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VARIATIONAL STUDY OFNONLINEAR SPLINECURVES

by

E. H. Lee and G. E. Forsythe

Stanford University

1. Linear and nonlinear splines. Let A be a finite ordered

set of points 1n the euclidean plane, with Cartesian coordinates (x,57..) ’

r = 1,...,0-1 , through which 1t 1s desired to pass a smooth curve. An

old technique in drafting 1s to use a mechanical spline to form a smooth

curve C that contains A . In the present day of automatic plotters,

numerically controlled milling machines, and so on, 1t 1s more important

to find a mathematical or computational representation of a suitable C
than to draw it. Thus one uses some mathematical model of the mechanical

spline.

By far the most widely used model is a linear (cubic)_splire, suitable

when the curve C in some x-y coordinate system 1s the graph of a

function £ , so that y = f(x) , X, <x < x Assume that

Xy < xq < eX The linear spline can be defined as the unique

J function f£ for which

Xn 5
| f(x) “dx (1)
*0

1s minimized among all twice continuously differentiable functions assuming

the value Y, at x, (r = 1,2,...yn=1) . (According to this definition,

f will satisfy the natural end conditions f(xy) = £"(x) = 0 . There
are alternative treatments of the end conditions.)
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The linear spline so defined turns out to be a (usually) different

cubic polynomial in each interval (x,_15%.) , with matching values,

derivatives, and second derivatives (and hence curvatures) at each

interior node x. (r = 1,2,...,0n-1) . The spline will actually be a

straight line segment for x, < x'< x; and xX. Sx<x

The theory of linear splines has grown enormously in the last decade,

and these curves and various linear generalizations have both practical and

theoretical importance 1n the approximation of known functions, solutions

of differential equations, and so on. The reader can find an exposition,

with generalizations and applications, in Ahlberg, Nilson, and Walsh [1].

Linear splines are invariant under linear changes in the y-coordinate

alone, as Podolsky and Demman [9] point out. Thus they are suited to

such problems as the interpolation of data, where x and y have

different meanings. On the other hand, linear splines are not invariant

under rotations of the x-y coordinate system, and hence are not well.

suited to the interpolation of geometrical points in the euclidean plane.

Moreover, linear splines cannot be used directly to define a closed curve

¢ 1n the x.y plane.

For the purposes of interpolating points in the euclidean plane 1it

1s appropriate to find a mathematical model which 1s invariant under all

similarity transformations. The model we treat 1s sometimes called the

elastica, but we shall refer to it as a nonlinear spline. As a preliminary

to work on actually computing nonlinear splines, we have investigated their

precise definition, including variational properties, defining equations,

continuity conditions, and end conditions, both for open and closed curves.



The term nonlinear spline1s used variously in the literature:

(a) If the integrand £1(x)° of (1) 1s multiplied by a nonconstant

weight factor, sometimes the function that minimizes the altered problem

is called a nonlinear spline. (b) Suppose one is given a function @(x)

to be approximated by a linear cubic spline passing through n-1 points

(x ,0(x) ) , and that the n-1 abscissas x, are varied until the spline

best approximates ¢ in some given norm. Sometimes the result 1s called

a nonlinear spline. However, in both (a) and (b) above the splines

satisfy a linear differential equation in each interval, whereas our

nonlinear splines satisfy a nonlinear differential equation.

We do not claim that computing nonlinear splines will necessarily be

an economical way to 1nterpolate points in the x-y plane. Moreover,

nonlinear splines are not invariant under linear changes in the y-coordinate

alone, so that they seem ill-suited to the interpolation of data where x

and y are unrelated .

We have been interested only in studying as carefully as we could the

mathematical nature of these nonlinear splines. In this paper we present

a variational treatment of nonlinear splines, emphasizing the natural

boundary conditions of the problem. We believe that our treatment of

the closed nonlinear spline may be new.

2. Previous work. In the theory of elasticity, our mathematical

model of the mechanical spline 1s called a thin beam or elastica, and its

treatment dates back to James and Daniel Bernoulli, Euler, Kirchhoff,

and others. The history and theory are summarized by Love [7]. None of

those treatments dealt directly with the use of the nonlinear spline to

interpolate points, and there was little discussion of closed splines.
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The earliest discussion that we have seen 1n print of the use of

nonlinear splines for interpolation is that of Birkhoff and de Boor [2].

That paper refers to excellent laboratory reports by Fowler and Wilson [4]

and by Birkhoff, Burchard, and Thomas [3]. Glass [5] briefly describes

computations of open nonlinear splines 1n Cartesian coordinates.

Hosaka [6] describes the generation of nonlinear splines on a digital

differential analyzer. Woodford [12] describes an iterative procedure

for interpolation with open nonlinear splines that 1s much faster than

Glass's algorithm; he also works with Cartesian coordinates.

In his Ph.D. dissertation, Mehlum [8] discusses the nature of

nonlinear open splines, again using a Cartesian coordinate system rotated

to a convenient local orientation. He also gives an algorithm for

computing an approximation to the nonlinear spline by a succession of

circular arcs meeting with a continuous tangent but discontinuous

curvature.

5. Basic concepts of bending theory of thin beams. Of all the

curves that pass in turn through the ordered set A of points (%,7,)
mentioned in the introduction, we shall consider as admissible only those

whose tangent direction 1s continuous everywhere, and whose curvature 1s

piecewise continuous, with discontinuities in curvature permitted on

any finite set of points. A plausible suggestion for the smoothest of

these admissible curves 1s that the integral of the square of the curvature

with respect to arc length should attain a minimum. This comprises a

simple representation of the concept of a curve passing through the points

with minimum total bend amplitude, and will be utilized in the form of the

necessary condition .
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5 | ds = 0 (2)
to

where « is the curvature, Ss 1s arc length, LL 1s the total length

of the curve, and % is the symbol for variation. The integral in (2) is

proportionalto the strain energy in a bent spline according to Euler-

Bernoulli beam theory, and we show in Section 4 that (2) is the variational

form of the conditions of equilibrium for the spline with forces applied

only at the support points. It seems, therefore, appropriate to investigate

spline interpolation in terms of mechanical bending theory, and it will be

shown in the present paper that this approach does lead to the introduction

of variable&which are particularly convenient for interpreting spline

interpolation, and perhaps also for computing splines.

Bernoulli-Euler theory, as described in detail by Love [7], is the

simplest form of beam theory, and considers only bending deformations,

neglecting shear deformations and stretching of the center line of the

beam. Such an approximation 1s satisfactory for beams with cross-section

dimensions small compared to the span between supports, as clearly applies

for splines. Such restricted deformations are introduced by requiring

that plane sections normalto the center line in the undeformed state

remain plane and normal to the deformed center line, and that the center

line of the beam does not stretch.

The forces and moments on a beam element are shown in Figure 1,

where M is the bending moment, S 1s the shearing force, and P 1s

the longitudinal force. (The convention 1s P > 0 for tension, and

P < 0 for compression.) The assumptions about deformation mentioned

above, combined with Hooke's law relating stress and strain, yield
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M= EIK | (3)

where E 1s Young's modulus of elasticity, I 1s the second moment

of the section about the axis of bending,

_de (4)K=3

| | The equations of
and 6 1s the angle between the beam and the x-axis.

equilibrium for each unloaded span between supports, which are deducedin

Section 4, are as follows:

for moments:

aM _ 0: (5)~ T= +S = 0;

for normal forces:

ds _ i (6)

for longitudinal forces:

Pk - 0. (7)
ds

It 1s convenient to work in terms of reduced force variables:

- M = _ 58 5 - 8

Then (5) and (6) give:

5 . 4K (9)
ds ’ \

|
_ 1 a°k (10) |
P= 3 |

ds

and (7) becomes
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CN = a SII (11)
or

1 dB 5 KE (12)
K ds? 2 2 r-1"~’

where C__; 1s a constant of integration for the r-th span.

We must now consider the boundary conditions at the supports which

constrain the spline to pass through the required points QU of A .

The least constraining such support 1s a freely rotating sleeve attached

to the point Q, that permits free rotation of the spline and free

sliding through the sleeve. The only support force 1s therefore normal

to the sleeve, and this does no work on a possible motion of the spline

through the sleeve. A more constraining support would be a pin through

the spline which permits free rotation but no sliding, or a pin with

rotation prevented. In none of these cases 1s work done by support forces,

since either a force (or moment) component 1s zero, or the associated

motion 1s zero, and such supports are termed workless constraints.

Figure 2 shows a spline passing through freely rotating, sliding

sleeves at QuresQ , where QY and Q, are the free ends of the

spline. The configuration of the spline could be analyzed using the

equations given above, but a simpler and more revealing approach for our

purposes 1s to observe that this spline forms a conservative mechanical

system with potential energy given by the strain energy of the spline,

L, ,
u= [| (B1«7/2)ds ; (13)

fo
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there are no other contributions to U , since the external forces are

all workless. The theory of conservative systems [ll] tells us that at

a stable equilibrium configuration of the spline, the energy (13) 1s a

local minimum, which implies (2) for a uniform spline with EI constant.

Moreover, any constraint added to the system, such as changing a freely

sliding sleeve to a pin support that prevents sliding, will either increase

the potential energy in the corresponding equilibrium configuration, or

leave 1t unchanged 1f the added constraint happens to be compatible with

the configuration. Thus

tn

[ Koas (14)
Y,

will also exhibit a local minimum in the configuration shown in Figure 2,

relative to variations of the constraints. Note that the free ends %

and Q , with no forces or moments applied, also provide workless boundary

conditions, and any constraint on their freedom of motion will increase

the energy expression (14). Thus a local minimum of the integral (1k)

corresponds to free ends and freely rotating sliding constraints at

Qys..+»Q1. This cannot be a global minimum in the space of all

configurations, since a lower value of the integral in (14) can be achieved,

as pointed out in[2], by introducing large loops between supports, which,

of course, modify the topology.

In the next two sections we deduce the least constraining support

conditions for the spline passing through the points Qreen@ 4 by

seeking the minimum of the integral (14) directly through analysis of the

variational problem (2), and deduce the natural boundary conditions that

yleld this minimum energy configuration. Although this approach simply
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reproduces the minimum constraint conditions shown in Figure 2, and

anticipated above on the basis of conservative system theory, it 1s

independently useful, since 1t permits investigation of the closed spline

problem in Section 6. The latter problem cannot be treated directly by

the theory of a constrained conservative system, because we must consider

the effect of variable arc length for the closed curve, and this changes

the system more than simply by imposing a constraint.

4. Deductions from the variational statement. We consider the

variational statement (2) with integration limits 2, and L for a

curve constrained to pass through the points Qpr ees with end

points % and Q . The points Qo? ++ +29, correspond to values Lop weosly
of the arc length s . In the present section we do not consider end

conditions. Thus we do not care whether the curve is open (as in

Figure 2) or closed (@, and Q, coincide). We shall prove in this
section that 1f such a curve satisfies (2) -- and 1s hence a spline in

our sense -- then the spline 1s the position of a thin beam satisfying

equations (3) -(7) of Section 3.

Because of the constraints, (2) takes the form

L,

5 § I K°ds = 0 . (15)
| r=l

r-1

The fact that the spline passes through the points Qpr +29, prescribes
the following constraint conditions for r = 1,...,n :
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| cos6 ds = x_ + Xx = 0, ( 16a)r rl

“r-1

1

"es = 0 ( 160)[ sine ds -y, * vy, '
“r-1

where Q, has the coordinates (x7. . Note in (16a), (16b) that x,

and y are prescribed numbers for r = l,...,0-1 , whereas *5 ° Yp5 2» *,

and y, are free to vary.

We follow the standard techniques of the calculus of variations and

introduce Lagrange multipliers A.; and up., for (16a) and (16b),

respectively (r = 1,...,n) . We take care of the constraints (16a), (16d)

by seeking a stationary value of the functioml

n £, 5 I 4,
3 | K- ds + ) Apo J cos 6ds- x + Xo
r=1 ’ r=1 ’

r-1 r-1

Cy
n r

RX poy | J sin eds -y +y
r=1 ;

r-1 _

n t. 5
- 3 | (K~ +Ap_1 C086 +n, _, sin @)ds
r=1 ;

r-1

* Mop ) x.) * by1 (Vp i Vy) | (17)
11



with respect to a general smooth variation ©96€(s) , and variations

Bx , 8Y, ) ox ) By, , combined with sliding through the pivots

*/
Setting the variation of (17)to zero and integrating by pags, — We get

the form

!. !

n r r dK | X3 2K 86 + | [-255 = Aq Sin 6 + bh, 1 COS 6]%6 ds
r=l 2

r-1 r-1

+ [KZ + cos 6 + sin 6] of
rl br-1 I. r

r

- [KF + App C08 6 +p. 4 sin 0] + 82. 1
r-1

A. OX 8, = Ay. OX TB oy, = © (19)= 0 0 = Ho 0 -1 n n-1 n .

¥ In integrating by parts, we assume that the curvature K@©) of the
minimizing curve 1s continuously differentiable in each interval
1.1 <s<!_ . If the curvature (s) of the minimizing function
1s assumed only to be piecewise continuous, but e(s) 1s continuous,
then 1t can be proved by a different argument based on a lemma of
du Bois-Reymond that KS 1s 1n fact continuously differentiable
in each interval. This justifies our introduction of the broad class
of admissible curves at the start of Section 3.

By NN in the following we mean the limiting values £.*0
and 1_-0 .

r
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The integral term of (19) yields for r = l,..syn :

2 sin 6 + cos6 =0 , ! <s <! (20)ds r-1 Hr ro Tr-l r ’

which can be integrated, using equations analogous to (16a) and (16b)

for an open interval, giving

M-
+ r-1 Hpo1

K(s) = k(L,._q) = To (y-v,_7) + To (x-x, 4) b (r=1,...4n). (21)

Identifying kwith M , as in (8), we see that (21) comprises a moment

relation for the part of the spline between the arc lengths L 1 and s ,

as 1lllustrated in Figure 3. Thus the Lagrange multiplier faators

N._q/2 and ~ po_/2 are simply the force components acting on the spline

at I (r = 1,...,n) . By equilibrium considerations, these same force

components can be considered to act on any section of the spline with

'.q <s< f. » SO that, taking components along and normal to the spline,

the tensile force P and shear force § are given for f , < s <I by

A "

P=-—Scos 0-35 inc, (22a)

A v
§=22 sine-XTcos 0 . (22Db)2 2

Differential equation (20) can be alternatively integrated by

writing

dk _ dk d8 _ 2X |
ds de ds de

whence, in view of (22a),

2

EL +P=c <s<!) 232 r-1 (ap.] r’ ’ (23)

where Cp 1 1s an 1ntegration constant.
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Note that (20) and (22b) yield (9). Differentiating (20) with

respect to s and using (22a) give (10). Finally, (12) and (11)

follow from (23). The basic equations (5), (6), and (7) simply express

(9) - (12) in different variables,.. and hence the equilibrium equations

(5) - (7) are consequences of the variational statement (2).

It could conversely be proved that the satisfaction of equations

: (5), (6), and (7) implies that the variational condition (2) holds. Thus

the variational condition (2) and the thin beam equations (5) - (7) provide

equivalent foundations for the theory of nonlinear splines.

Since 8% is a continuous variation,

50(1) = 56 (2) ) (r = 1,...,n-1) , (2k)

and the first term of (19) then demands that

- +

k(2..) = k(L..) (r = 1,...5n-1) . (25)

In view of (18), (22a), and the terms in (19) containing ot, ,
we then find that

B(1]) = B(L) (r = 1,...,n-1) . (26)

5. The open spline. For the configuration shown in Figure 2 with

free ends, ox, , by, , 56(1,,) , 8x, by, %6(1.) are arbitrary
variations. Hence the first and last terms in (19) demand that

k(t) = K(2) = Ng = bg = Mg =bp1 = 0 (27)

Thus from (22a, 22b) the end conditions became

k(2,) = P(1,) = S(2,) = ke) = P(1.) = (1) = 0 . (28)

1h



Thus the variational condition (15) implies that the open spline

satisfies the natural boundary conditions (25), (26), (28), which

are precisely the conditions associated with the least constraining supports

depicted in Figure 2 and discussed in Section 3. In view of these

relations, (23) holds for the entire spline Ly < s_< L with

C._1 =0 for all r :

Kc? =
+P = 0 (29)

and hence the differential equation

2

i © _ © (30)
1s valid as & special case of (12) for the threaded spline with free

ends. This equation has been given by Birkhoff et. al. in [3]. Note

that, in view of (25), (30) requires d°k/ds” to be continuous across

supports, although in general dk/ds is discontinuous, because the

lateral support force changes the shear force § , which satisfies (9).

We wish to emphasize that our equations apply to any spline curve

that satisfies the constraints of the problem, no matter what its

topology. As is pointed out in [2], there may be sets of nodes A for

which no spline exists and, 1f any spline exists for A , there may exist

others satisfying the same constraints, with different numbers of loops

between some adjacent pair of nodes. We know of no theorems about the

existence or uniqueness of solutions to these problems.
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6. Closed nonlinear splines. Now consider fitting a smooth

closed curve through a set of prescribed points. We will express this

situation by utilizing the previous development, but requiring that the

points Q and Q, be coincident at an n-th prescribed point, and that
the tangent to the curve be continuously turning also through that point.

Thus, for some integer m related to the number of loops in the curve,

- - + . 1x =X 3 Yo — Yn ’ 6, 6 2m H (3 )

n t. n L.
3. | cosé ds = ). | sin@ds = 0 ;
r=1 r=1 /
a r-1

(32)
1

n r

3 [ Kkds = 2mm.
r=1

fel

The deductions from (19) are unchanged from those described heretofore,

apart from the contributions at s =f; and s = . To obtain a local
minimum of the integral (14), in order to find a "smoothest" closed curve

: through the n prescribed points, we must compare curves of slightly

different total arc length, and this can be achieved by selecting the

variations Be, and 8f to be unequal. Since the tangent to the curve
prior to the variation 1s continuously turning, and that after the

16
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variation must also be, the variation8 at f, and I must satisfy

56(2,) + K(1,)0Ly  - eee) + k(L )dL (33)

It is not correct to demand that 56(1,) = 56 (2, ) , since elements of
curved arc have been inserted into the loop in superposing the variation.

Since 84, , 81, 56(1,) and %6(2) are no longer independent, ,
the terms arising from these variations in (19) must be combined with

(33)to deduce the natural boundary conditions at the support Q = QU :

At the boundaries £5 and I (19) and (22a) give:

2 -
- O

2(k(2,)00(2 )-K(L,)86(L0) 1 +[k (2) 2P(2_) |] L

oo -

-[« (24) - 2P( L,) 188, « O (34)

Eliminating 56(1,) from (33) and (34) gives:

o -

[K5(2,) + 2B(2g) 188g + 20K(e)) - K(2,)106(L))

, [K*(2) - ek(r)(e,) - 2B(2) 1B - 0, (35)

arbitrary and independent. Thus

(2) = (2) (36)
and

2 - 2 = _
(k= + 2P) - (Kk + 2P) = 0 . (37)1 2

0 n

Thus (29) and (30) again apply throughout the spline. Hence the natural

boundary conditions for (15) yield the same integration constant C1 = 0

17



in (12) for the closed spline as for the free-ended open one. However,

for the closed spline, this result does not follow from the least-constraint

discussion of conservative systems. In fact, elther adding or removing

an element of arc from the optimum configuration increases the strain

energy at equilibrium and hence exhibits this property associated with

imposing additional constraint.

7. Comments and examples. When curve fitting with smooth curves

1s investigated, the variational principle (15), utilizing natural

boundary conditions, calls for continuity of kand P across supports,

as well as the continuity of 6 prescribed in the formulation of the

problem. Geometrical discussions of the problem commonly take into

consideration only continuity of 6 and k, but this seeming omission

of P is in fact automatically taken care of by the differential

| equation (30), satisfied by the spline in each span between supports,

since (30) and (29) are synonymous.

The variational principle (2) will yield (23) and (10), and hence

the differential equations (12) or (11), for types of support other than

the least constraining one treated in Section U4 above. These include,

for example, pin supports which prevent sliding, built-in supports which

prevent both displacement and rotation, and a fixed-angle freely displacing

constraint. In general, with such supports, the constants c., in (23) will

not be zero, and will change from span to span along the spline, so that

the differential equations (12) or (11) govern the deflection of the

spline spans, and not the special case (30). These comprise the more

| general elastica curves discussed in [7], for which applied forces are

18



not all acting in the direction of the normal to the spline at the point

of application, or for which, in the closed spline case, the spline does

not have the optimum length corresponding to (37). Note that in the

case of a pin support or, must be zero, and when rotation 1s prevented

56(1.,) = 0 , and 1t 1s such conditions which modify the treatment of the
previous section.

The limiting case of linear splines corresponds to beam theory when

the deflections y from the unstrained spline, considered to lie along

the x-axis, are such that |dy/ax|<< 1 . To sufficient accuracy, x can

replace arc length s and the support forces can be considered to act in

the yv direction, and then the longitudinal force P is zero throughout.

From (10) the differential equation for the spline then takes the form

2
dK

— 5 = 0 > (28)
dx

with the linear approximation

3°
K = —2 (29)

dx

This immediately leads to piecewise cubic polynomials for y as a function

) of x . The variational principle for linear splines 1s that they minimize (1).

Schweikert [11] has treated linear splines under tension, in which

end supports supply a positive longitudinal force P , which is constant

throughout the beam, for freely sliding constraints. By linearization

of (10) it follows that

L 2

dx dx

19
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so the solution between successive supports takes the form

y =¢) tcx+cy cosh(ox) + c) sinh(ox) ,

where © Ap. One reason for introducing tension 1s to remove extraneous

points of inflection of the interpolating spline curve. The variational

principle for linear splines under a given tension P is that they

minimize the total energy of the system, which leads to minimizing

"n 2 = 2
[ [£"(x)° + PFr(x)7] dx

*0

among all functions f that satisfy the constraints and have continuous

second derivatives. One could also study nonlinear open splines under

tension.

The theory presented heretofore leads to some interesting character-

istics for particular situations. For example, both for the open spline

with minimum constraints depicted 1n Figure 2, and the closed spline of

optimum length,. (29) requires that P be zero or negative, and zero only

where the spline arc is straight. Thus, whatever the geometry of the

curve being fitted, tensile resultant longitudinal forces will never occur

(unless they are imposed at the ends).

Consider now fitting a closed spline through the vertices of an

equilateral triangle. If the spline 1s bent into a circle, we see

from (3) that M is constant, whence from (5) S = 0, and from (6)

P=0. Hence (29) 1s violated by a circle. To satisfy (29) some

additional arc length must be added to produce a compressive force P .

The "optimum" spline will take the form illustrated in Figure 4. A quali-

tative understanding of this deduction can be achieved by noting that

increasing the arc length for a given angle of bend tends to reduce the

contribution to the integral (14), just as adding large loops to a spline

configuration permits the integral (14%) to be reduced towards zero, as

Al



mentioned in [3]. With radius R , the 1/R’ of the integrand dominates

the 2nR of the total arc length, for increasing R .However, for a

fixed arc length and total angle of bend (] Kds) , the contribution to

(14) is a minimum when K is constant. Increasing the arc length of

the spline in Figure 4 from the circle configuration causes a variation in

curvature which tends to increase the integral, offsetting the reduction

associated with increase in arc length. The latter dominates initially,

to yield an optimum fit illustrated in Figure L.

This example permits an assessment of the interpolation strategy

expressed in (2), since one might regard the circumscribing circle as

providing a more natural fit through the vertices. The advantage of

increasing the arc length in reducing the integral (14) 1s the feature

which leads away from the constant-curvature circle. Inhibition of such

a tendency can be achieved by imposing a penalty on increase in arc length,

for example, by replacing (2) by

th

5[ (K:k)ds = 0 . (Lo)
Lo

- Equation (37), and hence (29), must then be replaced by

« P= XL (41)
2 2 7

so that for this simple case, choosing

k = KS , (k2)

where Ky 1s the curvature of the circumscribing circle, yields that

circle as the optimum fit according to (40). Whether such an approach

could be generalized 1s an open question.
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If for a closed spline loop passing through prescribed points, the

arc length 1s slightly shorter or longer than the optimum length given

by (29), the integral(14) will be larger than for the optimum case.

For each of these problems, with fixed arc length, (2) 1s satisfied by

the curve form assumed by the spline. An illustrative example 1s given

in Figure 5. For the shorter spline loop

% =
=+P > 0 (43)

and for the longer one

i =
= +P < 0 . (Lh)

These conditions will change the constant C. 1 in the governing
differential equation (12), which will apply throughout the spline with

constant C. 1 1f the supports are freely sliding and rotating.

This paper has treated the global problem of spline geometry. The

computation of spline functions to approximate the spline configurations

considered here has not been discussed in this paper, and constitutes a

challenging problem in numerical analysis. For the open spline, the

curvature at the first support is zero, so that only the angle need be

determined 1f an initial-value approach (the so-called "shooting method")

1s used for integration of the spline differential equation problem. In

the general closed spline case, both angle and curvature at a support

must be selected for an initial-value approach, thus posing a more

cumbersome problem. For the problem of the equilateral triangle, symmetry

can be used to reduce the complexity of the general case. However, the

work of Woodford [12] makes it seem unlikely that shooting is a good way

to compute splines.
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Figure 4. Spline fitted through the vertices of an equilateral triangle.
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Figure 5. Closed splines with differing arc lengths.
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