STANFORD ARTIFICIAL INTELLIGENCE PROJECT .
MEMO AIM-148

COMPUTER SCIENCE DEPARTMENT
REPORT NO. CS-217

DECIDABLE PROPERTIES OFMONADIC FUNCTIONAL SCHEMAS

BY

EDWARD ASHCROFT
ZOHAR MANNA
AMIR PNEULI

JULY 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

MEMO AIM-148

DECI DABLEPROPERTI ES OFMONADI C FUNCTI ONALSCHEMAS
EDWARD ASHCROFT ZOHAR MANNA AMIR PNUELI

- Computer Science Dept. Computer Science Dept. Applied Mathematics Dept.
University of Waterloo Stanford University Weizmann Institute
Waterloo, Canada Stanford, California Rehovot, Isr=-l

- Abstract: We define a class of (monadic) functional schemas which
properly includes 'Ianov' flowchart schemas. We show that the

= termination, divergence and freedom problems for functional
schemas are decidable. Although it is possible to translate a

| — large class of non-free functional schemas into equivalent free
functional schemas, we show that this cannot be done in general.

- We show also that the equivalence problem for free functional
schemas is decidable. Most of the results are obtained from
well-known results in Formal Languages and Automata Theory.

| -

.

[-

The views and conclusions contained in this document are those of the
authors and should not be interpreted as necessarily representing the

o official policies, either expressed or implied, of the Advanced Research

Projects Agency or the U. S. Government.

The research reported here was supported in part by the Advanced Research
o~ Projects Agency of the Office of the Secretary of Defense (SD-183).
A preliminary version of this paper was presented at the International
Symposium on the Theory of Machines and Computation (Haifa, Israel),
- August 1971.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.
Price: full size copy, $3.00; microfiche copy, $.95.

-

r—

-

DECI DABLE PROPERTIES OFMONADI C FUNCTI ONALSCHEMAS

EDWARD ASHCROFT ZOHAR MANNA AMIR PNUELI

Computer Science Dept. Camputer Science Dept. Applied Mathematics Dept.
University of Waterloo Stanford University Weizmann Institute
Waterloo, Canada Stanford, California Rehovot, Israel

I. Monadic Functional Schemas

An Egphabet of a (monadic) functional schema S consists of one individual variable x , a finite set of
moasdic function variables {Fi} (with a designated initial function variable Fo) , a finite set of monadic forticn
constants {f,] , and a finite set of monadic predicate constants {p;} . Note that individual constants are not
allowed.

A term over zs is any term in the normal sense constructed from the monadic function variables [Fi} , monadic

function constants {f:l] and the variable x , e.g., fl(F3(FO(f2(x) A cond)jonal term over Ig is any finite

expression of the form

if p, (x) then T else Ty

where Py is any predicate constant of }:s , and T and T, are any terms or conditional terms over Es .

A definition of Fi jover & is of the form

Fi(x) <=1,

where T is any term or conditional term over Zs . A (monadic) functional schema S (over an alphabet ZS)
consists of a finite set of definitioms over Zs , one for each function variable Fi in T"S . Whenever the special
function variable F_ is used, its definition is considered to be Fa(x) <= Fﬂ(x) . This definition is usually

omitted.

Example 1: Let us consider the functional schema Sl
Fo(x) <= if p, (x) then if p, (x) then F, (x) else F(f,(x))
else x

Fy(x) < 1f py(x) then Fo(£,(x)) else £(x) .

Since we are using a very restricted alphabet, parentheses and the individual variable x may be omitted without
causing any confusion. Therefore the functional schema Sl can be rewritten as:
Fo <= if P then if P, then Felse Flfl
else I

Fy <= if p then F0f2 else £, ,

*
where I stands for the 'identity function'.J
An interpretation 4 of a functional schema S consists of:
1. a non-empty set of elements D (called the domain),

2. an element €& of D used as the initial value of x , and

0
3. assignments to the constants of I :

(1) a total monadic function (from D into D) for each function constant £, and

1 ks
(11) a tot 4l monadic predicate (fram » imto {T,F}) for each predicate constant P -

¥
Y It is worth noting that most of the results in this paper would be trivial if we did not allow the 'identity
function'.

r-

For a given interpretation § , the pair (8,8) , called a functional program, can be computed by evaluating
Fo with input &, in the usual way (see McCarthy [1963]). The canputation either (i) terminates yielding an
element of D denoted by val(S,8) , or (ii) diverges (i.e., does not terminate) in which case val(§,d) is said
to be undefined. The method of canputation is described more fully later for special types of interpretations
called 'Herbrand interpretations'.

A functional schema S is said to terminate/diverge if for every interpretation 8 , vai(§,d) is
defined/undefined. Two functional schemas sl and 52 are said to be equivalent if for every interpretation 4
either both m(sl,,s) and val(S,,8) are undefined or both are defined and _Va_l(Sl,J) = La_]_.(Se,J) .

The same class of functional schemas has been discussed by DeBakker and Scott [1969].

It is straightforward to show that every functional schema in which any term contains at most one function
variable, occurring on the left-hand side of the term (as in Example 1 above), can be translated to an equivalent
'Tanov! flowchart schema (Ianov [1960], see also Rutledge [1964]). However, such simple functional schemas as

Fy <= if p then I else £y¥%
have no equivalent Isnov flowchart schema. Hence, the results in this paper generalize known results about Ianov

flowchart schemas.

*
II. Herbrand InterpretationsJ

A Herbrand interpretation & of a functional schema S consists of:

1. The domain D* which is the set of all expressions "-rc" , where T is a constant term constructed from the
individual variable x and the function constants fi of Ig » €9, "5, "fl(x)" , "fQ(fl(x))" i
2. The expression "x"eD* used as the intial value of x ;
3. Assignments to the constants of Ig ¢
(1) For every function constant f; in Lg s we assign the total function mapping every expression
"t "eD* into the expression "fi(‘rc)"eD* ,
(ii) For every predicate constant P in Es , we assign sane total predicate over D* , i.e., for every
"‘rc"cD* the value of pi("'rc") is either T or F
Note that all Herbrand interpretations of a given functional schema differ only in the assignments to the predicate
constants. Henceforth we omit the quotation marks whenever this causes no confusion.
The computation of (S,8%) is best described by a (finite or infinite) sequence of terms ai . The first
temm @, of the sequence is Fo(x) - In general, suppose & (n > 0) contains the sub-term Fi(E) where teD* ,

ie., Fi is the right-most function variable in an . Then @

1 is obtained by substituting a term 7 for

Fi(E) where T is obtained as follows. First x is replaced by & in the definition of F and then the

57
term T is chosen fran this definition using the values of pj(g) supplied by the interpretation of the predicate
constants p:J . The canputation terminates as soon as we reach a constant term L Then E(S,J*) =T, -
Herbrand interpretations are important because many properties of functional schemas can be described and proved
just by considering Herbrand interpretations rather than all interpretations. For example,
(1) a functional schema terminates/diverges (under every interpretation) if snd only if it terminates/diverges
under every Herbrand interpretation;

(ii) two functional schemas are equivalent (under every interpretation) if and only if they are equivalent under

every Herbrand interpretation.

¥
Y Herbrand interpretations are identical to the 'free interpretations' of Luckham, Park and Paterson [1970].

III. Termination and Divergence of Functional Schemas

We show that

THEOREM 1. It_is decidable whether or not a functional schema termimates or diverges (for everv interpretation).

Proof: The proof depends on the well-known results in Fommal Language Theory that it is decidable for any context~
free grammar whether or not all (rightmost) derivations are finite and whether or not all (rightmost) derivations
are infinite.

For this purpose we associate with every functional schema S_a_context-free grammar GS such that:
there is a one-to-one correspondence between the set of all computations of S for all Herbrand interpretations,

and the set of all (rightmost) derivations of Gs . Furthermore, a cauputation of S diverges if and only if the

corresponding derivation of GS is infinite.

Given a functional schema S with n predicates PpsPpre«sBp function variables {Fi} and function

constants {fi} , we define G5 as follows:

1. The non-terminals are of the form
[Vo Fio¥y) er{Fi] and w_,w eW ,
where W is the set of all strings of length n over -{T,F} . The intuitive meaning of [wb,Fk,wa] is that

it will generate all possible constant terms 7. such that %, is computed by S starting fram Fk(x) ’
under sane Herbrand interpretation for which the values of Pl""’pn for x are W and for T, are Wb .
In addition, we have a special initial non-terminal A .
2. The terminals are the function constants {fi} .
3. The productions are obtained from S as follows:
(1) A = [w,Fp,w,] for all wg,w e .
(ii) For every non-terminal [wb’Fk’"a] we add productions as follows:

Locate in definition of Fk that term which is selected by W, . Let the term be

am...a2a1

where each ai is either a function variable or a function constant. We construct all productions of
the form

[Py]+ bar i a0 GEATEMRNETODT0 e v, 0 o000 v
after replacing each [w,ai,w'] , where oti is a function constant, by ai .
In the special case where the tem is I , if A # ¥, We generate no production, whereas if Wy = W

we generate the single production

[wa’Fk’"a] - a (a is the empty word).

Finally, we go through Gs and repeatedly remove all productions containing some non-terminal which is not the
left-hand side of any production and all productions in which the non-terminal on the left-hand side cannot be
reached from A .

Gs now clearly has the required properties.

Q.E.D.

IV. Functional Schemas in Standard Form

We introduce now an interesting subclass of functional schemas which has a special syntactic form. This form
is relevant to our later discussion.

A functional schema S is said to be in standard form if
1. Every conditional term in S is of the form

if p'j then T else s

where 1‘1 and 1’2 are distinct (i.e., there are no 'redundant' tests) and each of 'rl and 1'2 is of one of
the following forms:

(a) a conditional term not containing pj (i.e., there are no 'redundant' terms),

(® F,

(e) I , or

(d) a term in which F does not occur and the rightmost symbol is a function constant.

2. Every definition in S (except for Fa) contains a conditional term.

3. No function variable in S always diverges (i.e., no matter which function variable in Z:s is taken as the

initial function, the schenas do not diverge), except for F_ and FO if FO <= F,

Note that our definition of standard form has the flavor of Greibach Normal Form in Formal Languages Theory.

'The interest in this form arises from the fact that every functional schema can be effectively transformed to an
equivalent functional schema in standard form. This is done-easily by first recognizing all 'divergent' function
variables (using the technique described in the previous section) and replacing all terms in which they occur by F_
Then we repeatedly replace every function variable occurring as the rightmost symbol of a term by its definition,

applying straightforward simplifications, as illustrated in Example} below.

Example 2: Bhe functienal schema 52 e
Fo <= if p then FOFlfl else f2
Fl <= if p then FlfS else T ,

is clearly in standard form.

Example 3: The functional schema S5 where

F, <= if p then f.F. else T

0 1l — "2
Fl <= if p then F 1 5 else fh
is not in standard form because of the term lel . This term can be removed by first replacing Fl in lel by

its definition to obtain:

F, <= if p then if p then fFf5 else ffl»

0
* f2 ,
and then simplifying it to

FO <= if p then lelfj else f2

Thus, we obtain the functional schema S'B , which is clearly in standard form and equivalent to S:5 :

F{ <= if p then £ F'f, else f,

0 113 — 2
F."L <= if p then Fl} else fh

rr— ¢ r [r-

r——

r—

V. Freedom or runctional ischnemas

A functional schema S is said to be free if for every Herbrand interpretation &% of s the camputation of

(S,8%) does not test 8 predicate with the same term (fram D*) more than once.

Examples :
1. The functional schema S1 (Example 1 above) is clearly free.

2. The functional schema 82 (Example 2 above) is not free, since there is 8Herbrand interpretation &% for

which the computation of (SE,J*) is of the form

(a) (v)
Fo(x) nd FO(Fl(fl(x))) - Fo(fl(x)) - fg(fl(x)) e .
Predicate p tests term fl(x) at both steps (8) and (b).
3. The functional schema S} (Example 3 above) is not free, since there is 8 Herbrand interpretation &* for

which the computation of (83",*) is of the form

(a (v)
Fo(x) had l(Fl(x)) - fl(Fl(fj(x))) ind b *

Predicate p tests term x at both step6 (a) and (b).

There is 8 crucial difference between the non-freedom demonstrated in the functional schema 52 and that of SB .
In Example> the non-freedom results from the substitutions at step (b) for the function varisble Fl which resulted
from the substitution at step (a). In Example 2 the non-freedau results from the substitution at step (b) for the
function variable FO which wes already present before step (8). Note that in this cese the function variable Fl
substituted for at step (8) produce6 the identity function. This will always be the case when non-freedom of the
second type occurs.

Functional schemas in standard form cannot have non-freedom of the first type but may have non-freedan of the
second type. Thus, by bringing a functional schema to standard form we elways eliminate any non-freedan of the first
type (but unfortunately preserving any non-freedom of the second type). Since the second type of non-freedan involves
the identity function, it follows that any functional schema not containing I can be made free by putting it into
standard form.

Although 8 large class of functional schemas containing I can still be translated to equivalent free functional

schemas, this cannot be done in general as follows from

THEOREM 2: The non-free schema Sh where

F, <= if p then F

o For else I

1

Fl<=gqthenfelse1 ’

has no equivalent free functional schema.

Proof: Consider the following two families {J:] and (}t};} , n > 1, of Herbrand interpretations, where

(X)) =T iff i<n

5%

q(fi(x)) =T iff i $n

p(ff(x)) = T iff i <n

=%

q(fi(x)) - T for all i

Note that two corresponding interpretations $* and M% differ by Only one value, that of q(fn(x)) . It is clear
that val(S,,8%) = P(x) and val(S,,M%) = £°(x) for all n >1 .
5

Suppose there exists 8 free functional schema G in standard form that'is equivalent to Sh . We shall derive
2

8 contradiction by showing that there exists 8 positive integer n for which vt;l(G,ﬂ*n VAL (x)
0 .

Let n be an arbitrary positive integer. If we apply interpretations J*n and w; to G we must reach in

both cases & term of the form an(tn(x)) , since for fi(x) +1<n, G cannot distinguish between & and ¥* .

Since for .9; this term must produce f£"(x) , it follows that every symbol in an is a function variable that

'collapses! to identity for predicate values determined by J;*l for the term fl(x) . Thus, since G is free and

no predicate in G can test under interpretation J*n the term fn(x) twice, the number of symbols in an can be
no more than the number of distinct predicate constants [P:i.] in G .
Therefore, there must exist two distinct positive integers nl and n, , my # By such that au_ is
1
identical to a. By definition of [)ﬁn] , the continuation of the computation of Ctn (f “(x)) under ¥* is
"2 1 "1
2n
identical to that of « (f"2 (x)) under an Therefore, since ny # n, , either _va_l(G,A(: YA T l(x) or
1
val(G,%) # £ 2(x) . Contradiction.
2 Q.E.D.

Despite the above result, we still have

THEOREM 5: It is decidable whether a functional schema is free or not.

Proof (sketch): The proof consists of showing that a functional schema S is non-free if and only if non-freedan

occurs in 8 canputation under sane Herbrand interpretation within a number K of steps, where K depends only on S

The decision method is then to explore all the different ways in which canputation can proceed for K steps under

any llerbrand interpretation. Since there are 8 finite number of such ways it is possible to decide whether or not

non-freedom will ever occur.

We can assume that no function variable in S is simply defined by the term I , since such function variables

cM be removed without affecting freedam in any way.

If non-freedom occurs it will be of the first or the second types. It can easily be shown that if non-freedan

of the second type is ever to occur in S , then for some Herbrand interpretation the functional schema must have a

subcanputation of the form
(a) (b)

- TF, F TR P P 1FJ eeoF - TF. T = «e. ,

eese T - . . .
Ip dpoy 91 m J2 ¢ In €

where Tc is a‘constant term and m < ntl (n is the number of distinct predicate constants in ES .) Non-freedom

occurs between steps (a) and (b), i.e., at (b) sane predicate constant is testing 'c which also tested ?c at

step (a). Note that Fj ""’FJ all must collapse to identity for e under this interpretation.
1

m-1

Let us assume that the earliest occurrence of non-freedam, in any computation, is of the second type, and

as above. If it takes J steps to get TFJ . j’F T then all
m 1

results from a computetion of <F, . ..F 7
Jm 'jl ¢
These initial computations therefore result from

computations of S are free for at least their first J steps.

all possible substitutions, analogously to the rightmost derivations of 8 grammar. We can use the following easily

proved result of Formal Language Theory to show that J is bounded.
In any context free grammer, let S ;Qa‘r be the shortest rightmost derivation of a sentential form containing
a giveh substring B (of terminals and non-terminals) of length m , with some terminal string on its right (i.e.,
18 a terminal string). ‘Then this derivation has no more than m IMN steps where:
I ls the number of non-terminals in G ,
M is the maximal number of non-terminals on the righthand side of any production of G , and
N is the upper bound on the minimum number of steps needed for each non-terminal of G to produce a terminal

string, if any; (i.e., every non-terminal of G can generate 8 terminal string, if at all, within N Steps).

Similarly defining L, M, and N for schema S gives us 8 bound on J depending only on S and M
Since m < ml we have a bound Kon the first occurrence of non-freedan if such an occurrence is of the second
type. It can be easily shown that any non-freedan of the first type must also be discovered within K steps, and
hence the method of exploring the initial segments of all possible cauputations can decide whether non-freedom

(of any type) is present.

VI. Tquivalence of Free Functional Schemas

THEOREM 4: It is decidable whether or not two free functional schemes are equivalent (for every interpretation).

Proof: Suppose we are given two free functional schemas S and S' . Since the translation of functional schema6
into standard form never introduces new non-freedom, we can assume without loss of generality that S and S' are
in standard form.

We construct 8 Deterministic Push-Down Automaton (DPDA) A , whose input tape is a representation of some Herbrand
interpretation and which simulates the canputation of S and S' under this interpretation. A accepts an input
tape if and only if S and S' are inequivalent under the corresponding interpretation. Since it is decidable
whether or not the language accepted by a DPDA is empty (see, for example, Hoperoft and Ullmen [1969]), it follows
that the equivalence problem for free functional schemas is decidable.

The construction of A makes use of sane ideas developed by Rosenkrantz and Stearns [1970] (see also Korenjak
and Hoperoft [1966]).

Suppose S and S' are n predicate constants PPy s sl - The input alphabet consists of words of length
n over {T,F}where we intend that when A reads such 8 word (input symbol), the i-th letter denotes the current
truth value of Py - This requires some more explanation.

Each step in the cctnputation sequence of 8 schema for sane interpretation # consists of taking the current

term, TFJTQ say, and substituting for F according to the truth values of the predicates applied to T -

J

Supposc this substitutes some term T'stk for F;] Then, at the next step, to substitute for F!J, we need only
know the truth values of the predicates applied to fk'rc , i.e., the current truth values. At each step we need

only know the current truth values, for example in this case the truth values of the predicates for fl‘rc , fl £t
will not affect the canputation in any way. Each interpretation, by specifying 8 cunputation, has a corresponding
sequence of n-tuples over {T,F} ; and vice-versa, each sequence of n-tuples over {T,F} , by specifying a computation,
gives the truth values of the predicates for certain constant terms and therefore indicate a set of interpretations,
all giving this computation. Hence we can represent interpretations by sequences of n-tuples over {T,F} , which is
what We use as input tapes to our automaton A .

To simulate the joint action of S and 8' for a given Herbrand interpretation, we let A have a_two-track
push-down stack. Each track will hold 8 modified version of the current term in the computation sequence of the
corresponding schema under the given interpretation.

The modification of the computation terms is such that if S and S' are equivalent, both tracks are of the
same length during corresponding cauputations of S and 8' . This enables us to put both tracks in a single
push-down stack. To understand this modification we introduce the notion of the *thickness' T(r) of a term 7

(that does not contain F@), namely the length of the shortest possible constant term computeble fran T for

some Herbrand interpretation. For free schemas, T(1112) = T('rl) + T('ra) , since no decision made while

computing T, may affect the freedam of choice in computing L The required modification of a term
to give its stack representation is to make T(Fi) copies of each function variable Fi . Thus the length of

stack representing term 7 is T(r) . Note that if the corresponding terms in the canputation of two equivalent

7

r
l
i
.
-

-

functional schemas are Ty and 7, 2)

erase a function variable Fi from such a stack, the automaton A will in fact erase T(Fi) copies of Fi , which

, then T(‘ll) =T ; so the modified terms have the required property. To
is 8 feasible action of a multi-state DPDA.

The only problem that may arise is that it is possible that T(Fi) = 0 , which is the CAS€ when the definition
of Fi contains I . In this case we would like to add Fi to the preceding stack position and hence not increase
the length of the stack. Note that if, for the next function variable FJ’ we have again T(Fj) =0 F, will
also be added to the same stack position; and so on. However, for free functional schemas the number of function
v-risbles we have to add to the same stack position will never exceed the number n of predicate symbolz. This is
because there can never be more than n successive function variables collapsing to I (otherwise some predicate
would be tested IIDI'C than once on the same term). We therefore can resolve the above difficulty by making each
position in & track wide enough to hold nt+l ordered symbols. Then symbols of thickness zero are written on the
preceding position, after the other symbols already residing there. In order to make no exception for the bottom
position of the stack, we may agree to test the equivalence of fFo and fF(') instead of FO and FE,

The behavior of the DPDA A is as follows.

For each input symbol, A simulates all the possible actions of S and S' . If the topmost letter of the
corresponding track is a function constant, no change is made. Otherwise, it MIS{ be a function variable Fi and
we modify the top of that track according to the term in the definition of Fi selected by the current input symbol.
These actions will terminate either with some new stack-trackwith a function constant at the top or F will be
encountered. The crucial point is that for free functional schemas in standard form, the variation that occurs during
these actions in the stack is bounded and can be temporarily remembered in 8 finite control until both operations
for S and B' are completed.

Before moving to the next input letter, A now proceeds 8s follows:

(1) If Fo is encountered for both tracks, we pass to a rejecting state, (i.e., S and S' are equivalent
under the given interpretation).
(11) If we encounter Fm for one track and not in the other, we pass to an accepting state (i.e., S and S'
are inequivalent for some Herbrand interpretation under which the other track goes to a constant term).
(iii) IT the two tracks are not of the same length, we pass to an accepting state (i.e., S and §' are inequivalent
for some Herbrand interpretation under which the shorter track produces its shortest constant term).
(iv) If the two function constants at the top of the two tracks are different, we pass to am accepting state.
(v) Otherwise, (i.e., ssme length tracks with the same topmost function constant) we remove the topmost letters.
If both stacks are still non-empty, we move to the next input symbol, otherwise both tracks are empty and we

pass to 8 rejecting state.

Thus the two given free functional schenas S and S' are equivalent if and only if the DPDA A accepts no
input tapes, which is a known decidable problem.

Q0.E.D.

Example h: Consider the following two free functional schemas:

39: Fo <= 1‘51"‘317‘11'2

Fl <= if Py then Flr2 else T

F, <= if p, then F2f2 else T

F} <= if p, then F3F1f2 elge T

Fh <= if 12y then FhFefe else f5

vt % g

and Fl, F2 ’ F3 and Fh are as in §

5

Here,

’

T(Fl) = T(F2) - T(FB) =0, ™MF) =1, and T(F,) = T(rc',) =2

This implies, for example, that the terms FF.f, , FhFafz and 1’3F5F11‘.‘2 would be stacked, respectively, as

follows:

2 2
F, FF, £575F,
e

o

We illustrate now the behavior of the DPDA A simulating the joint operation of S_. and 86 for any input

5
tape starting with (T,T) , (F,F) , (T,T) , -.s .
input (T, T) remove f2
—_— f.F.F. | FF
(2) B) e
input (F,F) re'nove f 1nput (T,T) fecti
— 5 g J — Sl
(3) (’*) (5) (6)
f f

Since the input element indicates that both Py and p, are false at step (3), we have by definition that
Fl = F2 = F5 = I and Fh = f3 . Therefore both terms f31~“31~“1 and Fth reduce to f3' Note that we shall get
the same sequence of stacks for any input tape for which the second element is (F,F)

Acknowledgment: We are indebted to Mike Paterson for his critical reading of the manuscript and subsequent helpful

suggestions. Mike proved independently that the equivalence problem is decidable for the class of all schemas

without I .

References
J. W. De-Bakker and D. Scott [1969]. A Theory of Programs. Unpublished memo.

J. E. Hoperoft and J. D. Ullmen [1969]. Formal Lanquages and Their Relation to Automata. Addison-lWesley.

Y. I. Ianov [1960). "The Logical Schemes of Algorithms". In Problems in Cybernetics, Vol. 1, Pergamon Press,
New York, pp. 82-1%0.

A. J. Korenjak and J. E. Hopcroft[1966]. Simple Deterministic Languages, IEEE 7th Annual Symposium on Switching
and Automata Theory. pp. 36-46.

D. C. Luckham, D. M. R. Park and M. S. Paterson [1970]. "On Formalized Computer Programs". Journal of Computer
and System Sciences, Vol. 4 pp. 220-2k9.

J. McCarthy [1963]. "A Basis for a Mathematical Theory of Computation". In Computer Programming and Formal Systems,
North-Holland, Amsterdam, pp. 33-70.

D. J. Rosenkrantz and R. E. Stearns [1970]. "Properties of Deterministic Top-Down Grammars". Information and
Control 17, pp. 226-256.

J. D. Rutledge {1964]. "On Ianov's Program Schemata". J. ACM 11, 1, pp. 1l-g.

9

