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Introduction

There are many unsolved problems concerning the distribution of

prime numbers. For example, it is not known whether there is an

infinity of 'twins', psirs p and p + 2 %both prime, although

empirical evidence strongly suggests that there is (see [1]). In this

paper the broesder question of the distribution of smell even gaps

between successive large primes is investigsted. The arguments used

involve statistical assumptions which, slthough intuitively reasonable,

sre not, and perhaps can not be, rigorously justified. Hence the results

otteined are not formally proven. They are, however, very well supported

by extensive empirical evidence. Hence the merit clsimed for the results

of this paper is that, theoretically justifisble or not, they give an

extremely good representation of the actual distribution of small prime

geps. Considering the irregulsrities of this distribution (see Diagram 1),

any reasonsble explsnstion of it is interesting.
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Notation

This section is probably best referred to when needed below.

Throughout let Q be the set of odd primes 3,5,7,11,..., and

let qeQ . Let N be a large integer; p , s (varying) prime with

P~N; and r , a smell positive integer.

V is the s-.t of all r-tuples v = (vyreeesv) , where each
v, 18 0 or 1 and v =1.
i r

For k>1, define

| 1-1/(q-k XK

Cc, = | Life) = Il l -k 2a 1-1/3 ) RN ie)
and, for r > k , define

k

q<r+l

n n (1-1/((q-1)(q-1)))
q<r+l im]

For veV , let the nonzero components of v be, ir order,

VY, Vesa V (so = Tr) and let n =0.
ny "hy My "x ’ °

If L 4s the set of ng (mod q@) for j=0, 1,..., i~1 then
define

0 if n, (mod q@) e¢ L
1 otherwise.

8la,4,v) = § —5TT
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Finally, let

k

hv) = 0 0 (1-glq,i,v))
q<r+l 1=1

and

Vo L745"

The notation mm } n means that n 1s not divisible by m .
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Theory

Everywhere "the probsbility of event E given F", written

P(E|F) ’ should be interpreted ss relative frequency, in a sense

which should be clear from the context.

We are concerned with finding a function f(r) which approximates

the probebility that a prime gap in a given region will be of length

2r . More precisely, if M is an integer, large compared to r

and log N , but small compared to N, and if there sare n + 1 ]

primes in the interval (N-M, NM) , end if m of the gaps between

consecutive primes in this interval sre of length exactly 2r , then

we expect that

The point of this psper is the substantiation of:

Conjecture 1

Let Ak = Fok Sek sy Where Fx and Sr k are defined
above. Then for small r y i.e. r&logN, a function f :

satisfying the corlitions of the previous paragraph is

Yr A X

k=1 (log N)

(Table 1 gives some computed values for the A o)?

Before discussion the Conjecture, it is interesting to deduce

some of its immediste consequences:
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Corollary 1

For fixed rr,

A 1
—_—t

| f(r) = Toe (140(1)) as N oa= ,

The proof iz immediste. Note that, from the definition of

Ax yc We have

ALqy=2c JA! (423) ’
’ alr q

-)]
and as n=) diverges the A are unbounded.

q-2 r,1

In the following, by a ~ db we always mean that

Noe

Corollary 2

If W(r) is the number of pairs of consecutive primes Pp and

p+2r with p< NK, then

A, 1° N
| Wx) ~ Ld

(log KN)

Proof

From Corollary 1 and the prime number theorem, we see that

N A

~ rel at
n(x) J (Tog ry log t

and integration by parts gives the result.
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Corollery 3

Putting 1 for r in Corollsry 2, the number of twin primes

less than RN is

ae! *N
2 L |

(log N)

Again I would emphasize that Corcllaries 1-3, while following

rigorously from Conjecture 1, have not been proven, for they depend

on the irformsl srguments used below to substantiste (not prove)

Conjecture 1.

Before discussing Conjecture 1, we need some definitions and a

Lemna, Let veV , and p range over the primes near N as before.

For r' <r, define

q(r',v) = P(1<i<r'Avs=1or+2ieQ)

and

q(2r?,v) = P(I<i<r D(praieqav, ul) ,

where parentheses may be restored by the usual conventions.

We shall abbreviate q(r,v) by q(v) amd q{(r,v) by gq(v).

Define

r-1

s(v) = 1 ) Vi
(<1)

. Lj

If v, v'eV we write v'>v if vy 2 vy foresch 1 m1,..., r.
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We shall see below that it is possible to estimate q(v) , so

we need to express the function f in terms of the gq(v) . The

following Lemma does this:

Lemma |

f(r) = L s(v) « q(v) .\ {3

Proof

From the definition of q we have

f(r) = q¢((0,0,...,0,1)) , (1)

but from the definition of q 1t is easy to see that

av) = Lav)
viv

Hence

3, s(t) = » (av') - py s(v)) . (2)veV v'eV xv!

But

k'=1 k'=1 kt«lf k'=1

_ Jo if Kk' 41
l if x" =1 °

Hence the result follows from (1) and (2).
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Now we are ready to complete the substantiation of Conjecture l.

From the definition of conditional probability, we see that

Y,V
P(pt2req|1<i 2n, €dey - (prereq|1<i<iopt 19)

= P(qeQra<Oqip+er| 1<i<9Op+an,€Q) |

At this stage we make an assumption which, although reasonable,

is reslly only justified by the agreement of Conjecture 1 with empirical

dats. We assume independence of divieibhility by the different primes

q in the above expression, Actuelly, it is enough to assume that

this is a good approximation for primes q small compared to p .

The assumption gives .

r,Vv
«= I P *ls “ep 9° (3%)

where |

P= P(qfp+er|1<i<iopeen,eq) (4)

We now make a rather similar sssumption, that the condition

p+2n,eQ only affects P in that it assures that qfp+en, . This
gives

P, = Matprar|ici<egipson,) , (*)

= 1 - Ha|pr2r|iziaogipran) ,
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but considering the possibilities fcr p+2v(mod q) , bearing in mind

that p, being prime, is not divisible by q , and looking back to

the definition of g , it is not difficult to see that the last tem

is just g(q,k,v) . Hence

Fa = 1 - glq,k,v) . (5)

Since p is odd, the prime number theorem gives

| —2r & P(p+oreq)
log N °*

= P(qeQra<pouip+ar) .

By another asssumption similar to those above this is

0 Platpter) = 1 (1-1/9) , (*)
<p q<p

50 |

1 (1-2/0) § og (6)
<p

Combining (3) to (6) gives

Any,vos -2_ Re  .an, sv “Toe ¥ J, l-1/q * (7)
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Observe that if q > r then

gla, k,v) = 1/(q=k) ’

and if q > r + 1 then, since k<r, this is <1 . Now the

product

Sk+1 =v

converges, and we assumed thet p ~ N wes large, so in (7) the condition

q < p mey be dropped. Also, since gq(O,v) = 1, we have

(r,v) va(r,v) = rv «a eosw » any, ) ’

so from (7)

2 +k k 1l- i,valryv) # (oo) 8 0 (gla), (8)
i=l q€eQ

Now substitution of (8) into the result of the Lemma, and a

rearrangement of the products using the observation about g above,

gives the required result. Steps where statistical assumptions were

made are indicated by (%*).
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Empirical Tests

First it was necessary to evaluate the constsnts AL x . The

Ce for k = 1, 2,005 UO were calculated by taking the product over
primes less than 40000, and roughly approximating the remainder by

an integral. The first few are c, = 0.6601€ , c, = 0.72160 ,

Cy = 0.48412 , c), = 0.65085 , eg = 0.45529 , cg = 0.71314 ,

c, = 0.62911 , cg = 0.51704 , and cg = 0.34787 . Computation of

the AL x 1s more interesting. Difficulties soon arise because cf

the large number of terms in the sum 5k when k is large (in
fact when k is not very smell). The LI were computed by a
straightforward method for r< 18, k<r, sand also for r=19,

20, 21, k< 8 . See Table 1. An interesting combinatorial problem,

which we shall not discuss here, is the computation of the function

u(r) = mex{iegr(A, #0} .
Eleven blocks, each of about 8.10° numbers and in the region

from 6.10° to 2.10'°, were searched for primes, and for each block

the sctusl distribution of gapswas found. Taking for N the midpoint

of the block (this is not critical), the probesbilities (1) ,

£(2), 000, £{21) and 1 - 2 f(r) were cslculated from the AL x and
Conjecture 1. The ‘predicted distribution’ was just these probabilities

multiplied by the total observed number of gaps (so one degree of

freedom is lost), and the predicted and actual distributionswere

compared. In no case did the x test indicete @ significant difference

at the 5% (or even at the 10%) level. Generally, the fit seemed slightly

better than chance, which 1s perhaps reasonable on intuitive grounds,

but in only three of the eleven cases was xo, significantly small

11



at the 5% level. The intervals, number of primes in them, Xag for
21 degrees of freedom, and probability of such Xay being exceeded in
sampling from identical populations, are shown in Table 2.

The method of searching for primes wes a sieve method similar to

that deseribed in [3]. Primes up to the square root of the largest |

number tc be tested are first found by some method, and then blocks

| of numbers are 'sieved'. Only odd numbers are considered, and only a

one bit flag for each number is necessary. Actually it is quicker to

use the smallest addressable unit. The blocks should be as large as

possible. On a CDC 3200 with 15 bit index registers (with sign extension

to 17 bits for character addressing) and 1's complement arithmetic, e

block length of 191 can be used, and the innermost loop is only

three instructions with one storage reference. The method is very

fast compared, ssy, to the ALGOL procedures [2]. Around 107 the

time to search a million numbers and output the roughly 60,000 primes

to tape (for possible future use) was 20.1 seconds, around 101° this

increased to 30.4 seconds. The program was checked using the amazingly

accurate tables [4], and all comput ing was done on a CDC 3200 at

Monash Univers lty.

In a typical case, 347570 primes were found (in 243 sec.) in the

interval (10%° ’ 101948, 000, 074) « The distribution of gaps is shown

in Diagram 1, and Table 3 compares the actual and predicted distributions.

Note the approximate equality of the peaks for gaps 2 and 4, the high

peak for 6, and the general irregularity of the distribution, which

are typical of all eleven cases, and as predicted by Conjecture 1l.
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Conclusion

Using Conjecture 1 and the constants A K in Table 1, the>

distribution of small prime gaps predicted was in good agreement with

empirical results for over 4,000,000 gaps. As the distribution is so

irregulsr, which can be seen by e& glance at Diagram 1, it is hard to

believe that this good fit is just a coincidence. Hence any results

to be proved concerning, say, twin primes, will probably have tc be

compatible with Conjecture 1, or at least with Corollary 3.
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Zable1

r=1 1.320% 9 10 11
2 1.320% 0

3 2.6406 =5.7165 0
4 1.320% =5.7165 4.1512 0
5 1.7604 <B.5ThT 8.3023 0 0
6 2.6406 «20.008 41.512 -20.264 0 0 |
7 1l.58k4  -1b,291 38.744 -30,395 0 0 0
8 1.3205 =14.,291 L9.81% -60.790 17.298 0 0 9)
9 2.6406 =32.B70 138.37 -222.90 103.79 0 0 0

10 1.760% -27.868 160,51 =405.27 415.16 -107.9% 0 0
11 1.4670 «22.509 12k.9%5 =205.51 249.10 0 0 0
120 2.6406 -48.590 343,5% -1161.8 1868.2 -1133.4 0 0
13 1l.440k -29.869 243.58 -989.75 2087.7 -2140.9 831.88 0
14 1.5844 33,048 270.42 -1097.6 2290.3 2266.8 792.27 0
15 3.5200 -86,248 £355.67 <LhoB.,2 125k2, -19272. 14320. -3780.3

0 0 0

16 1.3203 -36.300 413,65 -2532.1 9022.k -18953. 22649. -13945.
3409. b 0 0

17 1.408% «39,046 U44B,96 -2771.5 9927.3 -2079k. 24340. -14176.
3117.2 0 0

18 2.6406 =79.33%32 1000.5 -6889.0 28204. -70154. 104110 -87178.

19 1.3980 =44.6h2 600.71 -4425.9 19396. -51300. 73886. -63103.

21 3.1688 -115.20 1803.0 =-15890. B65kS. 300640 662380 -888200

(22 1.4670 =956.51% QU6.23 -0036.7 54285. -213%220)

The constants Ar x’ The last digit may be in error by 2 or 3, especially for

higher k. Values which sre omitted sre zero for r< 18 .
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Table 2

log, N a b n+l x P(X° > Xo)
7.00 6.100 8,000,034 497230 15.28 0.81
7.38 2.107 8,000,008 1470830 14.08 0.87
7.81 6.10 8,000,040 445230 15.55 0.79
8.31 2.10% 8,000,022 418280 18.79 0.60
8.78 6.10 8,000,078 395930 8.73 0.991
9.00 1.10° 8,000,198 386000 21.69 0.42
9.30 2.107 8,000,000 374240 27.03 0.17
9.78 6.10° 8,000,004 355150 9.20 0.987

10.00 1.10%° 8,000,074 347570 15.54 0.79
10.18 -  15.10° 8,000,000 341390 19.36 0.56
10.30 2.10'® 8,000,000 337310 10.99 0.96

Empirical results for distribution of prime gaps. The interval searched

is (a, a+b) with midpoint N, number of primes in interval is n+l (so n gaps).

Testing the fit of actual and predicted distribution of gaps of length

2, 4, ..., 42 and remainder gives 2, vith 21 degrees of freedom.
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Table 2

1 19943 19930 +0.09
2 19977 19930 +0.34

3 3€145 36112 +0.17
4 16325 16300 +0.19

2 21054 211688 -0.92

6 | 28009 27900 +0.65

7 15783 15613 +1.36

8 11973 11905 +0,62

9 21956 21981 -0.18

10 | 12403 12395 +0.07

11 10510 10593 -0,81

12 16435 1649 0.11

13 7810 7979 +0.34

1k 8896 8710 +1.99
15 15957 16147 -1.50

16 5249 5022 +0.38

17 5533 5504 +0.38

18 3200 9183 +0.18

19 L428 L397 +0.47

20 5215 5257 -0.58

21 | 803% 8007 +0.29
2254443130 LET735 L6867 -0.61

Distribution of the 347,569 prime gaps in the interval (101°, 10,008,000,074).

For a gap of length 2r the actual frequency is fa and the predicted frequency

f, (with equal totals). The x test gives P = 0.79, so does not show a =sig-
nificant difference between the two distributions.
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Diagram 1

36000

32000

28000

24000

frequenc

20000

16000

12000

8000

© 2146810 20 30 40 50 60
Gap Length

The frequency of occurrence of small prime gaps in the interval

(10,000, 000,000, 10,008,000,074).
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