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ABSTRACT

A formal analysis procedure for parallel computer systems is
presented. The flow table model presented in a earlier paper* is used
to describe a system. Each component’to the system is described by a
completely specified fundamental-mode flow table. All delays in a
parallel system are assumed to be finite. Component delays are
assumed to be boundéd and line delays unbounded. The concept of an
output hazard is introduced to account for the effects of line delay
and the lack of synchronization among components. Necessary and
sufficient conditions for the absence of output hazards are given.

The state of a parallel system is defined by the present internal
state and input state of each component. The operation of the system
is described by a system state graph which specifies all possible state

transitions for a specified initial system state. A procedure for

* Bredt, T. H. and McCluskey, E. J. A model for parallel computer
systems. Technical Report No. 5, SEL Digital Systems Laboratory,
Stanford University, Stanford, California (Apr 1970).
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coﬁstructing the system state graph is given. The analysis procedure
may be summarized as follows. A problem is stated in terms of restrictions
on system operation. A parallel system is said to operate correctly
with respect to the given problem if the associated restrictions are
always satisfied. The restrictions specify either forbidden system
states, which are never to be entered during the operation of the system,
or forbidden system state sequences, which must never appear during
system operation. The restrictions are tested by examining the system
state graph. A parallel system for the ;wo-process mutual exclusion
problem is analyzed and the system is shown to operate correctly with
respect to this problem. Finally, the conditions of determinacy and
output functionality, which have been used in other models of parallel

computing, are discussed as they relate to correct solutions to the

mutual exclusion problem.
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INTRODUCTION

A major concern in computer science is the development of formal
procedures for the analysis of programs and algorithms [ 1, 1la, 8, 12,
18, 19, 20, 21]. There is also much interest in the development of
a common basis for the description of programskand circuits, that is,
software and hardware. In [ 2 ], we have defined a flow table model
for parallel computer systems which uses fundamental-mode flow tables
to describe the operation of each system component. Procedures for
synthesizing and analyzing sequential circuits using flow tables are
well known [ 22 ]. 1In [ 3 ], analogous brocedures are developed
for a class of sequential programs, allowing flow tables to be used
as a common link between programs and circuits.

The purpose of the flow table model is to aid in the study of
the interactions of system components which are operated concurrently.
Algorithms which control these interactions usually never terminate
in the way that an algorithm for sorting or inverting a matrix does
and as a result different analysis methods are required.

A classic problem in parallel systems is the mutual exclusjion

problem stated below for two components.




Problem: (Mutual Exclusion)*
Given two components, which operate concurrently and which
contain "critical sections', control these components so
that the following two restrictions are always satisfied:
Restriction 1: It is impossible for two components to be
in their critical sections simultaneously.
Restriction 2: If a component wants to enter a critical

section, it is eventually allowed to do so.

The components in this problem usually represent the process of ex-
ecuting a program. The exact content or nature of the critical sections
is not important in the development of a solution to this problem.
Typically, a critical section contains an access to a common memory
‘1ocation, modification of a system table, etc.. Solutions to this
problem usually assume the exclusive execution of certain primitive
operations [ 4, 5, 6, 7, 12, 14 ]. Components which use these primitive
operations communicate by accessing common memory locations. 1In the
flow table model, components communicate by changing values on lines
(physical wires) which interconnect them. The lines carry binary level
signals and it is assumed that there is no bound on the time for

value changes to propagate along the lines. The primitive operations

in the flow table model are the change of the value on an intercon-
nectihg line and the recognition of a value change on one of these lines.

We do not assume exclusive execution of these primitives.

* This is a slightly different version of the problem considered by
Dykstra [ 5, 7 ]. Dykstra did not require that a given program must
enter its critical section but rather that the decision as to which
program would enter its critical section could not be postponed

indefinitely.



In [ 2, 3 ] a solution for the two-process mutual exclusion
problem was designed using the flow table model. In this paper,
formal analysis procedures for the flow table model are given and
these procedures are used in the analysis of this solution for the

mutual exclusion problem.

PARALLEL SYSTEMS

We begin by giving a definition of a parallel system.

Definition 1:

A parallel system is a finite collection of com-~

ponents @ = {Cl,Cz,...,CN} and a finite collection
of lines @ = {21,22,...,2M}. Each component C, has

a set of distinct input variables called the com-

ponent input set I. = {x, ,x, ,...,x, } 1 <i_. <M
—_— i i i - -
1 2 n
j=1,...,n and a set of distinct output variables
called the component output set 0. = {X, X, 5000, X, },
—— 11 i, 1m

1< %js M; j=1, «..,m. Each line —% = (xj’xj) connects
a component output variable Xj with a component in-

put variable xj. The lines carry binary level values

and value changes propagate from component output

to component input. Each output variable must be
connected by a line to exactly one input variable

and each input variable must be connected by a line




to exactly one variable input. The operation of each
component is described by a completely specified flow
table [ 22 ] with a designated initial internal state.
The initial value for each line is the value specified

for the output variable associated with the line.

The values of component input and output variables define the component

input state and output state, respectively. The assumptions about

physical delays present in a parallel system are the following:
Assumption 1:

The time for a value change to propagate from a component output
to a component input (line delay) is finite and unbounded.
Assumption 2:

Within a component, delays are finite and bounded.
The parallel system designed in [ 2 ] as a solution for the two-process
mutual exclusion problem is shown in Fig. 1. The initial internal
state for each component is internai state 1. Components C1 and C2
contain critical sections which are entered and left exactly once
when the component is in internal state 2 with the 1 input state.

Our definition of a parallel system is similar to the definition
of a circuit given by David Muller in his study of speed independence
[ 23 ]. Muller assumes that each component (element) has a single
output and allows lines to take integer values which are not restricted

to be binary. The delay assumptions made in Muller's model are
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Figure 1. Parallel system for the two-component mutual

exclusion problem.



different from those made here. Muller assumes that
all line delays are zero. 1In cases where line delays can affect
system operation, he assumes that special delay components (elements)
are specified in the model. In our model, line delays are explicitly
accounted for.

Our parallel systems are also similar to the definition of a

finite-state computational schema given by Luconi [ 15 ]. Luconi

useé functions rather than flow tables to describe component behavior
and assumes that delays are present only in components and not in
lines. In Luconi's model, components communicate by means of values
stored in memory cells rather than by level signals on interconnecting
lines. Luconi assumes that component operations are never performed
simultaneously.

The intent of our line delay assumption is that line delays
cannot be controlled. It is not assumed that, when a component Ci
changes the value of an output variable, the value change necessarily
propagates to the component Cj at the other end of the interconnect-
ing line or, if the value does propagate, that it is recognized by
Cj' When components operate in this.manner, it is not clear what
it means for a component to ''recognize' an input change. The following
discussion is intended to clarify this point. Basic component opera-
tion, as described in [ 2 ], consists of two phases. 1In the first
phase, the present input values (input state) are recorded in a rank
of flip-flops called the input rank. 1In the second phase, these

input values and the present internal state of the component determine



the component response. When this response is complete, the two-
phase cycle of operation begins again. A definition of the re-

cognition of an input value is given below.

Definition 2:
Given a value change for a component input
variable, the new value is said to be recognized

by the component if the new value is recorded in

the appropriate flip-flop of the input rank
during the first phase of some cycle of com-

ponent operation as described above.

The following example illustrates a situation in which an input
change may not be recognized by a component. The parallel system is

defined in Fig. 2. 1Initially, component C3 is unstable and will

enter internal state 2, setting X2 and X3 to 1. At this point the

following sequence of events may occur. Xy becomes 1. C1 recognizes

this input change and enters internal state 2, setting X1 to 1. x1

becomes 1. C3 recognizes this input change and enters internal state

1, setting X2 and X3 to 0. This entire sequence may be completed

such that either x3 never becomes 1 or is equal to 1 for such a short

time that C2 never recognizes the change in the value of Xq from O to
The possibility of spurious input value transitions is
undesirable under all normal circumstances and should be avoided.

Before investigating these spurious transitions further, let us con-

sider the nature of the difficulties encountered in this example.
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Figure 2. Example parallel system,




An apparent source of trouble is the lack of an interconnection

from component C. to component C_. However, the existence of such a

2 3

connection is not sufficient to guarantee that C_ recognizes all input

2

changes. In particular, C, can ignore all inputs from C, in deciding

3 2

when to change the value of X_ . A precise statement of sufficient

3

conditions for the 1 value for X_ to be recognized is given later.

3

While a connection from C2 to C3 can result in the recognition of the

output value for X3, such a connection is not always necessary if the
component flow tables are modified slightly. Consider the three flow
tables in Table 1 as alternatives to those shown in Fig. 2, Now when

- C., sets X3 to 1, the value of X3 is not changed for as long as the

3

system continues to operate, presumably an infinite time. Since line

and component delays are finite, C, must eventually recognize the value

2

change for x

3°
Output Hazards

The following definitions and theoretical results are introduced
to develop a more formal understanding of the difficulties present in
this example. Consider components Ci and Cj and a line ﬁk = (Xk,xk)

from C, to C..
1 J

*
Definition 3;
Let a and b be internal states of Ci for which
output variable Xk has the values 1 and O, respectively.

An output 1 hazard is the possibility of a transition

from a to b when input variable xk has the value O.

_ * Output hazards are examples of transformation-losses in lines in
the terminology of Luconi [ 15, 16, 17 /. They are violations of
the semi-modularity condition of Muller [ 23 ]. These hazards
have been called "resolution hazards' by Wood [ 26 ].




10

Table 1. Alternative Flow Tables for the Parallel System of Fig., 2

X, X3
1
, 0 | 1 Xl 'O l
1 (D] 2 o 1 [y 2
s — ,
2 1@ o | 2 (2
a) Component 1 b) Component 2

X1
0 41 XX
102 |(A* 00
2 (é) 3 011
[ ( 1
s 2 @, o

c) Component 3

* Never entered during the operation of the component.
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Definition 4:

Iet a and b be internal states of component Ci for which
output variable Xk has values 0 and 1, respectively. An output
0 hazard is the possibility of a transition from a to b when in-

put variable xk has the value 1.

Definition 5:

A component Ci is said to be connected to a component Cj if

1. There is a 1iﬁe from an output of Ci to an input of Cj, or
2. There is a line from an output of Ci to some component

C. and C, is connected to C..
k k J

Theorem 1: (Sufficient conditions for an output 1 hazard)

If component Ci changes output variable Xk from O to 1 to O

and component Cj with input variable x, is not connected to Ci’

k

an output 1 hazard exists.

Proof:

By Assumption 1, there is no bound on the time for the 1

value to propagate to xk._ Since Cj is not connected to Ci’
if Ci ever changes Xk from 1 to O it is possible that the 1 value
has not arrived at xk. The conditions of Definition 3 are satis-

fied and an output 1 hazard exists.

Theorem 2: (Sufficient conditions for an output O hazard)

If component Ci changes output variable Xk from 1 to 0 to 1

and component Cj with input variable x_ is not connected to Ci’

k

an output O hazard exists.
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Proof:

Similar to the proof of Theorem 1.

These two theorems, while trivial, aid somewhat in understanding
the conditions in which output hazards will always exist. Of greater
interest are theorems giving necessary and sufficient conditions for

the absence of output hazards.

' Theorem 3: (Necessary and sufficient conditions for the absence
of an output 1 hazard)

i

Let component Ci change the value of output variable xk from
0O to 1. There is no output 1 hazard when‘Ci changes Xk from 1 to
0 if and only if the value of Xk is changed to 0 only after Ci

recognizes an input value produced in recognition of the 1 value
for xk'

Proof:
(Sufficiency)

Since Ci does not change Xk to 0 until it recognizes an input
value produced in recognition of the 1 value for Xk’ the 1 value
for Xk must have propagaied to a-component input and xk must
have the value 1. Thus there is no output 1 hazard.

(Necessity)

We prove the contrapositive. Let Ci change Xk to 0 without
first recognizing an input value produced in recognition of the 1
value for Xk. Since the line delays are unbounded (Assumption 1),

there can be no guarantee that the 1 value has propagated to the
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component input and it is possible that xk is O when Ci changes

Xk' By Definition 3, an output 1 hazard exists.

Theorem 4: (Necessary and sufficient conditions for the absence
of an output O hazard)
Iet component ci change the value of output variable xk from
1 to 0. There is no output 0 hazard when Ci changes Xk from O
to 1 if and only if the value of Xk is changed to 1 only after
Ci recognizes an input value ;roduced in recognition of the 0

value for Xk.

Proof:

Similar to the proof of Theorem 3.

Suppose there are no output hazards in a parallel system. That
is, every output value produced must propagate to the associated
component input. Since the operation of each component is described
by a completely specified flow table, each component must have a stable
state in every column of the flow table and in particular every column
in which the new input value appears. By Assumption 2, the component
will recognize the new value ié a finite time, if the new value remains
present. Consider the possibility that a new input value must appear
but that it is not present long enouéh to be recognized by the component.
By Assumption 1, the time for the input value change to reach the
component is arbitrary. Therefore, if it is possible for the new
value to appear and not be recognized, it must be possible for the

new value not to have appeared at all. That is, an output hazard



1k

must exist. But this contradicts our assumption that no output
hazards existed and hence it must be impossible for a new input value
to appear but not be recognized. The result of this argument is the

following theorem.

Theorem 5:
If a parallel system has no output hazards, every output

change produces an input value which must be recognized.

The absence of output hazards is not only sufficient to ensure that

all input changes are recognized, it is necessary as well.

Theorem 6:
If every output change produces an input value which must

be recognized, the parallel system has no output hazards.

Proof:

This proof also follows from the fact that line delays are of
arbitrary duration. Suppose a parallel system has an output 1
hazard in line Qk = (Xk,xk) which joins component Ci to component -

CJ- By Definition 3, it is possible for Ci to change Xk from

1 to O when xk has the value 0. But by Assumption 1 line delays

are arbitrary and so it is also possible that x, will momentarily

k

have the value 1. There is no nonzero lower bound on the duration

of the 1 value for xk. Therefore, regardless of the interval

between the times Cj examines its inputs, the 1 value for xk

may not be recognized. The possibility of an output O hazard
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can similarly be shown to always provide the possibility of a

0 input which is not recognized and the proof is complete.

In general there may be many connections from the component which
recognizes a new input value back to the component which produced
it. Furthermore these connections may be through many other components

and require many more hazard-free interactions.

DESCRIPTION OF SYSTEM OPERATION

Given a parallel system, we now give a procedure which detects
all output hazards present in the system and in the case when no such
hazards exist, produces a description of the operation of the system.
This description will be a directed graph. If output hazards are
present, the behavior of the system cannot be reliably predicted.
That is, momentary 1 output values may or may not result in 1 input
values and if 1 input values appear these values may or may not be
recognized. In such cases, it is best to modify the system to elimi-
nate these hazards before prodgcing a graph description of system

operation.

Definition 6:

The component state or total component state is defined by

the component internal state and component input state.

The initial internal state of the control component in Fig. 1 is 1 and

the initial input state is 00. The initial component state is written 1-00.
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Because the output state of each component is determined by the
component internal state, it is unnecessary to include the output
state in the definition of total component state. When a component
is in an internal state, it is assumed that the output variables
have the values designated for that state. If there is objection
to this assumption, we can define being "in an internal state" as
the instant when the output variables attain the values specified

for‘the internal state.

Definition 7:

The system state or total system state is defined by the
N-tuple consisting of the component states for each of the N

components in a parallel system.

The initial system state for the parallel system in Fig. 2 is written
(1-0,1-0,1-0). As a consequence of the definition of a parallel system,
the initial system state is unique.

A component is stable if the flow table entry for the present
total component state is the same as the present internal state;
otherwise a component is unstable. A line is stable if the value
at every point in the line is the same; otherwise the line is unstable.
A sufficient but not necessary condition for a line Qk = (Xk,xk) to

be unstable is that Xk and xk have different values.
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Definition 8:
Given two system states A and B (A#B), B is said to be an

immediate successor of A if the following conditions are satisfied:

1. 1If a component input has a value in B different from
the value in A, the line was unstable in A.

2. 1If a component internal state iﬁ B is different from
the corresponding internal state in A, the component
was unstable in A and the B value is the next state
entry in the component flow table as determined by

the total component state in A.

The initial system state of the parallel system for the two-process
mutual exclusion problem in Fig. 1 is (1-0,1-0,1-00). 1In this state,

all lines are stable but two components, C., and C are unstable.

1 2’

There are three immediate successor states to this system state.

(2-0,1-0,1-00)

(1-0,2-0,1-00)

(2-0,2~-0,1-00)
In system state (2-0,1-0,1-00), line 21 = (Xl,xl) and component 02 are
unstable; The immediate succeésors are

(2-0,2-0,1-00)

(2-0,1-0,1-10)

(2-0,2-0,1-10)
In general, if p lines and components are unstable in a given system

state, there are 2p-1 immediate successor states.
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Definition 9:

The system state graph is a directed graph the nodes of

which are the system states attained during the operation of
the system. Two system states A and B are joined by a directed

arc from A to B if and only if B is an immediate successor of A.

Definition 10;
Given two system states A and B, B is said to be a successor
of A if i

1. B is an immediate successor of A, or

2. B is a successor of an immediate successor of A.

We will use the system state graph to describe the operation of a
parallel system. The procedure for obtaining this graph is as
follows:

Procedure for Finding System State Graph

1. Given the initial system state, determine all immediate successor
states.

2. Consider each immediate successor state as a system state and det;
ermine all immediate suceessors.

3. The procedure terminates when all immediate successors of all
immediate successors introduced in steps 1 and 2 have been
determined.

4. (Check for output hazards)

If a system state A has an immediate successor B such that internal

state a in A for some component Ci and internal state b in B for
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the same component satisfy the conditions in Definition 3 or

4, an output hazard exists.
This procedure considers all possible state transitions for a parallel
system; therefore, all output hazards are detected.

An Example: The Buffer Problem

To illustrate the application of the analysis method, consider

a parallel system with two components, C, and Cz. Component C

1 1

represents a Central Processing Unit (CPU) which fills a buffer.

The buffer is emptied by component C a Channel or Output Controller.

2’
Initially the buffer is empty and the Channel and CPU are idle. The

problem posed for this system, which we call the buffer problem, is

the following:
Problem: (The Buffer Problem)

Design a system with a CPU and Channel, operating as described
above, such that at all times during the operation of the system
the following restrictions are safisfied:

Restriction 3%:

The CPU and the Channel never access the buffer simultanéously.

Restriction 4:

When the CPU has filled the buffer, the CPU must not access
the buffer again until after the buffer has been emptied by the
channel.

Restriction 5:

When the buffer has been emptied, the Channel must not

access the buffer again until the baffer has been filled by the CPU.

¥ Restrictions 1 and 2 are associated with the mutual exclusion problem.
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This problem is similar to the mutual exclusion problem in that the
CPU and Channel must not access the buffer simultaneously. It differs
in that the order of accessing the buffer is fixed. It is not neces-
sary to specify the buffer as a component of the system in order to
study the control interactibns of the CPU and the Channel.

Consider the parallel system specified in Fig. 3. The interp-

retations of the values on the interconnecting lines and the component

states are as follows. Initially, the CPU, C is in total component

1!
state 1-0. 1In this state, the CPU is unstable and the buffer is filled.

Eventually the buffer becomes full and C, enters internal state 2,

1

a stable state, and sets X, to 1. The 1 input to C, causes C, ko

become unstable and empty the buffer (component state 1-1). When

the buffer is empty, C, enters internal state 2, setting X2 to 1.

2

This output value propagates to C1 notifying C1 that the buffer has

been emptied and putting C, in component state 2-1. In this unstable

1
state, the CPU fills the buffer again. 'When the buffer is full, the
CPU enters internal state 1, setting X2 to 0. When X, becomes 0, the
cycle begins again. Notice the significance of the value transition§
during the operation of this system, The first time the CPU fills

the buffer, it uses a 0 to 1 transition on line (Xl,xl) to notify the
Channel. The second time, the CPU uses a 1 to O transition to notify
the .Channel. The Channel also alternates, first using a 0 to 1
transition on line (Xz,xz) to indicate that the buffer has been emptied

and the next time using a 1 to O transition. It is possible to give

an interpretation for this system in which a O to 1 transition on line
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X2 Xl
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(initial system state is (1-0,1-0))

Figure 3. Parallel system for the buffer problem,
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(Xi’ xl) is always used to indicate that the buffer is full and a 0 to 1
transition on (X2,x2) indicates that the buffer has been emptied.

Programs of the class described in [ 3 ] representing the CPU and
Channel activity are given in Table 2. An analysis of these programs
using the procedures given in [ 3] will verify that their operation
is characterized by the flow tables shown in Fig. 3.

Let us now apply the procedure described earliér to obtain the
system state graph for the parallel system of Fig. 3. A table of the
system states and their immediate successors as produced by the proce-
dure appears in Table 3. The initial system state is (1-0,1-0) and the
only immediate successor is (2-0,1-0). This state has only one immediate
successor (2-0,1-1). The procedures continués and terminates when eight
system states have been produced. This system may not appear to exhibit
much parallelism but remember that it is possible for the CPU to perform
other functions after it fills the buffer and while the buffer is being
emptied as long as it does not try to add additional information to the
buffer. The system graph is shown in Fig. 4. Since there are no output
hazards, every output change results in a new input valuevwhich must be
recognized (Theorem 5). Therefore, line delays cannot affect the opera-
tion of this system. If thé line delays are set to zero, the system
state graph in Fig. 4 can be reduced to the system state graph shown in
Fig. 5.

Detection of an Qutput Hazard

To illustrate the application of the analysis procedure to a
system containing an output hazard, we apply the procedure to the
parallel system given in Fig. 2. The initial system state is (1-0,1-0,1-0).

This state has one immediate successor (1-0,1-0,2-0).
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Table 2. CPU and channel Programs for the Parallel System of Fig. 3.

INPUT X2

OUTPUT X, (initially X, is 0)

1: DUMMY; (£fill buffer)

2; Xl: =1,

3: WAIT (1, k4);

4: DUMMY; (£fill buffer)
5: Xlz = 0;
6: WAIT (0, 1).
a) CPU
INPUT X,
OUTPUT X, (initially X, is 0)

1: waIT (1, 2);

2: DUMMY; (empty buffer)
3: X2: = 1;

L: warr (0, 5);

5: DUMMY; (empty buffer)
6: X,: = O;

T: GO TO 1.

b) Channel



Table 3. System States With Immediate Successors for the Parallel

System of Fig. 3.

(initial state)

system state

(1-0,1-0)
(2-0,1-0)
(2-0,1-1)
(2-0,2-1)
(2-1,2-1)
(1-1,2-1)
(1-1,2-0)

(1-1,1-0)

immediate sucessors

(2-0,1-0)
(2-0,1-1)
(2-0,2-1)
(2-1,2-1)
(1-1,2-1)

(1-1,2-0)

( 1-1, 1"0)

(1-0,1-0)

2k



A

(1-0,1-0)% — (2-0,1-0)—> (2-0,1-1)— (2-0,2-1)

(1-1,1-0) <— (1-1,2-0)<«— (1-1,2-1)«— (2-1,2-1)

¥ initial system state

25

Figure 4. System state graph for the parallel system in Fig. 3.



(1~0,1-0)% —s (2-0,1-1)

(1-1,2-0) — (2-1,2-1)

* initial system state

Figure 5.

System state graph for the parallel system in

Fig. 3 when line delays are zero.
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A partial table of system states with immediate successors is shown
in Table 4. The hazard is detected in determining the immediate

successors of state (2-1,1-0,2-1). It is possible for C, to change

3

from component state 2-1 to 1-1 which changes X3 from 1 to 0. But

x3 has the value O and therefore an output 1 hazard exists.

System State Graph for the Two-Process Mutual Exclusion Problem

Table 5 contains the 64 system states with immediate successors
which are attained during the operation of the parallel system for
the two-process mutual exclusion problem defined in Fig. 1. The
system state graph is given in Fig. 6. If line delays are zefo, the
graph in Fig. 6 can be reduced to the graph shown in Fig. 7.

CORRECT OPERATION FOR PARALLEL SYSTEMS

We now consider what it means to say that a parallel system
operates correctly. The systems we have discussed have been desighed
to solve particular problems such as the mutual exclusion problem
or the buffer problem. A problem is a word statement with a number

of restrictions which must be met if the problem is to be solved. We

say that a parallel system is correct with respect to a given problem

if the system operates so that the restrictions are always satisfied.
This notion differs from the idea of correctness for a computation
where correctness usually means that the computation halts and gives
the desired answer [1, la, 8, 12, 18, 19, 20]. Since the systems

we deal with do not halt under ordinary circumstances, we have found

it necessary to formulate a different interpretation of correct operation.
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Table 4, Partial Table of System States With Immediate Successors

for the Parallel System in Fig. 2.

system state immediate successors
(initial state) (1-0,1-0,1-0) (1-0,1-0,2-0)
(1-0,1-0,2-0) (1-1,1-0,2-0)

(1-0,1-1,2-0)
(1-1,1-1,2-0)
(1-1,1-0,2-0) (2-1,1-0,2-0)
(1-1,1-1,2-0)
(2-1,1-1,2-0)
(2-1,1-0,2-0) (2-1,1-0,2-1)
(2-1,1-1,2-0)
(2-1,1-1,2-1)

(2-1,1-0,2-1) (2-1,1-0,1-1) (output hazard
detected)



Table 5. System States With Immediate Successors for the Parallel

System of Fig. 1

system states immediate successors

(1-0,1-0,1-00)

(2-0,1-0,1-00)

(1-0,2-0,1-00)

(2-0,2-0,1-00)

(2-0,1-0,1-10)

(2-0,2-0,1-10)

(1-0,2-0,1-01)

(2~1,1-0,1-00)
(1-0,2-0,1-00)
(2-0,2-0,1-00)
(2-0,2-0,1-00)
(2-0,1-0,1-10)
(2-0,2-0,1-10)
(2-0,2-0,1-00)
(1-0,2-0,1-01)
(2-0,2-0,1-01)
(2-0,2-0,1-10)
(2-0,2-0,1-01)
(2-0,2-0,1-11)
(2-0,2-0,1-10)
(2-0,1-0,3-10)
(2-0,2-0,3-10)
(2-0,2-0,3-10)
(2-0,2-0,1-11)
(2-0,2-0,3-11)
(2-0,2-0,1-01)
(1-0,2-0,2-01)

(2-0,2-0,2-01)



Table 5 (cont)

(2-0,2-0,1-01)

(2-0,2-0,1-11)

(2-0,1-0,3-10)

(2-0,2-0,3-10)

(2-0,2-0,3-11)

(1-0,2-0,2-01)

(2-0,2-0,2-01)

(2-0,2-0,2-11)

(2-1,1-0,2-10)

(2-1,2-0,3-10)

(2-0,2-0,1-11)
(2-0,2-0,2-01)
(2-0,2-0,2-11)
(2-0,2-0,3-11)
(2-0,2-0,3-10)
(2-1,1-0,3-10)
(2-1,2-0,3-10)
(2-0,2-0,3~-11)

(2-1,2-0,3-10)

- (2-1,2-0,3-11)

(2-1,2-0,3-11)
(2-0,2-0,2-01)
(1-0,2-1,2-01)
(2-0,2-1,2-01)
(2-0,2-0,2-11)
(2-0,2-1,2-01)
(2-0,2-1,2-11)
(2-0,2-1,2-11)
(1-1,1-0,3-10)
(2-1,2-0,3-10)
(1-1,2-0,3-10)
(1-1,2-0,3-10)
(2-1,2-0,3-11)

(1-1,2-0,3-11)
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Table 5 (cont)

(2-1,2-0,3-11)

(2-0,2-1,2-01)

(1-0,2-1,2-01)

(2-0,2-1,2-11)

(1-1,1-0,3-10)

(1-1,2-0,3-10)

(1-1,2-0,3-11)

(2-0,1-1,2-01)

(2-0,1-1,2-11)

(1-0,1-1,2-01)

(1-1,1-0,3-00)

(1-1,2-0,3-11)
(2-0,2-1,2~11)
(2-0,1-1,2-01)
(2-0,1-1,2-11)

(2-0,2-1,2-01)

(1-0,1-1,2-01)

(2-0,1-1,2-01)

(2-0,1-1,2-11)

(1-1,2-0,3-10)

(1-1,1-0,3-00)
(1-1,2-0,3-00)
(1-1,2-0,3-11)
(1-1,2-0,3-00)
(1-1,2-0,3-01)
(1-1,2-0,3-01)
(2-0,1-1,2-11)
(2-0,1-1,2-00)
(2-0,1-1,2-10)
(2-0,1-1,2-10)
(2-0,1-1,2-01)
(1-0,1-1,2-00)
(2-0,1-1,2-00)
(1-1,1-0,4-00)
(1-1,2-0, 3-00)

(1-1,2-0,4-00)
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Table 5 (cont)

(1-1,2-0,3-00)

(1-1,2-0,3-01)

(2-0,1-1,2-00)

(2-0,1-1,2-10)

(1-0,1-1,2-00)

(1-1,1-0,4-00)

(1-1,2-0,4-00)

(1-1,2-0,4-01)

(1-1,2-0,2-01)

(1-1,2-0,4-00)
(1-1,2-0,3-01)
(1-1,2-0,4-01)
(1-1,2-0,2-01)
(2-0,1-1,1-00)
(2-0,1-1,2-10)
(2-0,1-1,1-10)
(2-0,1-1,3-10)
(2-0,1-1,2-00)
(1-0,1-1,1-00)
(2-0,1-1,1-00)
(1-0,1-0,4~00)
(1-1,2-0,4-00)
(1-0,2-0,4-00)
(1-0,2-0,4-00)
(1-1,2-0,4-01)
(1-0,2-0,4-01)
(1-0,2-0,4-01)
(1-1,2-0,2-01)
(1-0,2-0,2-01)
(1-0,2-0,2-01)
(1-1,2-1,2-01)

(1-0,2-1,2-01)
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Table 5 (cont)

(2-0,1-1,1-00)

(2-0,1-1,1-10)

(1-0,1-1,1-00)

(1-0,1-0,4~00)

(1-0,2-0,4-00)

(1-0,2-0,4-01)

(1-1,2-1,2-01)

(2-0,1-1,3~10)

(2-0,1-1,1-10)
(2-0,1-0,1-00)
(2~0,1-0,1-10)
(2-0,1-0,1-10)
(2-0,1-1,3-10)
(2~0,1-0,3-10)
(2-0,1-1,1-00)
(1-0,1-0,1-00)
(2-0,1-0,1-00)
(2-0,1-0,4-00)
(1-0,2-0,4-00)
(2~0,2-0,4-00)
(2-0,2-0,4-00)
(1~0,2-0,4-01)
(2-0,2-0,4-01)
(2~0,2-0,4-01)
(1-0,2-0,2-01)
(2-0,2-0,2-01)
(1-0,2-1,2-01)
(1-1,1-1,2-01)
(1-0,1-1,2-01)
(2~1,1-1,3-10)
(2-0,1-0,3-10)

(2~1,1-0,3-10)
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Table 5 (cont)

(2-0,1-0,4-00)

(2-0,2-0,4-00)

(2-0,2-0,4-01)

(1-1,1-1,2-01)

(2-1,1-1,3-10)

(2-0,1-0,4-10)

(2-0,2-0,14-10)
(2-0,2-0,4-11)

(1-1,1-1,2-00)

(2-0,2-0,4-00)
(2-0,1-0,4-10)
(2-0,2-0,4-10)
(2-0,2-0,4-10)
(2-0,2-0,4-01)
(2-0,2-0,4-11)
(2-0,2-0,4-11)

(2-0,2-0,2-01)

(2-0,2-0,2-11)

(1-0,1-1,2-01)
(1-1,1-1,2-00)
(1-0,1-1,2-00)
(1-1,1-1,3-10)
(2-1,1-0,3-10)
(1-1,1-0,3-10)
(2-0,2-0,4-10)
(2-0,1-0,3-10)
(2-0,2-0,3-10)
(2-0,2-0,3-10)
(2-0,2-0,2-11)
(1-0,1-1,2-00)
(1-1,1-1,1-00)

(1-0,1-1,1-00)
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Table 5 (cont)

(1-1,1-1,3-10)

(1-1,1-1,1-00)

(1-1,1-1,3-00)

(1-1,1-0,1-00)

(1-1,1-1,4-00)

(1-1,2-0,1-00)

(1-0,1-1,4-00)

(1-1,2-0,1-01)

(1-1,1-0,3-10)
(1-1,1-1,3-00)

(1-1,1-0,3-00)

(1-0,1-1,1-00)

(1-1,1-0,1-00)
(1-0,1-0,1-00)
(1-1,1-0,3-00)

(1-1,1-1,4-00)

(1-1,1-0,4-00) -

(1-0,1-0,1-00)
(1-1,2-0,1-00)
(1-0,2-0,1-00)
(1-0,1-1,4-00)
(1-1,1-0,4-00)
(1-0,1-0,4-00)
(1-0,2-0,1-00)
(1-1,2-0,1-01)
(1-0,2-0,1-01)
(2-0,1-1,4-00)
(1-0,1-0,4-00)
(2-0,1-0,4-00)
(1-0,2-0,1-01)
(1-1,2-0,2-01)

(1-0,2-0,2-01)
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Taﬁl
e 5 (cont)

(2-
0,1-1,4-00)

(2~
0,1-1,4-10)

:2-0,1-o,n-oo)
(2-0,1-1,h-1o)
(2-0,1-o,u-1o)
(2-0,1-o,u—10)

-0,1-1,3-10)

(2-
0,1-0,3-10)
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Correctness of the Solution to the Buffer Problem

Consider the parallel system shown in Fig. 3 proposed as a
solution to the buffer problem. Restriction 3 states that the CPU
and the Channel must never access the buffer simultaneously. The
system states which represent simultaneous access by the CPU and
Channel are (1-0,1-1), (1-0,2-0), (2-1,1-1), (2-1,2-0). The system
state graph in Fig. 4, or the list of system states in Table 3,
specifies all system states attained during the operation of the
system. Since none of the above system states appear, it is impossible
for the system to violate Restriction 3. Consider Restriction 4.

When the buffer has been filled, the CPﬁ enters either component state
2-0 or 1-1. To determine if the restriction is always satisfied,
we must examine paths in the system state graph. A BEEE is a sequence

,++.. , such that state s, is an

i+l

of system states, So’sl""’si’si+1

immediate successor of state si for i =0,1,... . To verify that
Restriction 4 is satisfied, we examine the system state graph and
determine that each time the CPU enters component state 2-0 (in

system state (2-0,1-0)) or component state 1-1 (in system state (1-1,2-1))
that in every path frém these -system states, the Channel enters

component state 1-1 or 2-0 before the CPU enters component state 1-0

or 2-1. The state graph shows that this is the case and consequently
Restriction 4 is satisfied. The verification of Restriction 5

follows in a similar way. Each time the Channel enters component

state 1-0 (in system state (1-1, 1-0)) or 2-1 (in system state (2-0,2-1)),

the CPU enters states 1-0 or 2-1 before the Channel enters 1-1 or 2-0.
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Since Restrictions 3, 4, and 5 are satisfied, we conclude that the
parallel system of Fig. 3 is correct with respect to the buffer
problen.

In this analysis of the buffer problem solution, two types of
tests were applied. The first required the examination of the system
state graph to determine if certain 'forbidden states' were entered.
The second type of test consisted of an examination of the system
stéte graph for the possibility of "forbidden paths'. These two
types of tests are also used in the analysis of the parallel system
for the two-process mutual exclusion problem.

Correctness of the Solution to the Two—ProcesS Mutual Exclusion Problem

The system state graph for this system was given in Fig. 6. The
restrictions for this problem are Restrictions 1 and 2. The first
restriction states that at most one component may be in a critical
section at a time. 1In terms of our parallel system, this means
that system states of the form (2-1, 2—1,*) must never occur. The
asterisk indicates that any component state is acceptable for component
CS' An examination of the system state graph, or the table of states
in Table 5, shows that no states with this form are ever entered;
therefore, Restriction 1 is satisfied. Restriction 2 states that

whenever a component, say C., wants to enter its critical section

1
(Cl-is in component state 2-0) that C1 must eventually enter (the
critical section) component state 2-1. Thus whenever the system

enters a system state of the form (2-0,*,%-1%), that is, component

C1 has requested access to its critical section and the request has
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propagated to the control input, every path with such a state as

its initial state must contain a state of the form (2-1,*,*). There

are 16 system states which have the form (2-0,%,*-1%). Every path

from these states does contain a state of the form (2-1,*,%). Therefore,
when C1 requests access to its critical section, it must gain access.

The argument that C2 must gain access to its critical section when it
desires follows in a similar manner. On the basis of these arguments,

we say that the parallel system of Fig. 1 is correct with respect to

the mutual exclusion problem.

Correctness, Determinacy, and Output Functionality

In this section, we contrast our nétion of correct operation
with the notions of determinate, completely functional, and output
functional systems which have been proposed by Adams, Karp and Miller,
Luconi, Rogriquez, and others [1,9,10,11,15,16,17,23,24,25]. 1In all
of these systems or models, the operation of a component is specified
by a function rather than by a flow table. Our flow tables can be
represented as functions if the component internal state is added
as an input and an output. The operation of the component is then
described by a function which-maps the original input state and internal
state into the output state and next internal state. The definition
of such functions for the mutual exclusion problem flow fables of
Fig. 1 is given in Table 6. These functions are partial functions
which are defined only when the original flow tables are unstable.
Components become ready for execution when their functions become

defined. 1In the Karp and Miller model [10, 11] there is an additional
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Functional Description of Component Operation for the

Parallel System of Fig. 1
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portion of the system called the control which is used to regulate
when functions may be executed. The effect would be essentially the
same in this example however. A system is said to be determinate or

completely functional if the history or sequence of values associated

with each variable in the system is unique. We now show that the
parallel system we have given is not determinate in this sense. To
simplify the discussion, assume that all line delays are zero. That
is, when a component changes its output value, the value immediately
propagates to the input at the other end of the line. The initial
component state is 1-0 for both C1 and Cz. Thus f1 and f2 are both
defined. The initial component state for 03 is 1-00 and f, is

3

undefined. Suppose f2 is executed. The input to f3 becomes 011

and now f2 and f3 are defined. If f3 is executed, the value of the

internal state for C3 will be 2. However, if fz is executed and then

f3 is executed, the value of the internal state of C3 will be 3.

This means that the sequence of values associated with the internal
state of C3 is dependent on the speed of operation of the components

in the system and therefore the system is not determinate or completely
functional., This sysfem violates one of the conditions which have been
shown to be sufficient to guarantee determinate (completely functional)
operation., Therefore, the lack of determinacy is not toé surprising.
The condition states that if two functions are simultaneously defined,

the execution of one of the functions cannot affect the values to be

produced by the other function. Clearly, the execution of f2 affects
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the value of the internal state of C3 produced when f3 is executed.
This situation is another example of a transformation-loss [15] or a
violation of semi-modularity [23]. The model of Karp and

Miller deals with parallel program schemata which are parallel
systems in which the interconnections are known but the functional
behavior of each component is not. Determinacy in this model means

that for every possible assignment of functions for the components in

\

the system (every possible interpretation) the sequence of values
associated with each variable must be unique. In such a model,
sufficient conditions for determinacy require that if two functions
can be executed in parallel, the intersection of the input set of
each component with the output set of the other must be empty. This
condition is also violated by f2 and f3 since the intersection of the
output set of f, {x2,12} with the input set of fg {xl,x2,13 } contains
the common line (Xz, xz).

Luconi and Van Horn [25] were aware of the possibility that
certain variables, perhaps not essential as far as the correct operation
of the system was concerned, might not have unique value sequences

associated with them. To allow for this possibility, they introduced

the notion of output functional systems or systems in which unique

value sequences were required only for some designated subset of the
set_of variables in the system. Let us require that only the inputs
(and outputs) of each component have unique value sequences and
allow the sequences of values associated with internal states to

be non-unique. All input and output values are initially O. An

examination of the system state graph in Fig. 6 shows that the sequence
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of values for all inputs and outputs are the same and have the form
,1,0,1,0,1,...). That is, the values are alternately O and 1 for
as long as the system exists.

We now consider whether there is any relation between
our notion of a correct system and an output functional system. We
show, by presenting two examples, that the notions are not related.
In the first example, we give a system which has the same configuration
as the parallel system for the mutual exclusion problem and which
has the same value sequences associated with the input and output var-
iables (0,1,0,1,0,1,0,1,...) as the correct system but which is not
ocorrect in the sense that it fails to Solve the mutual exclusion
problem. Second, we give a system which correctly solves the mutual
exclusion problem but which is not output functional.

To obtain the first system use the same parallel system as
before bu% replace the control (CS) flow table shown in Fig. 1 by
the flow table shown in Table 7. With this control mechanism, if
one process is enabled and the other process asks to be enabled, the
control enables both processes. This allows both processes to be in
critical sections simultaneously, violating Restriction 1. If the
system state graph were constructed for this system, it would show that
the input and output variables still have the same value sequences as
before (0,1,0,1,0,1,...). The difficulty with output functionality
in this example is the fact that the state of the system has been
neglected.

The second example is also obtained by starting with the parallel

system for the mutual exclusion problem. This time we modify the flow



Table 7. Modified Control Flow Table For the Mutual Exclusion

Problem

00 01 11 10 X X
' ! 3%

a) Flow Table (c3)

f3 X Xpl = XX I,
011 o12
111 11k
101 103
002 001
112 1114
102 103
003 001
013 012
113 114
00k 001
01l o012
104 103

b) Function
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table for C2 so that the component asks to enter its critical
section only once and when it leaves the critical section it halts.
A possible flow table for C2 is shown in Table 8. 1Initially, the
component is in component state 1-0. This modification alone

leaves a system which is correct with respect to the mutual exclusion

problem and which is still output functional. That is X4, x4, X2
and x2 have the finite value sequence (0,1,0) and X3, x3, Xl’ and
x. have the value sequence (0,1,0,1,0,1,...). Suppose we add a

1

connection from component C, to component C, so that when Cz exits

2 1

its critical section it notifies C1 which then also halts. The
resulting system is still correct with'respect to the mutual exclusion
problem (we omit the details but the control is still the same).

Now, however, there are many different possible value sequences for

and x, and the exact sequence depends on the speed of

X0 X0 X3 3

1’ 71
operation of CZ'

These examples show that parallel systems which are correct with
respect to the mutual exclusion problem need not be output functional,
While the examples may be somewhat contrived, we believe they cast doubt
on the use of output functional or determinate operation as a design

criterion for parallel systems. A model in which the speed of component

operation has no affect is not always desirable. It is possible for a

-system to take alternative actions precisely as a result of the time

necessary to perform certain tasks. For example, a system might perform
a computation two different ways in parallel and use the result that

is available first.



Table 8. Modified Flow Table for C, (Fig. 1) to Allow

Entering Critical Section Only Once

L8
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CONCLUSIONS

We have described an analysis procedure for parallel systems.
A block diagram summarizing the analysis phases is given in Fig. 8.
The analysis procedure can be applied to any system defined as in
Definition 1 iﬁ appropriate restrictions on éystem operation can
be stated. More efficient analysis procedures are necessary if
total system analysis is to be practical. 1In a future paper, we

consider a more problem-oriented approach to system analysis.



Obtain flow table Determine system | Draw system state 1 Test for forbidden
for each program states and immediate graph states and/or paths
and circuit ’ successors

Figure 8. Analysis procedure for parallel systems.
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