
| STAN -cs-70-172
| SU-SEL-70-05

| |

Analysis of Parallel Systems

by | |

~ TH. Bredt

y August 1970 | |

Technical Report No.7 |

This work was supported in part by the Joint Services |
Electronic Programs U.S. Army, U.S. Navy, and U.S. |
Air Force under Contract N=00014-67-A-0112-0044

and by the National Aeronautics and Space Adminis-
tration under Grant 05-020-377. | |

© DIGITAL SYSTEMS LABORATORY N
~~ STANFORD ELECTRONICS LABORATORIES

oo STANFORD UNIVERSITY - STANFORD, CALIFORNIA |

|

Cot TET rT coo EE

STAN-CS- 70-172 SEL-70-057

ANALYSIS OF PARALLEL SYSTEMS

by

| T. H. Bredt

. August 1970. |

Technical Report No. 7

DIGITAL SYSTEMS LABORATORY |

Stanford Electronics Laboratories Computer Science Department

Stanford University

| Stanford, California

This work was supported in part by the Joint Services Electronic
Programs U.S. Army, U.S. Navy, and U.S. Air Force under Contract

N-00014-67-A-0112-0044 and by the National Aeronautics and Space
Administration under Grant 05-020-337.

OE |
aon

FI

v

1)

*

’

.

+

’

~.

:

: I"

|

oo =

~

- STANFORD UNIVERSITY
Digital Systems Laboratory |

Stanford Electronics Laboratories Computer Science Department

Technical Report Number 7

August, 1970

ANALYSIS OF PARALLEL SYSTEMS

by

T. H. Bredt

ABSTRACT |

’ A formal analysis procedure for parallel computer systems is

presented. The flow table model presented in a earlier paper* is used

todescribe a system. Each component to the system is described by a

completely specified fundamental-mode flow table. All delays in a

parallel system are assumed to be finite. Component delays are

assumed to be bounded and line delays unbounded. The concept of an

output hazard is introduced to account for the effects of line delay

and the lack of synchronization among components. Necessary and

sufficient conditions for the absence of output hazards are given.

The state of a parallel system is defined by the present internal

state and input state of each component. The operation of the system |

is described by a system state graph which specifies all possible state |

transitions for a specified initial system state. A procedure for

| * Bredt, T. H. and McCluskey, E. J. A model for parallel computer
- systems. Technical Report No. 5, SEL Digital Systems Laboratory,

Stanford University, Stanford, California (Apr 1970). N
i

constructing the system state graph is given. The analysis procedure)

may be summarized as follows. A problem is stated in terms of restrictions

on system operation. A parallel system is said to operate correctly |

with respect to the given problem if the associated restrictions are

always satisfied. The restrictions specify either forbidden system

states, which are never to be entered during the operation of the system, |

or forbidden system state sequences, which must never appear during

system operation. The restrictions are tested by examining the system

state graph. A parallel system for the two-process mutual exclusion

problem is analyzed and the system is shown to operate correctly with

respect to this problem. Finally, the conditions of determinacy and |)

output functionality, which have been used in other models of parallel

| computing, are discussed as they relate to correct solutions to the |

| mutual exclusion problem. |

| ii |

- nun

| TABLE OF CONTENTS

| ABSTRACT © ¢ 4 « ¢ «4 6 oo o o eo so o o o o o o o o o o« oo i

| TABLE OF CONTENTS +. & © ¢ « os o « o so « o o o o o os o o o o « iii

| LIST OF TABLES . . « + « &¢ « o so so o o o o o o o o o o o o o iv

LIST OF FIGURES . +. + & « « 4 o o o o « o so o o o» os o o o o \4

INTRODUCTION . « ¢ ¢ oc 4 « oo 6 oo os os o o o o o so o o o « oo 1

PARALLEL SYSTEMS . + « « « ¢ « « o so o o o os os o o o os o « o 3

Output Hazards . . « « ¢ © « o « o o o o o os o o o o o 9

DESCRIPTION OF SYSTEM OPERATION . +. ¢ « ¢ o « « « o o o« o o 15

An Example: The Buffer Problem . . . « « ¢ « « « o o o 19

« Detection of an Output Hazard . . .+v ¢ « « « « « o o o 22 |

System State Graph for the Two-Process Mutual Exclusion

: Problem . . . « « « ¢ ¢ + ¢ « « « o eo so so o o o o a o 27

CORRECT OPERATION FOR PARALLEL SYSTEMS . « « « ¢ « + « « « « 27

Correctness of the Solution of the Buffer Problem 39

Correctness of the Solution to the Two-Process Mutual |

Exclusion Problem. . « « « « « « « « « « « « « « o o 40

Correctness, Determinacy, and Output Functionality . . . 41

CONCLUSIONS + « & & oo os oo o 5s so o o eo o o oo o o o oo os so o 49

REFERENCES2| |

iii |

| LIST OF TABLES :

l. Alternative Flow Table for the Parallel System of |
Fig. 2. LJ LJ LJ » J LJ L LJ LJ [] . [] [] LJ - LJ} LJ] LJ LJ [] LJ [J . * [J 10

2. CPU and Channel Programs for the Parallel System

| of Fig. 3. [J [J LJ L | [J | J L J [J LJ LJ [] LJ J J [J [J] LJ * [] * LJ [] J [J 23

3. System States with Immediate Successors for the

| 4, Partial Table of System States with Immediate
Successors for the Parallel System of Fig. 2. « « + « « . 28

| 5. System States with Immediate Successors for the

6. Functional Description of Component Operation for |
: the Parallel System of Fig. 1. co ee eo oe eo eo + + se a a 42

7. Modified Control Flow Table for the Mutual Exclusion

Problem. s ° . . se . « = . * a . . + a . L J TE . . 46 .

8. Modified Flow Table for C_. (Fig. 1) to allow Entering
Cs : 2 48

Critical Section Only Once. r 4 8 8 vA tae errr

iv

| 5 |

N | LIST OF FIGURES)

| 1. Parallel system for the two-process mutual |
exclusion problem. ec se 4 4 ee a 6 4 se 4 ee eee 5)

2. Example parallel system. c+ se eo se 6 so = eo oe so eo + eo eo 8

3. Parallel system for the buffer problem. . cvs ae as 21

+ 4, System state graph for the parallel system in Fig. 3. . . 25

5. System state graph for the parallel system in Fig. 3

when line delays are zero. ce 6 + a 4 eo oe + +o + + oe eo eo 26

: 6. System state graph for the parallel system in Fig. 1. . . 37 |

7. System state graph for the parallel system in Fig. 1 |
when line delays are zero. * + 5 2 4 8 2 + 8 8 8 2 8 eo » 38

| 8. Analysis procedure for parallel systems. ce 0 eo a « 00 |

] |

ha

[4

-

I

1

-~

»

LY

[]

,.

: 1

3 INTRODUCTION

A major concern in computer science is the development of formal

procedures for the analysis of programs and algorithms [1, la, 8, 12,

18, 19, 20, 21]. There is also much interest in the development of

a common basis for the description of programs and circuits, that is,

software and hardware. In [2], we have defined a flow table model

| for parallel computer systems which uses fundamental-mode flow tables

to describe the operation of each system component. Procedures for

synthesizing and analyzing sequential circuits using flow tables are

-" well known [22]. In [3], analogous procedures are developed |

- for a class of sequential programs, allowing flow tables to be used

as a common link between programs and circuits.

The purpose of the flow table model is to aid in the study of

the interactions of system components which are operated concurrently.

Algorithms which control these interactions usually never terminate

in the way that an algorithm for sorting or inverting a matrix does

and as a result different analysis methods are required.

A classic problem in parallel systems is the mutual exclusion

problem stated below for two components.

| 2

Problem: (Mutual Exclusion) N

Given two components, which operate concurrently and which

contain "critical sections, control these components so

that the following two restrictions are always satisfied:

Restriction 1: It is impossible for two components to be

in their critical sections simultaneously.

Restriction 2; If a component wants to enter a critical

| section, it is eventually allowed to do so.

The components in this problem usually represent the process of ex- :

ecuting a program. The exact content or nature of the critical sections

1s not important in the development of a solution to this problem.

Typically, a critical section contains an access to a common memory -

location, modification of a system table, etc.. Solutions to this

problem usually assume the exclusive execution of certain primitive

operations [4, 5, 6, 7, 12, 14]. Components which use these primitive

operations communicate by accessing common memory locations. In the

flow table model, components communicate by changing values on lines

(physical wires) which interconnect them. The lines carry binary level

signals and it is assumed that thereis no bound on the time for

value changes to propagate along the lines. The primitive operations

in the flow table model are the change of the value on an intercon-

| necting line and the recognition of a value change on one of these lines. |

We do not assume exclusive execution of these primitives.

* This is a slightly different version of the problem considered by N
Dykstra [5, 7 |]. Dykstra did not require that a given program must
enter its critical section but rather that the decision as to which

] - program would enter its critical section could not be postponed

indefinitely. :

=

3
.

~ In [2, 3 |] a solution for the two-process mutual exclusion

problem was designed using the flow table model. In this paper,

formal analysis procedures for the flow table model are given and

| these procedures are used in the analysis of this solution for the

mutual exclusion problem.

PARALLEL SYSTEMS

We begin by giving a definition of a parallel system.

] Definition 1: | |

A parallel system is a finite collection of com- |

: ponents @ = {c;.Cys0nn0c] and a finite collection
of lines @ = {£y:lys--enl Y. Each component C, has
a set of distinct input variables called the com-

ponent input set I. = ix,)Xy aes X, } 1 < 1, 2M |
1 2 n |

jJ=1,...,n and a set of distinct output variables

called the component output set 0, = {x, 2.9 EERED. },
1 2 m

1 < 1,< M; j=1, «..,m. Each line 4 = (X,,x) connects

a component output variable x; with a component in-
put variable xy The lines carry binary level values.

- and value changes propagate from component output |

to component input. Each output variable must be |

connected by a line to exactly one input variable

or and each input variable must be connected by a line

L

to exactly one variable input. The operation of each

| component is described by a completely specified flow

\ table [22 | with a designated initial internal state.

The initial value for each line is the value specified

for the output variable associated with the line.

The values of component input and output variables define the component

input state and output state, respectively. The assumptions about

physical delays present in a parallel system are the following:

Assumption 1: |

The time for a value change to propagate from a component output

| to a component input (line delay) is finite and unbounded. |
Assumption 2:

Within a component, delays are finite and bounded. |

The parallel system designed in [2 |] as a solution for the two-process |

mutual exclusion problem is shown in Fig. 1. The initial internal |

state for each component is internal state 1. Components C, and Cy
contain critical sections which are entered and left exactly once

when the component is in internal state 2 with the 1 input state.

Our definition of a parallel system is similar to the definition

of a circuit given by David Muller in his study of speed independence

[23]. Muller assumes that each component (element) has a single

output and allows lines to take integer values which are not restricted

to be binary. The delay assumptions made in Muller's model are

Se me u

: p,

i Lo
C = {C C C

1’ 72’ 34 | | C, |
=p bo 4 4} 34

2, = (X5%1)545 = (X5,x,) -) C,

0) = ix}, I) = {xs} |
0, = {X,}, I, = {=}

"3 *)

0 1x 0 LX

| C, C,

*1%2

| 00 Ol 11 1

| 0 XX,

(c, gets) 2 1 (2) (2) 3 01

(c, gets) 3 | 4 2 3) () 10

(c, last) A) > 2 3 | oo

C, (control) |

Figure 1. Parallel system for the two-component mutual
- exclusion problem.

| 6

different from those made here. Muller assumes that |

all line delays are zero. In cases where line delays can affect

| system operation, he assumes that special delay components (elements)

| are specified in the model. In our model, line delays are explicitly

accounted for. |

Our parallel systems are also similar to the definition of a

finite-state computational schema given by Luconi [15]. Luconi

ages functions rather than flow tables to describe component behavior

and assumes that delays are present only in components and not in

lines. In Luconi's model, components communicate by means of values

stored in memory cells rather than by level signals on interconnecting | |

lines. Luconi assumes that component operations are never performed

~ simultaneously. |

| The intent of our line delay assumption is that line delays

| cannot be controlled. It is not assumed that, when a component C,

changes the value of an output variable, the value change necessarily

propagates to the component C, at the other end of the interconnect-
ing line or, if the value does propagate, that it is recognized by | |

C, When components operatein this manner, it is not clear what

it means for a component to ''recognize' an input change. The following

discussion is intended to clarify this point. Basic component opera-

tion, as described in [2], consists of two phases. In the first |

phase, the present input values (input state) are recorded in a rank

of flip-flops called the input rank. In the second phase, these oC

input values and the present internal state of the component determine

the component response. When this response is complete, the two-

phase cycle of operation begins again. A definition of the re-

cognition of an input value is given below.

i Definition 2:

Given a value change for a component input

variable, the new value is said to be recognized

: by the component if the new value is recorded in

the appropriate flip-flop of the input rank

during the first phase of some cycle of com-

E ponent operation as described above. |

. The following example illustrates a situation in which an input

change may not be recognized by a component. The parallel system is

defined in Fig. 2. Initially, component C, is unstable and will

: enter internal state 2, setting X, and Xs to 1. At this point the

! following sequence of events may occur. X, becomes 1. Cy recognizes

: this input change and enters internal state 2, setting xy to 1. Xy

becomes 1. Ca recognizes this input change and enters internal state

: l, setting Xo and Xa to 0. This entire sequence may be completed

such that either X, never becomes 1 or is equal to 1 for such a short

| time that C, never recognizes the change in the value of x, from O to 1.
- The possibility of spurious input value transitions is

undesirable under all normal circumstances and shouldbe avoided.

oT Before investigating these spurious transitions further, let us con-

| ; sider the nature of the difficulties encountered in this example.
_

.

] oo

.

E>

HH0 ~

SE Il 1}!ro P °F
. no p X °

- ep ” } = i0)) i
= 0 pee : : . .
a B= B ro i
o a OO RH S p

Se” \
pd 0 = =

yo) ~~ i ~ % 2 TT
— nS - no [od2 ®

: X bt I il
- () ® i ”
= | —~— Fo3 . Ww? n
. - O a] %~< i :w

: ojo
= 0 |
o ~—r

| Mi
Aa al

i ©
nN 4

- - —

| - S 9 |

“ >)og ~ ©
pS | a

- (US)oS |

| | 2) ~
Co

So SS

: 9

i | An apparent source of trouble is the lack of an interconnection

from component Cy to component C3 However, the existence of such a

connection is not sufficient to guarantee that C, recognizes all input |
| changes. In particular, Cy can ignore all inputs from Csr in deciding

when to change the value of Xa A precise statement of sufficient
conditions for the 1 value for Xs to be recognized is given later.

While a connection from Cs to Cs can result in the recognition of the

oo output value for X30 such a connection is not always necessary if the
component flow tables are modified slightly. Consider the three flow

tables in Table 1 as alternatives to those shown in Fig. 2. Now when

J C, sets Xs to 1, the value of Xs is not changed for as long as the |
) system continues to operate, presumably an infinite time. Since line

and component delays are finite, Cs must eventually recognize the value

change for Xe

Output Hazards |

The following definitions and theoretical results are introduced

to develop a more formal understanding of the difficulties present in

this example. Consider components C, and C. and a line £, = Xx) |

from C; to C,. | |

Definition 31

Let a and b be internal states of C, for which |

output variable Xx, has the values 1 and 0, respectively.

An output 1 hazard is the possibility of a transition |

from a to b when input variable Xe has the value O.

) _ * Output hazards are examples of transformation-losses in lines in |
the terminology of Luconi | 15, 16, 17 |. They are violations of

| the semi-modularity condition of Muller [23]. These hazards
have been called"resolution hazards" by Wood [26].

| 10

Table 1. Alternative Flow Tables for the Parallel System of Fig. 2

Xo xg |
0 1X; CO , 1

CDT 2
i eet

a) Component 1 b) Component 2

x4 ;

1 XX |
0 Xp%s

12 [Ax oo

2 | (2) 3 1 11
2 (3) 01 |

c) Component 3 |

* Never entered during the operation of the component,

- 11

Definition 4:

Iet a and b be internal states of component Cs for which

output variable X, has values O and 1, respectively. An output

O hazard is the possibility of a transition from a to b when in-

put variable Xx, has the value 1. |

Definition &:

| A component C, is said to be connected to a component C, if
1. There is a line from an output of Cy to an input of Cy or
2. There is a line from an output of C, to some component

> C, and Cp is connectedto C,- | | |

: Theorem 1: (Sufficient conditions for an output 1 hazard)

| If component C, changes output variable Xx, from O to 1 to O
and component C, with input variable x, is not connected to C,
an output 1 hazard exists. |

Proof: |

| ~~ By Assumption 1, there is no bound on the time for the 1

value to propagateto x). Since C; is not connected to Ci»

if C; ever changes Xx, from 1 to 0 it is possible that the 1 value
has not arrived at X, The conditions of Definition 3 are satis-

- fied and an output 1 hazard exists.

Theorem 2: (Sufficient conditions for an output O hazard)

If component C, changes output variable Xx, from 1 to 0 to 1

] and component C, with input variable x, is not connected to Cy
an output O hazard exists. |

: n

| 12 |

Proof:

Similar to the proof of Theorem 1.

| These two theorems, while trivial, aid somewhat in understanding
the conditions in which output hazards will always exist. Of greater

interest are theorems giving necessary and sufficient conditions for
the absence of output hazards.

Theorem 3: (Necessary and sufficient conditions for the absence

of an output 1 hazard)

Let component Cs change the value of output variable Xe from

O to 1. There is no output 1 hazard when C, changes x from 1 to | oo

O if and only if the value of Xx, is changed to 0 only after C; .
recognizes an input value produced in recognition of the 1 value

for Xx

Proof: |

(Sufficiency) |

Since Cs does not change X to O until it recognizes an input

value produced in recognition of the 1 value for X), 1 the 1 value

for X, must have propagated to a component input and x, must
have the value 1. Thus there is no output 1 hazard.

(Necessity) |

We prove the contrapositive. Let C, change X, to 0 without |

first recognizing an input value produced in recognition of the 1 |
value for x Since the line delays are unbounded (Assumption 1),

there can be no guarantee that the 1 value has propagated to the

: 13

- component input and it is possible that x, is 0 when C, changes
Xe By Definition 3, an output 1 hazard exists.

Theorem 4: (Necessary and sufficient conditions for the absence

of an output O hazard)

| let component C, change the value ofoutput variable Xx. from

1 to O. There is no output 0 hazard when C; changes Xx, from O

to 1 if and only if the value of Xe is changed to 1 only after

Cs recognizes an input value produced in recognition of the 0

value for Xx, |

id Proof: | |

k Similar to the proof of Theorem 3.

Suppose there are no output hazards in a parallel system. That

is, every output value produced must propagate to the associated

| component input. Since the operation of each component is described

by a completely specified flow table, each component must have a stable

state in every column of the flow table and in particular every column

in which the new input value appears. By Assumption 2, the component

will recognize the new value in a finite time, if the new value remains

present. Consider the possibility that a new input value must appear

but that it is not present long enough to be recognized by the component. |
By Assumption 1, the time for the input value change to reach the |

component is arbitrary. Therefore, if it is possible for the new

value to appear and not be recognized, it must be possiblefor the

a } new value not to have appeared at all. That is, an output hazard |

14

must exist. But this contradicts our assumption that no output

hazards existed and hence it must be impossible for a new input value

to appear but not be recognized. The result of this argument is the |

following theorem.

Theorem 5:

If a parallel system has no output hazards, every output

change produces an input value which must be recognized.

The absence of output hazards is not only sufficient to ensure that

all input changes are recognized, it is necessary as well.

Theorem 6:

If every output change produces an input value which must

be recognized, the parallel system has no output hazards.

Proof:

This proof also follows from the fact that line delays are of

arbitrary duration. Suppose a parallel system has an output 1

hazard in line £, = (X, 1%,) which joins component C; to component

C,- By Definition 3, it is possible for C, to change Xx, f rom |

l to O when x has the value 0. But by Assumption 1 line delays

are arbitrary and so it is also possible that x, will momentarily

have the value 1. There is no nonzero lower bound on the duration

of the 1 value for Xx) Therefore, regardless of the interval

between the times C, examines its inputs, the 1 value for X, -

may not be recognized. The possibility of an output O hazard

15

|

.

can similarly be shown to always provide the possibility of a

O input which is not recognized and the proof is complete. |

In general there may be many connections from the component which

recognizes a new input value back to the component which produced

it. Furthermore these connections may be through many other components

and require many more hazard-free interactions.

| DESCRIPTION OF SYSTEM OPERATION

- Given a parallel system, we now give a procedure which detects |

all output hazards present in the system and in the case when no such

hazards exist, produces a description of the operation of the systen.

This description will be a directed graph. If output hazards are

present, the behavior of the system cannot be reliably predicted.

That is, momentary 1 output values may or may not result in 1 input

values and if 1 input values appear these values may or may not be

recognized. In such cases, it is best to modify the system to elimi-

nate these hazards before producing a graph description of system

: operation.

Definition 6:

) The component state or total component state is defined by

the component internal state and component input state.

The initial internal state of the control component in Fig. 1 is 1 and

} ~ the initial input state is 00. The initial component state is written 1-00.

16

Because the output state of each component is determined by the

component internal state, it is unnecessary to include the output

| state in the definition of total component state. When a component |

is in an internal state, it is assumed that the output variables

have the values designated for that state. If there is objection

to this assumption, we can define being "in an internal state" as

the instant when the output variables attain the values specified

for the internal state.]

Definition 7:

The system state or total system state is defined by the]

N-tuple consisting of the component states for each of the N

components in a parallel system.

The initial system state for the parallel system in Fig. 2 is written

(1-0,1-0,1-0). As a consequence of the definition of a parallel system, |

the initial system state is unique.

A component is stable if the flow table entry for the present

total component state is the same as the present internal state; |

otherwise a component is unstable. A line is stable if the value

at every point in the line is the same; otherwise the line is unstable.

A sufficient but not necessary condition for a line L = (xX, ,x.) to

be unstable is that Xx, and X, have different values. |

| : 17

} Definition 8:

Given two system states A and B (A#B), B is said to be an

immediate successor of A if the following conditions are satisfied:

l. If a component input has a value in B different from

the value in A, the line was unstable in A.

2. If a component internal state in B is different from

the corresponding internal state in A, the component

was unstable in A and the B value is the next state

entry in the component flow table as determined by

the total component state in A. |

The initial system state of the parallel system for the two-process

: mutual exclusion problem in Fig. 1 is (1-0,1-0,1-00). In this state,

all lines are stable but two components, Cy and Co» are unstable.
There are three immediate successor states to this system state.

(2-0,1-0,1-00) |

(1-0,2-0,1-00) |

(2-0,2-0,1-00)

In system state (2-0,1-0,1-00), line £ , = (X;,%,) and component C, are
unstable. The immediate successors are

(2-0,2-0,1-00)

(2-0,1-0,1-10)

(2-0,2-0,1-10) |

In general, if p lines and components are unstable in a given system

state, there are oP_q immediate successor states.

18

Definition 9: h

The system state graph is a directed graph the nodes of

which are the system states attained during the operation of |

the system. Two system states A and B are joined by a directed

arc from A to B if and only if B is an immediate successor of A.

Definition 10:

Given two system states A and B, B is said to be a successor

of A if]

1. B is an immediate successor of A, or |

2. B is a successor of an immediate successor of A.

We will use the system state graph to describe the operation of a

- parallel system. The procedure for obtaining this graph is as

follows:

Procedure for Finding System State Graph |

1. Given the initial system state, determine all immediate successor

states. |

2. Consider each immediate successor state as a system state and det-

ermine all immediate suceessors.

3. The procedure terminates when all immediate successors of all

immediate successors introduced in steps 1 and 2 have been .

determined. |

4. (Check for output hazards)

If a system state A has an immediate successor B such that internal

state a in A for some component C, and internal state b in B for }

19

- the same component satisfy the conditions in Definition 3 or

4, an output hazard exists.

This procedure considers all possible state transitions for a parallel

system; therefore, all output hazards are detected.

An Example: The Buffer Problem

To illustrate the application of the analysis method, consider

a parallel system with two components, Cy and C, Component Cy

| represents a Central Processing Unit (CPU) which fills a buffer.

The buffer is emptied by component Cy» a Channel or Output Controller. |
Initially the buffer is empty and the Channel and CPU are idle. The

~ problem posed for this system, which we call the buffer problem, is

- the following:

Problem: (The Buffer Problem)

Design a system with a CPU and Channel, operating as described

above, such that at all times during the operation of the system

the following restrictions are satisfied: |
Restriction 3%: |

The CPU and the Channel never access the buffer simultaneously.

Restriction 4: |

When the CPU has filled the buffer, the CPU must not access

the buffer again until after the buffer has been emptied by the

i channel.

Restriction 5:

* When the buffer has been emptied, the Channel must not

. access the buffer again until the baffer has been filled by the CPU.

i *Restrictions1 and 2 are associated with the mutual exclusion problem. |

20

This problem is similar to the mutual exclusion problem in that the

CPU and Channel must not access the buffer simultaneously. It differs

| | in that the order of accessing the buffer is fixed. It is not neces-

sary to specify the buffer as a component of the system in order to

study the control interactions of the CPU and the Channel.

Consider the parallel system specified in Fig. 3. The interp-

retations of the values on the interconnecting lines and the component

states are as follows. Initially, the CPU, Co is in total component
state 1-0. In this state, the CPU is unstable and the buffer is filled.

Eventually the buffer becomes full and Cy enters internal state 2,

a stable state, and sets X, to 1. The 1 input to C, causes C, ko |

become unstable and empty the buffer (component state 1-1). When :

- the buffer is empty, C, enters internal state 2, setting Xq to 1.

This output value propagates to Cy notifying Cy that the buffer has

been emptied and putting Cy in component state 2-1. In this unstable

state, the CPU fills the buffer again. When the buffer is full, the

CPU enters internal state 1, setting X, to O. When X, becomes 0, the

cycle begins again. Notice the significance of the value transitions

during the operation of this system, The first time the CPU fills

~~ the buffer, it uses a 0 to 1 transition on line (X,»%) to notify the
Channel. The second time, the CPU uses a 1 to O transition to notify

the Channel. The Channel also alternates, first using a 0 to 1 |

transition on line (X,,%,) to indicate that the buffer has been emptied

and the next time using a 1 to O transition. It is possible to give .
an interpretation for this system in which a O to 1 transition on line

21

x) *1

€ « C2 |
(cry) 2 2 | (Channel)

¢={c;, C,} e={L,, 4,}

0) = {xy I, = {x}

: X, xX
| 0 1

| 0 1x A X,

Tol [®)]:
2 1 | 1 2 | 1 (2) 1

C, C5

(initial system state is (1-0,1-0))

] Figure 3, Parallel system for the buffer problem, |

| oo Po

22

| (X: x1) is always used to indicate that the buffer is full and a 0 to 1 oo

transition on (X,,%,) indicates that the buffer has been emptied.

Programs of the class described in [3] representing the CPU and |

| Channel activity are given in Table 2. An analysis of these programs

| using the procedures given in [3] will verify that their operation
is characterized by the flow tables shown in Fig. 3.

let us now apply the procedure described earlier to obtain the

system state graph for the parallel system of Fig. 3. A table of the

system states and their immediate successors as produced by the proce-

dure appears in Table 3. The initial system state is (1-0,1-0) and the

only immediate successor is (2-0,1-0). This state has only one immediate

successor (2-0,1-1). The procedures continues and terminates when eight |

system states have been produced. This system may not appear to exhibit

~ much parallelism but remember that it is possible for the CPU to perform

other functions after it fills the buffer and while the buffer is being

emptied as long as it does not try to add additional information to the

buffer. The system graph is shown in Fig. 4. Since there are no output

hazards, every output change results in a new input value which must be |
recognized (Theorem 5). Therefore, line delays cannot affect the opera-

tion of this system. If the line delays are set to zero, the system

| state graph in Fig. 4 can be reduced to the system state graph shown in

Fig. 5. |

Detection of an Output Hazard

To illustrate the application of the analysis procedure to a

system containing an output hazard, we apply the procedure to the |

parallel system given in Fig. 2. The initial system state is (1-0,1-0,1-0). :

’ This state has one immediate successor (1-0,1-0,2-0).

| be

. 23

Table 2. CPU and channel Programs for the Parallel System of Fig. 3.

INPUT X,

OUTPUT X, (initially X, is 0)

1: DUMMY; (fill buffer)

2: Xt = 1;

| 3: WAIT (1, 4);

4: DUMMY; (fill buffer) | |

5: Xt = 0;

6: WAIT (0, 1). |

a) CPU |

INPUT X,

OUTPUT X, (initially X, is 0)

1: WAIT (1, 2);

2: DUMMY; (empty buffer) |

. Fs = 1; .3: X,

L: WwAIT (0, 5);

5: DUMMY; (empty buffer)

¥ X,: = 0; | |

] 7: GO TO 1.

b) Channel

24

| Table 3. System States With Immediate Successors for the Parallel :

System of Fig. 3.

system state immediate sucessors

(initial state) (1-0,1-0) (2-0,1-0)

(2-0,1-0) (2-0,1-1)

(2-0,1-1) (2-0,2-1)

(2-0,2-1) (2-1,2-1)

(2-1,2-1) (1-1,2-1)

(1-1,2-1) (1-1,2-0)

(1-1,2-0) (1-1,1-0) | oo

(1-1,1-0) (1-0,1-0) |

25

(1-0,1-0)%— (2-0,1-0)—> (2-0,1-1)—> (2-0,2-1)

(1-1,1-0) <— (1-1,2-0)«— (1-1,2-1)«— (2-1,2-1) |

| * initial system state |

Figure 4. System state graph for the parallel system in Fig. 3.

26

(1-0,1-0)*% ~—e (2-0,1-1)

(1-1,2-0) *— (2-1,2-1) |

¥ initial system state

Figure 5. System state graph for the parallel system in

Fig.3 when line delays are zero. |

a -

: 27

A partial table of system states with immediate successors is shown

in Table 4. The hazard is detected in determining the immediate |

successors of state (2-1,1-0,2-1). It is possible for C, to change

from component state 2-1 to 1-1 which changes Xa from 1 to O. But

Xa has the value 0 and therefore an output 1 hazard exists.

System State Graph for the Two-Process Mutual Exclusion Problem

Table 5 contains the 64 system states with immediate successors

which are attained during the operation of the parallel system for

the two-process mutual exclusion problem defined in Fig. 1. The

| system state graph is given in Fig. 6. If line delays are zero, the
graph in Fig. 6 can be reduced to the graph shown in Fig. 7. |

) CORRECT OPERATION FOR PARALLEL SYSTEMS :

We now consider what it means to say that a parallel system

operates correctly. The systems we have discussed have been designed

to solve particular problems such as the mutual exclusion problem

or the buffer problem. A problem is a word statement with a number |

of restrictions which must be met if the problem is to be solved. We

say that a parallel _—— is correct with respect to a given problem

if the system operates so that the restrictions are always satisfied.

This notion differs from the idea of correctness for a computation

where correctness usually means that the computation halts and gives :

the desired answer [1, la, 8, 12, 18, 19, 20]. Since the systems

N we deal with do not halt under ordinary circumstances, we have found |

- it necessary to formulate a different interpretation of correct operation.

| 28

Table 4. Partial Table of System States With Immediate Successors :
for the Parallel System in Fig. 2.

system state immediate successors

(initial state) (1-0,1-0,1-0) (1-0,1-0,2-0)
|

| (1-0,1-0,2-0) (1-1,1-0,2-0)

(1-0,1-1,2-0)

| | ~ (1-1,1-1,2-0)

(1-1,1-0,2-0) (2-1,1-0,2-0)

(1-1,1-1,2-0)

(2-1,1-1,2-0) | oo

) (2-1,1-0,2-0) (2-1,1-0,2-1) | -
| (2-1,1-1,2-0)

(2-1,1-1,2-1)

| (2-1,1-0,2-1) (2-1,1-0,1-1) (output hazard
detected)

= L

29

- Table 5. System States With Immediate Successors for the Parallel

System of Fig, 1 |

| system states immediate successors

(1-0,1-0,1-00) (2-1,1-0,1-00)

(1-0,2-0,1-00)

| (2-0,2-0,1-00)

| (2-0,1-0,1-00) . ~ (2-0,2-0,1-00)
(2-0,1-0,1-10)

(2-0,2-0,1-10)

. (1-0,2-0,1-00) | (2-0,2-0,1-00) |
: (1-0,2-0,1-01)

(2-0,2-0,1-01)

(2-0,2-0,1-00) (2-0,2-0,1-10)

(2-0,2-0,1-01)

(2-0,2-0,1-11)

| (2-0,1-0,1-10) (2-0,2-0,1-10)

N (2-0,1-0,3-10)
: (2-0,2-0,3-10)

(2-0,2-0,1-10) (2-0,2-0,3-10)

(2-0,2-0,1-11)

: (2-0,2-0,3-11) |

(1-0,2-0,1-01) (2-0,2-0,1-01)

_" (1-0,2-0,2-01)

- (2-0,2-0,2-01)

Table 5 (cont)

(2-0,2-0,1-01) (2-0,2-0,1-11)

(2-0,2-0,2-01)

(2-0,2-0,2-11)

(2-0,2-0,1-11) | (2-0,2-0,3-11)

(2-0,1-0,3-10) (2-0,2-0,3-10)

| (2-1,1-0,3-10)

|] (2-1,2-0,3-10)
(2-0,2-0,3-10) (2-0,2-0,3-11)

(2-1,2-0,3-10)

(2-1,2-0,3-11) |

(2-0,2-0,3-11) (2-1,2-0,3-11) |

(1-0,2-0,2-01) (2-0,2-0,2-01)

(1-0,2-1,2-01)

(e-0,2-1,2-01)

(2-0,2-0,2-01) | (2-0,2-0,2-11)

(2-0,2-1,2-01)

(2-0,2-1,2-11)

(2-0,2-0,2-11) | ~ (2-0,2-1,2-11)

(2-1,1-0,2-10) (1-1,1-0,3-10)

(2-1,2-0,3-10) |

| (1-1,2-0,3-10) |

(2-1,2-0,3-10) (1-1,2-0,3-10)

(2-1,2-0,3-11) IE

(1-1,2-0,3-11) |

= = TE —————— 7 TT oT TT me Hn

31

B Table 5 (cont)

(2-1,2-0,3-11) (1-1,2-0,3-11)

(2-0,2-1,2-01) (2-0,2-1,2~11)

(2-0,1-1,2-01)

| (2-0,1-1,2-11)

(1-0,2-1,2-01) (2-0,2-1,2-01)

(1-0,1-1,2-01)

~~ (2-0,1-1,2-01)

(2-0,2-1,2-11) (2-0,1-1,2-11)

(1-1,1-0,3-10) | (1-1,2-0,3-10) |

(1-1,1-0,3-00)

: | (1-1,2-0,3-00)

(1-1,2-0,3-10) (1-1,2-0,3-11)

(1-1,2-0,3-00)

| (1-1,2-0,3-01)

(1-1,2-0,3-11) (1-1,2-0,3-01)

(2-0,1-1,2-01) (2-0,1-1,2-11)

(2-0,1~-1,2-00)

| (2-0,1-1,2-10)

(2-0,1-1,2-11) (2-0,1-1,2-10)

(1-0,1-1,2-01) (2-0,1-1,2-01)

(1-0,1-1,2-00) |

(2-0,1-1,2-00)

(1-1,1-0,3-00) (1-1,1-0,4-00)

= (1-1,2-0, 3-00)

oo (1-1,2-0,4-00) |

| Table 5 (cont) | -

(1-1,2-0,3-00) (1-1,2-0,4-00) |
| (1-1,2-0,3-01)

(1-1,2-0,4-01)

(1-1,2-0,3-01) (1-1,2-0,2-01)

(2-0,1-1,2-00) (2-0,1-1,1-00)

(2-0,1-1,2-10)

| : (2-0,1-1,1-10)
(2-0,1-1,2-10) | (2-0,1-1,3-10)

(1-0,1-1,2-00) (2-0,1-1,2-00) |

(1-0,1-1,1-00) |

(2-0,1-1,1~00) :

(1-1,1-0,4-00) (1-0,1-0,4-00)

(1-1,2-0,4-00)

(1-0,2-0,4-00)

(1-1,2-0,4-00) | (1-0,2-0,4~00)

| (1-1,2-0,4-01)

(1-0,2-0,4-01)

(1-1,2-0,4-01) (1-0,2-0,4-01)

| (1-1,2-0,2-01)

(1-0,2-0,2-01)

: (1-1,2-0,2-01) (1-0,2-0,2-01)

(1-1,2-1,2-01)

(1-0,2-1,2-01) :

: REST

- Table 5 (cont)

| (2-0,1-1,1-00) (2~0,1-1,1-10)
] (2-0,1-0,1-00)
| | (2~0,1-0,1-10)
| (2-0,1-1,1-10) (2-0,1-0,1-10)

(2-0,1-1,3-10)

| (2-0,1-0,3-10)
(1-0,1-1,1-00) (2-0,1-1,1-00)

(1-0,1-0,1-00)

- (2-0,1-0,1-00)

(1-0,1-0,4~00) (2-0,1-0,4-00)

| i (1-0,2-0, 4-00) oo
| (2~0,2-0,4-00) Co

(1-0,2-0,4-00) (2-0,2-0,4-00)

| (1-0,2-0,4-01) |

(2-0,2-0,4-01)

; (1-0,2-0,4-01) (2-0,2-0,4-01)

| (1-0,2-0,2-01)
| | | (2-0,2-0,2-01)

| (1-1,2-1,2-01) (1-0,2-1,2-01)

| (1-1,1-1,2-01)
| (1-0,1-1,2-01)

(2-0,1-1,3-10) (2-1,1-1,3-10)

BN (2-0,1-0,3-10)
a (2-1,1-0,3-10) |

un

34

Table 5 (cont) | N

| (2-0,1-0,4-00) (2-0,2-0,4-00) |

(2-0,1-0,4-10)

| (2-0,2-0,4-10)

(2-0,2-0,4-00) (2-0,2-0,4-10)

(2-0,2-0,4-01)

| (2-0,2-0,4-11)

(2-0,2-0,4-01) |] (2-0,2-0,4~11)

(2-0,2-0,2-01)

(2-0,2-0,2-11)

(1-1,1-1,2-01) (1-0,1-1,2-01) | .

(1-1,1-1,2-00) |

| (1-0,1-1,2-00)

(2-1,1-1,3-10) (1-1,1-1,3-10)

| (2-1,1-0,3-10) |

(1-1,1-0,3-10)

(2-0,1-0,4-10) (2-0,2-0,4-10)

(2-0,1~-0,3-10)

|) (2-0,2-0,3-10)
(2-0,2-0,4-10) (2-0,2-0,3-10)

(2-0,2-0,4~11) (2-0,2-0,2-11)

(1-1,1-1,2-00) (1-0,1-1,2-00) | |

(1-1,1-1,1-00)

| (1-0,1-1,1-00) | |
| _

: : Ee,

35

N Table 5 (cont)

(1-1,1-1,3-10) (1-1,1-0,3-10) |

(1-1,1-1,3-00)

| (1-1,1-0,3-00)

(1-1,1-1,1-00) (1-0,1-1,1-00)

(1-1,1-0, 1-00)

| (1-0,1-0,1-00)

(1-1,1-1,3-00)] ~ (1-1,1-0,3-00)

(1-1,1-1,4-00) |

(1-1,1-0,4-00)-

) (1-1,1-0,1-00) | (1-0,1-0, 1-00) |

- (1-1,2-0,1-00)

| (1-0,2-0,1-00)

(1-1,1-1,4-00) (1-0,1-1,4-00)

| (1-1,1-0,4-00)

(1-0,1-0,4-00)

(1-1,2-0,1-00) | (1-0,2-0,1~-00)

(1-1,2-0,1-01) |

| | (1-0,2-0,1-01)

| (1-0,1-1,4-00) (2-0,1-1,4-00)
(1-0,1-0,4~-00)

| (2-0,1-0,4-00) |

(1-1,2-0,1-01) (1-0,2-0,1-01)

a (1-1,2-0,2-01)
LT (1-0,2-0,2-01)

36 |

Table 5 (cont)

(2-0,1-1,4-00) (2-0,1-0,4-00)

(2-0,1-1,4-10)

(2-0,1-0,4-10)

(2-0,1-1,4-10) (2-0,1-0,4-10)

(2-0,1-1,3-10)

| (2-0,1-0,3-10)

—— ! ~~ 1

o S <Q i
- LS - -

TS 9 5 Q
- , 1

UB AL 0) &N

L/y/h A
pf

§/ 8/3 8
+! 2! = =
- » LY on

§ $3 ;@—i—d—d~@® A= |
- ” - -

S 5 5 Q1
8/8 ja 8

1/14/41 | A |
[)

2/ §/ § 2
LY - - -

@ Q Oo O ~-t| pe | ce | |
4 Qa 4 ~-

ha) oy La) . -
Oo Oo oO Q

t |] | [}
Fo] ~-{ [| ’ 4
Sa” Sm? Sa —

1 /1/1/] | 1vl =] ry Q 4

[] | |]] ;] [] 1] []]
= = = Ql QO a al] 4 4 - od =

he] he La) LY - -~ - = - oy LY L

| @ Ff]—— tT — 1 —iia ® 0i oN oN NN al} 4 —- - —- al A ~ ()
| LY - - LY - - - = - - L -

- ~- md jy - ~ i —- — - - — :
)] } i] | [|] | rt | | 1 :

[a] ~4 ~~ —y La] 4 ~4 i -4 | (a qd

1 Soap ge” Sugar po hg Sang” Sea Sige? Spt” ug” } Sanger”1/- —
8/ 8/ 3 8

[] J | []
on oy or on
L - ha) LY

os Oo QO 4—-4 N Ql ot
L LY Le] LY .

- [a] 4 a) ~~
- \ | ‘ i '

ry 4 4 -y .
. Su gr So” —

74/4 1 | |
oO Oo 4 Oo .

~-. 4 ~~ [an] (|
- t] } |

(aa) ™ om ov
- a) - -

OI 7v oN «NN a ¢
- - - - 4

- 4 4 -t yr - :
[|] 1 1] P{ ~4 4 -4
Nt Saar? hd “a? [-9

L/4/1 J. : gQ Q ~ QO ho
[] -4 i [a]

} U [] J |
oY) oy 148] 2p} 4
- - - - o

OS —3—3% 0 3 |4 aN 147] 4
LY a, - - =

T 3 ; 3

1/1 oN N -~a” Sagat Sout? pe” |
L/1/ 4 1 | .

-

31 3/3 = | $
BRS : :- =

Q Q Oo 4 a

~- [J] o @2 3- ~ - =

O Q <Q QQ
he Sum? Spe a

-

. Q o a] ~-4 =f i Qo o =]
il 3 Sei 33 ila

JU. eR a a Aa om | akL) - LY LY - - LY
Oo oO Q o ~~ 4 oi —- 8

ES —3— § mtn | eis | mie || [] , Ei ON Qo a 4Y| ~ ~ —-t »
- = Le) L.] - -, ” ”»

oO oO Qo Qo Qo Oo o (®) : } ®
d di 1 J]] I] ’ erQl oN al] oN af] 4") . a

i il SL. 3 1S a

- - BS dQ N oN ~- 3= - - - - Le - 3 i *

@—=5 o o Oo ~ ~ ~{| we | emesis | etn | — ———
. i A oN Qo a] - ~- ~~ »

- - - - - » - - \0

' oO Qo Oo o oO oO Oo Q
-] i } J []] ®

& fd fa 4d ok gd gd 4d 5
[om] ri Lm 4

8/ 8/ 3/3/8/ 8 3/ %
TT - P i oN NN oN —- : :

- - - = - - - -

oO Oo Oo oO ~~ rt 4 ~ ©. — fot | cen | ee |g | ae | wean | ea |® rd a1] al} a1} al 4 rd 4
- =» - LY LY - - »

Qo Q oO Qo Q oO Qo Q
[] [|] |] } 1 [] [] []
oy 4 ~t ry wy r= =| 4 .

} a Sag Sp” Saag” Nag” Sa” Saag? So”

; "
o
r= ~~

—

<! —
- | -

< hy
~~ oO

3-0< oN .y o)

| / N N
’

| 0~~ ~Qo

oO ~ «
| r~{ 0
< oO >

oO < r—

is . 0

1 > @
— o oe
~~ l

4

Q ri _ =
Oo Oo :

| | —TE
O emi OO [oT4

wn ! | or

3 sO 2
« rr rd o
— ! i : orf

rd i :

14) Ad or =

; / R. | ha

= wn
~~ ~ >

rq (an) r= 1)
QO ri r=

| | -—

™M ™M I)
- CY fr

I | [404
rt oN ~~

: CS = ©
—{ | Q,
{ i

(a oN Po
~~’ Nr =

/ OF :i~~ ~~ le)
an} ri ~ ~~ Cf
— —t —- o} | ri r= / fo)
r—{ r—{ | | Q,

a) Bo on —t—. Sy
_ — 0

rd (mY [I

a) oO - . ~ o
[I - oO . 0) od

oN oN 1 I + +
Lg or oy oN 4] 0)

: Lo ~~ ny

Q

| * = +

| Oo o - oO (3) 2
|) >

4 ri (| oN n

=—=5 —770) : -
r—{ ao oN am r= QO

oO oO oO .
| i I i = bo .

r=] r—{ r=] =f op or={ Co
~~ ~~ ~~ r * By

} _ S90BI SUIM 5 a :

: 39

i Correctness of the Solution to the Buffer Problem

Consider the parallel system shown in Fig. 3 proposed asa |

solution to the buffer problem. Restriction 3 states that the CPU

and the Channel must never access the buffer simultaneously. The

system states which represent simultaneous access by the CPU and

Channel are (1-0,1-1), (1-0,2-0), (2-1,1-1), (2-1,2-0) . The system

| state graph in Fig. 4, or the list of system states in Table 3,

specifies all system states attained during the operation of the

system. Since none of the above system states appear, it is impossible |

for the system to violate Restriction 3. Consider Restriction 4.

: When the buffer has been filled, the CPU enters either component state |

: 2-0 or 1-1. To determine if the restriction is always satisfied,

we must examine paths in the system state graph. A path is a sequence

of system states, S181 08308 0 , such that state S.1 is an

immediate successor of state S; for i=0,1,... . To verify that

Restriction 4 is satisfied, we examine the system state graph and

determine that each time the CPU enters component state 2-0 (in

system state (2-0,1-0)) or component state 1-1 (in system state (1-1,2-1))

that in every path £ rom these system states, the Channel enters

| component state 1-1 or 2-0 before the CPU enters component state 1-0

| or 2-1. The state graph shows that this is the case and consequently

| ~ Restriction 4 is satisfied. The verification of Restriction 5 |

| | follows in a similar way. Each time the Channel enters component

| t state 1-0 (in system state (1-1, 1-0)) or 2-1 (in system state (2-0,2-1)),

oT the CPU enters states 1-0 or 2-1 before the Channel enters 1-1 or 2-0.

| |

40 i

Since Restrictions 3, 4, and 5 are satisfied, we conclude that the)
parallel system of Fig. 3 is correct with respect to the buffer

problen. |

In this analysis of the buffer problem solution, two types of

tests were applied. The first required the examination of the system

state graph to determine if certain "forbidden states’ were entered.

The second type of test consisted of an examination of the system

state graph for the possibility of "forbidden paths”. These two
types of tests are also used in the analysis of the parallel system

for the two-process mutual exclusion problem. |

Correctness of the Solution to the Two-Process Mutual Exclusion Problem | |

The system state graph for this system was given in Fig. 6. The -

| © restrictions for this problem are Restrictions 1 and 2. The first

restriction states that at most one component may be in a critical

section at a time. In terms of our parallel system, this means

that system states of the form (2-1, 2-1 ,%) must never occur. The

asterisk indicates that any component state is acceptable for component

C,y- An examination of the system state graph, or the table of states

in Table 5, shows that no states with this form are ever entered;

therefore, Restriction 1 is satisfied. Restriction 2 states that

whenever a component, say Co wants to enter its critical section

(C, -1is in component state 2-0) that Cy must eventually enter (the |
critical section) component state 2-1. Thus whenever the system

enters a system state of the form (2-0,*,*-1%), that is, component oo

Cy has requested access to its critical section and the request has y

.

: 41

propagated to the control input, every path with such a state as

its initial state must contain a state of the form (2-1,*,*). There |

are 16 system states which have the form (2-0,*,*-1%). Every path

from these states does contain a state of the form (2-1,%,%). Therefore,

when C4 requests access to its critical section, it must gain access.

The argument that C, must gain access to its critical section when it
desires follows in a similar manner. On the basis of these arguments,

we say that the parallel system of Fig. 1 is correct with respect to

the mutual exclusion problem.

Correctness, Determinacy, and Output Functionality

I : In this section, we contrast our notion of correct operation |
|

= with the notions of determinate, completely functional, and output

functional systems which have been proposed by Adams , Karp and Miller,

Luconi, Rogriquez, and others [1,9,10,11,15,16,17,23,24,25]. In all

of these systems or models, the operation of a component is specified

by a function rather than by a flow table. Our flow tables can be

represented as functions if the component internal state is added

as an input and an output. The operation of the component is then

described by a function which-maps the original input state and internal

| state into the output state and next internal state. The definition
of such functions for the mutual exclusion problem flow tables of

Fig. 1 is given in Table 6. These functions are partial functions

which are defined only when the original flow tables are unstable.

- Components become ready for execution when their functions become

- defined. In the Karp and Miller model [10, 11] there is an additional

L2

Table 6. Functional Description of Component Operation for the

Parallel System of Fig. 1

£,: z, I, —_— x1, £,: 21, —= XSI,
O01 12 01 12

l 2 01 l 2 O01

f.: XX I —a X XI
3 123 37473

011 012 | | -

111 103 |

101 103

| O02 001 |

102 103

| 0 0 3 00k

01 3 012 |

01k 012 |

114 012 |
}

104 103

c) C - (control) | |

=

43 |

portion of the system called the control which is used to regulate

when functions may be executed. The effect would be essentially the |

same in this example however. A system is said to be determinate or

completely functional if the history or sequence of values associated

with each variable in the system is unique. We now show that the

parallel system we have given is not determinate in this sense. To

| simplify the discussion, assume that all line delays are zero. That

is, when a component changes its output value, the value immediately

propagates to the input at the other end of the line. The initial

component state is 1-0 for both C, and C,- Thus t, and tf, are both

: defined. The initial component state for Cs is 1-00 and Lg is |
7 undefined. Suppose £, is executed. The input to Lg becomes 011

and now f, and fa are defined. If LP is executed, the value of the

internal state for Cs will be 2. However, if f, is executed and then

fq is executed, the value of the internal state of Cy will be 3.

This means that the sequence of values associated with the internal

state of Cy is dependent on the speed of operation of the components

in the system and therefore the system is not determinate or completely

functional. This system violates one of the conditions which have been

| shown to be sufficient to guarantee determinate (completely functional)

| operation. Therefore, the lack of determinacy is not too surprising.

~The condition states that if two functions are simultaneously defined,

the execution of one of the functions cannot affect the values to be

a produced by the other function. Clearly, the execution of £5 affects

| Ly

the value of the internal state of Ca produced when fq is executed. |
This situation is another example of a transformation-loss [15] or a

violation of semi-modularity [23]. The model of Karp and

Miller deals with parallel program schemata which are parallel

systems in which the interconnections are known but the functional

behavior of each component is not. Determinacy in this model means

that for every possible assignment of functions for the components in

the system (every possible interpretation) the sequence of values

associated with each variable must be unique. In such a node,

sufficient conditions for determinacy require that if two functions

can be executed in parallel, the intersection of the input set of E

each component with the output set of the other must be empty. This |

~~ condition is also violated by tf, and Tq since the intersection of the

output set of f, (X,, 15) with the input set of fq (x),%5,1 } contains

the common line (X, X5) |

Luconi and Van Horn [25] were aware of the possibility that

certain variables, perhaps not essential as far as the correct operation

of the system was concerned, might not have unique value sequences

associated with them. To allow for this possibility, they introduced

the notion of output functional systems or systems in which unique

value sequences were required only for some designated subset of the

setof variables in the system. Let us require that only the inputs |
(and outputs) of each component have unique value sequences and

allow the sequences of values associated with internal states to

be non-unique. All input and output values are initially O. An

) _ examination of the system state graph in Fig. 6 shows that the sequence

oo Ls

- of values for all inputs and outputs are the same and have the form |

| (0,1,0,1,0,1,...). That is, the values are alternately 0 and 1 for |
| as long as the system exists.

We now consider whether there is any relation between

our notion of a correct system and an output functional system. We
show, by presenting two examples, that the notions are not related.

In the first example, we give a system which has the same configuration

| as the parallel system for the mutual exclusion problem and which
has the same value sequences associated with the input and output var-

iables (0,1,0,1,0,1,0,1,...) as the correct system but which is not

3 correct in the sense that it fails to solve the mutual exclusion | ’

. problem. Second, we give a system which correctly solves the mutual
| exclusion problem but which is not output functional.

| To obtain the first system use the same parallel system as

before but replace the control (C3) flow table shown in Fig. 1 by
the flow table shown in Table 7. With this control mechanism, if

one process is enabled and the other process asks to be enabled, the

control enables both processes. This allows both processes to be in

critical sections simultaneously, violating Restriction 1. If the

| system state graph were constructed for this system, it would show that

the input and output variables still have the same value sequences as

- before (0,1,0,1,0,1,...). The difficulty with output functionality |

in this example is the fact that the stateof the system has been

- neglected.

- The second example is also obtained by starting with the parallel |

- - system for the mutual exclusion problem. This time we modify the flow

-

L6

| Table 7. Modified Control Flow Table For the Mutual Exclusion -

Problem |

X1%0 |

00 01 11 10 X_X

1 | (1) 2 | 1 3 | oo
2 | 1 | (ev | 3 or

| I

L 1 2 (3) 3 11

a) Flow Table (¢;) | |

fo: xx. I —X XI
| 3 17273 37473

011 012

111 114 |

101 103

002 001

112 114 |

102 103

0 0 3 001

01 3 012 |

| 113 114k

00k 001

01k 012

} 104 103 |

b) Function

| table for C, so that the component asks to enter its critical |
section only once and when it leaves the critical section it halts.

A possible flow table for C, is shown in Table 8. Initially, the
component is in component state 1-0. This modification alone

leaves a system which is correct with respect to the mutual exclusion

problem and which is still output functional. That is Xy X40 X,
| and X, have the finite value sequence (0,1,0) and Xa Xa» Xo and

| Xy have the value sequence 0,1,0,1,0,1,...). Suppose we add a
connection from component C, to component Cy so that when Cy exits |

its critical section it notifies Cy which then also halts. The

. resulting system is still correct with respect to the mutual exclusion

. problem (we omit the details but the control is still the same).

Now, however, there are many different possible value sequences for

Xo Xo Xa) and Xa and the exact sequence depends on the speed of

operation of C, -

These examples show that parallel systems which are correct with

respect to the mutual exclusion problem need not be output functional.

While the examples may be somewhat contrived, we believe they cast doubt

on the use of output functional or determinate operation as a design

| criterion for parallel systems. A model in which the speed of component

operation has no affect is not always desirable. It is possible for a

- system to take alternative actions precisely as a result of the time |

necessary to perform certain tasks. For example, a system might perform

- a computation two different ways in parallel and use the result that

B is available first.

=

48 }

Table 8. Modified Flow Table for C, (Fig. 1) to Allow
| Entering Critical Section Only Once

Z

2

oO J 1 Xx
HY 2

SEA[Olk

 |®)] 5 |

: 49

CONCLUSIONS

We have described an analysis procedure for parallel systems.

A block diagram summarizing the analysis phases is given in Fig. 8.

The analysis procedure can be applied to any system defined as in

Definition 1 if appropriate restrictions on system operation can

be stated. More efficient analysis procedures are necessary if

total system analysis is to be practical. In a future paper, we

consider a more problem-oriented approach to system analysis.

I

{ Obtain flow table Determine system | Draw system state 1 Test for forbidden
1 for each program states and immediate graph states and/or paths

and circuit successors |

oo Figure 8. Analysis procedure for parallel systems.

Ul

oO

| 51

BN | REFERENCES |

: [1] Adams, D.A. A computation model with data flow sequencing. |
CS-117 (Thesis), Computer Science Department, Stanford
University, Stanford, California (Dec 1968).

[1a] Ashcroft, E. and Manna, Z. Formalization of properties of
parallel programs. Memo No. AIM-110, Stanford Artifical

Intelligence Project, Stanford University, Stanford, California |
(Feb 1970).

| [2] Bredt, T.H. and McCluskey, E.J. A model for parallel computer
systems. Technical Report No. 5, SEL Digital Systems Laboratory,
Stanford University, Stanford, California (Apr 1970).

[3] Bredt, T.H. and McCluskey, E.J. Analysis and synthesis of
concurrent sequential programs. Technical Report No. 6, SEL

Digital Systems Laboratory, Stanford University, Stanford,
J California (May 1970). |

[4] Dennis, J.B. and Van Horn, E.C. Programming semantics for
: multiprogrammed computations. Comm. ACM, 9 (March 1966),

143-155.

[5] Dijkstra, E.W. Solution of a problem in concurrent program-
ming control. Comm. ACM, 8 (Sept 1965), 569.

[6] Dijkstra, E.W. The structure of the "THE" multiprogramming
system. Comm. ACM, 11 (May 1968), 341-346.

[7] Dijkstra, E.W. Co-operating sequential processes. in
Programming Languages, Genusy, F. (Ed.), Academic Press
New York (1968).

[8] Floyd, R.W. Assigning meanings to programs. Proc. of |
Symposium on Applied Mathematics, Vol. 19, American
Mathematical Society

(1967), 19-32.

| [9] Karp, R.M. and Miller, R.E. Properties of a model for
] parallel computations: determinacy, terminations, queueing.

SIAM J. Appl. Math., 14 (Nov 1966), 1390-1411. |

[10] Karp, R.M. and Miller, R.E. Parallel program schemata: a
Ce mathematical model for parallel computation. IEEE Conference |

Record of the 8th Annual Symposium on Switching and Automata
Theory (Oct 1967), 55-61.

52

. L11] Karp, R.M and Miller, R.E. Parallel program schemata. N
J. of Computer and System Science 3, 2 (May 1969), 147-195.

L12] Knuth, D.E. Additional comments on a problem in concurrent |
programming control. Comm ACM, 9 (May 1966), 321-322.

L13] Knuth, D.E. The Art of Computer Programming. Vol. 1,
Addison-Wesley Publishing Co., Reading, Mass. (1968)

(147 Lampson, B.W. A scheduling philosophy for Multiprocessing
systems. Comm. ACM, 11 (May 1968), 347-360.

[157 Luconi, F.L. Completely functional asynchronous computational |
structures. IEEE Conference Record of the 8th Annual |

Symposium on Switching and Automata Theory (Oct 1967), 62-70.

[16] Luconi, F.L. Asynchronous computational structures.
MAC-TR-49 (Thesis), Massachusetts Institute of Technology,
Cambridge, Massachusetts (Feb 1968).

[17] Luconi, F.L. Output functional computational structures. | g
IEEE Conference Record of the 9th Annual Symposium on

Switching and Automata Theory (Oct 1968), 76-8. |

£18] Manna, Z. Termination of algorithms. Computer Science |
Department, Carnegie-Mellon University, Pittsburgh,
Pennsylvania (Apr 1968).

L19] Manna, Z. Properties of programs and the first-order
predicate calculus. J. ACM (Apr 1969).

(207 Manna, Z, The correctness of programs. J. of Computer
and System Sciences, 3 (May 1969).

[21] McCarthy, J. A basis for a mathematical theory of computation.
in Computer Programming and Formal Systems, P, Baffort and

D. Hirshberg (eds.), North-Holland, Amsterdam (1963), 33-70.

L221] McCluskey, E.J. Introduction to the Theory of Switching
Circuits. McGraw-Hill Book Co., New York, N.Y. (1965).

{23] Muller, D.E. and Bartky, W.S. A theory of asynchronous
circuits. Proc. of an International Symposium on the Theory

~ of Switching, The Annals of the Computation Laboratory of |
Harvard University, Vol. 29, Part 1, Harvard University
Press (1959), 204-243.

[24] Rodriques, J.E. A graph model for parallel computations, i
Ph.D. Thesis, MIT, Department of Electrical Engineering,

Cambridge, Massachusetts (Sept 1967). -.

| : =

53

L25] Van Horn, E.C. Computer design for asynchronously reproducible
multiprocessing. MAC-TR-34 (Thesis), MIT, Cambridge, Massachusetts
(Nov 1966).

[26] Wood, P.E. Jr. Switching Theory. McGraw-Hill, New York (1968).

T

mn
pute

M—-

.

~

i. ®

,

, .

'

\

-

. -~

.

|

