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THE ANALYSIS OF ALGORITIIMS

The advent of high-speed computing machines, which are capable of carrying out slgorittms so faithfully,
has led to intensive studies of the properties of algorithms, bpening up a Tertile field for mathematical
investigations. Ivery reascnable algorithm suggests interesting questicns of a "pure mathematical nature;
and the answers to these questions sometimes lead to useful applications, thereby adding a little vigor to
the subject without spoiling its beauty. The theory of queues, which analyzes a very special class of
algorithms, indicates the potential richness of the thecries which can be obtained when algorithms of all
types are analyzed in depth.

The purpose of this paper is to ilivetrate some general principles of algoritimic analysis by considering
an example which is interesting for beoth historical and mathematical reasons, the calculation of the greatest
common divisor (gcd) of two integers by means of Fuclid's algorithm. Fuclid's procedure [2], which is one of
the oldest nontrivial algorithms known, may be formulated as follows, given integers U >V >0 :

Fl. If v =0, stop; U is the answer.

E2. Let R be the remainder of U divided by V , so that U =AV+R, O <R <V . Replace U by V,

then replace V by R , and return tc IEl.

1. "Local" analysis. Anslyses of algorithms are generally of two kinds, "local" and "global". A lccal

analysis consists of taking one particular algoritim (like Euclid's) and studying the amount of work it does

as a function of the Inputs; & global analysis, on the other hand, considers an entire family of algorithms

and investigates the "best possible" procedures in that class, from some point of view. In both types of
analysis we can consider either the "worst case" of the algorithms, namely the work involved under least
favorable choice of inputs, or the "everage case', the expected amount of work under a given input distribution.
More generally, we ma&y be amble to obtain the distribution of work given the distribution of inputs. "Work"

mey be measured in terms of the number of times each step of the algorithm is performed, or the amount of
things which need to be remembered, etc.

The first local analysis of Buclid's algorithm was published in 1844 by G. Lamé [10], who showed that
step E2 will never be performed more than five times the number of digits in the decimal representation of V.
His analysis was based on the fact that the method ig least efficient when U and V are consecutive
Fibonaceci numbers.

The average behavicr of EBuclid's algorithm is much more difficult to determine than the worst case, and
it has been established only in recent years. J. D. Dixon proved (1] that, for all € and C >0 , the
probability that \T(U,v)-(lzn'g tn 2) n U} > (n U)%+ ¢ 4e of(m N 'C) , given that 1<V <U<ZN.

Hiis proof is based on careful refinements on Kuz’min's study of continued fractions [9], showing that partial
quotients which are far apart in the sequence are nearly independent.

At about the same time, H. Heilbronn introduced a new approach [6] to the study of continued fractions

and Tuclidts algorithm. Tet T(U,V) be the number of times step E2 is performed, and let

1
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be the average number of times when V is fixed. Heilbronn shcwed in effect that
n 1
nT(n) = LZ?D/E_["'QZF(FE-'E') 5_‘

where Lx_[ is the greatest integer <z, l_x_\ is the least integer > x , and the sum is over all

positive integers y,t,t' such that ged(t,y) =1, t <y, ' <y, tt* =n (modulo y) . Evaluating

-2
this sum, he essentially found thet T{(n) = {(12x ~ In 2) in n + O(U_l(n)e) . Indeed, somewhat more seems to

be true, although proof is still lacking; there is extensive empirical evidence [8, pp. 330-333] that

(Zl<k<V’ geatn, ) -1 WL/ = (1252 10 2) tm V+ L7+ 0(1) as Voo .

2.  "Global" analysis. Is Euclid's algorithm the "best™ way to calculate greatest common divisors?
Mnalyses of other ged algoritmms (cf. [8]) show that, ﬁnder certain conditions, Euelid's method is inferior;
and the average behavior of an interesting new algorithm discovered by V. ¢. Harris [4] is still unknowm.
In searching for a "best'" method, one way to measure the work is to consider the amount of time taken
to perform the algorithm with pencil and paper, or with a conventional compuber. Various abstract automata
have been proposed by which the latter notions can be made precise (ef. [5, 7]1). When we apply such models
to Fuclid?s algorithm, it is not difficult to see [8, p. 526] that the amount of work is essentially
proportional to the sguare of the number of digits in U , for both the average case and the worst case,
analogous to the familiar method of long division. On the other hand, extremely fast methods of multiplication
and division have recently been discovered; A, Schonhage and V. Strassen have proved [13] that an m-digit
number can be multiplied by an n-digit number in only O(n(log m)(log log m)) units of time, when
n>m>1. It is therefore natural to ask whether the ged of two n-digit numbers can be calculated in
less than O(ng) steps. Section 3 of this paper shows that this is indeed possible, in O(nlJra) steps for
all ¢ >0 , by suitably arranging the calculations of Euclid®s algorithm. Obvicusly at least n steps
are necessary in any event (we must look at the inputs), so this result provides some idea of the asymptobic
complexity of ged computation.

3. High-speed ged calculation with large numbers. If step E2 is performed +t times, let A,,...,A, Dbe

1 .
the partial quotients obtained. It is well known that U = Qt(Al,...,At)D , V= Qt_l(Ae, ...,At)D , where

D = ged(U,V) and Q. 1is the continuant polynomial defined by Q7 =0, 8,=1, Qt+l(x0,xl,...,xt) =

XOQ‘b(Xl’ ...,x_b) +Q't-1(XE’ ""Xt) . We shall call [Al"”’At’D] the Euclidean representation of U and V .

After k iterations of step E2 we have U = U, = Qt-k(Ak+1’ ""At)D s V=1V, = Q‘t-k-l(Ak+2’ ""At)D .

Buler [3] observed that Qt(xl""’xt) is the set of all terms obtainable by starting with x «eeX,  &nd

1

striking out pairs X

i4q Zero or more times. Trom this remark, it follows immediately that
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an identity which formg the basis of Heilbromn's work cited above; it was used on several occasions by
Sylvester [14] and given in more general form by Perron [12, p. 14-15].
For convenience we shall write nonnegative integers N in binary notation, using N = rloge(I\Hl) _‘

binary digits. It is easy to prove that fQ (Al’ '”’A’c) SIA F eeo kDR D, and Lam€'s theorem implies that

£A oo IR < EQ”I;(Al’ ""At) +t = 0(log U) in Fuclid's algorithm; hence (except for a constant factor) it
takes essentially as much space to write down the FEuclideasn representation [A]_""’At’D] as it does to
write U and V +themselves in binary form. We shall show that it is possible to convert rapidly between

these two representations of U and V .

Theorem 1. Let S(n) = n{log n)(leg log n) and n = IAte.wtfA . There is an algorithm which,

given the binary representations of Al, '“’At , computes the binary representation of Qt(Al, ""At) in

0{s{n)(log t)} steps.

Proof. Consider four continuants associated with (Al" ""A‘t) , namely @Q = Qt(Al""’At) s

Q = Qt_l(AlJ ""At_l) L Q = Qt'l(AE’ -oo,At) k) a.nd Q, = Qt-Q(AEJ o--,At_l) . The fOUI coﬁbjﬁuﬁm‘ts

associated with (O,Al, ""A’c) are the same, in another order, so we add zeroes if necessary until t is

a power of 2 . Now let I,L°,°'L,'L° and R,R’,'R,'R’ ©be the continuants associated with Al’ '“’At and

ApyqseesAy respectively. By (*, Q@=IR+L"'R, Q =IR"+L" 'R, @ ="IR+'L

R

Q" = "IR°+ "L’ "R° . Choosing C so that we can evaluate the T*'s in CS{fA,+...+fA )k steps, the R's
T

in CS(!lAl+ oot LA further steps by the Seh'c'mhage«Strassen algorithm, we can evaluate the §Q's in at

o)
most  CS( LA taLhEA, t) {(k+1) steps.

|
Let U = 2"0tu" , v = 2"V, where 0 <U™, V" < 2" . D. H. Lehmer [11] has suggested that the

partial quotients for (U,V) be found by first obtaining some of those for U' and V' , stopping at AS

where s is maximal such that (U™1,V*) and (Uf,V'+l) have Ajs sk in common. Then Ap,.euh

are partial guotients for (U,V) also. We shall eall (A'.L""’As the "Lehmer quotients" for (U',V') .

The example (U',v!) = (2%, Em-l) shows that Lehmer quotients might not amount to anything, but we can prove

that four additional Euclidean iterations will always give a useful reduction.

m

Lema 1. Let U = 2MUty" > v - 2vhy" , where 0 <U V' <2" . Let [A,...,A,D] Te the

Euclidean representation of (U,V) , and let (A ..,As) be the Lehmer quotients for (U',V!) , where

1

t >eth . Then U, <UNMU' .

Proof. Let P, = Q’k—l(AE" ...,Ak) s Q= Qk(Al""’Ak) , and let © = V/U . The well-known pattern

of convergence of Pk/Qk tc © , schematically

ry
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when k is even, shows that if © and ©' are twe real numbers whose continued fractions differ first

at A, F AL, , either Ps+1/Q‘s+l or Ps+2/Q’s+2 lies between & and &' . Hence

3 Q§+1+ 2 Q@5+ > I16-P /o | > 1/ (v /Ut -y /(U1) | > U, using the well-
known relation |9—Pk/qkl > l/Qk(Qk+l+Q’k) .« And by (%), Q*t-g-h(As+5""’At) >ufag,y -

Lemma 2. There is an algorithm which, given U >V >0 with {U = n , finds all the Lehmer quotients

for (U,V) in at most 0(S(a)(log n)”) steps.

Proof. Yor large n the algorithm first applies itself vecursively to the leading %‘5 n binary digits

. s . . . T
of U and V , finding r partial quotients; then it computes U, = (-1) (Qr-Z(AE’ ""Ar-l)U -Qr_l(Al, ""Ar-l)v)’

r
V.= (-1 (Qr(Al""’Ar)V"Qr_]_(Ag’ -++;4 )U) in 0(8(n) log(n)) steps by the method of Theorem 1. We can

find A .. in 0(8(n} log(n)) further steps (see [8, p. 275]), soc by Lemma 1 the algorithm performs a bounded
3

mumber of Fuclidean iterations until reaching Ur+k with at most i digits. Now bthe same process is

repeated on the % n leading digits of U . after a bounded number of further Euclidean iterationms,

r+x’ Vr+

we have reduced U to less than % n digits, and we have found guoticnts Al, .

the proof of Lemma 1 can be readily modified to show that Qs < Ju )- Finally the value of s is located in

.,AP » Where p >s (since

approximately log2 p = 0{log n) iterations, using the well known "binary search" bisection technigue; each
iteration tests some k +to see whether or not k<s or kX >s . Such a test can rely on the fact that
Pk/Qk and Pk»i—l/kaLl are both "good" when k <s , while they are not both "good" when k > s+2 , where
Pk/Qk is called good when it is < Vk/(Uk+l) , for k even, or > (Vk+l)/Uk , for k odd. The running
time L(n) of this algorithm as a whole now satisfies L(n) < 2L(} n) +0(S(n) (log n) 2) .

Theorem 2. There is an algorithm which, given tsus>v >0, determines the Fuclidean representation

(A4),..5A;D] in 0(n(log n)s(log log n)) steps as n - o .

Proof. Begin as in Lemma 2 to reduce n to % n in L{} n) +0(S(n) log n) steps, then apply the
same method unbil Vt = 0 . The running time G(n) of this algorithm satisfies the recurrence
a(n) = G(,?—_ n) +0(s(n)(1og n)”) = G(5 1) +0(8(n) (10g n)?) +0(s(Z ) (108 0)7) = ... = O(S(n) (Log 2l .
i
In particular, we can find the ged of n-digit numbers in nl+g steps, as n -w» , for all € >0 .
The method we have used is rather complicated, but no siwmpler one is apparent to the authoi.ﬂIn general,
the idea of reducing n %o an Tor & <1 often leads to asymptotically efficient algorithms.
i/ lote added in proof: A similar, somewhat simpler construction was found by A. Schinhage slaortly after
ne received a preliminary copy of this paper; his improved construction takes only 0O(n(log n)a(log log n))

steps.
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Mathematical Analysis of Algorithms'

In this paper I shall try to illustrate the flavor cf some current
work in algorithmic analysis, by making rather detailed analyses of two
algorithms. Since I was asked to be "mathematical”, I have chosen some
- examples which are interesting primarily from a theoretical standpoint.
The procedures I shall discuss (namely, in-situ permutation and selecting
the k-th largest of n elements) are not emong the ten most important
algorithms in the world, but they are not completely useless and thelr
analysis does involve several important concepts. Furthermore they are
sufficiently unimportant that comparatively few people have studied them
closely, hence T am able to say a few new things about them at this time.

The general field of algorithmic analysis is an interesting and
potentially imporbant area of matheﬁatics and computer science that is
undergoing rapid develdpmént. The central goal in such studies is to
make gquantitative assessments of the "goodness" of various algorithms.

Two general kinds of problems are usually treated:

Type A. Anaglysis of a particular algorithm. We investigate

important characteristics of some algorithm, usually a frequency analysis

(how many times each part of the algorithm is likely to be executed), or

a storage analysis (how much memory it is likely to need). For example,

it is possible to predict the execution time of various algorithms for
sorting numbers into order.

Type B. Analysis of a class of algorithms. We investigate the

entire family of algorithms for solving a parbticular problem, and attempt



to identify one that is "best possible". Or we place bounds on the

computational complexity of the algorithms in the class. For example,

it is possible to estimate the minimum number S(n) of comparisons

necessary to sort n numbers by repeated comparison.

Type A analyses have been used since the earliest days of computer
programming; each program in Goldstine and von Neumann's classic
memoir [ 7] on "Planning and Coding Problems for an Electronic Computing
Instrument” is accompanied by a careful estimate of the "durations" of
each step and of the total program duration. Such analyses make it
possible to compare different algorithms for the same problem.

Type B analyses were not undertaken until somewhat later, although
certain of the problems had been studied for many years as parts of
"recreational mathematics". Hugo Steinhaus analyzed the sdr‘ting funetion
8(n) , in connection with a weighing problem [14]; and the question of
computing ¥ with fewest multiplications was first raised by Arnold
Scholz in 1957 [13]. Perhaps the first true study of computational
complexity was the 1056 thesis of H. B. Demuth [ 3], who defined'threé
simple classes of automata and studied how rapidly such automata are
able to sort n numbers,using any conceivable algorithm.
| Tt may seem that Type B analyses are far superior to Type A, since
they handle infinitely many algorithms at once; instead of analyzing each
algorithm that is invented, it 1s obviously better to prove once and for
all that a particular algorithm is the "best possible". Bub this is only
true to a limited extent, since Type B analyses are extremely technolbgy—
depeﬁdent; very slight changes in the definition of "best possible" can

31

significantly affect which algorithm is best. TFor example, X cannot



be calculated in fewer than 9 multiplications, but it can be done with
only 6 arithmetic operations if division is allowed.

Ir fact the first result in Demuth's pioneering work on computational
complexity was that "bubble sorting" was the optimum sorting‘method for a
certain class of automata. Unfortunately, Type A analyses show that
bubble sorting is almost the worst possible way to sort, of all known
mefhods, in spite of the fact that it is optimum from one particular
standpoint.

There are two main reasons that Type B analyses do not supersede
-Type A analyses. First, it is generally necessary to formulate a rather
simple model of the complexity, abstracting what seem to be the most
relevant aspects of the class of algorithms considered, in order to make
any progress at all on a Type B analysis. These simplified models are
dften sufficiently unrealistic that they lead to imﬁractical algorithms.
Secondly, even with simple models of compléxity, the Type B analyses usually
are considerably difficult, and comﬁaratively few problems have been solved.
Even the problem of compufing " with fewest multiplications is far from
solved (see [10, vol. 2, Section 4.6.3]), and the exact value of S(n) is
khown only for n <12 and n =20, 21 (see [10, vol. 3, Section 5.3.1]).
The sorting method of Ford and Johnson’[éi] uses fewer comparisons than
any otﬁer known sorting technique, yet it is hardly ever useful in practice
sinée it requires a rather unwieldy progiam. Comparison counting is not
a good enough way to rate a sorting algorithm.

Thus I believe that computer scientists might well look on research
in computational complexity as mathematicians traditionally view number
theory: it is an interesting way to sharpen dur'tools, for the more

routine problems we face from day to day. Although Type B analyses are



extremely interesting, they do not deserve all the glory; Type A
analyses are probably even more important in practice, since they can be
designed to measure all of the relevant factors sbout the performance of
an- algorithm, and they are not quite as sensitive to changes in

‘ technology.

Fortunately, Type A analyses are stimulating intellectual challenges
in their own right ; nearly every algorithm that isn't extremely
complicated leads to inberesting mathematical questions. But of course
we don't need to analyze every algorithm that is invented, and we cant't

hope to have a precise theoreticel analysis of any really big programs.

In situ permutation. As our first example, let us consider the probliem

of replacing (Xl’XE""’Xn) by (Xp(l)’xp(e)""’xp(n)) where p is
a permutation of {1,2,...,n} . The algorithm is supposed to permute the
x's 1in place, using only a finite amount of asuxiliary memory. The
function p is one of the inputs to the algorithm, we can compute
p(k) for any k bubt we cannot assign a new value to p(k) as the
algorithm proceeds. For example, p might be the function corresponding
to transposition of a rectangular matrix, or to the unscrambling of a
finite Fourier transform.

2 (p(1),p(2),...,p(n)) were stored in a read/write memory, or
if we were allowed to manipulate n extra "tag" bits specifying how amuch
of the permutation has been carried out at any time, there would be
gimple ways to design such an algorithm whose running time is essentially
proportionagl tc n . But we are not allowed to change p dynamically,

nor are we allowed n bits of extra memory. Thus there seem to be

)



comparativeiy few solutions to the problem.

The desired rearrangement of (xl,xg,...,xn) is most naturally
done by following the cycle structure of p (ef. [10, vol. 1, p. 161]).
Let us say that J is a "cycle leader" if Jj <p(j) , J < p(p(j)) s
j'g;p(p(p(j))) , ebc.; each cycle of the permutation has a unique leader,
and so the following procedure (cf. Boothroyd [ 2 ], MacLeod [12]) carries

out the desired permutaticn by doing each cycle when its leader is

detected:
1 for J:=1 step 1 until n do 1
2 begin comment fhe permutation has been carried out n
3 over all cycles whose leader is less than j; n
b k:=p(3); | n
5 whilek>jdo | nta
6 k::p(k); | a
7 if k = J then . n
8 begin comment J is a cycle leader; ' b
9 vi=x[315 p:i=p(k); b
10 waile 4 £ 3 do bte
1 begin x{k]:=x[27; k:=2; f:=p(k) end; c
12 x[k]:=y; : | b
13 end permutation on cycle; : b
14 - end loop on j. , n

The first and most basic part of the analysis of any algorithm is
of coufse to prove that the algorithm works. The comments in this program
essentially provide the key inductive assertions which will lead to such

a proof. On the other hand, the program seems to be beyond the present

10



range of "automatic program verification" techniques, and to go a step
further to "automatic frequency analysis" is almost unthinkable.

Let us now 40 a frequency analysis of the above program, counting
how often each statement is executed and each condition is tested. There
are O statements, and 5 conditions, but we don't have to sclve 12
separate problems because there are obviocus relations between the
frequencies. "Kirchhoff's law”, which says that the number of times we
get to a place in the program is the number of times we leave it, makes
it possible to reduce the 12 individual frequencies to only 4, namely
n, a, b, and ¢ , as shown in the column to the right of the program.
Kirchhoff's law is especially easy to apply in this case, since there are
no go to statements; for example, we must test the condition "k>3"in
line 5 exactly nta times, if we execute Iine 4 n +times and line 6
a times.

The next step in a frequency analysis 1s to interpret the remaining
unknowns in terms of characteristics of the data. Obviously n , the
number of times we do line 4, is the number of elements in the vector x .
And b 1s the number of cycles in the permutation p . Furthermore we
can see that each element of x 1is assigned a new value exactly once,
either on line 11 or line 12, hence c+b = n (a relation which cannot
be deduced solely from Kirchhoff's law). This leaves only one variable,
a , to be interpreted; it is somewhat more complicated,'the sum of "distances"
from J to the first element of p(Jj),p(p(J)) ,‘etc. that is < .

To complete the analysis we should explore the behavior of these
quantities a and b . Tt is customary to start by making a "worst

case" analysis, which leads to an upper bound on the program's running time.



It (p(l),p(E),...,p(n)) = (2,+..,n,1) , we have a = (n-1)+(n-2)+...+0

= % (ne-n) s which is surely the worst case for a . .

The same choice of p makes b =1, which is the best caSe.for b . If
(p(1),p(2), e vep(n)) = (1,2,...,0) , we get the worst case for b (and
the best for a ). '

A more interesting prcblem arises when we try to consider the
average case. First we must decide what is meant by the average case;
this is often the chief stumbling block in making a Type A analysis,
since it is not always easy to specify "typical” input distributions. TFor
the problem at hand we may say that each of the n! permutations p is
equally likely.-

A special technique is often useful when the cycle properties of
permuations ére being considered (cf. Foata [ 5], Knuth [0, vol. 1,
Sec. 1.3.3; vol. 3, Sec. 5.1.2]), since itlchanges cycle properties into
ordering properties. Consider for example the permutaticn
(p(1),-.p(9)) = (8,2,7,1,6,9,3,4,5) 3 in cycle form this is
(18%) (569) (2) (72) . The cycle form can be written in exactly one wa&
such that

a) the leader comes first in each cycle;

b) the leaders of different cycles are in decreasing order from
left to right.
In cur example this canonical representation is (569) (37)(2)(18%) . 1In
canonical form the parentheses are redundant, since " )({ " occurs just
before_each number waich is smaller than all of its predecessors. Thus
we obtain a one-to-one mapping of permutations onto permutations, such
that cycle properties are mapped into ofdering properties. In our

example, (8)2)711:6;9:31155) maps into (5:6:9;5:7:2:1:8:;‘*) .
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Let (p(1),p(2),...;p(n)) map into the permutation (q(1l),a(2),...,q(n)) .
It is easy to reinterpret tﬁe guantity b in terms of this transformatioﬁ;
it is the number of cycles in p , so it is the number of "left-to-right
minima" in q , namely the number of indices J such that
a(Jj) =minfa(1) |2 <1 < j} . This guantity has been analyzed in detail
in [10, vol. l; section 1.2.10], where it is shown that the number of
permutations with k left-to-right miﬁima is [i] » & Stirling number
of the first kind. The average value of b is shown there to be Hn 3

and the variance Hn~Hé2)
=1+ =+ ...+ 2
n 2 n

, Where

(@) _ 1 2
Hl’l —l+I':+...+n2

are harmonic numbers of degrees 1 and 2.

We can also analyze the guantity a , although the problem is
somewhat deeper. When the‘loop variable Jj in the algorithm takes on
the value gq{i) , note that k will take on the successive values
q(i+1),q(i+2), ... because of the way we obtained q frgm D 3 we
continue until reaching a value q(i+r) < q(i) . There is an éxception
to this rule, namely if k is set egual to the leader of the cycle:
then either ditr >n or gq(itr) is the leader of the next cycle; in
the latter case, again q(itr) < aq(i) .

Consequently We caﬁ represent a in the following way. Let yij

be functions of ¢ defined for all 1<i<j<n, where

1, if q(i) <q(k) for i<k<j;

1J 0 , otherwise.

12



Then

as N v s

1<i<j<n Y

indeed, for fixed 1 , E: yl is the number of times line 6

i
of the program is performed when the loop variable j = q(i) .

1<j<n

For example, if (p(1),...,2(9)) = (8,2,7,1,6,9,3,4,5) , we have

(a(1),. --:Q(9))

y78 = y79 =1, and all other y's are zero. Line 6 is performed

(5:6:9;5)7:2:1:8:)*) 5 hence ylE = y]j = Y25 = '.Y)_I_5 =

(2,1,0,1,0,0,2,0,0) +times when j = (5,6,9,3,7,2,1,8,4) respectively.
Let §ij be the average value of Vis o 88 (q(1),...5q(n))

ranges over all permutations. This is'simply the number of permutations

with- yijvf 1, divided by n! , so it is the probability that

q(i) = min{q(k) |1 <k < 3} , nemely 1/(j-i+l) . It follows that a ,

the average value of a , is given by

o1
1]

L Vi< L j—i-+1= L E%i ’

1<i<j<n M 1<i<j<n 2<r<n

where we have replaced j-i+l by a new variable r waich occurs

ntl-r times in the original sum. Hence

a = (n+l) E: % - E: 1= (n+l)(Hh-l)-(n-ij = (n+1)Hn;gn .
2<r<n 2<r<n

The variance of a can be calculsted too; the derivation is
ingtructive but quite complicated, so thé details will only be summarized

here. We need the average value of
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2
2
1<i<j<n 1<i<j<n 1<i<j<n

1<k<i<n

(1,3) # (k1)

= 2 Vit 2 Z (Vs ¥y P T Ve, TV, ¥ )
1<i<j<n Y l<i<i<k<g<n ‘R TIETIES TR JR

+ 2 X (Vs sV e TV T TV :T5)
1<i<j<k<n ijvik Yik'ik Yijvik

=a+ 2(A+B+C+D+E+TF)

where A,...,F represent the sums E:yijykz""’i:yijyik . When

i<j<k<1i are fixed, it is not difficult to prove that the average

value of .y, is 1/(3-i+1) (£-k+1) , of Vi, 18 1/(2-1+1) (£-3+1)

, . s s _ . s i
of Vig¥ig 1S 1/(2-i+1) (x-3+1) , of ViVig T Vi¥ye 18 1/ (k=-i+1) (k-j+1) ,
and of yijyik = Vi is l/(k—1+l) . Thls‘leaves us with several triple

and quadruple summations to perform; it is not difficult to carry out a

few of the sums, reducing them to

B

(g)-ez», c =Y—Z-2(2)+5x s

n

2)-2}{ 2

D=E=Z—X,-F=(

where

X = z I yv- ¥ u .., z- L =

J=-i j-i+lHj—i'
1<i<j<n 1<i<j<n

We have already summed X by replacing j-i+l by r , and the same

device works for Y and Z ; after applying well-known formulas for
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dealing with harmonic numbers (cf. {10, vol. 1, section 1.2.71),
‘ we therefore obtain
- - L2 5.2 1 S 2_4(2)
X=(otl)H -2n , Y =3(n +n)Hn-)I n"-yn , 2 =3(n+l) (Hn-Hn )=nH_+n .
This determines B , C , D, & and F . The quantity A is harder to

calculate; we have

|

A= . E 1 _ Z 1 (n-r;s+2)
1<i<j<k<i<n (J-i+l)(L-k+tl) r>2

I
|
Py
o
+

fl
Nl
g
o~
-8
© g
no
——
n
™
A=
-
A
i
vl\)

D L () () -t 1)
2<r<t-2 :

L<t<n

(nt2) (n+ 1)U ~ (2t 3)V+ W

by letting r = j-i-1, s = f-ktl , t = r+s . Then

< !
I 1
— RO
5 —
- )
B i
5 =
N
1
n
]
+
i=g
AY}

=
1l

L ((2%n-2) (g, _,-1) -5(n-1) (n-2) + 1-3(a-3)) .
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Putting the whole mess together, and subtracting 52 from the average

of 32 s, gives the exact value of the variance,
o = 2n° - (n+l)2Hr(12) - (1), + bn

(This is a calculation that should have been done on a computer.)

Taking asymptotic values, we can summarize the statistics as

follows:
/ S
a = (min 0, ave n 1n n+ Q(n), max %(ne-n), dev V2 - /6 n + 0(log n)) ;
b = (min 1, ave In n + 0(1), max n, devV1ln n + 0(1))

The total running time of the algorithm is therefore of order n log n
on the average, although the worst case is order n2 ;5 the comparatively
snall standard deviation indicates that worst-case behavior is very rare.

This completes our frequency analysis of the above algorithm. What
information have we learned? We have found that the algorithm almost
always takes about n log n steps, and that lines 5 and 6 are the "inner
loop" which consumes most of the computation time.

The analysis of one algorithm often applies to another algorithm as
ﬁell. The quantity a in the above analysis appears also in the
analysis of an algorithm to compute the inverse of a permutation [10,
vol. 1, Algorithm 1.5.35].

The above analysis.can also be extended to measure the advisability
of incorporating various refinements into the algorithm. For example,
suppose that we introduce a new counter variable called taglly, which is
initia;ly get to n . In lines 11, and also in line 12, we will insert

the statement "tally := tally-1 ", and at the end of line 12 we insert a
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new test "ii tally = O then go to exit " where exit ends the program.
This modification (cf. MaclLeod [12]) will terminate the algofithm
earlier, since it stops the j loop when the 1arge$t leader has been
found. At the cost of 1 more variable, 1 execution of the statement
ﬁ tally :=n ", n execubtions of " tally := taliy-1" and b= logn
tests " if tally = O ", we save some of the work in lines 2-7 and make it
unnecessary to test " if j >n " to see whether the j loop is
exhausted. How much is saved? It is not difficult to see that the
numder of iterations of line; 4 and 7 is reduced by ylgi-y134-...4-y1n s
so the average gaving is % + % SR % = n~1f¥ In n . The number

of iterations of line 6, the main loop, is reduced by

yl.y.. , an average saving of
2<i<j<n -

' 2
rooio. I i r . ¢ o2
251<j§n33;ﬁ1 2§r<j5nr3 \\2<r<n 2_r§nr2

]
o
HiE

_ L2 (2) o L 2
= E(Hn H, ) -H 41~ 2(JZn n)}~ .

So the net improvement caused by this ¢hange appears to be rather small.
This conciusioh would'hot be evident a priori, if we had not made the
analysis, since the average length of a cydle which starts at a randdm
place in a random permutation is well known to be % (n+1) .
The application to rectangular matrix transposition suggests that
we might also design a similar algorithm in which the function p_l is
input as well as p . Then we could look for a cycle leader by first testing
X

. -1, ) -1, -1, e .
p(3) , then p ~(3) , p(p(3)) » » (p ~(J)) , ete., until finding a

value < j . Tt turns out that the average number of operations performed

18



is the same as in the above algorithm, but the worst case is reduced to
O(n log n) . (This solves a problem stated by MacLeod [12].)

It is amusing to derive the latter n log n bound by obtaining the
exact maximum number f£{(n) of steps needed to rule out each of the
non-leaders, while processing an n-cycle, 1f we assume that both pk(j)
and p-k(j) aie fetched simultaneously in one step: Consider first
placing the element 1 , then 2 , 3, étc. into an initially empby cycle

so as to obtain the worst case; we obtain the recurrence

£{1) =0, £(n) = max (min(k,n-k)+ (k) + £(n-k))
1<k<n
The solution to this recurrence is rather interesting, it turns out to be

£f(n) = E: v(k) , where wv(k) is the number of 1's in the binary
0<k<n

representation of k . If aq >-a.2 Do > a,

a a a a = a
s2lio e 427 = %(ale 1y (a,+1)2 Skt (a+r-1)2 .

The fact that this function sabisTies the recurrence can be proved by
letting g(m,n) = £(mtn)-m-f(m)+£(n) , and showing that g(2m,2n) = 2g(m,n) ,
g(emrl,en) = glmyn)+g(mwtl,n) , g(2m,2n+l) = glm,n)+g(mntl) ,
g(om+1,2n+l) = I+g(w+l,n) + g(m,nt+l) ; hence by induction g(m,n) >0
when -m <n , with equality when m =n or n-l1 . (Asymptotic
properties of f(n) have been studied by Bellman and Shapiro [ 1 ].)

So much for Type‘A analysis of in situ permutation; what can be
said about the computational complexity of this problem? I don't really
know; it seems reasonable to conjecture that every algoriim for ig situ
permutation will require at least =n log n steps on the average, but

I don't know how to prove it.
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In thé first place there is a difficulty in defining the idea of
a "step"; the above frequency analysis assumes that p(k) can be
calculated in one step, and that =x{k] can be fetched or stqred in one step,
for arbitrary k Dbebween 1 and n . A complexity analysis must,
however, consider the 1imit as n - « ; an algorithm which works
could be seb up with something like n !

0

branches, and this would be uninteresting. But as n -» o , it takes

optimally for all n < n
at least log n steps just to look at the number k when we are
dealing with p(k) or x[k] , so the above program really takes
n{log n)2 steps instead of n logn , as n - » . On the other hand,
‘1o programmér really believes that the above algorithm really takes
log n steps each time x[k] is febched or stored, since the time is
bounded for ény reasonable n to which he wants té abplylthe algoritim.
In other words, we want a complexity measure that models the situation
for practical rangés of 1n , even though the model is unrealistic as
n -« , and in spite of the fact that we require the algorithm to be
valid for arbitrarily large 2 .

A second difficulty is how to phrase the "no auxiliary memory™ idea.
IT we assume that the x's are integers, and if we allow arithmetic
operations to be carried out, we could replace each x[k] by 2x[k] and
use the units digits as n extra tag bits. If operations on the x's are
- forbidden,  yet auxiliary integer variables like J,k,£ 1in the above
algorithm are allowed, we could still get the effect of n extra bits
of memory by doing arithmetic on an integer variable whﬁse value ranges

n

from 0 to 27-1 ; on the other hand, it isn't obvious that any an)

algorithm could be designed even when such a trick is used.
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" These congiderations suggest a possible model of The problem.
Consider a device with n® stabtes, for some constant ¢ . ZEach state
deterministically specifies the a "step" of the computation by
(a) specifying numbers i and j, 1<1<J<n, such that x[i]
is to be interchanged with x[j] ; and (b) specifying a number k
and n states ql,...,qn such that the next ste? is qp(k) . Can such
a device do the rearrangement in 0O(n) steps, or are n log n steps

needed?

Selecting the T-th largest. Now let us turn to another problem, this

time somewhat less academic. (. A. R. Hoare [ 8] has given a method
for finding the t-th largest of n elements, by making repeated
comparigons, and F. E. J. Kruseman Aretz has shown (see [15] that
Hoare's method makes approximately (2+2 Iln 2)n comparisons when
finding the median of the elements, i.e., when t = (n+1)/2 . Our goal
is to do a partial frequency anaiysis of the algorithm, determining
the exact average number of comparisons which are made,as a function of
t and n .

T shall state the algorithm informalliy, since I am not attempting
to make a frequency analysis of each step. TLet x[1l],...,x[n] Dbe the
given elements, and assume that they are distinct. We start by selecting
an arbitrary element vy , and compare it to each of the n-1 others,
rearranging the other elements (as in "quicksort") so that all elements
> v appear in positions x[1],...,x[k-1] , while all elements <y appear
in positions x[k*+1],...,x[n] . Thus, y is the k-ﬁh largest. .If k=1%,

we are done; if k >t we use the same method to find the t-th largest

21



of x[l],.;.,x[k—l] ; and if k <t we find the (t-k)-th largest of
x[kt1],...,x[n] . A very interesting formalization and proo.f of this
procedire has recently been given by Hoare tol.

Let Cn

" be the average number of comparisons made by the above
M4

process; we have

60 - X
“1,1‘0’ Cn,t_n l+n(An,t+Bn,t) , for 1<t <n, n>2,
where
= -+ :
An,‘t Cn-l,t-l cn-E,t-E oo Cn—t+l,1 ?
= + et .
Bot = Co,t * Corn,e Ch-1,%

‘This ig not the kind of recurrence that we would ordinarily expect to
gsolve, but let us make the attempt anyway. The first step in problems

of this kind is to get rid of the sums, by noting that

= + = + .
A+l "8t T %t 0 Pt T Pnt T Cnyt 3

then we can eliminate the A's and B's to get a "pure" recurrence in the C's:

(n+1)C nc ncn,t + (n-l)Cn_

n,t+l

o+l t+1 1,t

(nt1)n - n(n-1)-n(n-1)+(n-1) (n_2)+An+l,t+l'An,t+l—An,‘b+An—1,‘b

- -B_
T Pt1,4+1 P, 4+17 B, t P01, ¢

= - + -
=2+C) £ Ch1, e, 1 Gt

or in other words

+C = 2/(114'1) . (*)

Cn+l,t+l T Un,t+l T Cn,‘t ‘n-1,%

What an extraordinary coincidence that ntl was a common factor on each

22



of the C's ! This phenomenon suggests that we may actually be able to

solve the recurrence after all.
Checking the derivation shows that formula (¥*) is valid for
1<t <n ; we need to look at the boundary conditions next, when

t =1 or t =n:

1

Cpyp =01t (O 1¥Cy ¥ et Cy g 1) 3
(miNMLl—mml=(mDmmm4ﬁgbl;
Cn+l,l-cn,l = 2n/(n+l) = 2-2/(a+l) .

This 1s & recurrence that is easily solved, Cn,l = 2n-2Hn « By

symmeSry, Cn n = 2n-2Hn also. Now the recurrence
2

Cpan, 01 ") = Cypan ~Cpog,g) = &/ (0F2)

implies that

1,441 "t = HE'I * %* e ¥ % ¥ Lo, 001 7Oyt
= 2(Hn+l -H,t+l) +2-2/(t+1) ,
and this relatiqp l?kewise can be iterated:
Cogty =2 L (BT -1/1) 4 “mtit,1

? 2<k<t
Thus, finally, we have the solution

C i = 2((n+1)Hn_- (n+3-%)H

n, it (t+2)Ht+ n+3) , for 1<t <n.

For example, when calculating the median of n = 2t-1 elements,

the average nurber of comparisons comes to
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We(Hy, -H)+ Ut -8H + b = (b+h fn )t -8 fn v+ 1-8y+0(t™)

ot-1 "t

A Type B analysis of this problem is essentially the quegtion "What
is the smaliest number cof comparisons needed to select the t-th largest
of n elements?” There are really two questions, depending on whether
we want to minimize comparisons in the worst case or in the average case.

When <t =1, the questions are easlly answered; we always need at
least n-1 comparisons to determine the largest elements. For if we
consider each comparison as a match in a knockout tournament, every
player except the champion must lose at least one game. This argument
"~ can be extended also to the case t =2 , to show that an algorithm to
determine the second best player must use at least n- 24-r-log2 n-]
comparlsons, a result first stated by J. Schreier in 1952 and first
proved rigorously by S. S. Kislitsin in 196k. (See [ , vol. 3,
section 5.3.3] for further details and references.)

When * t = 3 +the minimum number of comparisons in the worst case
is st11l not known; and the minimum average number of comparisons is
not even known when ©+ =2 .

The random-finding problem is especially fascinating. No algorithm
for computing medians is known which requires less than n log n
comparisons in its worst case. And no proof that n log n comparisons
are necessary has been found. However, R. W. Floyd has recently
discovered efficient ways to compute medians with an average of only

2
2

n + 9(n2/5 log n) comparisons; and he has proved that at least

g n + o{n) comparisons are necessary on the average, no matter what

algorithm is used [ 4 ].
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Summary. I have tried to indicate the nature of algorithmic analysis
by describing two nontrivial problems in detail. Perhaps the complexities
of these examples have obscured the main points T wanted to make, so T
will attempt to summarize what I think is.most Important.

1. Analysis of algorithms is an interesting activity which contributes
to our fundamental understanding of computer science. 1In this case,
mathematics 1s being applied to computer problems, instead of applying

computers to mathematical problems.

2. Analysis of algorithms relies heavily on techniques of discrete
mathematics, such as the manipulation of harmonic numbers, the solution
of difference eguations, and combinatorial enumeration theory. Most of
these topics are not presently being taught in colleges and universities,

but they should form a part of many computer scientists' education.

3. Analysis of algorithms is beginning to take shape as a coherent
diécipline. Iﬁstead of using a different trick for each problem, there
are some reasonably systematic techniques which are applied repeatedly.
(Numerous examples of these unifying principles may be found by consulting
the entries under "Analysis of algorithms" in the index to [10].)
Furthermore, the analysis of one algorithm often applies to other

algorithms.

4.  Many fascinating problems in this afea are still waiting to

be solved.

25



(1]

(2]

(3]

[4]

[6]

(7]

(8]
(9]

[11)

[12]

(13]

[1k]

[15]

Bibliography

R. Bellman and H. N. Shapiro, "On a Problem in Additive Number Theory,"
Annals of Mathematics 49 (1948), 233-340.

J. Boothroyd, "Algorithm 302, Transpose vector stored afray,"
Comm. ACKM 10 (May, 1967), 292-29%.

Howard B. Demuth, Electronic Dsta Sorting (Ph.D. thesis, Stanford
University, 1956), 92 pp.

R. W. Floyd, "Notes on computing medians, percentiles, etc." 1In

preparation; perhaps to appear in IFIP Congress Proceedings.

D. Foata, "Probldmes d'Anslyse Combinatoire,”" Publ. Inst.
Statistique, Univ. Paris, 1M (1965), 81-2kl.

Lester R. Ford, Jr. and Selmer Johnson, "A tournament problem,"
American Mathematical Monthly 66 (1959), 387-389.

Herman H. Goldstine and John von Neumann, "Planning and Coding
Problems for an Electronic Computing Instrument,” in John von Neumann's
Collected Works, A. H. Taub, ed., 5 (Pergamon Press, 1963); 80-235.

C. A. R. Hoare, "Algorithm 65, Find" Comm. ACM (July 19€1), 221-322.

C. A. R. Hoare, "Proof of a program: Find," Comm. ACM }E’(January
1971), 39-k5. *

Donald E. Knuth, The Art of Computer Programming (Addison-Wesley

Publishing Corporation: Volume 1, 1968; volume 2, 1969; volume 3,
1972).

Donald E. Knuth, "The Analysis of Algorithms,' Proc. International

Congress of Mathematics, Nice, September 1970.

I. D..G. MacLeod, "An algorithm for in-gitu permutation,™ Australian
Computer Journal 2 (1970), 16-19.

Arnold Scholz, "Aufgabe 253," Jahresbericht der deubschen Mathematiker-

Vereinigung, class IT, EZ}(1957), L1-he,

Hugo Steinhaus, Mathematical Snapshots. (Oxford University Press,

1950), 28-39.

M. H. van Emden, "Increasing the efficiency of Quicksort,” Comm. ACM

&2’(September, 1970), 563-567.

26






