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NUMERICAL TECHNIQUES IN MATHEMATICAL PROGRAMMING

by

R. H. Bartels, G. H. Golub, M. A. Saunders

Abstract

The application of numerically stable matrix decompositions to

minimization problems involving linear constraints 1s discussed and

shown to be feasible without undue loss of efficiency.

Part A describes computation and updating of the product-form

of the IU decomposition of a matrix and shows it can be applied to

solving linear systems at least as efficiently as standard techniques

using the product-form of the inverse.

Part B discusses orthogonalization via Householder transformations,

with applications to least squares and quadratic programming algorithms

based on the principal pivoting methodof Cottle and Dantzig.

Part C applies the singular value decomposition to the nonlinear

least squares problem and discusses related eigenvalue problems.
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Introduction

This paper describes the application of numerically stable matrix

decompositions to minimization problems involving linear constraints.

Algorithms for solving such problems are fundamentally techniques for

the solution of selected systems of linear equations, and during the

last fifteen years there has been a major improvement in the understanding

of these and other linear algebraic problems. We show here that methods

which have been analysed by various workers and proven to be numerically

stable may be employed in mathematical programming algorithms without

undue loss of efficiency.

Part A describes means for computing and updating the product-form

of the IU decomposition of a matrix. The solution of systems of equations

by this method 1s shown to be stable and to be at least as efficient

as standard techniques which use the product-form of the inverse.

In Part B we discuss orthogonalization via Householder transformations.

Applications are given to least squares and quadratic programming algorithms

based on the principal pivoting method of Cottle and Dantzig [5 ]. For

further applications of stable methods to least squares and quadratic

programming, reference should be made to the recent work of R. J. Hanson [13]

and of J. Stoer [26] whose algorithms are based on the gradient projection

method of J. B. Rosen [24].

In Part C the application of the singular value decomposition to

the nonlinear least squares problem 1s discussed, along with related

eigenvalue problems.
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A. THE USE OF LU DECOMPOSITION IN EXCHANGE ALGORITHMS

1. LU Decomposition

If B is an n X n , nonsingular matrix, there exists a permutation

matrix W , a lower-triangular matrix IL with ones on the diagonal, and

an upper-triangular matrix U such that

It 1s possible to choose TT , L , and U so that all elements of L

are bounded in magnitude by unity.

A frequently-used algorithm for computing this decomposition 1s :

built around Gaussian elimination with row interchanges. It produces

the matrices Tf and L in an implicit form as shown:

Fork = 1,2,...,n-1 1n order carry out the following

two steps:

(1.2) . Find an element in the k-th column of B , on or below the

| diagonal, which has maximal magnitude. Interchange the

k-th row with the row of the element found.

(1.3) Add an appropriate multiple of the resulting k-th row to each

row below the k-th in order to create zeros below the diagonal

in the k-th column.

1



Each execution of the first step (1.2), in matrix notation, amounts

to the premultiplication of B by a suitable permutation matrix My .

The following step (1.3) may be regarded as the premultiplication of B

by a matrix Fy of the form

k

1

1

Berl,k| T

1
n, k ?

where |e. | < 1 for each i = ktl,...,n.
i,k -

By repeating the two steps n-1 times, B 1s transformed into U .

-1 | |
And at the same time the matrix (IL ~T) is collected in product form

) n-1 n-1"° 1 |

This algorithm requires n /3+ O(n”) multiplication/division operations

and again this many addition/subtraction operations. BothU and all

of the gy 3 can be stored in the space which was originally occupied by B .J)

An additional n locationsare required for the essential information contained

in the Me :
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2. Exchange Algorithms

Many algorithms require the solving of a sequence of linear equations

(2.1) si), _ (1) :

for which each p(1) differs from its predecessor in only one column.

Examples of such algorithms are: the simplex method, Stiefel's exchange

method for finding a Chebyshev solution to an overdetermined linear

equation system, and adjacent- path methods for solving the complementary-

pivot programming problem.

Given that 5(0) has a decomposition of the form

(2.2) 3(0) _ 1(0)y(0) ;

(0) (0)where U 1s upper-triangular, and given that L has been

stored as a product

-1
(0) = _ (0) (0) (0) (0)

(2.3) L =A Meywr TM

the initial system of the sequence 1s readily solved: Set

-1

| (2.4) Y -1.(9) (0) ,

and then back-solve the triangular system

(2.5) vy = y

bo



3. Updating the LU Decomposition

Let the column r. of 5(0) be replaced by the column vector ,(0)
So long as we revise the ordering of the unknowns accordingly, we may

insert al ) into the last column position, shifting columns r tl
through n or 5%) one position to the left to make room. We will

call the result 5(1) , and we can easily check that it has the

decomposition

(3.1) s(1) _ 01)

where ney isa matrix which is upper-Hessenberg in its last n-r +1

columns and upper-triangular in its first r-1 columns. That 1s,

7 (1) has the form

o

’XN

The first r 1 columns of (3) are 1dentical with those of 5(0)

The next n-r_ are identical with the last nor, columns of 5(0)
And the last column of q( 1) 1s the vector (0) 2 (0)

7 (1) can be reduced to upper-triangular form by Gaussian elimination

with row interchanges. Here, however, we need only concern ourselves

with the interchanges of pairs of adjacent rows. Thus gM) 1s gotten



from (1) by applying a sequence of simple transformations:

(1) (1) (2) (1) 4 (1) (2)
(3.3) v= my TE s

Q 0

(1)
where each Ls has the form

1

ler
(3.4)

1

1 ’

1 i+1l

and each mb 1s either the identity matrix or the identity with the i-th
2

and itl-st rows exchanged, the choice being made so that Py | <1.
The essential information in all of these transformations can be

stored in n-r_ locations plus an additional n-ro bits (to indicate

the interchanges). If we let



SUE ¢De 6 JC DI CA CIN CDol n-1 n-1""""r r ’
® O

then we have achieved the decomposition

11 ooThe transition from g(1) to p(l 1) for any 1 1s to be made
0

exactly as was the transition from 3 ) to (1) . Any system of

linear equations involving the matrix 51) for any i 1s to be solved

according to the steps given in (2.4) and (2.5).
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I, Round-off Considerations

For most standard computing machines the errors in the basic

arithmetic operations can be expressed as follows:

fia + b) = a(l + €,) + b(l + £5)

(4.1) f2(a x b) = ab(1 + &5)

£1(a/b) = (a/b) (1 +e) ’

1-t

where |e. | <P . Here B stands for the base of the number system

in which machine arithmetic is carried out and t is the number of

significant figures which the machine retains after each operation. The

notation f2(a "op" b) stands for the result of the operation "op"

upon the two, normal-precision floating-point numbers a and b when

standard floating-point arithmetic 1s used.

The choice of an IU decomposition for each 5(1) and the particular

way 1n which this decomposition 1s updated were motivated by the desire

to find a way of solving a sequence of linear equations (2.1) which would

; retain a maximum of information from one stage to the next 1n the sequence

and which would be as little affected by round-off errors as possible.

Under the assumption that machine arithmetic behaves as given in (L4.1),

the processes described in Sections 2 and 2 are little affectedby

round-off errors. The efficiency of the processes will vary from algorithm

to algorithm, but we will argue in a subsequent section that the processes

should cost roughly as much as those based upon product-form inverses

of the BD |



We will now consider the round-off properties of the basic steps

described in Sections 2 and 3.

The computed solution to the triangular system of linear equations

(4.1) g(t) = vy

can be shown, owing to round-off errors, to satisfy a perturbed system

(4.2) CA + su’) x =y

It is shown in Forsythe and Moler [9] that

su’) + -
(4.4) mea < n(n+l) (1.01)8% t ,1 — 2

lo)

where I denotes the infinity norm of a matrix, and thus round-off

errors 1n the back-solution of a triangular system of linear equations

may be regarded as equivalent to relatively small perturbations in the

original system.

Similarly, the computed L and U obtained by Gaussian elimination

; with row interchanges from an upper-Hessenberg matrix H satisfy the

perturbed equation

(4.5) H+ 8H = IU ,

where Forsythe and Moler show that

(4.6) TT
IH

and Wilkinson [28] establishes that p < n . Thus, the computational

8



process indicated in (3.3) can be regarded as introducing only relatively

small perturbations 1n each of the K ) .

Similar results hold for the initial LU decomposition (2.2) with

a different bound for p . The reader 1s referred again to Forsythe

and Moler.

The most frequent computational step in the processes which we have

described is the application of one Gaussian elimination step [' to a

column vector v :

Hi .! Vi-1

! Viel
(4.7) w="Iv= - |

1 Vill
i 1 Vv.EE

1 irl

1 \Y .
n

i J

The computed vector w satisfies

(4.8) Ww, =v for k # 7

w. = TL(fL(gv.) + Vv,RE CICARRD
— € + €gv, (1 + £3) (1+ 1) + v, (1 5)

= gv; + vs + gv, (ge; toeg e163) + Vip

9



Thus we may regard the computed vector w as the exact result of a

perturbed transformation

(4.9) w= (TC +8v ,

where

2 HE

(4.10) SI EE
3 I C2 Cc

ERIE
- : 3

and

_ 3

(4.11) go = ge) + 5 + ey 3)

T = £5 .

Therefore we have

I |S I(4.12) lar < 2% > 15 ’
Ir] 1+ |e

. where the right-hand side is bounded, since |e] <1, according to

oT t t 1-t
naz BIL gts, gt) oso (say).

Hence, the computations which we perform using transformations (4.7) also

introduce relatively small perturbations into the quantities which we manipulate.

10



It 1s precisely with regard to such transformations that we feel

our method of computation, based upon IU decompositions, is superior

to methods based upon the inverses of the matrices GX . Such methods

use transformations of the form )

|

oll IS]

Tern | 4

The 1

k

Co fa-1)Td (1) ~%
These are appliedto each column in B to produce B or

alternatively, 1n product-form methods, they are applied to the vector

(1) to produce the solution to system (2.1). As such, they involve

successive computations of the form (4.7). Each such computation may be

regarded as satisfying (4.9). But, since the Ny may be unrestricted in
magnitude, no bound such as (4.13) can be fixed.

11
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5. Efficiency Considerations

As we have already pointed out, it requires

2 ~~
(5.1) n° /3 + 0(n°)

multiplication-type operations to produce an initial IU decomposition (2.2).

To produce the product-form inverse of an nxn matrix, on the other

hand, requires

(5.2) n/2 + 0(n°)

operations._

The solution for any system (2.1) must be found according to the ILU-

decomposition method by computing

a =L /.y

(53) y= 1B)

followed by solving

(5.4) gD y—y :

a (0) (1)
The application of L to v in (53) will require

n(n-1

(5.5) ale)

| oo (1)"L
operations. The application of the remaining transformations in L‘™’

will require at most

(5.6) i(n-1)

operations. Solving (5.4) costs |

12



n (n+l)

operations. Hence, the cost of (5.3) and (5.4) together is not greater than

2
(5.8) n“ + i(n-1)

operations, and a reasonable expected figure would be n+ z (n-1) .
On the other hand, computing the solution to (2.1) using the usual

oy —1

product form of (1) requires the application of n+i transformations

of type (4.14%) to (1) at a cost of

(5.9) n° + in

operations.

If a vector 2 (1) replaces column F- in (1) , then the
oy =1

updating of (1) requires that the vector

=

(5.10) , = pt) TR)

be computed. This will cost n® +in operations, as shown 1n (5.9). Then

a transformation of form (4.14) must be produced from z , and this will

bring the total updating cost to

2 .
(5.11) n + (i+1)n .

The corresponding cost for updating the LU decamposition will be not more

than

(5.12) RL ine)

(0) Th)
operations to find L a , followed by at most

13



+

(5.13) a(ml)
- -

operations to reduce ne 1) to pid 5) and generate the transformations

of type (3.4) which effect this reduction. This gives a total of at most

2
(5.14) n~ + 1i(n-1)

2,1

operations, with an expected figure closer to n +3 (n-1) .

Hence, 1n every case the figures for the IU decomposition: (5.14),

(5.8), and (5.1) are smaller than the corresponding figures (5.11), (5.9),

and (3.2) for the product-form inverse method.
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6. Storage Considerations

All computational steps for the IX-decomposition method may be

organized according to the columns of the matrices p(1) . For large

systems of data this permits a two-level memory to be used, with the

high-speed memory reserved for those columns being actively processed.

The organization of Gaussian elimination by columns 1s well-known,

and it is clear how the processes (5.3) may be similarly arranged.

Finally, the upper-triangular systems (5.4) can be solved columnwise

as indicated below in the 4 x 4 case:

11 Ye Ya3 a \ *p) [7
0 wu, Ux YU, || x by

22 23 “2h 1 “2 2

6: HE
0 0 Uzy Uz, i Xz Lo Y=

00 OH 2 bp;

0 0 0 a | YY :
Bring the y vector and the last column of U into high-speed

_ t _ - J

memory. Set Xx) = y)/u)) . Set y} = y;-u;x for i =3,2,1 .

This leaves us with the following 3 Xx 3 system:

Hr Yi Mas 1 V1

— '

. (6.2) 0 Ups Upz x, | = | ¥}

0 0) u X TY| 33 3 3

We process 1t as suggested in the 4 x 4 case, using now the third

column of U to produce Xz Repeat as often as necessary.

15



In the event that the matrices p(1) are sparse as well as large,

we wish to organize computations additionally in such a way that this

sparseness 1s preserved as much as possible in the decompositions.

For the initial decomposition (2.2), for example, we would wish to

(0) | y (0)
order the columns of B in such a way that the production of L

and u(0) introduce as few new nonzero elements as possible. And at

subsequent stages, 1f there 1s a choice in the vector ,(1) which 1s

to be introduced as a new column into the matrix 51) to produce pl +1) ;

it may be desirable to make this choice to some extent on sparseness

considerations,.

It 1s not generally practical to demand a minimum growth of nonzero

elements over the entire process of computing the initial decomposition.

However, one can easily demand that, having processed the first k-1

columns according to (1.2) and (1.3), the next column be chosen from those

remalning in such a way as to minimize the number of nonzero elements

generated in the next execution of steps (1.2) and (1.3). See, for

example, Tewarson [27] Choice of the next column may also be made

- according to various schemes of "merit"; e.g., see Dantzig et al. [6].

The introduction of new nonzero elements during the process of

~updating the i-th decomposition to the itl-st depends upon

(6.3) the nonzero elements in LL) over those in 21),

and

(6.4) the number r, of the column to be removed from 51)

16



No freedom 1s possible in the reduction of (31) to pith) once

,(1) has been chosen and the corresponding r. has been determined.
The growth (6.3) can be determined according to the techniques

outlined in Tewarson's paper, at a cost for each value of 1 , however,

which is probably unacceptable. The more important consideration 1s (6.4).

The larger the value of r, , the fewer elimination steps must be carried
out on (31) and the less chance there 1s for nonzero elements to be

generated. Again, however, the determination of the value of r.

corresponding to each possible choice of A(1) may prove for most

algorithms to pe unreasonably expensive.

17



I.

7. Accuracy Considerations

During the execution of an exchange algorithm it sometimes becomes

necessary to ensure the highest possible accuracy for a solution to one

of the systems (2.1). High accuracy 1s generally required of the last

solution in the sequence, and 1t may be required at other points in the

sequence when components of the solution, or numbers computed from them,

approach critical values. For example, 1n the simplex method inner

products are taken with the vector of simplex multipliers, obtained by

solving a system involving 5(1) , and each of the non-basic vectors.

The computed values are then subtracted from appropriate components of

the cost vector, and the results are compared to zero. Those which are

. (i+1) .
of one sign have importance in determining how the matrix B 18

to be obtained from 51). The value zero, of course, 1s critical.

The easiest way of ensuring that the computed solution to a system

(7.1) Bx =vV

has high accuracy 1s by employing the technique of iterative refinement

; | | | | 0) | oo[9 , Chapter 13]. According to this technique, if n ) 1s any sufficiently

good approximation to the solution of (7.1) (for example, a solution

produced directly via the W-decomposition of B ) then improvements may

be made by computing

(7.2) (3) =v - BxWl

solving

(7.3) BzW =rU

18



and setting

p .

(7.4) (J 1) _ (3) + 5 (J)

for 3 = 0,1,2,... until lz || 1s sufficiently small. The inner

products necessary to form the residuals (7.2) must be computed in

double-precision arithmetic. If this rule is observed, however, and if

the condition of the system, measured as

-1

(7.5) cond(B) = [| B || [B77 >

1s not close to a , The refinement process can be counted on to

terminate 1n a few iterations. The final vector x J) will then be

as accurate a solution to (7.1) as the significance of the data in B

and v warrant.

Step (7.3) 1s most economically carried out, of course, via the

same I&decomposition which was used to produce 2 (0) . If this is

done, each repetition of steps (7.2) through (7.4) will cost only

2
O(n”) operations. The alternative approach of producing a& highly

accurate solution to (7.1)by solving the system entirely in double-

precision arithmetic 1s generally more expensive than iterative

refinement by a factor of n .

19
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B. THE QR DECOMPOSITION AND QUADRATIC PROGRAMMING

8. Householder Triangularization

Householder transformations have been widely discussed in the

literature. In this section we are concerned with their use in reducing

a matrix A to upper-triangular form, and in particular we wish to show

how to update the decomposition of A when its columns are changed one

by one. This will open the way to the implementation of efficient and

stable algorithms for solving problems involving linear constraints.

Householder transformations are symmetric orthogonal matrices of

T : _ T
the form P_ = I -Buwu, where u, is a vector and B,_ = 2/ (wu, ) :
Their utility 1n this context 1s due to the fact that for any non-zero

vectora 1t 1s possible to choose Uy in such a way that the

transformed vector Pa 1s zero except for its first element.

Householder [15] used this property to construct a sequence of transformations

to reduce a matrix to upper-triangular form. In [29], Wilkinson describes

the process and his error analysis shows 1t to be very stable.

| Thus if A = (a)..058) is an mxn matrix of rank r , then

at the k-th stage of the triangularization (k < r) we have

(k) Ry Sy
A Pe Pep... BOAT

0 T
k

where Ry is an upper-triangular matrix of order k . The next step

is to compute al ED) = Py a (EK) where Py 1s chosen to reduce the first

20



column of Ty to zero except for the first component. This component

becomes, the last diagonal element of Ri and since 1ts modulus 1s

equal to the Euclidean length of the first column of Ty it should in

general be maximized by a suitable interchange of the columns of

Sy
. Afterr steps, I, will be effectively zero (the length

Tx

of each of its columns will be smaller than some tolerance) and the

process stops.

Hence we conclude that if rank(A) = r then for some permutation

matrix TT the Householder decomposition (or "QR decomposition") of A is

r n-r

- ra r—a—

~~ R o

QAT =P_,. PP , . . .P A=
k-1 "k-2 0 0 0

where Q = P 1 P, ove Py is an mXxm orthogonal matrix and R 1s

upper-triangular and non-singular.

We are now concerned with the manner in which Q should be stored

and the means by which Q , R , S may be updated 1f the columns of A

are changed. We will suppose that a column a is deleted from A and

! that a column 3 is added. It will be clear what 1s to be done if only
one or the other takes place.

Compact Method:

Since the Householder transformations p, are defined by the vectors

Uy the usual method 1s to store the ws in the area beneath R , with

a few extra words of memory being used to store the B'S and the diagonal

21



elements of R . The product Qz for some vector z 1s then easily

computed in the form PoP 0 Ce Py z where, for example,
T Tn : :

Pyz= (I = Bolus) Zz = z - Bo (ugz)u, The updating is best accomplished
as follows. The first p-1 columns of the new R are the same as

before; the other columns p through n are simply overwritten by

LN J P

columns tl IRENE and transformed by the product Fo-1 pez. 0
S

to obtain a new P-1 sy then Tp-1 1s triangularized as usual.
T
P-1

This method allows Q to be kept in product form always, and there is no

accumulation of errors. Of course, ifp = 1 the complete decomposition

must be re-done and since with m > n the work 1s roughly proportional

to (m-n/3)n° this can mean a lot of work. But if p 7 n/2 on the

average, then only about 1/8 of the original work must be repeated

each updating.

Explicit Method:

The method just given is probably best when m >> n . Otherwise

| we propose that Q should be stored explicitly and that the updating

be performed as follows:

(1) The 1nitial Q can be computed by transforming the identity

matrix thus:

R ©

Pr-1 Trop + =o Po (AT | Ip) : 4 )
0 O

22



(2) If a 1s added to A then compute By = , and add it
S

to the end of (%) .

(3) Delete ay where applicable (p < r) , This normally means
just updating the permutation vector used to describe T .

(4) The initial situation

iY

|

QAT = 8} \ ®
]

T =
B11 ®

|

has thus been changed to

8
a

@:
- ¢Aft - ENO

-— te =]

ORION €
NU

6

where the areas © P 6) , CG) () are the same as before.

25



This 1s analogous to the Hessenberg form encountered in

updating IU decompositions. We now employ a sequence of

(r-p) plane rotations, as used by Givens and analyzed

by Wilkinson [30], to reduce the subdiagonal of area 0°

to zero. This changes areas © , 0) and © , and the
corresponding rows of Q must also be transformed. Since

the plane rotations are elementary orthogonal transformations,

the latter step produces a new matrix Q* which 1s also

orthogonal, and the work necessary 1s approximately proportional

to omn + n’

(5) Finally, a single Householder transformation Jis applied

to produce Q = PQ , where this transformation 1s the one
which reduces area © to zeros except for the first

element. The work involved is proportional to 2(m-n)m .

Thus the transformation § reduces AT to a new upper-triangular

form, and the original transformations Fy . Py , the plane rotations,

and the final Householder transformation may all be discarded since the

required information is all stored in Q . The total work involved is

roughly proportional to (2mn + n°) + 2(m - n)m = on” + n° and the stability

.of the orthogonal transformations is such that accumulation of rounding

errors during repeated applications of the updating process should be

very slight. .

ol,



9. Projections

In optimization problems involving linear constraints it is. often

necessary to compute the projections of some vector either into or

orthogonal to the space defined by a subset of the constraints (usually

the current "basis"). In this section we show how Householder

transformations may be used to compute such projections. As we have

shown, 1t 1s possible to update the Householder decomposition of a

matrix when the number of columns 1n the matrix 1s changed, and thus

we will have an efficient and stable means of orthogonalizing vectors

with respect to basis sets whose component vectors are changing one by

one.

Let the basis set of vectors 8380s vers 8 form the columns of

an mxn matrix A , and let S.. be the sub-space spanned by {a} .

We shall assume that the first r vectors are linearly independent

and that rank(A) =r . In general, m >n >r , although the following

1s true even 1f m < n .

Given an arbitrary vector =z we wish to compute the projections

- u = Pz , v= (I-P)z

for some projection matrix P , such that

(a) z = u+ Vv

(ob) ur = 0

(ec) ueS,, (i.e., ®x such that Ax = u)

T _
(a) v is orthogonal to 8, (i.e., Av =20).
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One method 1s to write P as AA+ where A is the nxm generalized

~+

inverse ofA , and in [7] Fletcher shows how A may be updated

upon changes of basis. In contrast, the method based on Householder

i

transformations does not deal with A explicitly but instead keeps

AA+ in factorized form and simply updates the orthogonal matrix required

to produce this form. Apart from being more stable and just as efficient,

the method has the added advantage that there are always two orthonormal

. sets of vectors available, one spanning 5, and the other spanning its

complement.

As already shown, we can construct an mxn orthogonal matrix Q

such that

r n-r

R ©

QA =
O O

where R 1s an r Xr upper-triangular matrix. Let

wy 1 T
} (9.1) WwW = Qz =

Wo 3 mM—r

and define

Ww 0
T| 1 T

(9.2) u = Q 9 Vv = Q, Ww .
0 2

Then it is easily verified that u,v are the required projections of z ,

which 1s to say they satisfy the above four properties. Also, the x in
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(c) 1s readily shown to be

-1

‘R LE
xX = a

0

In effect, we are representing the projection matrices in the form

T I
(9.3) P = Q (I, 0)a

0)

and

— 0
T

(9.4) I-p = “ | I._.)4I
m-r

and we are computing u = Pz , v = (I-P)z by means of (9.1), (9.2).

The first r columns of Q span S.. and the remaining m-r span

its complement. Since Q and  R may be updated accurately and

efficiently 1f they are canputed using Householder transformations, we

have as claimed the means of orthogonalizing vectors with respect to

varying bases.

As an example of the use of the projection (9.4), consider the

problem of finding the stationary values of Ax subject to xox = 1

"and clx =0, where A is a real symmetric matrix of order n and C

is an nxp matrix of rank r , withr<p <n . It 1s shown in [12]

that 1f the usual Householder decomposition of C 1s

r n-r

ny,

R S

QC =
0 O
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then the problem is equivalent to that of finding the eigenvalues and

eigenvectors of the matrix PA , where

P = I-P = Q Q
0 I

n-r

is the projection matrix in (9.4). It can then be shown that if

: G17 G10
QAQ™ =

T

Gio Gao

where G14 1s rxr , then the eigenvalues of PA are the same as

those of Goo and so the eigensystem has effectively been deflated

by the number of independent linear constraints. Similar transformations

can be applied if the quadratic constraint 1s x Bx = 1 for some real

positive definite matrix B .

28



10. Orthogonalization with Respect to Positive Definite Forms

Fletcher also shows in [ 7] how to update projection matrices when

it 1s required to orthogonalize with respect to a given positive

definite matrix D . We now show how to compute such projections using

Householder transformations, and hence the comments made in the last

section concerning changes of basis may also be applied here.

Given an arbitrary vector z 1t is required to find u = Pz ,

v = (I -P)z for some P , such that

(a) z =u+v

(b) Dv = 0

(¢) dx such that Ax = u

T
(a) (DA) v =0 .

For simplicity we will assume that rank(A) = n . Then, rather than

computing P explicitly as Fletcher does according to

p = a(atpa)™t Tp |

we obtain the Cholesky decomposition of D thus:

D = hs

where L 1s lower-triangular and non-singular if D 1s positive

T CL
definite. We then compute B = L'A and obtain the decomposition

R

QB = (0 .
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Defining

. Wa 3 n
w = QL z =

W,, }.m-n

and

Ww 0-T.T] 1 -

u =5L 7Q | , v = L QT0 Ve

it 1s easily verified that u,v are the required projections, and

again the x in (c) is given by x = Ry . Since changing a column

ay of A is equivalent to changing the column L'a, of B , the
matrices Q and R may be updated almost as simply as before.
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11. Linear Least Squares and Quadratic Programming

We first consider minimization of quadratic forms subject to

linear equality constraints. The solution 1s given by a single system

of equations and the algorithm we describe for solving this system will

serve as a basic tool for solving problems with inequality constraints.

It will also provide an example of how solutions to even strongly

1ll-conditioned problems may be obtained accurately 1f orthogonalization

techniques are used.

Let A,G be given matrices of orders mxn, pxn respectively

and let b,h be-given vectors of consistent dimension. The least

squares problem to be considered here 1is

Problem LS: min lie - Ax],

subject to Gx = h .

Similarly, let D be a given positive semi-definite matrix and c

a given n-dimensional vector. The quadratic programming problem

corresponding to the above 1s

Problem QP: min =x Dx + lx

subject to Gx =h .

Now we can obtain very accurately the following Cholesky decomposition

of D :
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where we deliberately use A agaln to represent the triangular factor.

IfD is semi-definite, a symmetric permutation of rows and columns

will generally be required. If D 1s actually positive definite then

A will be a non-singular triangular matrix.

With the above notation, 1t can be shown that the solutions of both

problems satisfy the system

G Z h

(11.1) I A r = b

at at X Cc

where

c=0 , r=>0b-AX for Problem LS,

b =o , r = —-AX for Problem QP,

and z is the vector of Lagrange multipliers. In [2],[ 3] methods

for solving such systems have been studied in depth. The method we

give here 1s similar but more suited to our purpose. This method has

been worked on independently by Leringe and Wedin [17]. The solution

of (11.1) is not unique if the quantity rank (7) 1s less than n ,
but in such cases we shall be content with obtaining one solution rather

than many. The important steps follow.

(1) Let Q be the orthogonal matrix which reduces te to triangular
form, and let Qq also be applied to at , thus:

R S
1

(11.2) a, (ah | af) = |
0 T
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As explained earlier, Qq can be constructed as a sequence of

Householder transformations, and the columns of at should be

permuted during the triangularization. This allows any redundant

constraints 1n Gx = h to be detected and discarded.

(2) Let Qs be the orthogonal matrix which reduces t to triangular
form:

0

Here we assume for simplicity that T 1s of full rank, which is

equivalent to assuming that (11.1) has a unique solution, and

again we suppress permutations from the notation.

(3) The combined effect of these decampositions is now best regarded

as the application of an orthogonal similarity transformation to

system (11.1), since the latter is clearly equivalent to

I G I z h

Q I A Qt QT = Q.b
2 2 2 - 2 ’

T T T |

aa) G A al AX © |

. The resulting system consists of various triangular sub-systems

involving Ry , R, , S , and can easily be solved.

(4) If desired, the solution thus obtained can be improved upon via

the method of iterative refinement [9 ], since this just involves

the solution of system (11.1) with different right-hand sides, and

the necessary decompositions are already available.
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The algorithm just described has been tested on extremely ill-conditioned

systems involving inverse Hilbert matrices of high order and with iterative

refinement has given solutions which are accurate to full machine precision.
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12. Positive Definite Programming

With the algorithm of the previous section available, we are now

preparedto attack the following more general programming problems:

Problem LS: min |b - Axl,

subject to Gx = hq ,

Gx > hy .

Problem QP: min = x Dx + etx

~. subject to the same contraints.

Let G,,G, be of orders ISR SI by, Xn respectively, and agaln suppose

that D has the Cholesky decomposition Ata . In this section we
A

consider problems for which rank a = n (which 1s most likely
0 1

to be true with least squares problems, though less likely in QP ).

In such cases the quadratic form 1s essentially invertible (but we

emphasize that its inverse 1s not computed) and so x can be eliminated

. from the problem. With the notation of the preceding section the steps

are as follows:

(1) Solve (11.1) with Gy,hy to get the solution x = x0 , then compute

the vector g = GX, -h, .

(2) If g > 0 then xy is the solution.

Otherwise, transform the inequality matrix using qq from step (1),
so that

TT, oT, .T By | S|U Vim

| } 0 T|V } n-pq
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(3) If QT" { ) as before and 1f M = Ry V' 1t can be shown that0

the active constraints are determined by the following linear

complementarity problem (ICP):

w=4q + M Mz
(12.1)

T
w,2>0 , z2w=0 .

WyZ are respectively the slack variables and Lagrange multipliers

associated with the inequality constraints.

(4) The active constraints (for which We = 0 in the solution of

the ICP) are now added to the equalities GX = hy and the final
solution 1s obtained from (11.1).

We wish to focus attention on the method by which the ICP (12.1) is

solved. Cottle and Dantzig's principal pivoting method [ § ] could be

applied in a straightforward manner if MM were computed explicitly,

but for numerical reasons and because MLM (py X By) could be very
large, we avoid this. Rather we take advantage of the fact that no more

” than n-pq inequalities can be active at any one time and work with a

basis My made up of k columns of M , where 1 << k < n-py - The QR

—decomposition

R

1s maintained for each basis as columns of M are added to or deleted

from My and as we know, Q and R can be updated very quickly each
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change. Then just as in the LU method for linear programming, the new

basic solution 1s obtained not by updating a simplex tableau but simply

by solving the appropriate system of equations using the available

decomposition.

As an example we show how canplementary basic solutions may be

obtained. Let the basis My contain k columns of M and let M,

be the remaining (non-basic) columns. The system to be solved is

. | .
© 4 MyM,

= + Z

T B

'B \%2 MoM

with obvious notation. If we define y = -M;25 this 1s best written as

IM y O
(12.2) | =

.

(12.3) w= q, - MyB 2 2

and the solution of (12.2) 1s readily obtained from

| k

-T -1 T ul}
u =R dq y Zg = -R"u +, vy =Q|

0/ } n-p,-k

The blocking variable when a non-basic variable 1s increased can be

found from the solution of the same set of equations with the appropriate

right-hand side. It 1s worth noting that the equations can be simplified
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if the basis 1s square (i1.e., if there are as many constraints active

as there are free variables). Since it seems very common for the basis

to fill up during the iterations (even 1f the final solution does not

have a full set of constraints) it 1s worth treating a full basis

specially.

Almost-complementary solutions can be obtained in similar fashion

(with somewhat more work required as the system 1s then not quite so

symmetric). Thus an algorithm such as Cottle and Dantzig's can be

implemented using these techniques, and convergence 1s thereby guaranteed.

Of special interest, however, 1s the following unpublished and

apparently novel idea due to Yonathan Bard, with whose permission we

report the results he has obtained. Almost-complementary bases are

never allowed to occur; instead, 1f a basic variable 1s negative,

then it 1s replaced by its complement regardless of the effect on the

other basic variables. Bard'has tried this method (carried to convergence)

on hundreds of problems of the form w = gq+Mz and cycling has never

occurred when the most negative element of g 1s chosen. In a series

| of tests on 100 random matrices of orders between 2 and 20,

principal pivoting required a total of 537 pivots whereas the

Cottle-Dantzig algorithm required 689 .

| The present authors' experience with fewer but larger problems

confirms the above observation that convergence does actually occur and

usually after a small number of iterations. Since the idea eliminates

all work other than computation of complementary solutions it 1s

particularly suited to the techniques of this section. At worst 1t should
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be used as a starting procedure to find a close-to-optimal basis quickly,

and at best if the conjecture can be proven that 1t will always converge,

then a lot of computer time could be saved in the future.

[It has since been learned that Bard applied the principal-pivoting

rule to ICP's of the somewhat special form in which

M = pip, q = pip

for some P, p. Problems of this form have been studied by Zoutendijk

in [31,32] where several pivot selection rules are discussed. Finite-

ness 1s proven for one rule, but simpler methods (such as Bard's) are

recommended 1n practice for efficiency.

The question of finiteness for the more general ICP remains open,

and 1t 1s likely that somewhat more sophisticated rules (e.g., Cottle

and Dantzig) will be required.

39



15. Semi-#Definite Programming

We now consider the more general problem in which the rank of the

quadratic form combined with the equality constraints may be less than n .

The method we propose 1s conceptually as simple as 1t 1s stable. It 1is

analogous to the revised simplex method for linear programming in that

the essential steps to be implemented are as follows:

(1) Find the current basic solution from a certain system of equations

for which a decomposition 1s available.

(2) Determine according to a certain set of rules what modifications

should be made to the system to obtain a new basis.

(3) If necessary, update the decomposition and return to step (1).

Thus, suppose that the current basis contains Gx = hy as active

constraints. As in (11.1) the corresponding basic solution 1s then

given by

Gg “g hyp

(13.1) I A r = b

T T
X CcGg A

and

(Here, GX > hy are the currently inactive constraints, Wg the

corresponding slack variables, and zg the Lagrange multipliers or dual

variables associated with the active constraints.) The elements of Zn

ITq



corresponding to any equality constraints may be either positive or

negative and'need never be looked at. Ignoring these, the basic solution

above 1s optimal if and only if )

Zn >0 and Wr >0 .

A "QP algorithm" is now to be regarded as the "certain set of rules"

mentioned in step (2) whereby Zp,Wp and possibly other information are

-used to determine which constraints should be added to or dropped from Gg .

The efficiency of the method will depend on the speed with which this

decision can be made and on the efficiency with which the decomposition

of (13.1) can be updated.

Once again the most promising pivot-selection rule is that of Bard,

as discussed in the previous section. The general idea in this context

1s as follows:

(a) Find L/S min LA Zg = min zy from those eligible

elements of Wns Zn .

(b) If Ww, < 0 , constraint a could be added.

. (c) If Zg < 0 , constraint B could be dropped.

(d) If there are already n constraints active and Wy < 0,

constraint & could replace constraint B .

We do not consider here the question of convergence, but as already stated,

this type of rule has been found to work.

The problem of updating the requisite decompositions 1s more relevant

at present. We discuss this and other points briefly.
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(1) The matrices Qs Ry of Equation (11.2) can be updated efficiently

using the methods of Section 8.

(2) Qns Ry obtained from the matrix T in Equation (11.3) unfortunately

cannot be updated, but the work needed to recompute them might often

be very small, for the following reasons:

(a) In ProblemIS, a preliminary triangularization of A (mxn)

can be applied to obtain an equivalent problem for which m < n .

The Cholesky factor of D 1n Problem QP already has this property.

(b) If there are many constraints active (up to n) then T has

very few rows.

(c) If the rank of the system is low (relative to n) then T

has very few columns.

(3) Hence the method 1s very efficient 1f close to n constraints are

active each iteration, as should often be the case. It also has the

property, along with Beale's algorithm [1], of being most efficient

for problems of low rank.

(4) The procedure can be initiated with any specified set of constraints

) in the first basis, and an initial estimate of x 1s not required.

(5) Any number of constraints can be handled, in the same way that the

revised simplex method can deal with any number of variables.

(6) If D = 0 the problem is a linear program and only bases containing

n constraints need be considered. The method reduces to something

like a self-dual simplex algorithm.
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Finally we note that with semi-definite problems 1t 1s possible

for some basic system (13.1) to be singular. If there are any solutions

at all then there are many (this will always be the case with low rank

least squares problems) but this does not matter, since Zp is still

uniquely determined. However, a low rank quadratic program might be

unbounded, and this 1s manifested by a singular system (13.1) proving

to be inconsistent. In general, this just means that there are not yet

enough constraints in the basis, so that trouble can usually be avoided

by initializing the procedure with a full set of constraints.
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C. THE SVD AND NONLINEAR LEAST SQUARES

14. The Singular Value Decomposition

Let A be a real, mxn matrix (for notational convenlence we

assume that m > n) . It is well known (cf. [ ]) that

(14.1) A=USV

where U,V are orthogonal matrices and

r= 0 |
On

0 | (m-n) Xx n
U consists of the orthonormalized eigenvectors of ant and

V consists of the orthonormalized eigenvectors of ATA . The

diagonal elementsof §¥ are the non-negative square roots of the

elgenvalues of ATA ; they are called singular values or principal values

of A . We assume

oy 205 2 er 20, 20 N

Thus if rank(A) =r , Opt] “Opp = + + + 0p =O. The decomposition

(14.1) is called the singular value decomposition (SVD).
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An nXm matrix X 1s said to be the pseudo-inverse of an mxn

matrix A 1f X satisfies the following four properties:

(i) AXA= A , (ii) XAX = xX , (iii) (Xa)” = XA , (iv) (AX) = AX .

+ +

We denote the pseudo-inverse by A . It can be shown that A can

always be determined and is unique (cf. [21]). It 1s easy to verify

+ T
that A = VAU where A 1s the nxm matrix

A = aieglo] Sap se rsay 0505 n +50] . There are many applications of
the SVD in least squares problems (cf. [11l]).

The SVD of an arbitrary matrix is calculated in the following way.

First, a se uence of Householder transformations {P 1 {Q j=l

1s constructed po that

PP ....P.AQQ....Q - =P AQ =J
n n-1 177172 n-1

and J 1s an mxn bi-diagonal matrix of the form

AC \

%% Pp 0
J [J i [ J

| O © Pal

a J———————————————————————

0 m-n) xn5 (m-n) X

The singular values of J are the same as those of A .

Next the SVD of J is computed by an algorithm given in [11]. The

algorithm is based on the highly effective QR algorithm of Francis [10] for

T T_.T
computing eigenvalues. If the SVD of J =XgY then A = PXZY Q so

thatU = PX , V = QY .
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15. Nonlinear Least Squares

Consider the nonlinear transformation F(x) = y where .XeE

and yek with n <m . We wish to consider the following problem:

subject to

(15.1) Gx=h,

where G 1s a pXn matrix of rank p and hek, . A very effective
algorithm for solving such problems 1s a variant of the Levenberg-Marquardt

algorithm [18,19]; in this section we consider some of the details of the

numerical calculation. Further extensions of the algorithm are given

by Shanno [25] and Meyer [20].

Let us assume that we have an approximation n ) which satisfies

the relation 5x9) = h . Then at each. stage of the iteration we

determine 5 (%) so that

+ k k

and

k(15.3) oo ) - o .

Again as in Section 11, we write QG" 5, where Q, 1s the product
of p Householder transformations and R is an upper triangular matrix.

Let

k

k
M } n-p

JS



(k)
Then from (15.3), we see that ¢& =0 .

For notational convenience, let vs drop the superscript k ;

+1

we write  (K) as x, and me ) as xq .
In the Levenberg-Marquardt algorithm one determines the vector ©

so that

2 2

(15.5) lz - Bll, + A |] 8° = min.

where

J is the Jacobian evaluated at Xo 1 and A» 1S an arbitrary non-negative
parameter. From (15.4), we see that (15.5) is equivalent to determining 1

so that

lr- AT EY 2 2 21 (E)1s + alels + 111012 )= min1 2 ‘
(15.6) T 2 2

subject to E=0 .

Now let us write Jo; = M,N) where N consists of the last n-p

. columns of 5 . Then (15.6) 1s equivalent to finding 1 so that
2 2 .

s() = [r-mll,+ alm = min.

Consider the SVD of N ; namely

N=USV .

Then
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T T 2 7 2(15.7) e(m) = |ur-zv ql,+ Av],

2 2
= fls-zellp+ Alt

where

S = Ur ’ « = Vv .

Writing out (15.7) explicitly, we have

n-p
2 2

5) YT (s.-0.0% AL (t)1 J J~d L J

where p 1s the rank of N . (Note p may change from iteration to

iteration.) Then

3(f) = min

when

. S.C.

C . = —dJ J for ] = 1,25 0005p
J A 6°

J

= 0 for J > p

and hence

S.o.

mn = y, ir Vs— + 59
= A C5

where vs is the j-th column of V . Thus
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_ (0)o = Qq m .

Note 1t 1s an easy matter to compute TN (and hence 8) for various

values of A» . The algorithm for camputing the SVD can easily be

organized so that s is computed directly ([ 11).

There are several possible strategies for determining A . One

possibility is to choose A so that

Io - Fey(W) fl, < Io- Fe 00) fl,

This requires, of course, the evaluation of F(x) at a great many points.

Another possibility is to choose © such that

Ika - oj, = min.

(15.8)

subject to 18711, <a

This 1s equivalent to determining A such that

In = 5 \2d < at
j=1 AX + o.

J

When A = 0 , we have the solution to the unconstrained problem and

pS,

Mo= 2 oO. V3 }
j=l J

Let nol =p . If B <x , then we have the solution to (15.8).
Otherwise, we must determine )\ so that
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S.C. ; 5
(15.9) N WAH BY= A+ Os

J 75

Let

91%

CAS

-1 ae Ce 2 ¢®u =a ’ QQ = diagloyy0p yor) 5

s

“0p

Wwe assume S. £0 for § = 1,2,...,p . By repeated use of the
relationship

aet ( 2 0) = det (X) det(W zx") if det(X) £0

we can show that (15.9) is equivalent to

2 T
(15.10) det ((Q + AI)” - wu”) =0

; which has 2p roots; it can be shown that we need the largest real

*

root, which we denote by A» ([8]). Let

5.0 2
No o

= A+ Oo.
J 03

2 2

and assume that 5 > 0g > Co. > >0 . Note I'(0) =p -a >0,
2 * CL

and T(A\) = <@ as A »o , so that 0 <A <o and it is the only
*

root in that interval. We seek.a more precise upper bound for A .
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From (15.10) we see, using a Rayleigh quotient argument, that

T T 2 T, 2 T

A*< max [vy Qy + \[(r ay)® - yy (@ - w)y ] .

A short manipulation then shows that

* 2

= V1 % p

Thus, we wish to find a root of (15.10) which lies in the interval

given by (15.11). Note that the determinantal equation (15.10)

involves a diagonal matrix plus a matrix of rank one. In the next

section we shall describe an algorithm for solving such problems.
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16. Modified Eigensystems

As was pointed out in Section15, it is sometimes desirable to

determine some eigenvalues of a diagonal matrix which 1s modified by

a matrix of rank one. Also, Powell [23] has recently proposed a

minimization algorithm which requires the eigensystem of a matrix after

a rank one modification. In this section, we give an algorithm for

determining 1in 0(n°) numerical operations some or all of the eigenvalues

and eigenvectors of D+ guu- whereD = diag(d,) 1s a diagonal matrix
of order n and uck .

Let C = D+ oun’ ; we denote the eigenvaluesofC by Apohosoouh

and we assume A; > Ay; and 4; > d,,, . It can be shown (cf. [30])
that

T _
(1) If o>0, d+towu>1ry>4d;, d 2A 24 (i=2...,n),

oo T
(2) If 0 <0, d; >; 2d;4 (4 = 1,2,.0.yn=1) , d>i, >4d touu .

Thus we have precise bounds on each of the eigenvalues of the modified

matrix.

] Let K be a bi-diagonal matrix of the form

\
1 ry

- 0
K =

0 ~ th-lLo
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and let M = diag(p,) . Then

| 2
+

(bq *ppry) boty ()Hoty . ’

. ¢ ’

(16.1) KMK™ = r (Th r°) rHx k-1 k Mr+17k! Mr+lk

() ’ ’ Mntn-1
\ Mn'n-1 Hn

1s a symmetric, tri-diagonal matrix.

Consider the matrix equation

T
(16.2) (D+ ou )x = AX .

Multiplying (16.2) on the left by K , we have

K(D + ou’) KK “x — ) KKKTx

or

(16.3) (KD K+ oKuu Ky = 2 KKy

where x = Ky . Let us assume that we have re-ordered the elements of u

so that
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Now it 1s possible to determine the elements of K so that

[oo

0

(16.4) Ku =| - .

0

u
n

Specifically,

r, =o (1 = 1,2y.005p-1) ,

and we note that |=, | <1. (This device of using a bi-diagonal matrix

for annihilating n-1 elements of a vector has been used by Bjbreck

and Pereyra [U4] for inverting Vandermonde matrices.) Therefore, if Ku

TT .

satisfies (16.4), we see from (16.1) that KDK + gKuu K* 1s a

tri-diagonal matrix and similarly KK is a tri-diagonal matrix. Thus

we have a problem of the form

Ay = \By

where A and B are symmetric, tri-diagonal matrices and B 1s positive

definite.

In [22], Peters and Wilkinson show how linear interpolation may

be used effectively for computing the eigenvalues for such matrices

when the eigenvalues are isolated. The algorithm makes use of the value

of det(A-2B) . When A and B are tri-diagonal, it is very simple
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to evaluate det(A -)\B) for arbitrary A . Once the eigenvalues are

computed it 1s easy to compute the eigenvectors by inverse iteration.

In Section 15, we showed 1t was necessary to compute a parameter

*

A which satisfied the equation

2 T

(16.5) det ((Q + AI)" - uu) = 0 .

Again we can determine K so that Ku satisfies (16.4) and hence (16.5)

is equivalent to

2

(16.6) det (K(Q + AIK - Ku'K) = 0 .

2.1 IZ cq CLThe matrix G(\) = K(Q + A\I)K - Kuu is tri-diagonal so that it is

easy to evaluate G()) and det G(A) . Since we have an upper and
M

lower bound on A , it 1s possible to use linear interpolation tO

*

find A , even though G(A) is quadratic-in A . Numerical experiments

Cg CL 2. T Tlhave indicated it is best to compute G(r) = K(Q + AI)K =~ Kuu
®

for each approximate value of A rather than computing

2
a1) = (KOK - kuutKY) + 2X KQKX + A°KK .

The device of changing modified eigensystems to tri-diagonal

matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

D u

C =

T
u 0)

Again we choose K so that Ku satisfies (16.4) and thus obtain the

eigenvalue problem Ay = )\By where
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KD K Ku KK 0

A —- 9 B -

wr fo) 0 1

so that A and B are both tri-diagonal and B is positive definite.

Bounds for the eigenvalues of C can easily be established in terms of

the eigenvalues of D and hence the linear interpolation algorithm

may be used for determining the eigenvalues of C .
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