
PB 197 161

STANFORD ARTIFICIAL INTELLIGENCE PROJECT ~~ /
MEMO AIM-138 vadialCOMPUTER SCIENCE DEPARTMENT / ~—
REPORT NO. STAN-CS-71-188 i———————"

THE TRANSLATION OF 'GO TO' PROGRAMS

TO ‘WHILE' PROGRAMS

BY

EDWARD ASHCROFT |

AND

~ ZOHAR MANNA

JANUARY 1971

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

Reproduced by (4)
springfield, Va. repre 30

THE TRANSLATION OF 'GO TO' PROGRAMS

TO 'WHILE' PROGRAMS

by

Edward Ashcroft

Zohar Manna

Abstract: -In this paper we show that every flowchart program can be

written without go tostatements by using while statements.

The main idea is to introduce new variables to preserve the

values of certain variables at paviicular points in the program;

or alternatively, to introduce special boolean variables to

keep information about the course of the computation.

The 'while' programs produced yield the same final results

as the original flowchart program but need not perform computations

in exactly the same way. However, the new programs do preserve

the "topology! of the original flowchart program, and are of the

same order of efficiency.

We also show that this cannot be done in general without

adding variables.

1

GENERAL DISCUSSION

1. Introduction

The first class of programs we consider are simple flowchart programs

constructed from assignment statements (i.e., assigning terms to variables)

and test statements (i.e., testing quantifier-free formulas) operating on

a 'state vector' x . The flowchart program begins:with a unique start

statement of the form

START(Xgl? ’

where Xs nput is a subvector of x , indicating the variables that have
to be given values at the beginning of the computation. It ends with a

unique halt statement of the form |

HALT (Xt put ’

where X output 1s a subvector of x , indicating the variables whose
values will be the desired result of the computation.

We make no assumptions about the domain of individuals, or about the

operations and predicates used in the statements. Thus our flowchart

programs are really flowchart schemas (see, for example, Luckham, Park

and Paterson [1970]) and all the results can be stated in terms of such

schemas.

Let Py be any flowchart program of the form shown in Figure 1.

Note that, for example, the statement x ~e(x) stands for any sequence

of assignment statements whose net effect is the replacement of vector x

2

>

Ca)>
F T

8 2
CH

T |

Gem

Figure 1. The Flowchart Program P,.

| 3

by a new vector e(x) . Similarly, the test p(x) , for example,

stands for any quantifier-free formula with variables from x .

The flowchart program P, will be used as an example throughout

the paper.

Flowchart programs are usually easy to understand, but if the

program is to be written in a conventional programming language, goto

statements are required. There has recently been much discussion (see,

for example, Dijkstra [1968]) about whether the use of goto statements makes

programs difficult to understand, and whether the use ofwhileor for

statements is preferable. It is clearly relevant to this discussion to

consider whether the abolition of goto statements is really possible.

Therefore the second class of programswe consider are while programs,

i.e., Algol-like programs consisting only oF Yirkin SLabmns of the form
while {(quantifier-free formula) do (statement) , in addition to conditional,

assignment and block statements. As before, each program starts with

a unique start statement, START (Xt) , and ends with a unique halt

statement, HALT (X 4 ut) .
Since both classes ofprograms use the same kind ofstart and halt

statements, we can define the equivalence of two programs independently

of the classes to which they belong. Two programs (with the same length

of input subvectors Xs put and the same length of output subvectors
X utput) are said to be equivalent if for each assignment of values to
X np either both programsdo not terminate or both terminate with the

same values in X utput .

2 A block statement is any sequence of statements enclosed bysquare
brackets.

L

2. Translation to while programs by adding variables

(a) Extending the state vector X . _

We first show that by allowing extra variables which keep crucial

past values of some of the variables in x , one can effectively translate |

every flowchart program into an equivalent while program (ALGORITHM I).

The importance of this result is that the original 'topology'! of the

program is preserved, and the new program is of the same order of efficiency

as the original program. However, we shall not enter into any discussion

as to whether the new program is superior to the original one or not.

This result, considered in terms of schemas, can be contrasted with those

of Paterson and Hewitt [1970] (see also Strong [1970]). They showed that

although it is not possible to translate all recursive schemas into ,

flowchart schemas, it is possible to do this for 'linear' recursive

schemas, by adding extra variables. However, as they pc at out, the |

flowchart schemas produced are much less efficient than the original

recursive schemas.

As an example, ALGORITHM I will give the following while program

which is equivalent to “he flowchart program P, (Figure 1): |

START(x);

Muhile p(X) do x « e(x);
| 5 5s |
| - - - - - -

f q(x) then |X « b(x); while r(x) doXx « d(x) !}
Lif a(¥) then [X « b(X); while r(X) do X « d(X)};|
while q(y) A s(x) do

[Xx «cl(x); _

[unite p(x) then x «~ e(x); |
¥ ~ Xj |

| if a(®) then [X - b(X); while r(%) do & ~ a(R);
if q(F) then x « f(x) else x « g(x);
HALT (x).

If the test q(x) uses only a subvector of x , then the algorithm will

indicate that the vector of extra variables y need only be of the same

length as this subvector.

Note that on each cycle of the main while statement, the state

vector x is at point B , while vy holds the preceding values of x |

at peint Q .

Note also that the two subprograms enclosed in broken lines are

identical. This is typical of the programs produced by the algorithm.

One might use this fact to make the programs more readable by using

'subroutines! for the repeated subprograms.

(v) Adding boolean variables.

Inspection of the above example will suggest that we do not need

to introduce a whole vector vy , but rather a single boolean variable t

which is assigned the value q(x) , as illustrated below. This while

program, which is still equivalent tc the program Py, will in practice be

more efficient than the preceding while program, since t requires only

one memory bit whereas y may be a very large vector.

START (x) ;

x « a(x);

while p(x) do x ~e(x);

t ~ q(x);

if t then [x «b(x); while r(x) do x ~ d(x)];.

while t A s(x) do

[x ~ c(x);

while p(x) then x « e(x);

t ~ q(x);

ift then [x ~b(x); while r(x)do x « d(x)]];

if t then x «~ f(x) else x ~ g(x);

HALT (x).

6

The translation of flowchart programs into while programs by the

addition of boolean variables is not a new idea. BOhm and Jacopini [1966],

Cooper [1967] and Bruno and Steiglitz [1970] have shown that every flowchart

program can be effectively translated into an equivalent while program

(with one while statement) by introducing new boolean variables into the

program, newpredicates to test these variables, together with assignments

Lo set them true or false. The boolean variables essentially simulate a

program counter, ard the while program simply interprets the original
program. On each repetition of the while statement, the next operation

of the original program is performed, and the "program counter’ is updated.

As noted by Cooper and Bruno and Steiglitz themselves, this transformation

is undesirable since it changes the *topology'of the program, giving a

program that is less easy to understand. For example, if a while program

is written as a flowchart programand then transformedback to an

equivalent while program by their method, the resulting while program will

not resemble the original.

We give an algorithm (ALGORITHM II) for transforming flowchart programs

to equivalent while programs by adding extra boolean variables, which is an

improvement on the above methods. It preserves the "topology' of the

original program and in particular it does not alter while-like structure

that may already exist in the original program.

For the flowchart program Py, for example, ALGORITHM II will produce

the following while program.

7

START (x) ;

Xx « a(x);

t « true; |

while t do

[while p(x) do x « e(x);

if q(x) then [x « b(x);

while r(x) do x « d(x);

if s(x) then x « c(x)

else [x « f(x); t « false]]

else [x «~ g(x); t — falsell;

HALT (x) «

Note that each repetition of the main while statement starts

from point 7» and proceeds either back to 7 or to & . In the latter

case, t is made false and we subsequently exit from the while

statement.

5. Translation to while programs without adding variables

It is natural at this point to consider whether every flowchart

program can be translated into an equivalent while program without adding

extra variables (i.e., using only the original state vector x) . We

show that this cannot be done in general, and in fact there is a flowchart |

program of the form of Figure 1 which is an appropriate counter-example.

A similar negative result has been demonstrated by Knuth and Floyd

[1970] and Bruno and Steiglitz [1970]. However, the notion of equivalence

considered by those authors is more restrictive in that it requires

equivalence of computation sequences (i.e., the sequence of assignment

and test statements in order of execution) and not just the equivalence

8

of final results of computation as we do. Thus, since our notion of

equivalence is weaker, our negative result is stronger.

Our counter-example is a program of the form of Figure 1 in which:

h r identical to q , s identical to p, o and e identical

to g, and ¢ and d identical to f .

There is also another similar counter-example in which:

r identical to q , s identical to p, d and e identical

to g, and b and ¢ identicalto fT .

The fact that these restricted forms are counter-examples is especially

interesting since we have found while programs, with no extra variables,

which are equivalent (in our sense) to most of the programs of the form

of Figure 1. In particular, we can do this for any flowchart program of

the form of Figure 1 with only two distinct tests and two distinct

operations in which

¢ 1s identical to e ,

or b is identical to 4d,

or f is identical to g .

9

ALGORITHM I: TRANSLATION BY EXTENDING THE STATE VECTOR x

Qur algorithm depends on the fact that every flowchart program can

be put effectively into a normal form (see Cooper [1970] and Engeler [1970]).

A flowchart program is in normal form if iT is of the form

HALT (X 4 out)

where & block is defined recursively as follows:

1. A basic block is any tree-like, loop-free, one-entrance piece of

flowchart program (without start and halt statements). For example,

| | X f(x) X f(x) |

| | T B®) F

10

Ce Composition

. 5 4 and | are blocks, so is

5. Looping

It is a block, so is

We shall consider only flo.chart programs in normal form. By

induction on the structure of the blocks we show how to associate with

each block B(x) (with state vector x) a piece of while program

a (x5) JY and with the i-th exit of the block a pair (0; (X,¥), 7, (x)) ,
where 9, (X,¥) is the 'exit-condition' and 75 (%) is the 'exit-termm?,

XN 5 15 a (possibly euply) vevior of sdiiiionsl varlenles Gerotueed Uy
the translation.

A

Fal

such that B(x) comes on: of the i-th exit with E if and only if

a (x, ¥) terminates with some E' s.t. P;(E'5Y) =T and E = v,(E) :

Each Ps is a quantifier free formula constructed from the

tests and operations in the flowchart. The P's for a given block are |

complete and mutually exclusive.

In each of the three cases we have to consider, the above relationship

between Og and (> Ts) is preserved.

l. B(x) is a basic block (i.e., tree-like, loop-free, one-entrance flowchart)

In this case a (x) is always null (the empty program), P, (x) is

the condition that control will take exit i for input x , and T, (x)
is the result of performing the assignment statements on the corresponding

path. For example,

r — BK) |

| X ~ £,(x) | |

X + £,(x) | x = £3(x) |

(4 (£,(x)) ’ £,(£,(x))) | CE. |
TP J F |

X + f(x) | X «~ f(x) !

where a (X) is null.
- 12

2. B(x) is constructed from B'(x) and B"(x) by composition

We cconsider two cases:

(a) B" is a basic block.

i

gp SEES
\.n

and

| sz) a a, ()), i.e, ml
1 m

CV, (8)58, (8) ¥(%),8_(%))

then

=— — = ==®

lf j2 | 0 |

gy vw_ _ [— __

where ay (%,¥") is ap, (X,¥") .

15

(b) B" is a non-basic block.

If

a,&F)
1 \ nn

and

m

WEi8,E) (BF,(8)

then let X, be the subvector of x which is used in exit

conditions Pyseves® «Let To be a new vector of the same

length as X, . Then y = (¥'¥"3,) and

y B(x) |

| 1 | 2 n |

| B"(x) |

a! __ __\m | |

©) (For FAY. (5,5), 8_(R))

where a (x,y) is | A (x,¥');

| | if ©, (x,¥") then [xX = 7,(X) 505. (X,3")]

1k |

/

i

3. B(x) is constructed from B® (x) by looping.

If | |

Toid
1 n

then

|| Co] |

@,(%,¥) 5 15(X)) @,(%¥),7_(%))

where a (X,Y) is a, (X53) 3

while @.(X,¥) do [x = 7,(%); ag, (%,¥)]

and ?,TIT.9 are complete and mutually exclusive and

?, (x,y) > 9, (x,y) 3s 2<Jj<n.

Comment: To find fo, note that the algorithm ensures that each ®3
is a conjunction of literals (i.e., atomic formulas and negations of atomic

formulas), and therefore we can represent ©} by a binary tree; e.g.
fPAQAT, PAQA~T , PA~Qq, ~D} is representedby tree (a).

15

p

NE D

T I r

r/\fr PMC

PAQATYT DAQA~T PAT pPA~r

(a) (©)

If we remove the node in the tree leading directly to the terminal node

representing @, , the new tree represents the desired conditions ©.] .
For example, if we remove Pp A ~q from the above set of conditions, we

get the new tree (b) which represents the new set of exit conditions

{pAa,pA~r, ~p}.

Conclusion: This covers all cases of blocks we need to consider. To find

the while program equivalent to a given flowchart program (in normal form)

START(X, ut)

HALT(X oot) ,

we find a (X,¥) and {@;(x,¥),7,(x))} . The desired while program is then

START (X; ut)

if , (X,¥) then x ~ T(x)

else if P(X, ¥) then x + 7,5 (x)

| else ... Xx = 1 (x);

LLC)

16

Example: Let us consider again the flowchart Program P, (Figure 1). It is
already in normal form, and the blocks are indicated in Figure 2. The

exit conditiohs and exit terms for the exits of all blocks are also

indicated. The corresponding «'s are given below:

a (x) is null. /
1 .

= (Xx) is while p(X) do X ~ e(x) .
s le go

a (x) is null. |
3

a (x) is while r(x) do X « d(x)
L

“a, 7) -, 1s %, (x); Y = X53 if q(x) then [x =~ b(x); %, (¥)]
Note that Xx, is the subvector of X occurring in the exit |

conditions of B, , i.e., in q(x) .

(3) is ay (x,y); while q(¥) A s(x) do [X ~ c(X); a (%¥)] -
5 5

Thus the original flowchart program is equivalent to the following while

program;

START (x) ; ¢ |

x ~ a(x); : |

while p(x) do x + e(X);

¥ - X,;

if q(x) then [x - b(X); while r(X) do X ~ a(x);

while q(y) A s(x) do

[x ~ u(Z);

while p(x) do x = e(x);

CY CX

if q(x) then [x = d(x); while r(x) do X = a(x) 1];

if q(y) then x ~ f(x) else xX ~ g(x);

HALT (x) .

17

— TT — J oe TTT TT TB

FO. Ee)

(caa@y aE EE) [(a(x),o(x)) |

| 5I AE 1

(~a(7),8() | | % -a@ | | |

Em | Co
| | er@ans@he@y \Gr@®@aAs@®,e | |

| (—5(X),£(X)) (s(X),c(X)) i!

| @@n-s@, em) (a(§) As), (3) |

| I A |

Figure 2. The flowchart program P, (for ALGORITHM I).

18

Comment : In general the transformation of a program to normal form

results in exponential growth in the size of the program. This can

be reduced if we allow the following extra case in the definition of

blocks.

Lk. Merging (optional)

If | is a block, so is

BY B |]

EE EJ

The algorithm can be easily modified to cover this case, but since

it would complicate our notation, we will not discuss it here.

19

ALGORITHM II: TRANSLATION BY ADDING BOOLEAN VARIABLES

The second algorithm, ALGORITHM II, translates flowchart programs

to equivalent while programs by adding boolean variables. It makes use

of the fact that every flowchart program (without the start and halt

statements) can be decomposed into blocks where a block is any piece of

flowchart program with only one exit (but possibly many entrances) bi
This is obvious since in particular the whole body of the given flowchart

program can be considered as such a block. The aim, whenever possible, is

to get blocks containing at most one top-level test statement (i.e.,

test statement not contained in inner blocks) since such blocks can be

represented as a piece of while program without adding boolean variables.

In particular, if a while program is expressed as a flowchart program,

this latter program can always be decomposed into such simple blocks,

and the algorithm will give us back the original while program.

For any given flowchart program we construct the equivalent while

program by induction on the structure of the blocks. Since the ideas

behind the construction are intuitively simpler, we shall not be as

formal as in the presentation of ALGORITHM I.

For each entrance oy to block B we consider that part B, of

the block reachable from b, . We then recursively construct an equivalent

piece of while program 7g (Xs%) u/ as follows. There are two cases to
consider: :

uf Note that the tlocks used here are not related in any way to those
used in ALGORITHM I.

i: t is a (possibly empty) vector of additional boolean variables
introduced by the translation.

20

Case 1: (a) B, contains at most one top-level test statement,

or (b) B, contains no top-level loops.

In both cases rg (Xt) is the obvious piece of while program

requiring at most one top-level while statement (and no extra boolean
variables).

Case 2: B, contains two or more top-level test statements and at

least one loop.

In this case we choose a set of points on top-level arcs of B,
(called 'cut-set! points) such that each loop containsat least one such

point. One point on the exit arc of the block is also included in this

set. We shall translate B, into a piece of while program 7p, (%%) with
one top-level while statement in such a way that each iteration of the while

statement follows the execution of B, from one cut-set point to the next.

In this case, rg (Xt) includes boolean variables introduced to keep track

of the current cut-set point. Note that n boolean variables tiatyseeast
are sufficient to distinguish between k cut-set points, ghd <k <2 .

Example: We shall illustrate the method using agein the flowchart program

Py (Figure 1). We decompose P, into blocks as shown in Figure3. Blocks

By and B, are of type 1 and can each be written as a single while

statement. Block By is of type 2 with a single top-level loop. Thus

it is sufficient to choose points «a and B as the cut-set points. To

distinguish between a and BR we need one boolean variable, t say.

Thus the following while program, using the boolean variable t , can be

generated and it is equivalent to the given flowchart program P,.

21

Comrr(z)>

=oh
J ——— |

| on
"Ga > | |

C_a®) >F FN ——— |]

| ———— Sg | || 2

C_x(® > |
8 |
pan

|. 35] ce _ _ _ _

Figure 3. The flowchart program P, (for ALGORITHM II).

22

START(x) ; |

x ~ a(x); |

t ~ true;

while t do |

[while p(x) do x ~ e(X);

if q(X) then [X = b(X);

while r(x) dox ~d(X); -

if s(x) thenx =~ c(x) |

else [x ~ f(x); t ~ false]]

else [x ~ g(x); t ~ falsel];

HAIT (x) . |

23

THE NEGATIVE RESULT

We consider the flowchart program P, (Figure L4) which has the

structure of Figure 1. The domain D is the set of all pairs of strings

such that the first string, called 'head',is any finite string over

letters {f,g} , and the second string, called 'tail’, is any ET

string over letters (2,8, 7) with at most one occurrence of Y
During a computation of Ps the only changes in the value of the

program variable are deletion of leftmost letters from the tail and

adding letters f or g to the right of the head. The tests in the

program simply look at the tail, and therefore the computation is determined

by the tail of the initial value. Thus, since the program terminates if

and only if both tests « and B are false, it implies that FP, terminates
if and only if the tail of the initial value contains 7 . Another important

feature of any computation of Pp, is that whenever the leftmost letter of

the tail is a , the next but one operation must be operation g . Similarly,

whenever the leftmost letter is B , the next but one cperation must be f .

Let us assume that we have a while program FP, equivalent to FP, which
also has one variable and the same domain D . Although the assignment

statements of P, may use any terms obtained by compositions of the operations
f and g , we assume without loss of generality that each assignment

statement in P, consists of a single operation f or g . The tests in
the conditional and while statements may only use quantifier-free formulas

obtained from tests @ and pg, and operations f and g . Since we use

5 Note that the domain is non-enumerable. However, we can in fact
restrict the tails to the enumerable domain of ultimately periodic
strings, i.e., Infinite strings which eventually repeat some finite

substring indefinitely. :

2k

F T

|e | :

/ ?
F T |

where test @ means "is letter 'Q' the leftmost letter in tail";

test f means "is letter 'f' the leftmost letter in tail; :

operation f means "erase the leftmost letter in tail and add

letter 'f' on the right of head"; and

operation g means "erase the leftmost letter in tail and add

letter 'g' on the right of head".

Figure 4. The Flowchart Program P, (for negative result)

25

only one variable, it follows that every sequence or values describing a

computation of P, is identical to the corresponding computation of P,.
Note also that since there is a bound on the depth of terms in the

quantifier-free formulas, there is a bound, M say, on the number of

leftmost letters in the tail that can affect the decision of any test

in E,. Finally, without loss of generality we shall make the restriction

that there is no redundant while statement in P.; i.e., there is no while
statement with a uniform bound on the number of its iterations.

Since EP, must contain some (non-redundant) while statement, let W
be any while statement in P, which is not contained or followed by another

while statement. The point in P, immediately after W we shall denote by A .

Lemma

For all n (n > 0) there exists strings s&,C ¢ {2,8} and

de {a,BY (le] = n) 7 such that for all strings be (a,8) the
computation starting with tail abeyd passes A with some tail

abcyd , where ab is some rightmost substring of ab (possibly empty).

From this Lemma we immediately obtain the following corollary.
\

Corollary

For every n, n >0 , there exists a finite computation of E,
which passes through A with more than n operations still to be performed.

But this contradicts the fact that, since there is no while statement

following A , the number of operations that F, can perform after A is
bounded.

L i.e., a and c¢ are finite strings (possibly empty) over {a8} ,
d is an infinite string over {o,f} and the length of ¢ is n .

26

Proof of Lemma. By induction on n .

Base step. Choose any computation starting with tail a‘a''btyd?

{(a',a",b! ¢ {we}, d* ¢ {a,8}" and |a"] = M) that enters W with

tail a"b'yd' . (Such computation exists by non-redundancy of Ww .)

Since at most M leftmost letters of the tail can effect the

decision of any test, on entering W the main test can only look at a" .

Therefore the test will be true for any tail starting with a" .

In particular, the computation starting with tail a'a"bya"d' ,

£8 ri b in (a, » also enters W at the same point, i.e., with
tail a"bya"d' . It must subsequently pass point A , but (noting that

the test in W must be false when passing A) it cammot pass A with

tail a"d! .

Hence, with a = a'a" , d = a"d' , for all strings b in {2,8} ’

the computation starting with abyd must pass A with some tail

* abyd where ab is some rightmost substring of ab .

Induction step. Assume we have strings a,C ¢ {a,B} and de {a,8Y" ’

lel =n , such that for all strings b in (2,8) the computation |

starting with tail abcyd passes A with some tail abcyd where ab

is some rightmost substring of ab .

We find a string c'e {a8} , |c'| = ntl, such that for all

strings b' in (®,B) the computation starting with tail ab'e'yd

passes A with some tail ab'ec'yd where ab' is some rightmost substring

of ab' .

There are three cases to consider:

27

(i) For all non-empty strings b , the corresponding substring ab

is non-empty. In this case we take c¢' to be ac Y

For any string b' in {a,8) the computation starting with

tail ab'acyd , passes A with tail ab'acyd , where ab’

is a rightmost substring of ab' .

(ii) For some non-empty string bt = db" (b" ¢ {a, B81) , the substring

ab is empty, i.e., there exists computation S starting with

abacyd that passes A with tail c¢yd . In this case we take c!

to be Bc .

By earlier remarks about P, and os it follows that the next
operation in S after passing A must be g . |

Now, for any string b' in {2,81 the computation starting

with tail ab'Becyd must pass A with some tail ab'Scyd where

ab'gf is some rightmost substring of ab'g .

ab'g cannot be empty because this would mean that this :

camputation passes A with the same tail c¢yd as for ©

but in this case the next operation to be performed is fT .

This is impossible, since the course of computation from A must

be determined by the tail at this point.

Hence, the computation must pass A with some tail ab'Beyd

(or equivalently ab'c'yd) where ab' is a rightmost substring of ab’ .

(1ii) For some non-empty string b = b"8 (b"e {8}) , the substring ab

is empty. In this case we take c¢' to be Qc .

We proceedas in case (ii) with a and Pp interchanged and

f and g interchanged.

Q.E.D.

* ve could equally well take c¢' to be Bc and consider computations
startingwith tail ab'Beyd .

28

Acknowledgment |
We are indebted to David Cooper for stimulating discussions and

mainly for his idea of using cut-set points which we have adopted in

ALGORITHM II.

References

C. BOHM and G. JACOPINI [1966]

"Flow Diagrams, Turing Machines and Languages with only Two Formation

Rules". CACM, Vol. 9, No. 5, pp. 366-371 (May 1966).
J. BRUNO snd K. STEIGLITZ [1970]

"The Expression of Algorithms by Charts", unpublished memo.

D. C. COOPER [1967]

"B8hm and Jacopini's Reduction of Flow Charts". Letter to the

Editor. CACM, Vol. 10, No. 8, pp. 436-4 (August 1967).
D. C. COOPER [1970]

"Programs for Mechanical Program Verification", in Machine Intelligence

6, Edinburgh University Press.

E. DIJKSTRA [1948]

"GoTo Statement Considered Harmful", CACM, Vol. ll, No. 5, pp. 147-148

(March 1968).

E. ENGELER [1970]

"Structure and Meaning of Elementary Programs”, in Symposium on the

Semantics of Algorithmic Languages, |

D. E. KNUTH and R. W. FLOYD [1970]

"Notes on Avoiding 'GO TO' Statements", CS 148, Computer Science

Department, Stanford University (January 1970).

D. C. LUCKHAM, D. M. R. PARK and M. S. PATERSON [1970]

"On Formalized Computer Programs", Journal of Computer and System

Sciences (June 1970).

M. S. PATERSON and C. E. HEWITT [1970]

"Comparative Schematology', Unpublished memo.

H. R. STRONG [1970]

"Translating Recursion Equations into Flowcharts", Journal of

Computer and System Sciences (to appear).

29

