CS 91

THE PL360 SYSTEM

BY

NIKLAUS WIRTH
JOSEPH W. WELLS, JR.
EDWIN H. SATTERTHWAITE, JR.

TECHNICAL REPORT NO. CS 91
APRIL 1, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

|
—

T

[

THE PL360 SYSTEM

By

Niklaus Wirth
Joseph W. Wells, Jr.

Edwin H. Satterthwaite, Jr.

Computer Science Department
Stanford University

Stanford, California

Y.

|
|
|-

e

THE PL360 SYSTEM
Table of Contents
Page
Introduction and SUrVEY «ceoceesctoccroasosesacscasssasosssans 1
Job Control Instructions B I S P 3
Table of available system programs
3. Description of System Programs .cc:cceeececcocnsssesocnonseos 5
3.1. The PL360 Compiler (PL360) et eeeeeieeaee e 5
3.1.1. The Form of Input Decks .cecevvececcenceneennen 5
3.1.2. The Language «:+ceseee. B I R 5
- 3.1.2.1. Symbol Representation «..ceeeeeuessn. 6
3.1.2.2. Standard Identifiers ciisees 6
3.1.2.3. Restrictions .ceeeiecvoes ceseesecsuea
%3.1.2.4. Supervisor Functions and Standard
Procedures «ccceccececoans ceseseseans 7
3.1.2.5. Example Programcceeeesececeacces 10
3.1.3. Instructions to the Compilercocoe.e.. 13
3.1.4. Compiler Output Listingceeeveveeecenn “es 14
3.1.5. Error Messages of the Compilercecoveeeeess 15
3.1.6. The Format of "Binary" Cards ceeesee. 18
3.2. Program to Duplicate Card Decks (DUPDECK) .veveevveassn 19
3.3, Program to List Card Decks (LISTER) .eeeesevsens ceeese. 19
3.4, Tape Updating Utility Program (TUP) ...ceeeveeosn e 20
3.5. System Tape Updating Program (SYSTUP) ...evvereeeeanan. 25
3.6. Source File Tape Updating Progrem (SFIUP) verees B
3.7. Syntax Processor (SYNPROC) .veveeevsns e e L
3.8. Program to Generate Cross-Reference Tables of
Identifiers (XREF) e eieieeiieieea, ceeees 48
4. The PL360 Environmente.eeeeseeacecncasnons Ceeeeeeieeaes 51
4.1. Storage Organization Cheeieaaeenaae veeees 51
4.2, Program Execution (Run-Time) Errors e . 52
5. Use of the PL360/0S System .uuveeeeeeeernnnneeeannns teieeneas 55
5.1. Background and General Organizationcceeeceeeeeacss 55
i

e

i
i
—

- - .

r—-

-

-

THE PL360 SYSTEM

Table of Contents

5.2. PL360 System Programs Under OSceeeeeneenenns. 57
5.3. O0S Job Control Language Requirements ,,.,.........c000.. 60
5.4, Examplesceeeenienn.n. e ceo. OB
6. Use of the PL360 Stand-Alone Systemceeeeevenenens 70
6.1. Input/Output Facilitiesccevvrivvnennennnnnn. 70
6.2. Special System Facilitiescvvuvvinnennnen. 71
6.3. Initial Loading and Operating the System 72
7. PL360 System Organization and Sborage Reguirements . ., 76
7.1. General Organizabioneevvvenenrnenenenennns 76
7.2. The PL360/0S System e N (S
7.3. The PL360 Stand-Alone System ,........ e 79
Appendix:
Additions and Changes to the PL360 Language ., 81
RefErencescveeeenneeneeneenoannenss e cieeea.. 89

ii

N

'
—

1. Introduction and Survey

This report describes the use of two operating systems which serve
as environments for the PL360 language defined in the companion report
Cs 53 [1]. Some additions to that language, not described in CS 53,
are documented in the Appendix. One of the systems is a stand-alone,
self-loading program spécifically designed for PL360; the other is a
subsystem operating under IBM's Operating System/%60 (0S). With the
minor exceptions noted in Chapter 5, these two systems were designed
to be entirely compatible at the source language level.

The cor¥e of both systems is a job sequencer which accepts batches
of jobs and receives instructions in the form of control cards. These
job control instructions are described in Chapter 2. A collection of
standard programs, including the PL360 compiler, is provided in each
system. The use of these programs is described in Chapter 3; in par-
ticular, section 3.1 defines the symbol representations, the restric-
tions imposed on the language by the implementation, the available sys-
tem functions (particularly those for input and output), and the usage
of the compiler.

Chapter 4 contains further information about the environment pro-
vided. Storage organization is described, and the reaction of the
system to the occurrence of program checks and other unintended events
is indicated.

Chapter 5 outlines the use of the PL360 OS subsystem, including
a description of the OS deck setup and Job Control Language statements

required. Chapter 6 describes the use of the PL360 stand-alone system,

including information for the computer operator.

While Chapters 2-6 are intended to serve as a user's reference

manual, Chapter 7 contains information about the cbnfiguration require-
ments and internal organization of the two systems. Knowledge of this
chapter is not required for the routine use of either system.

The PL360 operating environment was désigned with the goal of pro-
viding a convenient, efficient; and easy-to-usé tool for the development
of compilers and operating systems. This goal is reflected in the set
of standard library programs. In addition to listing and card duplicat-
ing programs, there are programs to maintain and edit tape files, which
the compiler and oﬁher programs are able to accept as input in place of
cards. A system generation program is also provided to rapidly create
- or update system program libraries. Cross-reference listings (in any
language, and PL360 in particular) are produced by another library
program. Finally, a syntax processor is included to facilitate the
construction of compilers based on the principle of analysis of prece-
dence grammars.

A further program available under the system is the Algol W compiler.
The Algol W language and the use of that compiler are described in the
companion report CS 89 [2].

Development of the two systems was directed by Professor Niklaus
Wirth. The stand-alone system and most of the library programs were
implemented by Mr. J. Wells. Mr. E. Satterthwaite developed the 0S sub-
system, and Mrs. J. Keckler wrote the cross-referencing library program.

This project was supported in part by the National Science Founda-

tion grant GP 684k .

{
—

—

r—

—

r— r—

2. Job Control Instructions

Jobs in the input batch are separated by control cards to be inter-
preted by the job control routine. These cards are characterized by a
0-4-8 punch (denoted by "%", the 029 keypunch graphic) in column 1 and,
if encountered by the READ routine, give rise to an end-of-file indica-
tion (see section 3.1.2.4). Information contained in columns 2-9 (left
adjusted) of control cards is inspected and interpreted. With the ex-
ception of an EOF card, such a control card is assumed to mark the

beginning of a new job.

-

EOF This control card merely causes an end-of-file indication
to be given. It is to be used at the end of an object

deck or of a compiler source deck.

A time limit for each job may optionally be specified on the
corresponding control card. Card columns 10-17 are used for such spe-
cification. Within that field, the following forms of time limit

specification are allowed:

<time 1limit> ::= <minutes> | <minutes> : <seconds>
<minutes> ::= <unsigned integer> | {empty]}
<seconds> t:= <unsigned integer> | {empty}

An empty field is given the value zero. If the time limit field is

blank or has a value of zero, the job is allowed unlimited time. Other-
wise, execution of the job is automatically terminated upon expiration
of the designated time interval if necessary. Any information in columns

18-80 of control cards is ignored.

Previously prodiuced chject decks may be loaded and executed by use

of the LOAD control card.

LOAD The subsequent cards should be an object deck punched
by a compiler (see section 3.1.6). They are loaded and
execution of the loaded program is initiated. An input
deck using the LOAD instruction has the following compo-

sition.

data -3/ [EOF

object Agl
deck _—_—jﬁyyi F%EOF
] -

%LOAD

Note: The second EOF card is not required if there is no data.

Any other text contained in columns 2-9 is interpreted as the name of
a program to be loaded from the system library. The following stan-

“dard library programs are described in the following chapter:

PL360 PL360 compiler

DUPDECK Program to duplicate card decks
LISTER Program to list card decks

TUP Tape updating program

SYSTUP System tape updating program

SFTUP Source file tape updating program
SYNFROC Syntax processor program

XREF Identifier cross-referencing program

Use of the ALGOL W compiler is described in the companion report CS 89 [2].
L

\'
L

r— -

—

r r— — r— r— — r—

r—

3. Description of System Programs

3.1. The PL360 Compiler (PL360)

5.1.1. The Form of Input Decks

data——————j:>>//4

%EOF \

%EOF

PL360 source

progran1-————i>5////

|%PL360 time name \\

Note: 1. If there is no data, only one %EOF card is needed.

2, If a PL360 object deck is inserted between the source
deck and the first %EOF card, then after the compiled
program has been loaded, that object program is loaded
up to the first %EOF card. The combined programs are
then executed. This facility can be used in connection
with the external and global segment facilities of PL360
(see the Appendix).

3.1.2. The Language

The PL360 programming language is described in a companion report
[1]. Revisions and additions to the language are described in the
Appendix of this report. Details pertinent to the present implementation

(i.e., symbol representations, standard identifiers, and specific limi-

tations) are contained in the subsequent paragraphs.

3.1.2.1. Symbol Representation

Only capital letters are available. Basic symbols which consist
of underlined letter sequences in the:teport{l}are"denﬁted'by the same
letter sequences without further distinction. As a consequence, they

cannot be used as identifiers. The basic symbols are:

¢)
s 5 . : e # " '
= <= >= - =
DO IF OF OR
ABS AND - END FOR NEG SYN XOR
BASE BYTE CASE ELSE GOTO LONG NULL
REAL SHIA SHLL SHRA SHRL STEP THEN
ARRAY BEGIN SHORT UNTIL WHILE
GLOBAL
COMMENT INTEGER LOGICAL SEGMENT
EXTERNAL FUNCTION OVERFLOW REGISTER
CHARACTER PROCEDURE

3.1.2.2. Standard Identifiers

The following identifiers are predeclared in the language, but may
be redeclared due to block structure. Their predefined meaning is spe-

cified in the language report [1], in section 3.1.2.4, or in the Appendix.

MEM
Bl B2 B3 B4 B5 B6 B7 B8 B9
B1O Bll B12 Bl3

RO R1 R2 R3 R4 R5 R6 R7 R8
R9 R10 R11 R12 R13 Rilk R15

FO F2 4 F6

FOl F23 FL45 F67

{
\

— -

-

LA
SIDL
ED
READ

MVI MVC CLI CLC LM STM
SRDL IC STC CVD UNPK

EX TR SET RESET TEST
WRITE PUNCH PAQE

READTAPE WRITETAPE REWIND MARKTAPE
FSPTM FSPREC BSPTM BSPREC

READTYPE WRITETYPE

SETPMASK SETDUMP DUMP

GETTIME WRITETIME

3.1.2.3.

Restrictions

The implementation imposes the following restrictions upon the

language:

a.

3.1.2.4.

-~

Only the first 10 characters of identifiers are recognized as
significant.
No goto statement may refer to a label defined in a segment

different from the one in which the goto statement occurs.

Supervisor Functions and Standard Procedures

A set of standard functions is defined for elementary input and

output operations. The referenced supervisor routines make use of

parameter registers as specified below. They set the condition code

to 0, unless otherwise specified. Input-output devices are designated

by logical unit numbers (see section 5.1 or 6.1).

READ

WRITE

Read a card, assign the 80 character record to
the memory area designated by the address in
register RO. Set the condition code to 1 if a

control card is encountered.

Write the record of 132 characters designated by

-the address in register RO on the line printer.

7

PUNCH

READTAPE

WRITETAPE

PAGE

*
READTYPE

*
WRITETYPE

Set the condition code to 1 if the next line to be

printed appears on the top of a new page.

Punch the record of 80 characters designated by

the address in register RO on the card punch.

Read a record from the tape unit specified by the
logical unit number in register R2. The length
of the record in bytes is specified by register
Rl, and it is assigned to the memory area desig-
nated by the address in register RO. Set register
Rl to the actual number of bytes read. Set the

condition code to 1 if a tape mark is encountered.

Write a record on the tape unit specified by the
logical unit number in register R2. The length
of the record in bytes is specified by register
Rl; the record is designated by the address in

register RO.

Begin a new page with the next record written on

the line printer.

Read a record from the operator console typewriter.
The length of the record in bytes is specified by
register Rl, and it is assigned to the memory

area designated by the address in register RO. Set

register Rl to the actual number of bytes read.

Write a record onto the operator console type-
writer. The length of the record in bytes is
specified by register R1l; the record is designated

by the address in register RO.

*
Available only in the stand-alone system.

8

—~ The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register R2.

MARKTAPE Write a tape mark.
4 -
— REWIND Rewind the tape.
*
: BSPREC Backspace one record.
— *
FSPREC Forwardspace one record.
‘L BSPTM Backspace past the previous tape mark.
, FSPIM Forwardspace past the next tape mark.
. The system also provides a set of standard procedures.
{_ DUMP - Print a specified area of memory in hexadecimal
form. The starting address of the area is speci-
E fied by register RO. TIts length in bytes is
—
specified by the register Rl1. The values of
2 register R2 and the condition code are altered
= by a call of the dump routine.
: WRITETIME Print the time elapsed since the beginning of
e execution of the present program (in minutes,
| seconds, and sixtieths of a second). The values
= of registers RO, Rl, and R2 and of the condition
i code are altered.
= GETTIME Set register Rl to the time elapsed since the
beginning of execution of the present program
-) (in sixtieths of a second). The values of
; registers RO and R2 and of the condition code
L_ are altered.
} In addition, the standard procedures SETPMASK and SEIDUMP give the user
.
some control over program interruptions; they are described in sec-
{ tion L4.2.
¥* j
‘ Available only in the stand-alone system.
- 9

OT

IPL360 :10

01 0004 00 0170
01 0004 00 0170
o1 0004 00 O1F4
01 {004 00 O1FC
01 0064 00 0203
O1F 0004 00 0608
01 0004 00 0608
01 0008 00 0608
01 0008 00 0608
01 0008 00 0608
01 0008 00 0608
01 0008 00 0608

‘01 0008 00 060A

01 0008 00 060A
01 0008 00 060A
01 0016 00 060A
01 0022 00 060A
01 0026 00 060A
01 003C 00 060A
01 0042 00 060A
01 004A 00 060A
01 0054 00 060A
01 O00SE 00 060A
01 006C 00 060A
01 006C° 00 060A
01 0070 00 060A
01 007C 00 060A
01 0088 00 060A

‘01 0094 00 060A

01 0096 00 060A

BEGIN COMMENT MAGIC SQUARE GENERATOR;S
ARRAY 132 BYTE LINE = 132(% »);
ARRAY 8 BYTE PATTERN = (" ",3(#20),#21,%#20)3 .
LONG REAL DEC;
ARRAY. 256 INTEGER X3
!

"PROCEDURE MAGICSQUARE (R6);

COMMENT THIS PROCEDURE ESTABLISHES A MAGIC SQUARE OF ORDER N,
IF N IS ODD AND 1 € N < 16, X IS THE MATRIX IN LINEAR FQORM.
REGISTERS RO ... R6 ARE USED, AND RO CONTAINS N AS PARAMETER.
ALGORITHM 118 (COMM.ACM, AUG.1962);

BEGIN SHORT INTEGER NSQRj
INTEGER REGISTER N SYN ROy I SYN Rl, J SYN R2, Y SYN R3;
INTEGER REGISTER IJ SYN R4, K SYN RS;

NSQR := N; Rl 2= N * NSQRj; NSQR := R1lj;
I 2= N#+1 SHRL 13 J = N3 .
FOR K 3= 1 STEP 1 UNTIL NSQR DO
BEGIN Y 2= T SHLL 635 IJ = J SHLL 2 + Y3 Y = X{1J);
IF Y -= 0 THEN ' ‘
BEGIN I 3= I-13 J = J=-2;
IF T € 1L THEN T 3= 1+#N3;
IF J < 1 THEN J := J+N;
Y ==.1 SHLL 65 IJ 3= J SHLL 2 + Y3
END 3 ‘
X(1J) = K3
I = I+15 IFf I > N THEN Y= I-N3
J = J+1; IF 4 > N THEN J 3= N3
END 3

G2t Te

weadoxg oTdwexXy

1T

e

r— o 1

0l 0096 00 060A
0l 0096 00 060A

01 0096 00 060A

01 00B2 00 060A
01 ¢0oBé6 00 060A
0l 00BS8 00 060A
Ol 008C © 00 060A
01 00CE 00 060A
01 00G2 00 060A
01 OOE4 00 060A
01 OOF2 0C 060A
01 OOFC 00 0&0A
01 o010C 00 060A
0l Ol16 00 060A
01 0128 00 060A
01 012A 00 060A
01 012A 00 060A
01 0132 00 060A
0l O13A 00 060A
01 0142 00 060A

SEGMENT 00 STARTS AT 07C810
SEGMENT 01 STARTS AT (38920

ELAPSED TIME IS 00:02:00

r— r- i . r— - T T 1
PROCEDURE GENERATE (RS8):
BEGIN INTEGER REGISTER I SYN R1, J SYN R2, IJ SYN R4, N SYN
J = 03 FOR I := 0O STEP 4 UNTIL 1020 DO X{(I) := J3
MAGICSQUARE;
N 3= RO3;
FOR I =1 STEP 1/UNTIL N DO
BEGIN IJ 2= I SHLL 6 +43 RS := QLINE(4);
FOR J.t= 1 STEP 1 UNTIL N DO
BEGIN MVC{(5, B5, PATTERN); R3 := X(I1J)s CVD(R3, DEC);
ED(S, BS5, DEC(5))3 1J = IJ+4; RS := R5+7;
END 3 .
RO := @QLINEs WRITE;
END 3
MVC(130, LINE(1), LINE(O})s WRITE;
END 3
RO 2= 33 GENERATE;
RO 2= 53 GENERATE;
. RO 2= 9; GENERATE;
END .

r—-

Ré6

—

AN

4
9
2.

11
18
25
2
9

37
48
59
70
81

2
13
24
35

- ELAPSED TIME

3- . .

5
7

10
12
19
21

3

36
38
49
60
71
73
'3
14
25

8
1
6

4

6
13
20
22

26
28
39
50
61
12
14

4
15

IS 00:02:01

23

14

16

16
27
29
40
51
62
64
75

17

24

15

17
19
30
41
52
63
65
16

77

18
20
31
42
53
55
66

67
78

10
21
32
43
54
56

57
68
79

11
22
33
44
46

47
58
69
80

12
23
34
45

— r— r—

-

—

—

3.1.3.

Instructions to the Compiler

The compiler accepts instructions inserted anywhere in the se-

quence of input records. These instructions affect subsequent records.

A compiler instruction card is marked by a $ character in column 1, and

an instruction in columns 2-20. Columms 21-80 of such a record are

ignored.

$NOGO

$LIST

$NOLIST
$PUNCH

$NOPUNCH

$PAGE
$0
$1

$2

$TAPEn

Compile, but do not attempt execution.

List source records on the printer (initial op-

tion).
Do not 1list source records.
Punch compiled program and data segments on cards.

Do not punch compiled program and data segments

(initial option).
Print the next record of the listing on a new page.
Print the source text only (initial option).

Indicate the addresses of all variables and pro-

cedures upon their declaration.

List addresses as for $1. Also list the pro-

duced machine code in hexadecimsal notation.

Read subsequent source records from the tape
unit with logical number n. If n is omitted,
device 7 is assumed. Columns 10-17 of the card
specify the program name. If the name field is
not blank, the tape is searched for that program
from the starting point to the end. Column 19
specifies the rewind option (see section 3.6.1).
$TAPEn is the last card read by PL360 from the

card deck.

13

$OUTPUTn Place the compiled program on logical device n,
and do not attempt execution. If n is omitted or
no $OUTPUT card is used, the output is put on
device 5. Column 19 specifies the rewind option.
Note that PL360 produces an unlabeled object pro-

gram (see section 3.5.1).

3.1.4. Compiler Output Listing

If listing has been specified, the compiler lists each source
card as it is read. Source card images read from tape also include
the sequence number used by TUP and SFTUP (see sections 3.4 and 3.6).
At the left edge of the page, the compiler lists two sets of numbers.
The first set consists of the current program segment number (in

decimal) followed by the current object code relative address (in
hexadecimal); the second set, of the currerit data segment number

followed by the current data relative address.

1k

|

- r— r—

—

— r—

3.1.5. Error Messages of the Compiler

Errors detected by the compiler are indicated by a message and a
bar below the character which was last read. After 51 errors in any
program, compilation is terminated. If listing has been specified,

the remainder of the program is simply listed.

Error No. Message Meaning
00 SYNTAX The source program violates the

PL360 syntax. Analysis continues

with the next statement.

o1 VAR ASS TYPES The type of operands in a variable

assignment are incompatible.

02 FOR PARAMETER In a for clause, the register is not
an integer register, the step is not
an integer or short integer number,
or the limit is not an integer re-
gister, cell, or number or short

integer cell or number.

03 REG ASS TYPES The types of operands in a register

assignment are incompatible.

ol BIN OP TYPES The types of operands of an arith-
metic or logical operator are in-
compatible.

05 SHIFT OP A real instead of an integer register
or number is specified in a shift
operation.

06 COMPARE TYPES The types of operands in a compare

are incompatible.

o7 REG TYPE OR # Either the type or the number of the

register used is incorrect.

15

Error No.

08

09
10

11

12

13

1k

15

16

17

Message
UNDEFINED ID
MULT LAB DEF

EXC INI VALUE

NOT -INDEXABLE

DATA OVERFLOW

NO OF ARGS

ILLEGAL CHAR

MULTIPLE ID

PROGRAM OFLOW

INITTAL OFLCW

Meaning

An undeclared identifier is encoun-
tered. The identifier is treated as
if it were "R1". This may generate

other errors.

The same identifier is defined as a
label more than once in the same
block.

The number of initializing values
exceeds the number of elements in

the array.

The function argument does not allow

for an index register.

The address of the declared variable

in the data segment exceeds 4095.

An incorrect number of arguments is

used for a function.

An illegal character was encountered;

it is skipped.

The same identifier is declared more
than once in the same block. This
occurrence of the identifier is ig-

nored.

The current program segment is too

large. It must be resegmented.

The area of initializing data in the
compiler is full. This can usually
be circumvented by suitable data
segmentation or by reordering ini-
tialized data within the segment.

16

[
Laiad

Error No. Message
18 ADDRESS OFLOW
19 NUMBER OFLOW
20 MISSING
21 STRING LENGTH
22 AND/OR MIX
23 FUNC DEF NO.
24 ILLEGAL PARAM
25 NUMBER
26 SYN MIX

Meaning

The number used as index is such that

. the resulting relative address is

less than O or greater than 4095.

The integer number is too large in
magnitude.

An end-of-file has been read before

nn
.

a program terminating was en-
countered. The problem may be a

missing string quote.

The length of a string is either O
or greater than 256.

A compound condition must not con-
tain both ANDs and ORs.

The format number in a function de-

claration is illegal (see the Appendix).

A parameter incompatible with the
specifications of the function is

used (see the Appendix).

A number has been used that has an

illegal type or value.

Synonym declarations cannot mix

cell and register declarations.

At the end of each program segment, éll occurrences of undefined labels

are listed with an indication of where they occurred.

17

3.1.6. The Format of "Binary" Cards

The compiler produces four types of "binary" cards if requested

through the $PUNCH option. The card formats are:

Col 1

Col 2

Col 3-6

Col 7-8

Col 9-72

Ccol 73-7h
Col 75

Col 76-80

This column identifies the type of object card
S

procedure segment header

data segment header

Il

D
E = external procedure or data segment header
P

object program card
Segment number in hexadecimal.

Length of segment if S, D, or E card. Relative
address of first byte of object program on the card
if P card.

Count of object program bytes on card if P card.
Blank if S, D, or E card.

Object program bytes if P card. Date is in Col L40-L47
if S, D, or E card.

Segment number in decimal.
Type of segment (E, D or S).

Sequence number in decimal. For each segment sequence

numbers start with OOOOl and are incremented by 1.

Note: Columns 73-80 are ignored by the loader and are punched for

identification purposes only.

18

3.2, Program to Duplicate Card Decks (DUPDECK)

This program duplicates the cards following the DUPDECK card up
to the next control card. There are two option cards which are not
punched and can appear anywhere in the deck.
$SEQUENCE The following cards are sequenced in columns

76-80. Sequence numbers start with 00001 and

are incremented by 1.

$NOSEQUENCE No sequence numbers are provided. This is the

initial option.

3.3. Program to List Card Decks (LISTER)

This program lists the cards following the LISTER card up to the
next control card. There are three option cards which are not listed

and can appear anywhere in the deck.

$PAGE Start a new page with the next listed card.

$SEQUENCE List subsequent cards with a card count, which
starts at 1 and is incremented by 1. This is

the initial option.

$NOSEQUENCE List subsequent cards without card counts.

19

3.4. Tape Updating Utility Program (TUP)

TUP can be used to create, list, punch, or update a card-image

tape file. Starting in the command mode, TUP reads and interprets a

seguence of commands on cards, each of which is punched beginning in
column one. If on any command card, except $LISTER or $PUNCHSEL,
"LISTER" is punched in columns 12-17, the output produced during the
interpretation of the command is also listed on the printer. Two cards,
recognized in the command mode, are used to indicate the input and
output units.
$INPUTn ~ Unit A is assigned the logical device number n.
If n is omitted or if no $INPUTn is used, then
unit A is logical device 6. Columns 10-17 spe-
cify the program name. If the name field is not
blank, the input tape is searched for the program
after the tape has been opened by a command.

Column 19 specifies the rewind option (see sec-

tion 3.6.1).

$OUTPUTn Unit B is assigned the logical device number n.
If n is omitted or if no $OUTPUTn is used, then
unit B is logical device 7. Column 19 specifies
the rewind option. Note that TUP produces an
unlabeled source program as output (see section
3.6.1).

The appropriate $INPUTn and $0UTPUTn cards must precede the following

command cards.

Note: 1) m and n as used below are five digit sequence numbers. m

must be punched in columns 12-16, n in columns 20-24. Lead-

ing zeroes must be punched.

20

2) A TUP deck is ended by the first PL3%60 control card read.

This card is processed as a $END card by TUP.

$NEWTAPE

$LISTER m n

$PUNCH

$PUNCHSEQ

$PUNCHSEL m n

Tape Unit'B~is opened. The subsequent card deck
is read and put onto unit B. Every record is
provided with a sequence number. Sequence numbers
begin with 00010 and are incremented by 10. All
80 columns of the card can be used. A $END card
completes the deck. Unit B is closed, and TUP

returns to the command mode.

Unit A is opened. The records with sequence num-
bers m through n are listed. If n is omitted,
listing is continued to the end of the program.
If m is omitted, listing starts with the first
record. Unit A is closed only if the program is
listed to the end. After listing, TUP returns to

the command mode.

Unit A is opened. If a labeled program is to be
punched, a program identification card is punched
(see section 3%.6.2). The entire program is
punched, unit A is closed, a %EOF card is punched,

and TUP returns to the command mode.

This is identical to $PUNCH above, except that
the tape sequence numbers are moved to columns

76-80 before the cards are punched.

Unit A is openéd. The records with sequence num-
bers m through n are punched. If n 1s omitted,
punching continues to the end of the deck. If m
is omitted, punching starts with the first record.
Unit A is closed only if the program is punched
to the end. A %EOF card is punched and TUP re-

turns to the command mode.

2l

$RESEQUENCE

$UPDATE

$DELETE m n

$INSERT m

Unit A and unit B are both opened. The records
on unit A are read, provided with new sequence
numbers (starting with 00010 and incremented by
10), and written onto unit B. At the end of the
program, unit A and unit B are closed, and TUP

returns to the command mode.

Unit A and unit B are both opened. TUP enters
the update mode in which it updates the informa-
tion on unit A with information read from cards.
The updated information is written onto unit B.
The following instructions are obeyed in the up-

date mode:

Records with sequence numbers m through n are
deleted. If n is missing, only one card is
deleted.

TUP enters the insert mode. The subsequent
card records are inserted after the record
with sequence number m. They are assigned
sequence numbers beginning with m + 1 and

incremented by 1. All cards (preceding the
first $END update card) are treated as data
to be inserted. If an inserted record is

given a sequence number identical to that of

an existing record on input unit A, that exist-

ing record is replaced by the new record. All

80 columns on data cards may be used.

If TUP is in the insert mode, it returns to
the update mode. Otherwise, the remainder of
the program on unit A is copied onto unit B,
units A and B are both closed, and TUP returns

to the command mode.

22

r

— —

$LISTER m

$NOLISTER m

Other cards:

Note:

Listing starts (or resumes) at the record with

sequence number m.

Listing stops at the record with sequence num-
ber m. Note: Even when no listing is selected,
all command or update mode cards and all insert-

ed and replaced records are listed.

Any other card is treated as a data card, and
it must be provided with a sequence number in
columns 76-80 (leading zeroes must be punched).
If its sequence number coincides with the se-
quence number of a record on the input tape,
then that record is replaced by the one read
from cards; otherwise, the card record is

inserted at the appropriate place.

Cards in the update deck must be properly se-
quenced, i.e., the sequence numbers on "other
cards" and the parameter m on update command
cards must be in increasing sequence. If there
are no cards in the update deck, then the pro-
gram on unit A is simply copied onto unit B.

If a card is read with a sequence number larger
than any number in the program on unit A, unit
A and unit B are closed and TUP returns to the

command mode.

3.4.1. Opening and Closing Tape Units

Unit A is opened by performing the specified rewind option. If

the program name field is not blank, the tape is searched from the

starting point to the end of the tape for a program with that name.

Unit A is closed by either rewinding or positioning at the next program

on the tape, depending upon the rewind option (see $INPUTn and section

3.6.1).

23

Unit B is opened by performing the specified rewind option. It
is closed by writing a program separator and then performing the spe-

cified rewind option (see $OUTPUTn and section 3.6.1).

3.4.2. TUP Error Messages

TUP always produces an output tape with sequence numbers in an
increasing order. Each sequence number is checked before a record is
written. If the sequence number is less than or equal to the last
record written then the out-of-sequence record is not written. The
recdrd is listed on the printer with a message that it was deleted.

The m field 6% each update command card and the sequence field
of each "other card" in an update run are checked for a valid 5 digit
number. If the sequence number is not valid, then the card is ignored

by TUP. All cards with invalid sequence numbers are listed with an

indication that they were ignored.

2l

|
-

~— r— r—

—

r— r— r—

r—

r— r— r— T

—

3.5. System Tape Updating Program (SYSTUP)

SYSTUP can be used to list, copy, update, or punch the contents
of system tapes. The program assumes the update gégg unless a control
card changes the mode. All mode control cards must occur before the
first program identification card, $INSERT card or $RENAME card. The
control cards can occur in any order because all system control cards

are read before any action is taken.

3.5.1. Object Program Formats on Tape

Each program or data segment is represented on tape by at least
two record;; The first record is a header record describing the re-
cords comprising the given segment. These records immediately follow
the header record. Normally, the program or data segment object code
is written as a single record. However, in the 0S system it is some-
times necessary to divide the segment to avoid exceeding the maximum
record length allowable for the actual physical device being used
(see section 5.2.2). This is done automatically by all the PL360
system programs using or producing object programs. The end of the
object program is signalled by reading (or writing) a tape mark. Each
program on a system tape is preceded by a header record with the format
of a program identification card (see 3.5.2). This record gives an

eight character name or label to the program. It is this name that is

used by SYSTUP or by the system loader to recognize the program. On

all "$" control cards referring to a labeled object program, the program

name is punched in columns 10-17. Unlabeled object programs do not

have a header record. The end of a system tape is indicated by the

25

occurrence of £wo successive tape marks. The first one indicates the
end of the previous object program; the second indicates the end of
the system tape.

At times it is desirable to control the rewinding of tapes con-
taining system programs so that unnecessary tape positioning can be
avoided when accessing more than one object program on a tape. There-
fore, a rewind option exists on most "$" control cards. Column 19 is
used to specify the option. "B" causes the tape to be rewound only
before use; "A" causes the tape to be rewound only after use; "N"
causes no rewinding; any other punch in column 19 (including blank)

causes rewinding both before and after using the tape.

3.5.2. Program Identification Card

The copy, punch, and update modes of SYSTUP are controlled by
program identification cards. Columns 2-9 of each card contain the
program name by which each program is to be recognized by the system
loader as well as by SYSTUP, columns 10-72 form a comment field to be
used for versiom identification, and columns 73-80 constitute the ver-
sion date field. If the date field is blank then the current date is

copied into it. Column one is ignored on the card.

5.5.3. Mode Control Cards

$INPUTn The input tape is identified with the logical
device n (in decimal). Device 4 is the standard
input unit if $INPUTn is not used or n is omitted. If
n is zero, it is assumed that there is no input

tape. Column 19 specifies the rewind option.

26

r—-r— r—

-

$OUTPUTn

$PUNCH

$COPY

The output tape is identified with logical device
number n. Device 9 is the standard output unit
if $OUTPUTn is not used or n is omitted. Column

19 specifies the rewind option.

The initial input tape rewind option is performed.
All the programs specified by program identifica-
tion cards are punched. Each punched deck con-
sists of an initial program identification card,
the object deck, and finally a %EOF control card.
Thus the deck is in the form used by SYSTUP to
load a program. For each program identification
card in the deck, the input tape is searched for
the specified program. The search is started
without rewinding and, if necessary, continued

to the starting point after rewinding. Therefore,
no specific order is required for program identi-
fication cards, but it is more efficient to punch
decks in the same order as the programs appear on
the tape. The first "%" control card read ends
the punch run. The closing input tape rewind op-
tion is performed. $COPY or $LIST should not be
used with $PUNCH.

The initial input and output tape rewind options
are performed. In the stand-alone system, a
monitor is first put on the output tape as de-
scribed in section 6.2.2. All the programs spe-
cified by program identification cards are copied
from the input tape onto the output tape. Each
program is located on the input tape in the same
manner as described for $PUNCH. Since no specific
order is required for program identification cards,
a copy run can be used to reorder a system tape.

The first "%" control card read ends the copy run.

27

A final tape mark is written on the output tape.
The closing input and output tape rewind options
are performed. $PUNCH or $LIST should not be
used with $COPY. _

$LIST The initial input tape rewind option is performed;
all the program identification records on the in-
put tape are listed on the printer; then the
closing input tape rewind option is performed.
$PUNCH or $COPY should not be used with $LIST.

If a $PUNCH, $COPY, or $LIST card is not encountered among the
mode control cards, then an update run is performed. In the stand-
alone system, a monitor is written first on the tape followed by a
tape mark (see section 6.2.2). In the 0S system only a tape date
record and a logical tape mark are written.

An update run is a sequential merge between the input tape and
the changes specified by the card deck. Neither the input nor the
output tape is rewound during the update. Therefore, the order of
updating must correspond to the order of the programs on the input tape.
The first "%" control card that is not %EOF or the first $EOF card
that does not pair with a program identification card ends the input
card deck. The update function operates as follows:

l; If the next card to be processed is $INSERT then one of the
following occurs:

a. If the end of the input tape has been read or if columns

10-17 are blank, then the deck set following the $INSERT
card is immediately loaded onto the output tape without

reference to the input tape. A deck set consists of a pro-

28

[

r

—

—

T

gram identification card followed by a deck indication (see
section 3.5.4).

b. If columns 10-17 are no; blank, then the input tape is copied
onto the output tape up to and including the program named
in columns 10-17. Then the following deck set is loaded as
above.

If the next card to be processed is $RENAME then one of the fol-

lowing occurs:

a. If the end of the input tape has been read, then the card
i;'ignored and a skip is made to the next "%" control card.

b. Otherwise, the input tape is copied onto the output tape up
to the program named in columns 10-17. The next card in the
deck replaces the old program identification record on the
output tape, the program is copied from the input tape onto
the output tape, and a skip is made to the next "%" control
card.

If the next card to be processed is a program identification card

then one of the following occurs:

a. If the end of the input tape has been read, the program 1is
simply loaded onto the output tape.

b. Otherwise, the input tape is copied onto the output tape up
to the program named on the program identification card. If
a "%" control card follows the identification card, the named
program is not placed on the output: tape; otherwise a deck

indication (see section 5.5.4) must follow and the new ver-

29

sion of the program is loaded onto the output tape. The input
tape 1s moved forward to the next program. |
If the end of the card deck has been reached, then the rest of
the input tape is copied onto the output tape. An update run with
no update deck copies all the input tape programs to the output

tape.

Thus, the update mode has the following general features:

1.

3.5.4.

All programs on the input tape that are not specified in the up-

date deck are sequentially copied to the output tape.

Programs can'%e inserted, changed, deleted, or renamed. The re-
name feature can change the program name, the version identifica-
tion, or both.

The %EOF card separates each update step in the program, and each
%EOF card signifies a return to the normal updating mode. Each
update step is dependent on previous steps only because of order.
The end of both the card deck and the input tape must be reached
before the update is completed. If the end of the input tape is
reached while searching the input tape for a program name, then

the current update step is completed as if the end of the input

tape had been read before starting that step.

Deck Indications

There are three ways to specify the location of the object program

associated with a given program identification card.

1.

A $TAPEn card with columns 10-17 blank immediately follows. It

indicates that the program is unlabeled and can be found on device n.

30

g’
-

— r— r—

r— r—

r

—

r o— r— r

However, n cannot be the same as the input or the output device.
Column 19 specifies the rewind option. The initial rewind option
is performed, the progrém is loaded, and then the closing rewind
option is performed. If the card following $TAPEn is not a "%"
control card, then a card object deck must follow. It is also
loaded and the combined program is written onto the output tape.
If n is omitted, then device 5 is used.

A $TAPEn card with columns 10-17 not blank immediately follows.
It indicates that the program is to be found labeled on another
system tape on device n. However, n cannot be the same as the
input of output device. Column 19 specifies the rewind option.
The initial rewind option is performed and the tape is searched
for the program named in columns 10-17. The search is the same as
that described above for $PUNCH. That program is loaded and the
closing rewind option is performed. If the card following $TAPEn
is not a "%" control card, then a card object deck must follow.
It is also loaded and the combined program is written onto the
output tape. If n i1s omitted then device 5 is used. The program
name on the $TAPEn card need not be the same as the one on the
program identification card. Therefore, this feature can be used
to rename a program.

Otherwise, a card object deck must immediately follow in the card

reader. It is loaded until the next "%" control card (usually a

%EOF card).

31

3.5.5. Examples of Usage

1. Copy the system tape from device 4 to device 9.

%SYSTUP
bEOF

2, List the program headers on the system tape on device 6.

%SYSTUP
$INPUTE
$LIST
%EOF

3. Punch object decks of PL360 and TUP from system tape on device L.

%SYSTUP

$PUNCH
PL360
TUP

%EOF

32

=

L. Compile LISTER program and update the system tape from device 6
— to device 8 with the new version of LISTER. Also insert an ob-

ject deck of PNAME immediately after LISTER, and delete PNAMEZ2

from the new system tape.

L %PL360

$NOGO
| {LISTER source deck}
—

%EOF
: %SYSTUP
- $INPUT6

$OUTPUTS
— ~ LISTER
. $TAPE
L FEOF

$INSERT
§ PNAME
—

{object deck}

‘, FEOF
- PNAME2

%EOF
- %EOF
- Note: The final card of any SYSTUP deck may be a "%" control card for
: the next job in place of the final %EOF card shown in the ex-
— amples above.
-
— 33

3.6. Source File Tape Updating Program (SFTUP)

SFIUP can be used to list, copy, or update the contents of source
program file tapes. The mechanism is basically the same mechanism used
by SYSTUP (see section 5.5). SFTUP does not have a punch option because
TUP (see section 3.4) can be used whenever it is necessary to punch
decks from a source tape. The program assumes the update mode unless a
control card changes the mode. All mode control cards must occur before
~the first program identification card, $INSERT card, $RENAME card,
$UPDATE card or $RESEQ card. The mode control cards can occur in any

order because all mode cards are read before any action is taken.

3.6.1. Source Program Formats on Tape

Each source program is written on tape in a blocked format. Each
tape record consists of eight source card images of eighty bytes each
with an eight byte sequence field preceding each card image. The end
of a source deck is indicated by a card image record with a special
associated sequence field. Source programs are separated on tape by a
special record. Source tapes for the stand-alone and 0OS systems are
compatible. Each program on a source file tape is preceded by a header
rgcord with the format of a program identification card (see section 3.6.2).
Tﬁis record gives an eight character name or label to the program. It is
this name that is used by SFTUP, PL360, TUP, XREF or SYNPROC to recognize
the program. On all "$" control cards referring to a labeled. source pro-
gram, the program name is punched in columns 10-17. Unlabeled source pro-

grams do not have a header record. Theend ‘of a source file tape is indicated

|
L

r-;_'l'. o

-

—r— 0 r oo

-

by the occurrence of two successive special records. The first one
indicates the end of the previous source program, the second indicates
the end of the source file tape.

At times it is desirable to control the rewinding of tapes con-
taining source programs so that unnecessary tape positioning can be
avoided when accessing more than one source program on a tape. There-
fore, a rewind option exists on most "$" control cards. Column 19 is
used to specify the option. "B" causes the tape to be rewound only
before use; "A" causes the tape to be rewound only after use; "N"
causes no rewinding; any other punch in column 19 (including blank)

causes rewinding both before and after using the tape.

3.6.2. Program Identification Card

The copy and update modes of SFTUP are controlled by program iden-
tification cards. Columns 2-9 of each card contain the program name
by which each program is to be recognized by the various system pro-
grams; columns 10-72 form a comment field to be used for version
identification; columns 73-80 constitute the version date field. If
the date field is blank then the current date is copied into it.

Column one is ignored on the card.

35

3.6.3. Mode Control Cards

$INPUTn The input tape is identified with logical device
number n. Device.6 is the standard input unit if
$INPUTn is not used or n is omitted. If n is
zero, it is assumed that there is no input tape.

Column 19 specifies the rewind option.

$OUTPUTn The output tape is identified with logical device
number n. Device 7 1s the standard output unit
. if $OUTPUTn is not used or n is omitted. Column

19 specifies the rewind option.

$COPY The initial input and output tape rewind options
are performed. All the programs specified by
program identification cards are copied from the
input tape onto'the output tape. FEach program is
located by searching the input tape for the spe-
cified program. The search is started without
rewinding and, if necessary, continued to the
starting point after rewinding. Since no specific
order is required for program identification cards,
a copy run can be used to reorder a source file
tape. The first "%" control card read ends the
copy run. A final special record is written on
the output tape. The closing input and output
tape rewind options are performed. $LIST should
not be used with $COPY.

$LiST The initial input tape rewind option is performed;
all the program identification records on the
input tape are listed on the printer; then the
closing input tape rewind option is performed.
$COPY should not be used with $LIST.

36

*{
.

o or r— oo o oo e

rr— r— ¢ r—

-

If a $COPY or $LIST card is not encountered among the mode control
cards, then an update run is performed. The initial input and output
tape rewind options are performed: However, if the input unit is logi-
cal device zero, then no input tape is used, and the update run makes
a new source file tape from the input card deck.

An update run is a sequential merge between the input tape and
the changes specified by the card deck. Neither the input nor the
output tape is rewound during the update. Therefore, the order of
updating must correspond to the order of the programs on the input
tape. The first "%" control card that is not %EOF or the first %EOF
card that does not pair with a program identification card, $UPDATE
card, or $RESEQ card ends the input card deck. The update function
operates as follows:

1. If the next card to be processed is $UPDATE than one of the follow-
ing occurs:

a. If the end of the input tape has been read, the card is ig-

nored and a skip is made to the next "%" control card.

b. Otherwise, the input tape is copied onto the output tape up
to the program named in columns 10-17. The deck following
$UPDATE up to the next "%" control card is then used with
the designated source program on the input tape to produce
an updated source program on the output tape. The form of
the update deck is the same as that used in TUP (see TUP
update mode description in section 3.4).

2. If the next card to be processed is $RESEQ then one of the follow-
ing occurs:

37

a. If the end of the input tape has been read, the card is ig-
nored and a skip is made to the next "%" control card.

b. Otherwise, the input tape is eopied onto the output tape up
to the program named in columns 10-17. Each source record
of the designated program is read from the input tape, pro-
vided with a new sequence number, and written onto the output
tape. The sequence numbers start with 00010 and are incre-

; mented by 10.
3. If the next card to be processed is $INSERT then one of the follow-
ing occurs: -

a. If the end of the input tape has been read or if columns
10-17 are blank, the deck set following the $INSERT card is
loaded onto the output tape without reference to the input
tape. A deck set consists of a program identification card
followed by a deck indication (see section 3.6.L4).

b. If columns 10-17 are not blank, the input tape is copied onto
the output tape up to and including the program named in
columns 10-17. Then the following deck set is loaded as
above.

4. If the next card to be processed is $RENAME then one of the follow-
ing occurs:

a. If the end of the input tape has been read, the card is ig-
nored and a skip is made to the next "%" control card.

b. Otherwise, the input tape is copied onto the output tape up
to the program named in columns 10-17. The next card in

the deck becomes the program identification record for the

38

f
!
(-

-

r_M

e

r— r—

—

.

r r— o

source program, the source program is copied from the input
tape onto the output tape, and a skip is made to the next "%"

control card.

If the next card to be processed is a program identification card

then one of the following occurs:

If the end of the input tape has been read, the deck set is
loaded onto the output tape.

Otherwise, the input tape is copied onto the output tape up
to the program named on the program identification card. If
a~"%" control card follows the program identification card,
the named program is not placed on the output tape; other-
wise, a deck indication (see section 3.6.4) must follow, and
the new version of the source program is loaded onto the
output tape. The input tape is moved forward to the next

program.

If the end of the card deck has been reached, then the rest of the
input tape is copied onto the output tape. An update run with no

update deck copies all the input tape programs to the output tape.

Thus, the update mode has the following general features:

l.

All programs on the input tape that are not specified in the up-
date deck are sequentially copied to the output tape.

Programs can be inserted, completely changed, deleted, renamed,

updated or resequenced. The rename feature can change the pro-

gram name, the version identification, or both.

The %EOF card separates each file update step in the program, and

39

each $EOF card signifies a return to the normal updating mode.
Each file update step is dependent on previous steps only because
of order.

The end of the card deck and the input tape must be reached before
the file update is completed. If the end of the input tape is
reached while searching the input tape for a program name, then
the current file update step is completed as if the end of the

input tape had been read before starting that step.

3.6.4. Deck Indications

-

There are three ways to specify the location of the source pro-

gram associated with a given program identification card.

1.

A $TAPEn card with columns 10-17 blank immediately follows. It
indicaﬁes that the program is unlabeled and can be found on device
n. However, n cannot be the same as the input or output device.
Column 19 specifies the rewind option. The initial rewind option
is performed for device n, the source program is loaded onto the
output tape, the closing rewind option is performed, and a skip

is made to the next "%" control card. If n is omitted then device
5 is used. The source program is copied without changing sequence
numbers.

A $TAPEn card immediately follows, with columns 10-17 not blank.
It indicates that the program is to be found labeled on another

source file tape on device n. However, n cannot be the same as

the input or output device. Column 19 specifies the rewind option.

The initial rewind option for device n is performed and the tape

Lo

|

{
¥

r— - r— r—

— r— r— r—

—

is searched for the program named in columns 10-17. The search

3.6.5.

1.

2.

is the same as that described above for $COPY. That program is
loaded onto the output tape, the closing rewind option for device
n is performed, and a skip is made to the next "%" control card.
The program name on the $TAPEn card need not be the same as the
one on the program identification card. Therefore, this feature
also can bé used to rename a program. If n is omitted device 5
is used. The source program is copied without changing sequence
numbers.

Othexrwise, a source déck must immediately follow in the card
reader. It is loaded onto the output tape until the next "%"
control card. Each source record is given a sequence number

(starting with 00010 and incremented by 10).

Examples of Usage

Copy the source file tape from device 6 to device 7.

%SFTUP
%EOF

List the program headers on the source tape on device 7.

%SFTUP
$INPUTT
$LIST
%EOF

L1

e

Produce a new source file tape on device 7 from device 6. Update
the source program TUP, resequence the source program XREF, insert
the source program LISTER immediatgly after XREF and delete the
source program PNAME. Assemble TUP and LISTER putting both object
programs on device 5. Finally, make a new system tape from device
L to device 9 with the new object versions of TUP and LISTER (in-
serted after XREF) and rename the object program PNAME to be
PNAME2.

%SPTUP
$UFDATE TUP
~ {update deck}

%EOF

$RESEQ XREF

%EOF

$INSERT

LISTER

{source deck}

%EOF

PNAME

%EOF

$EOF

%PL360

$OUTPUT B
$TAPE TUP B
%EOF
%PL360

$OUTPUT A
$TAPE LISTER A
FEOF
%SYSTUP

TUP

$TAPE - B

L2

-

%EOF
$INSERT
LISTER
$TAPE
%EOF
$RENAME
PNAME2
%EOF
$EOF

XREF

PNAME

Note: The final card of any SFTUP or SYSTUP deck may be a "%" control

card for the next job in place of the %EOF card shown in the

examples above.

k3

3.7. Syntax Processor (SYNPROC)

The syntax processor program can be used to process simple prece-
dence grammars in order to determine the precedence matrix and the f
and g functions as described by Wirth and Weber [3]. The main input to
the processor consists of the productions of the language. A maximum
of 499 productions containing 255 distinct symbols can be processed.
FEach production is punched on one card. Columns 1-72 of the card are
used for the production and divided into six l1l2-character symbol fields.
The left part symbol of the production occurs in columns 1-12. (If
columns 1-12 are blank, then the left part of the previous production
is used as the left part of the current production). The right part
consists of 1 to 5 symbols punched in columns 13-24, 25-36, 37-48, L9-60,
and 61-72 respectively. (Note that blank spaces are significant.)

As standard procedure, the syntax processor reads and lists all
of the productions, constructs a symbol table in two parts (nonterminal
and terminal), assigns each symbol a number, and finally determines the
precedence matrix if it exists or prints out the conflicts that make
the matrix not exist.

The following option cards are recognized by SYNPROC:
$SYMBOLS The symbol table is to be read in before reading

the productions. Each symbol must be on a separate
card in columns 1-12. The nonterminal symbols are
read first. A "$$" card signifies the end of the
nonterminals and the start of the terminals. A
second "$$" card is used to separate the terminal
symbols from the productions. Every symbol in the
language must occur on a card. The terminal and
nonterminal symbol groups can be ordered in any

desired fashion. In this way the user can specify

his own symbol numbers.

Ly

—

$SYMPUNCH

$CHECK

$MATRIX

$LEFT

$RIGHT

$FUNCTIONS

$TAPEn

This causes the symbol table to be punched in the
form used by SYNPROC (including the "$SYMBOLS"
and two "$$" cards).

After the symbol table has been listed, a check is
made for any productions having identical right
parts. All such occurrences are listed. No check

is made if the card is omitted.

If the precedence matrix exists then it is printed
out in blocks 100 symbols wide. If the grammar
has more than 99 symbols, then the matrix will be
printed in two parts or in three parts if there

are more than 199 symbols.

In general it is tedious to look up relations
using the precedence matrix. If the precedence
matrix exists, the $LEFT will cause each symbol to
be listed along with the relation and symbol of
all symbols that have a relation to the right of
the symbol. Five relations are printed per line

in order to condense output.
This is entirely analogous to $LEFT.

If the precedence matrix exists, then the f and
g precedence functions are calculated. If they
exist then they are listed; otherwise the prece-

dence chain that makes them not exist is printed.

Subsequent source records are read from the tape
unit with logical number n. If n is omitted,
device 7 is used. Columns 10-17 of the card spe-
cify the program name. If the name field is not
blank, the tape is searched for that program from
the starting point to the end. Column 19 specifies
the rewind option (see section 3.6.1). $TAPEn

is the last card read by SYNPROC from the card deck.

45

$OUTPUTn The results of the syntax processor are put on

device n. If n is omitted device 5 is used.
Column 19 specifies the rewind option. If the
matrix does not. exist then only a closing tape
mark is written. If the functions are requested
then they are written on tape if they exist. The
output consists of an 80-character control record
followed in order by the symbol table, production
table, matrix, and functions (if calculated),

described as follows:

- Control record

Cols 1- 4 - number of nonterminal symbols

Cols 5- 8 | total number of symbols, M

Cols 9-12 total number of productions, N

Cols 13-16 length of symbol table in bytes, 12(M + 1)
Cols 17-20 length of production table in bytes, 12(N + 1)
Cols 21-2k length of matrix in bytes, 64(M + 1)

Cols 25-28 length of functions in bytes, 2(M + 1)

Symbol table

The symbol table consists of twelve byte entries which are the
nonterminal and terminal alphabetic symbols ordered by number.
Symbol O is the blank symbol; thus the symbol table has M + 1

elements and is a 12(M + 1) byte record.

Production table

Each production is represented by six short integers that contain
the symbol number for each part of the rule. All symbol numbers
are doubled in the table in order to facilitate half-word indexing

in function calculations. The symbol number O fills out all right

L6

—

r_..'j_'.l‘ r- — r —

— r— r—

r—

— r— r— r— r— o

parts that consisted of less than five symbols. Since each rule
takes 12 bytes and the first entry is not used, there are 12(N + 1)
bytes in the record. The processor can handle a maximum of 499

productions.

4, Matrix
The matrix is written in a completely packed form with 2 bits

used for each relation (00 for no relation, Ol for < relation,

10 for & relation, 11 for = relation). The processor can handle
a maximum of 255 symbols so there are 64 bytes for each row. The
first row corresponds to symbol O so there are 64(M + 1) bytes in

the record.

5. Functions
The f and g functions are respectively the last two records on
the tape. The function values are short integers so each record

is 2(M + 1) bytes long, including a functional value of O for

symbol O.

The control cards can appear in any order and at any place in the
deck, except that $SYMBOLS and the symbol cards must obviously be

placed before the first production.

b7

.

r—

NN

-

r—-

RSN

r—

-

3.8. Program to Generate Cross-Reference Tables of Identifiers (XREF)

The cross-reference program will list alphabetically all identi-
fiers in a source program with the numbers of the lines on which they
occur. An identifier is defined as a string of one or more letters
and digits, with the first character a letter. According to various
input options, one may request that certain identifiers not be referenced
(e.g. reserved words) or that only specified identifiers be cross-re-
ferenced. The input program may be on cards or tape, and a listing of

it may be suppressed.

3.8.1. Control Cards

1. %XREF
2. $PL360 Ignore all PL360 basic tokens, standard identi-
fiers and identifiers on card(s) 3, cross-refer-
encing all others.
or
$IGNORE Ignore the identifiers on card(s) 3, monitoring
all others.
or
$MONITOR Cross-reference only the identifiers on card(s)
3, ignoring all others.
($IGNORE is assumed if card 2 is omitted.)
3. Specify a list of identifiers in free field,

taking as many cards as necessary.

(If omitted, the list is assumed to be empty.)

48

L. $NOLIST
or

$LIST

5. $CARD

or

$TAPEN

Suppress the listing of the input program.

List the input program.

($LIST is assumed if 4 is omitted. These cards
may occur anywhere within the input deck to obtain

appropriate listing action.)

The input program is on cards. Each card is pro-
vided with a sequence number (starting with 00010

and incremented by 10).

The input program is on tape n. If n is omitted
device 7 is used. Columns 10-17 of.the card spe-
cify the program name. If the name field is not
blank, the tape is searched for that program from
the starting point to the end. Column 19 specifies
the rewind option (see section 3.6.1). $TAPEn is
the last card read by XREF. The sequence number

associated with each tape record is used by XREF.

(Card 5 must not be omitted.)

3.8.2. Program Size Limitations

500
_ 3000
. 8000
200

1000

unique identifiers
total characters of identifiers
total references to the identifiers

unique special identifiers to be monitored or
ignored

total characters of special identifiers

49

|
-

[

r— r— r— M oo

r

r— r

3.8.3. Sample Deck Setups

1. Cross-reference all identifiers. List the card program.

%XREF
$CARD

{input deck}
%EOF

2. Cross-reference all but the standard PL360 identifiers. List the
card program.
%XREF
$PL360
$CARD
{input deck}
%EOF

3. Cross-reference all but the standard PL360 identifiers and the
identifiers ALFA BETA GAMMA. The unlabeled program is on de-

vice 6. Do not list the program.

%XREF

$PL360

ALFA BETA GAMMA
$NOLIST

$TAPE6

50

L, The PL360 Environment

This chapter presents some details_of the provided environment
that are of importance to the PL360 programmer. In particular, storage
organization and the reaction of the system to unintended situations
are described. Further information about the input/output facilities

provided by the two systems is included in Chapters 5 and 6.

k.1. Storage Organization

The storage available to PL360 programs is organized as indicated

in the following diagram.

-

0
) L
} Program Segments
R3 -
7 e2
RLF —_—
} Data Segments

Before each program is loaded, the entire storage area is set to zero.
During the loading process, the segment reference table (see [1],
Chapter 5) is completed. This table consists of 80 entries, 64 of which
are available for user program and data segments, and is: either the
first entry in data segment O (OS system) or included in the monitor
area (stand-alone system). Each program is then treated as a procedure

and called with the following information in registers:

R2 return address

R3 address of the first byte following the "last"
Program segment

R4 address of the first byte of the "first" data

segment
51

s

o

r— ("" r— r—

— r— —

c- r— r— - r— - r-

—

R6 record length parameter (OS system only, see 5.2.1)
or 32767 (stand-alone system).

PL360 programs are compiled as if they were declared as segment proce-
dures. Additionally, the return address is saved upon entry and re-

stored upon exit.

4.2, Program Execution (Run-Time) Errors

PL360 program execution is terminated by the detection of input/
outpuf errors, by expiration of a specified time interval, by external
intervention (stand-alone system only), and conditionally by the de-
tection of ;rogram interrupts. System action in the last case is
determined by interrogation of an extended program check mask. If the
bit of that mask selected by the interrupt code (see [4]) is a one, the
program is terminated; otherwise, the condition code is set to 3
(overflow) and execution continues. Part of the mask may be set by
the standard function SETPMASK.

SETPMASK Use the low-order byte of register RO to set the

extended program check mask according to the
following table.

Bit Interrupt Condition
24 fixed-point overflow
25 fixed-point divide
26 decimal overflow

27 decimal divide

28 exponent overflow

29 exponent underflow
30 significance

31 floating-point divide

52

Mask bits for all other program interrupts are always set to one. Counts
of the maskable interrupts listed above are maintained and printed (if
non-zero) after termination of program execution.

Every abnormal program termination results in the printing of an
error message and a dump of the data area of the interrupted program.
The standard procedure SETDUMP provides for a selective dump.

SETDUMP Set the beginning of the area to be dumped upon
abnormal termination to the address contained in
register RO; set the length of that area (in
bytes) to the value of register R1. Register R2

~ and the condition code are altered.

The message provides an indication of the nature of the error.
The PSW at the point of detection of that error is printed, and, if
appropriate, the address is also given as a (decimal) segment number
and (hexadecimal) displacement. For errors related to input/output,
the PSW displayed by the OS system is a pseudo-PSW in which the high-
order word contains the logical device number. The format of these
messages may differ somewhat between the two systems. The follow-
ing conditions are detected.

1.. PRG CHK

A program check interrupt was detected, and the corresponding

mask bilt was a one.

2. END DS' or END CRD
An attempt was made to read beyond the next PL360 system job card
on logical device 2 or (0S system only) beyond the end of the

data set on a logical tape unit.

23

r—

DEV NOP

An input/output device was addressed which either does not exist

or was not operable. In the OS system, a device is considered not
operable if the associated data set cannot be successfully opened

(usually because of a missing DD card). See section 5.3.

I/0 ERRC

An input/output error occurred after initiation of the correspond-
ing channel program. Channel status and device sense information,
which must be interpreted according to the particular physical
device, is also provided with this message. In the 0S system, if
this message references logical device 5 and that device is imple-
mented in main storage (see section 5.2.1), it indicates that in-
sufficient storage was available, and the status and sense infor-

mation is not relevant.

I/0 CHK
An illegal input/output operation, such as one specifying an illegal
address or record length, was attempted. Channel status information

may:bée provided.

XS TIME or .EXT INT
The job was terminated by expiration of the specified time interval

or (stand-alone system only) by operator intervention.

After program termination due to an error, an attempt will be made

to continue processing with the next PL360 system job. In the 0S sys-

tem, however, certain serious input/output errors will not be accepted

by OS5 but will instead cause termination of processing of the PL360

batch. In addition, PL360 programs use the same memory protection key

as the PL360/0S subsystem monitor and thus can cause its failure.

54

-

-

RSN
NN,

—

—

r-..—\

—

5. Use of the PL360/0S System

This chapter describes the use of the PL360 system as a subsystem
of IBM's Operating System/560 (0s). Section 5.1 contains a very brief
summary of some concepts of OS job and data management imporpant for
programming in PL360 under OS. Section 5.2 provides further information
about the use of previously described PL360 input/output functions under
0S and also summarizes points of incompatibility between the 0S and
stand-alone systems. Section 5.3 describes the 0S deck setup and Job
Control Language statements required for the use of the system. Fin-
ally, section 5.4 presents some sample deck setups for typical tasks
and system configurations. In general, the OS control statements shown
in these examples will need some modification tao reflect the conventions
for naming device classes, storage volumes, and data sets used by a
particular installation. Thus normally some familiarity with OS con-
cepts and terminology will be required and in parts of Section 5.3 is

assumed. The publication IBM System/360 Operating System Concepts and

Facilities [5] contains an introduction to OS and further references.

5.1. Background and General Organization

Both 0S/360 and the PL360/0S subsystem process sequences of jobs
under the direction of control statements. The relationship between
them, as well as the terminology to be used in the remainder of this
chapter, is summarized as follows: An OS job, which is the 0S unit of
accounting and scope of certain names, consists of one or more 0OS job
steps, each delimited by OS Job Control Language (JCL) statements as

described in section 5.3. The PL2%60/0S system is processed as a

55

sipngle OS job step and, in turn, processes a PL360 batch, which consists
of one or more PL360 system jobs, each delimited by PL360 system control
cards as described in Chapter 2. Thus é,sequence of PL360 system jobs
can be processed in a single OS job step. These relations are shown

schematically in the following diagram:

0S_Job

08 Job Step ... 08 Job Step ... 08 Job Step

N

PL360 Job “.. PL360 Job .. PL360 Job
= —/

PL360 Batch

PL360/OS is a closed subsystem; output from its language proces-
.sors cannot be used as input to the OS5 linkage editor, nor can the output
of IBM language processors be loaded by the PL360/OS system.

Input and output for the PL360/OS systemare directed to OS data
sets (i.e., delimited collections of associated records) rather than to
physical input/output devices. These data sets are referenced in PL360
programs by logical device numbers. The association of data sets and
logical devices is determined by OS Job Control Language Data Defini-
tion:(DD) statements for each PL%60 batch. The association is fixed
for éach batch but may vary between batches.v The PL360/OS system pro-
vides for two data set organizations. 1In the first, logical records
have a fixed length and must be processed sequentially. These data
sets correspond to physical unit record equipment and for compatibility
are referenced by the unit record input/output functions of the stand-
alone system (READ, WRITE, PAGE, PUNCH). The second type of data set

56

1
i
—

o

consists of arbitrary length records. This type of data set must be
sequentially organized but may be accessed in a non-sequential manner
by fhe‘use of certain marking and positioning functions. Such data
sets correspond to physical tape units and for compatibility are refer-
enced:by the tape input/output functions of the stand-alone system.

The standard PL360/OS system supports nine logical devices. These

devices and associated logical characteristics are as follows:

Device Number Logical Device Type

line printer
card reader
card punch
tape (system)
tape (scratch)
tape

tape

tape

O ® 2 oW F N E

tape

5.2. PL360 System Programs Under 0S

5.2.1. Input/Output Considerations

Supervisor input/output function: statements are written in PL360
as described in section 3.1.2.4; however, the following restrictions
are made:

1. READ
Attempting to read past the end of the data set associated with
the reader (logical device 2) will cause immediate termination of
the PL3%60 system. The message

* END OF READER DS

57

will be printed at the top of the next (logical) page. In many

cases, the reader data set will be placed in an OS system input

stream (i.e., an input stream from which 0S Job Control Language

statements are being read and ibterpreted). In such cases, any

logical record with a "/*" in columns 1 and 2 will be interpreted

by OS to mean that the preceding record terminated the data set.

Tape Functions

a,

Logical tape marks are written by the PL360/OS system as
special records. Such records are 18 bytes long; the first
14 bytes are #EO (corresponding to 0-2-8)punches). Since
such records are recognized as special marks by the system,
they should not be written using the WRITETAPE function.

The functions FSPREC, BSPREC, READTYPE, and WRITETYPE are not
supported by the PL360¢OS system. The corresponding identi-
fiers are not predeclared in the 0S PL360 compiler.

0S8 requires that the length of each record in a data set be
in the range of 18 bytes to 32760 bytes inclusive. In addi-
tion, for data sets on direct access devices, record lengths
cannot exceed the track capacity of the device unless the

track overflow feature is available and specified (see seec-

tion 5.3.5). These track capacities are as follows:

Physical Device Track Capacity (bytes)
2311 disk 3625
2214 disk 7204
2302 disk L o8
2301 drum 20483
2303 drum 4892
2321 data cell 2000

Attempts to write records longer than those allowed for the

physical device will camse termination of the 0S job step with

58

-

— r—

an 0S-supplied error message. For each PL360 batch, a record
length parameter may optionally be specified (see section
5.3.#); its default value is %520. This parameter is passed
to each program in that batch in register 6. In addition,

it is used by the PL360 compiler and system tape update pro-

grams as described in section 5.2.2.

d. For installations requiring rapid processing of PL360 jobs
and with large amounts of core storage available, an option
has been provided to use a core storage area for logical de-
vice 5.. The size of this area 1is adjusted to the total amount
of storage available and in the standard system will lie in
the range of 32K bytes to 128K bytes (K=1024). Track size
cahsiderations do not apply to device 5 when so implemented.
This option is selected by an OS job step parameter (see sec-
tion 5.3.4); if it is not specifically selected, transfer to

or from an 0OS data set is assumed.

5.2.2. System Program Considerations

In addition to the input/output considerations above, the follow-
ing points concerning the use of the system programs in the PL560/OS

system should be noted.

5.2,2.1. The PL360 Compiler

Some programs which can be compiled by the stand-alone system will
cause segment overflow errors in the OS version, since the first 368
bytes of data segment O are unavailalble for data and since supervisor
function statements generate twelve bytes of code instead of two. Com-
piled segments will be written on the scratch data set as multiple
records, if necessary, to limit maximum record length to that specified

by the record length parameter.

59

5.2.2.2, The System Tape Updating Program

Maximum record length on any new system tape generated will not

exceed that specified by the record length parameter.

5.3. 08 Job Control Language Requirements

In parts of this section, the reader is assumed to be familiar
with OS concepts and terminology and is referred to the publication

IBM System/360 Operating System Job Control Language [6].for further

information and explanation. Use of the system with a card object

module and complete set of Job Control Language (JCL) statements will

be described. The number of non-PL360 system cards required is greatly
reduced if the installation provides a load module of the monitor in a
. private or system library and provides an appropriate catalogued pro-
cedure. Documentation of the use of such facilities is considered an

installation responsibility.

5.3.1. O0S Job Organization and Deck Setup

A PL560/OS Job consists of two or more 0S job steps. In the first
step, the 0S linkage editor is used to produce an executable load
module of the monitor. In each subsequent step, a batch of PL360 jobs

is -processed. The card deck erganization required is shown schematically

below. = . .

60

Repeat os Require
Ogtional

/%

Delimiter Cord

PL3O0 Batch

PL360 Job Step DD Cards
PL360 Job Step EXEL Coard
Delimiter Card

360/0S Monitor Object Module

N Linkage Editor Step Control Cards
ob Card

Note: A delimiter card contains a "/*"' in columns 1 and 2.

The 0S JCL statements required are described below. Information concern-
ing the syntax and format of cards containing these statements may be
found in the IBM JCL manual [6]. The PL360 batch must contain PL360
system control cards as described in Chapter 2. In particular, it
should be noted that the 0S delimiter card is not a substitute for a

 PL360 %EOF card (see section 5.2.1).

5.3.2, The Job Card

This card is prepared according to individual installation stan-

dards.

61

5.3.3. The Linkage Editor Job Step Control Cards

If available, an installation catalogued procedure may be used for
the linkage editing step. Otherwise, the JCL statements for this step
should be copied from the installation's standard catalogued procedure
ASMFCLG, with any DD statements for SYSLIB omitted and with SYSLIN
naming the following object module cards. A typical set of statements
follows.

//LKED EXEC PGM=IEWL

//SYSUTL DD SPACE=(3076,(5,5)),UNIT=SYSDA

//SYSPRINT DD SYSOUT=A

//SYSLMOD DD DSNAME=&GOSET (GO) , UNIT=SYSDA, SPACE=(3076,(2,1,1)), X
// DCB=(RECFM=U, BLKS IZE=3076) , DISP= (NEW,PASS)

//SYSLIN DD *

" 5.3.4. The EXEC Statement

Execution of the load module containing the monitor and produced
in a linkage editing step named LKED is specified by a statement of

one of the following forms:

//stepname EXEC PGM=%, LKED . SYSLMOD
or
//stepname EXEC PGM=* , LKED . SYSLMOD, PARM=parameter

The name of each step within a job should be unique. The parameter is

of the form given by
parameter ::= C | unsigned-integer [C unsigned~-integer

The C specifies that logical device 5 is to be implemented in main core
storage; the unsigned integer specifies the record length parameter

(see section 5.2.1).

62

' 5.3.5. The DD Statements

DD statements serve to associate PL360 system logical device numbers
with 0S data sets. The DD statement for logical device n is named
DEVICEn, and its operand field describes the corresponding data set.

All data sets processed by the PL360/OS system must be sequentially or-
ganized. The table below summarizes the logical characteristics re-

quired of the data sets to be associated with each device.

- 0S8 Format Logical Record

Device Type of Access Record Format Code Length (bytes)

1 output fixed FBA 133 *

2 input fixed FB 80

3 output fixed FB 80

4 input undefined U variable

5 input /output undefined U variable

6 input /output undefined U variable

7 input/output ~ undefined U variable

8 input/output undefined U variable

9 input/output undefined U variable

* .
Includes & USASI carriage control character supplied by the monitor.

‘Detailed information about DD statements will be found in the IBM
JCi manual [6]; section 2 of that manual contains model DD statements
for many common applications. In general, each,Db statement contains
sufficient information to name, locate, and indicate the-status of each
data set. In addition, by uée of the DCB operand it is poésible to
supply information that describes‘the'organization of the data set and

is used to complete internal control blocks. The follpwing DCB informa-

63

tion is required for PL360 data sets:
1. For devices 1, 2, and 3, appropriatevalues for the physical block
size (BLKSIZE) and number of buffers (BUFNO) must be specified.

2. For devices 4 through 9, the record format (RECFM) must be specified
as UT if the track qverfiow feature is to be used for direct access
data sets. Otherwise, the record format is assumed to be U (which

may be explicitly specified).
In addition, DCB information specif&ing device~-dependent options (re-
cording density, stacker selection, etc.) may also be supplied.

" DD statements for devices 1, 2, and 4 are always required. A DD
statement for device 5 is required unless device 5 is implemented in
main storage (see sectibn 5.2}1). DD statements for device 3 and for
devices 6 through 9 are optional. If a device in the latter set is

referenced and the corresponding DD statement is missing, the PL360 job

will be terminated with an I/O error message.

5.4, Examples

In this section, examples are given of both individual DD state-
ments and appropriate sets of JCL statements for PL360 job steps in

some typical situations.

5.&.1. DD Statement Examples

5.4.1.1. Fixed Format Data Sets

1. //DEVICE1 DD SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=1)

Output records are directed to the system printer output stream.

//DEVICE2 DD *

The data set follows. This must be the last DD statement for the
job step, and the reader data set must immediatély follow in the
system input stream. Appropriate DCB information is supplied by

the system.

//DEVICE2 DD DDNAME=SYSIN
The data set is identified with the data set specified by the DD
statement named SYSIN. This form is primarily used in catalogued

procedures.

//DEVICE3 DD UNIT=SYSCP,DCB=(BLKSIZE=80,BUFNO=2)

Output receords are punched on a system card punch.

//DEVICE3 DD DSNAME=AOOO.CARDS,UNIT=231k4 ,VOLUME=SER=SYSO7, X
// DCB=(BLKSIZE=1600, BUFNO=1) ,SPACE=(1600, (20,10)), X
// DISP=(NEW,KEEP)

Card-image output records are blocked and placed in a newly created

direct access data set for later processing, such as editing.

//DEVICE2 DD DSNAME=AOOO.CARDS ,UNIT=231k4 ,VOLUME=SER=SYSOT, X
// DCB=(BLKSIZE=1600, BUFNO=1) ,DISP=(OLD,KEEP)

A previously created card-image data set on a direct access volume
is processed as reader input. Note that such a data set must con-

tain PL360 control cards but no OS control statements.

‘5.4.1.2., Undefined Format Data Sets

Tapes

1.

//DEVICE4 DD DSNAME=DUMMY1,UNIT=TAPE9,VOLUME=SER=SS0050, X
// LABEL=(,NL),DISP=(OLD,KEEP)

The system library is identified as a data set on unlabeled tape.
A dummy data set name is required because a disposition of KEEP
is specified.

€5

//DEVICEL DD DSNAME=AOOO.TAPESYS,UNIT=TAPE9,VOLUME=SER=SGO601, X
// DISP=(OLD,KEEP)

The system library is identified as a data set on labeled tape.
//DEVICE5 DD UNIT:TAPE9,LABEL;(:NL)

An unlabeled scratch tape is specified.

//DEVICET DD UNIT=(TAPE9, ,DEFER),LABEL=(,NL)

As above, but the tape need not be mounted until (and unless)

needed.

//DEVICEQ DD DSNAME=AOOO.PL360SYS,UNIT=282,VOLUME=SER=GSG140, X
// DISP=(NEW,KEEP)

A new data set is to be created on a labeled tape mounted on unit
282.

Direct Access Devices

6.

//DEVICEL DD DSNAME=AOOO.PL360SYS,UNIT=2311,VOLUME=SER=SLACAO, X
// DISP=(OLD,KEEP)

The system library is identified as a 2311 data set named ..’ 0.
A000. PL360SYS .

//DEVICEY DD DSNAME=A000.PL360SYS,UNIT=2314%,VOLUME=SER=SYSOl, X
// DCB=(RECFM=UT) ,DISP=(OLD, KEEP)

The system library is identified as a 2314 data set written using

the track overflow feature.
//DEVICES DD UNIT=SYSDA,SPACE=(3500,(10,5))
A scratch data set on a direct access volume is specified.

//DEVICES DD SPACE=(TRK, (10,5)),DCB=(RECFM=UT), X
// VOLUME=REF=8YS1.UT2

A scratch data set on a system utility volume is specified.

66

10. //DEVICE6 DD DSNAME=AOOO.SOURCE,DCB=(RECFM=UT),DISP=(OLD,KEEP)
An existing catalogued data set is specified.

11. //DEVICE7 DD DSNAME=AOOO.SFILE,UNIT=2321,VOLUME=SER=CAMP38, X
// SPACE=(CYL, (50,20) ,RLSE) , DISP=(NEW,KEEP)

A new data set is created on a 2321 volume. Any allocated but un-

used space is to be released at the end of the job step.

12. //DEVICE9 DD DSNAME=AOOO.SYSTEM.MOD, UNIT=2314 ,VOLUME=SER=PUBOO1,X
// DCB=(RECFM=UT) ,SPACE=(CYL, (2,1))3 DISP=(NEW, KEEP)

A new data set is created on the 2314 volume PUBOOL.

Other Devices

13. //DEVICES DD UNIT=SYSCP,DCB=(RECFM=U,MODE=C)

Output is directed to the system card punch, operating in column

binary mode.

5.4.2. Sampie Job Steps

The following examples illustrate sample JCL and, when appropriate,
PL360 deck setups for OS job steps. The linkage editing step is not

included but is assumed to be named LKED.

1. //PL360 EXEC PGM=*.LKED.SYSLMOD,PARM=3625
//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=1)
//DEVICE4 DD DSNAME=DUMMY , UNIT=283,VOLUME=SER=GSG14O, X
// LABEL=(,NL),DISP=(OLD,KEEP)
//DEVICES DD UNIT=2311,SPACE=(TRK,(10,5))
//DEVICE2 DD *
{PL360 Job Batch}

/*

This example illustrates typical minimal JCL for a smaller machine
installation. The system is on an unlabeled tape volume named

GSG14+0; the scratch area is on a 2311.

67

//PL360 EXEC PGM=*,LKED.SYSLMOD,PARM=C32760
//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=1)
//DEVICEL DD DSNAME=AOOO.PL360SYS,UNIT=231k4 ,VOLUME=SER=PUBOOL,
// DCB={RECFM=UT) ,DISP=(OLD,KEEP)
//DEVICE2 DD *
{PL360 Job Batch}
/*
This example illustrates typical minimal JCL for a larger machine
installation. The system is on the disk volume PUBOOl; main

storage is used as the scratch area.

68

X

//STEP1 EXEC

//DEVICEL DD

//DEVICE4 DD

//

//DEVICES DD

//DEVICE6 DD

//

//DEVICET DD

//DEVICES DD

//

//DEVICE2 DD
{Update Decks}

%SYSTUP

{Update Specifications}

%EOF

/*

//STEP2 EXEC
//DEVICEL DD
//DEVICEL DD

//

//DEVICE2 DD

PGM=% . LKED . SYSLMOD , PARM= 32760
SYSOUT=A, DCB=(BLKS IZE=13%3%, BUFNO=1)
DSNAME=A000.PL360SYS , UNIT=2314 , VOLUME=S ER=PUBOOL ,
DCB=(RECFM=UT) ,DISP=(OLD,KEEP)
DSNAME=SYS1.UT2,DCB=(RECFM=UT) ,DISP=(OLD,KEEP)
DSNAME=A000.SFILE,UNIT=2321,VOLUME=SER=CAMP38,
DISP=(OLD,KEEP)

DSNAME=SYS1.UT3,DCB=(RECFM=UT) ,DISP=(OLD,KEEP)
DSNAME=A000.TEMPSYS , UNIT=2314 , VOLUME=S ER=PUBOO2,

DCB=(RECFM=UT) ,SPACE=(CYL, (2,1),RLSE) ,DISP=(NEW, PASS)
*

See section 3.6.5, example 3, for a

possible update deck.

PGM=% , LKED . SYSLMOD , PARM=C 32760
SYSOUT=A, DCB=(BLKSIZE=133, BUFNO=1)
DSNAME=*% ,STEP1.DEVICE9,DCB=(RECFM=UT),
DISP=(OLD,KEEP)

*x

{Test Programs}

/*

In this example, a system program source file is updated and used

to create a new copy of the system on device 9. The new system is

passed to a second job step as device 4, which tests the update and

saves it. Previously allocated and catalogued scratch data sets

are used for devices 5 and 7.

69

X

NN

6. Use of the PL3%60 Stand-Alone System

This chapter describes the use of the PL360 system as a completely
independent, self-loading program. Section 6.1 contains information
about the input/output facilities provided. Section 6.2 describes the
PAUSE control card and system program facilities unique to the stand-
alone system. Finally, section 6.3 contains information about loading

and operating the system and serves as an operator's guide.

6.1. Input/Output Facilities

Input and output for the stand-alone system are directed to an
appropriate physical device. These devices are designated by logical
device numbers. In the standard system, ten logical devices are pro-

vided, with the following characteristics.

Logical Device Number Device Type

operator's console
printer

card reader

card punch

system tape

tape

tape

tape

tape

O 00 N OV F \Ww v+ o

tape

The correspondence between logical device numbers and actual device ad-
dresses is established by a device table, which may be examined and

altered from the operator's console (see section 6.3).

70

6.2. Special System Facilities

6.2.1. The PAUSE Card

The following additional control card (see Chapter 2) is provided:

PAUSE Columns 1 through 50 of the card are typed on the
operator's console as a message to the operator,
and the system waits for instructionsto be entered

at the console (see section 6.3).

6.2.2. The System Tape Update Program (SYSTUP)

In the stand-alone system, a self-loading monitor is included on
the system tape. In either an update or copy run of the program SYSTUP,
it is necessary te first put a copy of the monitor on the new tape.
Normally the monitor can be copied from the input tape, and that is the
default option. However, two mode control cards are provided to spe-
cify alternate sources, as follows:

a. $LOAD signifies that the monitor is to be loaded from the cards
following in the card reader. The object deck is assumed to be an
absolute 360 assembly language object deck. The transfer address
on the END card must specify the initial program status word. The
length of the monitor is determined from the ESD card and is
aligned to a half-segment address. The first PL360 control card
signifies the end of the monitor deck.

b.. $MONITOR signifies that the monitor is to be copied from low core.
The length of the monitor must be the same as the one on the input
tape (aligned to a half-segment address). The address at which:
gxecution Will start must be in the half-word starting at memory
location 20 (decimal). This feature is intended mainly to facili-

tate the creation of system tapes with different device assignments.

71

After these options have been processed, a normal copy or update is per-

formed.

6.3. Initial Loading and Operating the System

Initial loading of the PL360 system is accomplished by the follow-

ing procedure:

a. Reset the system.

b. Mount the system tape on an appropriate unit.

c. Stack jobs, including the control cards of Chapter 2, on the card
reader.

d. Make the card reader, line printer, and logical tape 5 (scratch
tape) ready.

e. Select the unit carrying the system tape on the load unit rotary
switches.

f. Press the load key.

g. Enter the date (8 characters) from the console.

Operation of the system requires that the device addresses for the

operator's console, card reader, and line printer be correctly loaded.

If any of these addresses must be changed, the following additional

Asteps should be executed when the processor enters the wait state

;following step f. They use the storage select switch and address keys,

the display and store keys, and the storage data switches according to

the detailed procedures for each processor model.

72

fl1. Press the stop key.

f2. Examine the half-word at hexadecimal location 16 (decimal 22)
to determine the device table address.

£3. Modify the half-word device address entries in the device table,

as follows:

Displacement in Standard
Device Device Table Device Address
(hexadecimal) (hexadecimal)
- console 0 0009
line printer 2 OOOE
card reader 4 000C

fly. Press the start key.
5. If the console address required modification, press the attention

key on the console.

Addresses of other devices may be changed from the console if an initial
PAUSE card is included in the job sequence.

After initial loading, execution of the job sequence stacked on
the card reader is immediately started. Pressing the external interrupt
key causes the job currently being executed to be terminated and the
next job in sequence to be started. Control is returned to the operator
whén a PAUSE control card is encountered. The computer then accepts
instructions from the operator via the console. Each message must be
terminated with an EOB (end of block) character. The following free-

field instructions are accepted:

T3

dump XXXXXX, NNNNNN EOB
dump XXXXXX EOB
dump EOB

The values of the registers and of the NNNNNN byte cells starting

© from the initial address XXXXXX are listed on the line printer in

hexadecimal form. If the initial address is omitted, it is taken

as the end of the user's program segment area, and if the count

is omitted, the dump extends over the entire data segment area

(see section 4.1).

device XX EOB

The address AAA of the device with logical unit number XX is typed
out. Subsequent typing of the device address BBB causes that de-
vice to be assigned the logical unit number XX, and the device with
address AAA to be given the logical unit number YY, which previously
designated device BBB (if any). As a result, every device in the

system will always be designated by at most one logical unit number.

before : after
XX : AAA XX : BBB

YY : BBB YY : AAA
EOB

Processing resumes with the next job in sequence.

The operator is also informed about abnormal conditions encountered

by the error analysis routines of the elementary input/output programs

contained in the monitor. The following messages are typed:

h

a. XX YYY NOT RDY
b. XX YYY NOT OP

c. XX YYY I/O ERROR CCCC DDDD
d. XX YYY DEV END CCCC DDDD

XX represents the logical number of the affected device, YYY its physical
address, CCCC the encountered channel status, and DDDD the device status.
Message a. is given when the device is not ready. Execution resumes
when the device is put into the ready state. Messages b., c., and 4.
are respectively given when a device is not operating, when a malfunction
is encountered, or when an error is discovered upon device end interrupt
caused by the reader, punch, or printer. The operator must reply with
one of the following messages:

a. ignore EOB
b. exit EOB (resume processing with next job)

c. EOB (retry the operation after I/O ERROR;
ignore the DEV END condition).

If the operator response is not recognized by the system, then
"RETRY" is typed out. In order to cancel a response, the CANCEL char-
acter must be typed before typing EOB. In either case, a correct re-

* sponse should then be typed by the operator.

I&;

7. PL360 System Organization and Storage Requirements

This chapter contains information concerning the internal organiza-
tion and storage requirements of certain parts of the PL360 systems.
Knowledge of this chapter is not required for normal use of the systems,
and certain sections assume a familiarity with OS control program ser-

vices.

T7.1l. General Organization

Both PL360 systems consist of a monitor, originally coded in IBM
W36O assembly language, and a set of PL360 system programs, originally
coded in PL3663 on a system tape (or 0S sequential data set). The
monitors are core-resident; they process requests for various super-
visor services and also perform initialization functions. Among the
PL360 system programs is a job sequencing routine which is also core-
resident and, in conjunction with the monitor, processes PL360 system
control cards. Other system programs are loaded upon demand as required

by these control cards.

7.2. The PL360/0S System

T.2,1. Resource Requirements

The PL560/OS syétem requires a machine configuration capable of
t supporting 0S/360 and additionally providing
1. at least 64K bytes of storage for user programs, and

2. devices and space for at least two additional sequential data
sets, one for the system library (about 140K bytes for a
system consisting of the programs described in Chapter 3) and

one for scratch use.

76

7.2.2. BStorage Organization

During execution of a PL360 system job, storage is organized as

indicated schematically in the following diagram.

0S8 Partition

Monitor
1
= 0S Working Storage T
2
- ’ Device 5 Storage
~ (optional)
>
Job Sequencing
[Program and Data Segments
L
User Program Segments
)
Free Area
6
User Data Segments
7
= 0S Dedicated Storage =
Ls T

The areas numbered 2 through 7 occupy a contiguous block of storage
obtained by a single GETMAIN. Area 8 contains the buffers and access

. method routines for data sets opened unconditionally (see 7.2.3) as
well as for certain OS control blocks allocated during the initializa-
tion process. Areas 4 through 6 are considered PL360 system storage
aréas. Area 2 is specifically released to 0S to provide storage for
buffers (device 3 only) and access routines required by data sets opened
on demand (see 7.2.3) as well as for OS transient work areas. The
monitor occupies approximately 5000 bytes. Sizes of the other areas
are determined by the OS control program or by the values of certain

symbolic quantities, defined.in the monitor source code, as summarized

7

in the following table.

Description Minimum Maximum Actual
Total Storage COREMIN+SYSFREE COREMAX+SYSFREE X+SYSFREE
0S Working Storage SYSFREE SYSFREE SYSFREE
Device 5 Storage
(if specified) COREMIN/2 BUFFMAX min(x/2,BUFFMAX)

PL360 System Storage

1. Device 5 in Core COREMIN/2 max (COREMAX /2, max(x/2,
COREMAX-BUFFMAX) x-BUFFMAX)
2. Device 5 External COREMIN COREMAX x

Standard values for the symbolic quantities are as follows:

-~

COREMIN 6LK
COREMAX 512K (K = 1024 bytes)
SYSFREE LK

BUFFMAX 128K

7.2.3. Input/Output Routines

Characteristics of the input/output routines are summarized in the

following table.

Logical Access Open Open

Device Method Option Selection
1 QSAM INPUT unconditional
2 QSAM OUTPUT unconditional
3 QSAM OUTPUT on demand
4 BSAM INPUT unconditional
5 BSAM OUTIN unconditional
6 BSAM * on demand
T BSAM * on demand
8 BSAM * on demand
9 BSAM * on demand

OUTIN if the function forcing opening implies write access; other-
wise, INOUT.
78

7.3. The PL3%60 Stand-Alone System

T.3.1. Resource Requirements

The minimal configuration requirements for the stand-alone version
are as follows:

a. 64K bytes of core memory, with or without memory protection;

b. a line printer, a card reader, an operator's console type-

writer, and two tape drives.

7-3.2. Storage Organization

-During job execution, storage is organized as indicated schematically

below:

0 Interrupt and Input/Output
Subroutines
Card Loader
Tape Loader
1
Job Control
Operator Control
Dump Routine
2
User Program Segments
3
~ Free Area 4:
Te
User Data Segments
IR

Area 1 constitutes the monitor, which is a self-loading program placed at
the beginning of the system tape. Areas 1 and 2 are memory protected

(if possible) during the execution of each job.

9

7.3.3. Input/Output Routines

The input/output routines of the monitor generate channel programs

for the following IBM devicés.

Device Type IBM Model Number
operator's console 1052

card reader 2540

line printer 1403

card punch 2540

tape drive 24 00-24 02

In many cases, such programs are suitable for similar devices with

different model numbers.

80

‘Appendix: Additions and Changes to the PL360 Language

The PL360 language is described in a companion report [1]. The
following additions and changes have been made to the language since

that report was issued.

1. Function Format Code Extensions

Section 2.2.8 of [1] describes function declarations. The format
code description given there does not provide for literal strings or
numbers as parameters in function statements except as immediate data.
Therefore, the function format codes have been extended to allow literal
strings and numbers as parameters. The table on the following page de-
scribes the format and allowed parameters for each function code. An
integer value parameter is considered to be illegal if the value is
too large to fit into the specified field or if the value is negative.
A cell designator used as a parameter for a single byte field is con-
sidered to be illegal if its relative address has a base register or
if the displacement exceeds 255.

The following example shows the effective declaration of the stan-

dard function identifiers:

function MVI(L,#9200), CLI(k4,#9500),
mve (5 ,#D200), CLC(13,#D500),
STM(3,#9000), LM(3,#9800),
SRDL(9,#8C00) , SLDL(9,#8D00),
1c(2,#4300), sTc(12,#4200),
LA(11,#4100), RESET(8,#9200),
SET(8,#92FF), UNPK(10,#F300),
CVD(12,#4E00), EX(2,#4400),
ED(5 ,#DE0O), TR(5 ,#DC00),
TEST(8,#95FF)

81

Format No. of Definition R = K register
Code Parameter of Parameter C = J cell designator
Fields in Fields L = T value or string
Function . (Literal)*™
I = integer value
S = string

0 0 1

1 2 [_Ir[®]

2 2 | IR | Lc |

3 3 | Ir|R] c |

4 2 [J1cs | ¢]

5 ~ 3 L [zes | c [IC_
6 1 [T=[1]

7 1 cs |

8 1 | l c |

9 2 N ET c_ |

10 t I [zl 1] c I c_]
11 2 | |R| cs |

12 2 | IR c |

15 3 [fzes | xe] 1o |

0 8 16 32

Table of Function Format Codes

*
value used directly in instruction field.

*%
address of value used in instruction field.

82

2. Cell Declaration Additions

Section 2.2.4 of [1] describes cell declarations. Cell declarations
have been modified to allow nested repetition of initialization elements
in order to facilitate initializing arrays of cells to patterns of num-
bers or strings. The reserved word character has also been added to the
language and is equivalent to the reserved word byte. The syntax for
cell declarations becomes:

<simple byte type> ::= byte | character

<simple short integer type> ::= short integer

<simple integer type> ::= 1integer | logical

<simple real type> ::= real

<simple long real type> ::= long real
<T type> ::= <simple T type>| array <integer number> <simple T type>
<T cell declaratiom> ::= <J type item> | <JT cell declaratiom>,<item>
<item> ::= <identifier> | <identifier> = <fill value
<fill value> ::= <J value | <string> | @ <T cell designator>
<repetition list> <fill value>)

<repetition list> ::= (| <integer number> (|

<repetition list> <fill value> ,

a. Boundary alignment is performed only for the cell declara-
tion; there is no further automatic alignment within the
£ill value. Care must be taken when initializing with combi-
nations of numbers and strings in order to maintain the
desired alignment for each number.

b. As a convenience to the programmer, the number of low order

bytes appropriate for the type of the declared cell is taken

for each JT-value. Strings are never expanded or truncated.

83

Examples:

short integer, integer, and logical cells can be initialized

to the address of a T cell designator. Two or four bytes

are filled with the relative_address (i.e., index register
number, base register number, and displacement) of the T cell
designator. The index register must be zero when initializing

short integer cells. Cells cannot be initialized to absolute

addresses.

The repetition count is specified by the integer number in
the repetition list. DIf the count is omitted, it is assumed
to be one. The count must not be negative. If the count is
zero, no initialization takes place for the list.

The total length of the fill value for each item must be less

than or equal to the space allocated for the item.

short integer I = 10S, J = (5), BADDR = @B5

array 132 byte line = 132 (" "), buff = 4(33(" "))

array 15 integer X = 3 (@line, "ABCD",3(5))

|
l

3. Standard Integer Identifier Declarations

A set of fourteen standard integer identifiers have been declared.

These identifiers are often useful -in function statements.

declaration is eguivalent to the following:

integer

integer

MEM syn O;

Bl syn MEM(R1), B2 syn MEM(R2),
B3 syn MEM(R3), B4 syn MEM(RL),
B5 syn MEM(R5), B6 syn MEM(R6),
B7 syn MEM(R7), B8 syn MEM(R8),
B9 syn MEM(R9), B1O syn MEM(R10),

Bll syn MEM(R1l), B12 syn MEM(R12),

B13 syn MEM(R13);

85

4. Global and External Segment Procedures

A primitive method of defining global and external segments to

allow linkage to separately compiled PL360 procedures has been pro-
vided. These facilities are primarily intended for system use; however,
these features can be used by any programmer in order to avoid recom-
piling certain standard parts of his programs.

The following syntax updates section 2.2.11 (Segment Base Declara-

~tions) and section 2.%.7 (Procedure Declarations) of [1l] in order to

include the global and external features:

-

<segment head> ’ 1= segment global <integer number>

external <integer number>
<segment base declaratior> ::= <segment head> base <integer register>

<procedure heading> s:= procedure <identifier> (<integer registef>);|
<segment head> procedure <identifier>
’ ————v-—-—*—-

(<integer register>);

<procedure declaratior> ::= <procedure heading> <statement>

Program and data segment numbers are assigned consecutively
starting at 00 by the PL360 compiler to each new segment, not explicitly
numbered by its declaration, when it is encountered. In order to use
conveniently a compiled segment as an external segment for another
program, the programmer can use the global segment facility to specify
assignment of a particular segment number. The integer number in the
segment head is taken as the segment number. The permissible range
of segment numbers for user programs is 00 to 63. Use of such a seg-
ment in another program requires the declaration of an external data

or program segment with the same segment number. References between

86

external segments are by number only. No identifiers are used.

The following comments apply to the use of global and external

segments:
a. Global program and data segments are distinguished by the compiler

only by the fact that segment numbers are assigned by the program-
mer instead of the compiler.

External program and data segments are compiled in exactly the
same way as other segments. However, these segments produce no
compiler object output. Thus any data initialization specified

or any compiled code is ignored. (The body of an external pro-
cedure normally is the statement EElE') Such segment declarations
are used only to name and describe the corresponding segment.
However, the programmer must insure that each use of a separately
compiled procedure containing cell declarations has a valid base
register for the declarations of thet procedure. This could mean
that the declarations must be repeated each time a corresponding
external procedure declaration is used in another program or that

the procedure contains its declarations in global or external

data segments declared within the procedure. The problem occurs
because declarations are static in PL360 and not dynamic.

Since the externai base declaration loads the specified base
register and since all variables declared in the segment will use
that register as the base register for addressing, the base regis-
ter used in the external declaration need not be the same as the
register used when the segment was compiled using the global declar-

ation. The segment- numbers must be the same for both forms.

87

Since the return register is used in both the call agd the return
from a procedure, the external and global procedure declarations
must specify the same return register as well as the same segment
number.

Object card decks for previously compiled external segments can
be used with PL360 (see Section 3.1.1) and with the $TAPEn deck
indications for SYSTUP (see Section 3.5.4). External segments
can be recognized in object decks by referring to the description

of object deck formats (Section 3.1.6).

88

References

[1]

[2]

(3]

(4]

(5]

[6]

N. Wirth, "A programming language for the 360 computers", Technical
Report CS 53 (revised), Stanford University, June 1967
(also, J. ACM. 15, 37 (January 1968)).

H. R. Bauer, S. Becker, and S. L. Graham, "ALGOL W" , Technical
Report CS 89, Computer Science Department, Stanford University,
January 1968.

N. Wirth and H. Weber, "EULER, a generalization of ALGOL, and its
formal definition", Part 1, Comm. ACM. 9, 1 (January 1966),
pp. 13-23.

IBM System/360 Principles of Operation, IBM Systems Reference
Library, Form A22-6821.

IBM System/360 Operating System Concepts and Facilities, IBM Sys-
tems Reference Library, Form C28-6535.

IBM System/360 Operating System Job Control Language, IBM Systems
Reference Library, Form C28-6539.

89

Caes

