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| COMPLEMENTARY SPANNING TREES
| BY

. GEORGE\ B. DANTZIG

4 Given a network G whose arcs partition into non-overlapping
- "clubs" (sets) R,e D. Ray Fulkerson has considered the problem of

| constructing a spanning tree such that no two of 1ts arcs belong to

L " (represent) the same club and has stated necessary and sufficient
| conditions for such trees to exist [1].

—

i (1) if [1]
i

C In Example (1) no such "representative" tree exists. (hen each club

| R, consists of exactly two arcs, we shall refer to each of the arc
- pair as the "complement" of the other, and the representative tree as

i a complementary tree. In Example (2) the heavy arcs {1,2,3}

[FP
L 2) <<)

2 NN

5 form such a tree. ~~ The complements of {1,2,3}, namely {1',2',3"}
| form a cycle. However, {1',2',3} form another complementary tree.
-

Our objective 1s to prove

i Main Theorem: If there exists one complementary tree, there exists at
least two.

|
| The general idea 1s to pass from one complementary tree to the

| other by a sequence of "adjacent" (or "neighboring") trees which are

L



. "almost" complementary, An almost-complementary tree is defined to be
one where each set. R, furnishes exactly one arc with the exception of

[ one "special" set which furnishes two and one other set which furnishes

| none. In Example (2), the almost complementary trees with respect to| the special set {1,1% are {1,1',2}, {1,1',2'}, {1,1',3} and {1,1',3'}.

A sequence leading from {1,2,3} to {1',2',3} along a path of adjacent
-

almost-complementary trees is {1,2,3}, {1,1',3}, {2',1',3}.

“

Two trees are sald to be adjacent or neighbors if they differ by

L one arc. The general procedure for generating a sequence of adjacent
| almost-complementary trees 1s as follows: Start with a complementary
 —

tree, Add to it any out-of-tree arc, say A', forming a cycle.

-

Btep : If eitherA or A' ..is another arc of the cycle, .

— delete it and cerninate he new tree thus formed is complementary.
If not,

-
Step II: Arbitrarily*drop some other arc of the cycle forming an

L adjacent almost-complementary tree with respect to AA'.

, Step III: Introduce as out-of-tree arc the complement of the

- arc dropped in Step II. Return to Step I. ’

-
Note especially that the sequence of almost-complementary trees

1 thus generated all contain A, A’ as the special pair of arcs. In
all discussion that follows the "almost" is defined with respect to a

i fixed pair of special arcs.

| * This will be changed later.
-

2

L



| Let us see what happens 1f we apply these steps to Example (3).
¢

L (3) Q ) 0 ‘

| (J ’

| The given starting complementary tree 1s {a,b,c,d,e,s} , see (4).
’

| (4) b < (4a) OC 2.) 0S 0 |
0 | 0

[ In (4a)we have chosen s' as the starting out-of-tree arc so
that the sequence (path) of adjacent almost-complementary trees

[ generated by the rules will be with respect to the special set s,s'.
According to Step II we can elect to break the cycle by arbitrarily

| dropping arc a to obtain (5). Since a is dropped, Step III requires

| that a' , its complement, must be the next out-of-tree arc see (5a).
[] .

e e q

| (5) D . (5a) NE aii; 0S g! S g'
J J

| We arbitrarily break the cycle by droppingd, see (6), then in
(6a) introduce its complement d'. Next we drop e and introduce e',

| see (7) and (7a). Next we drop d' and introduce back d, see (8) and
(8a)» Next we drop e' and introduce back e, see (9) and (9a).

L
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(7) b & & (7a) bj A
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’ J

| , . |

(8) b a o (8a) b a
| S s' Ss | s'
— -—

0

. 1

(9) bo, 2 C (9a) 0=—"D ; ;

I S s' S =| 0 (]
|S—

— Note that (9a) is identical to (5a) and our rules allow us to drop

d so that we return to (6), Le., the path circles back on itself.
-

Thus we see in Example (3) that the idea of moving from one almost-
—

complementary tree to the next by arbitrarily dropping an arc of a cycle
\

— fails to terminate with another complementary tree. Instead it generates

| a. cycle of almost-complementary trees that repeat ad infinitum. Note

—

that Tree (6) 1s adjacent to Tree (5) as well as Tree (7) and Tree (9).

1

| What we need 1s a modified rule for dropping an arc of a cycle so
|

i. that each almost-complementary tree so generated is adjacent to exactly

two others, one or both of which could be completely complementary. If

-
this could be arranged it 1s easy to see that the method would never repeat

4
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p an almost-complementary tree nor could 1t return to the original

— complementary tree because we have arranged it so that there is only

one path out of it. We need a dropping rule which would give rise to

Ce

a set S of trees which satisfy the following abstract properties:

(1) Given a finite set S and a relation "neighbor".

i (ii) If i is a neighbor of j then j is a neighbor
of 1.

— (111) No element has more than two neighbors.

(iv) At least one element has exactly one neighbor.

Theorem: S contains at least two elements with exactly one
—-

neighbor.

—_

This type of theorem 1s used by Euler to resolve the Koenigsberg

— Bridge problem. Lemke and Howson were the first to turn the underlying

idea into a constructive procedure for proving theorems by rigging the
—

network relations to have the abstract properties. Lemke showed that

- the complementary pivot algorithms used to solve linear and positive-

definite quadratic programming problems could be modified to find

~~ complementary solutions to bi-matrix games and certain other non-convex

problems [See References 2-9.]1.
|

C Curtis Eaves tells the following Ghost Story to illustrate Lemke's

principle, Once upon a time, there was a haunted house. A brave lad

— entered the front door, (Doors are marked by an x in (10) .) Suddenly,

hay 5
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he saw a Ghost. He turned to flee but a gust of wind slammed shut the

—

front door and it would not open. He ran from the room through a second

| door only to discover himself 1n another room with a Ghost. ge fled
from room to room with a Ghost hoping to find sanctuary by exiting

L through a door which led to the outside or led to a room without a Ghost.

3 The house had property that 1f a room contained a Ghost it had exactly
two doors. Query, did the brave young man find Sanctuary?

L
(10)

: |

| G G

[ Lemke was able to apply his principle because his elements ("rooms")

| were a selected subset of the extreme points of a convex set. Two elements
- were adjacent if they had an edge (door) in common. We shall establish

[ the main theorem by setting up a correspondence between certain trees of
graph G and certain extreme points of a linear program, namely the

[ following network flow problem:

L
| Arbitrarily order the nodes in G. Next orient each arc (i,j)

[ as a directed arc from 1 to Jj, if i <j and from j to i if
Jj < i. Assign to the arcs of the given complementary tree arbitrary

[ values 355 > 0 and 354 = =a, 4 if (1,3) is a directed arc of the
( tree, for all other (i,J) let 345 = 0. Let node values b, = ) 3s
L J

6
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— The network flow problem 1s then to find 2 > 0 such that
_

Ly “13 ] Lo "Jk ] 3
J J

- where us = {i| (1,j) is a directed arc of G}
vs = {k| (j,k) is a directed arc of G}

|—

| It is well known that the arcs (i,j) corresponding to basic

i variables (feasible or not) form a tree, If feasible basic solutions
{ are non-degenerate and the feasible set 1s bounded, then a new basic

C feasible solution can be obtained by increasing sufficiently the flow

[ X, on a directed out-of-tree arc (i,j) while adjusting the flows on
basic arcs. The arc dropping out of the cycle will then correspond to

[ the unique basic variable whose value decreased to zero.
Uniqueness is a consequence of non-degeneracy, One way to avoid

— degeneracy 1s to assign as the n-1 arc flows of the starting complementary

i tree n-1 different powers of ¢ > 0. Arc flows in subsequent almost-
complementary trees will then be polynomials expressions 1n € which

i will be strictly positive for some range (Q < g < £5"
( Boundedness 1s a consequence of first ordering the nodes and then

- orienting the arcs consistent with this node ordering. If this is done

} there can be no directed cycles -in G. In general, the feasible set is
bounded if and only if there 1s no cycle 1n which all arcs are oriented

. in the same direction around the cycle.
{

L

L
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1 The almost-complementary trees correspond to the sequence of

] basic feasible solutions can now be easily shown to satisfy the

1 _ conditions of Theorem 2 and the main Theorem follows as a consequence.

3 We illustrate the procedure on Example (3). The letters

|

1D @—2=>(3, 4, (3

3 will now represent not only the name of the arc but also the directed

3 — flow on the arc. The node ordering was chosen arbitrarily. For

} starting flow in the complementary starting tree we assume

] ezL gs3

f _ (12), ry (12a) 5 Max 6=6
i -0

] In (12a) we arbitrarily introduce the out-of-tree arc s' with flow

5 — s' = 6, this causes a change of flows about the cycle in order that

the net-flow around each node remains the same. Thus the net flow at

: node (5) in (12) is c¢td = 7; 1f s 1s increased from s = 0 to

- Ss = 6 then ¢ changesfrom c¢ =4 to ¢c=4 + 6; similarly, a= 6

] changesto a = 6 - 6. The maximum change in 6 that preserves

“ feasibility is 6 = 6 at which value a = 0 and arc a drops out,

| see (13). Therefore a' = 6 is introduced in (13a).

8
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= 13) | (13a) (8 500 548 0) Max 6=3
C y

5 -0 0

| 3 13

- (14) 1 6 (14a) Q ¢ Q 0 Max 0=5
U U

0

5 a 0
(15) 1 3 3 13 6 (15a) OG 0 ’ »0) Max 6=3

| C

— 3

(16) 3 13 16a —6 x 6=
| 1 , (16a) Max 6=6

2=d" e'=3

(17) = er <= N C 1 t T
s=1 Pa ew Complementary Tree

. Modified Algorithm: After node ordering, arc orientation, assigning basic

| feasible flows, and chosing a special basic arc, increase flow on its

complement.

Step I': Drop arc of the cycle as in simplex algorithm. If arc

dropped 1s a special arc, terminate. If not,

- Step II': Introduce as incoming arc the complement of the arc

| dropped. Return to Step I'.
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