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NUMERICAL TECHNIQUES IN MATHEMATICAL PROGRAMMING

by

R. H. Bartels, G. H. Golub, M. A. Saunders

Abstract

The application of numerically stable matrix decompositions to
minimization problems involving linear constraints is discussed and
shown to be feasible without undue loss of efficiency.

Part A describes computation and updating of the product-form
of the IU decomposition of a matrix and shows it can be applied to
solving linear systems at least as efficiently as standard techniques
using the product-form of the inverse.

Part B discusses orthogonalization via Householder transformations,
with applications to least squares and quadratic programming algorithms
based on the principal pivoting method of Cottle and Dantzig.

Part C applies the singular value decomposition to the nonlinear

least squares problem and discusses related eigenvalue problems.
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Introduction

This paper describes the application of numerically stable matrix
decompositions to minimization problems involving linear constraints.
Algorithms for solving such problems are fundamentally techniques for
the solution of selected systems of linear equations, and during the
last fifteen years there has been a major improvement in the understanding
of these and other linear algebraic problems. We show here that methods
which have been analysed by various workers and proven to be numerically
stable may be employed in mathematical programming algorithms without
undue loss of efficiency.

Part A describes means for computing and updating the product-form
of the IU decomposition of a matrix. The solution of systems of equations
by this method is shown to be stable and to be at least as efficient
as standard techniques which use the product-form of the inverse.

In Part B we discuss orthogonalization via Householder transformations.
Applications are given to least squares and quadratic programming algorithms
based on the principal pivoting method of Cottle and Dantzig [5 ]. For
further applications of stable methods to least squares and quadratic
programming, reference should be made to the recent work of R. J. Hanson [13]
and of J. Stoer [26] whose algorithms are based on the gradient projection
method of J. B. Rosen [2L].

In Part C the application of the singular value decomposition to
the nonlinear least squares problem is discussed, along with related

eigenvalue problems.
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A, THE USE OF LU DECOMPOSITION IN EXCHANGE ALGORITHMS

1. LU Decomposition

If B is an n X n , nonsingular matrix, there exists a permutation

matrix M , a lower-triangular matrix L with ones on the diagonal,

an upper-triangular matrix U such that
(1.1) mB = LU .

It is possible to choose M, L , and U so that all elements of L
are bounded in magnitude by unity.

A frequently-used algorithm for computing this decomposition is
built around Gaussian elimination with row interchanges. It produces

the matrices 7T and L in an implicit form as shown:
For k = 1,2,...,n-1 1in order carry out the following

two steps:

(1.2) . Find an element in the k-th column of B , on or below the
diagonal, which has maximal magnitude. Interchange the

k-th row with the row of the element found.

(1.3) Add an appropriate multiple of the resulting k-th row to each

row below the k-th in order to create zeros below the diagonal

in the k-th column.



Each execution of the first step (1.2), in matrix notation, amounts
to the premultiplication of B by a suitable permutation matrix ”k .

The following step (1l.3) may be regarded as the premultiplication of B

by a matrix Pk of the form

(1.4)  k 1

where |g. | < 1 for each i = ktl,...yn
l,k -
By repeating the two steps n-1 times, B 1s transformed into U

-1 . .
And at the same time the matrix (L ~T) 1is collected in product form

-1
(105) L Tr = Fn-lnn-l . aorlT&

This algorithm requires n5/5+ O(n2) multiplication/division operations

and again this many addition/subtraction operations. Both U and all

of the 9y can be stored in the space which was originally occupied by B .
)

An additional n locationsare required for the essential information contained

in the "k .




2. Exchange Algorithms

Many algorithms require the solving of a sequence of linear equations
(2.1) B(i)x =v(i)

for which each B(i) differs from its predecessor in only one column.
Examples of such algorithms are: the simplex method, Stiefel's exchange
method for finding a Chebyshev solution to an overdetermined linear
equation system, and adjacent- path methods for solving the complementary-
pivot programming problem.

Given that B(o) has a decomposition of the form

(2.2) 5(0) _ 1(0)4(0)

(0) . ©0)~*
where U is upper-triangular, and given that L has been

stored as a product

-1
R R L LR

2

the initial system of the sequence is readily solved: Set
-1

(2.4) y =@ ()

and then back-solve the triangular system

(2.5) uf




3. Updating the LU Decomposition

(0)

(0)

Let the column TS of B be replaced by the column vector a

So long as we revise the ordering of the unknowns accordingly, we may

©)

insert a into the last column position, shifting columns ro+l
through n of B(O) one position to the left to make room. We will
call the result B(l) , and we can easily check that it has the
decomposition

0 1
where H(l) is'a matrix which is upper-Hessenberg in its last n-ro4'l

columns and upper-triangular in its first ro-l columns. That is,

()

has the form

(3.2)

The first ro—l columns of H(l) are identical with those of U(O)
The next n-r_ are identical with the last n-r columns of U(O)
-1
And the last column of H(l) is the vector L(O) a(o)

L (D)

can be reduced to upper-triangular form by Gaussian elimination

with row interchanges. Here, however, we need only concern ourselves

(1)

with the interchanges of pairs of adjacent rows. Thus U is gotten



(1)

from H by applying a sequence of simple transformations:
1) (v Q1 1 1) ..(1)
(3.3) U() =rr(1 )1"1(1-)1 ri)nr()H
Q )
1
where each Pg_ ) has the form
|
1
) 1
i 1
(3.4)
i+1 g 1
i
1
1 ’
i i+l

and each TT(il) is either the identity matrix or the identity with the i-th
. R
and itl-st rows exchanged, the choice being made so that |g\i | <l.

The essential information in all of these transformations can be

stored in n-r locations plus an additional n-ro bits (to indicate

the interchanges). If we let




-1 -1
IR A AR A R rg) “f-i) L@

2

then we have achieved the decomposition

(3.6) B(l) _ L(l)U(;)

. 1 o
The transition from B(l) to B(1 1) for any 1 is to be made

0
exactly as was the transition from B( ) to B(l).

(1)

Any system of
linear equations involving the matrix B for any i 1s to be solved

according to the steps given in (2.4) and (2.5).




b, Round-off Considerations

For most standard computing machines the errors in the basic

arithmetic operations can be expressed as follows:

fi(a + D) a(l + el)

+ b(1 + 62)

(h’ol) fl(a X b)

ab(l + 65)

£1(a/b) = (a/v) (1 +e)

where |$il < Bl-t . Here B stands for the base of the number system
in which machine arithmetic is carried out and t is the number of
significant figures which the machine retains after each operation. The
notation ff(a "op" b) stands for the result of the operation '"op"
upon the two, normal-precision floating-point numbers a and b when
standard floating-point arithmetic is used.

The choice of an IU decomposition for each B(i) and the particular
way in which this decomposition is updated were motivated by the desire
to find a way of solving a sequence of linear equations (2.1) which would
retain a maximum of information from one stage to the next in the sequence
and which would be as little affected by round-off errors as possible.
Under the assumption that machine arithmetic behaves as given in (k.1),
the processes described in Sections 2 and 3 are little affectedby
round-off errors. The efficiency of the processes will vary from algorithm
to algorithm, but we will argue in a subsequent section that the processes

should cost roughly as much as those based upon product-form inverses

of the B(ﬂ .




We will now consider the round-off properties of the basic steps
described in Sections 2 and 3.

The computed solution to the triangular system of linear equations
(k.1) U(i)x =y
can be shown, owing to round-off errors, to satisfy a perturbed system
(4.3) w® s suthx oy

It is shown in Forsythe and Moler [9 ] that

15 (1) .
(.4) oy I nll) () oyttt
Dy - 2
o)
where !.“H denotes the infinity norm of a matrix, and thus round-off

errors in the back-solution of a triangular system of linear equations
may be regarded as equivalent to relatively small perturbations in the
original system.

Similarly, the computed L and U obtained by Gaussian elimination
with row interchanges from an upper-Hessenberg matrix H satisfy the

perturbed equation
(4.5) H+ ®H =1U |,

where Forsythe and Moler show that

(1.6) R
1
and Wilkinson [28] establishes that p <n . Thus, the computational




process indicated in (3.3) can be regarded as introducing only relatively
small perturbations in each of the é ) .

Similar results hold for the initial LU decomposition (2.2) with
a different bound for p . The reader is referred again to Forsythe
and Moler.

The most frequent computational step in the processes which we have
described is the application of one Gaussian elimination step [' to a

column vector v

The computed vector w satisfies

(4.8) W =V for k # 7

=
I

fz'(fz(gvi) + vj)

it

gvi(l + 53)(1 + &) + vj(l + 52)

1

gvy + vyt gvi(el toeg ot 6165) tUse,




Thus we may regard the computed vector w as the exact result of a

perturbed transformation

(4.9) w=(C+3)v ,

where
i
(k.10) or =
J o T
J
- T 3
and
(4.11) g = g(sl + 53 + El€3)
T =

€

Therefore we have

(4.12) ler]l < lelle, + e5 + eqex | + |l esl
il 1+ |gf

. where the right-hand side is bounded, since le] <1, according to

(4.13) ”—ﬁ < g7t o+ B < zl02gtt (say).

Hence, the computations which we perform using transformations (%4.7) also

introduce relatively small perturbations into the quantities which we manipulate.

10




It is precisely with regard to such transformations that we feel
our method of computation, based upon IU decompositions, is superior
to methods based upon the inverses of the matrices % ﬁ . Such methods

use transformations of the form

1 ﬂl

(L.14) - nk k

,fa-1) 7 (1)1
These are applied to each column in B to produce B ; or

alternatively, in product-form methods, they are applied to the vector
V(i) to produce the solution to system (2.1). As such, they involve
successive computations of the form (4.7). Each such computation may be
regarded as satisfying (4.9). But, since the nj may be unrestricted in

magnitude, no bound such as (h.lB) can be fixed.




5. Efficiency Considerations

As we have already pointed out, it requires

(5.1) 02 /3 + 0(n%)

multiplication-type operations to produce an initial IU decomposition (2.2).
To produce the product-form inverse of an nxn matrix, on the other

hand, requires
(5.2) n’/2 + 0(n)

operations. _
The solution for any system (2.1) must be found according to the LU-

decomposition method by computing
R
(5.3) Yy = L(l) V(l)
followed by solving
(5.4) U(l)x=y
1

_]. 1
The application of L(O) to v( ) in (5.3) will require

n(n-1)
(5.5) 7

-1
(0
operations. The application of the remaining transformations in L‘l)

will require at most
(5.6) i(n-1)

operations. Solving (5.4) costs



n(n+l
(5.7) n(ntl)

operations. Hence, the cost of (5.3) and (5.%) together is not greater than

(5.8) n° 4 i(n-1)
operations, and a reasonable expected figure would be n2+ % (n-1)
On the other hand, computing the solution to (2.1) using the usual
-1
(1)

product form of B requires the application of n+i transformations

of type (4.14) to v(l) at a cost of

(5.9) n~ + in

operations.

If a vector a(l) replaces column F- in B(l) , then the

-1
updating of B(l) requires that the vector

(5.10) IECOREAEY

be computed. This will cost n2+in operations, as shown in (5.9). Then
a transformation of form (4.14) must be produced from z , and this will

bring the total updating cost to
2 R
(5.11) n~ + (i+1)n

The corresponding cost for updating the LU deccmpbsition will be not more

than

(5.12) n(g"l) + i(n-1)

=1 /.
operations to find L(l) a(l) , followed by at most

13



(5.13) n—(‘;’l)

i+ i+1 .
operations to reduce H(1 1) to U(l ) and generate the transformations

of type (3.4) which effect this reduction. This gives a total of at most

(5.1k) n° + i(n-1)
. . . 2.1
operations, with an expected figure closer to n +3 (n-1)
Hence, in every case the figures for the IU decomposition: (5.14),

- (5.8), and (5.1) are smaller than the corresponding figures (5.11), (5.9),

and (5.2) for the product-form inverse method.

1h




6. Storage Considerations

All computational steps for the IX-decomposition method may be
organized according to the columns of the matrices B(i) For large
systems of data this permits a two-level memory to be used, with the
high-speed memory reserved for those columns being actively processed.

The organization of Gaussian elimination by columns is well-known,
and it is clear how the processes (5.3) may be similarly arranged.

Finally, the upper-triangular systems (5.4) can be solved columnwise

as indicated below in the 4% x 4 case:

Y97 W U3 uiﬁ-\ Xy / ¥y
X

! =
|

zz  Uz), X2
P I J \ J
0 0 0 uhh \ X’-L ‘ yu

Bring the y vector and the last column of U into high-speed

0z Jo)

n

(6.1)

memory. Set X = y)/u, . Set ¥y} =y; -u;)x), for i = 3,21

This leaves us with the following 3 X 3 system:

’ \
1
/ Y1 Y12 Y13 * 1
. (6.2) 0 Upp Uz X | = | ¥
Tl
O 0 Uz 1% V3

We process it as suggested in the &4 x 4 case, using now the third

column of U to produce x5 Repeat as often as necessary.

15




In the event that the matrices B(l) are sparse as well as large,
we wish to organize computations additionally in such a way that this
sparseness 1is preserved as much as possible in the decompositions.

For the initial decomposition (2.2), for example, we would wish to

-1
0]
order the columns of B( ) in such a way that the production of L(o)
and U(O) introduce as few new nonzero elements as possible. And at
subsequent stages, 1f there is a choice in the vector a(l) which is

(1)

i+
to produce B(1 1)

" to be introduced as a new column into the matrix B
it may be desirable to make this choice to some extent on sparseness
considerations, .

It is not generally practical to demand a minimum growth of nonzero
elements over the entire process of computing the initial decomposition.
However, one can easily demand that, having processed the first k-1
columns according to (1.2) and (1.3), the next column be chosen from those
remaining in such a way as to minimize the number of nonzero elements
generated in the next execution of steps (1.2) and (1.3). See, for
example, Tewarson [27] Choice of the next column may also be made
according to various schemes of "merit"; e.g., see Dantzig et al. [6].

The introduction of new nonzero elements during the process of

_updating the i-th decomposition to the itl-st depends upon

N R ,
(6.3) the nonzero elements in L(l) a(l) over those in a(l),
and
(6.4) the number r, of the column to be removed from B(l)

16
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- iy
No freedom is possible in the reduction of H(:L 1) to U(:L 1)

L)

once
has been chosen and the corresponding ri has been determined.
The growth (6.3) can be determiqed according to the techniques
outlined in Tewarson's paper, at a cost for each value of i , however,
which is probably unacceptable. The more important consideration is (6.4).
The larger the value Ofri , the fewer elimination steps must be carried

(i+1)

out on H and the less chance there is for nonzero elements to be

generated. Again, however, the determination of the value of ry
(1)

corresponding to each possible choice of a may prove for most

algorithms to be unreasonably expensive.

17




7. Accuracy Considerations

During the execution of an exchange algorithm it sometimes becomes
necessary to ensure the highest possible accuracy for a solution to one
of the systems (2.1). High accuracy is generally required of the last
solution in the sequence, and it may be required at other points in the
sequence when components of the solution, or numbers computed from them,
approach critical values. For example, in the simplex method inner
products are taken with the vector of simplex multipliers, obtained by
solving a system involving B(i) , and each of the non-basic vectors.
The computed values are then subtracted from appropriate components of
the cost vector, and the results are compared to zero. Those which are
B(i+1)

of one sign have importance in determining how the matrix is

to be obtained from B(l). The value zero, of course, is critical.

The easiest way of ensuring that the computed solution to a system
(7.1) Bx =V

has high accuracy is by employing the technique of iterative refinement

(0)

[9 , Chapter 13]. According to this technique, if x is any sufficiently
good approximation to the solution of (7.1) (for example, a solution
produced directly via the W-decomposition of B ) then improvements may

be made by computing

(7.2) r(j) —v-Bx@
solving
(7.3) gz =@

18



and setting

(7.4) PCAED R E)

for j = 0,1,2,... until Hz(q)n is sufficiently small. The inner
products necessary to form the residuals (7.2) must be computed in
double-precision arithmetic. If this rule is observed, however, and if

the condition of the system, measured as
-1
(7-5) cond(B) = || B || B »

is not close to ﬁt’l , the refinement process can be counted on to
terminate in a }ew iterations. The final vector X(J) will then be
as accurate a solution to (7.l1) as the significance of the data in B
and v warrant.

Step (7.3) is most economically carried out, of course, via the
same I&decomposition which was used to produce x(o) . If this is
done, each repetition of steps (7.2) through (7.4) will cost only
O(nz) operations. The alternative approach of producing a highly
accurate solution to (7.l1) by solving the system entirely in double-

precision arithmetic 1is generally more expensive than iterative

refinement by a factor of n

19







B. THE QR DECOMPOSITION AND QUADRATIC PROGRAMMING

8. Householder Triangqularization

Householder transformations have been widely discussed in the
literature. In this section we are concerned with their use in reducing
a matrix A to upper-triangular form, and in particular we wish to show
how to update the decomposition of A when its columns are changed one
by one. This will open the way to the implementation of efficient and
stable algorithms for solving problems involving linear constraints.

Householder transformations are symmetric orthogonal matrices of
the form P, =1 -kakyi where u, is a vector and B, = 2/(u£uk)
Their utility in this context is due to the fact that for any non-zero
vector a it 1is possible to choose u, in such a way that the

transformed vector Pka is zero except for its first element.

Householder [15] used this property to construct a sequence of transformations

to reduce a matrix to upper-triangular form. In [29], Wilkinson describes

the process and his error analysis shows it to be very stable.

Thus if A = (al,...,an) is an mxn matrix of rank r , then

at the k-th stage of the triangularization (k < r) we have

R S
k k
A(k) P P P A=
« “k-1 k-2 . 0
0 Tk
where R, 1is an upper-triangular matrix of order k . The next step
is to compute A(k+1) = P A(k) where Pk is chosen to reduce the first

20



column of Tk to zero except for the first component. This component
becomes, the last diagonal element of Rk+l and since its modulus is
equal to the Euclidean length of the first column of Tk it should in

general be maximized by a suitable interchange of the columns of

Sk

Tx

After r steps, Tr will be effectively zero (the length

of each of its columns will be smaller than some tolerance) and the
process stops.
Hence we conclude that if rank(A) = r then for some permutation

matrix T the Householder decomposition (or "QR decomposition") of A is

r n-r
~ ra—
R S
QAT =P P . . . P A=
k-1 "k-2 0 0 0
where Q = P} 1 Pr o - v PO is an mxm orthogonal matrix and R is

upper-triangular and non-singular.

We are now concerned with the manner in which Q should be stored
and the means by which Q , R, S may be updated if the columns of A
are changed. We will suppose that a column a, is deleted from A and
that a column 34 is added. It will be clear what is to be done if only

one or the other takes place.

Compact Method:

Since the Householder transformations pj are defined by the vectors
the usual method is to store the 's in the area beneath R , with
"k Yk

a few extra words of memory being used to store the Bk's and the diagonal

21




elements of R . The product Qz for some vector z is then easily

computed in the form I} 1 Pr 5t Po z where, for example,

Poz = (I —sououo)z =z -Bo(uoz)uo. The updating is best accomplished

as follows. The first p-1 columns of the new R are the same as

before; the other columns p through n are simply overwritten by

columns ap+l" ...%,qq and transformed by the product Pp-l PP’2°.. Ib
S

to obtain a new P-1 3 then Tp—l is triangularized as usual.
T
pP-1

This method allows Q to be kept in product form always, and there is no
accumulation of errors. Of course, if p = 1 the complete decomposition
must be re-done and since with m > n the work is roughly proportional
to (m-n/B)n2 this can mean a lot of work. But if p % n/2 on the

average, then only about 1/8 of the original work must be repeated

each updating.

Explicit Method:

The method just given is probably best when m > n . Otherwise
we propose that Q should be stored explicitly and that the updating

be performed as follows:

(1) The initial Q can be computed by transforming the identity

matrix thus:

P1Po. .. PO(Aﬂ'l L) . Q .

22




(2) If aq is added to A then compute sq = Q,a,q and add it
S
to the end of 0 .
(3) Delete a, where applicable (p < r) , This normally means
just updating the permutation vector used to describe T .

(4) The initial situation

QAT - @EE ®

has thus been changed to

O
=1
=

1
®

where the areas @ B @ p @ ) @ are the same as before.
{

2>




This is analogous to the Hessenberg form encountered in
updating IU decompositions. We now employ a sequence of
(r-p) plane rotations, as used by Givens and analyzed

by Wilkinson [30], to reducé‘the subdiagonal of area 03

to zero. This changes areas <:> ’ (:) and (:) , and the
corresponding rows of Q must also be transformed. Since
the plane rotations are elementary orthogonal transformations,
the latter step produces a new matrix Q* which is also

orthogonal, and the work necessary is approximately proportional

to 2mn+n2

(5) Finally, a single Householder transformation p is applied
- *
to produce Q = PﬁQ , where this transformation is the one
which reduces area 06 to zeros except for the first

element. The work involved is proportional to 2(m-n)m .

Thus the transformation § reduces AT to a new upper-triangular

form, and the original transformations Pb, . ..,Pr 1 the plane rotations,

and the final Householder transformation may all be discarded since the
required information is all stored in @ . The total work involved is
roughly proportional to (2mn4-n2)+ 2(m-n)m = 2m24-n2 and the stability
.of the orthogonal transformations is such that accumulation of rounding
errors during repeated applications of the updating process should be

very slight.

2k




9. Projections

In optimization problems involving linear constraints it is.often
necessary to compute the projections of some vector either into or
orthogonal to the space defined by a suﬁset of the constraints (usually
the current "basis"). In this section we show how Householder
transformations may be used to compute such projections. As we have
shown, it is possible to update the Householder decomposition of a
matrix when the number of columns in the matrix is changed, and thus
we will have an efficient and stable means of orthogonalizing vectors

with respect to basis sets whose component vectors are changing one by

one.
Let the basis set of vectors T YEREFLN form the columns of

an mxn matrix A , and let S, be the sub-space spanned by {ai] .

We shall assume that the first r vectors are linearly independent

and that rank(A) =r . In general, m > n >r , although the following

is true even if m < n

Given an arbitrary vector z we wish to compute the projections
u="Pz , v = (I-P)z

for some projection matrix P , such that

(a) z = u+v

(b) W = 0

(e) ueS,, (i.e., ®x such that Ax = u)

(d) v is orthogonal to 8, (i.e., Ay = 0)

25




One method is to write P as AA+ where Af is the nxm generalized
inverse of A , and in [7 ] Fletcher shows how A% may be updated
upon changes of basis. In contrast, the method based on Householder
transformations does not deal with Af explicitly but instead keeps
AA+ in factorized form and simply updates the orthogonal matrix required
to produce this form. Apart from being more stable and just as efficient,
the method has the added advantage that there are always two orthonormal
sets of vectors available, one spanning Sr and the other spanning its
complement.

As already shown, we can construct an mxn orthogonal matrix Q

such that

where R is an rxr upper-triangular matrix. Let

Wy 3 T
(9.1) w = Qz =
L2 3 WM-r
and define
w 0
(9‘2) u = QT 1 s V=Q,T
W
0 2

Then it is easily verified that u,v are the required projections of z ,

which is to say they satisfy the above four properties. Also, the x in

26



(c) is readily shown to be

In effect, we are representing the projection matrices in the form

I
(9.3) P o= Q| T, on
0
and
- 0
‘ T
(9.14) S (0 1,09
m-r

and we are computing u = Pz , v = (I-P)z by means of (9.1), (9.2).
The first r columns of Q span Sr and tke remaining m-r span
its complement. Since Q and R may be updated accurately and
efficiently if they are canputed using Householder transformations, we
have as claimed the means of orthogonalizing vectors with respect to
varying bases.

As an example of the use of the projection (9.4), consider the
problem of finding the stationary values of XIAX subject to x?x =1
and CTX =0, where A is a real‘symmetric matrix of order n and C
is an nxp matrix of rank r , with r < p < n . It is shown in [12]

that if the usual Householder decomposition of C is

r n-r

o

R S
€ =

0 O
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then the problem is equivalent to that of finding the eigenvalues and

eigenvectors of the matrix PA , where

0 0
P=I-P=QT< )Q
0 I
n-r

is the projection matrix in (9.4). It can then be shown that if

where Gll is rxr , then the eigenvalues of PA are the same as

those of G and so the eigensystem has effectively been deflated

22
by the number of independent linear constraints. Similar transformations
can be applied if the quadratic constraint is XTBX = 1 for some real

positive definite matrix B
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10. Orthogonalization with Respect to Positive Definite Forms

Fletcher also shows in [ 7] how to update projection matrices when
it is required to orthogonalize with respect to a given positive
definite matrix D . We now show how to compute such projections using

Householder transformations, and hence the comments made in the last

section concerning changes of basis may also be applied here.
Given an arbitrary vector z it is required to find u = Pz ,

v = (I -P)z for some P , such that

(a) z =utv

() WOV = 0
(¢) #@x such that Ax = u
(a) (DA)TV =0 .

For simplicity we will assume that rank(A) = n . Then, rather than

computing P explicitly as Fletcher does according to
P = A(ATDA)':L A'p ,

we obtain the Cholesky decomposition of D thus:

where L is lower-triangular and non-singular if D is positive

T . L
definite. We then compute B = L'A and obtain the decomposition

R
® = (%
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Defining

T Wl 31‘1
w = QL z =
v, }.n-n
and
w 0
u = L"TQT 1 , v = L-TQT
0 OWé

it is easily verified that w,v are the required projections, and

again the x in (c¢) 1s given by x = R_lwl . Since changing a column

ay of A is equivalent to changing the col'uanTak of B, the

matrices Q and R may be updated almost as simply as before.
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11. Linear Least Squares and Quadratic Programming

We first consider minimization of quadratic forms subject to
linear equality constraints. The solution is given by a single system
of equations and the algorithm we describe for solving this system will
serve as a basic tool for solving problems with inequality constraints.
It will also provide an example of how solutions to even strongly
ill-conditioned problems may be obtained accurately if orthogonalization
techniques are used.

Let A,G be given matrices of orders mxn , pxn respectively
and let b,h be-given vectors of consistent dimension. The least

squares problem to be considered here is

Problem LS: min Hb - Ax“2
subject to Gx =h .
Similarly, let D be a given positive semi-definite matrix and c

a given n-dimensional vector. The quadratic programming problem

corresponding to the above is

leDx + ch

Problem QP: min 3

subject to Gx =h .

Now we can obtain very accurately the following Cholesky decomposition

of D
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where we deliberately use A again to represent the triangular factor.
If D is semi-definite, a symmetric permutation of rows and columns
will generally be required. If D is actually positive definite then
A will be a non-singular triangular matrix.

With the above notation, it can be shown that the solutions of both

problems satisfy the system

G 4 h
(11.1) I A r = b
GT AT X c

where
c=0 , r=>b-Ax for Problem LS,

b =0 , r = -AX for Problem QP,

and z 1is the vector of Lagrange multipliers. In [ 2], [ 3] methods
for solving such systems have been studied in depth. The method we
give here is similar but more suited to our purpose. This method has
been worked on independently by Leringe and Wedin [17]. The solution
of (11.1) is not unique if the quantity rankG is less than n ,
but in such cases we shall be content with obtaining one solution rather

, than many. The important steps follow.

(1) Let Ql be the orthogonal matrix which reduces GT to triangular

form, and let Ql also be applied to AT , thus:

Rl 8

(11.2) a, (6" | A7) -
o | T
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As explained earlier, Ql can be constructed as a sequence of
Householder transformations, and the columns of GT should be
permuted during the triangularization. This allows any redundant

constraints in Gx = h to be detected and discarded.

(2) Let Q2 be the orthogonal matrix which reduces TT to triangular

form:

(11.3) QT =

Here we assume for simplicity that T is of full rank, which is
equivalent to assuming that (11.1) has a unique solution, and

again we suppress permutations fram the notation.

(3) The combined effect of these decampositions is now best regarded
as the application of an orthogonal similarity transformation to

system (11.1), since the latter is clearly equivalent to

I G I Z h
Q I A QT QLT = Q.-b
2 2 2 - 2

T T T
Ql G A Ql le Qlc

The resulting system consists of various triangular sub-systems

1 R2 , S, and can easily be solved.

involving R
(4) If desired, the solution thus obtained can be improved upon via
the method of iterative refinement [9 ], since this just involves

the solution of system (11.1) with different right-hand sides, and

the necessary decompositions are already available.
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The algorithm just described has been tested on extremely ill-conditioned
systems involving inverse Hilbert matrices of high order and with iterative

refinement has given solutions which are accurate to full machine precision.
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12. Positive Definite Programming

With the algorithm of the previous section available, we are now

prepared to attack the following more general programming problems:

Problem ILS: min |b - AxH2
subject to Glx = hl ,

ng > h.2
Problem QP: min leTDx + ch

- subject to the same contraints.

Let Glﬂ@ be of orders Py X0, Pyxn respectively, and again suppose

that D has the Cholesky decomposition ATA . In this section we
A

consider problems for which  rank i = n (which is most likely
o 1

to be true with least squares problems, though less likely in QP ).

In such cases the quadratic form is essentially invertible (but we
emphasize that its inverse is not computed) and so x can be eliminated
from the problem. With the notation of the preceding section the steps

are as follows:

(1) Solve (11.1) with Gl’hl to get the solution x = x0 , then compute

the vector g = GQXO -h2 .

(2) If g > 0 then x

o is the solution.

Otherwise, transform the inequality matrix using Ql from step (1),
so that
R, |s|U } Py

0 TV } n-p;

T T T
LCT I A
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R
(3) If QETT = 2 as before and if M = R;TVT it can be shown that
0]
the active constraints are determined by the following linear

complementarity problem (ICP):

w=gq+t MTMZ
(12.1)

I
(o]

w,2 >0 , sz

W,z are respectively the slack variables and Lagrange multipliers

associated with the inequality constraints.

(4) The active constraints (for which w.l = 0 in the solution of

the ICP) are now added to the equalities Glx = hl and the final

solution is obtained from (11.1).

We wish to focus attention on the method by which the ICP (12.1) is
solved. Cottle and Dantzig's principal pivoting method [ 5] could be
applied in a straightforward manner if MTM were computed explicitly,
but for numerical reasons and because MH&(pexpg)cnuld be very
large, we avoid this. Rather we take advantage of the fact that no more
than n-p; inequalities can be active at any one time and work with a

basis Ml made up of k columns of M , where 1< k < n--pl . The QR

o 1)

is maintained for each basis as columns of M are added to or deleted

—-decomposition

from Ml and as we know, Q and R can be updated very quickly each

36
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change. Then just as in the LU method for linear programming, the new
basic solution is obtained not by updating a simplex tableau but simply
by solving the appropriate system of equations using the available
decomposition.

As an example we show how canplementary basic solutions may be

obtained. Let the basis M contain k columns of M and let M2

1

be the remaining (non-basic) columns. The system to be solved is

» T

0 4y MMy
= + z
T B
A - MMy
with obvious notation. If we define y = -MlzB this is best written as
I M- v 0
(12.2) + =
T

My @: 91

(12.3) Wp o= Q- ng

and the solution of (12.2) is readily obtained from

‘ u\} k
- -1 T
u=RTql , z,= -R"u , y =Q7}
0/} n-pl—k

The blocking variable when a non-basic variable is increased can be
found from the solution of the same set of equations with the appropriate

right-hand side. It is worth noting that the equations can be simplified

1



if the basis is square (i.e., if there are as many constraints active
as there are free variables). Since it seems very common for the basis
to fill up during the iterations (even if the final solution does not
have a full set of constraints) it is worth treating a full basis
specially.

Almost-complementary solutions can be obtained in similar fashion
(with somewhat more work required as the system is then not quite so

symmetric) . Thus an algorithm such as Cottle and Dantzig's can be

implemented using these techniques, and convergence is thereby guaranteed.

Oof special\interest, however, 1is the following unpublished and
apparently novel idea due to Yonathan Bard, with whose permission we
report the results he has obtained. Almost-complementary bases are
never allowed to occur; instead, if a basic variable is negative,

then it is replaced by its complement regardless of the effect on the

other basic variables. Bard'has tried this method (carried to convergence)

on hundreds of problems of the form w = gq+Mz and cycling has never
occurred when the most negative element of g is chosen. In a series
of tests on 100 random matrices of orders between 2 and 20,
principal pivoting required a total of 537 pivots whereas the
Cottle-Dantzig algorithm required 689 .

The present authors' experience with fewer but larger problems
confirms the above observation that convergence does actually occur and
usually after a small number of iterations. Since the idea eliminates
all work other than computation of complementary solutions it 1is

particularly suited to the techniques of this section. At worst it should
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be used as a starting procedure to find a close-to-optimal basis quickly,
and at best if the conjecture can be proven that it will always converge,
then a lot of computer time could be saved in the future.

[It has since been learned that Bard applied the principal-pivoting

rule to ICP's of the somewhat special form in which
M= PP, q = Pp

for some P, p. Problems of this form have been studied by Zoutendijk
in [31,32] where several pivot selection rules are discussed. Finite-
ness is proven for one rule, but simpler methods (such as Bard's) are
recommended in pré&tice for efficiency.

The question of finiteness for the more general ICP remains open,
and it is likely that somewhat more sophisticated rules (e.g., Cottle

and Dantzig) will be required.
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13. Semi-#Definite Programming

We now consider the more general problem in which the rank of the
quadratic form combined with the equality constraints may be less than n .
The method we propose is conceptually as simple as it is stable. It is
analogous to the revised simplex method for linear programming in that

the essential steps to be implemented are as follows:

(1) Find the current basic solution from a certain system of equations
for which a decomposition is available.

(2) Determine according to a certain set of rules what modifications
should be made to the system to obtain a new basis.

(3) If necessary, update the decomposition and return to step (1).

Thus, suppose that the current basis contains GBx = hB as active

constraints. As in (11.1) the corresponding basic solution is then

given by
Gp @ by
(13.1) I A r = | >
Gg A? X c
and
(Here, @Bx > EB are the currently inactive constraints, wy the

corresponding slack variables, and z, the Lagrange multipliers or dual

variables associated with the active constraints.) The elements of ZB

L0




corresponding to any equality constraints may be either positive or
negative and'need never be looked at. Ignoring these, the basic solution

above is optimal if and only if

Zg 2 0 and Wy >0

A "QP algorithm" is now to be regarded as the "certain set of rules"
mentioned in step (2) whereby ZB’WB and possibly other information are
-used to determine which constraints should be added to or dropped from G
The efficiency of the method will depend on the speed with which this
decision can be Tade and on the efficiency with which the decomposition
of (13.1) can be updated.

Once again the most promising pivot-selection rule is that of Bard,
as discussed in the previous section. The general idea in this context

is as follows:

(a) Find Wy, = min LA zB = min Zy from those eligible

elements of WE,ZB .

(b) If Wy < 0,

constraint & could be added.
(c) 1f ZB < 0 , constraint B could be dropped.
(d) If there are already n constraints active and Wy < 0,
constraint @ could replace constraint B .
We do not consider here the question of convergence, but as already stated,
this type of rule has been found to work.

The problem of updating the requisite decompositions is more relevant

at present. We discuss this and other points briefly.

L1
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(1) The matrices Ql’Rl of Equation (11.2) can be updated efficiently
using the methods of Section 8. ‘

(2) QysR, obtained from the matrix T in Equation (11.3) unfortunately
cannot be updated, but the work needed to recompute them might often

be very small, for the following reasons:

(a) In Problem IS, a preliminary triangularization of A (mxn)
can be applied to obtain an equivalent problem for which m < n .
The Cholesky factor of D 1in Problem QP already has this property.
(b) If there are many constraints active (up to n) then T has

very few rows.

(c) If the rank of the system is low (relative to n) then T

has very few columns.

(3) Hence the method is very efficient if close to n constraints are
active each iteration, as should often be the case. It also has the
property, along with Beale's algorithm [1], of being most efficient
for problems of low rank.

(4) The procedure can be initiated with any specified set of constraints
in the first basis, and an initial estimate of x 1s not required.

(5) Any number of constraints can be handled, in the same way that the
revised simplex method can deal with any number of variables.

(6) If D = 0 the problem is a linear program and only bases containing
n constraints need be considered. The method reduces to something

like a self-dual simplex algorithm.
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Finally we note that with semi-definite problems it is possible

for some basic system (13 .l) to be singular. If there are any solutions
at all then there are many (this will always be the case with low rank
least squares problems) but this does not matter, since zB is still
uniquely determined. However, a low rank quadratic program might be
unbounded, and this is manifested by a singular system (13.1) proving
to be inconsistent. In general, this just means that there are not yet
enough constraints in the basis, so that trouble can usually be avoided

by initializing the procedure with a full set of constraints.
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C. THE SVD AND NONLINEAR LEAST SQUARES

1k,

The Singular Value Decomposition

Let A be a real, mxn matrix (for notational convenience we

assume that m > n) . It is well known (cf. [ ]) that

(14.1) A=USV

where U,V are orthogonal matrices and

ii

O } (m-n) X n

U consists of the ‘orthomormalized eigenvectors of AAT, and

V consists of the orthonormalized eigenvectors of ATA . The

diagonal elementsof ¥ are the non-negative square roots of the

eigenvalues of A"A ; they are called singular values or principal values

of A . We assume

012022'°'26n20 *

Thus if rank(A) =1

, Opg] = Opmp = ¢ ¢ = =0y =0 . The decomposition

(14.1) is called the singular value decomposition (SVD).
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An nXm matrix X 1s said to be the pseudo-inverse of an mxn

matrix A if X satisfies the following four properties:

. . . T . T
(i) AXA = A , (ii) XAX = X , (iii) (XA)” = XA , (iv) (AX)

+ +
We denote the pseudo-inverse by A . It can be shown that A  can
always be determined and is unique (cf. [p1]). It 1is easy to verify
+
that A = V[\.UT where A is the nXxm matrix
A= diag[c;_l,gél,...,c;l,o,o,...,O] + There are many applications of
the SVD in least squares problems (cf. [11]).
The SVD of an arbitrary matrix is calculated in the following way.

First, a se uenc; of Householder transformations {P. ]n {Q }n=l
’ ! kKk=1 ’ “klk=1

is constructed ro that

|
Lav]

.
¥>)

Il
<

PnPn—l. . .Pl AQ1Q2. . Q'Q‘n-l =

and J 1s an mxXxn bi-diagonal matrix of the form

[ By N\

O 3 (m-n) x n

The singular values of J are the same as those of A .

Next the SVD of J is computed by an algorithm given in [11l]. The
algorithm is based on the highly effective QR algorithm of Francis [10] for
computing eigenvalues. If the SVD of J = XZYT then A = PX}:YTQT so
that U =PX , V = QY

5
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15. Nonlinear Least Squares

Consider the nonlinear transformation F(x) = y where .XeEn

and yeEm with n <m . We wish to consider the following problem:

min Hb - F(x) Hg

subject to
(15.1) Gx=h,

where G is a pXn matrix of rank p and heEP . A very effective

algorithm for solving such problems is a variant of the Levenberg-Marquardt

-

algorithm [18,19]; in this section we consider some of the details of the
numerical calculation. Further extensions of the algorithm are given

by Shanno [25] and Meyer [20].

(0)

Let us assume that we have an approximation x which satisfies

() _

the relation Gx Then at each. stage of the iteration we

determine S(k) so that

(15.2) L) _ L (B) | 5 (x)

and

(15.3) w® - o

Again as in Section 11, we write QlGT =ol(:<) where Q, is the product

of p Householder transformations and R is an upper triangular matrix.

Let

( §(k) }p
(15.4) Q.5 =

ﬂ(k) } np
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k
Then from (15.3), we see that 5( ) . 0.

For notational convenience, let uvsdrop the superscript k ;

(x) 0 2D g

we write x as XO an

In the Levenberg-Marquardt algorithm one determines the vector &

so that
(15.5) 2 - 35 + 2 1l 8]7 = min.

where
r =" -F(XO) 5

J is the Jacobian evaluated at Xy s and A 1s an arbitrary non-negative

parameter. From (15.4), we see that (15.5) is equivalent to determining 1

so that

r-_T[E 2 o) 5 .
(15.6 | JQl(n)HE + }‘(Hgﬂg + |l 'ﬂnz)=m1n.
subject to E =0 .

[M,N] where N consists of the last n-p

now let us write JQ?

columns of JQi . Then (15.6) 1is equivalent to finding 7T so that

e -l + A )2 = mine

]

&(m)

Consider the SVD of N ; namely

N=USV

Then
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(15.7) s = v Al + APl

2 2
ls-zelly +ale [
where

s = UIr , £ = VTn

Writing out (15.7) explicitly, we have

2 =P 2
) Rleat)® A L)

where p 1s the rank of N . (Note p may change from iteration to

iteration.) Then

8(f) = min
when
" S.o.
gj = —ALLQ for 7 1,25 0005p5
A .
%
= 0 for j > p
and hence
S.o.
J _d
n = il—2v,j
£y 4 40
=L A o
where Vj is the j-th column of V . Thus



(3)

Note it is an easy matter to compute 1 (and hence &) for various
values of A . The algorithm for camputing the SVD can easily be

organized so that s is computed directly ([ 11)-

There are several possible strategies for determining X\ . One

possibility is to choose i so that
(R ICCODE S RS ICCODEI A

This requires, of course, the evaluation of F(x) at a great many points.

Another possibility is to choose & such that

Hr —J8H2 = min.
(15.8)

subject to I8, <c
This is equivalent to determining A such that
p S.0.
||ﬂ||% N -—-3—35 < o
Jj=1 A+ cj

When A = 0 , we have the solution to the unconstrained problem and

Let Hﬂoue =B . If p<a, then we have the solution b° (15.8).

Otherwise, we must determine )\ so that
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S.o. o
(15.9) fl ——5 | =«
=, A. + L3
J F
Let
9181
-1 0282 . A .
u=a | , Q= dlag(cl,oe,.. yoF) 3
S
%"

we assume SJ. ;é~-0 for j = 1,2,...,p . By repeated use of the

relationship

det(}Z( VYJ) - det(X) det(W -zX 1Y)  if det(X) £ O

we can show that (15.9) is equivalent to
2 T
(15.10) det((Q + AI)T - wu™) =0

which has 2p roots; it can be shown that we need the largest real

*
root, which we denote by A ([8]). Let

2
5.0.
2
() ={'1 _J_.J_2 -
= A+ O,
J o"J
2 2
and assume that 032022. . 20i>0. Note I'(0) =B - >0,

2 * . .
and T(A) = @° as A »o , so that 0 <A <o and it is the only

*
root in that interval. We seek.a more precise upper bound for \ .
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From (15.10) we see, using a Rayleigh quotient argument, that

A* < max [-YTQZY + \/(:VTQy)2 - yT(02 - uuT)y ]
[ |

A short manipulation then shows that

Thus, we wish to find a root of (15.10) which lies in the interval
given by (15.11). Note that the determinantal equation (15.10)
involves a diagonal matrix plus a matrix of rank one. In the next

section we shall describe an algorithm for solving such problems.
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16. Modified Eigensystems

As was pointed out in Section 15, it is sometimes desirable to
determine some eigenvalues of a diagonal matrix which is modified by
a matrix of rank one. Also, Powell [23] has recently proposed a
minimization algorithm which requires the eigensystem of a matrix after
a rank one modification. In this section, we give an algorithm for
determining in O(ne) numerical operations some or all of the eigenvalues
and eigenvectors of I%+ouu$ where D = diag(di) is a diagonal matrix
of order n and ueEn .

Let C =D+ mnF i we denote the eigenvaluesof C by Apphps + v uhy

and we assume A2 Mg and di > di+l . It can be shown (cf. [30])

that

(1) If 020, d+ouu>r; >4, d 3k >d  (i=2...0),

. T
(2) If 6 < 0 , 4, > A, i=12..00-1) , 4 > >4 +touu

>
1 1 -

41 ¢

Thus we have precise bounds on each of the eigenvalues of the modified
matrix.

Let K be a bi-diagonal matrix of the form
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and let M = diag(ui) . Then

2
(U'l"'U'grl) Koy

T _ 2
(16.1) WK™ = el (i1 T) M
[ ] - -
’ ’ Wntn-1
\ bnfn-1 Hn
is a symmetric, tri-diagonal matrix.
Consider the matrix equation
T
(16.2) (D+ouu)x = Ax
Multiplying (16.2) on the left by K , we have
K(D+ o) KK “x = A KKK 'x
or
(16.3) (KD Ig+cKuuTKT)y =1 KKTy
where x = Kly . Let us assume that we have re-ordered the elements of u
so that
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Now it is possible to determine the elements of K so that

0
0
(16.14) Ku =| - .
0
u
n
Specifically,
rl =0 (i = 1)2:--')13'1) ’
fl = -ui/ui+l (i = P’P'l-l’o-o,n) )
and we note that |ri|.5 1. (This device of using a bi-diagonal matrix

for annihilating n-1 elements of a vector has been used by Bjbrck

and Pereyra [ L4 ] for inverting Vandermonde matrices.) Therefore, if Ku
'T.T .

satisfies (16.4), we see from (16.1) that KDK® + oKuu K. is a

tri-diagonal matrix and similarly KKT is a tri-diagonal matrix. Thus

we have a problem of the form
Ay = \By

where A and B are symmetric, tri-diagonal matrices and B 1s positive
definite.
In [22], Peters and Wilkinson show how linear interpolation may
be used effectively for computing the eigenvalues for such matrices
when the eigenvalues are isolated. The algorithm makes use of the value

of det(A-AB) . When A and B are tri-diagonal, it is very simple
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to evaluate det(A-)B) for arbitrary A . Once the eigenvalues are
computed it is easy to compute the eigenvectors by inverse iteration.
In Section 15, we showed it was necessary to compute a parameter

*
A which satisfied the equation

2 T
(16.5) det((Q + AI)° - uu™) = 0

Again we can determine K so that Ku satisfies (16.4%) and hence (16.5)
is equivalent to

(16.6) det(K(Q + \DK - k'K) = 0 .

The matrix G(1) = K(Q + xI)2K$ - kK is tri-diagonal so that it is
easy to evaluate G(A) and det G(A) . Since we have an upper and
lower bound on K* , it 1s possible to use linear interpolation to
find k* , even though G(\) is quadratic-in A . Numerical experiments
have indicated it is best to compute G(A) = KG)+—AI)2K¢ - Kuu K
for each approximate value of K* rather than computing
G() = (KO°K - Kou"K') + 2% KQK' + A2 KK .

The device of changing modified eigensystems to tri-diagonal
matrices and then using linear interpolation for finding the roots can

be extended to matrices of the form

Again we choose K so that Ku satisfies (16.4) and thus obtain the

eigenvalue problem Ay = \By where
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KDK'II I Ku KK: 0

so that A and B are both tri-diagonal and B is positive definite.

Bounds for the eigenvalues of C can easily be established in terms of

the eigenvalues of D and hence the linear interpolation algorithm

may be used for determining the eigenvalues of C
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