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ABSTRACT

Several matrix decompositions which are of some interest in statistical

calculations are presented. An accurate method for calculating the

canonical correlation is given.
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0. Introduction

With the advent of modern digital computers, many of the well
known hand calculator methods for making statistical calculations
have been revised. For example, Hotelling [19] proposed a number of
methods for solving matrix problems. Yet today almost none of these
methods are in current use. 1In this paper, we shall present several
well known matrix decompositions and show their relevance to statistical
calculation. Some of the properties of the numerical algorithms shall

be discussed.
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1. Cholesky decomposition

Let A be a real, symmetric, positive definite matrix of order

n. It is well known that we may factor A so that

A =RTR (1.1)

where R is an upper triangular matrix (). The decomposition (1.1)
is known as the Cholesky decomposition. The calculation of R may be
performed in two ways.

a) Complete Cholesky Decomposition Algorithm (CCDA)

Let

_ 1/2 ~ X
r, = (all) and rlj —alj/rll(,J—E,...,n) ;
Then for i = 2,..-, I'l,

i-1

ry = (agy - kzlr;i 1/2 )

(1.1)

i-1

ry; = (ay; ,'Iélrkirkj)/rii(":”l’".

b) Sequential Cholesky Decomposition Algorithm (SCDA)

Let

a(.:,L) =a. .,
1] 1]

Then for k = 1,2,¢44y N ,



T = () g = om0,

- RORE!

= () _ Tki kg C .
ij = aij - -__TEYJ— s 1, Jj=k+ l:;.., n.

Bxx

(1.2)

Since the Cholesky decomposition is unique when rii>o, each of
the algorithms produces the same R | gpach of these methods require

3 2 s .

n”/6 + 0(n°) multiplications plus n square roots. The CCDA has the

. £h
advantage that if the 1= roy of the matrix R is being computed,

then it is only necessary to have available the R row of the matrix
A, and the (i-1l) previously computed rows of R . This is especially
advantageous when the matrix A is so large that it is necessary to

store it in auxilliary storage.



2. Accuracy of the Cholesky decomposition

J. Wilkinson [31] has given an error analysis of the SCCA. He

assumes that the error in the basic operations are as follows:

fi(atb) = a(l+el) + b(l+€2)

—

f2(axb) = ab(l+53) E.n <2

££(a/b) = (a/b)(1+e))

where a mantissa of t binary digits is used. The notation fi(a bp'b)
indicates the result of the operation with two floating point numbers
a and b when standard floating point arithmetic is used. Furthermore,

it is assumed that if

x = fi(sqrt a)

then

ot
x2=a(l+e) with |e] < 2 x2 1

“ where

r—

ty =t - log2(1.06) .

When the SCDA is used, arithmetic errors are introduced at each

stage of the calculation. Indeed it is possible that for some positive

——

definite matrices it will be impossible to complete the algorithm because

—



of the roundoff error. Wilkinson has given sufficient conditions for

which it is possible to complete the SCDA. 1In addition, he has shown
that the computed Cholesky decomposition will be exact for some

perturbed matrix A + E . Let ”..J

) indicate the spectral norm,

and let R be the computed Cholesky factor.

4

Theorem 1. (Wilkinson): If A is a positive definite matrix of

order n > 10 , then provided

2 /o .
M) > 20:0/25 tll]AHe

the Cholesky factor R can be computed without breakdown and the

computed R satisfies the relation

T
RR=A+E,

lell, < 2.50> 227, .

Thus the relative perturbation viz “E”2/”A”2, is but a few units

of the mantissa for the Cholesky factorization. The above result is

independent of the choice of pivots.
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3. Solution of linear equations

Given the Cholesky decomposition, it is a simple matter to solve

a system of linear equations or to compute the inverse. To solve

=D,

the most convenient procedure is to first solve

Ry = (3.1)

W’

- and then solve

K=y -

Since R is <] and RT is &, this requires a total ofr@ + 0 (n)

multiplications. To compute the inverse, compute R ' which is <

and then compute R

of R_l

lR-T , taking advantage of the triangular form

2
and the symmetry of At i this requires % + O(ne)

multiplications. Thus to invert a positive definite matrix requires

n2/2 + O(n % multiplications which is fewer multiplications than

multiplying two matrices by the usual algorithm!

Because of the roundoff error, equations (3.l) and (3.2) can be

replaced by a perturbed system of equations. Thus, in reality we have

and

(R+6R)z = u ,
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and this implies that
(A+6A)z = b
where
SA=FE +O6RX R+ R . x 6R + 6FF x 6F .

Using Theorem 1 and Wilkinson's bounds for solving triangular systems

[30 , pg 991, it can be shown that

m]2—2 < 507 /2570 (3.3)

wien the conditions of Theorem 1 are satisfied.

The bound given by (3.3) is quite gross but it does indicate that
solving equations using the Cholesky decomposition leads to a relatively
small perturbation in the original data. Note also that we can determine

a bound on the_residual vector r = B - x. Since (A+6A)z = R ,

x = 8Az and thus

Il < 5022 2 all,

Of course, if the norm of the residual vector is small it is not true

an accurate solution has been determined since

X -z = r
~
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and hence
-1

It is possible to bound the norm of the relative error providing an

=1y .
upper bound for the condition number k. (a) =”A”2”A ”2 isknown.

Since % - X = -A_léAg s, a short manipulation shows that when

leall la™, < 1,

”5-25”2 K(A)
iy 5

where p = ”5A”2/”A”2 . This bound is independent of the method used.



4. Conditioning of matrices

Since the bound (3.4) is dependent upon the 'condition number, it
is frequently desirable to replace the original system of equations

Ax = b by a new system
DADw = Db

where D 1s a diagonal matrix with non-zero diagonal elements. Let
ﬂn be the set of all n X n diagonal matrices with non-zero diagonal

elements. We wish to choose ﬁ so that
k(BB) < «(DAD) for all Ded

A symmetric matrix is said to have Property A if there exists a permuta-

tion matrix II such that

where AleQP and Aessqérld- p+ag=n. All tri-diagonal matrices
have Property A.

Let 559n and.{ﬁ}i; = l//;j:il Forsythe and Straus [10] have
shown that for matrices that possess Property A, ﬁ =D . More
generally, for all positive definite matrices A , van der Sluis [29]

has shown that

k(BaB) < nc(Dad) . (%.1)



Therefore in the absence of other information, it would appear that
it is best to precondition the matrix A so that all the diagonal
elements are equal, e.g. the covariance matrix should be replaced by
the correlation matrix.

The problem of preconditioning symmetric positive definite

matrices arise in the other statistical contexts (cf. [12]).

10



5. Iterative refinement

Once an approximate solution to Ax = _l) has been obtained, it
is frequently possible to improve the accuracy of the approximate
solution. Let g be an approximate solution, and let r = b - Ax .

Then if £'= £+ 8 , 8 satisfies the equation
AS = L - (5‘1)

Equation (5.1) can be solved approximately once the Cholesky decomposition
of A is known; indeed, it requires but o+ 0(n) multiplications

to solve for the correction 8 . Of course, it is not possible to solve
precisely for g so that the process may be repeated. Thus for

()

given, the algorithm proceeds as follows:
1) compute z(k) =) - Az(k) H

2) solve Ag(k) =£(k) H
(1) _ (9, ()

~ ~

3) compute x

The process continues until

"x(k+l) _x(k) “

RSy

<e,

a predetermined constant or some other criterion is satisfied. The

above algorithm is known as iterative refinement end has been extensively

discussed in the literasture (cf. [ 24, 32]).

There are three sources of error in the process: (1) computation

(k)

of the residusl vector r' ’, (2) solution of the system of equations

1l



for the correction vector Q(k) s and (3) addition of the correction
vector to the approximation é(k) . It is absolutely necessary to
compute the. components of the residual vector using double precision
inner products and then to round to single precision accuracy. The
convergence of the iterative refinement process has been discussed in
detail by Moler [2k]. Generally speaking, for a large class of matrices
for k > ko all components of 35(1() are the correctly rounded single
precision approximations to the components of X . Tphere are exceptions

to this, however, (cf,[21]). Experimentally, it has been observed,

in most instances, that if HE(O) ”w/Hz(O) ”cosg’P where

el = mex Iy,
I<i<n
then k. > [t/p] . We shall return to the subject of iterative refine-

0
ment when we discuss the solution of linear least squares problem.

12



6. Partial Correlation

Again let A be a positive definite

matrix in the following form:

A |a
A=[ 11 | 12

A21 A22

. . - T_
where All is p X p , A22 is gxg , and A12 = A21

the SCDA is used but the algorithm is s

eeo e

here Rl is the Cholesky factor of All

Equating matrix blocks, we see

matrix and we partition the

|

topped after p steps,

LT

I, _
so that RlRl = All .

.
A, = RS
_ ol .
Thus
. -1 -T
W= Ay AElBllRl Ao

A - A _A A

13

P 2171112 .

Suppose



(
The matrix W -is denoted by a n+1) in (1.2).

13

Consider the covariance matrix

2:llE:lE E: )
2:= 2:212222 . where 11 s @ X p .

The partial covariance matrix

L, LT

22-1 21711712

3

when the first p variables are held fixed, and the regression function

is defined by

(2) (1) _ (1)
) 21211 © )
where g(l) ’ 2(2) are the corresponding vectors of expected values.

(p+1) |
Thus if we apply the first p steps of the SCDA, oij corresponds

to the partial covariance when the first p variables are eliminated.
We can eliminate the effect of the first (p+tl) variables by simply

performing one more step of the SCDA. It is a simple matter to compute
o -1

) T -1
the regression function since 24911*11 corresponds to S R.

1k
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7. Least squares

Let A be a given m Xn real matrix of rank r and b a

given vector. We wish to determine 9{ such that

m n )
i;l (bi - 12;_: aijxj) = min .

or using matrix notation

Jb-2gl, = min

(7.1)

If m2>nand r < n , then there is no unique solution. Under these

conditions, we require amongst those vectors x which satisfy (7.1)

that

|é‘]‘|2 = min .

A \ \ \
For r=n, X satisfies the normal equations
~

(7.2)

Unfortunately, the matrix ATA is frequently ill-conditioned and

influenced greatly by roundoff errors. The following example illustrates

this well. Suppose

15



11 11
e 0 0 O
A= 0 ¢ 0 O
0 0 ¢ O
0 0 0 ¢

which is clearly of rank 4. Then

14e’ 1 ] 1
1 1+e | |
ATa - ,
| 1 1+e |
] | 1 1460

. T
and the eigenvalues of A"A are 4+52, 52,5 % 52 . Assume that the
m
elements of A'A are'computed using double precision arithmetic, and

then rounded to single precision accuracy. Now if € <,/2_t .

1111

T 11 11
fL(ATA) = ,

1111

1111

a matrix of rank one, and consequently, no matter how accurate the linear
equation solver it will be impossible to solve the normal equations (7.2).
Longley (23] has given examples in which the solution of the normal

‘ equations leads to almost no digits of accuracy of the least squares problem.

| 16



8. A matrix decomposition

vowligl, = (Y2 so tnatllagl, - llyl, when 0 is an

orthogonal matrix, viz, QTQ =1 . Thus
-2l = lle-aaxl ,

where ¢ = Qb and Q is an orthogonal matrix. We choose Q so that

{ QA =R = <§> | (8.1)
. 0 /}(m-n) x n

~

; where R is an upper triangular matrix. Tet
Ty Tipoeoe e Typ
r . L] . r
- 22 2n
. R = ’

% then
S
g lo-ally = Comrypxymipx, = myx)?
L * o)oKy T - T’
| T ( cn-rnnxn)2
* Cr21+1 * Cr21+2 * bop ,

17



Thus ”E-Ag”: is minimized when

A A

rllx1 + rlex2 + .. .4+ rlgkn = cl
T s+ +r'x =c¢c
22 2 2n n 2

. A
X =C
nn'n n

i.e., RX = E where
~T
c = (01,92:- --:Cn) ’

and
2 2 2
lo-aRllS = ey * cpp * ol (8.2)

Then

RR = (R:0)T(R:0) = BTR
) ’ (8.3)
(ea)T(qa) = T,

and thus ﬁmﬁ is simply the Cholesky decomposition of ATA )
There are a number of ways to achieve the decomposition (8.1);

e.g., one could apply a sequence of plane rotations to annihilate the

elements below the diagonal of A . A very effective method to realize

the decomposition (8.1) is via Householder transformations. A matrix

P is said to be a Householder transformation if

18



P=1I - 2uuT ’ uTu =1 .
~~ ~ ~

Note that 1) P = P and 2) PP' = I - 2y’ —2u’ +lbyslun’= I
that P is a symmetric, orthogonal transformation.
tet A1) = 2 and 1et a®, aG) A o Gerined as

follows:

A0 _ p(0,(8) g oL )

T T
where P(k) =171 - QZFk)ﬁ(k) P) z(k) E<k) = The matrix P(k)
(k+1) _ (k+1) (k+1)
chosen so that ak+l,k = ak+2,k =, . .= %bk = 0 . Thus after k

transformations

o 2 (2)
a§1) a£2). : %1n
3 3)
0 aéQ) o ‘ ) aén
0 .o . .
A(k+l) | a££+1) . . a£§+l)
0 al(cl:.ll-}})&l <o
0 . .o
0 0 aéf;ii . aé§+l)

The details of the computation are given in [5] and [13].

19
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Clearly,

R = A(n+1)

and

o = p(Mp(n-1) (1)

although one need not compute @Q explicitly.

tions required to produce R is roughly m% -
2

20

The number of multiplica-
P,

Z whereas approximately
3

multiplications are required to form the normal equations (7.2).
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9. Statistical calculations

In many statistical calculations, it is necessary to compute certain
auxiliary information associated with Al These can readily be obtained

from the orthogonal decomposition. Thus

Xr.. X X r )2.

Ty _
det(A°A) = (rg xrpp x ook 7

Since
ATa = ¥, Tt - g T

The inverse of ¥ can be readily obtained since ¥ is an upper triangular

matrix. It is possible to calculate (ATA)-l directly from ®. rLet

T -1
(A A) =X = (351: EQ"”’En)'

Then from the relationship

¥x=%7
and by noting that {F’T} = 1/r it is possible to compute X_,x
y g ii i1 f P P X X1’
e eaX e The number of operations are roughly the same as in the first

method but more accurate bounds may be established for this method
provided all inner products are accumulated to double precision.

In some applications, the original set of observations are augmented
by an additional set of observations. In this case, it is not necessary
to begin the calculation from the beginning again if the method of ortho-
gonalization is used. Let ﬁi,Ei correspond to the original data after it

has been reduced by orthogonal transformations and let correspond to

Aprb
the additional observations. Then the up-dated least squares solution can

be obtained directly from

21



This follows immediately from the fact that the product of two orthogonal

transformations is an orthogonal transformation.

The above observation has another implication. One of the arguments
frequently advanced for using normal equations is that only n(n+l)/2

memory locations are required. By partitioning the matrix A by rows,

however, then similarly only n(n+l)/2 locations are needed when the method

of orthogonalization is used.

In certain statistical applications, it is desirable to remove a row

of the matrix A after the least squares solution has been obtained. Tpig

can be done in a very simple manner. Consider the matrix
L
c
and 4 H..7..
~ .
i

B

where ¢ is the row of A which one wishes to remove, 8 is the corresponding
~

element of b, and i = /-1. Note that

sTs = ?1% - ofw = ATh - ol

Let

I C0S: sing

“1,n+1 T .

22
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We choose cos 8§ so that {S(g)} = 0. Thus

n+l,l

{S(e)}l,l = r2 -

{S(E)}l . 1y T %%
»d re i 5
11 - %
(s(®) Hogryy - ayryy
o
n+l,j r2 - >
11~ %

Note no complex arithmetic is really necessary.

The process is continued as follows:

Let
L] ) k
1 X
1 L}
s, ]
bgpel = |7t ccos @ - oo . Ly
: 1l
: 1
| sin 6,
Then
(k+1) _ (k)
5 = 2y 18 )
23

= E’B,vou,n

%
1

J = 2535+.0,5n

n+l
.-
]
]
sin Ok k
()
~-Ccos 9k~ n+l

k=l,2,-oo,n 12



-

e

(k+1) o
}k,n+l = 0. Thus roughly 3n

multiplications and divisions and n square roots are required to form

and cos 8, is determined so that {s

the new R.
Suppose it is desirable to add an additional variable so that the

matrix A is augmented by a vector g (say). The first n columns of X
n

~

are unchanged. Now one computes

h o= ptl)

. p(2)p(1) g

~

From h one can compute P(n+l) and apply it to P(n)“.P(l) b.

It is also possible to drop one of the variables in a simple fashion

after R has been computed. For example, suppose we wish to drop variable 1,

then
[
12 "in
1‘22 N ?
R = .
r
- nn

nx (n-1)

By using plane rotations, similar to those given by (9.1), it is possible

to reduce R to the triangular form again.

2k



r—

RN

10. Gram+«Schmidt orthogonalization

In section 8, it was shown that it is possible to write
QA =R . (10.1)

The matrix Q is constructed as a product of Householder transformation.

From (10.1), we see that

where PTP = In’ S:J . Each row of S and each column of P is uniquely
determined up to a scalar factor of modulus one. In order to avoid computing
square roots, we modify the algorithms so that S is an upper traingular
matrix with ones on the diagonal. Thus PTP = D, a diagonal matrix. The

calculation of P and S may be calculated in two ways.

a) Classical Gram-Schmidt Algorithm (CGSA)

The elements of S are computed one column at a time. Let

(k)
A = le, Dos vees Pr Beo cees Eh)

and assume

T -
g- 2- = Gijdi 7 l_<- l,J < k_l.

At step k, we compute

Six = Bi Ek/di s 1<1ic<k-1
k-1 5
Be "% CwBr oo &7l -
25



b) Modified Gram-Schmidt Algorithm (MGSA)

Here the elements of S are computed one row at a time. We define

A(k) = (.-'El’ 22:" teey gk-l’ El({k>’ LR f_flk))

and assume

T T (k o
BiRy =855 44 g é£)=o , 1<1, 3 <k-1, k<2<

(
- At step k, we take Em = fiFZ and compute

_ 2 T (k) (k+1)_ (k) '
G =lpdly o s =m2) /e s 2 =a - s, B s
k+1 < £ < n.

In both procedures, skk = 1. The two procedures in the absence of
roundoff errors, produce the same decomposition. However, they have
completely different numerical properties when n> 2. If A is at all
"ill-conditioned", then using the CGSA, the computed columns of P will
soon lose their orthogonality. Consequently, one should never use the
CGSA without reorthogonalization , which greatly increases the amount of
computation. Reorthogonalization is never needed when using the MGSA. A
careful roundoff analysis is given by Bjorck in [2]. Rice [27] has shown
experimentally that the MGSA produces excellent results.

The MiSA has the advantages that it is relatively easy to program,

and experimentally (cf. [20]), it seems to be slightly more accurate than

P
the Householder procedure. However, it requires roughly Eg— operations
which is slightly more than that necessary to the Householder procedure.

Furthermore, it is not as simple as the Householder procedure to add

observations.

26
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11. Sensitivity of the solution

We consider first the inherent sensitivity of the solution of the
least squaresproblem. For this purpose it is convenient to introduce the

condition number K(A) of a non-square matrix A . This is defined by
K(A) = 0,/0, o, = max||A x x o, = min||A x
Vonr o1 = ol ol x 11> o = miale /) x 1,

so that ci and ci are the greatest and the least eigenvalues of A RA.
From its definition it is clear that K(A) is invariant with respect to

unitary transformations. 1If ¥ is defined as in (8.1) then
cl(ﬁj = cl(A) ’ onCﬁ) - Un(A) » kK(R) = k(4),
while

o) (®) = || ¥|l, and o (®) = 1/ X "1 .

The commonest method of solving least squares problems is via the normal

equation

ATA X = AT b . (11.1)

~

The matrix A'A is square and we-have

K(ATA) = KE(A) .
1
-This means that if A has a condition number of the order of 22 then

ATA has a condition number of order 2t and it will not be possible
using t -digit arithmetic to solve (11.1). The method of orthogonal

transformations replaces the least squares problem by the solution of

27
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the equations i;x = g and k(R)-x(A). It would therefore seem to have

substantial advantages since we avoid working with a matrix with condition

number K2(A).
We now show that this last remark is an oversimplification. T4 this

end, we compare the solution of the original system (A { b) with that of a

~

perturbed system. It is convenient to assume that

o1 = HAHQ = | B,Hg =13

this is not in any sense a restriction since we can make HAH2 and || b H2

of order unity merely by scaling by an appropriate power of two. e pow

have
k(a) - k®) - | XM, - 2o,

Consider the perturbed system

'_l

)

a+eE; b ce), |Bl = el,=

where e is to be arbitrarily small. The solution X of the perturbed

system satisfies the equation
T = T,
(A +€E)"(A + eE) x = (A +eE) (b + ee) . (11.2)

If %X is the exact solution of the original system and Q is the exact

~

orthogonal transformation corresponding to A we have

® R + ¢F f
Q A = Jees “y Q(A + EE) = Jrrre ) Q e = oor
0 €G T le

28
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r=b-A% , Ar = 6.
Equation (11.2) therefore becomes

(A + gE)T(A + ¢E) = (AT + gET)(A X _+ r_+ se)

giving
R+er| T [R+er| ®+cr| T | % £ .
ecesvee esessese] X = secenve .o X+E :: +EE r
eG eG ~ eG ol~ g ~

Neglecting 52 where advantageous

@+ )@+ e T = ®+eD)HE + (@ + D)L + B + 0(5)

® + EF)'l R x+e® + gF)'l€v+

~

X
+ e(® BB + o)
=k - ®Fx e er ey @ MY 4 0(d)

giving

HE - %0l < el®HIEIN & N, + el® g, + B2 eI, + o(®)
< ex(A)|F, + ex(a) + ek®@||gl, + 0(%) .

We observe that the bounds include a term eK2(AMEﬂ2.It is easy to

" verify by means of a 3 X 2 matrix A that this bound is realistic and

that an error of this order of magnitude does indeed result from almost

any such perturbation E of A . We conclude that although the use of

the orthogonal transformation avoids some of the ill effects inherent in
x

29



the use of the normal equations the value of K2(A) is still relevant

to some extent.

When the equations are compatible uﬂ\= 0 and the term in K2(A)
disappears. In the non-singular linear equation case r is always null
and hence it is always k(A) rather than KE(A) which is relevant. Since
the sensity of the solution depends on the condition number, in the
absence of other information, one should normalize each column of A so

that its length is one in accordance with (4.1).
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12. Iterative refinement for least squares problems

The iterative refinement method may also be used for improving the

solution to linear least squares problems.

Let

¥p=b-A% , a>0
so that

oals = AT A'A k=9

When o = 1, the vector p is simply the residual vector r . Thus

~

all A 2. b
C o > (12.1)
ATO % )
or
B{x =g .

One of the standard methods for solving linear equations may now be
used to solve (12.1). However, this is quite wasteful of memory space
since the dimension of the system to be solved is (m + n).

We may simplify this problem somewhat by noting with the aid of

(8.3) that
Ja I L A
oIja || faz]o YO -
ATl LaT|igt o |-ix
Jo  |J/a Jo
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We are now in a position to use the iterative refinement method for
solving linear equations.

Thus one might proceed as follows:

) .
1) Solve for x( ) using one of the orthogonalization procedures outlined
in section 8 or 10. ¥ must be saved but it is not necessary to retain Q.

Then

l©°

+
2) The vector y(s 1) is determined from the relationship

~

NCOINOINNG

~ ~

where
BE(S) =g - Bx(S) = g(s) : (12.2)

This calculation is simplified by solving

(s) 2 p(s)

Lz

0 e(®) - ()

The vector—h(s) must be' calculated using double precision accuracy and

then rounding to single precision.

3) Terminate the iteration when ﬂi(sﬁbﬂ&fs)n is less than a prescribed
number.

Note that the computed residual vector is an approximation to the
residual vector when the exact solution E’ is known. This may differ

from the residual vector computed from the approximate solution to the
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least squares problem.

A variant of the above procedure has been analyzed by Bjorck [3],
and he has also given an ALGOL procedure. This has proved to be a very
effective method for obtaining highly accurate solutions to linear least
squares problems. Bjdrck and Golub [4] have described a similar iterative

refinement method for solving least squares problems with linear constraints.

33



13. Singular Systems

If the rank of A is less than n and if column interchanges are
performed to maximize the diagonal elements of R, then
1

r4l) _ F;xr l S(n-r)xr

al
o| 0

when rank (A) = r. A sequence of Householder transformations may now

. , +
'be applied on the right of A(r 1) so that the elements of S(n—r)Xr

become annihilated. Thus dropping subscripts and superscripts, we have

Tl 0
QAZT{T*-T

where ¥ is an rxr upper triangular matrix. Now

o -axl,=1p-e 28|,

=“£'T,¥,H2

where ¢ = Qb and y = ZTX . Since T is of rank r, there is no unique
solution so that we impose the condition that || % “2 = min. But
% ll, = ll%l, since T is orthogonal and || y ||, = min. when

Vp41 = Ypap = 000 = Vp = O
Thus

1
X = T 0 Qb .
~ 0 0

3L
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This solution has been given by Fadeev, et. 8l.[7] and Hanson and
Lawson [18]. The problem still remains how to numerically determine

the rank which will be discussed in section 15.
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1k. Singular value decomposition

Let A be a real, m xn matrix (for notational convenience we assume

that m 2 n). It is well known (cf. [22])that

T
A= UgV (1k.1)
where
- T _
UUT = Im sy VW = In
and
cl,oco,o
Z= O, -oo,o'n
0 (m - n)x n .

The matrix U consists of the orthonormalized eigenvectors of AAT, and the
matrix V consists of the orthonormalized eigenvectors of A, The

diagonal elements of § are the non-negative square roots of the eigen-

values of AIA;they are called singular values or principal values of A.

We assume

Thus if rank (A) =1, G£+l = 0.yp = ¢+t =0 =0. The decomposition (14.1)

is called the singular value decomposition (SVD).

Let

0]

x = AT o . (14.2)

It can be shown [22] that the non-zero eigenvalues of % always occur in

+ pairs, viz
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15. Applications of the SVD

The singular value decomposition plays an important role in a number
of least squares problems, and we will illustrate this with some examples.
Throughout this discussion, we use the Euclidean or Frobenius norm of a

matrix, viz.

Il = (Zlay;1®?

A) Let un be the set of all n xn orthogonal matrices. For an arbitrary

n xn real matrix A, determine qun such that
la - q| < ||a - x| for any XU -

It has been shown by Fan and Hoffman [8] that if
A=U2VT, thenQ:UVT

B) An important generalization of problem A occurs in factor analysis.

For arbitrary n Xn real matrices A and B, determine qun such that

|A -BQl| < ||A - BX| for any XeU,

It has been shown by Green [17]and by Schonemann[28] that if

T

BTA = UgVY, then O = UVY

] C) Let mrkar)1 be the set of all m x n matrices of rank k. Assume
2

A'mrﬁfr)l .Determine BE (1;)1 (k € r) such that

|A - B| < ||A - X| for all X‘WQE,I:I)I .
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%. It has been shown by Eckart and Young [6] that if

A= UZVT, then B = UDkVT (15.1)
where
Ol E O
o
Q =/ . ) ' (15.2)
k N * . .
v , qk
Note that
: , 1
; 2 2.2
HA - B“ = “Z - Qk“ = (°k+l + .o +. o'r) . ‘ (15.3)

D) An n x m matrix X is said to be the psuedo-inverse of an m X n

matrix A if X satisfies the following four properties:

i) AXA = A,

ii) XAX =X,
iii) (AX)T = A%,
iv) (xa)T = xA.

. + . + .
We denote the psuedo-inverse by A . We wish to determine A numerically.
R + -
It can be shown [26] that A can always be determined and is unique. It

is easy to verify that

A+ = VAUY (15.4)
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where

II—'

Qll—‘

O
i

\ () nxi )

In recent years there have been a number of algorithms proposed for

computing the pseudo-inverse of a matrix. These algorithms usually depend

upon a knowledge of the rank of the matrix or upon some suitable chosen
parameter. For example in the latter case, if one uses (15J0 to compute
the pseudo-inverse, then after one has computed the singular value decom-
position numerically it is necessary to determine which of the singular
values are zero by testing against some tolerance.

Alternatively, suppose we know that the given matrix A can be

represented as
A= B + OB

where ¢B is a matrix of perturbations and
lleBl| < -

Now, we wish to construct a matrix B such that

la - Bl s
and

rank (%) = minimum.
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This can be accomplished with the aid of the solution to problem (C). Let

where ( is defined as in (15.2).

Then using (15.3),

B=B
P
if
1
2 2 2,2 <
(°p+1+°p+2+. T cn) =
and
1
2 2 2,2
(cp+cp+l+...+cn) > 1.

~
Since rank (B) = p by construction,

B = vn;uT :

-~

+ , , +
Thus, we take B as our approximation to A .

E) Let A be a given matrix, and E'be a known vector. patermine % so

~

that amongst all x for which [|b - Ax || = min, || % || = min.

It is easy

to verify that
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16. Calculation of the SVD.

In [14] it was shown by Golub and Kahan that it is possible to con-

struct a sequence of orthogonal matrices

k)| n (k)| n-1
p(

[ ] k=1, [Q k=1
via Householder transformation so that

p()p(n-1) (1), ()(2) | o(m-1)

and J is an m xn bi-diagonal matrix of the form

O ) } (m-n)xn .

The singular values of J are the same as those of A. Thus if the singular

value decomposition of

J= XZYlIl
then

A = Pxeylql
so that

U'-'PX,V:QT.

In [16], an algorithm is given for computing the SVD of J; the algorithm

is based on the highly effective algorithm of Francis [1l] for computing

4o

the eigenvalues.

= PTAQ =7
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It is not necessary to compute the complete SVD when a vector D is
given. Since "}E = VZ+UT3, it is oniy necessary to compute V,T and UTR,
note, this has a strong flavor of principal component analysis. An ALGOL
procedure for the SVD will soon be published by Golub and Reinsch and a

complex FORTRAN procedure for  the SVD by Businger and Golub.
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17. Canonical correlations

It is well-known (cf. [1]) that in order to solve for canonical

correlations,, it is necessary to solve the matrix equation

°© Ip 2 T = 2
T,y O 8/ 0 Y (17.1)

where le is a p x p positive definite matrix and 222 is a q x q positive
definite matrix. The eigenvalues of (17.1) correspond to the canonical

correlations. Since Z;; is positive definite we have

$.. = I, .
11 11

ashort manipulation shows we may rewrite (17.1) as

0
T & 5, =A E
@ 0 J Jl
PR S |
where 0 = [7E T, (17.2)

f=he,0=18 -

Thus by (14.2) and Gﬁ“5), we see that the canonical correlations, A, are
J
the singular values of Q.
Suppose we have two sets of data X and Y . We assume that
nxpoy n q
the mean of each variable is zero. Then
2 T, < T, < T
c>o0
T+ XX, Ty, » TY, Ty, . X ( ) .
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Using the Householder algorithm described in section 8 or the Gram-Schmidt

algorithm described in section 10, we may write
T
X=QIR’QQ=IP)R:Q F)
T
Y=PS, PP=Iq, S:Q .

Hence by (17.2)

Q= R-TRTQTPSS_l

T
QP . (17.3)

Therefore the canonical correlations are the singular values of Q'P. Note

o @< bl QI B, <L

ll2

A short calculation shows that @,= R"lu, and B.= s'l‘{r, where u. and V. are
~L ~L ~1 ~L ~1 ~1
.th , , o
the i columns of U and V, respectively. This method of characterizing the
canonical correlations has been observed previously (cf. [25] ). An

algorithm using these techniques will soon be published by Bjorck and Golub.
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