THE SCHEDULING OF N TASKS WITH
- M OPERATIONS ON TWO PROCESSORS

BY

HENRY BAUER
HAROLD STONE

STAN-CS-70-165
JULY 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

ABSTRACT

The job shop problem is one scheduling problem for which no
efficient algorithm exists. That is, no algorithm is known in which
the number of computational steps grow algebraically as the problem
enlarges. This paper presents a discussion of the problem of
scheduling N tasks on two processors when each task consists of
three operations. The operations of each task must be performed in
order and among the processors. We analyze this problem through four
sub-problems. Johnson's scheduling algorithm is generalized to solve
two of these sub-problems, and functional equation algorithms are used
to solve the remaining two problems. Except for one case, the algorithms
are efficient. The exceptional case has been labelled the "core"

problem and the difficulties are described.

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

This research was supported by the U.S. Atomic Energy
Commission under contract number AT (O4-3)326 PA23
and NSF GJ 687.

The Scheduling of N Tasks with M Operations on Two Processors

by

Henry Bauer and Harold Stone

I. Introduction

The 'job shop problem is one scheduling problem for which no efficient
algorithm exists [Conway 1967]. That is, no algorithm is known in which
the number of computational steps grow algebraically as the problem
enlarges. This paper presents a discussion of the problem of scheduling
N tasks on two processors when each task consists of three operations.
The operations of each task must be performed in order and among the
processors. We analyze this problem through several sub-problems.
Johnson's scheduling algorithm [Johnson 1955] is generalized to solve
two of these sub-problems, and functional equation algorithms [Lawler 1969]
are used to solve the remaining two problems. Except for one case, the
algorithms are efficient. The exceptional case has been labelled the
"core" problem and the difficulties are described.

This problem has been suggested by several examples in computer

science.
1. N tasks exist which alternately require the use of a CHU
and some peripheral processor and for which the time required
by each processor is known within reasonable tolerance.
2. N tasks exist which are to be prepared (compiled) by one

machine for execution by a second machine and the output is

to be processed by the first machine again. The time

required for each processor is again known in advance.

The organization of the paper is as follows: Section II discusses
relevant results of previous researchers. Section III states the problem
of scheduling tasks with three operations on two processors and initiates
the discussion of the problem's solution. Sections IV, V, and VI present
three sub-problems for which efficient solutions have been found. The
"core" problem is discussed in Section VII. Finally, the complete
problem solution is outlined, and a summary of the results and an

indication of future research directions are given.

II. Historical Results

The major results in the problem are due to S. M. Johnson
[Johnson 1955]. Johnson considered the production schedule of N
tasks each of which he assumed to have two operations. The first
operation is performed on the first machine and the second operation is
performed on the second machine. There are only two machines and the
second operation may not begin before the first operation is completed.

Johnson obtained the following two results.

1. The order of the production sequence on the two machines may
be made the same without loss of time.

2. .iet tesksi,i=1,...,N consist of the pair of operations
a.i,bi where ay » i =1,4.y N, are the lengths of the
operations to be processed on the first machine and bi ’
i=1,...,N are the lengths of the succeeding operations
to be processed on the second machine. An optimal ordering
is given by the following rule:

Item j precedes item j+l if

min(%f,54f < mln(aj+l,bj) .

This ordering is unique except for ties.

Equivalently, result 2 may be stated in other terms for which we

require the following definitions.

Definition: The contribution of the i-th task is the difference bi-ai.
Definition: The Qelay, , 1s the difference between the initiation

times of the two operations of a given task.

Intuitively, the contribution of the i-th task represents the
effect of the task's assignment on the value of the delay. A positive
contribution tends toincreasethe delay for the next task assigned;

a negative contribution tends to decrease the delay. Result 2 is

equivalent to the following.

2'. Divide the tasks into two groups according to whether
their contributions are negative or non-negative. Assign
all the non-negative contributing tasks in order of increasing
size of ai's followed by the negative contributing tasks

in order of decreasing size of bi's .

The proof of this assertion can be seen as follows. Let the tasks
with positive contribution be indexed for J = 1,2,...,m . Then, if

arranged by increasing a these tasks satisfy

k 14

a. < a, <b. A <b for 1 < j <m1l

a b . .
g St 8y S0y AR S5 R %St
Then
i = ' ; f +l < j < N-1
mln(at{bj+l) ?. and mln(aj+1’bf) > aJ or mtl < j <
Similarly, we obtain
min(aj,bj+l) = bj+l and mln(aj+l,bﬁ) 2'b3+1

for the negative contributing tasks which again is Johnson's condition.
At the dividing line between the negative and non-negative contributing
tasks

B S Py N a1 7 P

Therefore, we obtain the Johnson condition

mln(am,bm+l) < mln(bm,) < m1n(bm,a

bm+l m+l)

Johnson generalized his first result for N tasks, each with M

operations, M > 2 .

1'. Consider N tasks each with M operations to be processed
respectively on M machines, 1,2,...,M . That is, the
first operation of each task must be done on machine one, the
second operation on machine two, and the k-th operation on
machine k. To minimize the maximum flow time it is sufficient
to, consider only schedules in which the production sequence
is the same on machines one and two, and in which the

production sequence is the same on machines M-1 and M

The third Johnson result is for a special case in the N task,

5 machine problem.

3. Consider N tasks each with 3 operations ak’bk’ck ,
k = 1,2,...,N to be processed in order on machines 1, 2,
and 3, respectively. Assume that
min a; >max b.J
Task 1 precedes task j if

in(a, +b,,c.+b.) <min(a,+b.,c.+Db,).
min(i 177 3) (j @i 1)

In the general job shop problem for M machines and N tasks,
the only complete solution that is currently known for which the

computational complexity is algebraic rather than exponential in N

is for M =2 . 1In an extension of Johnson% results, Jackson

[Jackson 1956] showed that if

{a} is the set of jobs with only one operation to be performed
on machine one,
{B} is the set of jobs with only one operation to be performed
on machine two,
{AB} is the set of jobs which have two operations, the first to
be performed on machine one and the second on machine two,
and {BA} is the set of jobs which have two operations, the first to

be performed on machine two and the second on machine one,

then simply determine the sequence of tasks in {AB} and {BA} by
Johnson's rule 2 and, using these orderings, assign the tasks to

machine one and machine two as follows:

machine one: tasks in {AB} , followed by tasks in (A] , followed
by tasks in {BA}

machine two: tasks in {BA} , followed by tasks in (B) , followed
by tasks in {AB}

where the order of tasks in {A} and {B} does not matter.

III. The 3-stage Scheduling Problem

In computer scheduling, it is sometimes advantageous to queue a
group of tasks (programs) which use a common facility (compiler) which
is serially reuseable (core resiaent). In this case, intermixing the
job queue with dissimilar tasks would cause set up delays of dispropor-
tionate length. Similarly, the processing (execution) of these tasks
on a second machine may also require special facilities (run time
administration) which are also serially reuseable. In addition, the
completion of the tasks may be processed by the first machine with
certain advantages of grouping.

The rééults of this paper concern a special case of the two
machine job shop problem for N tasks with exactly three operations

which reflects the situation stated above. The general problem is

restricted in the following three ways:

1. The first and third operations of each task must be performed
on one machine and the second operation must be performed on
the other machine. Hence in the notation of the previous
section the tasks may be divided into two sets: {ABA} and
fBAB} . (Note that when fewer than three operations exist
in the cases ({A] , {B}, {aB}, {BA} , an arbitrary extension
to three operation tasks may be made. However, the choice
of the extension may change the resulting assignment.)

2. The form of the solution is restricted as follows for machine

one and machine two.

machine one: The initial operatims of the set (ABA] ,
followed by the second operations of the set
{BAB} , and followed by the third operation
of the set {ABA} .

machine two: The initial operations of the set {BAB} ,
followed by the second operations of the set
{ABA} , and followed by the third operation
of the set {BAB} |,

3. No idle time is allowed.

These three conditions restrict the solution to one of the four
forms illustrated in the Gantt charts below. In these charts each
segment 1is labeled by the set of tasks which may be assigned in the
segment. The underline indicates the operation which is to be
performed. For example,{ABA} indicates that the third operations

of the tasks in the set {ABA} are processed.

machine one {ABA} {BAB} {ABé]

I
machine two {BAB} {ABA} {BAB}
machine one (ABA} (BAB} (ABA} T
machine two {BAB} {ABA} {BAB}
machine one {ABA} (BAB) (ABA} —
machine two {BAB} {ABA} {BAB}
machine one (éBA} (BAB) {ABA} v
machine two {BAB }. {ABA} {BAB }

By the symmetry of machine one with respect to machine two,
Gantt Charts II and III are similar, and Gantt Charts I and IV are
similar. The discussion will be limited to forms I and II.

At the beginning of this section it was noted that the form of
our problem was chosen to reflect certain restraints found in some
computer scheduling problems. It should also be noted that the solution
to the problem as restricted by these conditions does not necessarily
give an optimal solution for the general scheduling problem. Below
are examples in which no solution of the form described in condition 1

may be found which will also satisfy conditions 2 and 3.

Example 111.1.

Given the four tasks

{ABA] = {T = (7)3:)+) > Tz = (1)8:6)]

{BAB] = {T ()*’ 2:1) > Th (2: 5)5)}

an assignment may be found which contains no idle time and is

completed in 23 time units.

machine one , 7 6 L
1T12 v, | %, [, T,
ITIT.A
: 8 L 5
machine two aI')+ T2 3‘Tl T5 Th lﬁS

However, condition 2 may not be maintained without violating condition 3.
The best solution that satisfies condition 2 is an assignment of length 2k

as shown below.

-

machine one

machine two

Example 111.2:

However,

condition 3.

2,

An example of a problem with the form of Gantt Chart I follows.

Given the four tasks

(ABA} =

{(BAB} =

we obtain the minimal solution of length 33.

machine one

machine two

machine one

machine two

Ty

(T,

I

1

(2,3 6) ,T, = (11,8,2))

(,8,8) ,

T, = (2,4,8))

IIT .B

112

873

III.C

8Ty

T2

again condition 2 may not be maintained without violating

The best solution that satisfies condition 2 is of length 37.

Zp

1

Ty

IIT.D

Zp

N

le

8
T2

8Th

Let us now consider problems which have the form of Gantt Chart I.

10

the ease of solution is that the operations are decoupled.

This form of the problem has a very simple solution. The reason for

Definition: Two successive operations in a set of tasks in a job shop
are decoupled if all of the first operations of all the tasks in
the set can be completed before any of the successor operations of

any of the tasks in the set-may be initiated.

In an assignment of the type of Gantt Chart I, two pairs of
operations are decoupled: the first and second operations of the set
{BAB} and the second and third operations of the set {ABA) . The
order in which the first operations of the set ({BAB} are performed,
therefore, is arbitrary. Likewise, the order in which the third
operations of the set {ABA} are performed is also arbitrary. The
remaining operations may be assigned using Johnson's method if a
feasible assignment is at all possible with this form.

The form of the problem characterized by Gantt Chart II provides
a more challenging problem, It is clear that the operations of (BAB}
may be performed without any regard to their relative order since both
pairs of successive operations are decoupled. We are then concerned
only with the assignment order of the operations of tasks in set (ABA} .

Figure III.E depicts the form of Gantt Chart II. To discuss this

sub-problem we make the following definitions.

Definition: A stage i of a given machine is a segment of time in
which the i-th operations, and only the i-th operations, of all

tasks are scheduled.

Definition: A delay, Ai, , 1s the difference between the time a

task's j-th operation is initiated and its i-th operation is

initiated.

Definition:

machine one

machine two

The gap is the segment of time after the first stage
terminates and the third stage initiates.
L
Ly | 5
stage one a stage three
IIT.
Lt :
%3 ' I
— ’2-—‘ stage two —%,2 -_

| L, 1

Figure IIT.E pictures the initial situation of a typical problem

to schedule tasks in the set {ABA} . Each task Tk consists of three

operations

ak’bk’ck , k =1,2,...,N corresponding to the operations

to be scheduled in stages 1, 2, and 3, respectively. The length of

each stage is defined by Li as follows:

) >
L, = L, = b L, = c
1 X 2~ & %k 5.8 %k
The length of the gap is designated by G . Al,z ’ AZ,S ’

AB 5 designate the initial delay values.
)

Az,l s and

An important concept in this assignment problem is again the

contribution of a task.

12

Definition: Let xi,yi be a pair of successive operations of a

task T, . Then the_contribution C(xi,yi) of task T,

is the difference Vi - % -

The XYy of the definition may, for example, be a.i,bi or
bi’ci in the description of our problem. Special note should be made
of the properties of the contribution. A contribution C(Xi’yi) is
called positive (+) if its value is greater than or equal to zero.
Likewise, C(xi,yi) is called negative (-) if its value is less
than zero. A positive contribution C(xi,yi) increases or leaves

unchanged the corresponding delay while a negative value of Cb%}yi)
decreases the same delay.

Corresponding to Johnson's first result, the order of the operations
during each stage may be the same as at any other stage. The immediate
advantage is that although there are n! operation. assignment orders
at each stage and therefore (n!)3 assignment orders for the complete
problem, this resultlimitsthe solution space to n! assignment orders.

The statement and proof of this result follow.

Theorem [Johnson]: Consider N tasks each with 3 operations to be
processed on the first machine, the second machine, and the third
machine, respectively. To construct a minimal-time solution it is
sufficient to consider only schedules with the property that the

operations at each stage are sequencedidentically by task number.

13

Proof
Given any minimal solution assignment, it is shown that the operations

in the first and third stages may be reordered without extending the

completion time so that operations in each of the three stages are

scheduled in the same order, by task number.

1. Inspect the first assigned operation of the first stage. If
it belongs to the same task as the first assigned operation
of the second stage, then go to step 3.

2. If it does not, find the first stage operation that has the
same task number as the first assigned operation of the second
stage. ~Place this operation first in stage one, delaying all
previously assigned operations by the length of this operation.

Since the initial ordering was a solution and since no displaced

operation in stage one completes before the first operation
in stage two begins, the new order is still a solution.
3. Inspect the first assigned operation of the third stage.
If its task number is the same as that of the first assigned
operations in the first and second stages, then go to step 5.
4, If it is not, find the third stage operation. which has the
same task number and place it first in stage three. All other
operations of stage 3 either begin later than or at the same
time they did in the initial solution. The new assignment
order is then a solution also.
5. At this point, the first assigned operations at each stage
of the assignment solution belongs to the same task. Remove
the first assigned operation from each stage and consider the
new problem resulting by repeating steps 1 to 5 on the reduced

problem until no tasks remain.
14

We can now assume, without loss of generality, that the operations in
each stage are in the same order by task number.
Let us now construct a table which allows us to determine whether

or not a given assignment order is feasible between two stages.

Definition: An assignment order is feasible if no operation begins
before its preceding operation is completed and no processor is

idle during any stage.

For each pair of successive stages we shall construct a table that
we call a feasibility table as shown in Figure III.F. Each table
consists of four columns with each row corresponding to the operations
of a specific task to be performed during the two stages in the order
of the proposed schedule. The first column is the length of the operation
performed in the first of the two stages. The second column is the
contribution of the pair of operations. The third column is the sum of
the contributions of all rows above plus the initial value of the delay
between the two stages. The fourth column is the difference of the value
in the third column minus the first column value. Since the third
column represents the delay before the given operation is assigned,
column four represents the excess delay time when the operation is
assigned. The pair of operations may be assigned without causing idle
time on the second processor only if the fourth column value is non-
negative. Consequently, an assignment order between the two stages
is feasible if and only if all the values in the fourth column are

non-negative.

15

Feasibility Table
operation total previous
length contribution contribution excess delay
f: 1
x C(x,5¥,) C(x,,¥,) C (%, ¥,)%
2 2’72 hard k' Yk = k> Yk’ T2
N-1 =1
k= =0

where C(xo,yb)

being considered and Xi’yi

is the initial wvalue of the delay between the stages

The feasibility table has a direct relation to the concept of

immediate assignability.

Definition:

(possibly empty)

immediately assignable after a partial assignment if at each pair

Let a partial assignment exist after some set of tasks

has been assigned to the processors.

of stages the length of the first operation does not exceed the

value of the delay between the two stages.

A task is

IIT.F

refer to two successive operations of task i

The existence of immediate assignability for each task in an assignment

may be verified by the feasibility table.

each pair of successive operations no fourth column value may be negative

In the feasibility tables for

if all tasks were immediately assignable since the fourth column represents

the excess delay when a task is assigned.

The first goal is to find a canonical form of a solution of the

problem.

each task make; that 1is,

and C(bk’ck) 7 k = l, o.-,N

(ABA)
Consider the contributions which the pairs of successive operations in
C (ak, bk)

16

Iv. Case 1: Positive contributions at both stages.

Let all tasks be such that the second operation is not greater than
the third operation and that the first operation is not greater than the
second operation. In this case,h for all k = 1,...,N , C(ak,bk) >0
and C(bk’ck)Az 0 . At any instant, whatever task is immediately
assignable may be assigned. This is clear since with each new assignment,
the delay at each stage may not decrease. Therefore, once a task becomes
immediately assignable, it remains immediately assignable until it is
assigned. Only if all tasks may be assigned, is the schedule a feasible

solution. The solution is obtained by assigning the operations of any

immediatel§'assignable task at each stage.

Example IV.l:

1 I '
machine one l > L 1 8
o) b, T, &by T T,
L IV.A
machine two lezgl 3p 6 T € 13 -y
1 3 2 I
Figure IV.A describes a solution to the problem in which the
tasks are
T, = (2,5k)
Tz = (5)7)8)
T3 = (,'l’)6)7) .
Initially the delays are Al,z = 3 and AZ,S = 10 . Task Tl is the
only task immediately assignable initially. After Tl is assigned,
=4 A = 11. i
Ai,z and 23 1. Then T, may be assigned and , 2 = 6 and

AZ 3 12 . Finally, TZ may be assigned. At each step the delays
)

4 .2 and A2 3 were incremented by the respective contributions
J 2 .

associated with each task.

17

V. Case 2: Negative contributions at both stages.

Let all tasks be such that the second operation is not greater
than the first operatian and that the third operation is not greater
than the second operation. This case is the opposite of the preceding

case and may be solved by "reversing time".

Definition: The mirror image problem is the problem obtained by the

following two transformations.
a. The precedence among the three operations of each task is

reversed. That is, if 8y precedes bk precedes Cq in

task k of the initial problem, then ¢, precedes b

k

precedes ay in task k of the mirror image problem.

k

b. The initial delays Al and A of
?

! A I A 14
2 2,3 3,2 2,1

the original problem become the initial delays A, ., , &, , ,
Jy & cy L

and A respectively.
%127 2,37 TP Y

In terms of the mirror image problem this case becomes one in
which the second operation of each task is not less than the first
operation and the third operation is not less than the second operation.
But the mirror image problem is identical to case 1. A solution to the
mirror image problem is found by applying the solution for case 1.
Reversing the order of the tasks scheduled in the mirror image problem

yields a minimum time solution that satisfies all precedence constraints

in case 2.

18

Example V.1l:

In the original problem the tasks are defined as follows.

=3
|

1 = (al’bl,cl) C (al’bl) .<_ 0

T, = (az,bz,cz) C(az,ba) <0

Ty = (aypbpscy) C(ay,by) <O

In the mirror image problem the tasks are:
| -
Tl - (cl’bl’ a:l)

C(cl,bl) >0

H
|

];]' = (CN)bNJaN) C(CN,bN) 2 0

19

C(b;scq) <O

¢

C(bz,cz) <0

o (bN, cN) <0

C(bl, al) >0

C(bz,az) >0

C(bN,a.N) >0

VI. Case 3: A negative contribution followed by a positive contribution

Let all tasks be of the form in which both the first and third
operations are greater than the second operations. Note that this
problem is symmetric with respect to the first and third operations as
is its mirror image problem.

To facilitate the discussion let us consider that the general
problem consists of tasks whose operations may lend either positive or
negative contributions. A negative contribution in the original problem
will be a positive contribution in the mirror image problem; likewise,

a positive contribution in the problem will be a negative contribution
in the mirror image problem. In Figure VI.A the signs above stage

one indicate that

and the signs above stage two indicate that
¢, <by c3 Lb3 c, <‘b2 ¢, 2Dby .
That 1is, the sign above the operation of the j-th task at each stage

represents the sign of the contribution of the task. The mirror image

problem in Figure VI.A is diagrammed in Figure VI.B.

v

+ - - +
8.1 a3 az a.u Cl C3 C2 Ch VI.A
N
K4
- + - +
bl b5 bz bu
Z
-
+ - - +
al 8.3 az a’_‘_ Cl CS Cz C)_I. VI.B
pd
-
+ - + -
bl bs'bz bh

Both Figure VI.A and Figure VI.B may be combined and abbreviated
as in Figure VI.C. The arrow to the right above a row of signs
indicates the contributions below are considered in the original while
an arrow to the left above a row of signs indicates the contributions

below are considered in the mirror image problem.

&
N

\
(4

N

21

In this new notation, Figure VI.D is a representation of the

problem of this section.

+ O+ + 4+ + o+ o+ o+

€

+ + + + + + + o+

Consider that there exists a time D within the gap at which some
second operation terminates and another begins in stage two. Time D
occurs after stage one is complete but before stage three has been
initiated. This condition clearly does not have to exist in an optimal
solution of this form; a second operation may begin before stage one
ends and terminate after stage three begins. The condition will
be relaxed later. If such a D does exist, however, the problem is
decoupled into two, two-stage problems in which the tasks for each problem
have not been determined. With such a condition and Johnson's solution
method, it is known that the second operations of stage two are arranged
in increasing order of size in both directions from D . In other words,
the operations of stage two are arranged in order of decreasing size
from each end up to point D . If the second operations are arranged in

a list in order of decreasing size, the task corresponding to the first

22

operation in the list must be either assigned first or last. Once this
is decided, the problem (and the list) is reduced by one task and the
solution continues in the same manner.
This solution may be expressed in terms of a functional equation.
Four quantities distinguish a partial solution at any instant in the
assignment process. These quantities are:
J -- the task to be assigned next, 1< j <.
L -- the total of the lengths of all the operations assigned
initially in stage two
C -= the\total contribution of all operations of the tasks
assigned initially in stage two
C -- the total contribution of all operations of the tasks

assigned initially in stage one

All other quantities pertaining to the assignment may be calculated
from these quantities. The superscript ' indicates that the value is

calculated in the mirror image problem.

Z .
1 = 22_01,2 VI.E
s = CE,B - 4
-1
cr’ 3 = _(; C(ak.’bk) - CJ,E)
j-1
1,2 = ‘(Z%_C(bk’ck)- C2,3)

~
N~
Il
= .
(g
s
o’
o
|
Bl
o

21 -2t + Ot

3 2 2,3
1] _ T o
8 = 1 -Cip

23

j-1 -1

j-1
The sums 2_. C(ak’bk) , 2 C(bk’ck) , and Q. b

are properties
k=1 k=1 k=1 K

of each task after they have been ordered in a list by decreasing size

of their second operations. Hence, they need to be calculated only once.

The solution proceeds by determining if the task is immediately

assignable in the original problem and if it is immediately assignable

in the mirror image problem. If the task is immediately assignable in

the original problem, it is tentatively assigned and the solution

recurses by continuing with the next task in order. If a TRUE value is

returned, a solution is found. If a FALSE value is returned or if the

task is not immediately assignable in the original problem, then if the

task is immediately assignable in the mirror image problem, it is

tentatively assigned there and the solution recurses by continuing with

the next task in order. If a value of TRUE is returned, a solution is

found. Otherwise, the value FALSE is returned. In such a situation 2N

possible solution orders exist. However, the tasks are selected in a

predetermined order and the value of the 4-tuple (j’£2’cl,2’02,3) describes

the total length and contribution assigned using the j-1 tasks. As the

iteration continues through the EN possible solutions, if a U-tuple

identical to one previously encountered occurs, it is not necessary to

continue since the result will be the same as when the bk-tuple was

encountered previously. In other words, the problem is reduced to a

sub-problem previously attempted, This algorithm eliminates many solution

possibilities from consideration.

The following algorithm determines if a solution exists.

2k

1. Place the tasks in order of decreasing size of their second

operations and renumber tasks so that bl > b, > Dbz 2 Zlﬁ :

2
2. A solution exists if £(1,0,0,0) is TRUE where
£(3s2pC) 305 5) =

FALSE if 12+Al,2 >Ll+G

(ay S29,0%C1 p APy S8 5785 5 A

3
(31,4 5 55C +C(aj,bj),02,5 C(bj,cj))) v

1,2

' +0t
(65 < 4,0701,0 A %5 S5,17005

. . <<
£(3+1, £59Cq 29Cp) =) if LI <N
= + +
f(N+l,12,Cl,2,02’3) = TRUE if Iy S 4 Al o SI *G
= FALSE otherwise.

For simplicity, the solution presented here does not yield the
explicit assignment order. This order may be easily obtained by
modifying f to have a result of an ordered pair of values. The first
value being TRUE or FALSE as described above. The second value is null if
the first value 1s FALSE. Otherwise, when the first value is TRUE, the
second value is a list of tasks assigned in the original problem. At
each iteration a task is appended to the list if it is assigned in the

original problem.

The number of calculations of £f for a solution given the tasks

and sizes of operations initially is bounded by

mL(mre-ay),) O OB

25

where r(x) indicates the number of values in the range of x

plus 5N additions to calculate the contributions and sums

indicated in FigureVI.E.

To relax the restriction placed on the solution by the point D ,
consider all tasks with a second operation of size greater than G+l ;
say, there are P such tasks. The above solution method must be repeated
P times for each such task k with ¢ +Aj not to exceed L,-1 at
2 52 1
any step and with 2 +£ﬁ_ +b, > L. +G at termination. P is bounded
2 ;2 'k

1
by N-1

Example VI.l:

Using the above algorithm we find the solution to a simple four

task problem
Tl = (7, 5’ 6) T2 = (8, 2) 5)
'I'5 - (2,1,2)) Th- = (2,1’2)

Initially, we find that

A,2 = 18 Bp,3 = 2
“,1 =8 b5 -8
Ll = 19 G=1
L1+G = 20

26

f(l,0,0,0) = f(E)O:O:O) since bl =5>2+0 =2 but

c

il

6 <8+0 =8 and

1
b, =5<8+0=8.
7 6
p)
Now Ci’2 = -1 and Cé,B =2 .
£(2,0,0,0) = £(3,2,-6,3) since a, = 8 <18+0 =18 and
b, =2 <2+0 =2
ENEENBNE
2 >
£(3,2,-6,3) = £(4,3,-7,4) since a5 =2 <18-6 =12 and
b3 =1 < 2+3 =5,
8 12| 7 512 6
2| 5
£(4,3,-7,4) = FALSE since f,*4) = 3+18 = 21 > L, +G = 20.

27

5.

Return to 3 and

f(5: 2, ‘6:3) = f(h: 2, '6, 3)

NOW €3 , = -2 and C} 5 =3
-3 > .

£(4,2, -6,3) = £(4,3,-7,4) = FALSE

Return to 6 and
since c5=2§8-2-6,5)
b5=158+5=11.

8 E‘él? I 5 2|2 6
T

£(5,2,-6,3) = TRUE

28

since 05=258-l=7 and

b5=158+2=1o.

We have the same argument as in
step 3 but we have already found

that £(4,3,-7,4) is FALSE in

step L.

sinch = and

since L1 =19 < £2+Al,2 =

2+18 =20 <L, +G = 20 .

VII. Case 4: The "core" problem

Let all tasks be of the form in which the first operation is less

than the second operation and the second operation is greater than the

third operation. Note that as in the previous sub-problem, this

sub-problem has the same characteristics as its corresponding mirror

image problem. In Figure VII.A the signs of the contributions are

indicated near each stage.

++ + H+ + 4+ ++
machine one) VII.A

machine two

No efficient solution has been found to this sub-problem, and hence it

represents the "core" of our stated problem. Certain efficiencies

may be gained on this special problem which do not readily lend themselves

well to incorporation into the general problem.

29

In reference to Figure VII.A, there exists some point D in stage
one when all remaining tasks are immediately assignable. At this
instant the problem is decoupled into a two stage problem consisting
of stages two and three with the remaining tasks. Similarly, at E the
third stage is decoupled from stages one and two reducing the problem
toadifferent two stage problem consisting of stage one and stage two
with the remaining tasks. When both D and E have been reached, the
problem is completely decoupled, and the tasks may be assigned in any
order.

A solution may theoretically be found in a computation using a
variation on the usually efficient functional equation method. In
this solution the number of computational steps is dominated by 2"
where m is at most N-1

In the following algorithm, the value B is an ordered array of N
binary valued elements corresponding to each of the N tasks in order.

A given element B, of the B array is 1 if the k-th task has been

k
assigned and O if it has not been assigned. The notation B V Bk =1
means that the value B is unchanged except that the Bk element is

set to 1 « The value § means that all elements of B have the value 0
The algorithm is similar to the algorithm for case III. However, here

the tasks previously assigned are explicitly recorded in the B array.

30

1. Arrange the N tasks in an arbitrary order Tl’TE’""TN .

2. A solution exists if f(l,¢,0,0,0) is TRUE where

f(J)B:£23C1,2:02,3)
FALSE if 5 = Wl
TRUE if £, >D and £3 >E
(35 Br5Cy o) if £ 2E
£(35 By 25y 3) if £, >D
£(5+1,B, £2°°1,27¢2, 3) if By =1
. +C b.
Ly Sayp% 0 p A By S8y 5 A
- +C(a.,b.),C +C(b.,c.
(1B v By = 1L2,+b,,C) +C(a504),C, 5 (bsse5)) v
oy , _
£(3 1,3,22,01,2,02,5) if Bj 0

As in the previous functional equation solution, the exact order of

assignment may be found by pairing this ordering with the TRUE logical

values. The maximum number of computations is found by taking the number

of computations in the previous functional equation example and multiplying

it by 2V,

31

VIII. The Compnlete Problem

The general problem may have tasks of each of the forms described
in the four sub-problems. However, since it is clear that tasks of the
first sub-problem and the tasks Sf the second sub-problem may be assigned
as soon as they become immediately assignable, Figure VIII.A exhibits the
canonical form of the solution for the problem which only involves tasks
of the types described in sub-problems three and four and which has a
decoupling point D . In this solution form, the tasks in stage one and
stage three are arranged so that some of the positively contributing
operations are grouped first, followed by all the negatively contributing
operations,\ followed by the remaining positively contributing operations.
In stage two, groups of the negatively contributing operations both precede
and succeed the positively contributing operations. The reason for this
canonical form is based on Johnson's result since the point D decouples
the problem into two, two-stage problems. Hence in Figure VIII.A, the
tasks in groups W and Y are arranged, left to right, in order of
increasing size of the respective operations. In groups X and .,
the tasks are arranged, left to right, in order of the decreasing size
of the respective operations.

A solution to this problem may be found by combining the solutions

presented to the four sub-problems into one algorithm.

W .
? D €
s i + ot R ittt 0 VIII.A

Ix. Conclusions

We have discussed the problem of scheduling N 3-stage tasks on
two processors, a problem that has historically resisted efficient
solution. When schedules are restricted so that operatims are
scheduled by stages, Johnson's scheduling technique and a functional
equation scheduling technique introduced here can be applied to obtain
feasible schedules with high computational efficiency. The problem
divides into several cases, all but one of which can be solved with
algorithms that grow algebraically with the size of problem. One case,
which now may be considered the "core" problem still does not have a
solution tﬂét grows algebraically although it is solved here by an
algorithm that grows exponentially with the size of the problem.

The analysis of the decoupling effect described here may be
extended to the similar problem with an arbitrary number of operations
which may be executed in stages. In addition, we continue to research

the problem of more than two processors.

33

Bibliography

[Conway 1967] R. Conway, W. Maxwell, L. Miller, Theory of Scheduling.

Reading, Massachusetts: Addison-Wesley Publishing Co., 1967.

[Dudek 1964] R. A. Dudek, 0. F. Teuton, "Development of M-State
Decision Rule for Scheduling n Jobs through M Machines."

Operations Research, Vol. 12, No. 3, May 196kL.

[Jackson 1956] J. R. Jackson, "An Extension of Johnson's Results on
Job-Lot Scheduling." Naval Research Logistics Quarterly, Vol. 3,
No. 3, September 1956.

[Johnson 1955] S. M. Johnson, "Optimal Two-and-Three-Stage Production

Schedules with Setup Times Included." Naval Research Logistics

Quarterly, Vol. 1, No. 1, March 195kL.

[Johnson 1959] S. M. Johnson, "Discussion: Sequencing n Jobs on Two
Machines with Arbitrary Time Lags." Management Science, Vol. 5,
No. 3, April 1959.

[Lewler 1969] E. L. Lawler, J. M. Moore, "A Functional Equation and
its Application to Resource Allocation and Sequencing Problems.,'

Management Science, Vol. 16, No. 1, September 1969.

[Mitten 1959] L. G. Mitten, "Sequencing n Jobs on Two Machines with
Arbitrayy Time Lap." Management Science, Vol. 5, No. 3, April 1959.

3k

