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: Mathematical Analysis of Algorithms

by Donald E. Knuth

a Abstract: This report consists of the Texts of lectures presented to

the International Congress of Mathematicians in 1970 and to the |

IFIP Congress in 1971. The lectures are essentially sales pitches

E intended to popularize work in algorithmic analysis, a field of

oo study which involves numerous applications of discrete mathematics

to computer science. Both lectures attempt To indicate the flavor

| of the general field by considering particular applications in detail.
. The "mathematical" lecture deals with the problemof caleulating |
: greatest common divisors, and includes a presentation of a new

co | algorithm which lowers the asymptotic running time for ged of n-bit

| integers from n° to nt E . The "information processing lecture

| deals with the problems of in situ permutation and selection of the

oT t-th largest element, emphasizing techniques for analyzing

oo . particular algorithms which have appeared in the literature. oo

B This researchwas supported by the National Science Foundation under
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. THE ANAIYSIS OF ATGORITIIMS : |

. The advent of high-speed computing machines, which are capable of carrying out algorithms so faithfully,

: hag led to intensive studies of the properties of algorithms, opening up a fertile field for mathematical

. | investigations. ILvery reasonable algorithm suggests interesting questions of a "pure mathematical™ nature;

- and the answers to these questions sometimes lead to useful applications, thereby adding a little vigor to

Bh the subject without spoiling its beauty. The theory of queues, which analyzes a very special class of
B | algorithms, indicates the potential richness of the theories which can be obtained when algorithms of all

. types are analyzed in depth. |
| The purpose of this paper is to illustrate some general principles of algorithmic analysis by considering

: an example which is interesting for both historical and mathematical reasons, the calculation of the greatest
| common divisor (ged) of two integers by means of Fuclid's algorithm. Fuclid's procedure [2], which is one of

- the oldest nontrivial algorithms known, may be formulated as follows, given integers U >V >0 :
| Fl. If Vv =0, stop; U is the answer.

F2. Let R be the remainder of U divided by V , so that U = AV+R, O<R<V. Replace U by V,

oo then replace V by RR , and return to Ll.

oo 1. "Local! analysis. Analyses of algorithms are generally of two kinds, "local" and "global". A local |

Lo analysis congists of taking one particular algoritim (like Euclid's) and studying the amount of work it does |
] | as a function of the inputs: a global analysis, on the other hand, considers an entire family of algorithms
. and investigates the "best possible" procedures in thet class, from some point of view. In both types of

B analysis we can consider either the "worst case” of the algoritims, namely the work involved under least

oo favorable choice of inputs, or the "average case", the expected amount of work under a given input distribution.

3 More generally, we may be able to obtain the distribution of work given the distribution of inputs. "Work"
| | mey be measured in terms of the number of times each step of the algorithm is performed,or the amount of

oo things which need to be remembered, etc.

. The first local analysis of Buclid's algorithm was published in 18k4k by G. Lamé [10], who showed that

hE step E2 will never be performed more than five times the number of digits in the decimal representation of V.

| | His analysis was based on the fact that the method ig least efficient when U and V are consecutive
Fibonacci numbers. |

The average behavior of Buclid's algorithm is much more difficult to determine than the worst case, and

. | it has been established only in recent years. J. D. Dixon proved [1] that, for all € and C > 0 , the

oo probabllity that lr (u, v)- (120 fn 2) tn U| > (in uz? “ ie o({m N) © » given that 1 <V<U KN .
His proof is based on careful refinements on Kuz’mints study of continued fractions [9], showing that partial

| quotients which are far apart in the sequence are nearly independent.

At about the same time, H. Heilbronn introduced a new approach [G] to the study of continued fractions

| . and Fuclid's algorithm. Tet T(U,V) be the number of times step EZ is performed, and let

oC L



LEN Lu |
TV) = lim © Y TO,V) = = Ng (U,V)

N oem U=y+1 U=+1

be the average number of times when V is fixed. Hellbronn showed in effect that )

where | x | is the greatest integer <x, [x| is the least integer > x , and the sum is over all |

positive integers y,t,t" such that ged(t,y) =1, +t <y, t*<y, tt* =n (modulo y) . Evaluating |

this sum, he essentially found that T(n) = (12n" In 2) inn + 0(o_y (n)°) . Indeed, somewhat more seems to
be true, although proof is still lacking; there is extensive empirical evidence [8, pp. 330-333] that

(Loy cv, ced(k,7) =1 THE V))/R(V) = (120° gn 2) tn V+ LAT + 0(1) as Vow. .

2. "Global" analysis. Is Euclidts algorithm the "best" way to calculate greatest common divisors? |

Analyses of other ged algoritims (cf. [8]) show that, under certain conditions, Euclid®s method is inferior; |

and the average behavior of an interesting new algorithm discovered by V. ¢. Harris [4] is still unknown. |

In searching for a "best" method, one way to measure the work is to consider the amount of time taken |

to perform the algorithm with pencil and paper, or with a conventional computer. Various abstract automata |

have been proposed by which the latter notions can be made precise (cf. [5, 7]1). When we apply such models

| to Fuclid's algorithm, it is not difficult to see [8, p. 526] that the amount of work is essentially .

proportional to the square of the number of digits in U , for both the average case and the worst case,

| analogous to the famillar method of Jong division. On the other hand, extremely fast methods of multiplication oC

and division have recently been discovered; A. Sehonhage and V. Strassen have proved [13] that an m-digit |
| number can be multiplied by an n-digit number in only O(n(log m)(log log m)) units of time, when

| n>m>1. It is therefore natural to ask whether the ged of twe n-digit mumbers ean be calculated in n

| | less than o(n%) steps. Section 3 of this paper shows that this is indeed possible, in o(nt Ey steps for |

all ¢ > 0 , by suitably arranging the calculations of Euclid's algorithm. Obviously at least n steps |

| are neceggary in any event (we must look at the inputs), so this result provides some 1ldea of the asymptotic

complexity of gcd computation. }

| 5. High-speed ged calculation with large numbers. Tf step E2 is performed tt times, let Aprons Ay be | |
| the partial quotients obtained. It is well known that U = Q (Ase eshy)D , V = Qp 1 (Ags +r esA)D , where

D = ged(U,V} and Q, is the continvant polynomial defined by ‘@4=0, Q,=1, STIR COVEFRYTIE = |

Xo (KysveesX) +O (Kos ens) . We shall call [A150 esh, 5D] the Euclidean representation of U and V . |

After k iterations of step FZ we have U = Uy = Qp_y (App 1505 8)D , V = v. = Up jer (Bpspr == 2 AL)D .
Euler [3] observed that Qy (gs 000s) is the set of all terms obtainable by starting with Xoo and

| striking out pairs XX. Z€ro or more times. ¥rom this remark, it follows immediately that

2 "oo
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oo an identity which forme the basis ofHeilbronn's work cited above; it was used on several occasions by

: Sylvester [14] and given in more general form byPerron [12, p. 14-15].

For convenience we shall write nonnegative integers NW in binary notation, using IN = | log, (+1) |

binary digits. It is easy to prove that 1, (Ags eens) SEA Fee HIRD , snd Lam€'s theorem implies that

oo fA + ooo tA SHQ(A eee) HE = O(logU) in Euclid's algorithm; hence (except for a constant factor) it

oo takes essentially as much space to write down the Fuclidean representation [A 5000sA 5D] as it does to

- | write U and V themselves in binary form. We shall show that it is possible to convert rapidly between

= these two representations of U and V .

oo Theorem 1. Let S(n) = n{log n){log log n) and n = fAte.ctfA There is an algorithm which,

| given the binary representations of Ase oshy » computes the binary representation of Qu (Ags er eshy) in

| 0{sS{n) (leg t)} sbeps.

oo Proof. Consider four continuants associated with CSTRERPL » namely Q = Qu (Ayr ener) s

| Q° = App (Bp eeeshy g) sy Q = Qp 1 (Bs eershy) , and Q° = Qu (Ags eens, J) . The four conbinuants

associated with (038,54 0054,) are the same, in another order, so we add zeroes if necessary until t is

a power of 2. Now let I,T°,7, ‘1° and R,R","R,'R’ be the continuants associated with Als eeeshy and

- Ap, veeshy, respectively. By (¥), Q=ILR+L 'R, Q =IR"+L" 'R, "Q="IR+'L °'R,

i ‘Q° = "IR" +L" "R” . Choosing C so that we can evaluate the T's in co(ra + cor FLAK steps, the R's

_ in CS(fA +. vot ih) further sbteps by the Schonhage-Strassen algorithm,we can evaluate the Q's in at |

| most CORA eetiA) (KH) steps. " |

oo Let U = 2uty" , V = ret, where © <ULVT < o>", Db. H. Lehmer [11] has suggested that the

| partial quotients for (U,V) be found by first obtaining some of those for U' and V' , stopping at A

where s is maximal such that (U™1,V') and (U',V'+l) have AjseensA in common. Then Agyeeoshl

| are partial guotients for (U,V) also. We shall call (Breer the "Lehmer quotients" for (U,V) .

a The example (U',V?!) = (2™, My shows that Lehmer quotients might not amount to anything, but we can prove

| that four additional Fuclidean iterations will always give a useful reduction.

oo Lemma 1. Let U = 20M" >V = 2"VHy" , where © <U",v" <2" . Let [A;,...,A,P] Ie the

N Fuclidean representation of (U,V) , and let (Apr eeerdl) be the Lehmer quotients for (U',V') , where
. 1

| t > sth. Then U_, <UNUT .

| oo froet. Let PB = Quy (Ans vee) > QQ = Qu Ags eeeshy) , and let © = V/U . The well-known pattern
of convergence of P/Q, te © , schematically

oo + 2ATe Prep Bap" Fn Fa
a < a.7a < QFE S eee <7 <9 < Fg ia. < gok ker ko “Yer He eh Vek etl

J



when k 1s even, shows that if © and ©' are two real numbers whose continued fractions differ first |

at A, FA,» either P___/Q,, or P/Q, lies between © and ©' . Hence
2

: il 2 Ugen(@gis* Agip) ~ 1/18 - Pg p/n > 1/ |v) Jur -vr /{(Us+)|] > $0, using the well-

Lemma 2. There is an algorithm which, given U >V >0 with fU =n , finds all the Lehmer quotients |
a

for (U,V) in at most 0O(S(n)(log n}’) steps.

Proof. For large n the algorithm {first applies itself recursivelyto the leading Zn binary digits

of U and V , finding r partial quotients; then it computes u, = (-1) @Q, (A; renrh JUG (By ee hy 1); |
Tr |

Vv. = (-1) (Qu (Apes VQ (Ay, eves A 0) in 0(8(n) log(n)) steps by the method of Theorem 1. We can :

find A, in 0(8(n) log(n)) further steps (see [8, p. 275]), sc by Lemma 1 the algorithm performs a bounded |

pumber of Fuclidean iterations until reaching Ug with at most : n digits. Now the same process is

oo repeated on the ££ n leading digits of U rier Von ; after a bounded number of further Euclidean iterations,

we have reduced J to less than = n digits, and we have found quotients Apseeshy » Where Dp >s (since
the proof of Lemma 1 can be readily modified to show that aq < JI! J. Finally the value of s is located in

| approximately Log, Pp = 0{log n) iterations, using the well known "binary search" bisection technique; each

iteration tests some k to see whether or not k<s or kX >g . Such a test can rely on the fact that

P/Q; and Pry1/ iq are both "good" when k <s , while they are not both "good" when Xk > s+2 , where

P/Q, is called good when it is <7 /(U, +1) , for k even, or > (Vv, +1)/0, , for k odd. The running Co
time L(n) of this algorithm as a whole now satisfies L(n) < 2L(3% n) + 0(8(n) (log m4) .

Theorem 2. There is an algorithm which, given Alb) BR > 0 , determines the Fuclidean representation

(A; ...54,D] in O(n{log 1)” (log log n)) steps a8 n -» ow .

Proof. Begin as in Lemma 2 to reduce n to - n in L(3 n)+0(S(n) log n) steps, then apply the |

same method until Vv, = 0 . The running time G(n) of this algorithm satisfies the recurrence
IVER. SEN By Cat orale (toe mY) +0082 Bo Lb |Gln) = G(1 n) +0{8(n) (log n)”) = G(3% n) + 0(8(n) (log n)”) o(s(f; n) (log n)7) = ++. = 0(8(n) (log n)) .

| + | |
In particular, we can find the ged of n-diglt numbers in nt © steps, as 1 —-w , for gall © > 0 .

Lo )

The methodwe have used is rather complicated, but no simpler one is apparent to the autnor = 1 general,

the idea of reducing n to an for O& <1 often leads to asymptotically efficient algorithms.

Y/ Note added in proof: A similar, somewhat simpler construction was found by A. Schénhage shortly after |

ne received a preliminary copy of this paper; his improved construction takes only 0(n(log n)%( log log n)) |

steps.
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te B Mathematical Analysis of Algorithms

oo In this paper I shall try to illustrate the flavor of some current

- work in glgorithmic analysis, by making rather detailed analyses of two

B algorithms. Since I was asked to be "mathematical", T have chosen some

- examples which are interesting primarily from a theoretical standpoint.

: The procedures I shall discuss (namely, in-situ permutation and selecting

. the k-th largest of n elements) are not emong the ten most important

| N © algorithms in the world, but they are not completely useless and thelr

- | analysis does involve several important concepts. Furthermore they are
: sufficiently unimportant That comparatively few people have studied them

| | | closely, hence T am able to say a few new things about them at This Time.
| The general field of algorithmic analysis is an interesting and

potentially important area of mathematics and computer science that is

| | | undergoing rapid development. The central goal in such gtudies is to

oo make quantitative assessments of the "goodness" of various algorithms.

Two general kinds of problems are usually treated:

Co Type A. Analysis of a particular algorithm. We investigate

oo important characteristics of some algorithm, usually a frequency analysis

oo (how many times each part of the algorithm is likely to be executed) or

| a storage analysis (how much memory it is likely to need) . For example,

oo it is possible to predict the execution time of various algorithms for

sorting numbers into order. .
| Type B. Analysis of a class of algorithms. We investigate the

oo | entire family of algorithms for solving a particular problem, and attempt

| }



| to identify one that is "best possible’. Cr we place bounds on the |

computational complexity of the algorithms in the class. For example, ~

| it is possible to estimate the minimum number 8(n) of comparisons :

oo necessary to sort n numbers by repeated comparison. | E

| Type A analyses nave been used since the earliest days of computer -
oo programming; each program in Goldstine and von Neumann's classic -

| memoir [ 71 on "Planning and Coding Problems for an Electronic Computing

Instrument" is accompanied by a careful estimate of the "durations™ of -

each step and of the total program duration. Such analyses make it |

possible to compare different algoritims for the same problem. oo

| . | Type B analyses were not undertaken until somewhat later, although |

| certain of the problems had been studied for many years as parts of

| "recreational mathematics". Hugo Steinhaus analyzed the sorting function

: | 8(n) , in connection with a weighing problem [14]; and the question of

| computing x= with fewest multiplications was first raisedby Arnold oo

| Scholz in 1937 [13]. Perhaps the first true study of computational

complexitywas the 1956 thesis of H. B. Demuth[ 3], who defined three |

simple classes of automata and studied how rapidly such automata are |

able to sort =n numbers, using any conceivable algorithm.

| Tt may seem that Type B analyses are far superior to Type A, since |

they handle infinitely many algorithms at once; instead of analyzing each .

| algorithm that is invented, it is obviously better to prove once and for -

all that a particular algorithm is the "best possible". But this is only

true to a limited extent, since Type B analyses are extremely technology- |
dependent ; very slight changes in the definition of "best possible" can .

| gignificantly affect which algorithm is best. For example, Wel cannot

| BN : }



oo © be calculated in fewer than 9 multiplications, but it can be done with

- only 6 arithmetic operations if division is allowed.

| In fact the first result in Demuth's pioneering work on computational

complexitywas that "bubble sorting"was the optimum sorting method for a

oo certain class of automata. Unfortunately, Type A analyses show that

- bubble sorting is almost the worst possible way to sort, of all known

oo | methods, in spite of the fact that it is optimum from cne particular

: | standpoint. |

: There are two main reasons that Type B analyses do not supersede

: Type A analyses. First, it is generally necessary to formulate a rather
oo simple model of the complexity, abstractingwhat seem to be The most

E | relevant aspectsof the class of algorithms considered, in order to make

| any progressat all on a Type B analysis. These simplified models are

= often sufficiently unrealistic that they lead to impractical algorithms.

. cecondly, even with simple models of complexity, the TypeB analyses usually
E | are considerably difficult, and comparatively few problems have been solved.

- | . Even the problem af computing x with fewest multiplications is far from
N solved (see [10, vol. 2, Section 4.6.31), and the exact value of 8{(n) is

: known only for n <12 and n = 20, 21 (see [10, vol. 3, Section 5.3.11).

oo | The sorting method of Ford and Johnson | 6 | uses fewer comparisons than

| any other known sorting technique,yet it is hardly ever useful in practice
oo since it requires a rather unwieldy rr Comparison counting is not

| a good enough vay to rate a sorting algorithm.

- Thus I believe thal computer scientists might well look on research

N in computational complexity as mathematicians traditionally view number

. theory: it is an interestingway to sharpen our tools, for the more

BN | routine problemswe face from day to day. Aithough Type B analyses axe



| extremely interesting, they do not deserve all the glory; Type A | |

| enalyses are probably even more important in practice, since they can be ;

| designed to measure all of the relevant factors sbout the performance of

| an algorithm, and They are not quite as sensitive to changes in |

E | technology.

- Fortunately, Type A analyses are gtimulating intellectual challenges .

. in their own right; nearly every algorithm that isn't extremely |

complicated leads to interesting mathematical questions. But of course |

we don't need to analyze every algorithm that is invented, and we can't

| hope to have a precise theoretical analysis of any really big programs. |

| In situ permutation. As our first example, let us consider the problem

| of replacing (25% 5 «ves ) by (51) %p(2)7 * +7 Ep) where 7p is .
a permutation of {1,2,...,n} . The algorithm is supposed to permute the |

x's in place, using only a finite amount of suxiliary memory. The |

function 7p 1s one of the inputsto the algorithm,we can compute

p(k) for any k but we cannot assign a new value to p(k) as the | -

algorithm proceeds. For example, 7p might be the function corresponding |

to transposition of a rectangular matrix, or to the unscrambling of a B

finite Fourier transform. |

| If (p(1),p(2),...,p(n)) were stored in a read/write memory, or

| | if we were allowed to manipulate n extra "tag" bits specifying how much |

cf the permutation has been carried out at any time, there would be |

| simple ways to design such an algorithm waose running time 1s essentially

proportional tc =n . Bul we are nol allowedto change p dynamically, |

nor are we allowed n bits of extra memory. Thus there seem to be

| EB



| comparatively few solutions to the problem.

oo The desired rearrangement of (X 5% 5 «eux ) is most naturally
F done by following the cycle structure of p (ef. {10, vol. 1, p. 1617).

- Let us say that J 1s a "cycle leader” if J <p(d) , J < o(p(3)) s
5 < plop) , etc.; each cycle of the permutation has a unique leader,

3 and so the following procedure (cf. Boothroyd [ 2 ], MacLeod [12]) carries

out the desired permutation by doing each cycle when its leader is

- detected:

oo oo 2 | begin comment the permutation has been carried out ol

- | | 3 over all cycles whose leader is less than Jj; n

- a. k:=p(J) ; | n

he 6 k:=p(k); | a
. 7 if k = j then | "

oo 8 begin comment J is a cycle leader; | b

a. | 9 | v:=x1J31l; #:=p(k); 1
N 10 while £ £ Jj do be
oo 11 begin x{k]:=x[£]; k:=f; Z:=p(k) end; | Cc

} R 12 X[k] :=y; | b
. 15 endpermutation on cycle; | b

oo | 1h . end loop on J. | n

: The first and most basic part of the analysis of any algorithm is

| | of course to prove that the algorithm works. The comments in this program

oo essentially provide the key inductive assertions which will lead to such

| | a proof. On the other hand, the program seems to be beyond the present

oo 10



Co range of "automatic program verification" techniques, and to go a step
further to "automatic frequency analysis" is almost unthinkable. -

- Let us now do a frequency analysis of the above program, counting |

how often each statement is executed and each condition 1s tested. There

are 9 statements, and 3 conditions, but we don't have to solve 12 |

| separate problems because there are obvious relations between the

frequencies. "Kirchhoff's law”, wiloh Says that the number of times we

gel to a place in the program is the number of timeswe leave it, makes |

it possible to reduce the 12 individual frequencies to only 4, namely

| n, a,b, and c¢ , as shown in the column to the right of the program. |

Kirchhoffts law 1s especially easy to apply in this case, since there are

no go to statements; for example, we must test the condition " k > j " in oo

line 5 exactly nta times, if we execute Line 4 n times and line 6

a times. .

The next step in a frequency analysis is to interpret the remaining |

| unknownsin terms of characteristics of the data. Obviously n , the B

number of timeswe do line 4, is the number of elements in the vector x .

And b is the number of cycles in the permutation p . Furthermore we

can see that each element of x 1s assigned a new value exactly once,

either on line 11 or line 12, hence c¢+b =n (a relation which cannot .

be deduced solely from Kirchhoffts law). This leaves only one variable, :

| a , to be interpreted; it is somewhat more complicated, the sum of "distances" .

| from J to the first element of p(j),p(p(J)) , ete. that is <j .

| To complete the analysiswe should explore the behavior of these

quantities a and b . It is customary to start by making a "worst |

case’ analysis, which leads to an upper bound on the program's running time. |

11 .



oo | IT (p(1),p(2), «+ .,p(n)) = (8,...,n,1) , we have a = (n-1)+(n-2)+...+0

- | = 3 (n*-n) s» which is surely the worst case for a . |
. oo The same cholce of p makes b = 1, which is the best case for bb. If
a | (p(1),p(2),...,p(n)) = (L,2,...,0) , we get the worst case for b (and

- the best for a ). |

- A more interesting problem arises when we Try to consider the

a average case. Firstwe must decide what ismeant by the average case;

this is often The chief stumbling block in making a Type A analysis,

since it is not always easy to specify "typical” input distributions. Tor

Lo ~ the problem at handwe may say that each of the n! permutations p is |

- N | equally likely. |

oo A special technique is often useful when the cycle properties of

. B permuations are being considered (cf. Foata [ 5], Knuth flo, vol. 1,
| | Sec. 1.3.3; vol. 3, Sec. 5.1.2]), since 1t changes cycle properties into

| ordering properties. Consider for example the permutation

| (p(1)s...5p(9)) = (8,2,7,1,6,9,3,4,5) 3 in cycle form this is

oo (164) (569) (2) (75) . The cycle form can be written in exactly one wy

| such that

N a) the leader comes first in each cycle;

oo ~b) the leaders of different cycles are in decreasing order from

| | left to right. | | |

oo In cur example this canonical representation is (569)(37) (2) (18%) . In
canonical form the parentheses are redundant, since " )( " occurs just

. before each number waich is smaller than all of its predecessors. Thus
oo | we obtain a one-to-one mapping of permutations onto permutations, such

- that cycle properties are mapped into ordering properties. In our

example, (8,2,7,1,6,9,3,k,5) maps into (5,6,9,3,7,2,1,8,4) .

oo : | 12



oo Let (p(1),p(2),...,p(n)) map into the permutation (q(l),qa(2),...,a(n)) .

| It is easy to reinterpret the quantity b in terms of this transformation;

it 1s the number of cycles in p , so it is the numberof "left-to-right

minima" in q , namely the number of indices J such that |

| q(j) =minfg(i)|2<i <j} . This quantity has been analyzed in detail |

in [10, vol. 1, section 1.2.10], where it is shown that the number of .

permutations with k left-to-right minima is [] , a Stirling number
| of the first kind. The average value of b is shown there to be H 2 |

h and the variance rg?) , Where |
| 2 = 1 + + ... Ft :

02 Jade ie 3 | |
n oo

are harmonic numbers of degrees 1 and 2. |

| | We can also analyze the quantity a , although the problem is |

somewhat deeper. When the loop variable J in the algorithm takes on oo

the value a{i) , note that k will take on the successive values

| q(i+1),q(i+2),... because of the way we obtained gq from D 3 We | | |
continue until reaching a value q(it+r) < qi) . There is an exception

| to this rule, namely if k is set equal to the leader of the cycle: Co
| then either itr >n or g(itr) is the leader of the next cycle; in .

| the latter case, again q(itr) < ali) . |

Consequently We can represent 2 1n the following way. Let Vij -
© pe functions of q defined for all 1 <i <j <n , where .

1, if qi)< q(k) for i<k<is; | |
Y13 : 0 , otherwise.

| 17 -



oo Then | |

| 1<i<j<n

oo indeed, for fixed 1 , es cen V3 is the number of times line 6
oo of the program is performed when the loop variable Jj = qi) .

N For example, if (p(l),...,p(9)) = (8,2,7,1,6,9,3,4,5) , we have

| (a(1)5---5a(9)) = (5,659,3,7,2,1,8,4) ; hence Yio = V1 = Voz = ys =
Yog = Vag = 1, and all other y's are zero. Line 6 is performed

oo (2,1,0,1,0,0,2,0,0) +imes when J = (5,6,9,3,7,2,1,8,4) respectively.

oo Let iy be the average value of Yi; 0 88 (q(1),...5q(n)) |
B } ranges over all permutations. This is simply the number of permutations

. | With y, = 1, divided by n! , so it is the probability that
| q(i) = minf{q(k) |i < k <j} , namely 1/(j-i+l) . It follows that a ,

| | | the average value of a , is given by oo

| = — 1 nt l-r

: oo BEER MEPED NE = i =
co 1<i<j<n 1<1<j<n 2<r<n

oo where we have replaced J=i+1l by a new variable rr which occurs

a ntl-r times in the original sum. Hence

oo | a = (n+l) y = - >. 1 = (n+1) (3-1) -(n-1) = (n+1)E -2n .
co 2<r<n 2<r<n

) The variance of a can be calculated too; the derivation is

So instructive but quite complicated, so the details will only be summarized

here. We need the average value of | |



2
2

Lowy) = 4 vg X 137k
| 1<i<j<n 1<i<j<n 1<i<j<n -

| 1<k<t<n

(1,3) £ (k, 1) B

| = Lv.t 2 N (VsVy FTV, TVs, V0) a
| l<i<ji<n 9 l<i<j<k<f<n OEE TIEIL TIEOK

+2 IN (Vs sap FY Fa FV a)
1<i<i<k<n ij jk vik" Jk YijYik

. — a+ 2(A+B+C+D+E+T) .

where A,...,F represent the sums LY; Vigo SEAN YiVik ° When

= i <j<k<1! are fixed, it is not difficult to prove that the average oo

: » > - , | . a - - : ]
value of Vi 1 1/(j-i+1) (£-k+1) , of Yad sp is 1/(#-i+1)(2-3+1) ,

] -i+ - 3+ Var = VaiVay -i+ -j+1of Yig¥ig 1S 1/(2=i+1) (k=3+1) , of Vig¥ig = Vic Is 1/ (k=i+1) (k~-j+1) ,

| and of Vi = Vig is 1/(k-i+1l) . This leaves us with several triple | | |
and quadruple summationsto perform; it is not difficult to carry out a |

| few of the sums, reducing them to |

| B= (,)-2Z , C =Y-%-2(,) +3 ,
In

D=E=2-X, F=())-2 ,

RE where |

t= 2. Pr , ove X Byag 0 2° L Tr| 1<i<ji<n 1<i<j<n °° 1<i<j<n

- We have already summed X by replacing Jj-i+tl by zr , and the same -

| a. device works for Y and Z ; after applying well-known formulas for :



: oo dealing with harmonic numbers (cf. [10, vol. 1, section 1.2.71),

= we therefore obtain | |

8 1,2 5 2 1 1 2 _(2
: X= (ntl -2n , ¥ = =(n +n)H_ -fno-fn , Z= 5(n+1) (2x! )} rit +n .

oo This determines B , C , D , E and F . The quantity A is harder to

ie | calculate; we have

| . 1 | ~T~st+2

1<i<j<k<i<n (J-i+1){I-ktl) 1r>2

BN 5>2 |

| | rig <n

; | 1,1, 1, ,m-t42 1 n-t+2
- Lo Ge 0Thee Xo 30TH
2<rLt-2 2<r<t-2

- | So L<t<n h<t <n

So = LE (2) (m0) - (203) + £0) |
- | 2 <r <t=2 .

: | L<t<n | |

Co = (n+2) (n+1)U ~ (2+3)V+ W oo

by letting r = j-i-1, 8 = f-kt1, t = r+s . Then

5 © 2 Vn 27m n°’ |

E V = (n-L)E__, -2n+h  ,

| Ws = ((n"+n-2) (BH _,-1) -Z(n-1) (n-2)+ 1 -3(n-3))
| 2 n=-2 2 )

- 16



| Putting the whole mess together, and subtracting 52 from the average

| of 8° » gives the exact value of the variance, .

© = on° - (n+1) 22) - (nt 1)H + in |

(This is a calculation that should have been done on a computer.) |

Taking asymptotic values,we can summarize the statistics as

follows: |

~

a = (min 0, ave n ln n+ Q(n), max =(n"-n), devV2 - x°/6 n + O(log n)) ;

b = (min 1, ave In n + 0(1), max n, devvin n + 0(1)) .

: The total running time of the algorithm is therefore of order n log n

on the average, although the worst case is order n° ; the comparatively oo |

| small standard deviation indicates that worst-case behavior is very rare. .

This completes our frequency analysis of the above algorithm. What

oo information have we learned? We have found that the algorithm almost |

always takes about n log n steps, and that lines 5 and 6 are the "inner

loop” which consumes most of the computation time. |

The analysis of one algorithm often applies to another algorithm as |

well. The quantity a in the above analysis appears also in the

analysis of an algorithm to compute the inverse of a permutation [10, |

vol. 1, Algorithm 1.3.35]. | |

The above gnalysis can also be extendedto measure the advisability

N of incorporating various refinements into the algorithm. For example, |

. suppose that we introduce a new counter variable called tally, which is |

initially set to n . In lines 11, and also in line 12, we will insert | |

| the statement "tally := tally-1 ", and at the end of line 12 we insert a

| 17 |



[E new tess "if tally = O then go bo exit " where exit ends the program.
- This modification (cf. MacLeod [12]) will terminate the algorithm

- earlier, since it stops the J loop when the largest leader has been
found. At the cost of 1 more variable, 1 execution of the statement

- | | : tally :=n ", n executions of " tally := tally -1" and b= logn
Lo tests " if tally = 0 ", we save some of the work in lines 2-7 and make 1%

: | unnecessary to test "if j>n " to see whether the J loop is
exhausted. How much is saved? Tt is not difficult to see that the

number ofiterations of lines 4 and 7 is reduced by Vip t Tmt ere t Vy ,

oo ~ 80 the average saving 1s = + + ole t : = H -l= Inn . The number |
: | | of iterations of line 6, the main loop, is reduced by

| Losin 1s , an average saving of |

oo I 1. FT 5-3 NE ARE 2 cicgen 90I-TFD) ccr<j<n Td Zlle<r<n¥] 2<r<n re

: | = 202 5?) Lp sim Lm mn)

oo | 50 the net improvement caused by this change appears to be rather small.

oo This conclusion would not be evident a priori, if we had not made the

oo analysis, since the average length of a cycle which starts at a random
oo place in a random permutation is well known to be . (n+l) .
- The application to rectangular matrix transposition suggests that

: we might also design a similar algorithm in which the function pt 18

: | input as well as p . Then we could Look for a cycle leader by first testing
N p(3) 5 then HE), p03) 5 »(@(3)) , ete., until finding a

. value < 3 . Tt turns out that the average number of operations performed

. | 18



| is the game as in the above algorithm, but the worst case 1s reduced to

| O(n log n) . (This solves a problem stated by MacLeod [12].)

| | It 1s amusing to derive the latter n log n bound by obtaining the .

exact maximum number f(n) of steps neededto rule out each of the

non-leaders, while processing an n-cycle,if we assume that both po (3)

N and 6) are fetched simultaneously in one step: Consider first :

placing the element 1 , then 2 , 5, etc. into an initially empty cycle oo

| so as to obtain the worst case;we obtain the recurrence |

| £f{1) =¢, f£(n) = max (min(k,n=-k)+£(k) + £(n-k)) . |
N 1l<k<n |

| The solution to this recurrence is rather interesting, it turns out to be

f(n) = 3 v(k) , where wv(k) is the number of 1's in the binary | |
O0<k<n |

representation of k . If 8g >85 > eee >A | -

| rz Tap 24 a2) - 2(a2 14 (a 41)2 24 ot (a pr-1)2 T) |

The fact that this function satisfiesthe recurrence can be provedby | |
letting glm,n) = f{mtn)-m-f(m)+f(n) , and showing that g(2m,2n) = 2g(m,n) , | |

g(em+i,2n) = g(myn)+g(mtl,n) , g(2m,2ntl) = g(m,n)t+g(m,ntl) , | |

g(2mtl,2ntl) = I+g(mtl,n) + g(m,ntl) ; hence by induction g(m,n) > 0

| when i. <n , with equality waen mn = n or n~1 . (Asymptotic | }
| properties of (n) have been studied by Bellman and Shapiro [1 ].) .
LL So much for Type A analysis of in situpermutation; what can be |

said about the computational complexity of this problem? TI don't really

know; it seems reasonable to conjecture that every algorihm for in situ

| permutationwill require at least =n log n steps on the average, but |

T don't know how ‘to prove it. | |

| 19 |



| oo | oo In the first place there ig a difficulty in defining the idea of
co a "step"; the above frequency analysis assumes that p(k) can be

_ calculated in one step, and that =xlk] can be fetched or stored in one step,

oo for arbitrary k between 1 and n . A complexity analysis must,

however, consider the limit as n — « ; an algorithm which works

. optimally for all na <n, could be sel up with something like n.!

N branches, and this would be uninteresting. But as n -» » , it takes
oo | at least log n steps just to lookat the number k when we are

oo dealing with p(k) or xlk] , so the above program really takes

Co n{log n)° steps insteadof n log n , ag n —- « . On the other hand, |

| _ | no Programmer really believes thal the above algorithm really takes

a log n steps each time x[k] is fetched or stored, since the time is |
bounded for any reasonable n to which he wants to apply the algoritim.

| | In other words, we want a complexity measure that models the situation

for practical ranges of n , even though the model is unrealistic as

| n -»w , and in spite of the fact that we require the algorithm to be

| ~ wvalid for arbitrarily large =n .

| A second difficulty is how to phrase the "no auxiliary memory’ idea.

| . If we assume that the x's are integers, and if we allow arithmetic

N | | operations to be carried out, we could replace cach x[k] by 2x[k] and

. use the units digits as n extra tag bits. If operations on the x's are
| ~ forbidden,yet auxiliary integer variables like J,k,2 in the above

algorithmare allowed,we could still get the effect of n extra bits

oo of’ memory by doing arithmetic on an integer variable Whose value ranges
a. from 0 to 27-1 ; on the other hand, it isn't obvious that any O(n)

algorithm could be desiened even when such a trick is used.

Co 20



| "These considerations suggest a possible model of the problem.

Consider a device with n® states, for some constant ¢ . Fach state

| | deterministically specifies the a "step" of the computation by

(a) specifying numbers i and j , 1 <i<J<n, such that =x[i] |
is to be interchanged with =x[j] 3; and (b) specifying a number k

and n states dys-+-,4, Such that the next step is Lok) Cen such -
| a device do the rearrangement in O(n) steps, or are n log n steps :

needed? |

Selectingthe t-th largest. Now let us turn to another problem, this

time somewhat less academic. ¢. A. R. Hoare [ 8] has given a method |

| for finding the t-th largest of n elements, by making repeated | oo

| comparisons,and F. E. J. Kruseman Arebz has shown (see [15] that |

| Hoaret!'s method makes approximately (2+2 ln 2)n comparisons when |

. finding the median of the elements, i.e., when t= (+1) /2 . Our goal | -

| is to doa partial frequency analysis of the algorithm, determining
| the exact average number of comparisons which are made,as a function of

| t and n . | .

T shall state the algorithm informally, since I am not attempting |

to make a frequency analysis of each step. Let x[1],...,x[n] be the NB

| given elements, and assume that they are distinct. We start by selecting | |

an arbitrary element Vv , and compare it to each of the n-1 others, .

| rearranging the other elements (as in "quicksort") so that all elements

>v appear in positions x[1],...,x[k-1] , while all elements << y appear |

in positions x[x+1],...,x[n] . Thus, yy is the K-th largest. Tr k=1%,

| we are done; if k >t we use the same method to find the t-th largest N

| 21 :



of x[1],...,x[k-1] ; and if k <+t we find the (t-k)-th largest of

. x[kt1],...,xIn] « A very interesting formalization and oroof of this

. | procedure has recently been given by Hoare 19 ].

a Let C £ be the average number of comparisons made by the above
- process; we have

_ y

: Cy,1 0 ; Ct n-1 2 (A 4 By, t) , for 1<t<n, n>2,
Lo where oo |

= + oo
At © Cnet, tel Cnepype2 Foor tt Cle, |

= + + a + -

oo This is not the kind of recurrence that we would ordinarily expect to

. solve, but let us make the attempt anyway. The first step in problems

) of This kind is to get rid of the sums, by noting that

tL = + = + .

oo Avner “8,1 TC 0 Pare Tt TT Cae

oo then we can eliminate the A's and B's to get a "pure" recurrence in the C's:

- - + -

E (0F1)Chq eg “0ten “0p, + (1 LC 1,4

EB ~ -n(n-1)-n(n-1)+(n- - - _- +
= (nt)n ~-n(n-1)-n(n-1)+(n-1) (n EIA pen, +1, A1t

| - ~ +
| | 1,441 Pn, 4417Pn,1 Pho,t

a - - + -
- = 2401 "Cin,e On, "Cot

oo or in other words

| oo -C - . + . %NB Cort,t+ Snr "On, 1 Onin, 2/ (n1) (*)

} What an extraordinary coincidence that ntl was a common factor on each



oo of the C's ! This phenomenon suggests that we may actually be able to :

| solve the recurrence after all.

Checking the derivation shows that formula (*) ig valid for |

1 <t <n 3 we need to look gt the boundary conditions next, when | |

| t=1 or tT =n: |

C —n-1+3 (C +CQ Fee tC 1)

“+ - = + - -— + .(nn LC, nt (n+1l)n-n(n-1) Coq -

- = + = - + o | |C1, 1 Ch, 1 2n/ (n+l) = 2 -2/ (n+l)

| This 1s a recurrence that is easily solved, Ch 1 = en-2H + By |2

symmetry, C = 2n~2H also. Now the recurrence | |
n,n n :

(Cora, tea “Cat } (Cp, +2 = Cpa, 4) = 2/(n+1) |

| implies that | )
| | 2 2 2 |

C - = —— + = + Li. + — + ~

n+l,t+1 Cn,t ntl n +2 CHL, tL Ct, |

| | | = 2H, “Hp,) +2-2/(41)

and this relation likewise can be iterated: | |

Cc. , =2 2, (BH ,.  -H+L-1/K)+C :
n,t > <k<t n-t+k “k ° ntl-t,1

oo Thus, finally, we have the solution

| Cpt = 2((n+1)H  - (+3-0)H 4 1 - (t+2)H, + n+3) , for 1<t<n. |

| For example, when calculating the median of n = 2t-1 elements,

the average number of comparisons comes to

23 .



bt(Hy, (Hy) +88 -8H +k = (+h gn 2) -8 in ot 1-8 + 0th) , |

. A Type B analysis of this problem is essentially the question "What
. is the smaliest number of comparisons neededto select the t-th largest

oo of n elements?” There are really two questions, depending on whether

K we want to minimize comparisons in the worst case or in the average case.

y When © = 1, the questions are easily answered; we always need at

oo least n-1 comparisons to determine the largest elements. For if we

: consider each comparison as & match in a knockout tournament, every

: player except the champion must lose at least one game. This argument

a | can be extended also to the case t = 2 , to show that an algorithmto

| determine the second best player must use at least n-2+ | log, n |

a comparisons, . regult first stated by J. Schreier in 1932 and first
N proved rigorously by S. S. Kislitsin in 196k. (See [ , vol. 3,

. section 5.3.3] for further details and references.) | |
- | When * t = 3 the minimum number of comparisons in the worst case
LC is still not known; and the minimum average number of comparisons is

- | not even known when © = 2 .

: oo The random-finding problem is especially fascinating. No algorithm

for computing medians is known which requires less than n log n

E comparisons in its worst case. And no proof that n log n comparisons

oo | | are necessaryhas been found. However, R. W. Floyd has recently
a. discovered efficient ways to compute medians with an average of only

n +o?’ log n) comparisons; and he has proved that at least

- 2 n + on) comparisons are necessary on the average, no matter what
N algorithm is used [ 4].



© Summary. T have tried to indicate the nature of algorithmic analysis

by describing two nontrivial problems in detail. Perhaps the complexities :

of these examples have obscured the main points T wanted to make, so T

will attempt to summarize what I think is most important.

| 1. Analysis of algorithms is an interesting activity which contributes |

oo to our fundamental understanding of comput er science. In this case, .

| mathematics 1s being applied to computer problems, instead of applying

computers to mathematical problems.

2. Analysis of algorithms relies heavily on techniques of discrete |

mathematics,such as the manipulation of harmonic numbers, the solution

| of difference equations, and combinatorial enumeration theory. Most of |

these topics are not presently being taught in colleges and universities, |

but they should form a part of many computer scientists! education. )

5. Analysis of algorithms is beginning to take shape as a coherent -

| | discipline. Instead of using a different trick for each problem, there |
are some reasonably systematic techniques which are applied repeatedly. |

(Numerous examples of these unifying principles may be found by consulting | |

the entries under "Analysis of algoritims" in the index to [10].) |

oo Furthermore, the analysis of one algorithm often applies to other

algorithms. | : | | | | |

| ht. Many fascinating problems in this area are still waiting to B

oo be solved. | |

| . |
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