
AN ALGORITHM FOR FLOATING-POINT ACCUMULATION

OF SUMS WITH SMALL RELATIVE ERROR

BY

MICHAEL MALCOLM

STAN-CS-70-163

JUNE 1970

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

|

AN ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS

WITH SMALL RELATIVE ERROR

by

Michael Malcolm

) Reproduction in whole or in part 1s permitted
for any purpose of the United States Government.

The preparation of this report was sponsored by the
Office of Naval Research under grant number N0013-6T7-A-
0112-0029, the National Science Foundation under grant
number NSF GJ 408 and the Atomic Energy Commission under

grant number AT (0L-3) 326,PA 30.

h

I. Introduction

Many algorithms require the calculation of a sum

n

Ss = L X; n>>3> ,

where Xq5Xps..sX, are numbers-represented in floating point. In
practice, an approximate sum8 is computed with rounding errors.

Wilkinson [1] shows that if the sum is accumulated in a single-precision

accumulator (using floating binary arithmetic with t bits of precision

and proper rounding), then

X n

S - 8 = L XM:
where :

(1-7 Byntl-r <1+q < (1+ ptyntl-r (r =1,...,n) .

Thus the error bound 1s dependent on the order of summation. This

result has led to the well-known rule of thumb that 1t is usually best

to add a list of numbers in order of increasing magnitude. If one has

a priori knowledge of the Xs (e.g.,) |x, | < 1) or if the accumulation
. 1s performed with more precision (say double precision), then much smaller

error bounds can be found. However, as Wilkinson points out, "It should

be emphasized that we still cannot guarantee that an accumulated sum . . .

has a low relative error."

Large relative error in an accumulated sum 1s often the result of

a phenomenon which Professor D. H. Lehmer calls catastrophic cancellation.

This occurs when an intermediate partial sum 1s much larger 1n magnitude

than the final sum. Then one or more additions result in a loss of

1

significant digits. The post-normalization step ofa subsequent

addition thus introduces zeros in place of significant digits.

However, as Professor William Kahan has observed, this large cancellation

is not the cause of the error -- it merely reveals the error. That 1s,

the real villain here 1s not the cancellation, but rather the large

intermediate sums within a floating-point system of given precision.

Perhaps "catastrophic loss of precision" would be a more appropriate

name. Catastophic cancellation is fairly common with poorly designed

algorithms; most good algorithms have built-in precautions which avoid

(or usually avoid) this phenomenon.

Large relative errors can occur without catastrophic cancellation.

This happens in large summations (n >> 3) where the intermediate sums

become much larger in magnitude than the individual addends, but not

larger than the final sum. This sort of error can occur in numerical

integration using a large number of intervals. Wolfe [2] proposed a

technique for avoiding this type of error. It 1s described in the

following section.

In the remainder of this report, a modificationof Wolfe's algorithm

1s presented, followed by a detailed error analysis. This algorithm has

the advantage that the final sum is guaranteed to have a very small

relative error.

IT. Extended Summation With Cascading Accumulators

Wolfe [2] suggests a technique which is easily programmed and requires

only a small number of additional storage locations. These extra locations,

called cascading accumulators, are denoted by sl, s2, The separate

accumulators hold sums that are in various intervals; for example,

2

1.000 < ec(sl) < 9.999

10.00 < c¢(s2) << 99.99

100.0 < c¢(s3) < 999.9

where c(si) denotes the contents of si . The summing 1s done at

the lowest level accumulator (sl) until it 1s about to overflow.

At that point it is added to the next accumulator (s2) and reset to

zero. Similarly, if 82 is about to overflow, it is added to s5 and

reset to zero, and so on.

By this technique the intermediate sums never become much larger

than the addends. However, catastrophic cancellation can occur just

as before. Wolfe does not discuss how to go about summing the accumulators

at the end; 1n an example he uses the order of increasing magnitude.

For certain problems, this 1s a useful-technique; however, there 1s no

guarantee that the final result has a small relative error.

IIT. A Modification of Wolfe's Algorithm

The following algorithm requires little 1f any more execution

time than the algorithm of the last section, and nearly full-

: precision accuracy 1s achieved, provided exponent underflow or overflow

do not occur. Such exceptional conditions are normally brought to the

attention of the user by the system software and, 1f so, 1naccurate

results cannot go unnoticed. As in Wolfe's algorithm, additional

intermediate accumulators are used —-- typically fewer than 50.

The following discussion assumes the algorithm is implemented

on a machine using a floating-point number system F of base B

(usually B is 2, 8,10 or 16) with a t-digit mantissa. The

exponent e 1s assumed to lie in the range

—m<e<M_ .

Thus each nonzero XeF has the normalized representation

x = + .dd...d .B° , (1)
~ 12 t

where by ' Thay are 1ntegers satisfying

The number 0 belongs to F , and has the structure

0 = .00...0 +g" .

All floating-point addition 1s assumed to be normalized. The machine

- may do either proper rounding or truncation (chopping).

To facilitate discussion, the function Rev (similar to that used

by Mpller[5]) is defined as follows: If xeF then lev(x) = e+m .

lev is the biased exponent having the mnemonic "level". Note that fev

1s a function of the representation of a number and not the number

itself. For example, suppose x 1s to be added to y , where ly| > x],

and that x must be uwnnormalized during operand alignment. Suppose also

that no nonzero digits are lost from the mantissa of x while it 1s being

4

unnormalized. If we denote the unnormalized representation of x by X ,

then x and X both represent the same real number exactly, but

Lev(k) > fev(x) .
n

The algorithm for computing LX, can now be described as
i=1

follows. Therearetwo positive parameters, f and n

Assume there are ntl accumulators, the contents of which are

denoted by RRR

1. Set each of the accumulators to zero.

2. For each x, form &a;4,8;n; PeeaBy (gq>1) , where

sq ta. CA Xy and each EN, has the property

that the last f digits are 0 (i.e., dy rl dy y=... =

a, =0).

3. Each ay is added to the k-th accumulator, where k is
determined by

vk < Lev(a, 5) < vkt+ vy -1,
(2)

v=[M+m+1)/(n+1)]
-*

where [7] denotes the smallest integer not less than § .

(Thus

k = tev(a,) + vo, (3)

in the sense of Algol 60.)

4. The accumulators are summed 1n decreasing order (i.e.,

My M=1y +50) .

The second step appears, at first sight, to be quite complicated.

However, 1n practice 1t 1s easily done, especially on a machine with

double-precision arithmetic. An illustration of this in Fortran for

the IBM System/360 is contained in Section VI.

The parameters [and 7 are chosen so that the addition in step 3

retains all the significant digits involved. That is, until step 4, there

are no rounding errors. More insight into choosing f and 7 will be

given in the following section. Also, an important restriction on the

magnitude of the product gn will be revealed.

Step number 4 is certainly the most interesting step of the algorithm.

If, instead, the accumulators are summed in increasing order (as one is

tempted to do after reading Wilkinson [1]), catastrophic cancellation can

occur. When this algorithm 1s incorporated in an innerproduct routine, it

often happens that

a = 0

Hip = 0

a, = -B

“%-1 =P

%-p T°

%e-3 = ©

“ek = 51

%-5 = £2

6

where fev(B) - Lev(e,) >t . Summing in increasing order will yield 0 .
However, as D. Jordan pointed out in [4], summing the accumulators in

decreasing order (M,;...,0) precludes the chance of this type of error.

The remaining question 1s: Does summing the accumulators in decreasing

order lead to some other case where a large relative roundoff error can

occur? The answer to this question is no. Proof of this assertion and

a sharp bound on the roundoff error are given in the next section.

IV. Error Analysis

Another convenient function 1s defined as follows: Let xeF be an

approximation of some real number 2 . If x=x* and x £ 0 , then

pad(x,x*) 1s defined to be the number of digits by which the mantissa

of x can be shifted to the right before a significant digit is lost

(i.e., before a non-zero digit is shifted out of the low-order position).

If x # x s then pad(x,x*) 1s negative, and defined as follows:

suppose x has the representation (1); if there exists a { such that

{ can be represented as

. ¢=+ .44,...4, 8%" with a, £0, d, #0

and x+f = x and T 1s finite, then pad(x,x*) 1s defined to be -T .

Otherwise, pad (x,x*) 1s defined as -o . For completeness,

pad(0,0) = © . For example, if p= 2 and t = 6, pad (-.101000.27, -5,) = 3 .
If x =+.111117 - 20 and y = +.111111° ot , and @® represents floating-

point addition, and pad(x®y,x+7y) = -2 since two digits are lost during

the floating-point addition. When pad(x,x*) 1s positive, the mantissa

of x has a "padding" of zero digits at the end.

if

It follows that

* * i
pad(x,x) >0 © x =X ,

*

pad (x,x*) < 0 & x # Xx ,

* * *

pad(x,x) >t = pad(X,Xx) =o» ® X =X =. .

In step 2 of the algorithm, it 1s required that pad(a;.,a;,) >> 0,
for all i,J .

It is also expedient to define

Xx

o(x,x) = lev(x)+ pad(x,x*) . (4)

*]]]]]]]
o(x,x) 1s 1nvariant with respect to operand alignment (un—-normalization)

and post-normalization of x , provided no exponent underflow or overflow

occurs.

Lemma 1: If x and y are two floating-point numbers and ® represents

floating-point addition, then

* * * %

p(x®@y,x + y) > min{p(x,x),p(¥v>¥y)} >

provided no exponent underflow or overflow occurs.

Proof: Assume Lev(x) > fev(y) . Let z denote an accumulator,

a floating-point number with a +2 digit mantissa and an

overflow digit. Set 2 «< y and, if necessary, unnormalize z

so that fev(z) = Rev(x) . The accumulator z can be treated

as a floating-point number 1f one ignores the overflow digit and

8

considers only the first +t digits of the mantissa. In this

way, pad 1s defined for z . Let w denote another

accumulator with the same structure as z . Setw « z+x .

Prior to the post-normalization step in forming w ,

tev(w) = lev(z) = fev(x) and

* ¥ |
pad(w,x +y) > min (pad(z,y*),pad(x,x*)) ,

and equality occurs whenever the low-order digits of x and y

don't cancel. From Equation (4) and the fact that

* *
p(w,x +vy) remains unchanged during the post-normalization

step, it follows that

* * * %] * »
p(x®@y,x +y) = p(w,x +y)>min{p(z,y),p(x,x)}

* ¥*

Since po(z,¥y) = o(¥5v) >

* * . * *
o(x®y,x +y) > min{p(x,x),p(y,y). .

9

Lemma 2: In the notation of Section III,

— . ’
p(Q 0) > Vk + £

Proof: Any term (y) that 1s added to the k-th accumulator satisfies

tev(y) > vk and pad(y,y) > 1 .

By Lemma 1, Equation (4) and the fact that p(0,0) = » , the lemma

follows by induction.

Lemma 5: If a #0, and N is the number of 2 added to the
accumulators, then

vk < tev(a,) < v(k+l) -1 , if N=1

vE-t+ 2 +1 < fev(oy) < (k+l)+ L fog (v-1) | , if N>1

(k = 0,1,.005M)

| where | ¢ | denotes the largest integer not greater-than £ .

Proof: The inequalities for N=l1 are obviously the same as those satisfied

by a single term added to the k-th accumulator. The upper bound

for N >1 is found by considering the largest number (¢) which

can be added to the k-th accumulator, 1i.e.,

v(k+1l)-1-m
¢ a «wh 8 % ah ah @ B00 ad a «dO . B s (z = 8-1)

10

and observing the tev(a) during repeated additions of { to 0 .

If the lower bound for N > 1 were not true, i.e., if

gev(oy)<vk-t+1+1 ,

then, by Lemma 2,

)pad (a, , Oh >t =a =0,

which 1s a contradiction.

Lemma 4: If N < gh-vri , then each of the a (k = 0,1,...,7) is
exact.

Proof: By-Lemma J,

tev(Q,) <vk+2+1 |

Combining this with Equation (4) and Lemma 2 gives

*

pad (a,) >0

which, by the definition of pad , implies Oy 1s exact.

Loss of precision in an extended summation can result from either

1. repeated truncations (roundings) of the sum, or

2. post-normalization left shift of the approximate sum.

~ The post-normalization error can be formalized as follows: Let the

accumulation of the floating-point sum

2Vy = X,
n = 1

where the x. (i = 1,2,...,n) are exact, be defined as

11

|

Vy = 0

The function A of two floating-point variables 1s defined as

A(x, y) = max{lev(x),fev(y)} - fev(x®y).

Thus, during post-normalization of the floating-point sum xX@y ,

the mantissa undergoes a left shift of A(x,y) digits. Clearly, if

a carry occurs, A&(x,y) = -1 . Also, A(x,y) > 1 only if

|2ev(x) - 2ev(y)| <1 .

During the formation of Vs = bs 1 OX, , any truncation error

already present in the low order digits of Vig 1s multiplied by

B

The accumulators are summed in decreasing order. Thus, the sum

50 can be defined by

Stel = 0

Lemma 5: If §8,,, 1s exact and tev(s,,,) < tev(a,) and if 8 _

is un-normalized so that tev(S,,,) = tev(a) , then
* £=vt+l

pad(s, 158, > 0 , provided N < B

Proof: Lemmaland Equation (5) yield

JCNIEPINY > min{p (0, 150 4 1)sP(% 0% 0) vp(0s) } >

12

which, with Lemma 2 and the definition of p , gives

itev(S,, 4)] pad(8, , 158, 1) > v(ktl) _ 2,

Substituting ! ev(a,) for tev(S,, 4) and using Lemma 3, we
obtain the desired result:

* .

pad (8S, 1581) > - | 20g (N-1) 1.

Suppose that, in the process of summing the accumulators as

described by Equation (5), k = j is the firs-t k such that

*

pad(s, 8,) < 0 . As a result of Lemma‘, the truncation (rounding)

error in adding %,.,, and &., must be caused in one of three ways:
J "= oJ

*

i) When the operands are aligned, pad(a, 0.) = 0 and a carry
occurs.

| *

ii) When the operands are aligned, pad (8S, 1584.1) = 0 and a
carry Occurs.

iii) tev(s,, ,) > Lev(a,) and, when 2s is aligned so that
fev(c,)= fev(s had (C0)< = A(S

. Lemma 6:

Lev(s,) > vit L+1 .

+ Proof: Case 1) In the aligned position, using Lemma 2, we find that

*

levi.) = pla. ,0.) >vj+2L .(@;) = of 57%) =v

Thus Lev(s,) = tev(a;) + 1 >vj+e+1.

i) Lev(S.,;)= p(S.,1,85,,) >min er) (00,5007)Case ii) ev +1) = P85 10850 >min JCP y on asp n%n }

>vjtv+til

13

Therefore Lev(s,) S>yvjtvtel >vj+ei+1

C 111) Wh x. ligned, Zfev(S...) tev(a.) > pla,) > i + 4ase 111 en &. 1s aligned, ev(S, = fev(Q, oO \% .; ’ SEL MELA Ar IE

Now,

Lev(S,) =lev(Sy,,) + (84,9595)

> tev(S,,,) > Lev(a,) = vi+ 1 .
Thus,

Lev(s,) >vj+L4+1

Since tev(a, ,) <vi+L Logs (N-1) 1

fev(S.) - lev(X > f +1-1 flog, (N-1(8) (a 4) 2 | 2ogg(n-1) |
L-vtl CL

The assumption in Lemma 4 (i.e., N <B) is sufficient to guarantee

that tev(s,) - tev(a, _,) > 1 , from which it follows that A(S 4505 4) <1,
Similarly, each of the subsequent additions can undergo a post-

normalization left shift of at most one digit. In fact, at most one of

the additions

will undergo a post-normalization left shift of one digit.

: £=-vtl
Lemma /: If N <B , the mantissa of each of the accumulators

Asn n-1 0% is shifted at least t digits during operand
alignment, where

N= (er) (6)

14

!

Proof: By Lemma 6,

tev(s, ;) > vj +2, (i= 0,1..053)
By Lemma 3,)

tev(as_;) < vij=i) + 2 + 1, (i = 0,1,.4053)
1] = + . 0 i

and Lev(S; 549) - Lev(as ;) >vi -1>t, (1 = MAI, yd).
Thus the mantissa of each of the accumulators Ay 0 %5on-10 4007
is shifted at least t digits during operand alignment.

£-vtl

Theorem 1: If N <B , 1f the accumulator used 1n accumulating Sy

has at least t+1 digits, and 1f no underflow or overflow occurs,

then the absolute error in 50 1s bounded by

tev(S,)-m-t+l
|s - So <ANBB ,

where

1 for chopped arithmetic

0 = 1
5 for rounded arithmetic

and A is given by Equation (6).

Proof: Since a post-normalization left shift of at most one digit can

| occur only once while the accumulators are summed, the worst case

occurs when 1t 1s caused by the addition of ATHY (see Lemma 7).

Subsequent additions of %s OV EAT I-CD cannot affect the computed

value of So (see Knuth's [6] discussion of problem 5, page 498).

Prior to the addition of iy , a maximum of A truncations (roundings)
Lev(Sy) ~m-t

can occur, each resulting in an error of PB or less.
‘ Q.E.D.

15

For machines which use t-digit accumulators and chopped arithmetic,

| Lev(Sy)-m-t+1
the error bound is (A-1)B (a stronger result!). Note

that, although the above theorem gives abound on the absolute error, it

also provides a bound on the relative error. Specifically, if the true

value of the sum s is zero, then 50 = 0 .

L-v+l
Theorem 2: If N<B and no underflow or overflow occurs, then

where _

| £] < App :

Proof: 1) If So = 0 , then, since total cancellation of significant

digits cannot occur in summing the accumulators, s = 0 .

11) If 8, # 0 , then assume s - 5 = So€ . By Theorem 1,
Lev(S,)-m-t+10

|s - 85] = EN |e] <ABB .

fev(S,)-m-1
Since |8,] > B ,

le] < Ag pot .

These theoretical results are substantiated by an experiment

reported by D. Jordan [4]. Jordan used this technique for accumulating

innerproducts on an IBM 360 (B = 16, t = 14). He chose 1 =32 , £ = 6

and § = 2 , and states:

16

"Empirical-tests were run to determine the small amount of roundoff

that might be expected from the procedure. The tests used 1000

dot products of 1l5-component vectors where the components were
0 0

randomly generated in the range (-107°, 10°) . The results of
this routine were checked against results obtained using 256

hex-digit arithmetic through the multiple precision arithmetic

package written by J. R. Ehrman of SLAC.Of the thousand cases,

L67 were in exact agreement, 537 had an erroneous last bit and 3

had an erroneous penultimate bit." [4, p. 31].

If the last sentence 1n Jordan's statement were changed to read

"... b67 were in exact agreement, 537 had an erroneous last (hexadecimal)

digit and 5 had an erroneous penultimate digit.", then Jordan's results

are consistent with those of Michael Saunders at Stanford University.

Saunders performed several experiments on an IBM 360 using B = 16,

t=14, NM =43, £ =6 and g =2 . He found examples where the 15-th

hexadecimal digit of the result was in error, but none with errors in

the 12-th digit. Errors of this size are consistent with Theorem 2.

V. Additional Modifications to the Algorithm

If one desires the final floating-point result to be correct in

all digits, the following procedure can be used immediately after

calculating Sy

IE I ‘ + + * 80 + =I. Form apa, saa > 1), where a, +a, ay 8,

and each as has the property that the last ! digits of

its mantissa are 0 .

2. Add "875 =8ny «0-8 to the accumulators.
5. Sum the accumulators in decreasing order. Call the result A .

Ly. Sy + 4 is the full precision result.

17

1

In problems where N may get arbitrarily large (e.g., numerical

integration), all is not lost. One merely increments an integer every

time a term 1s added to the accumulators and when the integer is equal

to af Vr n(me1) y the following procedure is executed:

1. reset the integer to zero.

begin

a = a, 3 Qs := 0;
addtoaccumulators(a)

ond ~.

where the procedure addtoaccumulators forms the Apr realy

variables, adds g to the integer and adds the By
(j = 1,¢.454) to the accumulators.

5. Resume the original algorithm.

18

VI. Conclusion

The generality of the preceding discussion tends to obscure the

simplicity of the algorithm. For this reason, a simple illustrative

example of this technique programmed in Fortran for the IBM 360 is included:

REAL FUNCTION SUM(X,N)

EQUIVALENCE (IEQ,W)

DIMENSION X (1)

REAI*8 R(L43),S8,DBLE

DO 10 I=1,43

10 R(I)=0.0DO

W=ABS (X (I))

IEXP=IEQ/50331648 + 1

C 50331648 IS 2%(2%¥2L) WHICH SHIFTS RIGHT 24 BITS AND

C DIVIDES BY 5. ABS GETS RID OF THE SIGN BIT.

20 R(IEXP)=R(IEXP) + DBLE(X(I))

58=0 .0DO

30 S8=88 + R(Lk4-I)

SUM=SNGL(S8)

RETURN

END

This subroutine finds the sum of a vector of short-precision (t = 6)

- numbers. Since the 360 used has long-precision(t = 14) floating-point

hardware, it is convenient to use 1h digit accumulators and append 8 zero

digits at the end of each x; . Thus, q = 1 and2 = 8 . The value

N = 4 was chosen to give v = 3 . Thus, since B = 16 , the short-

precision result 1s guaranteed to have full-precision (chopped)

accuracy provided N < 16° = 16,777,216 .

19

This example is typical in that gq is usually small (1 or 2),

I 1s usually chosen for convenience, and 1 1s usually chosen so the

accumulators can be quickly indexed and soy 1s sufficiently small.

The algorithm 1s currently used 1n several 1nnerproduct routines

(see Malcolm[3] for descriptions of these routines, including running

; times) . Since efficiency 1s satisfactory, 1t may well be feasible to

implement this technique through a microprogram so that the programmer

can specify by a certain operation code that a summation isto be

performed with a set of these accumulators rather than with a single

accumulator. -

VII. Acknowledgment

The author 1s indebted to Professor George E. Forsythe for his

helpful comments and criticisms of the manuscript, The author would

also like to thank Michael Saunders for several enlightening discussions

during the evolution of this algorithm and for his wealth of numerical

counterexamples.

20

BIBLIOGRAPHY

[1] wilkinson, J. H., Rounding Errors in Algebraic Processes,

Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1963.

[2] Wolfe, J. M., "Reducing Truncation Errors by Programming," CACM,

Vol. 7, No. 6, June 1964, 355-356.

[3] Malcolm, M. A., "A Description and Comparison of Subroutines

for Computing Euclidean Inner Products of Vectors," Technical

Report (to appear), Computer Science Department, Stanford University,

1970.

[4] Jordan, D. F., "ANL F15L4S - DOTP, Extra-Precision Accumulating

Inner Product,'? Argonne National Laboratory, Applied Mathematics

Division, System/360 Library Subroutine, Argonne, Illinois,

November, 1967.

[5] Mpller, Ole, "Quasi Double-precision in Floating Point Addition,"

BIT, 5 (1965), 37-50.

[6] Knuth, D. E., "Seminumerical Algorithms," The Art of Computer

Programming, Vol. 2, Reading, Mass.: Addison-Wesley Publishing

CO.' 1969.

21

|

