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i Abstract

L

L Several algorithms are presented for solving block tridiagonal
systems of linear algebraic equations when the matrices on the diagonal

“ are equal to each other and the matrices on the subdiagonals are all

i equal to each other. It is shown that these matrices arise from the
finite difference approximation to certain elliptic partial differential

f

L equations on rectangular regions. Generalizations are derived for higher
order equations and non-rectangular regions.

L



L
1. Introduction

g In many physical applications, it is necessary to solve an J x N
system of linear algebraic equations

9g

| Mx =3 (1.1)
L where M arises from a finite difference approximation to an elliptic

. partial differential equation. For this reason, the matrix M is
sparse and the non-zero elements occur 1n a very regular manner. As

| an example of this, let
I F

L Me ) (1.2)pl I

L and we partition x andy to conform with M . If it is possible to
| interchange the rows and interchange the glumns of a matrix so that it

has the form of (M-I) , then the matrix is said to be 2-cyclic (cf. [10]).

| Expanding (1.1), we have

| X78 4
Fr 7 HEP |

L Multiplying the first equation by -F and adding we have

L TF= 5 Fy - (1.3)

| Thus by this simple device, we have reduced the number of equations.
If (I-F'F) 1s also 2-cyclic then we can again eliminate a number of the

[ variables, and we can continue until the resulting matrix 1s no longer |
2-cyclic.

L

L 1-1

L



g

] Based on the suggestion of one of the authors, Hockney[6] has used

. | this device extensively and effectively. Recently Buneman[2] has devised

a method for easily solving the reduced system of equations. The technique

= 1s particularly attractive since in theory it yields the exact solution

1 to the difference equation whereas commonly used methods seek to approximate
the solution by iterative procedures (cf. Varga [10]). An extensive list

- of references 1s given in the excellent survey of direct methods by

Fred W. Dorr [4]. The method of odd/even reduction and factorization

= described 1n this paper 1s similar to that of Buneman. In addition, a

L generalization of Hockney's direct method using Fourier analysis is given.
Extensive numerical computations will be reported later.

{
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L
2. Matrix decompositions

I Consider the system of equations

[ Me = y (2.1)
where M 1s an N X N real symmetric matrix which has the plock

| tridiagonal form
'A T |

L SE

| M= Co : (2.2)

[ 0 T A i
The matrices A and T are p x p symmetric matrices, and we assume that

L AT = TA .

| Such a situation arises for those problems which can be handled by the
” classical separation of variables technique. Indeed, the methods discussed

| here amount to an efficient computer implementation of the idea of
separation of variables carried out on a discretized model of the elliptic

L differential equation. Since A and T commute and are symmetric it is
L well known (cf. [1]) that there exists an orthogonal matrix 0 such that

CAQ=A , QTo=09 (2.3)

[ and A and- Q are real diagonal matrices. The matrix Q is the set
of eigenvectors of A and T , and A and Q are the diagonal matrices

L of eigenvalues of A and T , respectively.

| In order to conform with the matrix M , we write the vector x
and y in partitioned form

L

L
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. J »

1 1
“— —

— x= , y=

X

_

Furthermore, it will be quite natural to write

X._, ;

13 Y13

_ 23 23
= ’ Lj = (2.4)

( .

X

| PJ ’p;
— »

| The system (2.2) may be written

“—
Ag+ Tx, =y ’ (2.52)

i

T%5.1 + 2X + Ein = Js ’ J =2,3,...,q-1 (2.5b)
.

—

Using (2.3), this becomes

— [LY -
A = vy

xX, Ox I1 |

= 0%. . + Ax.+ OF
Sor TT Ba ky 0 U= 85,0000) (2.6)

|
- - - -

Ox + AX =
~(J-1 ~q iq *

-

2-2
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where

L _ T - T
529% f=Qy . 0 3-12.10.

, The components of x, and J, are labeled as in (2.4). Then
L equation (2.6) may be rewritten for i = 1,2,...,p

NX, X.,. = 3

[ 111 + Li%in Yiq ?
W.X, . + NX X = .

1 1719-1 1% 5 * “15541 =Yi5 (J=2,,...9-1) , (2.7)
Ww. X. + AX, = vy ]1 19-1 i%ig Yiq )

Now let us write

Mood il Yi1
w A hy =: x

[ 1 1 : . 12 Yio
I'. = ? ? 0 A _ A

L 0 SRE EE AR IbE) bE) 0.1 ;

COA S| -
EES iq “ig

qxq '

[ so that (2.7) 1s equivalent to the system of equations
r A A

-

| Thus the vector x. satisfies a symmetric tridiagonal system of equations

| which has a constant diagonal element and a constant super and sub-diagonal element.

| In [6], a fast and accurate algorithm is given for solving such a system
of equations. After (2.8) has been solved, it is possible to solve for

i y



L Thus the algorithm proceeds as follows:
L 1) Compute or determine the eigenvectors of A and the eigenvalues

of A and T .

5 ~- TT

A A _

3) Solve rx. = y. (i = 1,2,...,p) .

L 4) Compute 2a = GX; (3 = 1,2,.0.,q) .
| Hockney[6] has carefully analyzed this algorithm for solving Poisson's

equation in a square. He has taken advantage of the fact that in this

| case the matrix Q 1s known and that one can take advantage of the fast

l Fourier transform (cf. [3]). Shintani [9] has given methods for solving
for the eigenvalues and eigenvectors in a number of special cases.

| It 1s not necessary that A and T commute. Assume that T 1s
positive definite and symmetric. It is well known (cf. [1]) that there

L exists a matrix P such that
T

[ r=ppP. , A=PAP (2.9)
where A is the diagonal matrix of eigenvalues of ria and pt

| 1s the matrix of eigenvectors of 1a . Thus using (2.9),we make the
following modifications in the algorithm.

J 1) Compute or determine the eigenvalues and eigenvectors of TA .
- -1

2 Compute y. = P ..[ ) pute Ly Ly
3) Solve I 2. = ¥. where| iA A

i

| 1 3, . ()i

IT. —_ o e

| 0) A1 O,

| i

| 2-14



4) Compute x. = pT x.

Of course, one should avoid computing 71a since this would destroy

[ the sparseness of the matrices. In [5] an algorithm has been proposed

( for solving Au = Tu when A and T are sparse.
-

L

L i.



3. Block cyclic reduction

- In the previous section, we gave a method for which it was necessary

to know the eigenvalues and eigenvectors of some matrix. In this section,

t

- we shall give a more direct method for solving the system of equations (2.1).

| We assume agaln that A and T are symmetric, and that A and T
1

commute. Furthermore we assume that g = m-1 and
{

. m = okt

| where k 1s some positive integer. {et us rewrite (2.50) as follows:

’ TX. ~ + AX + Tx =

Tx. + Ax. TX. =

1 ~i-l TRG + TAIL £3
Tx. + Ax. + . =
~] ~j+1 yao Li+1 .

-

Multiplying the first and third equation by T , the second equation

L by -A , and adding we have
2 2 2 2
Tx, + 2T7-A)x,. + Tx, = =T - T ‘L ~J-2 %; Ejeo = Wyo AY + Tn

[ Thus if J is even, the new system of equations involves x .'s with~J

even indices. Similar equations hold for X, and Eis This process

[ of-reducing the equations 1n this fashion 1s known as cyclic reduction.
Then the equations (2.1) may be written as the following equivalent

[ system:

(

L -
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2

(277-4) T Xs

7° (27°-A%) T° 0 x),
.

0 T° .2 le 2
T (277 =A") X5

4 -

| 2) Ty, AYo
| + - A
RCI A

+ -

a Tn-1 ¥_4 Ano
be

and
—

|

A 0 X y, - Tx
~ ~ ~2

00 A . - Tx - Tx
~2 ~L3 5

. . (3.2)

oA Zn- In = no
) se

— | k+1 | |
Since m = 2 and the new system of equations (3.1) involves Xs S

C with even indices, the block dimension of the new system of equations
k

is 2 . Note once (3.1) is solved, it is a simple task to solve for

i

— the x's with odd indices as evidenced by (3.2). We shall refer to the
system of equations (3.2) as the eliminated equations.

C

L 5.0



] ; Also, note that the algorithm of Section 2 may be applied to the

: system (3.1). Since A and T commute, the matrix (2T"-A") has the

same set of eigenvectors as aA and T . Also if

h(a) = Mo »  h(T) =o, for i = 1,2,...,m-1

NRTZA%) = 20° — AZ

— This procedure has been advocated by Hockney [6].

Since the system (3.1) is block tridiagonal and of the form (2.2),

; we can apply the reduction repeatedly until we have one block. However,

| _ as noted above we can stop the process after any step and use the methods
of Section 2 to solve the resulting equations.

— To define the procedure recursively, let

Fo (0) _ (0) (0)

= Then for r = 0,1,...,k ,

r+1

— (r+1) _ ,(r)\2T =

| (T*7) (3.3)
r+1

3 AION CR OPIN CIN ON
3-27 Tet ~

— At each stage, we have a new system of equations to solve:

. ~ ~ (3.4)

| -where

C
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REeS

- (Be) ()
(r) _

1 M = . . .

L [(r) (2)

- ~

xX ry
{ 2 Z |

1 _(r) _ ~, T+l A(z) _ | ~pTHl

L r | | (x)

i The eliminated equations re the solution of the block diagonal system
L nt) yt) gr) (5.5)
[ where

| O a (r-1)

| | n(®) : : ,

()L . . 0

| o alrl)



N oy

Zr rel a J, 1x {7 2
2-2 27-2 2

(r-1) (r-1),  (r-1)x ) -

( ~, Tl Te £ rl 7-1 TE ri Ror )

LF : ’ g ) :

“ X 1 y(r-1) - T(x (r-1), x (7-1) J~ Tr r— ~ YY I ~~, Pe
327-2 jeff lL jor (§-1)2

Either we can use the methods of Section 2 to solve the system

r) (r r

[ ut J, ) = a ) or we can proceed to compute (FHL) and eliminate
half of the unknowns. After k steps, we must solve the system of

L equations

[ (i) (x)A X, =Y . (3.6)
pk pk

[ In either case, we must solve (3.5) to find the eliminated unknowns just
as in (3.2). This can be accomplished by any of the following methods:

L a> direct solution,

| b) eigenvalue-eigenvector factorization,
c) polynomial factorization.

) The direct solution 1s especially convenient when k 1s small.

[ One can form the powers of A and T quite easily and solve the resulting
equations by Gaussian elimination. Thus if k = 1 and A and T are

L tridiagonal matrices, al ) 1s a five diagonal matrix and for such band
matrices 1t 1s easy to solve the resulting system of equations.

L 5-5



l

— It 1s possible to compute the eigenvalue . eigenvector decomposition
: r r

| of al ) and r ) . Since alo) Q A Q and (0) = Q Q , We may
—

write

| r r) T— a) gale) g and r(8) Jo) I

u From (3.3), it follows that

A(rH1) p(a(F)y2_ (a(x) y2
—

L Thus the ei 1 ¢ a) (r)us the eigenvalues o and _T can be generated by the simple

| rule
.

- i i i ’ i i?
(r+1) (r).\2 0

Hence the methods of Section 2 can easily be applied to solving the system

(r) (r) _.(r) (r) (xr) r
a M™ rz =I and N' "ww = g ) . Hockney [7] has described this

algorithm as the FACR(Z) algorithm where j refers to the number of cyclic

L reductions performed. He has shown that under some circumstances for

| solving Poisson's equation, it 1s best to choose & = 2 .

- (5.1) nat a1)From (3.1), we note that Aa is a polynomial of degree 2 in A
[

L and T . By induction, it is easy to show that A(T) is a polynomial of
r

degree 2 in the matrices A and T so that

r-1
- 2 r

AC) = 30 es ATY TT = P _(A,T)
]=0 2

C
We shall proceed to determine the linear factors of P (A,T) .

( ot
Let

L r-1
“% (r) 23 of oj (x)

p ~(ast) = 3 coy’ at ’ ctl =—1
L 2 =o" 2

3-6
-



|, For t #0, we make the substitution[J

a/t = -2 cos © 307

From (3.3), we note that

I ST+L 5P ren (2%) = 2t - (Bx (8,%)) (3.8)

I It is easy to verify then, using (3.7) and (3.8), that
r

bo (at) = -2t° cos 2% 0 ,
L >

and consequently

[ P (a t) = 0 when a/2t = - cos ("i-]1) = for Jj = 1,2,...,2"

[ Thus we may write oT
292)

p (a,t) = - TT (a+ 2 t cos (25) x),
I > j=1 2

and hence

L (r) _ _ TF ()AV TT (a + 2 cos 0) 71) (r > 0)

L ~ |
(r) : r+1

where Oo; = (2j-1)n/2 :
L Let us write

[ 8) avo cos o®)J J

| Then in order to solve (3.6), we set Zy = 5) and solve repeatedly~ 2

(k) _ _ k

Thus

L Z x
| ~piip = pK

5-1
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If A and T are of band structure it is simple to solve (3.9) although

~~ under some circumstances the equations may be "ill-conditioned". In order

| to determine the solution to the eliminated equations (3.5) a similar
L

algorithm may be used with

8 2
| (r) TT (VW

A =- TT G- (3.10)
1J

— The factorization for A(T) may also be used to compute , (r+)
-J

8 . in(3.3). It is possible, however, to take advantage of the recursive
nature of the polynomials p _ (a,t) ~. Let

- p (a,t) = -2t% cos s6

1 where again for t #0 , a/t = -2 cos 0, |
Then a short manipulation shows

|
2

- p (a,t) = -ap__, (a,t)-t Pp.ola,t) ,s >2 |

p (a,t) = -2 p,(a,t)= a
{ Oo pb 1 bj -— o

i Therefore to compute alr) x) as in (3.3), we compute the following sequence:
_ or _ a (7)

LS EI Rl

L = -A 7° £ = 2 of

| | Thus
- r r) (r

n= nemyT = aE
2 2 J a

L The factorization (3.10) must be used with care. Numerical experiments

i have indicated for xr >5 , the roundoff error may become a significant
problem. Buneman [2], however, has reorganized the calculation in a stable

| fashion; see [7] for details. We denote this method as the Cyclic 0dd/Even
|.

Reduction and Factorization (CORF) algorithm.

3-8



| 4, Poisson's equation with Dirichlet boundary conditions

L It 1s instructive to apply the results of Section 3 to the solution

8 of the finite difference approximation to Poisson's equation on a
rectangle R with' specified boundary values. Consider the equation

— Ue * Uy = Fly) for (x,y)eR
(4.1)

4 u(x,y) = g(x,y) for (x,y)edR .

| (Here OR indicates the boundary of R .) It is assumed that the reader
has some familiarity with the general technique of imposingameshof

i discrete points onto R and approximating (4.1). The equation

1 w+ uo = f(x,y) is approximated at (x55) by
- : a -2v, + Vv, .

Vi-1, 3 VL g ¥ Vitl, + Vi, 3-1 Vi, 3 1,J+1 ¢
2 2 Ti,L (oc) oy) )3

| (1 <i1i<nl1l, 1<3j<ml) ,
with

vo. = . vo. = . 1 <7 < mlL O,d So, 3 ’ m, J mn, ; l=3s )
and

Vi,0 91,0 Vi,m i,m (1<1<nl)

| Then Vis is an approximation to u(x, 5) and fi) 3 ( 1295) ,
, LL. = X.,yV.) . From here-on-in we assumeg;,5 = &lx,yy)

| oo pl |

| When u(x,y) is specified on the boundary, we have the Dirichlet boundary
condition. For simplicity, we shall assume hereafter that Ax = Ay . This

r

L leads to the system of equations
hr=%

4-1



L where My 1s of the form (2.1) with
1 |

L 1 =k 1

[ A = . . . ’ and T = I__, .
0 . . 1| —-"

(n-1)x(n-1)

L The matrix I 1 indicates the identity matrix of order (n-1) . A and T
[ are symmetric and commute, and thus the results of Section 3 are applicable.

In addition, since A 1s tridiagonal the solution of the resulting system

| of equations is greatly simplified (cf. [6]). In fact any tridiagonal
matrix of the form (2.2) where A and T are scalars may be solved by

L either cyclic reduction or CORF. If the factorization 1s not used then

[ P (at) is computed recursively by (3.8).2

In the next section, we shall generalize the CORF algorithm to

[ situations where the matrix is not of the form (2.2).

[



| 5 Neumann boundary conditions
When the normal derivative, xu r is specified on the boundary, we

L have the Neumann boundary condition. Assume
Au |

L SS g(x,y) w h e n (x,y)edR :

( | We make the approximation
ou . u(xtAx,y) - u x-Ax,y ou . u(x, yy) - u(x,y-Ay)

This approximation leads to the matrix equation

L W¥=%
.

L where My is of the form

[ A 2T

[ 2T A
Here

L We

A = _—

| A

| _

| (n+1)x(n+1)
5-1 |



| _

g | Again A and T commute but My no longer has the structure given by
(2.2). Therefore 1t 1s necessary to modify the algorithm of Section 3.

C From (5.1), we see that

|
L Av + eTv, = Yq

75.1 + AY, + Vin = Ys , J =L2,...,m-1,
-

performing the cyclic reduction as in Section 5, we have

4 (27° A )v + 2Tv = -Ay + 2Ty
~O ~ AO ~]

2 2 2 2
— — Co -L TVs ft (eT A )¥ tT Yao Tsp Tipp) AL

(5.2)

i J = 2,h4,.. .,m-2

2Tv + (27° -A% )v = 2Ty - Ay ; | |
a ~m-~2 ~ ~m- ~~

1 The similarity of (5.2) with(3 .1) should now be evident, Since (5.2) is
of block dimension oki , we have after k steps the system

BE INC'S C'S BE . J)
~O 0

2 2

(x) (k) (k)

L ° = A 3 kt Lkt

and a final reduction yields

(k)y2 (k)y2q, (x) (Kk) yo p(k)

\ 2 2 2

—

5-2



L Equation (5.4) is equivalent to writing
(N) (k+1)P (A,T)v _ Jy

| Sk+1 Lk = Lk (5.5)
N

| where Pn (1) 1s agaln a polynomial of degree oktl in A and T.
Note from (3.8)

| 1L N ort N 2
2 a (at) = 2t - (2M (a,t)) , Tr = 0,1,...,k-1,2

L ‘and from (5.4)
k+1

(NV) 2 N 2L pb rps t) = Lt - (2M (a,1))
2 2

| ok k
Therefore since p x(at) = -2t~ cos 2° ©,

k
N 2

2

| and thus

1 P k+l a,t) = 0 when a/2t = - cos x for J = 1,2,...,2 :2

i Consequently, we may rewrite (5.5) as
k+l

+

j=1 J "o 2

k+1 . AK

t where ot ) . jn/2 . Again v K 1s determined by solving oEt+12

tridiagonal systems. The other components of v are solved for in the

| same manner as 1ndicated in Section 3.
It 1s well known that the solution to Poisson's equation 1s not unique

L in this case. Therefore we would expect the finite difference approximation

I 0=3



| to be singular. This is easy to verify by noting

CEE:

where e = (1,1,...,1) . In addition, one of the systems of the tridiagonal

. matrices in (5.6)is also singular. It 1s easy to verify that the eigemvalues
of (A + 2 cos 0 T) satisfy the equation

L heh +2 cos ©, T) = 4 = 2 cos (22) + 2 cos (4X)
y n oK

: k+1

[ Then A = 0 when J = ok . Normally the physics of the problem

| determines the coefficient of the homogeneous solution for the singular
case.



|

| 6. Periodic boundary conditions
In this section, we shall consider the problem of solving the finite

{

difference approximation to Poisson's equation over a rectangle when
|_—

[ u(x,y) = u(x_,y)
(6.1)

[ u(x, y,) a u(x,y,) .

| The periodic boundary conditions (6.1) leads to the matrix equation

where

L A T 0 . 0 T

| T AT 0
0

| =| Co |

L 0 T A T

[ T oO ~ . 0 T A

| and
~L 1 0 0 1

| 1 1 4 1 oo . . 0

()[ A = . ' [ [) T =T .
n

0 1 -4 1

[ 1 0 . . 0 1 -4
~ nxn

[ 6-1
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| Note M, 1s "almost" an m block tridiagonal system and similarly
- | A is "almost" an nxn tridiagonal matrix. The cyclic reduction can

again be performed on (6.2) and this leads to the reduced system
- .

2 ,2 2 2
( 2T = + r+ — -

| (@I7-A7)v, + Ty + Tv = T(y;+ ¥5) Ay,
To I SU| + (2T - + Tv. = - :Vy2 to Vs Lj+2 (Ys 1501) Ays

(6.3)
— J = 2,4,...,m-2 ,

| 2 2 2 2

ge Typ+ Tuy ot (QT7-A7)v, C= Tyty)CAL,

|
- The similarity with the previous cases 1s again evident. Equation

(6.3) has block dimension ok . After (k-1) reductions we have

Alk-1) a (k-1) r (k-1)

(k-1) (k-1) (k-1)

fE-1) . T A T 0= J

1 opel, kD  GeD

| op (k-1) 0 p (1), (k-1)

L and finally after k reductions

i NOIION NB I I2 2

| = y (6.4)
k) (k) (k)op A v y

L From (6.4) the final equation becomes
nK)\2 k)\2 k+[ (ar )\ _ (a )y Iv _ a 1)

2 2

6-2
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which 1s equivalent to
.

P k+1

PP) (amy k = re
f 2 2 2
—

The analysis of the factorization of pF) (a,1) is identical to that
| 2

“ of the Neumann case including the fact that one of the factors of the |

polynomial must be singular.

L

L

i y
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i

ne

= 7. Higher dimensional problems

| It 1s not difficult to extend the applications given in Sections

4, 5 and 6 to higher dimensional problems. (eo show this by a simple
—

example. Consider Poisson's equation in 3 dimensions over the
[
!

w | rectangle R :

—

| u(x,y,z) = glx,vy,z) (x,y,2)edR
-.

Again we assume the mesh 1s uniform in each direction so that

-

] X.,1 =X + 4x (i =0,1,...,n) ,
Yigp = ¥5 (3 = 0,1,...,m) ,

{

L Zgp1 = Zp tT OZ (a = 0,1,...,p) -

| At the point (x;,¥,,3) we approximate u(x ) by vysy. Let
v \

L ~~ f 1,3,
V

[ Ap = ’ where V. p= 2s Js 4
v |

i m-1, 2 "n-1,3,4 J

\ Assume that the usual finite difference approximation is made to uw,
for fixed (x,y,z) , viz.

u__(x,y,2)% u(x,y,z-0z) - 2u(x,¥,2) + ulx,y,z+0z)ZZ —. -

| (Az)

7-1



x It is easy to verify then that for f= 1,2,...,p-1,

4 Ww + =| pa PH, t= 5

: — where w and LU are prescribed by the initial conditions and LE
; 1s a function of the given data. Thus again we have a block tridiagonal

| matrix, and we are able to use the previous developed methods. Note, also,

i | that H 1s a block tridiagonal matrix so that it 1s possible to solve

| any of the eliminated systems of equations by applying the CORF algorithm

4 — repeatedly. Other boundary conditions can be handled in the same manner

= as prescribed in Sections 5 and 6.

|

ae

.

aN
7-2



| 8. Further applications
Consider the elliptic equation in self adjoint form

(@(=x)u),+ Bu), + uly) = alxy) , (x,7)eR

| (8.1)u(x,y) = g(x,y) ’ (x,y) edR .

[ Many equations can be transformed to this form. The usual five point

| difference equation when AX = Ay leads to the following equation:
-Q,,1 V. . = Q, 1 V. - B. V,., -

| i+ itl, Tig 1, J Pik V1,007 Pag Vi,51
+ (Qu +0 3 +B. +B. 1 - X))v, | = (ax)? (8.2)

[ i+ i-% 0 Vik Pj i,J 4,3 .where

: If the equations are ordered with
C

| \4

~l | V1,
\4 = VAL _ ~~ 25 J

{ = SECT Ivor) | Vn-1, 1

L then the linear system of equations Mv = d will have the block form
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- |

; AH 05 () 1 4- I, &% TI Vo 4,

t

_ Tm—2 “m-1 Nm-1 Sp-1
|

Lo Here

L YaTsje Ty) 0oy) a )
3/2 U3/2'%5/2 52

—

A. = [B. CL o- (ax)! j= Pg+ By gm (IT+ : a
- i. 3

2

-a x +O |

3 5% 1- n 5 n-3 =
L

=v, I +C
73 ,

CL

T. =B. I ;
5 = Pik

Now suppose we have the decomposition

|
~ Q CQ=20

T

“ where QQ = I and diag(®) = (015Ppseees®, 5) . Thus

=3

. Lyd .
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As in Section 2, we define

— , T ; T
Vv, = Vv. d. = d.~] Q ~] Y ~] Q ~]

| — and after a suitable permutation we are led to the equationsA

—

where

| _
i,1 P32

. Psja Mi,2 Psyz 0
| r, = | | | ,

ne n= 3

= m-— =

Lo 2

Bs il 1

— A

: Vv. = hj d. - .
~i ~1 .

| Yi,m-1 4, m-1

— Thus the vector v. satisfies a symmetric tridiagonal system of equations.

Agaln, once v. 1s computed for all 1 , 1t 1s possible to compute v .
lynch et al [8] has considered a similar method but their algorithm

CL requlres more operations. Unfortunately, it does not seem possible to

use the methods of Section 3 on (8.2) in this situation.
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|

Now we may write the equivalent to Poisson's equation in two dimensions

— in cylindrical coordinates as follows:

(r uw) + rly = s(r,o)
— r’r ala ?

and

- _
(r u)., rrw. = t(r,z) .

r

L The matrix A will still betridiagonal and T will be a diagonal matrix

with positive diagonal elements. We may make the transformation

» ~~ 8 '
i =T Vs and are thus led to the equations

| ~ ; 3 ~ 3

L Thus by ordering the equations correctly and by making a simple transformation

| it 1s possible to apply the cyclic reduction and the CORF algorithm to
f

-
solve the finite difference approximation to Poisson's equation in

| cylindrical coordinates.
—

Another situation in which the methods of Sections 2 and J are

- applicable 1s when the nine point formula 1s used for solving the finite

1 difference approximation to Poisson's equation 1n the rectangle. In this
case when 4&x = Ay ,

_

» 0
—

f . 1L L

: L -20 1 4
| .
g (n-1)x(n-1) n-1)x(n-1)

f
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It is easy to verify that AT = TA , and that the eigenvalues of A

. and T are

i A (A) = -20 +8 cos = (i = 1,2,...,n-1)

§ A(T) = 4 + 2 cos Aa (i = 1,2,44.,n-1)

| Because of the structure of A and T the fast Fourier transform may
be employed when using the methods of Section 2.

[ We leave as an exercise to the reader the application of the methods
in Sections 2 and 3 to the biharmonic equation.

L

|
-

L >

|
-



: g. Non-rectangular regions
-

In many situations, one wishes to solve an elliptic equation over

| the region

oe .

R ss ood ed ~~
1 - oo Lo Lo

}

-

1 We shall assume Dirichlet boundary conditions are given. When Ax is the
same throughout the region, this leads to a matrix equation of the form

G 6 0 x (1 ) y (1 )
P — | _

L oT = (9.1)
| ’ (2) ,(@)
| 0 ~ ~
L

where

| |
AT B S

| | T A 0 S B | ()

0, | () || T A I BRB

Also, we write

§ 2



| x x?)
N (1)

LR (2) x42) os)
| ~ : ~ | 9.3,

- Xr | x

i We assume again that AT = TA and BS = SB .
From (9.1), we see that

L 0

| - 0

3 RETR lO (9.4)

| | d
(2) _ 1 (2) ~-1 0 1| ro=t rT -h : x! bo (9.5)

- .

Oo

Now let us write

(1) _ (1) (2)ERE pom ay (9.6)

—

| 0 pt
0 0

i cit) =1 - , mw (2) _ (0.7)* ° 0

P ;
( :

. O
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I

i Then partitioning the vectors ac 5 (2) and the matrice (1)
2

[ and wt ) as in (9.3), the equation (9.4) and (9.5) becomes
(1) _ (1) _ (1) (2)

f : hb. = h - h J

1 Xx Zs Ws x; (i = 1,2,...,r)
(9.8)

(2) _ (2) _ (2) (1)
| = - Zs i Ws Zr (5 = 1,2,000,8)
-

From (9.8), we have

1 _ |

. (1) (1) (1)

(2) 2 2
CI 5 4

— .

| This system of equations is 2=-cyclic and thus we may reduce the system to
(1) (2) (1) (1) _ (1) (2)

i (T= w™) 70 = = wz (9.9)
This system of equations can most easily be solved using Gaussian elimination.

— Once the 'L-cyclic system of equations (9.9) has been solved, all other

components may be computed using (9.8) or by solving the system

L
0

| 0

L ex), | °],@
~ ~ . |~1

. :

pr

0
2 2

0

h—

-
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If the system (9.1) 1s to be solved for a number of different right hand

| sides, then it 1s best to save the LU decomposition of

0 2

(I - W! ) wl Dy, (9.10)

[ Thus the algorithm proceeds as follows:

| 1) Solve for 2(L and 2?) using the methods of Section 2 or
Section 3.

L ) :2) Solve for i! ) and w! ) using the methods of Section 2 or

| Section 3.

| 3) Solve (9.9) using Gaussian elimination. Save the LU
decomposition of (9.10).

L 4) Solve for the unknown components of (1) and (2) |

L ”
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