interpolation is that of Birkhoff and de Boor [2].
That paper refers to excellent laboratory reports by Fowler and Wilson [4]
and by Birkhoff, Burchard, and Thomas [3]. Glass [5] briefly describes
computations of open nonlinear splines in Cartesian coordinates.

Hosaka [6] describes the generation of nonlinear splines on a digital

differential analyzer. Woodford [12] describes an iterative procedure
for interpolation with open nonlinear splines that is much faster than
Glass's algorithm; he also works with Cartesian coordinates.

In his Ph.D. dissertation, Mehlum [8] discusses the nature of
nonlinear open splines, again using a Cartesian coordinate system rotated
to a convenient local orientation. He also gives an algorithm for
computing an approximation to the nonlinear spline by a succession of
circular arcs meeting with a continuous tangent but discontinuous

curvature.

3. Basic concepts of bending theory of thin beams. Of all the

curves that pass in turn through the ordered set A of points (xrg%)
mentioned in the introduction, we shall consider as admissible only those
whose tangent direction is continuous everywhere, and whose curvature is
piecewise continuous, with discontinuities in curvature permitted on

any finite set of points. A plausible suggestion for the smoothest of
these admissible curves is that the integral of the square of the curvature
with respect to arc length should attain a minimum. This comprises a
simple representation of the concept of a curve passing through the points
with minimum total bend amplitude, and will be utilized in the form of the

necessary condition



ln » i
5 I Kds = 0 (2)
)

where K is the curvature, s is arc length, ln-l is the total length

0
of the curve, and % is the symbol for variation. The integral in (2) is
proportionalto the strain energy in a bent spline according to Euler-
Bernoulli beam theory, and we show in Section 4 that (2) is the variational
form of the conditions of equilibrium for the spline with forces applied
only at the support points. It seems, therefore, appropriate to investigate
spline interpolation in terms of mechanical bending theory, and it will be
shown in the present paper that this approach does lead to the introduction
of variable&which are particularly convenient for interpreting spline
interpolation, and perhaps also for computing splines.

Bernoulli-Fuler theory, as described in detail by Love [7], is the
simplest form of beam theory, and considers only bending deformations,
neglecting shear deformations and stretching of the center line of the
beam. Such an approximation is satisfactory for beams with cross-section
dimensions small compared to the span between supports, as clearly applies
for splines. Such restricted deformations are introduced by requiring
that plane sections normal to the center line in the undeformed state
remain plane and normal to the d;formed center line, and that the center
line of the beam does not stretch.

The forces and moments on a beam element are shown in Figure 1,
where M is the bending moment, S is the shearing force, and P is
the longitudinal force. (The convention is P > 0 for tension, and

P < 0 for compression.) The assumptions about deformation mentioned

above, combined with Hooke's law relating stress and strain, yield



M= EIK , (3)
where E 1s Young's modulus of elasticity, I is the second moment
of the section about the axis of bending,

_ 2 -‘ (%)
K=3s °

, . The equations of
and & is the angle between the beam and the x-axis.

equilibrium for each unloaded span between supports, which are deduced in

Section 4, are as follows:

for moments:

a +8 = 0 (5)

g—s- + PK = 0; (6)

for longitudinal forces:

ap . (7)
Is -SK = 0 .

It is convenient to work in terms of reduced force variables:

- M = S 5 - 2 8
M = E—f = K , S = FI ) P I ()
Then (5) and (6) give:
5 _ .4k (9)
S = -ds J
5 . 1k (10)
K ,2 7
ds

and (7) becomes



2 2
d 1 d°k , K N
sl 51 = 0, (11)
ds
or
}__SEKffa’ie__c (12)
Kk et 2 =++t7% 7 "ra1?
ds
where ¢ is a constant of integration for the r-th span.

r-1

We must now consider the boundary conditions at the supports which
constrain the spline to pass through the required points Q of A .
The least constraining such support is a freely rotating sleeve attached
to the point Q, that permits free rotation of the spline and free
sliding through the sleeve. The only support force is therefore normal
to the slee&é, and this does no work on a possible motion of the spline
through the sleeve. A more constraining support would be a pin through
the spline which permits free rotation but no sliding, or a pin with
rotation prevented. In none of these cases is work done by support forces,
since either a force (or moment) component is zero, or the associated
motion is zero, and such supports are termed workless constraints.

Figure 2 shows a spline passing through freely rotating, sliding
sleeves at Qs..+5Q, ; , where Q% and Q  are the free ends of the
spline. The configuration of the spline could be analyzed using the
equations given above, but a simpler and more revealing approach for our
purposes is to observe that this spline forms a conservative mechanical

system with potential energy given by the strain energy of the spline,
£
n 2
u= [ (E1k7/2)ds ; (13)

Lo



there are no other contributions to U , since the external forces are

all workless. The theory of conservative systems [11l] tells us that at

a stable equilibrium configuration of the spline, the energy (;3) is a
local minimum, which implies (2) for a uniform spline with EI constant.
Moreover, any constraint added to the system, such as changing a freely
sliding sleeve to a pin support that prevents sliding, will either increase
the potential energy in the corresponding equilibrium confiquration, or
leave it unchanged if the added constraint happens to be compatible with

the configuration. Thus

f K-ds (1k)

will also exhibit a local minimum in the configuration shown in Figure 2,
relative to variations of the constraints. Note that the free ends QO

and Qn , with no forces or moments applied, also provide workless boundary
conditions, and any constraint on their freedom of motion will increase

the energy expression (14). Thus a local minimum of the integral (14)
corresponds to free ends and freely rotating sliding constraints at
Ql’*"’Qn-l° This cannot be a global minimum in the space of all
configurations, since a lower value of the integral in (14) can be achieved,
as pointed out in [2], by introducing large loops between supports, which,
of course, modify the topology.

In the next two sections we deduce the least constraining support
conditions for the spline passing through the points Ql"’”Qn 1 by
seeking the minimum of the integral (14) directly through analysis of the
variational problem (2), and deduce the natural boundary conditions that

yield this minimum energy configuration. Although this approach simply



reproduces the minimum constraint conditions shown in Figure 2, and
anticipated above on the basis of conservative system theory, it is
independently useful, since it permits investigation of the closed spline
problem in Section 6. The latter problem cannot be treated directly by
the theory of a constrained conservative system, because we must consider
the effect of variable arc length for the closed curve, and this changes

the system more than simply by imposing a constraint.

4. Deductions from the variational statement. We consider the

variational statement (2) with integration limits t, and L, for a
curve constrained to pass through the points Ql"“’Qn 1 with end
points Q and Qn . The points QO’”"Qn correspond to values Lo -
of the arc length s . 1In the present section we do not consider end
conditions. Thus we do not care whether the curve is open (as in
Figure 2) or closed @% and Qn coincide). We shall prove in this
section that if such a curve satisfies (2) -- and is hence a spline in
our sense -- then the spline is the position of a thin beam satisfying
equations (3) -(7) of Section 3.

Because of the constraints, (2) takes the form
2
r o
Sﬁ J' Kds = 0 . (15)
r=l£
r-1

The fact that the spline passes through the points Qo"”’Qn prescribes

the following constraint conditions for r = 1,...,n :

10

=~



Tr

J cos 6 ds = x, +x, =0, ( 16e)
fr-1
lr
[ sineds-y,*y,; =0 ( 16b)
dr-1

where Q_ has the coordinates (xr,yr) . Note in (16a), (16b) that X,

and y are prescribed numbers for r = 1,...,n-1 , whereas X0 2 Yo 2 ¥

and y, are free to vary.

We follow the standard techniques of the calculus of variations and
introduce Lagrange multipliers A,_; and p,._, for (16a) and (16p),

respectively (r = 1,...,n) . We take care of the constraints (16a), (16b)

by seeking a stationary value of the functioml

n L. 5 n f,
z ‘[' K~ ds + Z Ao j' cos 6ds - x + X
r=1 ’ r= f
r-1 r-1
T
n r
+ E Y j‘ sin 6ds -y, + vy, 4
r=1 3
r-1 -
n - 5
- rgl [k en,_qcose.u _, sin 6)ds
dr-1
+ }‘r—l(xr-l N Xr) * “‘r-l(yr-l - yr) (17)



with respect to a general smooth variation ©96(s) , and variations

Sxo s Syb ’ an ’ Syn , combined with sliding through the pivots
BS(QI‘) = 8[1‘ (r = l,...,n-l) . (18)

| *
Setting the variation of (17)to zero and integrating by pa&s,'/ we get
the form

H
Hl'lb
l_.l

ds

2Kk %6 + J‘ [- p 3K _ A sin 6 + p, qco8 6156 ds
L
r

r-1 -1

-

2 .
+ [k 42, ; cos 6+, sin 9]1_ 81,
r

- [K2 + A,_q cos 0 + by 1 sin e]£+ 5lr-l
r-1

- =0
Ay 6xo » uoayo - M1 an Hn-1 Byn . (19)

Y In integrating by parts, we assume that the curvature K@©) of the

minimizing curve is continuously differentiable in each interval
1., <s< L, If the curvature k(s) of the minimizing function

is assumed only to be piecewise continuous, but e(s) 1is continuous,
then it can be proved by a different argument based on a lemma of
du Bois-Reymond that k©§1is in fact continuously differentiable
in each interval. This justifies our introduction of the broad class
of admissible curves at the start of Section 3.
+ -
By lr :lr

in the following we mean the limiting values £,*0
and £,-0 .

12



The integral term of (19) yields for r = 1,..n :

dx . _
-2'63"’~r_181n9+ur_10039—0"r-1<S<lr’ (20)

which can be integrated, using equations analogous to (16a) and (16b)

for an open interval, giving

I‘—]é (x_xr-l) s (r:l,...,n)o (21)

M "
K(s) = k(1L ) - 5% (y-y,.) +

Identifying kwith M , as in (8), we see that (21) comprises a moment

relation for the part of the spline between the arc lengths lr and s ,

1
as illustrated in Figure 3. Thus the Lagrange multiplier faators
}\.r_l/e and - p,r_l/z are simply the force components acting on the spline

+

at ' (r = 1,.44yn) . By equilibrium considerations, these same force

components can be considered to act on any section of the spline with
L., <s< !r , so that, taking components along and normal to the spline,

the tensile force P and shear force § are given for lr-l < s < lr by

A W
P=- relcose- rzlsine, (22a)
A v
§ = 1'21 sin 6 - r—e"]-'cos 0 . (22b)

Differential equation (20) can be alternatively integrated by
writing
dk _ dk . de i A«
ds ~ a6 ds de
whence, in view of (22a),

2
K -
Tt P=ce (ap.3 < 8 < lr) ? (23)

where CL is an integration constant.

1

15



Note that (20) and (22b) yield (9). Differentiating (20) with
respect to s and using (22a) give (10). Finally, (12) and (11)
follow from (23). The basic equations (5), (6), and (7) simply express
(9) - (12) in different variables,.. and hence the equilibrium equations
(5) - (7) are consequences of the variational statement (2).

It could conversely be proved that the satisfaction of equations
(5), (6), and (7) implies that the variational condition (2) holds. Thus
the variational condition (2) and the thin beam equations (5) - (7) provide
equivalent foundations for the theory of nonlinear splines.

Since 8 is a continuous variation,

50(2) = 56(1.) (r = 1,.0.50-1) , (k)

and the first term of (19) then demands that

k(2D) - k(L)) (r = 1,..0,m0-1) . (25)

In view of (18), (22a), and the terms in (19) containing Elr ,
we then find that

B(2) = F(z:) (r = 1,...,n-1) . (26)

5. The open spline. For the configuration shown in Figure 2 with

free ends, ®, , by, , 66(10) ;o By, 59(ln) are arbitrary

variations. Hence the first and last terms in (19) demand that

K(lo) = K(ln) = )"O = p‘o = )"n..]_ = IJ‘n-l = 0 . (27)

Thus from (22a, 22b) the end conditions became

K(25) = 13(10) = é(zo) = k(2) = P(1) =8(1) =0 . (28)



Thus the variational condition (15) implies that the open spline

satisfies the natural boundary conditions (25), (26), (28), which

are precisely the conditions associated with the least constraining supports
depicted in Figure 2 and discussed in Section 3. In view of these

relations, (23) holds for the entire spline to_g s_< ln with

¢ . =0 for all r

r

K2

’é‘*f’ =0 , (29)
and hence the differential equation
2
3;‘5*523 o (30)

is valid as a special case of (12) for the threaded spline with free
ends. This equation has been given by Birkhoff et. al. in [3]. Note
that, in view of (25), (30) requires d%ddézto be continuous across
supports, although in general dk/ds is discontinuous, because the
" lateral support force changes the shear force § , which satisfies (9).

We wish to emphasize that our equations apply to any spline curve
that satisfies the constraints of the problem, no matter what its
topology. As is pointed out in [2], there may be sets of nodes A for
which no spline exists and, if any spline exists for A , there may exist
others satisfying the same constraints, with different numbers of loops
between some adjacent pair of nodes. We know of no theorems about the

existence or uniqueness of solutions to these problems.

15



6. Closed nonlinear splines. Now consider fitting a smooth

closed curve through a set of prescribed points. We will express this
situation by utilizing the previous development, but requiring that the
points QO and Qn be coincidenﬁ at an n-th prescribed point, and that

the tangent to the curve be continuously turning also through that point.

Thus, for some integer m related to the number of loops in the curve,

Xy = Ks Vg = Yy s Oy = 6o+ 2mm (31)
n !r n lr w
¥ j' coseds=£ j' sin@ds = 0 ;
r=1 ! r=1 !
- r_l r_l
) (32)
2
n T
Y j' kds = 2mm .
r=1
4
r-1 J

The deductions from (19) are unchanged from those described heretofore,
apart from the contributions at s = fj and s =1 . To obtain a local
minimum of the integral (14), in order to find a "smoothest" closed curve
through the n prescribed points, We must compare curves of slightly

different total arc length, and this can be achieved by selecting the

variations 610 and 8¢ to be unequal. Since the tangent to the curve

prior to the variation is continuously turning, and that after the

16



variation must also be, the variation8 at 4, and £ must satisfy
86(2,) + K(£5)0Ly - eo(e ) + k(L )®L (33)

It is not correct to demand that 56(20) = be(ln) , since elements of

curved arc have been inserted into the loop in superposing the variation.

Since 810 , Sln , 66(10) and 56(£n) are no longer independent, ,
the terms arising from these variations in (19) must be combined with

(33) to deduce the natural boundary conditions at the support QO = Qn .

At the boundaries £y and 4, (19) and (22a) give:

2l k(1 Y80(2 )-K(2,)86(20) 1 + [Kz(ln) -2B(2 ) 152,
-[Ke(to)— 2B( 1) 181y . O . (34)
Eliminating 86(Zy) from (33) and (34) gives:
[K3(2,) + 2B(2) 1o + 2lK(2) - K(2,)168(2,)
oI - ek(r)k(e,) - 2B(e)) 1oL, O, (35)

arbitrary and independent. Thus

k(2y) = k(2,) (36)
and

(& . 2B), - & 28), =0 . 37)
0 n

Thus (29) and (30) again apply throughout the spline. Hence the natural

boundary conditions for (I15)yield the same integration constant ¢.1 =

17

0



in (12) for the closed spline as for the free-ended open one. However,

for the closed spline, this result does not follow from the least-constraint
discussion of conservative systems. In fact, either adding or removing

an element of arc from the optimum configuration increases the strain

energy at equilibrium and hence exhibits this property associated with

imposing additional constraint.

7. Comments and examples. When curve fitting with smooth curves

is investigated, the variational principle (15), utilizing natural
boundary conditions, calls for continuity of kand P across supports,

as well as the continuity of 6 prescribed in the formulation of the

problem. Geometrical discussions of the problem commonly take into
consideration only continuity of @ and k, but this seeming omission
of P is in fact automatically taken care of by the differential
equation (30), satisfied by the spline in each span between supports,
since (30) and (29) are synonymous.

The variational principle (2) will yield (23) and (10), and hence
the differential equations (12) or (11), for types of support other than
the least constraining one treated in Section 4 above. These include,
for example, pin supports which prevent sliding, built-in supports which
prevent both displacement and rotation, and a fixed-angle freely displacing
constraint. In general, with such supports, the constants c in (23) will
not be zero, and will change from span to span along the spline, so that
the differential equations (12) or (11) govern the deflection of the
spline spans, and not the special case (30). These comprise the more

general elastica curves discussed in [7], for which applied forces are

18



not all acting in the direction of the normal to the spline at the point
of application, or for which, in the closed spline case, the spline does
not have the optimum length corresponding to (37). Note that in the

case of a pin support Str must be zero, and when rotation is prevented
se(zr) = 0 , and it is such conditions which modify the treatment of the
previous section.

The limiting case of linear splines corresponds to beam theory when
the deflections y from the unstrained spline, considered to lie along
the x-axis, are such that hhddx\ << 1 . To sufficient accuracy, X can
replace arc length s and the support forces can be considered to act in

the y direction, and then the longitudinal force P is zero throughout.

From (10) the differential equation for the spline then takes the form

2

da 'K

i =0 , (38)

dx

with the linear approximation

2
d

K = ——% (39)
dx

This immediately leads to piecewise cubic polynomials for y as a function
of x . The variational principle for linear splines is that they minimize (1).
Schweikert [11] has treated linear splines under tension, in which
end supports supply a positive longitudinal force P , which is constant
throughout the beam, for freely sliding constraints. By linearization
of (10) it follows that
b 2

oY
I
i
|5
n

&

X

19



so the solution between successive supports takes the form

= + +
y=c tox+ce

o 3 cosh(ox) + c), sinh(ox) ,

where © =‘J§. One reason for introducing tension is to remove extraneous
points of inflection of the interpolating spline curve. The variational
principle for linear splines under a given tension P is that they

minimize the total energy of the system, which leads to minimizing

X

n
[+ e (a)®) ax
%o

among all functions £ that satisfy the constraints and have continuous
second derivatives. One could also study nonlinear open splines under
tension.

The theory presented heretofore leads to some interesting character-
istics for particular situations. For example, both for the open spline
with minimum constraints depicted in Figure 2, and the closed spline of
optimum length,.(29) requires that P be zero or negative, and zero only
where the spline arc is straight. Thus, whatever the geometry of the
curve being fitted, tensile resultant longitudinal forces will never occur
(unless they are imposed at the ends).

Consider now fitting a closed spline through the vertices of an
equilateral triangle. If the spline is bent into a circle, we see
from (3) that M is constant, whence from (5) S = 0 , and from (6)
P=0 . Hence (29) is violated by a circle. To satisfy (29) some
additional arc length must be added to produce a compressive force P .
The "optimum" spline will take the form illustrated in Figure 4. A quali-
tative understanding of this deduction can be achieved by noting that
increasing the arc length for a given angle of bend tends to reduce the
contribution to the ihtegral (14), just as adding large loops to a spline

configuration permits the integral (14) to be reduced towards zero, as

20



mentioned in [3]. With radius R , the l/R2 of the integrand dominates
the 2nR of the total arc length, for increasing R .However, for a
fixed arc length and total angle of bend Qf Kds) , the contribution to
(14) is a minimum when « is constant. Increasing the arc length of

the spline in Figure 4 from the circle configuration causes a variation in
curvature which tends to increase the integral, offsetting the reduction
associated with increase in arc length. The latter dominates initially,
to yield an optimum fit illustrated in Figure L.

This example permits an assessment of the interpolation strategy
expressed in (2), since one might regard the circumscribing circle as
providing akmore natural fit through the vertices. The advantage of
increasing the arc length in reducing the integral (14) is the feature
which leads away from the constant-curvature circle. Inhibition of such
a tendency can be achieved by imposing a penalty on increase in arc length,

for example, by replacing (2) by

ln °
5[ («+k)ds =0 . (ko)
to
Equation (37), and hence (29), must then be replaced by

2
%— + f) = —E- P) (hl)

so that for this simple case, choosing

k=« |, (42)

where K is the curvature of the circumscribing circle, yields that
circle as the optimum fit according to (40). Whether such an approach

could be generalized is an open question.

21



If for a closed spline loop passing through prescribed points, the
arc length is slightly shorter or longer than the optimum length given
by (29), the integral (14) will be larger than for the optimum case.
For each of these problems, with fixed arc length, (2) is satisfied by
the curve form assumed by the spline. An illustrative example is given
in Figure 5. For the shorter spline loop

2

%—+f’ > 0 (43)

and for the longer one

%2_+1'><o . ()

-

These conditions will change the constant ¢ in the governing

rl
differential equation (12), which will apply throughout the spline with
constant c 1 if the supports are freely sliding and rotating.

This paper has treated the global problem of spline geometry. The
computation of spline functions to approximate the spline configurations
considered here has not been discussed in this paper, and constitutes a
challenging problem in numerical analysis. For the open spline, the
curvature at the first support is zero, so that only the angle need be
determined if an initial-value approach (the so-called "shooting method")
is used for integration of the spline differential equation problem. In
the general closed spline case, both angle and curvature at a support
must be selected for an initial-value approach, thus posing a more
cumbersome problem. For the problem of the equilateral triangle, symmetry
can be used to reduce the complexity of the general case. However, the
work of Woodford [12] makes it seem unlikely that shooting is a good way

to compute splines.
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Figure 1. Forces and moments on a beam element.

Figure 2. Spline passing through supports.

Kk(s)
| (x,y)
k(o)
(Xpoy, Yr-1)
Figure 3. 'Forces and moments on a spline arc.
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Figure 4. Spline fitted through the vertices of an equilateral triangle.
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Figure 5. Closed splines with differing arc lengths.
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