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Abstract

Several algorithms are presented for solving block tridiagonal
systems of linear algebraic equations when the matrices on the diagonal
are equal to each other and the matrices on the subdiagonals are all
equal to each other. It is shown that these matrices arise from the
finite difference approximation to certain elliptic partial differential
equations on rectangular regions. Generalizations are derived for higher

order equations and non-rectangular regions.
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1. Introduction

In many physical applications, it is necessary to solve an N x N

system of linear algebraic equations

Mx =y (L.1)

where M arises from a finite difference approximation to an elliptic
partial differential equation. For this reason, the matrix M is

sparse and the non-zero elements occur in a very regular manner. As

‘an example of this, let

M= (1.2)

and we partition x and y to conform with M . If it is possible to
interchange the rows and interchange the ~olumns of a matrix so that it
has the form of (M-I) , then the matrix is said to be 2-cyclic (cf. [10]).

Expanding (1.1), we have

Fx =
LRSS

T

F»}S]_+ ’}52:;\7.12

Multiplying the first equation by -FT and adding we have

(I—FTF)')\(‘QE Yo - FT;{:l . (1.3)
Thus by this simple device, we have reduced the number of equations.

If G}FEF) is also 2-cyclic then we can again eliminate a number of the
variables, and we can continue until the resulting matrix is no longer

2-cyclic.
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Based on the suggestion of one of the authors, Hockney[6] has used
this device extensively and effectively. Recently Buneman [2] has devised
a method for easily solving the reduced system of equations. The technique
is particularly attractive since in theory it yields the exact solution
to the difference equation whereas commonly used methods seek to approximate
the solution by iterative procedures (cf. Varga [10]). An extensive list
of references is given in the excellent survey of direct methods by
Fred W. Dorr [4]. The method of odd/even reduction and factorization
described in this paper is similar to that of Buneman. In addition, a
generalization of Hockney's direct method using Fourier analysis is given.

Extensive numerical computations will be reported later.

1-2



.

2. Matrix decompositions

Consider the system of equations

Mx =y (2.1)

~

where M is an N X N real symmetric matrix which has the block

tridiagonal form

'A T
T A. O
M= o . (2.2)
.. T
] O T A

The matrices A and T are p x p symmetric matrices, and we assume that
AT = TA .
Such a situation arises for those problems which can be handled by the
classical separation of variables technique. Indeed, the methods discussed
here amount to an efficient computer implementation of the idea of
separation of variables carried out on a discretized model of the elliptic
differential equation. Since A and T commute and are symmetric it is
well known (cf. [1]) that there exists an orthogonal matrix o such that
dae=4 , drae=o (2.3)
and A and- @ are real diagonal matrices. The matrix Q is the set
of eigenvectors of A and T , and A and @ are the diagonal matrices
of eigenvalues of A and T , respectively.

In order to conform with the matrix M , we write the vector x

~

and y 1in partitioned form

2-1
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Furthermore, it will be quite natural to write
r - - -
X.. ;
1] Y13
XA, X
a 23 2]
%5 " ’ L= .
X .
PJ ¥
" - »

The system (2.2) may be written

A'}Sl'*' Ti(e = X.l 5

Tx.l+é‘>§+ TX'+l=y s J=2,3,...,0-1

~j- ~J ~J
g1 Sl -
Using (2.3), this becomes
Axy + ax, = Ml
Qéj_l + A%j+ Q}:(.j.;.l = ...V,j , (3 = 2,3,..0,q-1)
ng_l + Ax = Q@_ .
2-2

(2.4)

(2.5a)

(2.5Dp)

(2.5¢)

(2.6)



where
_ T - T .
EJ—Q’JSJ P 'XJ =QX‘J ) J =1,2,...,q

The components of éﬁ and 2 are labeled as in (2.4). Then

J

equation (2.6) may be rewritten for i = L,2,...,p

w, X, . X = -
1ij-1 1xij * wlxij.;.l yij (3=2,,...9-1) , (2.7)

@D, X, . X,
1 lq—l 1 19 j_q

Now let us write

;(' -
Mool i1 Vi1
w A z -
. 7
1 i - r i2 Yio
I'., = ¢ ¢ ¢ A A
. . 0,1
. A X v
1 1 1 s
'J -1qIJ e lq‘-‘

axq

so that (2.7) is equivalent to the system of equations

r A A
: i AT : (2.8)

A
Thus the vector Xx. satisfies a symmetric tridiagonal system of equations

which has a constant diagonal element and a constant super and sub-diagonal element.
In [6], a fast and accurate algorithm is given for solving such a system
of equations. After (2.8) has been solved, it is possible to solve for

X, = Q X.
~J Q"ﬂ



Thus the algorithm proceeds as follows:

I— 1) Compute or determine the eigenvectors of A and the eigenvalues
of A and T
_ 2) Compute Qﬁ = Q?zﬁ (3 = 1,2,.0..,q)
3)  Ssolve riﬁi = 2"4 (i = 1,2,...,p)
-~ 4)  Compute x5 = Qzﬂ (3 = 1,2,...,Q)
L Hockney [6] has carefully analyzed this algorithm for solving Poisson's
equation in a square. He has taken advantage of the fact that in this
— case the matrix Q is known and that one can take advantage of the fast

Fourier transform (cf. [3]). Shintani [9] has given methods for solving

for the eigenvalues and eigenvectors in a number of special cases.

—

It is not necessary that A and T commute. Assume that T is

positive definite and symmetric. It is well known (cf. [1]) that there

—

exists a matrix P such that

T
T =pp’ , A=PAP (2.9)
J . . . . -1 -T
where A is the diagonal matrix of eigenvalues of T A and P
is the matrix of eigenvectors of T-;A . Thus using (2.9), we make the
-
following modifications in the algorithm.
- 1) Compute or determine the eigenvalues and eigenvectors of T'%A .
- - -1
T2 Compute y. = P . .
L ) P Ly L
™ A _A
3) Solve Ty 3& = 2& where
- FS. 1
i
1 3. .
i
Fi= . . |
L . I 1
1 3,
i
L -

[- 2-4



L
L
L

c— r— r—

r——

4)  Compute X = P~ x

Of course, one should avoid computing T-lA since this would destroy
the sparseness of the matrices. 1In [5] an algorithm has been proposed

for solving Au = 8Tu when A and T are sparse.
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3. Block cyclic reduction

In the previous section, we gave a method for which it was necessary
to know the eigenvalues and eigenvectors of some matrix. In this section,
we shall give a more direct method for solving the system of equations (2.1).

We assume again that A and T are symmetric, and that A and T

commute. Furthermore we assume that g = m-1 and

m= 2

Tx. + AX, + Tx. =
Sj-2 T RS-l TR -1
Tx, . + Ax, Tx, =Yy.
~j-1 ~J + ~J+1 £
Tx, + Ax, + . =
~j ~j+1 T>L3+2 ,y..j+1 :

Multiplying the first and third equation by T , the second equation

by -A , and adding we have

2 2 2
Tx, o+ (QI7-A)x, + Tx, _ = - .
Xs2 * )ag Eioo = Wy - ALy + T

Thus if j is even, the new system of equations involves x.'s with
~J
even indices. Similar equations hold for %, and x This process

M1-2 .
of-reducing the equations in this fashion is known as cyclic reduction.

Then the equations (2.1) may be written as the following equivalent

system:



r—

r
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[~

=

—

2 B - 7
(2T2-A2) T %,
72 (2T2-A2) 7@ X,
[ [
[ T2
¥ (21°-8%) x
~m-2
dl L .l
?zli- T¥3 - Aﬁé
Ty, + T - A
LT L L,
= : ) (5'1)
Tzh-l + Tx__ - Ay o
ha—
and
A0 X - %
0 A zz 13 - ?52 - 154
) . (3.2)
0
o A Zin-: In = o
= - b =l ' -
Since m = 2k+1 and the new system of equations (3.1) involves za's

with even indices, the block dimension of the new system of equations
k

is 2 . Note once (3.1) is solved, it is a simple task to solve for

the zﬁ's with odd indices as evidenced by (3.2). We shall refer to the

system of equations (3.2) as the eliminated equations.




Also, note that the algorithm of Section 2 may be applied to the
system (3.1). Since A and T commute, the matrix (2T2-A2) has the

same set of eigenvectors as A and T . Also if

h(a) = ki » h(T) =, for 1 = 1,2,...,m-1

A(212-A%) - zwf - x?

This procedure has been advocated by Hockney [6].

Since the system (3.1) is block tridiagonal and of the fornl(E.QL
we can apply the reduction repeatedly until we have one block. However,
as noted above we can stop the process after any step and use the methods
of Section 2 to solve the resulting equations.

To define the procedure recursively, let

(o) _
A =A, T(O) =T __XJ(-O) =§f_9 s (3 = L2000, ml)

Then for r = 0,1,...,k ,

A(r+1) _ 2(T(r))2 ) (A(r))E )

p(r+l) _ (T(r))2 ? (3.3)
§r+l) (@) (r) o+ (r) _alr) ()

% ' ('X:J-zr A AT )

At each stage, we have a new system of equations to solve:

u(®), (@) _ 4 (r)

-where
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(r)

IN

A(T)

X
~, r+]1

The eliminated equations

where

e

W) @) )
A(r-1) 0
0 a(r-1)
3-4

are the solution of the block diagonal system

A (r-1)




(r) _

Either we can use the methods of Section 2 to solve

M(r)Z:(r) _ E(r)

half of the unknowns. After k steps,

equations
A(k) X k = y(k) R
=t T

(x)

the system

or we can proceed to compute M(r+l) and eliminate

we must solve the system of

(3.6)

In either case, we must solve (3.5) to find the eliminated unknowns just

as in (3.2).

This can be accomplished by any of the following methods:

> direct solution,

b) eigenvalue-eigenvector factorization,

c) polynomial factorization.

[The direct solution is especially convenient when k is small.

One can form the powers of A
equations by Gaussian elimination.

tridiagonal matrices,

L)

and T quite easily and solve the resulting

Thus if k = 1 and A and T are

is a five diagonal matrix and for such band

matrices it is easy to solve the resulting system of equations.

3-5
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It is possible to compute the eigenvalue . eigenvector decomposition
r) r . o T
of A( and T( ) . Since A( )= Q AQ and T(o) =QQ Q,T , we may

write

P N N GO

From (5.3), it follows that
A(r+l) - E(Q(r))E_(A(r))Q

Q(r+l) - (Q(r))E

. r
Thus the eigenvalues of a(*) and__T(r) can be generated by the simple

rule
K§r+l) _ 2(wir))e _(k§r)>2 , K(oz - X

w§r+l) = EQb(r))g

i 'j_ D s 1 = l,2,...,m—l

1

b4

(DI(O) =

Hence the methods of Section 2 can easily be applied to solving the system

M(r25(r) =f(r) and N(r)_w(r) =‘§(r) . Hockney [7] has described this

~ ~

algorithm as the FACR(Z) algorithm where 4 refers to the number of cyclic
reductions performed. He has shown that under some circumstances for
solving Poisson's equation, it is best to choose L = 2

From (3.1), we note that A(l) is a polynomial of degree 2 in A
and T . By induction, it is easy to show that A(r) is a polynomial of

r .
degree 2° in the matrices A and T so that

r-1
r
oL (r) ,25 2°-2j _
A(") _chj A T = P _(a,1)
Jj=o 2
We shall proceed to determine the linear factors of P (A,T)
o
Let
2r—l r
- Y oy
p r(a,t) = ZCér) a®d 2 2] , c(r) =1
2 i~ <d r
J=0 2
3-6
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For t # 0, we make the substitution
a/t = -2 cos ©

From (3.3), we note that

r+1

2
p (a,t) = 2t - (P
2r+1 2r

It is easy to verify then, using (3.7) and (3.8), that

o r
p (a,t) = -2t cos 27 o ,
2l

and consequently

p _(a,t)
21‘

Thus we may write

N
2]

21‘

<.
il
(=]

and hence

N | o ()
AV = - (A +2cos 0. 'T)
J=1 ’
where Ogr) = (2j-l)ﬂ/2r+l .

Let us write

G.J(k) - A + 2 cos ng) T

Then in order to solve (3.6), we set Z) =%

(k) .
. Z. =z, for
5y A T &y ]
Thus
7 X
3-7

(a,t))®

0 when a/2t = - cos (;;;i) x for § = 1,2,...,2

p (a,t) = - (a + 2t cos (2L2) «) ,
2

and solve repeatedly

= 1,2,...,2

G e

(3.8)

(3.9)
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If A and T are of band structure it is simple to solve (3.9) although
under some circumstances the equations may be "ill-conditioned". In order
to determine the solution to the eliminated equations (3.5) a similar
algorithm may be used with
r
A - T (:%\'J) ' (5.10)
Jj=1

The factorization for A(r) may also be used to compute y.(r+l)

. in(3.3). It is possible, however, to take advantage of the recursive

nature of the polynomials p r(a,t) ™ Let
2

Ps(a:t) - -2t% cos s0

where again for t ﬁ 0, a/t = -2 cos 0,

Then a short manipulation shows
p(a,t) = -ap__ (a,8)-tp_,(a,8) , s >2 ,
Po(a:t) = =2 , pl(a,t) = a

Therefore to compute A(r)lér) as in (3.3), we compute the following sequence:

A _ ()
U A S
2 r
'T\]'S = -Aﬂas-l -T l]_,s_z for s = 2)3,.-.,2 .

Thus
r r) (r
e )= O
The factorization (3.10) must be used with care. Numerical experiments
have indicated for r >5 , the roundoff error may become a significant
problem. Buneman [2], however, has reorganized the calculation in a stable

fashion; see [7] for details. We denote this method as the Cyclic 0dd/Even

Reduction and Factorization (CORF) algorithm.

3-8
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4, Poisson's equation with Dirichlet boundary conditions

It is instructive to apply the results of Section 3 to the solution
of the finite difference approximation to Poisson's equation on a

rectangle R with' specified boundary values. Consider the equation

u_+u f(x,y) for (x,y)eR

XX yy

(4.1)
g(x,y) for (x,y)edR

n

u(x,y)

(Here OR indicates the boundary of R .) It is assumed that the reader
has some familiarity with the general technique of imposingameshof

discrete points onto R and approximating (4.1). The equation

w + U = f(x,y) is approximated at (Xi’yj) by
v, L -2V, .+ v, v, . -2v, . +v, .
i-1,J i,Jd itl,d + _i,d-1 i,9 i,J+1 ;
2 2 - i,
(Ax) (ay) >

with

v, = v.oo.= . 1< < m-1

0,3 " 8,3 7 Vmi T Em,j (l=izml)

and

Vl" o gl,o P) vl,m = gl,m (1 <1i<n-l)
Then Vi is an approximation to u(xi,yj) and fi,j =f(xi’yj) R

. . = . . F h —-on-1

g 5 g(xl,yJ) . From here-on-in we assume

m = 2k+l

When u(x,y) is specified on the boundary, we have the Dirichlet boundary

condition. For simplicity, we shall assume hereafter that Ax = Ay . This

leads to the system of equations
hy=%

4-1
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where MD is of the form (2.1) with

-1
1 -k 1
A = . . . ’ and T = In—l .
(:) . . 1
-
(n-1)x(n-1)
The matrix In 1 indicates the identity matrix of order (n-1]) . A and T

are symmetric and commute, and thus the results of Section 3 are applicable.
In addition, since A is tridiagonal the solution of the resulting system
of equations is greatly simplified (cf. [6]). In fact any tridiagonal
matrix of the form (2.2) where A and T are scalars may be solved by
either cyclic reduction or CORF. If the factorization is not used then
pzr(a,t) is computed recursively by (3.8).

In the next section, we shall generalize the CORF algorithm to

situations where the matrix is not of the form (2.2).
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5. Neumann boundary conditions

When the normal derivative, 5? r 1s specified on the boundary, we

have the Neumann boundary condition. Assume

5-5: gx,y) w h e n (x,y)edR

We make the approximation

ou . u(xAx,y) - u x-Ax,y ou . ulx,yHy) - u(x,y-Ay)
X 2AX ’ Jdy ' 2Ny

This approximation leads to the matrix equation

MW¥=%

where MN is of the form

-~ -

A 2T

T A T

My = . (5.1)

T T
2T A |
Here
- —
-4 2
1 -4 1
A = =
| | | ’ T In+l
1 -4 1
2 -hJ
(n+1)x(n+1)
5-1
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Again A and T commute but MN no longer has the structure given by
(2.2) . Therefore it is necessary to modify the algorithm of Section 3.

From (5.1), we see that

T'l,‘j“l + A.Y;j + T’Y'j+l = zj J J-I = l,2,...,m_l ’
2 Tym_l + A‘Ym - zm .

performing the cyclic reduction as in Section 3, we have

2 2 ~ B
(27" -A )y_o + 2Tv, = -Ay + 2Ty,
2 2 2 2 .
T N2 * (er”-x ).Y,j + T L2 = T(Xj-1+¥.j+1) "’%j
| (5.2)
j =2,k m2,
2 .2
2Tym_2+(2T-A )—Ym =2Ty - A
y

The similarity of (5.2) with (3 .1) should now be evident, Since (5.2) is

of block dimension 2k+1 , we have after k steps the system

R e I I o w7 [

: (&) a) g(k) e |- z;;) ; (5.5)
| ° ) Al J LA L Xéﬁl_

and a final reduction yields
T A=t A SR A

5-2
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Equation (5.4) is equivalent to writing

(W) (k+1)
p (A,T)v . _y .
Skl ~ok = Lk (5.5)
N
where P(kzl(A,T) is again a polynomial of degree oktl in A and T.
2
Note from (3.8)
1
N o™ N 2
Pérzl(a,t) = 2t - (pg&,)(a,t)) , T =0,1,...,k-1,

'and from (5.4)

k+1
pgil(a,w - wE <pé§)<a,t>>2

| ok K
Therefore since p k(a,t) = -2t° cos 2° @,
2

k

N 2
P(kzl(a:t) = [2t° sin £o1°
2
and thus
p(N) (a,t) = 0 when a/2t = - cos LS for j = 1,2 okl
2k+l 2k 13S0y
Consequently, we may rewrite (5.5) as
2k+l
[T (A + 2 cos °(k+l)T]3£ K - 'Z(l§+'l) (5.6)
=1 i 2

k+1 . 1K .
where Og ). Jn/2% . Again ¥ . 1s determined by solving okl
2

tridiagonal systems. The other components of v are solved for in the

same manner as indicated in Section 3.

It is well known that the solution to Poisson's equation is not unique

in this case. Therefore we would expect the finite difference approximation



i
.

r

r——\ r—uq r——n r~n~ r~—~

to be singular. This is easy to verify by noting

Mye=2
where 3T= (1,1,...,1) . In addition, one of the systems of the tridiagonal

matrices in (5.6)is also singular. It is easy to verify that the eigemvalues

of (A + 2 cos O,j T) satisfy the equation

2k

- : k+1
(2 =0,1,2,...,n ; J = 1,2,...,2° )

h&A+2costT) =4 - 2 cos (%)+2cos (45

Then >"o = 0 when j = 2k . Normally the physics of the problem
determines the coefficient of the homogeneous solution for the singular

case.

5-4



6. Periodic boundary conditions

:
L

In this section, we shall consider the problem of solving the finite

difference approximation to Poisson's equation over a rectangle when

—-

[ u(x,y) = u(x,y)
) (6.1)
u(x, y) . u(xyy)
vl
The periodic boundary conditions (6.1) leads to the matrix equation
g .
I‘JP l]; = z (6.2)
- where
- e
- A T 0 0 T
T A T 0
0 I
y e = '
L 0 T A T
T 0 0 T A
L - -
and
p~— -
o -l 1 0 0 1
L 1 -4 1 0 0
0] I
| J A = . | | 9 T =In
A . 0
L 0 1 -4 1
1 0 0 1 -4
J N -
nxn
6-1
L
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Note M? is "almost" an m block tridiagonal system and similarly

A is "almost" an nxn tridiagonal matrix.

again be performed on (6.2) and this leads to the reduced system

(2T2-A2)Xé + T + T

~

2
T+ @7 K )y + Ty
2 2 2 2
Ty, + Ty, o+ 20727y

The similarity with the previous cases 1is again evident. Equation

(6.3) has block dimension 2

(k-1)
(k-1) T
M_P =
0
7 (k-1)

and finally after k reductions

_ A ()]

op(l) L)

-l

From (6.4) the final equation becomes

rar®)? o @Ry
2

6-2

2
v
~m

T(y;

= T 3
(¥

After (k-1)
T(k'l) 0
Alk-1) (1)
p &1, (k1)

0 T (k-1)

(k+1)
Xék

The cyclic reduction can

+ 23) - Aﬁé
-1fZg+1) 'AQﬁ ’

i =2,b,...,m2,

T( * Y1) - By

reductions we have

7 (k-1)

(6.3)

(6.4)
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which is equivalent to

(P) (k+1)
P (A:T)V - J

The analysis of the factorization of p(P) (A,T) 1is identical to that

2k+l

of the Neumann case including the fact that one of the factors of the

polynomial must be singular.
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7. Higher dimensional problems

It is not difficult to extend the applications given in Sections
4, 5 and 6 to higher dimensional problems. ye show this by a simple
example. Consider Poisson's equation in 3 dimensions over the

rectangle R :

un + uy_y + uZZ = f(x,y,z) (X,y,Z)eR .

u(x,y,2) = glx,y,2) (x,¥,2)edR

Again we assume the mesh is uniform in each direction so that

Xipp = % +4x (i =0,1,...,n) ,
Vipr =95 (J =0,1,...,m ,
Zgpp T 7t A2 (a = 0,1,...,p) -

At the point (xi,%_.',% ) we approximate u(xi,{rﬁ,,% ) by v 5 Let

v \
~1,14 vl,j,l
v
~2 1 v, .

L) ? where v, , = 2,354

~, . ~J,£
v ) _
~m-1, ! vn-l,j,ll/

Assume that the usual finite difference approximation is made to u

for fixed (x,y,z) , viz.

———

u(x,y,z-02) - 2u(x,y,z) + u(x,y,z+z)
- \2
(Az)

uzz(x)y)z)é



It is easy to verify then that for I = 1,2,...,p-1 ,

Mg ¥, +w, =5,

where L and Ep are prescribed by the initial conditions and E
is a function of the given data. Thus again we have a block tridiagonal
matrix, and we are able to use the previous developed methods. Note, also,
that H is a block tridiagonal matrix so that it is possible to solve

any of the eliminated systems of equations by applying the CORF algorithm

repeatedly. Other boundary conditions can be handled in the same manner

as prescribed in Sections 5 and 6.
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8. Further applications

Consider the elliptic equation in self adjoint form

(@(x)u), + (BOIw) + uly) = aluy) , (k)R
(8.1)
u(x,y) = &(xy) , (x,y)edR
Many equations can be transformed to this form. The usual five point
difference equation when Ax = Ay leads to the following equation:
-0, .1 V. . - Q1 V. - B. V.o -
ivg i+1,J T Ci-d 1-1,J BJ*% Vi, g+ Ba‘-% Vi,4-1
+ oy 0yt By By - 0Py, | = -(ax)? (8.2)
g i T P 1,3 Y, :
where
o = g(x, + § &x L4 o= + A
TS K Big =B(v; + &)
4 5= alx,y))
If the equations are ordered with
3
v
~L Vl,j
v, N Vo o
2,3
VvV = . 9 V, = -
~ P’ NJ .

then the linear system of equations Mv = g will have the block form



{

r— r

—

—

r

r—

r— r—

Here

A, = [BJ% + BJ. 3" (Ax)E]I +

s

i
e
H
+
Q

2 .- p— -
Y1 4
X &
m-1 Em_l
- - - .

Now suppose we have the decomposition

dTcq=0

T .
where Q Q = I and diag(®) = (¢l,@2,...,¢n_l) « Thus

Il
=
+
S

xi(AJ.)

]
>

> (i = 1,2,...,1’1-—1) 4




As in Section 2, we define

— - T - T
v, = v, d, = d,
Ly oo =94
— and after a suitable permutation we are led to the equations
A .
r, %, =_&i. i = 1,2,...,n-1 ,
—
where
ol -~
. A
i,1  Ps/2
i IS
L Psja M,2 Pje
- Pi = ’
E . . B 3
- m- %
N,
P 3 i,m-1
n="=
— 2 -
- l' r _ ’
— vll il
Vi ) 4o
— A _ d _
~i ’ ~i . y
— - -
vi,m—l _ di,m—l .
-
— Thus the vector ii satisfies a symmetric tridiagonal system of equations.
Again, once §i is computed for all i , it is possible to compute v .
lynch et al[8] has considered a similar method but their algorithm
L_ requires more operations. Unfortunately, it does not seem possible to
use the methods of Section 3 on (8.2) in this situation.
— 8-3
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—

r— r - r

-

-

—

—

—

r—

r

Now we may write the equivalent to Poisson's equation in two dimensions
in cylindrical coordinates as follows:

-1
(r ur)r + T Uy = s(r,9)

and

(tud, +ru, t(r,z)

The matrix A will still betridiagonal and T will be a diagonal matrix
with positive diagonal elements. We may make the transformation

~

zﬂ =T 8yq] and are thus led to the equations

7. . +1-8aT %o +5, . = %
~j-1 ~j ~JF1 E f%

Thus by ordering the equations correctly and by making a simple transformation
it is possible to apply the cyclic reduction and the CORF algorithm to
solve the finite difference approximation to Poisson's equation iq
cylindrical coordinates.

Another situation in which the methods of Sections 2 and 3 are
applicable is when the nine point formula is used for solving the finite
difference approximation to Poisson's equation in the rectangle. In this

case when &x = Ay ,

s (O -
A = , , , T = : : .
0o .

¥ (a-1)x(n-1) ~ ne1)x(n-1)

8-4



It is easy to verify that AT = TA , and that the eigenvalues of A

- and T are
A (&) = -20 +8 cos 3;’-‘- (i = 1,2,...,0-1)

Because of the structure of A and T the fast Fourier transform may
be employed when using the methods of Section 2.
| We leave as an exercise to the reader the application of the methods

in Sections 2 and 3 to the biharmonic equation.

C

r
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r— r—

9. Non-rectangular regions

In many situations,

the region

NN

|~

// - //// / P
l -~ r/’/ /".f .—'//
/ 4 / d - < ///’

one wishes to solve an elliptic equation over

We shall assume Dirichlet boundary conditions are given. When 4&x is the

same throughout the region,

P —— P -
G 4 O x(l)
P
T
P
0 . x®)
o nd — -
where
p -—
A T
N
G= . |
'O . ] T
T A
- b
Also, we write

)

~

o

,@)

~

this leads to a matrix equation of the form

(9.1)

. (9.2)



.

r—

——

r— rm r—

—

F—

r—-

- - .
(1) (2)
21 X1
(1) (2)
X,
L1 _ |~ L) _| %
(1) (@)
'}\(*1‘ Z{Js
b L -
We assume again that AT = TA and BS = SB .
From (9.1), we see that
B o(-
0
1) gt () 1 @)
~ A . ~1
P
-
- -
PT
.2, - _ O
,{E()=le(e)-Hl N A eY
. ~r
L O
Now let us write
1
GN( ) -Z(l) , HZ:(Q) _ @)
0
0]
GW(l) = . HW(E) -
P
— -

(9.3)

(9.4)

(9.5)

(9.6)

(9.7)



r— r

-

- r—

-

-

r—

-~

Then partitioning the vectors z(l), ?V(E) and the matrice W(l)

~

and W(z) as in (9.3), the equation (9.4) and (9.5) becomes

3s§l) = z§l) - ng) 51(2) (3 =1,2,...,r)
(9.8)
S REE R (5= 12008 .
From (9.8), we have
I w(1) L(1) (1)
r ~r ~r
W:EE) ; Eie) nzée)
- p— » J

This system of equations is 2-cyclic and thus we may reduce the system to

5 000 o

X =
~

T ~7

This system of equations can most easily be solved using Gaussian elimination.
Once the 'L-cyclic system of equations (9.9) has been solved, all other
components may be computed using (9.8) or by solving the system

0

a® @ %], @
~ ~1

1<

(5]
0
ONNON : N
—O-
9-3



If the system (9.1) is to be solved for a number of different right hand

sides, then it is best to save the LU decomposition of

Thus

1)

2)

3)

%)

(I - wr(l) wgg)), (9.10)

the algorithm proceeds as follows:

Solve for Eél) and 252) using the methods of Section 2 or

Section 3.

Solve for Wﬁl) and W§2) using the methods of Section 2 or

Section 3.

Solve (9.9) using Gaussian elimination. Save the LU

decomposition of (9.10).

Solve for the unknown components of .5(1) and X(E)

9-1
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