
STANFORD ARTIFICIAL INTELLIGENCE PROJECT .

MEMO AIM-148

COMPUTER SCIENCE DEPARTMENT

REPORT NO. CS-217

DECIDABLE PROPERTIES OFMONADIC FUNCTIONAL SCHEMAS

BY

EDWARD ASHCROFT

ZOHAR MANNA

AMIR PNEULI

JULY 1971

COMPUTER SCIENCE DEPARTMENT .

STANFORD UNIVERSITY

Pec TL
is) a Yel

5 Banizep

18 MEMO AIM-148

& DECI DABLEPROPERTI ES OFMONADI C FUNCTI ONALSCHEMAS

| EDWARD ASHCROFT ZOHAR MANNA AMTR PNUELI
re Computer Science Dept. Computer Science Dept. Applied Mathematics Dept.
2 University of Waterloo Stanford University Weizmann Institute

Waterloo, Canada Stanford, California Rehovot, Isr=2l

uN Abstract: We define a class of (monadic) functional schemas which
properly includes 'Ianov' flowchart schemas. We show that the

Sa termination, divergence and freedom problems for functional

a schemas are decidable. Although it is possible to translate a

| — large class of non-free functional schemas into equivalent free

3 functional schemas,we show that this cannot be done in general.

oo We show also that the equivalence problem for free functional

schemas is decidable. Most of the results are obtained from

: well-known results in Formal Languages and Automata Theory.

|—-

a.

The views and conclusions contained in this document are those of the

| authors and should not be interpreted as necessarily representing the

_ official policies, either expressed or implied, of the Advanced Research
Projects Agency or the U. S. Government.

The research reported here was supported in part by the Advanced Research

| Projects Agency of the Office of the Secretary of Defense (SD-183).
A preliminary version of this paper was presented at the International
Symposium on the Theory of Machines and Computation(Haifa, Israel),

— August 1971.

Reproduced in the USA. Available from the Clearinghouse for Federal
Scientific and Technical Information, Springfield, Virginia 22151.

~ Price: full size copy, $3.00; microfiche copy, $.95.

= i

Lo

EL DECI DABLE PROPERTIES OFMONADI C FUNCIT ONALSCHEMAS
-

] EDWARD ASHCROFT ZOHAR MANNA AMIR PNUELI
gE Computer Science Dept. Computer Science Dept. Applied Mathematics Dept.
yo University of Waterloo Stanford University Weizmann Institute
3 Waterloo, Canada Stanford, California Rehovot, Israel

| I. Monadic Functional Schemas

—— An Lgphabet of a (monadic) functional schema S consists of one individual variable x , a finite set of

: moaedie function variables (r,} (with a designated initial function variable Fo) , a finite set of monadic fnrtie.

constants {,] , and a finite set of monadic predicate constants fr, } . Note that individual constants are not
1 allowed.

A term over pI is any term in the normal sense constructed from the monadic function variables {r;} , monadic

.“ function constants {£,} and the variable x , e.g., £, (F5 (Fo (£,(x) A condi)Jonal term over Iq is any finite
expression of the form

if p, (x) then Ty else To

: where Py 1s any predicate constant of Lg , and T, and 7, are any terms or conditional terms over Lg .

A definition of Fi gover LZ is of the form

FT F, (x) <= 1,

where T 1s any term or conditional term over Zo . A (monadic) functional schema S (over an alphabet Lg)

— consists of a finite set of definitions over Eq , one for each function variable Fi in Eq . Whenever the special

] function variable EF. is used, its definition is considered to be F (x) <= F_(x) . This definition is usually

» omitted.

=.

: Example 1: Let us consider the functional schema Sy :

| Fox) <= if p, (x) then if p, (x) then F, (x) else F,(£,(x))
— else x

u F(x) <= if Px (%) then Fo(£,(x)) else £, (x) .

— Since we are using a very restricted alphabet, parentheses and the individual variable x may be omitted without

causing any confusion. Therefore the functional schema 5) can be rewritten as:

| Fy <= if 12 then if Py then Felse Ff
= else I

| Fy <= if p then Foto else £, ,
N */— where I stands for the 'identity function’.

An interpretation 4 of a functional schema S consists of:

1. a non-empty set of elements D (called the domain),

= 2. an element £, of D used as the initial value of x , and
: Se assignments to the constants of Lg :

_ (1) a total monadic function (from D into D) for each function constant f, » and

(11) a total monadic predicate (from » imto {T,F}) for each predicate constant py -

- ——————————————————————————
It 1s worth noting that most of the results in this paper would be trivial if we did not allow the 'identity
function’.

|:

1

|
-

3 = For a given interpretation § , the pair (S,d) , called a functional program, can be computed by evaluating

3 be Fy with input &; in the usual way (see McCarthy [1963]). The canputation either (i) terminates yielding an
- element of D denoted by val(S8,8) , or (ii) diverges (i.e., does not terminate) in which case val(8,d) is said

| _ to be undefined. The method of canputation is described more fully later for special types of interpretations
5 called 'Herbrand interpretations’.
i A functional schema S is said to terminate/diverge if for every interpretation 4 , val(S,d) is

~~ defined/undefined. Two functional schemas Sy and Sy are said to be equivalent if for every interpretation 4

| either both val(8,,8) and val(s,,d) are undefined or both are defined and val(8;,8) = val(s,,d) .

; _ The same class of functional schemas has been discussed by DeBakker and Scott [1969].
: It 1s straightforward to show that every functional schema in which any term contains at most one function
| variable, occurring on the left-hand side of the term (as in Example 1 above), can be translated to an equivalent

. 'Ianov' flowchart schema (Ianov [1960], see also Rutledge [1964]). However, such simple functional schemas as

| Fy <= if p then I else 5,Foto

have no equivalent Isnov flowchart schema. Hence, the results in this paper generalize known results about Ianov

3 flowchart schemas.

] oe II. Herbrand Interpretations
A Herbrand interpretation & of a functional schema S consists of:

| 1. The domain D¥ which is the set of all expressions "r," , where 1, is a constant term constructed from the BN

= individual variable x and the function constants f; of Lg , e.g., "x", "(x)" , "£, (fy (x))" ;
! | 2. The expression "x"eD* used as the intial value of x ;

_ 3. Assignments to the constants of Iq :

(1) For every function constant fy in Ig , We assign the total function mapping every expression

| "To €D¥ into the expression "f,(1,)"eD¥ ,

a (11) For every predicate constant Py in Zg , We assign sane total predicate over D* , 1i.e., for every
: "Tr," eD¥ the value of p; ("1") is either T or F .

Cw Note that all Herbrand interpretations of a given functional schema differ only in the assignments to the predicate

constants. Henceforth we omit the quotation marks whenever this causes no confusion.

| The computation of (S,8%) is best described by a (finite or infinite) sequence of terms a, . The first
: he term @, of the sequence is Fo(x) . In general, suppose a (n > 0) contains the sub-term F, (€) where EeD¥ ,

l.e., Fy is the right-most function variable in a . Then @ 1s obtained by substituting a term 7 for

| - Fy (¢) where T is obtained as follows. First x is replaced by ¢ in the definition of Fy , and then the

! term T is chosen fran this definition using the values of py(¢) supplied by the interpretation of the predicate

constants Pj . The canputation terminates as soon as we reach a constant term Te . Then val(s, 5%) = Te .
Ce Herbrand interpretations are important because many properties of functional schemas can be described and proved

| just by considering Herbrand interpretations rather than all interpretations. For example,

| (1) a functional schema terminates/diverges (under every interpretation) if snd only if it terminates/diverges
oT under every Herbrand interpretation;

) (ii) two functional schemas are equivalent (under every interpretation) if and only if they are equivalent under
i

{ every Herbrand interpretation.

| % Herbrand interpretations are identical to the ‘free interpretations' of Imckham, Park and Paterson [1970].

-—

| 2

i-

{

3 — III. Termination and Divergence of Functional Schemas

2 We show that

= THECREM 1. It is decidable whether or not a functional schemas temmimates or diverges (for every interpretation).

1 Proof: The proof depends on the well-known results in Formal Language Theory that it is decidable for any contexte

| free grammar whether or not all (rightmost) derivations are finite and whether or not all (rightmost) derivations

| are infinite.

: For this purpose we associate with every functional schema S_a context-free grammar Gg such that:

— there is a one-to-one correspondence between the set of all computations of § for all Herbrand interpretations,

and the set of all (rightmost) derivations of Gg . Furthermore, a cauputation of S diverges if and only if the

corresponding derivation of Gg is infinite.

3 Given a functional schema S with n predicates 17) ZYETET) function variables {F,} and function

constants {f,] , we define Gg as follows:

1. The non-terminals are of the form

(Wo Fa,] Fefr,] and w_,WeW ,

EL — where W is the set of all strings of length n over _{T,F} . The intuitive meaning of [Ws F sw,] is that

: it will generate all possible constant terms T. such that %, is computed by S starting fram F(x) ,

| under sane Herbrand interpretation for which the values of PyseeesPy for x are LA and for T. are Wy .
Cm

In addition, we have a special initial non-terminal A .

s 2. The terminals are the function constants {£,} :
 e— 3. The productions are obtained from S as follows:

: (1) A = [w,Fpw.1 for all w,,weW .

(11) For every non-terminal [ws Fw, | we add productions as follows:
|SU

Locate in definition of Fe that term which is selected by Ww, . Let the term be
b

® Co. Gy a

| ha where each a, is either a function variable or a function constant. We construct all productions of
} the form
i AN AN
] [w, oF ,w 1 « [we Jv 0 wl 4 ' Ur AD 0000052 000744500 where w., Wy. @ ereQ40 evb""k’ "a Yn nel” nel med me? 172

| after replacing each [yc , Ww"] , Where a is a function constant, by a .
: In the special case where the tem is I , if LA # w, we generate no production, whereas 1if Vg = W,

Thal we generate the single production

| (w Flow,] —- a (» is the empty word).

— Finally, we go through Gg and repeatedly remove all productions containing some non-terminal which is not the

left-hand side of any production and all productions in which the non-terminal on the left-hand side cannot be
f

reached from A .

Gg now clearly has the required properties.

Q.E.D.

¥

i
—

.“

5

3 IV. Functional Schemas in Standard Form

We introduce now an interesting subclass of functional schemas which has a special syntactic form. This form
=
1 is relevant to our later discussion.

] A functional schema S is said to be in standard form if

|. 1. Every conditional term in S is of the form

3 if Py then 7, else 7,

i where 7 and Ts are distinct (i.e., there are no 'redundant' tests) and each of Ty and Ts is of one of
1 the following forms:

1 (a) a conditional term not containing Pj (i.e., there are no 'redundant' terms),
| (®) F,

: (¢) I, or

3 (d) a term in which F_ does not occur and the rightmost symbol is a function constant.

2. Every definition in S (except for Fo) contains a conditional term.

5 3. No function variable in S always diverges (i.e., no matter which function variable in Ig is taken as the

initial function, the schenas do not diverge), except for F_ and Fy if Fo =F, .

Note that our definition of standard form has the flavor of Greibach Normal Form in Formal Languages Theory.

I 'The interest in this form arises from the fact that every functional schema can be effectively transformed to an

equivalent functional schema in standard form. This is done-easily by first recognizing all 'divergent' function

J variables (using the technique described in the previous section) and replacing all terms in which they occur by F_ .

A Then we repeatedly replace every function variable occurring as the rightmost symbol of a term by its definition,

applying straightforward simplifications, as illustrated in Example below.

f Example 2: Fhe functienal schema S$, e

Fy <= if p then FoF1fy else £5

F| <= if p then Ff; else I,

] is clearly in standard form.

: Example 3: The functional schema S3 where

F, <= if p then fF, else 1,

F <= if p then F,f5 else fy,

is not in standard form because of the term £7 . This term can be removed by first replacing F, in £1F, by

its definition to obtain:

4 Fy <= if p then if p then fF 5s else £55),
{ *

| £,

and then simplifying it to

| Fo <= if p then fF 5 else £5 :

Thus, we obtain the functional schema 83 , which is clearly in standard form and equivalent to 5; :
t <= i '

Fl <= if p then £5115 else 9

1 = t

Fl <= if p then Fits else f)

y-

ps Vv. Freedom or runctional Schemas

3 A functional schema S is said to be free if for every Herbrand interpretation &#* of s the computation of
(S,8%) does not test 8 predicate with the same term (from D*) more than once.

Examples :

1. The functional schema S1 (Example 1 above) is clearly free.

2. The functional schema S, (Example 2 above) is not free, since there is 8Herbrand interpretation &*% for

which the computation of (850%) is of the form

(a) (b)

Fox) = Fo(Fy(£y(x)) = Fo(£y(x) = £(£(x) wor

Predicate p tests term f£, (x) at both steps (8) and (Db).

3. The functional schema 8 (Example3 above) is not free, since there is 8 Herbrand interpretation &* for

which the computation of (85 3%) is of the form
(a) (b)

Fox) = £(F (x) = (F855) +

Predicate p tests term x at both step6 (a) and (b).

There is 8 crucial difference between the non-freedom demonstrated in the functional schema Sy and that of Ss .

In Example3 the non-freedom results from the substitutions at step (b) for the function variable Fy which resulted

: from the substitution at step (a). In Example 2 the non-freedau results from the substitution at step (b) for the
: function variable Fs which wes already present before step (8). Note that in this case the function variable F,
= substituted for at step (8) produce6 the identity function. This will always be the case when non-freedom of the

] second type occurs.
“ Functional schemas in standard form cannot have non-freedom of the first type but may have non-freedan of the

second type. Thus, by bringing a functional schema to standard form we always eliminate any non-freedan of the first
f

; type (but unfortunately preserving any non-freedam of the second type). Since the second type of non-freedan involves

~ the identity function, it follows that any functional schema not containing I can be made free by putting it into

{ standard form.

L Although 8 large class of functional schemas containing I can still be translated to equivalent free functional
schemas, this cannot be done in general as follows from

{

L THEOREM 2: The non-free schema 8), where
Fy <= if p then FFE else I

Fy <= if q then f else I ,
}

— has no equivalent free functional schema.

Proof: Consider the following two families {$*} and {#*} , n > 1, of Herbrand interpretations, where
-

p(f(x)) = T iff i<n

a(f (x)) = T iff i $n
-

| p(£*(x)) = T iff 1 <n

: Q(f (x)) = T for all i .

Note that two corresponding interpretations Jt and M* differ by Only one value, that of q(£(x)) . It is clear

i that val(S),d%) = P(x) and val(S§,,¥*) = (x) for all n >1 .
p

Suppose there exists 8free functional schema G in standard form that 'is equivalent to S), . We shall derive

8 contradiction by showing that there exists 8 positive integer n, for which rel(GA]) # £0 .
Let n be an arbitrary positive integer. If we apply interpretations Sk and wx to G we must reach in

both cases & term of the form a (£(x)) , since for £1 (x) , 1 <n, G cannot distinguish between S* and M* .
Since for Cul this term must produce £f"(x) , it follows that every symbol in a is a function variable that

collapses! to identity for predicate values determined by $* for the term (x) . Thus, since G is free and

no predicate in G can test under interpretation 3k the term (x) twice, the number of symbols in a can be

no more than the number of distinct predicate constants {py} in G6.

Therefore, there must exist two distinct positive integers nl and n, , ny # Ry such that “0, 1s
identical toe By definition of {vx} , the continuation of the computation of ot, (Fo) under Mo is
identical to that of «& (£2 (x) under #% . Therefore, since n; # n, , either val(G,w*) £ BF or

on To no "1
val(Gw*) # f 2(x) . Contradiction.

2 Q.E.D.

Despite the above result, we still have

THEOREM 5: It is decidable whether a functional schema is free or not.

Proof (sketch): The proof consists of showing that a functional schema S is non-free if and only if non-freedan

occurs in § canputation under sane Herbrand interpretation within a number K of steps, where K depends only on S

The decision method is then to explore all the different ways in which canputation can proceed for K steps under

any llerbrand interpretation. Since there are 8 finite number of such ways it is possible to decide whether or not

non-freedom will ever occur.

We can assume that no function variable in S is simply defined by the term I , since such function variables

cM be removed without affecting freedom in any way.

If non-freedom occurs it will be of the first or the second types. It can easily be shown that if non-freedan

of the second type is ever to occur in S , then for some Herbrand interpretation the functional schema must have a

subcanputation of the form

(a) (b)

cer Fy Fy iFae — Fy oeeFy Te - . . . = Fs Te “+ eee,

where Te is a‘constant term and m < ntl (n 1s the number of distinct predicate constants in Iq .}) Non-freedom

occurs between steps (a) amd (b), i.e., at (b) sane predicate constant is testing Te which also tested To at

step (a). Note that Fi all must collapse to identity for Te under this interpretation.
Let us assume that the earliest occurrence of non-freedom, in any computation, is of the second type, and

results from a computation of Fe 5 Te as above, If it takes J steps to get Fy 3" To then all
computations of S are free for at least their first J steps. These initial computations therefore result from

all possible substitutions, analogously to the rightmost derivations of 8 grammar. We can use the following easily

proved result of Formal Language Theory to show that J is bounded.

In any context free grammar, let S 2 ogy be the shortest rightmost derivation of a sentential form containing

a given substring 8 (of terminals and non-terminals) of length m , with some terminal string on its right (i.e.,

ls a terminal string). ‘Then this derivation has no more than m IMN steps where:

I. 18 the number of non-terminals in G ,

M is the maximal number of non-terminals on the righthand side of any production of G , and

N is the upper bound on the minimum number of steps needed for each non-terminal of G to produce a terminal

string, if any; (i.e., every non-terminal of G can generate 8 terminal string, if at all, within N Steps).

Similarly defining L, M, and@ N for schema S gives us 8 bound on J depending only on S and M .

Since m < ml we have a bound K on the first occurrence of non-freedan if such an occurrence is of the second

type. It can be easily shown that any non-freedan of the first type must also be discovered within K steps, and

| hence the method of exploring the initial segments of 8&ll possible cauputations can decide whether non-freedom

(of any type) 1s present.

Q.E.D.

VI. YSquivalence of Free Functional Schemas

THEOREM 4: It is decidable whether or not two free functional schemas are equivalent (for every interpretation).

Proof: Suppose we are given two free functional schemas S and S' . Since the translation of functional schemab

into standard form never introduces new non-freedom, we can assume without loss of generality that S and S' are

in standard form.

We construct 8 Deterministic Push-Down Automaton (DPDA) A , whose input tape is a representation of some Herbrand

interpretation and which simulates the canputation of S and S' under this interpretation. A accepts an input

tape if and only if S and 8' are inequivalent under the corresponding interpretation. Since it is decidable

whether or not the language accepted by a DPDA is empty (see, for example, Hoperoft and Ullman [1969]), it follows

that the equivalence problem for free functional schemas is decidable.

The construction of A makes use of sane ideas developed by Rosenkrantz and Stearns [1970] (see also Korenjak

and Hopcroft [1966]).

Suppose S and S' are n predicate constants P1sPpser sD, - The input alphabet consists of words of length

n over {T,F} where we intend that when A reeds such 8 word (input symbol), the i-th letter denotes the current

truth value of p - This requires some more explanation.

Each step in the cctnputation sequence of 8 schema for sane interpretation 8 consists of taking the current

term, TFT. say, and substituting for Fj according to the truth values of the predicates applied to LI

Suppose this substitutes some term TRI for Fy Then, at the next step, to substitute for Fe , we need only

know the truth values of the predicates applied to £7 , 1l.e., the current truth values. At each step we need

only know the current truth values, for exemple in this case the truth values of the predicates for £7. , £, # fy ,

will not affect the canputation in any way. Each interpretation, by specifying 8 cunputation, has a corresponding

sequence of n-tuples over {T,F} ; and vice-versa, each sequence of n-tuples over {T,F} , by specifying a computation,

gives the truth values of the predicates for certain constant terms and therefore indicate a set of interpretations,

all giving this computation. Hence we can represent interpretations by sequences of n-tuples over {T,F} , which is

what We use a8 input tapes to our automaton A .

To simulate the joint action of S and 8* for a given Herbrand interpretation, we let A have a two-track

push-down stack. Each track will hold 8 modified version of the current term in the computation sequence of the

corresponding schema under the given interpretation.

The modification of the computation terms is such that if S and S' are equivalent, both tracks are of the

same length during corresponding cauputations of S and 8' . This enables us to put both tracks in a single

push-down stack. To understand this modification we introduce the notion of the *thickness' T(r) of a term 7

(that does not contain F), namely the length of the shortest possible constant term computable fran 7 for

— some Herbrand interpretation. For free schemas, T(7,7,) = T(t) + T(v,) , since no decision made while
computing T, may affect the freedom of choice in computing Ty The required modification of a term

to give its stack representation is to make T(F,) copies of each function variable Fr . Thus the length of
stack representing term * is T(r) . Note that if the corresponding terms in the canputation of two equivalent

7

8 functional schemas are LA and Ty then ?(z,) = T(r.) i so the modified terms have the required property. Toi. erase a function variable Fa from such a stack, the automaton A will in fact erase T(F,) copies of F. , which
, is 8 feasible action of a multi-state DPDA.
§

_ The only problem that may arise is that it is possible that T(F,) = 0 , which is the CAS€ when the definition
of Fy contains I . In this case we would like to add F to the preceding stack position and hence not increase

the length of the stack. Note that if, for the next function variable F. , we have again T(F,) = 0 F, will
_ also be added to the same stack position; and so on. However, for free functional schemas the number of function

v-rirbles we have to add to the same stack position will never exceed the number n of predicate symbols. This is

| because there can never be more than n successive function variables collapsing to I (otherwise some predicate

— would be tested NDIC than once on the same term). We therefore can resolve the above difficulty by making each

position in & track wide enough to hold n+l ordered symbols. Then symbols of thickness zero are written on the

o preceding position, after the other symbols already residing there. In order to make no exception for the bottom

position of the stack, we may agree to test the equivalence of iF, and fF) instead of Fy and FE, .

| The behavior of the DPDA A is as follows.

- For each input symbol, A simulates all the possible actions of S and S' . If the topmost letter of the

: corresponding track is a function constant, no change is made. Otherwise, it NMUSt be a function variable F. and

_ we modify the top of that track according to the term in the definition of F, selected by the current input symbol.
These actions will terminate either with some new stack-trackwith a function constant at the top or F will be

encountered. The crucial point is that for free functional schemas in standard form, the variation that occurs during

— these actions in the stack is bounded and can be temporarily remembered in 8 finite control until both operations

for S and 8' are completed.

: Before moving to the next input letter, A now proceeds 8s follows:
=~ (1) If F_ is encountered for both tracks, we pass to a rejecting state, (i.e., S and S' are equivalent

under the given interpretation).

_ (11) If we encounter F for one track and not in the other, we pass to an accepting state (i.e., S and S'
are inequivalent for some Herbrand interpretation under which the other track goes to a constant term).

(iii) II the two tracks are not of the same length, we pass to an accepting state (i.e., S and 8' are inequivalent

~ for some Herbrand interpretation under which the shorter track produces its shortest constant term).

, (iv) If the two function constants at the top of the two tracks are different, we pass to an accepting state.

(v) Otherwise, (i.e., ssme length tracks with the same topmost function constant) we remove the topmost letters.

If both stacks are still non-empty, we move to the next input symbol, otherwise both tracks are empty and we

. pass to 8 rejecting state.
-—

Thus the two given free functional schenas S and S' are equivalent if and only if the DPDA A accepts no

input tapes, which is a known decidable problem.

Example kh: Consider the following two free functional schemas:

~ si Fy <0 IEE,

F, <= if p, then F.f, else I

o F, <= if p, then Ff, else I

Fs <= if Py then FF, 1, else I

|. F), <= if p, then FF.I, else fs
8

hh

”» ng £5 ST Foro

a and F, » Fs , Fy and F), are as 1n Sg .
Here,

| T(F,) = T(F,) = (Fy) = 0, T(F,) = 1 , end T(Fy) = (FY) = 2 ,

3 This implies, for example, that the terms FF.f, , FF 1, and fF, I, would be stacked, respectively, as
- follows:

i _ £5 £, f,

5 Fy, FF, £5F:F,

F

: Fs

ow We illustrate now the behavior of the DPDA A simulating the joint operation of Sc and Sg for any input
[tape starting with (T,T) , (F,F) , (T,T) , es .

; |

9. Fo | Fo £2 |
input (T,T) remove f,

1]

Fy Fo — £3F5Fy FF, tly LFF) FF,
(2) (2)

» £ | f f £ f f

= (5) (8) (5) (6)

f f f if

~ Since the input element indicates that both P; and p, are false at step (3), we have by definition that

Fy = F, = Fs = I and Fy, = £, . Therefore both terms £FSE and FF, reduce to £3, Note that we shall get
the same sequence of stacks for any input tape for which the second element is (F,F) .

|“—_—

Acknowledgment: We are indebted to Mike Paterson for his critical reading of the manuscript and subsequent helpful

_ suggestions. Mike proved independently that the equivalence problem is decidable for the class of all schemas

without I .

—

References

B J. W. De-Bakker and D. Scott [1969]. A Theory of Programs. Unpublished memo.
-

J. E. Hoperoft and J. D. Ullman [1969]. Formal Languages and Their Relation to Automata. Addison-Wesley.

Y. I. Ianov [1960]. "The Logical Schemes of Algorithms". In Problems in Cybernetics, Vol. 1, Pergamon Press,

- New York, pp. 82-1ko.

A. J. Korenjak and J. E. Hopcroft[1966]. Simple Deterministic Languages, IEEE 7th Annual Symposium on Switching

and Automata Theory. pp. 36-46.

- D, C. Luckham, D. M. R. Park and M. S. Paterson [1970]. "On Formalized Computer Programs". Journal of Computer

and System Sciences, Vol. 4, pp. 220-249.

J. McCarthy [1963]. "A Basis for a Mathematical Theory of Computation". In Computer Programming and Formal Systems,

_ North-Holland, Amsterdam, pp. 33-70.

D. J. Rosenkrantz and R. E. Stearns [1970], "Properties of Deterministic Top-Down Grammars”. Information and

Control 17, pp. 226-256.

~~ J. D. Rutledge [1964]. "On Ianov's Program Schemata". J. ACM 11, 1, pp. 1-g.

9

