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ABSTRACT

The work of Adams, Karp and Miller, Luconi, and Rodriguez on

formal models for parallel computations and computer systems is

reviewed. A general definition of a parallel schema is given so that

y the similarities and differences of the models can be discussed.

Primary emphasis is on the control structures used to achieve parallel

operation and on properties of the models such as determinacy and

equivalence, Decidable and undecidable properties are summarized.
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INTRODUCTION

In recent years, a number of articles have appeared in the litera-

ture which may be grouped under the classification, models of parallel

computing. These papers represent efforts to formalize intuitive notions

of parallel computer systems, such as multiprocessor systems and systems

with multiple functional units, and also parallel computations, which

represent algorithms for solving mathematical problems such as the

multiplication of two matrices. Of particular interest in these studies

are the nature of the control structures which determine when operations

3 in a system or computation are performed and the properties and char-

) acteristics of the models which result in correct operation.

| The operation of a parallel computer system or the execution

of a parallel computation can be characterized in the following way.

First the system or computation must be defined and the initial

= conditions given. Operators produce changes in a data base. More

than one operator may be being executed at a given time. When the

execution of each operator is completed, it may be possible to execute

other operators. A computation or system terminates its operation

when the execution of all operators that are capable of being executed

is completed. The time required to execute each operator is assumed

to be unbounded but finite.

In this paper, only a portion of the current research in parallel

computing is discussed in any detail. We consider the work of Adams

[1, 2], Karp and Miller [ 13, 14, 15 ], Luconi [ 16, 17, 18 ], and

Rodrigues [ 34 ]. Adams! work is an extension of the model of Karp
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and Miller described in [ 13 ]. Adams' model is intended to describe

parallel computations and not computer systems. The work of Karp and

Miller on parallel program schemata extends work of Ianov [ 11, 12, 35 |

on sequential schemata to the parallel case. The emphasis here is also

on the description of parallel computations. Rodriguez' work uses

concepts from Muller's theory of speed independent circuits [ 30, 31 ]

to develop a model for parallel computations. Luconi's model extends

the work of Rodriguez and earlier work by Van Horn [ 39 ] and emphasizes

the description of computer systems,

Early contributions to tne theory of parallel computation are the

work of Holt [ 8 J], Petri [ 32, 33 J, and McNaughton [ 28 ]. Petri's

work, in particular his concept of Petri nets, has strongly influenced

more recent work by Holt [ 9 ], Patil [ 3la J], and Shapiro [ 37 J.

The work of Karp and Miller on program schemata has been extended by

Slutz[ 38 ]. Rutledge [ 36 ] has developed a model which is another

extension of the work by Ianov. Estrin, Martin and others at the

University of California at Los Angeles [ 4, 23, 24,25, 26, 27 ] have

developed a model which is used mainly for the determination of schedules

for computations in a multiprocessor environment. Bredt and McCluskey

[ 5 ] have applied flow tables introduced by Huffman [ 10 ] to describe

the control of parallel processes and in particular the control require-

ments for the mutual exclusion or interlock problem. Ashcroft and

Manna [ 3 ] have defined a model for parallel computations which applies

proof procedures of formal logic and is based on earlier work by Floyd

[ 6 ] and Manna [ 19, 20, 21, 22 ]. It is hoped that in a future version
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< of this paper an integrated description of the papers mentioned in this

paragraph can be given,

BASIC CONCEPTS

Consider the data base for a computation as a set of variables.

By a computation, we mean the operation of a computer system or the

execution of a parallel algorithm. A computation is said to be

determinate or completely functional if the sequence of values assoc-

iated with each variable in the data base is unique, Determinate comp-

} utations are considered desirable although intuitively it is possible

to have a correct result even though the intermediate value sequences

are not unique. Two computations with the same data base are said to

be equivalent if both result in the same set of value sequences for

each variable in the data base.

There have been two fundamentally different approaches taken in

the study of parallel computing. The first defines a model in which

- it can be proved that every computation which is represented in the

model is determinate. This approach is used by Karp and Miller [13 ]

and Adams [ 1,27]. Adams proves that every computable function

(every function which can be computed by a Turing machine) can be

represented in his model. This is not true for the model of Karp and

Miller in which data-dependent decisions or conditional branches

based on the values of variables in the data base are not allowed.



The second approach used is based on the definition of a model or

schema in which not all computations are determinate. One theoretical

result is the determination of a set of conditions which are sufficient

to guarantee that a given computation will be determinate. In addition

it can also be shown that under certain conditions either it is or it is

not possible to give procedures to test if an arbitrary computation is

determinate or if two arbitrary computations are equivalent.

One might well ask why there is interest in such theoretical proper-

ties of these models. One reason is that the conditions either implicit

in the definition of the model itself or imposed to achieve determinate

operation may give valuable insight which can be used in the design of

future systems. Control techniques used to enable operations may also

be of interest and questions about equivalence are important when trans-

forming representations of computations in the interest of economization

or optimization,

GENERAL DEFINITION OF A PROGRAM SCHEMA

In this section, a general definition of a model for parallel

computation called a program schema is given, This definition is

then modified and extended to describe the models of Adams, Karp and

Miller, Luconi, and Rodriguez.



) Definition 1:

A program schema or schema 4 is defined by a triple

5 =(M A C)

where

M = {%10%05 005% } a set of variables

A= {a,b,...,c} a set of operators (operations)

C (to be defined) a control

Each operator a has an input set I I C M, and an output set 0,»

a —

Associated with each schema is an interpretation defined as

follows,

Definition 2:

An interpretation is defined by

l. For each variable Xy5 @ domain D, of values which

the variable may assume,

2. For each operator a, two functions

F: a computation function which maps values associated

with the variables in the input set I into values

for the variables in the output set O,-



G : a decision-making function (not explicit in all

models), The output of this function is used by

the control portion of the schema to determine

which operations may be performed next.

3. The initial variable values,

: A partial interpretation is defined by 1 and 2 above, but not 3.

Definition 3:

A variable history h, is defined to be the sequence of

values associated with the variable x, during a computation.

Definition 4:

A schema history H is the n-tuple <h,,h,,...,h >

consisting of the variable histories for variables X ys esX

Using these definitions, it is possible to give a more precise

definition of determinacy. First, we define the term as it is used by

Karp and Miller in their papers on parallel program schemata [ 14,15 ].

Definition 5:

A schema A is said to be determinate if and only if each

interpretation results in a unique schema history,



The following definition will also be used. The phrase "partially

interpreted schema” refers to a schema together with a partial interp-

retation.

Definition 6:

A partially interpreted schema 4 is said to be

determinate (completely functional) if and only if each

set of initial variable values results in a unique schema

history,

i In the work of Karp and Miller on schemata, the results of a

_ computation must be determinate in the sense of Definition 5. f7pig

is directly analogous to mathematical logic where theorems which are

are valid must be true under every possible interpretation [ 29 ].

Definition6 corresponds more to our intuitive notion of a computation

in which not only the structure of the computation is known but also

the functions which define the operations in the computation as well,

- To illustrate these concepts, let us consider a few simple examples

expressed, not in terms of schemas, but in terms of ALGOL-like programs

with which most readers should be more familiar. A sequential program

is shown in Table 1. If the initial value for variables u, x, and y

isOand the initial value for v is 3, the variable histories for u, v,

Xx, and y during the execution of this program are



3

Table 1. Example of a Sequential Program }

begin integer u, v, x, y;

X := Uu;

y i= Vj;

iter: x := x + 1;

y :=y - 1;

if y # u then go to iter

end



ho =< 0 >

h =<3>

h =<0,1,2,3,>

Bo =< 0,3,2,1, 0 >

In general if @, 8, yY, and § are arbitrary integers which represent

the initial values for variables u, v, x, and y, respectively, then

h =< 0 >

i h =<B >

and, if a < B, then

h =<Y, & +l, . .., p=1, B >

h, =<06,p,p-1,-.., 0, a>

but, if a > g, then

h =<, q, o+l, 0+2,... >

hy = < 6, B, B-1, p-2, ... >

That is, if 0 < B, all variable histories are finite and if Q > 8,

the variable histories for x and y are infinite and the execution of

the program never terminates. However, in each case, the variable

histories are unique and the execution of the program can be said to

be determinate.
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A second example is shown in Table 2. The reserved words ''parbegin" -

and "parend’' designate blocks of statements exactly as do "begin" and

"end'; however, all statements within a block defined by ''parbegin’ and

"parend' may be executed concurrently. This extension to ALGOL has been

proposed by Dijkstra [ 5a ]. In this program, the statements x := u

and y := v may be executed concurrently and the statements x := x + 1

and y := y - 1 may also be executed concurrently. In both cases, the

execution of one statement cannot affect the execution of the other,

The execution of the program in Table 2 is also determinate for all

possible initial values for the variables and the variable histories

are the same as those for the program of Table 1. In the sense that

every possible set of initial values results in identical variable

histories for the two programs, these programs can be said to be

equivalent.

A third example is shown in Table 3. The execution of this

program is not determinate if the initial value for u is less than

the initial value for v. This follows because the variable history h

- depends on the rate at which the statements in block b2 are executed.

Suppose u, x, and y are initially O and v has the value 2. Some of the

possible variable histories for x are:

h_ =<0, 1> h_ = <0,1, 2, 3 >

h =<0,1,2,> h =<0,1,2,3,4>

If the time to execute the statements in b2 is unbounded, the number of ~

possible histories for the variable x is also unbounded.
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Table 2. Example of a Program With Concurrent Statement Execution

begin integer u, v, x, y;

parbegin

X $= Uu;

y =v,

parend;

iter: parbegin

X =X+ 1;

y :=y - 1;

~~. parend;

if y # u then go to iter

end .
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Table 3. Another Example

begin integer u, v, x, y;

parbegin

X = Uu;

y i= Vy

parend;

parbegin

bl: begin

iterl: x := x + 1;

if y # u then go to iterl

) end;

b2: begin

iter2: y = y - 1;

if y # u then go to iter2

end

parend

end .,
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- These three examples represent "partially interpreted’ programs

in the sense that the operations performed by each statement are

specified. An "uninterpreted' program for the example of Table 2 is

shown in Table 4. The symbol Py represents a predicate function which

gives the value "true or "false. In the sense of Definition5,

determinate operation requires that unique variable histories must be

obtained for every possible choice of the functions 2% ts) SY £)» and

the predicate P,.

CONTROL STRUCTURES

In this section, we consider the form of the control used to

permit the initiation and termination of the operations in a schema.

For the present, let us consider the variables in a schema to be cells

in a memory or register,

Rodriguez

Rodriguez [ 34 ] associates status information with each variable.

The status information specifies whether a variable is idle (0),

ready (1), disabled (-1), or blocked (2). the function

G, of Definition 2 may be considered to map the status values associated

with the input set and output set for an operator a intonew status

values. An example is shown in Fig. 1 where square boxes represent



Table 4. Uninterpreted Version of the Program in Table 2 Eh

begin integer u, v, x, y;

parbegin

X 1+ £_(u);,(u)
y := £,(v);

parend;

iter: parbegin

x =f (x);S(x);
y = f(y);

parend;

if p, (u,v) then go to iter
end .



Dyyd NO
x | | x

I = {xy x, | 0, = {x35 x) }

G,: XXX 3%),
1100-—=0011

Figure 1. Example of a change in status information,
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variables and circles represent operators, In this example, status

values for the input variables are changed to O and the status values

for the output variables are changed to 1 when operator a is executed.

This is not a coincidence. In fact, with the exception of data-

dependent decisions, this is the mechanism used to determine waen

a particular operation is eligible for initiation, That is, the

status of all input variables must be 1 (ready) and the status of all

output variables must be O (idle). When the operation is performed,

the status of all input variables is changed to O and the status of

output variables to 1. Thus an operation may not be performed a second

time until other operations are performed which change the status values

of the variables in the input set to 1 and the status of variables in :

the output set to O. This control technique has been borrowed from

Petri [ 32,33 J]. The 1 status values correspond to the stones’ or

"tokens" which determine when the events in a Petri net may occur.

In the Rodriguez model, operators must be chosen from several

basic operator types. Computations with data-dependent decisions

" and iteration can be represented but procedures and recursion cannot

be described, Some but not all of the operator types Rodriguez has

proposed will now be described.



1. Input Operator

@
The functions F and G are not defined for this operator, It

is used only to provide input data for the model, The status

of a variable which is only in the output set of input

operators is assumed to be initially equal to 1 to indicate

that the variable is ready for use,

2. Output Operator

r

<
The function F is not defined for an output operator. The

function G changes the status values as defined below,

G:

1-0

-1—m0

Thus, if ready or disabled status is associated with an

input variable, the status is changed to idle,



3. Function Operator X. -

k: |*k L__

If all input variables have ready status and the output

variable has idle status, the function F operates on the

values for the input variables x, and x. to produce a: J

new value for the output variable x The G function

changes status values for Xs xs and x, as defined below,

G: x xX
iJ Kk
110— 001

1-1 0 — 0 Q-1

~-110 ~— 0 0-1

-1-1 0 == 0 O-1

The function operator may have many input variables but

only one output variable.

i, Identity Operator X,

*52
If the input variable has ready status and all output

variables have idle status, the value of the input variable

is copied by the function F to the output variables. The

G function is defined below. G: XX Xp
1 00—=011

-1 0 OQ0-1-1



nC 5. Selector Operator -
~~ [SEL

F ) T

x. |: J L__] *k
Each selector operator has an associated predicate function p

which tests the input variable values, A selector operator

may have more than one input variable. The F function copies

*

the input value to X, if p is true and xy if p is false.

The G function is defined below,

G: X43 % 5%
: 0-1 1 if p(x, ) is true
' | 10 0—

{0 1-1 if p(x) is false
-1 00— 0-1-1

6. Loop Junction Operator

X X

0 I JS

10

X Xx
r Ss

The loop junction operator is used to initiate an iterative

computation, The input variable with line labelled I supplies

the initial value for the iteration, The variable with line

labelled S supplies the value on subsequent or ''feedback'

iterations. The output variable with label LO must be the

* This is not how Rodriguez defined his selector operator. His
operator does not copy the data values. The above form is used
to simplify the description of the iteration example which follows,
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input to a loop output operator, The F function associated

with the loop junction operator takes the value present for

the I or S variable and passes it to the output variable Xs

if proper status values are present, The status transitions

for a loop junction operator are given below,

G: XxX X xX X F:
pqrs

1] 000—=2021 X =X
S p

1100—2121 X =X
S p

1-1 0 0—= 21 21 X = X
S p

-1 000—=20 2-1

. -1100—=212-1

-1-1 0 0—= 2-1 2-1

210 0—=2 0-11 X =X
S q

2-1 0 0—= 0010

7. Loop Output Operator

*3 L] BH %5LO

BCE

Xk BB

The input variable with line labelled LO must be the 10

output of a loop junction operator.

. X F:
G: XX Xp
110—001 X, = x
1-1 0 —= 0 0-1

-110—200

-1-1 0 —=2 0 0

210~—=010

2-1 0 —= 0-1 0
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To illustrate the use of these operators, an example of a simple

iterative computation, shown in Fig. 2, will be described. The two

ALGOL statements describe the computation performed. In Fig.3,

operators are joined directly by arcs and the boxes representing variables

are omitted for clarity. Status values are given by the labels on each

arc. The initial status values are shown in Fig. 3a. Fig. 3b shows

the status values after the first execution of the loop junction operator.

The status of the initial value variable has been changed to 2, which

blocks further entry to the loop junction until the iteration is complete.

The loop junction operator copies the initial data value, in this case 1,

into the variable which is the input to the function operator. The

function operator is executed next. It subtracts one from the input

variable value and places the new value in its output variable. The

selector operator may now be executed. The status values after the

execution of the selector are shown in Fig. 3c. The selector operator

readies the feedback input to the loop junction and disables the input

variable for the loop output operator, The loop output operator must

be executed next and the status values obtained are shown in Fig. 3d.

The loop junction is now executed giving the status values of Fig. 3e.

Both the function and loop output operators may now be executed con-

currently; the status values obtained are shown in Fig. 3f. The

selector operator is now ready to be executed, This time, the test

fails and the feedback input to the loop junction is disabled and
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LO

oy,

, GD)

Lo, (initially x is 1)
X =X - 1;

BB iter: if x = O then
begin

X :1= x - 1;

(ou : go to iter
end

Figure 2. Iteration example in the Rodriguez model,
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the input to the loop output is readied. The status values are shown

in Fig. 3g. The loop output is executed next which allows the loop

junction to be executed unblocking the initial value input to the

iteration, The status values are shown in Fig. 3h. The computation

terminates with the execution of the loop output operator followed by

an execution of the output operator. At termination (not shown) all

variables have idle (0) status values.

Using these techniques for controlling the execution of operations,

Rodriguez is able to prove the following theorem.

Theorem 1:

If a computation in the Rodriguez model terminates, it

is determinate.

In this theorem, determinate operation implies that the variable

histories and the status histories as well are unique. The data

functions, F, associated with function operators may be arbitrary.

Rodriguez' results are actually not stated in the above form,

His results are based on Muller's definitions of speed independence and

use the concept of stateof the model as defined by the current variable

values rather than the variable histories defined earlier, The fact

that once operators are ready to be executed they may not be disabled
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corresponds in essence to Muller's concept of semi-modularity[ 31 J.

It can be shown that the operation of the Rodriguez model is determinate

in the sense that the variable histories are unique*., Rodriguez gives

necessary and sufficient conditions for a computation to terminate.

These conditions are related to the absence of hang-up states. A

hang-up state is entered if the computation terminates such that no

operator may be executed and some variable does not have idle status.

Rodriguez states an equivalence problem for his model and proves that

it is decidable,

Luconi -

The work of Luconi [ 16, 17, 18 ] differs from that of Rodriguez

in the following way. A model corresponding to a partially interpreted

schema with variables corresponding to memory or register cells is

defined. However, no status information is associated with the variables,

Instead, some variables contain data which serves only to determine

when operators may be executed. When an operation is performed, the

_ transformation defined by the F and G functions is carried out. [Luconi

assumes that the output values produced propagate instantaneously

(line delays are zero).

The following two conditions are defined which relate to the

well-formedness of Luconi schemas.

* Private communication from F. L. Luconi.
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“7 Definition7:

Two operators a and b are said to be conflict-free if and

only if whenever a and b may be executed concurrently, any

common output variable must receive the same value from each

operation,

A slightly stronger condition is that O_ N 0, = ¢, where ¢ is

the empty set.

Definition8:

Two operators a and b are said to be transformation-lossless

if and only if whenever a and b may be executed concurrently,

the execution of operator a does not affect the results to be

produced by operator b and vice versa.

A slightly stronger condition is that oO N I = ¢ and Oo N I = @.

A partially interpreted schema is said to be conflict-free if all pairs

of operators are conflict-free; it is said to be transformation-lossless

if all pairs of operators are transformation-lossless. Luconi proves

. the following theorem,

Theorem 2:

Every schema in the Luconi model which is both conflict-

free and transformation-lossless is determinate in the sense of

Definition 6.
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The conflict-free and transformation-lossless conditions are local’

in the sense that they may be tested by examining pairs of operators

which may be executed concurrently. ILuconi's transformation-lossless

condition is essentially the same as the semi-modularity condition of

Muller if the variables are interpreted as values on interconnecting

lines rather than memory cells. Muller can have no conflicts because

the output line for each operator is unique and not shared with other

operators.

Luconi proves that there is no procedure to determine if an

arbitrary, partially interpreted schema is determinate. That is, the B
decision problem for determinacy is unsolvable.

In Fig. 4, an example of the Luconi model is given which

represents the computation for the program in Table 2. The dashed

lines indicate portions of the schema the primary function of which

is to control when operations may be performed. The initial variable

values are shown inside the square boxes. In this example, the

control variables (dashed boxes) have their values changed in a

manner similar to that used by Rodriguez. That is, before an operator

may be executed, certain "input" variables must have the value 1 and

certain "output variables must have the value O. During the execution

of the operator, the "input" values are changed to O and the "output"

values are changed to 1. We will represent the changes in control
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variable values using the G function and the change in data values

using the F function. These functions are defined in Table5, This

example satisfies both the conflict-free and transformation-lossless

conditions and is determinate,

In the second part of his thesis, Luconi views the control,

which determines when operators may be executed, as being separate

from the rest of the schema but still defined as a schema. A schema

in this form is called a structural schema and is composed of two

parts, an Interpretation-schema (I-schema) and a Control-schema

(C-schema). The I-schema performs the computation and the C-schema

determines when the operators in the I-schema are enabled.

Associated with each operator in the I-schema is an operator in

the C~-schema. These operators share a common control variable. Before

an operator in the I-schema is eligible to be initiated, the control

variable must have the value 0. When the I-schema operator is

eligible to be initiated, the value of the control variable is set to

1 by the C-schema operator. When the I-schema operator terminates

. its execution, it sets the value of the control variable to 2.

Fig. 5 shows the interconnection between an I-schema operator and

a’ C-schema operator,

Luconi defines C-schema operators corresponding to Rodriguez’

selector, loop junction, loop output, and other operator types. The

status values are kept in variables which are part of the C-schema.
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«7 Table 5. Function fransitions for the Example of Fig. }

G.: X1%3 x Fo
10 ~— 01 X =u

G XX), Fo

1 O— 0 1 X =x+ 1

G : F
e e

) if vy # u then null

X _XAX

100—011

Ge: XX gx Fe:
110-001 null

Gg: XX XgXg Fo!
1100—=0011 null
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Figure5. Interconnection of an I-schema operator with

a C~schema operator,



A structural schema for the iteration example of Fig. 2 is shown in

Fig.6. The computation proceeds as before except that the function

operator (FUN) in the C-schema is responsible for monitoring the

execution of the I-schema operator which subtracts one from the

current value of the variable x. Notice that data values are no

longer passed from operator to operator as in the Rodriguez model.

QUEUES

FIFO {First-In, First-Out) queues have played an important role in

) the models of Adams [ 1, 2 ] and Karp and Miller [ 13, 14, 15 J.

- They have been used in two different ways. In the first approach,

used by Adams and in the Karp and Miller program graph model [ 13 ],

each variable is considered to be a FIFO queue rather than a simple

memory cell, It is required that each queue receive output data from

exactly one operator and provide input data for exactly one operator.

Adams allows complex data structures as queue entries and associates

with each queue status information, which is used for the same purpose

as in the Rodriguez model, to control data-dependent branches. In the

Adams and Karp and Miller models, operators are ready to be executed

when their input queues are non-empty, assuming appropriate status

values in the case of Adams. Karp and Miller do not need status

information because they do not allow data-dependent decisions in

their model.
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(initially x is 1)

. X =X ~ 1;

iter: if x = O then

begin

X (= X = 1;

go to l1ter
end

Figure 6. A structural schema for the iteration example of

Fig.2 .



- Karp and Miller have proved the following theorem.

Theorem 3: :

Every computation described in the program graph model

is determinate.

Karp and Miller investigate termination properties of their model and

also the determination of bounds on the lengths of the queues,

Adams' model is a programming language for describing parallel

computations. He allows graph procedures which may be recursive. In

addition if, when an operation is initiated, there are sufficient

entries in the input queues to permit the operator to be performed

more than once, copies of the operator may be created and executed in

parallel, Adams proves the following theorem,

Theorem U4;

Every computation described in the Adams model is

determinate.

The second way in which queues have been used is in the program

schema model proposed by Karp and Miller [ 14, 15 ]. Each operator a

has an associated queue u(a). To aid in understanding how these queues

are used, the control structure for the Karp and Miller schema model

* must be described. The control is a transition system which under-

_ goes changes in control state as the result of the initiation and
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termination of operator executions. Suppose that after operator a is

executed, operator b is ready to be executed. The function G, produces

a symbol, say ays which causes a control-state transition into a state

from which operator b may be enabled. This control situation is illus-

trated by a form of transition diagram shown in Fig. 7. The ay out come

from operator a causes the control to enter state q . The enabling of

an operator, in this case operator b, is indicated by a transition to

another control state. The arc joining the two control states is

given a label consisting of the operator name with an overbar, in this

case b. After operator b is enabled, the control enters control state

q' from which, in this example, it is possible to enable operator a

once more.

The phrase "enable operator b' has the following meaning, Take

the values of all input variables (memory cells) for operator b and

make these values the next entry in the FIFO queue p(b) associated

with operator b., The actual execution of operator b is now accomplished

in some unspecified manner. When operator b terminates its execution,

. the queue entry is removed and the output values as determined by the

function Fy are assumed to be assigned to the variables in the output

set Op. In addition, the output of the decision-making function G_

causes a control-state transition. A formal definition of the control

portion of the Karp and Miller schema model is given below,



37

| a; (operator a terminates)

b (operator b is enabled)

a (operator a is enabled

again)

Figure 3+ Diagram of control to enable operator b on

termination of operator a.
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Definition 9:

The control C of a Karp and Miller schema is defined by

a quadruple

where

Q is a set of control states

9, is the initial control state

2 = ul a, a, Boy + vv %(a) the control
alphabet

T: Q XX —= @Q the transition function :

The transition T(q,a) specifies the control state entered when

operator a is enabled and the queue entry is made for operator a.

Transitions T(q,8,), i=1,2,..., K(a), specify the control state

entered when the execution of operator a is complete. K(a) is the

number of data-dependent outcomes for the operator a. Karp and Miller

require that T(a,a,), i=1 ,.., K(a), be defined for all q ¢ Q and

for all a ¢ A. It is assumed that when an operator is enabled, the

operator is executed in a finite but unbounded time,

We now define the state of a schema.
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" Definition 10:

The state @ of a schema is defined by the triple

ao = (variable values, q, pu)

where the variable values are the present values of all the

variables in M, q is the present control state, and p

represents all queues associated with schema operators.

A Karp and Miller schema for the iteration example of Fig. 2

*

is shown in Fig. 8. An illustration of a Karp and Miller schema
*

for the program of Table 2 is shown in Fig. 9.

The equivalence of schemata is defined as follows.

Definition 11;

Given schemata #4, and 45

$5, = (M, a, C))

A = (M, A, Cy)

Aq and A 5 are equivalent if and only if for each interpretation,

the set of schema histories for 8, is equal to the set of schema

histories for Ay

*

Control transitions which return to the same state are omitted

for clarity.
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A= (M, A, C)

A = {a}

c= ({agragsap} sag {Baath 5 7)

T(qg,a;) = T (ay, 2,5) = dq,

T(qy,28,) = a,
(aya) = T(ay8,) = 4,

N Interpretation

D_: integers ( x is initially 1 )
F : Xx :1= x - 1
a

G,: if x = 0 then ay else a,

: (99)
a

+ .(
0

Figure 8. Karp and Miller schema for the iteration example

of Fig. 2.
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Figure 9, Illustration of a Karp and Miller schema for

’ the program of Table 2,



Notice that this definition requires that 84 and As have identical

variables and operators, only the control may be different, Also,
if a schema is determinate the set of schema histories has exactly

one member.

Another property of schemata is the boundedness of the operator

queues.

Definition 12:

If

~~ Z [ length of p(a) ] < K
© aeA

for some integer K, at every stage in the execution of a

schema, the schema is said to be bounded. js x _ 1, the

schema is serial,

In order to specify the class of schemata which is determinate,

restrictions on schemata are introduced. Ip this discussion o¢ and x

represent arbitrary symbols in the control alphabet Z.

Restriction 1: (persistence)

If 7(q,0) and t(q,n) are defined, then T(q,0n) and

T(q,n0) must be defined.
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« The persistence restriction requires that once an operator is ready

to be initiated, it must remain ready to be initiated.

Restriction 2: (commutativity)

If T(q,on) and 7(q,n0) are defined, then T(q,on) = 7(q,n0).

The effect of commutativity on the control transition diagram is

illustrated in Fig. 10.

Restriction3: (lossless)

i The output set 0, of every operator a must be nonempty
> 0) *(0 # ¢)

Let us define a next-state function . which is a function of

the present state ( and one of the control alphabet symbols defined

for the present control state. We write

a. a next state entered after operator a is

enabled.

a. a, next state entered after operator a
terminates (1 < i < K(a)).

Restriction lL:

If ¢ . ox and @ . no are defined, then @ . on = OX . nO.

w



l.

Lh

TN pC

Figure 10. Effect of commutativity on the control transition

. diagram.



Given these restrictions, it is possible to prove the following

theorem,

Theorem L:

Every Karp and Miller schema that satisfies

Restrictions 1 - 4 is determinate in the sense of

Definition 5.

The schema illustrated in Fig.8 is a determinate schema. The

schema of Fig. 9 is also determinate but it is not lossless

} (Restriction 3) since O_ = ¢. Therefore, Theorem L cannot be
. applied to this example.

The precise statement of the Karp and Miller theorem is

slightly different. They prove that a persistent, commutative, and

lossless schema is determinate if and only if Restriction 4 holds

for every interpretation.

The following two restrictions are useful in establishing further

properties of schemata.

Restriction 5: (repetition-free)

If an operator a is executed twice, each variable in

its input set must appear in the output set of an operator

that is executed between the two executionsOf operator a.
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Restriction6: (finite-state)

The number of control states in Q is finite.

The following two theorems summarize some of the decidability results

for the Karp and Miller model.

Theorem J:

It is decidable whether

1. A finite-state schema is repetition-free.

2. A finite-state, repetition-free schema is bounded (serial).

3. A given operator a in a finite-state, repetition-free schema

is performed a finite number of times in each computation.

4. A persistent, commutative, lossless, repetition-free, finite-

state schema is determinate in the sense of Definition 5.

Theorem 6:

. It is undecidable whether

1. Two persistent, finite-state schemata are equivalent.

2. Two serial, finite-state schemata are equivalent.



CONCLUSIONS

Richard Hamming has said "the purpose of computing is insight "

L 7 J]. We might paraphrase this statement in the following way ''the

purpose of theory is insight", In this paper, we have attempted to

bring together some of the work on the theory of parallel computing

with the hope of furthering the insight derived. One general conclu-

sion is that in all these models, by determinate operation, it is either

implicit or explicitly required that an operator which is enabled and

ready to be executed must not be disabled by the execution of some other

) operator. We understand that Slutz | 38 | has been able to weaken this

restriction to allow an operator to be disabled if it must eventually be

re-enabled. We do not yet understand the details of his result.

In our study of solutions to the mutual exclusion problem | 5 7,

we have found examples of systems which were not determinate but which

do operate correctly in the sense that the mutual exclusion problem can

be solved. This suggests the need for investigation of models which are

correct but not necessarily determinate. The work of Ashcroft and

Manna [ 3 7 is relevant here.

One difficulty with these models, at least with respect to their

: application in the study of computer systems, is their inadequacy in

describing how one operator can prevent another operator, which is being

executed at the same time from producing any results. Such an "interrupt"

capability exists in most systems and is desirable to prevent time being

wasted on the executionof operators when their results are known to be

meaningless, For example, a divide by zero should cause the execution



of all operators used in the computation of an arithmetic expression

to be terminated.
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