
PB188749

CS 148

NOTES ON AVOIDING "GO TO" STATEMENTS

BY

D. E. KNUTH

R. W. FLOYD

TECHNICAL REPORT NO. CS 148

JANUARY 1970 |

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

DDC

(3) I»1 1970
~ LOEUIUE

) C

NOTES ON AVOIDING "GO TO" STATEMENTS

By

D. BE. Knuth and R. W. Floyd

The research reported here was supported by IBM Corporation.

NOTES ON AVOIDING "GO TO" STATEMENTS

D. E. Knuth and R. W. Floyd

During the last decade there has been a growing sentiment that the

use of "go to" statement: is undesirable, or actually harmful. This

attitude is apparently inspired by the idea that programs expressed

solely in terms of conventional iterative constructions ("for", "while",

etc.) are more readable and more easily proved correct.” In-this note
we-wiiil maken few explcratory observations about the use and disuse of

\ go to ‘statements, based on two typical programming examples (from

"symbol table searching” and "backtracking"). -
In the first place let us consider systematic ways for eliminating

go to statements. There are two apparent ways to achieve this:

(a) Recursive procedure method. Suppose that each statement of a

program is labeled. Replace each labeled statement

L: S

by

procedure L; begin S; L' end

where L' is the static successor of the statement 3 . A go to statement

becomes simply a procedure call. The program ends by calling a null

procedure. This construction shows that the mere elimination of go to |
statements does not automaticelly make a program better or easier to

1

follow; "go to" is in some sense a special case of the procedure calling

mechanism. (It is instructive in fact to consider this construction in

reverse, realizing that it is sometimes more efficient to replace

procedure calls by go to statements!)

(b) Regular expression method. For convenience, imagine a program

expressed in flowchart form, as a directed graph. It is well known that

all paths through this graph can be represented by "regular expressions”

involving the operations of concatenation, alternation, and "star"; these

latter correspond to familiar constructions in programming languages

which do not depend on go to statements. Therefore it appears that

'go to' statements can be eliminated, although it msy be necessary to

duplicate the code for other statements in several places. This process

is essentially what John Cocke calls "node splitting”.

Consider, for example the following well-known programming

situation:

for i := 1 step 1 untiln do

if A[1i] = x the. go to found;
not found: n := i; A[i] := x3 B[i] := 0;

found: B[i] := B[i]+1;

(Let us assume, for convenience, that i = n+l if the for loop is

exhausted.) It is not obvious that the go to statement here is all that

unsightly, but let us suppose that we are reactionary enough that we

really want to abolish them from programming languages. {See Dijkstra

Comm. ACM 11 (1968), 147-148.] On= way to avoid the go to is to use a

recursive procedure:

c

procedure find;

if 1 > n then begin n := i; A[1] := x; B{i] := O end

else if A[i] # x then begin i := itl; find end;
{ += 1; find; B{i] := B{i}+1;

An optimizing compiler could perhaps produce the same code for both

programe, but again it is debatable which program is most readable and

simple.

Other solutions chenge the structure of the program slightly:

(a) i= 13

while i <n and Ali] £ x do i := i+l;

if 1 > n then begin n := i; Ali] := x; Bli] := 0 end;
Bfi] := B{i]+1;

(b) i := 1;

while A[i) £ x do

begin 1 := i+];

if i > n then begin n := i; Ali] := x; B(1] := C end

end;

B{1i] := B[i]+1;

Solution (b) assumes that n > 0 . Both solutions increase the amount of

calculation that is specified: (a) tests "i > n" twice, while (b)

tests "A[i] # x" after n has been increased.

The flowchart of the original program is:

3

START (*)

a| 0, = 1 := 1
= i > ?

NO T, i n
NO = Al3] = x 2

T (2) T, = Ali] = x %
-— = J poll 4+

\ YES YES a5 = 3 :1= i+l

of o 0. =n := 1; A[i] := x3 B[i] :=O3 L z

o) = B[i] := B[i]+1
STOP

By a suitable extension of BNF we can write a grammar for all

flowcharts producible by a language without procedure calls or go to

statements:

<program> ::= 1
<statenent>

STOP

<statemant> ::= | <pbesic staetement>
<statement>

l lL l
<hgsic statement> ::= <conditional statement> | <iterative statement>

|) | l

4

<conditional statement> ::=

¢ AN

<statement> J

¥ | JN<iterative statement> ::= <statement> <statement>

YES NO

NO [™
<statement> NG

Here o denotes a "statement™ and 1 denotes a "test".

We have not completely analyzed this grammar, although it appears to

be unambiguous; there is probably an efficient parsing algorithm which

will decide whether or not a given flowchart is derivable from the

grammar, constructing a derivation when one exists. But we can easily

prove that the above flowchart is not producible by this grammar. In fact,

a stronger result is true:

"'heorem. No flowchart producible by the above grammar specifies

precisely the computations of the above example flowchart (*).

This theorem contradicts our observations above about regular

expressions being reducitie to concatenation, alternation, and iteration;

>

for our flowcharts provide each of these operations, yet they cannot

reproduce the computations in (*). What went wrong? Perhaps il ic

that regular expressions are nondeterministic, while computations ere

inherently deterministic; but no, it is well known that regular expressions

may be consiiered to be deterministic. The difference really lies in

the nature of computational tests.

Thus, let us consider a special class Rf of regular exprecsions;

Rf describes all computational sequences (path, in the flowchart)

producible by flowcharts corresponding to a language without go-to

statements:

the empty sequence is in R.

oer, for all statements Oo.

RRR, for all Ry and RoR.

(Tye |TyR2)> for all R, and R,<R and all tests 7.

(Tye) TRS (TR) Ty Rs for all R,¢R and ell tests 7.

Here the subscripts Y and N denote the "YES" or "NO" branches in

the flowchart.

To prove the theorem, consider the computational sequences producible

by the flowchart (*); they mey be described by the regular expression

*

CEP (7149 =| 7 18F oy) . (%%)

We will show that the corresponding regular event (the sequences defined

by this regular expression) cannot be defined by any of the regular

expressions in R . |

6

Every regular expression in R which specifies infinitely many

sequences includes some test 1 with one of the following two properties:

(i) Every occurrence of Ty is followed by at least one occurrence

of ™

or (ii) Every occurrence of TN is followed by at least one occurrence

of Ty .

The infinitely many sequences specified by (**) do not have any

such test since the sequences include

T° CT ey’ Canene yy

Hence no regular expression in R can produce the regular event (**),

and the theorem is proved. I

Perhaps the reader feels that the above proof is too "slick", or

that something has been concealed. In fact, this is quite true; we

have penalized the class of flowcharts too severely! Compound tests

such as "ry and 7," have not been allowed sufficient latitude. Our

flowchart grammar should be extended as follows: Replace

2
jn the definitions of <conditional statement’ and <iterative statement>

by

<condition> |

rsy/ No

7

and add the new definition

conibesons Es <condition> <condition>

YES/ Ngo YEY \NO YE [1 xo/ \s
<condition>

YES/ ue

The grammer now beccmes ambiguous in several cases, although the ambiguity

can be removed at the expense of some complications which are irrelevant

here. More important is the change to grammar { , where we are allowed

to substitute

t 1

Ty for ™ ’ TN for Ty

. tpt? t tyr ®t

or TNR for Tw? (hlTaTy) for 7,

whenever T1,7',T" are tests. Thus since o, (7.0 Yr C,€R , SO is2 1V'N 2) YLT?

) (7,)Fa an®e) (Tay!intay

and this is the same as (¥**) with og, deleted. The theorem above is

almost false! But we can still prove it by an exhaustive case analysis,

considering all possible substitutions of compound tests and showing

ttet none are permissible because of the presence of cg

The theorem becomes almost false in another sense too, when compound

conditions are considered, siace the expression

())()03 (TyTan®2) (Tay! Tay oy) (Tay% 571m)

8 |

is in R and it differs from (**) only in that T,, becomes T,.7,, and

T Ww 2y becomes INT 2y IN . The sequences are essentially the same
except that redundant tests are made. We could therefore consider

equivalence operations on regular expressions, allowing commutativity

of successive tests, and an idempotent law TvTy =Ty In that case

our theorem would become false; but we can easily find another flowchart

for which the theorem still applies: Simply put another statement box © 5

between Tt 1 and T 5 Then no two tests are adjacent, and our original

"slick™ proof immediately shows that the regular event defined by

*

Cae) (Firs Taser

is not equivalent to any regular event definable with R . (When no

two tests are adjacent compound conditions cannot appear, nor do any of

the equivalences apply, so none of the extensions affect the original

proof of the theorem.)

Therefore our "slick" proof is vindicated, and we have proved the

existence of programs whose go to statements cannot be eliminated

without introducing procedure calls.

Let us now consider & second example program, taken this time from

a typical "backtracking" or exhaustive enumeration application. Most

backtrack problems can be abstracted into the following form:

9

start: m[l] := 03 k := 03

up: k z= k+l; list(k); alk] := m[k];

try: if alk] < m[k+1l] then begin move (a[k]); go to up end;
down: Kk := k-13

if kx = 0 then go %o done;

unmove (alk]);

alk] := alk]+1l; go to try;
done:

llere the procedures list, move, unmove may be regarded as manijulating

a variable-width stack s[0],s[1],... of possible choices in this

anstracted algorithm. Procedure lis: (k) determines all possible choices

at the k-th level of backtracking, based on the previously made choices

a[l],...,a[k-1] . If there are c¢ choices now possible, list(k) will

set m[k+1l] := m[{k]+c , and it will also set the stack entries

s(mlk]+1],...,s[m[k]+c] to identify the choices. (Note that cc can

be zero. The choices might be, for example, where to place the k-th

queen on & chessboard, given positions of k-1 other queens, if we are

trying to solve the queens! problem.) Procedure move{(t) makes the

decision to choose alternative s(t] ; this usually means that some

internal tables need to be updated. Procedure unmove(t) reverses the

decisions made by move(t) .

It is not necessary to understand the exact mechanism of this

construction, aithough people familiar with backtracking should find

the previous paragraph self-explanatory; the main point is that essentially

all backtracking programs have the form of ithe above program, when

appropriate sequences of code are substituted for 1list(k) , move(a[k]) ,

and unmove(afk]) , hence the pooprem is worth considering from the

standpoint of go-to elimination.

10

First we can eliminate go-to's by introducing a procedure:

procedure backrrack(k); value kj; integer k;
begin 1ist(k); alk] := m[k];

while alk} < m{k+l] do

begin move(alk]); backtrack(ktl); unmove(alkl);
elk] := alk]+l

end

end backtrack;

m{1] := C; backtrack(l);

This use of recursion is rather clean, so the above progrem is attractive

except for the procedure-calling overhead (which is important since

backtrack programs typically involve many millions of iterations).

It is an interesting exercise to prove this program equivalent to our

first version.

Now let's try to eliminate the go to statements without introducing

a new procedure. The flowchart is:

START

i Oy 0, = m{1] += 03 k :=0C
0, =k i= x+1; list(k); alk] := m[x:

o2 | Ty = a[k] < m[k+1]

oh Iof

To =k =0
TyB og = ummove(a[k]); alk] := alk]+l

S J

YES

STOP

11

Here we have the basic flowchart structure

instead of the previous situation when we had

Tt turns out that node-splitting works in this case but not the other;

we can make two copies of node 0, in the ahove flowchart and we

obtain

START

rill

"2 5

YES

STOP

This diagram obviously satisfies the conditions of our flowchart grammar

above, so we can aviii the = to shatementr.

12

What is the resulting program? Our flowchart grammar above allows

more general iterative statements then present-day programming languages

will admit. A general iterative construction might be written

begin loop 0,; exit loop if7; 0, end loop; { $x)

but today's languages only consider the case that 9 is empty:

while > Ty de 0,3

or if Sp is empty:

do 04 until T,3

We can always rewrite (%¥*) in the equivalent form

9y5 while Ty do begin On5 Oy end;

but this is quite unattractive when oy is long, 50 & programmer will

certainly prefer to use go to statements in that case. If we want to

teach programmers to avoid go to statements, we must provide them with

a sufficiently rich syntax of iterative statements to serve as a

substitute.

Using (¥***) leads to the following program for backtracking without

go to statements:

m[1l] := 0; k := 1; 1list(1); all] := 0;

begin loop

while a[k] < m[k+1] do

begin move(a[k]);
X t= k+l; list(k); alk] := mk]

end;

k := k=l;

exit loop if k = O;
ummove (a{k]); alk] := alk]+1

end loop;

13

This code, although free of "go to statements", involves an uncomfortable

element which may not make it very palatable: the "while alk] < m{k+1]"

is a rather peculiar condition since k varies and the test involves

different variables each time. This is quite different in effect from

the appearance of the same clause in our recursive procedure backtrack(k) .

It is possible to think of the programin a fairly natural way nevertheless,

for example (in tree language) as follows:

start at root of search tree;

begin locp

while poscible to go down and left in tree do ‘so;

move up one level in the tree;

exit loop if at the root;

move to the right in the tree;

this is a typical tree traversal algorithm. Yeti it is debatsble whether

or not the elimination of go to statements was an imprcvement.

The syntax in (*¥¥) is perhaps nc the best way to improve

iteration statements. An alternative proposal, based on some unpublished

ideas of Wirth, has just been implemented as an extension to Stanford's

ALGOLW compiler: The statement

repeat <block>

has the effect of |

L,: <block>; go to Ls Ly:

and the statement

exit

hac the effect of

1h

g0 to L,

where L, is the second implicit label corresponding to the smallest

repeat block statically enclosing the exit statement. Thus, (¥¥*)

becomes

repeat begin Tq ir Ty then exit; LP end;

and we can even write our symbol table search routine without go to

statements:

i:=1;

repeat begin

while 1 <n do if Ali] = x then exit else i := i+l3
n := i; Afi] := x; Bl[i] := 0; exit

end;

B[i] := B[i]+1;

Here the "repeat loop" is never repeated, but the desired effect has

been achieved. It appears doubtful that this repeat-exit mechanism

will be able to eliminate go to statements in general, since it only

allows a "one-level exit"; further study of these issues is indicated.

15]

