AN ALGOR ITHM FOR FLOATING-POINT ACCUMULATION
OF SUMS WITH SMALL RELATIVE ERROR

BY
MICHAEL MALCOLM

STAN-CS-70-163
JUNE 1970

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

AN ALGORITHM FOR FLOATING-POINT ACCUMULATION OF SUMS
WITH SMALL RELATIVE ERROR

by
Michael Malcolm

Reproduction in whole or in part is permitted
for any purpose of the United States Government.

The preparation of this report was sponsored by the
Office of Naval Research under grant number N0013-6T-A-
0112-0029, the National Science Foundation under grant
number NSF GJ 408 and the Atomic Energy Commission under
grant number AT (OL-3) 326,PA 30.

I. Introduction

Many algorithms require the calculation of a sum
n
s = §: X, n>3% ,
i=1

where Xq5%X5y .. 5%, are numbers—reﬁresented in floating point. In
practice, an approximate sum § is computed with rounding errors.
Wilkinson [1] shows that if the sum is accumulated in a single-precision
accumulator (using floating binary arithmetic with t bits of precision

and proper rounding), then

1
R
1=
where
- +1~ - +1-
(1-27" 4 cavn < @2 p o1,

Thus the error bound is dependent on the order of summation. This
result has led to the well-known rule of thumb that it is usually best
to add a list of numbers in order of increasing magnitude. If one has
a priori knowledge of the X5 (e.g., E: lXil < 1) or if the accumulation
is performed with more precision (say double precision), then much smaller
error bounds can be found. However, as Wilkinson points out, "It should
be emphasized that we still cannot guarantee that an accumulated sum .
has a low relative error."
Large relative error in an accumulated sum is often the result of

a phenomenon which Professor D. H. Lehmer calls catastrophic cancellation.

This occurs when an intermediate partial sum is much larger in magnitude

than the final sum. Then one or more additions result in a loss of

significant digits. The post-normalization step of a subsequent

addition thus introduces zeros in place of significant digits.

However, as Professor William Kahan has observed, this large cancellation
is not the cause of the error -- it merely reveals the error. That is,
the real villain here is not the cancellation, but rather the large
intermediate sums within a floating-point system of given precision.
Perhaps "catastrophic loss of precision" would be a more appropriate
name. Catastophic cancellation is fairly common with poorly designed
algorithms; most good algorithms have built-in precautions which avoid

(or usually avoid) this phenomenon.

Large relative errors can occur without catastrophic cancellation.

This happens in large summations (n >> 3) where the intermediate sums
become much larger in magnitude than the individual addends, but not

larger than the final sum. This sort of error can occur in numerical
integration using a large number of intervals. Wolfe [2] proposed a
technique for avoiding this type of error. It is described in the
following section.

In the remainder of this report, a modification of Wolfe's algorithm
is presented, followed by a detailed error analysis. This algorithm has
the advantage that the final sum is guaranteed to have a very small

relative error.

II. Extended Summation With Cascading Accumulators

Wolfe [2] suggests a technique which is easily programmed and requires
only a small number of additional storage locations. These extra locations,

called cascading accumulators, are denoted by sl, s2, The separate

accumulators hold sums that are in various intervals; for example,

vl

1.000

IN

c(sl) < 9.999
10.00 < c¢(s2) < 99.99

100.0

INA

c(s3) < 999.9

where <c(si) denotes the contents of si . The summing is done at
the lowest level accumulator (sl) until it is about to overflow.
At that point it is added to the next accumulator (s2) and reset to
zero. Similarly, if s2 is about to overflow, it is added to s3 and
reset to zero, and so on.
By this technique the intermediate sums never become much larger
than the addends. However, catastrophic cancellation can occur just
as before. Wolfe does not discuss how to go about summing the accumulators
at the end; 1n an example he uses the order of increasing magnitude.
For certain problems, this is a useful-technique; however, there is no

guarantee that the final result has a small relative error.

ITT. A Modification of Wolfe's Algorithm

The following algorithm requires little if any more execution
time than the algorithm of the last section, and nearly full-
precision accuracy is achieved, provided exponent underflow or overflow
do not occur. Such exceptional conditions are normally brought to the
attention of the user by the system software and, if so, inaccurate
results cannot go unnoticed. As in Wolfe's algorithm, additional

intermediate accumulators are used -- typically fewer than 50.

The following discussion assumes the algorithm is implemented
on a machine using a floating-point number system F of base B
(usually B is 2, 8,10 or 16) with a t-digit mantissa. The

exponent e 1s assumed to lie in the range
—m<e<M_
Thus each nonzero Xx¢F has the normalized representation
x =+ .dd. ..d .B° , (1)
- 12 t

where % ' @ﬁﬂ@&‘are integers satisfying

1<4d

IN

p-1,

0<d B-1 (i =2,.00,t) .

IN

The number 0 belongs to F , and has the structure
0 =.00...0-87"

All floating-point addition is assumed to be normalized. The machine
may do either proper rounding or truncation (chopping).

To facilitate discussion, the function Rev (similar to that used
by Mpller([5]) is defined as follows: If xeF then fev(x) = e+m
lev is the biased exponent having the mnemonic "level". Note that Zfev
is a function of the representation of a number and not the number
itself. For example, suppose x is to be added to y , where |y|> hﬂ,
and that x must be unnormalized during operand alignment. Suppose also

that no nonzero digits are lost from the mantissa of x while it is being

unnormalized. If we denote the unnormalized representation of x by X ,
then x and X both represent the same real number exactly, but
tev(k) > fev(x) .
The algorithm for computing Zn_“xi can now be described as
i=1

follows. Therearetwo positive parameters, g and 1

Assume there are mtl accumulators, the contents of which are

denoted by aO’al’”"an

1. Set each of the accumulators to zero.

2. For each x; form &;4,a;,; ..'.,aiq (g >1) , where
asq +ai12' . "+a'1q = Xy and each a.l:j has the property
that the last £ digits are 0 (i.e., T
dt =0).

3. Each a.l:J is added to the k-th accumulator, where k 1is

determined by

vk < lev(aij) < vk+ vy -1,

(2)
v=[(Merm+1)/(n+1)7]

where [&7] denotes the smallest integer not less than & .

(Thus
k = !ev(aij) + Vo (3)

in the sense of Algol€0.)

4. The accumulators are summed in decreasing order (i.e.,

n;n'l’---:o) .

The second step appears, at first sight, to be quite complicated.
However, in practice it is easily done, especially on a machine with
double-precision arithmetic. An illustration of this in Fortran for
the IBM System/360 is contained in Section VI.

The parameters [and 7 are chosen so that the addition in step 3
retains all the significant digits involved. That is, until step 4, there
are no rounding errors. More insight into choosing f and 7 will be
given in the following section. Also, an important restriction on the
magnitude of the product gn will be revealed.

Step number 4 is certainly the most interesting step of the algorithm.
If, instead, the accumulators are summed in increasing order (as one is
tempted to do after reading Wilkinson [1]), catastrophic cancellation can

occur. When this algorithm is incorporated in an innerproduct routine, it

often happens that

where fev(B) -Eev(ei) >t . Summing in increasing order will yield 0
However, as D. Jordan pointed out in [4], summing the accumulators in

decreasing order (7M,...,0) precludes the chance of this type of error.
The remaining question is: Does su“mming the accumulators in decreasing
order lead to some other case where a large relative roundoff error can
occur? The answer to this question is no. Proof of this assertion and

a sharp bound on the roundoff error are given in the next section.

IV. Error Analysis

Another convenient function 1is defined as follows: Let xeF be an
approximatio\ﬁ of some real number ; . If x=x* and x* ;é 0 , then
pad(x,x*) 1is defined to be the number of digits by which the mantissa
of x can be shifted to the right before a significant digit is lost
(i.e., before a non-zero digit is shifted out of the low-order position).
If % ,4 x* » then pad(x,x*) is negative, and defined as follows:

suppose x has the representation (1); if there exists a { such that

{ can be represented as
_ A A A] e..'t . A ~
¢ =+ .d4d,...d, B with dp £0, d; #0

*
and x+§ =x and T is finite, then pad(x,x*) is defined to be -T

Otherwise, pad(x,x*) 1s defined as -~ . For completeness,
pad(0,0) = » . For example, if B =2 and t = 6, pad(—.lOlOOO.25,-SlO)
If x =+.111111 - 20 and y = +.111111° 2:L , and ® represents floating-
point addition, and pad(x®y,x+y) = -2 since two digits are lost during

the floating-point addition. When pad(x,x*) 1is positive, the mantissa

of x has a "padding" of zero digits at the end.

It follows that

* *
pad(x,x) >0 © x=%x ,

*
pad(x,x*) < 0 e x £x ,

* * *
pad(x,x) >t = pad(X,Xx) =o © X =X =.

In step 2 of the algorithm, it is required that pad(aij,aij) >L> 0,
for all i,]

It is also expedient to define

p(x,x*) = fev(x) + pad(x,x*) . (&)

*
p(x,x) is invariant with respect to operand alignment (un-normalization)

and post-normalization of x , provided no exponent underflow or overflow

occurs.

Lemma l: If x and y are two floating-point numbers and ® represents
floating-point addition, then
* % * *
p(x®y,x +y) > min{p(x,x),p(¥>¥y)} >

provided no exponent underflow or overflow occurs.

Proof: Assume fev(x) > fev(y) . Let z denote an accumulator,
a floating-point number with a t+2 digit mantissa and an
overflow digit. Set 2z <y and, if necessary, unnormalize z
so that fev(z) = Rev(x) . The accumulator z can be treated

as a floating-point number if one ignores the overflow digit and

considers only the first +¢ digits of the mantissa. In this
way, pad is defined for z . Let w denote another
accumulator with the same structure as z . Set w « z+x .

Prior to the post-normalization step in forming w ,
tev(w) = fev(z) = fev(x) and
* ¥
pad(w,x +y) > min(pad(z,y*),pad(x,x*)) ,

and equality occurs whenever the low-order digits of x and y

don't cancel. From Equation (4) and the fact that

* %
p(w,x +y) remains unchanged during the post-normalization

step, it follows that
* % * % * *
p(x®y,x +y) - p(w,x +y)>min{p(z,y),p(x,x)}
* *
Since p(z,¥y) = o(¥vy¥) >

* * * *
D(X®Y:X +y) > min{p(x,x):D(Y:y).

Lemma 2: In the notation of Section III,

p(ak,a;) >Vk + 4

Proof: Any term (y) that is added to the k-th accumulator satisfies

tev(y) > vk and pad(y,y) >1£ .

By Lemma 1, Equation (4) and the fact that p(0,0) = » , the lemma

follows by induction.

Lemma 3: If o # 0, and N is the number of a.l::I added to the

accumulators, then

vk < lev(ozk) < v(ktl) -1 s, 1f N =1

vE-t+ £ +1 < fev(ey) < v(istl) + I__logB(N-l)_l , if N>1

(k = 0,1,...,7)

-

where L_&_J denotes the largest integer not greater-than £ .

Proof: The inequalities for N=1 are obviously the same as those satisfied
by a single term added to the k-th accumulator. The upper bound
for N >1 is found by considering the largest number ({) which
can be added to the k-th accumulator, i.e.,

k+l)-1-m
£ « covrvoorcovocn . BV() s (z = B-1)

10

and observing the lev(ak) during repeated additions of { to ak

If the lower bound for N >1 were not true, i.e., if
lev(ozk)<vk-t+2+l ,
then, by Lemma 2,
)
pad(ock,ak >t = =0,
which is a contradiction.
Lemma 4 If N < Bl-v+l » then each of the Q (k = 0,1;...,M) is

exact.

Proof: By-Lemma 3,
zev(ock) <vk+2+1

Combining this with Equation (4) and Lemma 2 gives

*
Pad(ak’ ak) 2 O 4

which, by the definition of pad , implies o is exact.

Loss of precision in an extended summation can result from either
1. repeated truncations (roundings) of the sum, or

2. post-normalization left shift of the approximate sum.

- The post-normalization error can be formalized as follows: Let the

accumulation of the floating-point sum

=}

where the x. (i = 1,2,...,n) are exact, be defined as

@X F} (i = 1,2,...,n) ’

The function A of two floating-point variables is defined as
Alx, y) = max{lev(x),fev(y)} - lev(x®y).

Thus, during post-normalization of the floating-point sum x®y ,
the mantissa undergoes a left shift of A(x,y) digits. Clearly, if
a carry occurs, A(x,y) = -1 . Also, A(x,y) > 1 only if
|2ev(x) - tev(y)| <1 .

During the formation of \in = \yi_l@xi , any truncation error

already present in the low order digits of wi-l is multiplied by

A(‘V i_l) Xi)
B

The accumulators are summed in decreasing order. Thus, the sum

SO can be defined by

S,n_'_l =0
e Sk = Sk"l @ ak (k = ln,’n-l’ ...,O) 3 (5)
Lemma 5: If 8§, is exact and zev(Sk+l) < Zev(ak) and if 8 ..

is un-normalized so that lev(Sk+l) = lev(ozk) , then

* -yt
pad(S,,1,8,,) >0 , provided N < gtV

Proof: Lemmaland Equation (5) yield

p(sk_|_1’ Sk‘*’l) 2 min'{p(ak"'l,ak“'l) ’p(ak_'_g)ak,‘_z)) % p(an’a'n) })

12

which, with Lemma 2 and the definition of p , gives

Ltev(S _ pad(s) > v(ktl) £

k+l) k+1’ Sk+].

Substituting llev(Otk) for llev(Sk+l) and using Lemma 3, we

obtain the desired result:

*
pad(Sk+l,Sk+l) >4 - LlogB(l\I—l)_]

Suppose that, in the process of summing the accumulators as
described by Equation (5), k = j is the firs-t k such that
*
pad(Sk,Sk) < 0 . As a result of Lemma‘5, the truncation (rounding)

error in adding S, and &, must be caused in one of three ways:

. J ' J
*
i) When the operands are aligned, pad(ozj,ocj) = 0 and a carry
occurs.
. . *
ii) When the operands are aligned, Pa'd(sj+l’sj+l) = 0 and a

carry occurs.

iii) lev(Sj+l) > llev(ozj) and, when Otj is aligned so that

gev(a.) = Lev(s a(a.,o) < - A(S
ev OLJ. = lev j+l) , pa 57% - J.Jrl,a‘.j) <0.
Lemma 6:
/lev(SJ.) > vi+ £+ 1 .
- Proof: Case 1) In the aligned position, using Lemma 2, we find that

*
lev(,) = ., >vij+
(J) p(J’ J) 2 Vd

Thus lev(SJ.) = /lev(ozj) + 1>yj+e+1.
i) 2ev(S.,;) = p(S.,1,S5,,) >min op) (o,50)
Case 1ii) ev ge1) = P(844198549 >min p(aj+1,aj+l,...,p ,n,Ot,n }
>vjtvt1?

13

Therefore lev(Sj) Svjtvtl >vj+i+l

*
C Wh a. i 1i d Lev(S. = fev(a.) > pla.,a.) > vj + 2 .
ase iii) en . is aligned, (J+l) (J) ol 52 J) > vj

Now,

Bev(SJ.) =/zev(Sj+l) n A(Sj+l,aj)

> zev(sj+l) > !ev(aj) = vj+ 1 .
Thus,

Zev(Sj) >vi+i+1
Since £ev(aj=~l) <vi+ L logB(N-l) 1,

tev(s,) - tev(a, j) > £ +1- Llogﬁ(l\l-l) }

ﬂ-vl-l) is sufficient to guarantee

The assumption in Lemma % (i.e., N < B
that !eV(Sj) -lev(aj_l) > 1 , from which it follows that A(Sj,aj_l) <1,
Similarly, each of the subsequent additions can undergo a post-

normalization left shift of at most one digit. 1In fact, at most one of
the additions
sk = sk+l ® o (k = j=1,3-2y.4.,0)
will undergo a post-normalization left shift of one digit.
Lemma 7: If N < Bl-wj' , the mantissa of each of the accumulators
aj-?x’aj-)\.-l""’ao is shifted at least t digits during operand

alignment, where

A= (1) /6] . (6)

14

Proof: By Lemma 6,
Zev(Sj_i) > i+t 2, (1= Oy1yeeesd) -
By Lemma. 3,
Zev(aj_i) < v(j-i) + 4+ 1, (i = 0,1,.4453)

and Eev(Sj_i+l) -

zev(ocj_i) >vi-1>t, (i = MMLeeed),
Thus the mantissa of each of the accumulators aj-%’aj-h-l" 4057

is shifted at least t digits during operand alignment.

-yt
Theorem 1: If N < BZ vil , 1f the accumulator used in accumulating SO

has at least t+1 digits, and if no underflow or overflow occurs,

then the absolute error in S. is bounded by

for rounded arithmetic

0
lev(So)-m-t+l
|s -5, <»8B)
where

1l for chopped arithmetic
5 =

L1

2

and M is given by Equation (6).

Proof: Since a post-normalization left shift of at most one digit can
occur only once while the accumulators are summed, the worst case
occurs when it is caused by the addition of &;_\ (see Lemma 7).
Subsequent additions of aj-k-l’aj-h-2’--- cannot affect the computed
value of 8, (see Knuth's [6] discussion of problem 5, page 498).
Prior to the addition of aj—h , a maximum of A truncations (roundings)
Zev(SO) -m-t

can occur, each resulting in an error of B or less.
: Q.E.D.

15

For machines which use t-digit accumulators and chopped arithmetic,

_ tev(Sy) -m-t+1
the error bound is (A-1)B (a stronger result!). Note

that, although the above theorem gives a _bound on the absolute error, it
also provides a bound on the relative error. Specifically, if the true

value of the sum s is zero, then S0 =0 .

-yt
Theorem 2: If N < Bl vl and no underflow or overflow occurs, then

s = 85,(1+€) ,

where

le| <nop”

Proof: i) If SO = 0 , then, since total cancellation of significant
digits cannot occur in summing the accumulators, s = 0

ii) If SO % 0 , then assume s -SO = Soe . By Theorem 1,

tev(S,) -m-t+1
|s -85 = I8p] [e] <™ *v{%) .

Eev(So)—m-l
Since |SO| >B s

|e| < Mssz't .
These theoretical results are substantiated by an experiment
reported by D. Jordan [4]. Jordan used this technique for accumulating

innerproducts on an IBM 360 (B = 16, t = 14). He chose =32, £ =6

and ¢ = 2 , and states:

16

"Empirical-tests were run to determine the small amount of roundoff
that might be expected from the procedure. The tests used 1000
dot products of 1l5-componentvectors where the components were

30, 1030))

randomly generated in the range (-10 The results of

this routine were checked against results obtained using 256
hex-digit arithmetic through the multiple precision arithmetic
package written by J. R. Ehrman of SLAC. Of the thousand cases,
L67 were in exact agreement, 537 had an erroneous last bit and 3

had an erroneous penultimate bit." (4, p. 31.

If the last sentence in Jordan's statement were changed to read
"... 467 were in exact agreement, 537 had an erroneous last (hexadecimal)
digit and 3 had an erroneous penultimate digit.", then Jordan's results
are consistent with those of Michael Saunders at Stanford University.
Saunders performed several experiments on an IBM 360 using B = 16,
t = 1k, N =43, 1 = 6 and g =2 . He found examples where the 13-th

hexadecimal digit of the result was in error, but none with errors in

the 12-th digit. Errors of this size are consistent with Theorem 2.

v. Additional Modifications to the Algorithm

If one desires the final floating-point result to be correct in
all digits, the following procedure can be used immediately after

calculating S0

) + + ...+ =

. Form apa, ,angjzl), where a;+a, 2 8,
and each a; has the property that the last I digits of
its mantissa are 0

2. Add -al,-ag,...,-aq to the accumulators.

5. Sum the accumulators in decreasing order. Call the result A

4. %3+A is the full precision result.

17

In problems where N may get arbitrarily large (e.g., numerical

integration), all is not lost. One merely increments an integer every

time a term is added to the accumulators and when the integer is equal

to

L-v+l
B

-m(M+1l) , the following procedure 1is executed:

reset the integer to zero.

for i := 0 step 1 until 7 do

begin
a = ai; ai = 0;
addtoaccumulators(a)
end)

where the procedure addtoaccumulators forms the ail,...,aiq
variables, adds g to the integer and adds the aib
(3 = 1,..459) to the accumulators.

Resume the original algorithm.

18

VI. Conclusion

The generality of the preceding discussion tends to obscure the
simplicity of the algorithm. For this reason, a simple illustrative
example of this technique programmed in Fortran for the IBM 360 is included:

REAL FUNCTION SUM(X,N)

EQUIVALENCE (IEQ,W)

DIMENSION X (1)

REAL*8 R(U43),S8,DBLE

DO 10 I=1,43
10 R (I)=0.0DO0

DO 20 I=1,N

W=ABS (X (1))

TEXP=IEQ/50331648 + 1
C 50331648 1S 3*(2¥*24) WHICH SHIFTS RIGHT 24 BITS AND
C DIVIDES BY 3. ABS GETS RID OF THE SIGN BIT.
20 R{IEXP)=R(IEXP) + DBLE(X(I))

$8=0 .0DO

DO 30 I=1,43
30 98=88 + R(44-I)

SUM=SNGL(S8)

RETURN

END

This subroutine finds the sum of a vector of short-precision (t = 6)

- numbers. Since the 360 used has long-precision (t = 14) floating-point
hardware, it is convenient to use 1% digit accumulators and append 8 zero
digits at the end of each X . Thus, g = 1 and £ = 8 . The value
N = 4 was chosen to give v =3 . Thus, since B = 16 , the short-
precision result is guaranteed to have full-precision (chopped)

accuracy provided N < 166 = 16,777,216 .

19

This example is typical in that g is usually small (1 or 2),
I is usually chosen for convenience, and 1 is usually chosen so the
accumulators can be quickly indexed and so v is sufficiently small.

The algorithm is currently used in several innerproduct routines
(see Malcolm [3] for descriptions of these routines, including running
times) . Since efficiency is satisfactory, it may well be feasible to
implement this technique through a microprogram so that the programmer
can specify by a certain operation code that a summation isto be
performed with a set of these accumulators rather than with a single

accumulator.

VIT. Acknowledgment

The author is indebted to Professor George E. Forsythe for his
helpful comments and criticisms of the manuscript, The author would
also like to thank Michael Saunders for several enlightening discussions
during the evolution of this algorithm and for his wealth of numerical

counterexamples.

20

BIBLIOGRAPHY

(1] wilkinson, J. H., Rounding Errors in Algebraic Processes,

Englewood Cliffs, N. J.: Prentice-Hall, Inc., 1963.

[2] Wolfe, J. M., "Reducing Truncation Errors by Programming," CACM,
vol. T, No. 6, June 196k, 355-356.

[3] Malcolm, M. A., "A Description and Comparison of Subroutines
for Computing Euclidean Inner Products of Vectors," Technical

Report (to appear), Computer Science Department, Stanford University,

1970.

[4] Jordan, D. F., "ANL F154S - DOTP, Extra-Precision Accumulating
Inner Product,'? Argonne National Laboratory, Applied Mathematics
Division, System/360 Library Subroutine, Argonne, Illinois,

November, 1967.

[5] Mgfller, Ole, "Quasi Double-precision in Floating Point Addition,"
BIT, 5 (1965), 37-50.

[6] Knuth, D. E., "Seminumerical Algorithms," The Art of Computer

Programming, Vol. 2, Reading, Mass.: Addison-Wesley Publishing
CO.'" 1969 .

21

