THE SWITCHYARD PROBLEM
SORTING USING NETWORKS OF- QUEUES' AND STACKS

BY
ROBERTTARJ AN

STAN- CS-71-213
APRIL, 1971

COMPUTER SCIENCE DEPARTMENT

School of Humanities and' Sciences

STANFORD UN VERSITY

e
-,/'(;3\) "“O_') e
. (L,\"/ Lon \.\‘ RN

"\ A . "4"
5 - P
al o)
S
. \
-

THE SWITCHYARD PROBLEM:

SORTING USING NETWORKS OF QUEUES AND STACKS

Robert Tarjan
Computer Science Department

Stanford University

'Abstract

The problem of sorting a sequence of numbers using a network
of queues and stacks is presented. A characterization of sequences
sortable using parallel queues is given, and partial characterizations

of sequences sortable using parallel stacks and networks of queues

are given.

Keywords and Phrases: Sorting, network, queue, stack.

This research was supported by the Hertz Foundation and the
National Science Foundation (GJ-992).

The Switchyard Problem:

Sorting Using Networks of Queues and Stacks

Inspired by Knuth [2], p. 234, we wish to consider the following
problem: suppose we are presented with the layout of a railroad
switchyard [Figure 1]. If a train is driven into one end of the yard,
what rearrangements of the cars may be made before the train comes out

the other end?

'n_ e

[—

e
el
[maney
P —-

et

H & (train)

(rearranged
train) T

1131 m 3] \rm] Tt

Figure 1: A railroad switchyard. What rearrangements are possible'?

In order to get a handle on the problem, we must introduce some
formalization. A switchyard is an acyclic directed graph, with a unique
source and a unique sink. Each vertex represents a siding. The
vertex/siding is assumed to have indefinite storage space and may be a
stack, a queue, or a deque of some sort (see Knuth [2] p. 234). A stack
is a siding which has the property that the last element inserted is the
first to be removed. A queue has the property that the first element
inserted is the first to be removed. 1In the switchyard, the sidings

associated with the source and sink are assumed to be queues.

Figure 2: Abstract representation of switchyard in Figure 1.

The vertices are queues.

Suppose a finite sequence of numbers s = (31’82""’Sn) is placed
in the source queue of a switchyard. We may rearrange S by moving the
elements of s through the switchyard. At each step, an element is moved
from some siding to another siding along an arc of the switchyard. After
a suitable number of such moves, all elements will be in the sink queue.
If they are in order, smallest to largest, we have sorted the sequence
s using the switchyard. We wish to analyze the sequences s which may

be sorted in a switchyard Y

?
123456 &= Q Q ¢— 56132k

Q

Figure 3: Can (561324) be sorted through the switchyard above?

We lose nothing in our formalism by allowing storage only on the

vertices, and not on the arcs of the switchyard. We ignore questions

concerning the finite size of the sidings; assuming small sidings
complicates the problem considerably. A circuit in the switchyard will
allow us to sort any sequence; thus we do not allow circuits. Having
established our model, we proceed to discover its properties.

Notice that no fixed switchyard is sufficient to sort all sequences.

This may be proved very easily.

Lemma 1: Let Y be a switchyard. Then there are an infinite number

of sequences which Y will not sort.

Proof. Consider moving a sequence s of length ! through ¥ . If Y
has v vertices, then at any step there are at most v-1 possible moves.
After at most vf moves, all elements of s must have reached the sink
queue. Thus there are at most (v—l)vz possible move sequences. However,
there are &! possible permutations of the numbers 1,2,...,£ , and

for large ¢ , % > (v-l)vz . Thus for large ! , same permutations

of length I are unsortable.

Lemma 1 gives a very crude upper bound on the size of the smallest
sequence unsortable in a given switchyard Y . We will be able to compute
the length of the smallest unsortable sequence exactly for certain switch-
yards. Let us characterize the sequences sortable in some simple
switchyards.

A parallel network of m queues is a switchyard with a source

queue, a sink queue, and m queues. An arc connects the source queue
to each of the m queues, and an arc connects each of the m queues

to the sink queue. A parallel network of m stacks is identical to a

3

parallel network of m queues except each of the m queues is replaced

by a stack.

Figure 4: A parallel network of four stacks.

Consider any sequence of numbers s . Let the length of the
longest strictly increasing subsequence of s be i(s) . Let the

length of the longest strictly decreasing subsequence of s be d(s)

Lemma 2: Let Y be a parallel network of m queues. Let s be a

sequence of numbers. Then s is sortable in Y if and only if

d(s) <m .
Proof. If d(s) >m , then in any movement of s through Y , there
must be two elements h and Sj of s such that i < 3, Ss > Sj 5

and S and sj both pass through the same one of the m queues. But
in this case, 5. and Sj will be out of order in the sink queue.
Thus if d(s) > m , s 1s unsortable in Y
To prove the converse, we use an algorithm to find the
longest decreasing subsequence of a sequence [4]. This algorithm
will give us a sorting procedure using m queues, where

m = d(s) . Imagine the sequence s to be sitting in the

source queue. First we move all elements to the parallel queues. Number
the parallel queues from 1 to m . Put the first element of the sequence
in queue 1 . At the i-th step, put the i-th element S, of the sequence s
in the first compatible queue; that is, in the first queue such that the
last element g in this queue satisfies 55 >4q . After all elements

are inserted into queues, exactly m queues will contain numbers and

the numbers in each queue will be in order. Move the numbers to the sink
queue, smallest first, largest last. This completes the sort. We leave

it to the reader to verify this procedure.

Lemma3: Let Y be a parallel network of m stacks. Let s be a

sequence of numbers. Suppose we wish to sort s by first inserting all

the elements of s into the parallel stacks and then moving all the
elements into the sink queue. s 1is sortable in this way if and only

if i(s) <m

Proof. We may prove Lemma > in the same way as Lemma 2; a similar

algorithm gives a sort if one exists.

Corollary: Let Y be a parallel network of m stacks. Let s be
a sequence of numbers, such that the last element s. is the smallest

element of s . Then s is sortable in Y if and only if i(s) < m .

Corollary: Let Y be a parallel network of m stacks. Then the

shortest sequence unsortable in Y is of length mt2 .

A pattefn is at finite permutation m= (pi,...epk) g e r s
1,2,...,k . Let s be a sequence of numbers. We say that s contains
the pattern p if there is a 1-1 mapping $ of p into s such that
if f(p,) = s

Pi <P,j if and only if S5t <s_3, . As an example, the sequence (561324)

it a.nd¢(pj) =S5 s i<j implies i' < j' and
contains the pattern (312) in ten different ways. Using the notion of a

pattern, we may cast Lemma 2 and Lemma 3 into a new form.

Lemma 2%: Let Y be a parallel network of m queues. Let s be a
sequence of numbers. Then s is sortable in Y if and only if s does

not contain the pattern (m,m-l,...,1) .

Lemma J¥: Let Y be a parallel network of m stacks. Let s be
a sequence of numbers. Then s is sortable in Y using complete
insertion into the parallel stacks followed by complete deletion if and

only if s does not contain the pattern (1,2,...,m+1) .

Even and Itai [1] give characterizations similar to those of Lemma 2
and Lemma 3 based upon coloring a graph corresponding to a sequence to be
sorted. If we relax the conditions we place on sorting using parallel
stacks, the problem of characterizing the sortable sequences becomes

much harder. For instance, we have the following necessary condition:

Lemma U: Let Y be a pa.ra.liél network of m stacks and let s be a
sequence. Then if s is sortable in Y , s does not contain the

pattern (2,3,4,...,m1,1) .

The condition given in Lemma L is sufficient for one stack [2], but
is not sufficient for two stacks or more. For instance, the sequence
(27416385) is unsortable using two parallel stacks, though it does not

contain the pattern (2341) . In general, given a sequence s , we may

construct a corresponding graph which Even and Itai [1] call the union
graph. The vertices of the graph are the elements of the sequence. If

S. , 8. , 8

5 j x Match the pattern (231) then s; and s.J are connected

by an arc. The sequence is sortable-using m parallel stacks if and
only if the corresponding union graph is colorable using m c¢olors.
This gives a nice algorithm for deciding whether a sequence is sortable
using two parallel stacks, but beyond that we have no good decision
procedures.

We may conjecture that some finite set of patterns characterize the
sequences sortable in a switchyard. However, using the concept of the

union graph, we may disprove this for the case of two parallelstacks.

Letnmab: There are an infinite set of permutations, none of which

contains another as a pattern, and such that each permutation is unsortable

using two parallel stacks.

Proof: Let us construct a diagram corresponding to a permutation
p = (pl’"”’pn) . We plot i on the x axis, p; on the y axis,

and we connect points which are joined by an arc in the corresponding

union graph.

ub }
5-|- 6.
1 .
o4 +
4 .
1t . o4
19)
12 3 L 123 45 678

Figure 5: Diagrams for (2341) and (27416385).

Given the second example in Figure 5, we may extend the idea to
construct a permutation whose union graph is a cycle of length 2nt+l ,
for arbitrary n > 2 . (2,kn-1, % 1 6585,...,4n,4n-3) 1is the
general permutation. Since the union graph of this permutation is a
cycle of odd length, the permutation is unsortable using two stacks.
Further, no permutation of this type contains another of this type as

a pattern.

Let us return to the case of arbitrary switchyards. We will assume
that all sidings are queues. Given a switchyard Y , we associate with
it a capacity c¢(Y) computed as follows:
(1) Number the sidings of the switchyard from 1 to m so that
no arc runs from a higher numbered siding to a lower numbered
one. (This is always possible in an acyclic directed graph.)
(2) Attach a capacity to each siding from 1 to m : Label siding m
(the sink) with 1 . Attach 1 to all arcs entering siding m
At step 1, add up all capacities of arcs out of siding m-i+l .

Attach this capacity to siding m-i+l and to all arcs entering it.

(3) When the labelling is completed, the capacity of the source

is c(Y)

Q(1)
Q(1)
Q(1) QL)
Q1

Q(1)

Figure 6: A switchyard and its siding capacities.

Lemma 6: Let Y be a switchyard of queues. Let Y! be the switchyard

formed by reversing the direction of all arcs of Y . Then c(Y) = c(Y!) .

Proof: The value of c(Y) is actually the number of different paths
from the source to the sink. Thus c(Y) is independent of the direction
of its calculation. The number of paths from source to sink in Y is

the same as the number of paths from source to sink in Y' .

It is more useful in what follows to regard the calculation of c(Y)
as proceding from the sink back towards the source. We may state a

relationship between ¢ (Y) and sequences sortable in Y

Lemma 7: Let Y be a switchyard of queues and let s be a sequence. If

s contains the pattern (e(¥)+1, c(Y), 2, 1) then s is unsortable

in Y

Proof: By induction. Clearly, Lemma 7 holds for a two-siding switchyard.
Suppose the result is true for all switchyards with m-1 or fewer sidings.
Let Y be a switchyard with m sidings, and let s be a sequence which
contains the pattern (c(Y)+1, c(Y), o ., 2, 1) . Let the queues

adjacent to the source have capacities cl,...,ck . E:ci o nme w

Then any sequence of moves of s through the switchyard must overload

one of the queues adjacent to the source. That is, for some i , the
subsequence of s which passes through queue i adjacent to the source
must contain the pattern (ci+l,<:., IR 2, 1) . By the induction
hypothesis, this subsequence is unsortable in the remainder of the

switchyard, and thus the entire sequence is unsortable.

Lemma &: Let Y be a switchyard of queues and let s be a sequence.

If s is no longer than c(Y) , then s is sortable in Y

Proof. We proceed by induction. The result is trivial for a two-siding
switchyard. Suppose the result is true for all switchyards with m-1 or
fewer sidings. Consider a switchyard with m sidings. Do the calculation
of c(Y) from the sink queue to the source queue. Each arc a; out of
the source queue has a capacity c(ai) ; Zc(ai) = c(Y) . Further, the
arcs have an imposed ordering given by the number of the queues on their
front end. Move the lowest elements of the sequence to the highest
numbered adjacent queue, the next lowest elements to the next highest
numbered adjacent queue, and so on. At most c(ai) elements are allowed
to pass through arc ai . Once this has been done, the elements at the
highest numbered queue may be sorted through the rest of the network by

the induction hypothesis. The number of elements in this queue does not

10

exceed its capacity, and the other elements of the original sequence do
not interfere. Then the elements at the next highest queue may be sorted,
and so on. Thus the entire sequence may be sorted.

Lemmas 7 and 8 give us the length of the shortest sequence
unsortable in a switchyard of queues. Lemma 7 gives a necessary condition
for sortability. We have already seen that the condition is sufficient
in the case of parallel queues; however, it is doubtful that the condition
is in general sufficient. The situation is somewhat analogous to that of
parallel stacks, though we presently know of no counterexample to show
that the converse of Lemma7 is false.

If we allow stacks or deques in an arbitrary switchyard things
become even more complicated. Let us examine one such case. A series

network of m stacks is a directed simple path of length mt2 . The

two end sidings are queues, and the m intermediate sidings are stacks.

L < - < - < < -
Q S S Q

0 ¢

Figure 8: A series network of three stacks. What is the shortest

unsortable sequence?

Lemma O: Let Y be a series network of 2 stacks. Then the shortest

unsortable sequence in Y is of length T .

Proof: (2435761) is unsortable using two stacks, as the reader may
easily verify. Conversely, every sequence of length 6 or less may

be sorted using two stacks. Exhaustive case analysis will verify this fact.

Lemma 10 [3]: Suppose sequences of length k or less may be sorted
using m stacks in series. Then sequences of length 2k or less may

be sorted using mtl stacks in series.

Proof: Suppose that the hypothesis of the lemma is true and that a
sequence of length 2k is given. Sort the first k elements into the
last of the mtl stacks, so that the k elements are in order, smallest
on top, largest on the bottom. Sort the remaining k elements through
the network so that they enter the last stack in order, smallest to
largest. 1Instead of placing these elements in the last stack, merge

them with those already in the last stack by always moving the smallest
element to the sink queue when it is available to be moved. 2k elements

may be sorted in this way.

C orollary : If m >2 , a sequence of length 5,2m-l or less may be

sorted using m stacks in series.

In the case of one or two stacks in series, we know the length of
the smallest unsortable sequence. Lemma 10 gives a lower bound in the
general case. Kanuth [3], using an aigument along the lines of Lemma 1,
gives an asymptotic upper bound of k4" for the shortest sequence
unsortable using m stacks in series. The upper and lower bounds are
not close in general. The author has constructed a sequence of length Ll

which is unsortable using three stacks in series; beyond this, getting

the upper and lower bounds closer together seems hard.

12

Conclusions
We have defined the switchyard problem and given a solution in
certain special cases. In general, the problem seems very difficult

and many questions are unanswered.

References

[1] Even, S. and Itai, A. Queues, stacks, and graphs. Unpublished.

[2] Knuth, D. E. The Art of Computer Programming, Volume 1.

Addison-Wesley Publishing Company, Reading, Mass., 1968.

[3] Knuth, D. E. The Art of Computer Programming, Volume 3.

To appear.
[4] Schensted, C. Longest increasing and decreasing subsequences.

Canadian Journal of Mathematics, Vol. XIII, No. 2 (1961).

13

