
| THE PL360 SYSTEM

| oo BY

© NIKLAUS WIRTH

0 JOSEPH W. WELLS, JR.
EDWIN H. SATTERTHWAITE, JR.

|

: |

I TECHNICAL REPORT NO. CS 91 I
| APRIL 1, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences |

STANFORD UNIVERSITY

a ;

. !

t

Z H

.

_ ..

,

3

-

.

p

THE PL360 SYSTEM |

- -~.

Niklaus Wirth

Joseph W. Wells, Jr.

L Edwin H. Satterthwaite, Jr.

|

| Computer Science Department |

- Stanford University

| Stanford, California

5

«ie I

Lod 5

~u

i

Ce

FE

[

. .

FE

-

. . .

a

Aan ad

-

*

Fo So TTT AceeJ ek aa ht a ee

—

THE PL360 SYSTEM

Table of Contents

1. Introduction and SUrvey «cecceeceertssrersonoscccsscrssssosssens 1

= 2. Job Control Instructions .eeeeeeeeeiceerrerortessesscecnsasnse 3

Fo Table of available system programs

. 3. Description of System Programs :.«:ceicececescscscscececssesees 5

. 3.1. The PL360 Compiler (PL360) teeeveererenrsarasrensensens 5

_ 3.1.1. The Form of TNPUt DECKS +eveevevevensneasasaeas 5
3.1.2. The LanNgUagE «ec ceeeesccoscsstsssssesscsssssesess DO

| - 3.1.2.1. Symbol Representation ...cecevevecas. 6
3.1.2.2. Standard Identifiers ..iceveeeeveeees 6

1 3.1.2.3, Restrictions «ceecesececescecscrvanaes
| 3.1.2.4. Supervisor Functions and Standard

| Procedures ceveceessesssrsceensssanace [

_ 3.1.2.5. Example PTOGIEM «+erveersrnrrerennss 10
3.1.3. Instructions to the Compilercc00000000 13

u 3.1.4. Compiler Output Listingceveeeveveeeneen. 1k
3.1.5. Error Messages of the Compiler ...¢¢eeseeeesses 15

. 3.1.6. The Format of "Binary" Cardseeeeseveeesss. 18
3.2. Program to Duplicate Card Decks (DUPDECK)cee0us0. 19

| . 3.3%. Programto List Card Decks (LISTER) ..veeeeevesoaseaess19

= 3.4. Tape Updating Utility Program (TUP)eeeveeveceseses 20
| 3.5, System Tape Updating Program (SYSTUP) ...ivevvevvessess 25

_ 3.6. Source File Tape Updating Program (SFTUP) «...eeevevsn. 34
| 3.7. Syntax Processor (SYNPROC) tveeeeeeeenonnsannosassssass Ul

4 3.8. Program to Generate Cross-Reference Tables of
Identifiers (XREF) vee erreneeeeoannosoeaeoseanansess 48

| L. The PL360 Environmenteeeeeseeeseseesossssssssssessssss D1
L 4.1. Storage Organizationccceeeeeveeeeressssseessesas 51 |

h.2. Program Execution (Run-Time) Errorseeseeeeseasess 52
L 5. Use Of the PL360/0S SYSHEmM «vu ernernerneensensrnessesnesness 55

: 5.1. Backgroundand General Organizationceeceeeececeas OD

L_

0

A i

Ll IB

;

] ~~.

.

_

.

H .

-

.

-

-

THE PL360 SYSTEM

Table of Contents

— Page

. 5.2. PL360 System Programs Under OSo.co... 57
— 5.3, 0S Job Control Language Requirements .,................. 60

3 Sh. EXAMPLES LL iiiiiiiiiiieeereeieeee eeaieeeaanaaa... Of
— 6. Use of the PL360 Stand-Alone Systemeeeveeeeunuuaa.. 10

} 6.1. Input/Output Facilitiesevvvvinevennnnn.. 10

— 6.2. Special System Facilities .,........vvvurrnrnennennnas. (1

: 6.3. Initial Loading and Operating the System ,, 72

L 7. PL360 System Organization and Storage Requirements , , . .,.... 76
7.1. General Organization ,...,......'''eeerveernneenneennaees 10

{

L 7.2. The PL360/0S System EEE EEE EEE EE EEE EE EEE EEE EE EE EEE EY EEE 76
7.3. The PL360 Stand-Alone Systemoeevvueennn.. 19

|
— Appendix:

Additions and Changes to the PL360 Language 01

REEEI CEE itis ete senrneeoensnsesensasessnsaenesueneeeesannesss 89

-

—

—

4

|
t

[| _.

he ii

:
|—_—

3

- hdd

13

’

-

.

-

eee

1. Introduction and Survey |

| u |
| This report describes the use of two operating systems which serve

. as environments for the PL360 language defined in the companion report
Co Cs 53 [1]. Some additions to that language, not = described in CS 53,

- are documented in the Appendix. One of the systems is a stand-alone, :

i self-loading program specifically designed for PL360; the other is a
= subsystem operating under IBM's Operating System/360 (0S). With the

2 minor exceptions noted in Chapter 5, these two systems were designed
to be entirely compatible at the source language level.

a The core of both systems is a job sequencer which accepts batches

of jobs and receives instructions in the form of control cards. These

. | job control instructions are described in Chapter 2. A collection of |

i standard programs, including the PL360 compiler, is provided in each

B system. The use of these programs is described in Chapter 3%; in par-
- ticular, section 3.1 defines the symbol representations, the restric-

tions imposed on the language by the implementation, the available sys-

= tem functions (particularly those for input and output), and the usage

a of the compiler.
Chapter 4 contains further information about the environment pro-

- vided. Storage organization is described, and the reaction of the

| system to the occurrence of program checks and other unintended events
|

is indicated.

3 Chapter 5 outlines the use of the PL360 0S subsystem, including
a description of the 0S deck setup and Job Control Language statements

- required. Chapter 6 describes the use of the PL360 stand-alone system,

a

]

including information for the computer operator.

While Chapters 2-6 are intended to serve as auser's reference

manual, Chapter 7 contains information about the configuration require-
ments and internal organization of the two systems . Knowledge of this
chapter is not required for the routine use of either system.

The PL360 operating environment was designed with the goal of pro-

viding a convenient, efficient, and easy-to-use tool for the development
of compilers and operating systems. This goal is reflected in the set

of’ standard library programs. In addition to listing and card duplicat-
ing programs, there are programs to maintain and edit tape files, which

the compiler and other programs are able to accept as input in place of
cards. A system generation program is also provided to rapidly create -

© or update system program libraries. Cross-reference listings (in any

language, and PL360 in particular) are produced by another library |

program. Finally, a syntax processor is included to facilitate the

construction of compilers based on the principle of analysis of prece-

dence grammars. |

) A further program available under the systemis the AlgolW compiler.

The Algol W language and the use of that compiler are describedin the

companion report CS 89 [2].

: Development of the two systems was directed by Professor Niklaus

Wirth. The stand-alone system and most of the library programs were

implemented by Mr. J. Wells. Mr. E. Satterthwaite developed the 0S sub-

system, and Mrs. J. Keckler wrote the cross-referencing library program.

This project was supported in part by the National Sclence Founda-

tion grant GP 684k.

| 2

L |

| 2. Job Control Instructions

Jobs in the input batch are separated by control cards to be inter-

3 preted by the job control routine. These cards are characterized by a
0-4-8 punch (denoted by ng the 029 keypunch graphic) in column 1 and,

— if encountered by the READ routine, give rise to an end-of-file indica-

; | tion (see section 3.1.2.4). Information contained in columns 2-9 (left
5

adjusted) of control cards is inspected and interpreted. With the ex-

1 : ception of an EOF card, such a control card is assumed to mark the
| beginning of a new job.
|
— -

EOF This control card merely causes an end-of-file indication

| to be given. It is to be used at the end of an object |
deck or of a compiler source deck. |

— A time limit for each job may optionally be specified on the

| corresponding control card. Card columns 10-17 are used for such spe-
-

cification. Within that field, the following forms of time limit

| |
L_ specification are allowed:

|) <time limit> ::= <minutes> | <minutes> : <seconds>
<minutes> ::= <unsigned integer> | {empty}

1 <seconds> ::= <unsigned integer> | {empty}

L An empty field is given the value zero. If the time limit field is
blank or has a value of zero, the job is allowed unlimited time. Other-

L wise, execution of the job is automatically terminated upon expiration
of the designated time interval if necessary. Any information in columns

L 18-80 of control cards is ignored.

;

Previously produced odoject decks may be loaded and executed by use

of the LOAD control card.

LOAD The subsequent cards should be an object deck punched |

by a compiler (see section 3.1.6). They are loaded and

execution of the loaded program is initiated. An input

deck using the LOAD instruction has the following compo- .

sition.

data %

object ¢ |
eo ee

| %LOAD 0
Note: The second EOF card is not required if there is no data. |

Any other text contained in columns 2-9 is interpreted as the name of

a program to be loaded from the system library. The following stan-

“dard library programs are described in the following chapter: |

: PL 360 PL360 compiler

: DUPDECK Program to duplicate card decks

LISTER Program to list card decks

TUP Tape updating program

SYSTUP System tape updating program

SFTUP Source file tape updating program -

SYNPROC Syntax processor program

XREF Identifier cross-referencing program

Use of the ALGOLW compiler is described in the compenion report CS 89 [2].
ly

_
5. Description of System Programs

8 3.1. The PL360 Compiler (PL360)

5.1.1. The Form of Input Decks

.

bEOF
_ data oC

—

} PL360 source #EOF

_ {%PL360 time name g
{ | —
J
—

Note: 1. If there is no data, only one %EOF card is needed.

L 2. If a PL360 object deck is inserted between the source
deck and the first %EOF card, then after the compiled

3 program has been loaded, that object program is loaded
up to the first %EOF card. The combined programs are

_) then executed. This facility can be used in connection
with the external and global segment facilities of PL360

L (see the Appendix).

L 3.1.2. The Language
The PL360 programming language is described in a companion report

L [1]. Revisions and additions to the language are described in the
Appendix of this report. Details pertinent to the present implementation

L (i.e., symbol representations, standard identifiers, and specific limi-

:

tations) are contained in the subsequent paragraphs.

3.1.2.1. Symbol Representation |

Only capital letters are available. Basic symbols which consist

of underlined letter sequences in the report[l]are dendted by the same

letter sequences without further distinction. As a consequence, they

cannot be used as identifiers. The basic symbols are:

| + * / () = <>

ET - |

¢= <= >= — = |
DO IF OF OR

ABS AND ~END FOR NEG SYN XOR :

BASE BYTE CASE ELSE GOTO LONG NULL

REAL SHLA SHLL SHRA SHRL STEP THEN N

| ARRAY BEGIN SHORT UNTIL WHILE

GLOBAL

COMMENT INTEGER LOGICAL SEGMENT

EXTERNAL FUNCTION OVERFLOW REGISTER

CHARACTER ~~ PROCEDURE | N

3.1.2.2. Standard Identifiers

. The following identifiers are predeclared in the language, but may

be redeclared due to block structure. Their predefined meaning is spe-

cified in the language report [1], in section 3.1.2.4, or in the Appendix.

MEM

Bl B2 B3 B4 BS B6 BY BB BO

B10 Bll B12 B13

RO R1 R2 R3 Rk R5 R6 R7 RS

RO R10 R11 R12 R13 R1k R15

FO F2 Fl F6

FO1 F23% F45 F677

S

Lo

LA MVI MVC CLI CLC LM STM

SLDL SRDL IC STC CVD UNPK

~ ED EX TR SET RESET TEST

{ READ WRITE PUNCH PAGE

~ READTAPE ~~ WRITETAPE REWIND MARKTAPE

FSPTM FSPREC BSPTM BSPREC

on READTYPE WRITETYPE

| SETPMASK SETDUMP DUMP

iy GETTIME WRITETIME

: 3.1.2.3. Restrictions
— =r ——————————

| | The implementation imposes the following restrictions upon the

language: -.

i a. Only the first 10 characters of identifiers are recognized as

= significant. |

» b. No goto statement may refer to a label defined in a segment
-

} different from the one in which the goto statement occurs.

L |
3.1.2.4. Supervisor Functions and Standard Procedures

g A set of standard functions is defined for elementary input and
| output operations. The referenced supervisor routines make use of

{ I"

- parameter registers as specified below. They set the condition code |

| to O, unless otherwise specified. Input-output devices are designated

: by logical unit numbers (see section 5.1 or 6.1).

~~ READ Read a card, assign the 80 character record to

(the memory area designated by the address in

- register RO. Set the condition code to 1 if a
| control card is encountered.

{

— WRITE Write the record of 132 characters designated by

: -the address in register RO on the line printer.

- 7

Set the condition code to 1 if the next line to be

printed appears on the top of a new page.

PUNCH Punch the record of 80 characters designated by

the address in register RO on the card punch.

READTAPE Read a record from the tape unit specified by the

logical unit number in register R2. The length

of the record in bytes is specified by register

Ea Rl, and it is assigned to the memory area desig-

| nated by the address in register RO. Set register

- R1 to the actual number of bytes read. Set the |
condition code to 1 if a tape mark is encountered.

WRITETAPE Write a record on the tape unit specified by the

h logical unit number in register R2. The length

of the record in bytes is specified by register |
Rl; the record is designated by the address in oo

: register RO.

PAGE Begin a new page with the next record written on

the line printer.

¥*

READTYPE Read a record from the operator console typewriter.

The length of the record in bytes is specified by

register Rl, and it is assigned to the memory

area designated by the address in register RO. Set

register Rl to the actual number of bytes read.
*

WRITETYPE Write a record onto the operator console type- |
writer. The length of the record in bytes is

specified by register Rl; the record is designated |

by the address in register RO.

* | | |
Avallable only in the stand-alone system.

3

— The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register RZ2.
-

MARKTAPE Write a tape mark.
3

- REWIND Rewind the tape.

*

BSPREC Backspace one record.

— *
FSPREC Forwardspace one record.

i BSPTM Backspace past the previous tape mark.
| FSPTM Forwardspace past the next tape mark.

| .
~ ~~ The system also provides a set of standard procedures.

a DUMP _ Print a specified area of memory in hexadecimal
form. The starting address of the area is speci-

fied by register RO. Its length in bytes is
—

specified by the register Rl. The values of

register R2 and the condition code are altered

= by a call of the dump routine.

WRITET IME Print the time elapsed since the beginning of
——

execution of the present program (in minutes,

seconds, and sixtieths of a second). The values

= of registers RO, Rl, and R2 and of the condition

. code are altered.

= GETT IME Set register Rl to the time elapsed since the

| beginning of execution of the present program

- (in sixtieths of a second). The values of

| registers RO and R2 and of the condition code

_ are altered.

: In addition, the standard procedures SETPMASK and SETDUMP give the user

some control over program interruptions; they are described in sec-

tion 4.2.

x
Available only in the stand-alone system.

— 9

5

_ oN

| - Co | Ww
DE | =

: | oo :
TPL360 210 | NS;

01 0004 00 0170 BEGIN COMMENT MAGIC SQUARE GENERATOR;
01 0004 00 0170 | ARRAY 132 BYTE LINE = 132("); | oF
01 0004 O00 OlF4 ARRAY 8 BYTE PATTERN = (1 ",3(#20),#21,#20); =
01 2004 00 OLFC LONG REAL -DEC; oo | 2,
01 00G4 00 0208 | ARRAY 256 INTEGER X3 v
Ol 0004 00 0608 | Ty rd
01 0004 00 0608 "PROCEDURE MAGICSQUARE (Rb)3 oo 3 |
01 0008 00 0608 | COMMENT THIS PROCEDURE ESTABLISHES A MAGIC SQUARE OF ORDER N, . |®
01 0008 00 0608 [F N IS ODD AND 1 < N < 16, X IS THE MATRIX IN LINEAR FORM. |p01 0008 00 0608 REGISTERS RO ... R6 ARE USED, AND RO CONTAINS N AS PARAMETER.
01 0008 00 0608 ALGORITHM 118 (COMMJACM, AUG.1962);

01 0008 00 0608 BEGIN SHORT INTEGER NSQR; oo
01 0008 00 060A INTEGER REGISTER N SYN RO, I SYN Rl, J SYN R2, Y SYN R3;
01 0008 00 060A | INTEGER REGISTER IJ SYN R4, K SYN RS;
01 0008 00 060A NSQR = N; Rl t= N #* NSQR; NSQR := Rl;

— 01 0016 00 060A | I = N+#1 SHRL 13 J = N; |
© 01 0022 00 060A FOR K := 1 STEP 1 UNTIL NSQR DO

01 0026 00 060A BEGIN Y = T SHLL 63 IJ f= J SHLL 2 + Y; Y = X{I1J);
O01 003C 00 060A IF Y == 0 THEN oo

01 0042 00 060A BEGIN I 3= I-13 J = J-23
01 004A 00 060A IF I < 1 THEN [= [+N;
01 0054 00 060A IF J < 1 THEN J :=J#N; | |
01 O005€ 00 060A | Y 2=.1 SHLL 6; IJ = J SHLL 2 + ¥3
01 006C 00 060A END 3 oo .

01 006C 00 060A | | X(1J) = K3 | oo
01 0070 00 060A I = I+15 IF I > N THEN l= I-N;

Ol 007C 00 050A | | J t= J¥l; IF J > N THENJ 3= J=N;
01 0088 00 060A END ; | | | I | |
01 0094 00 060A END ; LL |

Ol 0096 00 060A | |

01 0096 00 060A | PROCEDURE GENERATE (R81): |

01 0096 00 060A | BEGIN INTEGER REGISTER I SYN Rl, J SYN R2, IJ SYN R4, N SYN R63;
01 009s 00 060A : J t= 03 FOR I := 0STEP 4 UNTIL 1020 DO X(1I) := J;
01 0082 00 060A MAGIC SQUARE; |

01 O0B6 00 060A | N = RO;

01 OOBS 00 060A FOR I := 1 STEP 1/UNTIL N DO

Ol 00BC© 00 060A BEGIN IJ 2s= 1 SHLL 6 #43 R5 := 3LINE(4);

01 00CE 00 060A FOR Jd. t= 1 STEP 1 UNTILN DO

01 0002 00 060A BEGIN MVC{(5, BS, PATTERN}; R3 = X(1J)s CVD(R3, DEC}:
01 OO0E4 00 060A ED(5, B85, DEC(5))5 IJ 3= IJ+45 RS := RS+7;
01 OO0F2 00 060A END 3
01 OOFC 00 060A | RO :=ALINE; WRITE;

01 0140C 00 060A END 3 |
01 0116 00 060A MVC(130, LINE(L), LINE(O}); WRITE;
01 0128 00 060A END 3

01 012A 00 060A

01 012A 00 060A RO 2= 33 GENERATE;

01 0132 00 060A RO := 5; GENERATE; d

.. 01 OL3A 00 060A © RO .:= 9; GENERATE;
= 01 0142 00 060A | END .

SEGMENT 00 STARTS AT Q07C810 | :

SEGMENT O01 STARTS AT (38920 |

ELAPSED TIME IS 00:02:00 |

4 3 8

9 5 1 |

2 7 6

11 10 4 23 17
18 12 6 5 24

25 19 13 7 1

2 21 20 14 8 |
9 3 22. 16. 15 |

37 36 26 16 6 77 67 57 47

48 38 28 27 17 7 78 68 58

59 49 39 29 19 18 8 79 69

70 60 50 40 30 20 10 9 80 |
81 71 61 51 41 31 21 11 | 1 |

| 2 73 72 62 52 42 32 22 12
5 13 3 74 64 63 53 43 33 23

24 l4 4 75 65 55 54 44 34 |

35 25 15 5 76 66 56 46 45

ELAPSED TIME IS 00:02:01 | | | |

| 3.1.3. Instructions to the Compiler
L

LC The compiler accepts instructions inserted anywhere in the se-

{ quence of input records. These instructions affect subsequent records.

A compiler instruction card is marked by a $ character in column 1, and
{

PL an instruction in columns 2-20. Columns 21-80 of such a record are
ignored.

> $NOGO ~ Compile, but do not attempt execution.

i : $LIST List source records on the printer (initial op-
} tion).

; $NOLIST Do not list source records.
“ -

$PUNCH Punch compiled program and data segments on cards.

L $NOPUNCH Do not punch compiled program and data segments
(initial option).

- $PAGE Print the next record of the listing on a new page.

| $0 Print the source text only (initial option).
L

$1 Indicate the addresses of all variables and pro-

cedures upon their declaration.
-

$2 List addresses as for $1. Also list the pro-

) duced machine code in hexadecimal notation.

—

$TAPEn Read subsequent source records from the tape

u unit with logical number n. If n is omitted,
: device 7 is assumed. Columns 10-17 of the card

specify the program name. If the name field is

s not blank, the tape is searched for that program

| from the starting point to the end. Column 19
- specifies the rewind option (see section 3.6.1).

| $TAPEn is the last card read by PL360 from the

~_ card deck.
)

i

- 13

-

$OUTPUTn Place the compiled program on logical device n,

and do not attempt execution. If n is omitted or

no $OUTPUT card is used, the output is put on |

device 5. Column 19 specifies the rewind option.

Note that PL360 produces an unlabeled object pro-

gram (see section 3.5.1).

; 3.1.4. Compiler Output Listing

| If listing has been specified, the compiler lists each source

card as it is read. Source card images read from tape also include

the sequence number used by TUP and SFTUP (see sections 3.4 and 3.6).

At the left edge of the page, the compiler lists two sets of numbers. :

The first set consists of the current program segment number (in

decimal) followed bythe current object code relative address (in

hexadecimal); the second set, of the current data segment number

followed by the current data relative address.

14

-

5.1.5. Error Messages of the Compiler
{

L Errors detected by the compiler are indicated by a message and a

i bar below the character which was last read. After 51 errors in any
program, compilation is terminated. If listing has been specified,

the remainder of the program is simply listed. |
|_

it Error No. Message Meaning
| 00 SYNTAX The source program violates the

. : PL360 syntax. Analysis continues
3 with the next statement.

| OL VAR ASS TYPES The type of operands in a variable
assignment are incompatible.

| 02 FOR PARAMETER In a for clause, the register is not |
an integer register, the step is not |

L an integer or short integer number,
or the limit is not an integer re-

| gister, cell, or number or short
integer cell or number.

| | 03 REG ASS TYPES The types of operands in a register |
assignment are incompatible.

{ - Oly BIN OP TYPES The types of operands of an arith-

= metic or logical operator are in-

l | compatible.
' 05 SHIFT OP A real instead of an integer register

1 or number 1s specified in a shift
operation.

L 06 COMPARE TYPES The types of operands in a compare
are incompatible. |

L 07 REG TYPE OR # Either the type or the number of the
register used is incorrect.

L 15 |

-

al - mmm TT 1

Error No. Message | Meaning

08 UNDEFINED ID An undeclared identifier is encoun-

tered. The identifier is treated as

if it were "R1". This may generate

other errors.

09 MULT LAB DEF The same identifier is defined as a

label more than once in the same

+ block.

10 EXC INI VALUE The number of initializing values

exceeds the number of elements in |

B the array. |

11 NOT -INDEXABLE The function argument does not allow |

for an index register.

12 DATA OVERFLOW The address of the declared variable :

in the data segment exceeds 4005.

13 NO OF ARGS An incorrect number of arguments is

used for a function.

14 TLLEGAL CHAR An illegal character was encountered; |

it is skipped.

15 MULTIPLE ID The same identifler is declared more

_ than once in the same block. This

| occurrence of the identifier is ig-

nored.

16 PROGRAM OFLOW The current program segment is too

large. It must be resegmented.

17 INITIAL OFLCOW The area of initializing data in the

compiler is full. This can usually

be circumvented by suitable data -

segmentation or by reordering ini-

| tialized data within the segment.

16

| Error No. Message Meaning
18 ADDRESS OFLOW The number used as index is such that

| ~.. the resulting relative address is
less than O or greater than 4095.

| 19 NUMBER OFLOW The integer number is too large in
| magnitude.

l 20 MISSING An end-of-file has been read before
| a program terminating "." was en-

| : countered. The problem may be a
. | missing string quote.

| 21 STRING LENGTH The length of a string is either O
) or greater than 256.

| 00 AND/OR MIX A compound condition must not con-
tain both ANDs and ORs.

| 23 FUNC DEF NO. The format number in a function de-
claration is illegal (see the Appendix).

| 2k ILLEGAL PARAM A parameter incompatible with the
specifications of the function is

| used (see the Appendix).
25 NUMBER A number has been used that has an

|) illegal type or value.
26 SYN MIX Synonym declarations cannot mix

| cell and register declarations.

L At the end of each program segment, all occurrences of undefined labels
are listed with an indication of where they occurred.

4 ; |]

3.1.6. The Format of "Binary" Cards

The compiler produces four types of "binary" cards if requested

through the $PUNCH option. The card formats are:

Col 1 This column identifies the type of object card

S = procedure segment header

D = data segment header

ES E = external procedure or data segment header

| | P = object program card

Col 2 segment number in hexadecimal. |

Col 3-6 Length of segment if S, D, or E card. Relative

address of first byte of object program on the card

if P card.

Col 7-8 Count of object program bytes on card if P card.

Blank if S, D, or E card.

Col 9-72 Object program bytes if P card. Date is in Col 40-47

if S, D, or E card.

Col T73-Th Segment number in decimal.

Col 75 Type of segment (E, D or S).

Col 76-80 Sequence number in decimal. For each segment sequence

_ numbers start with OOOOl and are incremented by 1.

Note: Columns 73-80 are ignored by the loader and are punched for

identification purposes only. |

18 |

3.2. Program to Duplicate Card Decks (DUPDECK)

L This program duplicates the cards following the DUPDECK card up

| to the next control card. There are two option cards which are not
punched and can appear anywhere in the deck.

| $SEQUENCE The following cards are sequenced in columns
3 76-80. Sequence numbers start with 00001 and

lL are incremented by 1.
| } $NOSEQUENCE No sequence numbers are provided. This is the

| initial option.

L 3.3. Program to List Card Decks (LISTER)
L This program lists the cards following the LISTER card up to the |

next control card. There are three option cards which are not listed

L and can appear anywhere in the deck.

i $PAGE Start a new page with the next listed card.
$SEQUENCE List subsequent cards with a card count, which

| starts at 1 and is incremented by 1. This is
the initial option.

| : $NOSEQUENCE List subsequent cards without card counts.

L N

3.4. Tape Updating Utility Program (TUP) . oo SE

TUP can be used to create, list, punch, or update a card-image |

tape file. Starting in the command mode, TUP reads and interprets a

sequence of commands on cards, each of which is punched beginning in

column one. If on any command card, except $LISTER or $PUNCHSEL,

"LISTER" is punched in columns 12-17, the output produced during the

interpretation of the command is also listed on the printer. Two cards, :

recognized in the command mode, are used to indicate the input and oo

output units. |

$INPUTn ~ Unit A is assigned the logical device number n.

If n is omitted or if no $INPUTn is used, then

unit A is logical device 6. Columns 10-17 spe- N

| cify the program name. If the name field is not

blank, the input tape is searched for the program

after the tape has been opened by a command. .

Column 19 specifies the rewind option (see sec-

tion 3.6.1). | |

$OUTPUT Unit B is assigned the logical device number n.

If n is omitted or if no $OUTPUTn is used, then

. unit B is logical device 7. Column 19 specifies

the rewind option. Note that TUP produces an

unlabeled source program as output (see section

3.6.1). | |

The appropriate $INPUTn and $OUTPUTn cards must precede the following

command cards.

Note: 1) mand n as used below are five digit sequence numbers. m

must be punched in columns 12-16, n in columns 20-24. Lead-

ing zeroes must be punched.

20

L
2) A TUP deck is ended by the first PL360 control card read.

L This card is processed as a $END card by TUP.
L $NEWTAPE Tape Unit B is opened. The subsequent card deck

| is read and put onto unit B. Every record is

| provided with a sequence number. Sequence numbers
begin with OOOl0 and are incremented by 10. All

| 80 columns of the card can be used. A $END card
| completes the deck. Unit B is closed, and TUP

| E returns to the command mode.
© $LISTER m n Unit A is opened. The records with sequence num-

L bers m through n are listed. If n is omitted,
B listing is continued to the end of the program.

| If m is omitted, listing starts with the first
record. Unit A is closed only if the program is |

| listed to the end. After listing, TUP returns to

L the command mode.

| $PUNCH Unit A is opened. If a labeled program is to bepunched, a program identification card is punched

(see section 3.6.2). The entire program is

L punched, unit A is closed, a EOF card is punched,
and TUP returns to the command mode.

L $PUNCHSEQ This is identical to $PUNCH above, except that
the tape sequence numbers are moved to columns

| 76-80 before the cards are punched.
: | $PUNCHSEL m n UnitA is opened. The records with sequence num-
| bers m through n are punched. If n is omitted,

punching continues to the end of the deck. If m

| is omitted, punching starts with the first record.
Unit A is closed only if the program is punched

| to the end. A %EOF card is punched and TUP re-
turns to the command mode.

| 21

i

$RESEQUENCE Unit A and unit B are both opened. The records

on unit A are read, provided with new sequence |

numbers (starting with 00010 and incremented by

10), and written onto unit B. At the end of the

program, unit A and unit B are closed, and TUP |
returns to the command mode.

$UPDATE Unit A and unit B are both opened. TUP enters

x the update mode in which it updates the informa-
tion on unit A with information read from cards. |

- The updated information is written onto unit B.

. The following instructions are obeyed in the up-

date mode: | |

$DELETE m n h Records with sequence numbers m through n are

deleted. If n is missing, only one card is

| deleted.

| $INSERT m TUP enters the insert mode. The subsequent
card records are inserted after the record

with sequence number m. They are assigned

sequence numbers beginning with m + 1 and

| incremented by 1. All cards (preceding the

first $END update card) are treated as data

to be inserted. If an inserted recordis

: given a sequence number identical to that of

| an existing record on input unit A, that exist- |

ing record is replaced by the new record. All

80 columns on data cards may be used.

$END If TUP is in the insert mode, it returns to

the update mode. Otherwise, the remainder of

the program on unit A is copied onto unit B,

units A and B are both closed, and TUP returns .

| to the command mode.

22

$LISTER m Listing starts (or resumes)at the record with

L sequence number m.

| $NOLISTER m Listing stops at the record with sequence num-ber m. Note: Even when no listing is selected,

all command or update mode cards and all insert-

| ed and replaced records are listed.
1 Other cards: Any other card is treated as a data card, and

L | it must be provided with a sequence number in
| columns 76-80 (leading zeroes must be punched).

| If its sequence number coincides with the se-
N quence number of a record on the input tape,

| then that record is replaced by the one read
from cards; otherwise, the card record is

| inserted at the appropriate place.
Note: Cards in the update deck must be properly se- |

L quenced, i.e., the sequence numbers on "other
cards" and the parameter m on update command

| cards must be in increasing sequence. If there— are no cards in the update deck, then the pro-

gram on unit A is simply copied onto unit B.

L If a card is read with a sequence number larger
| than any number in the program on unit A, unit |

|) A and unit B are closed and TUP returns to the
command mode.

\ 3.4.1. Opening and Closing Tape Units
| Unit A is opened by performing the specified rewind option. If

| the program name field is not blank, the tape is searched from the

| starting point to the end of the tape for a program with that name.

{ Unit A is closed by either rewinding or positioning at the next program
on the tape, depending upon the rewind option (see $INPUTn and section

L 3.6.1).
23

Unit B is opened by performing the specified rewind option. It

is closed by writing a program separator and then performing the spe-

cified rewind option (see $OUTPUTn and section 3.6.1). |

3.4.2. TUP Error Messages

TUP always produces an output tape with sequence numbers in an

3 increasing order. Each sequence number is checked before a record is

written. If the sequence number is less than or equal to the last

record written then the out-of-sequence record is not written. The |

record is listed on the printer with a message that it was deleted.
The m field of each update command card and the sequence field

of each "other card" in an update run are checked for a valid 5 digit |

~ number. If the sequence number is not valid, then the card is ignored

by TUP. All cards with invalid sequence numbers are listed with an

indication that they were ignored.

2h |

Fe

| |

— :

3.5. System Tape Updating Program (SYSTUP) |

. SYSTUP can be used to list, copy, update, or punch the contents

| of system tapes. The program assumes the update mode unless a control
- card changes the mode. All mode control cards must occur before the

- first program identification card, $INSERT card or $RENAME card. The

g control cards can occur in any order because all system control cards
= are read before any action is taken.

8 3.5.1. Object Program Formats on Tape
| Each program or data segment is represented on tape by at least

. two records. The first record is a header record describing the re- |

| cords comprising the given segment. These records immediately follow Co
: the header record. Normally, the program or data segment object code

3 is written as a single record. However, in the OS system it is some-
times necessary to divide the segment to avoid exceeding the maximum

L record length allowable for the actual physical device being used

i (see section 5.2.2). This is done automatically by all the PL360
system programs using or producing object programs. The end of the

i object program is signalled by reading (or writing) a tape mark. Each |

| program on a system tape is preceded by a header record with the format
of a program identification card (see 3.5.2). This record gives an

i eight character name or label to the program. It is this name that is
used by SYSTUP or by the system loaderto recognize the program. On

4 all "$" control cards referring to a labeled object program, the program
name is punched incolumns 10-17. Unlabeled object programs do not

. have a header record. The end of a system tape is indicated by the

g

- — ee 0]

occurrence of two successive tape marks. The first one indicates the

end of the previous object program; the second indicates the end of |

the system tape. .

At times it is desirable to control the rewinding of tapes con-

taining system programs so that unnecessarytape positioning can be

~ avoided when accessing more than one object programon a tape. There-

| fore, a rewind option exists on most "$" control cards. Column 19 is |
used to specify the option. "B" causes the tape to be rewound only

before use; "A" causes the tape to be rewound only after use; "N"

causes no rewinding; any other punch in column 19 (including blank)

causes rewinding both before and after using the tape.

. 3.5.2. Program Identification Card

The copy, punch, and update modes of SYSTUP are controlled by

program identification cards. Columns 2-9 of each card contain the

program name by which each program is to be recognized by the system |

loader as well as by SYSTUP, columns 10-72 form a comment field to be |
used for versiom identification, and columns 73-80 constitute the ver-

sion date field. If the date field is blank then the current date is

copied into it. Column one is ignored on the card.

5.5.53. Mode Control Cards | |

$INPUTn The input tape is identified with the logical
device n (in decimal). Device 4 is the standard

input unit if $INPUTn is not used or n isomitted. If

n is zero, it is assumed that there is no input

tape. Column 19 specifies the rewind option.

26 |

_ |

$O0UTPUTn The output tape is identified with logical device

— number n. Device 9 1s the standard output unit

| if $OUTPUTn is not used or n is omitted. Column

_ 19 specifies the rewind option.
$PUNCH The initial input tape rewind option is performed.

L All the programs specifiedby program identifica-
tion cards are punched. Each punched deck con-

i sists of an initial program identification card, |
oT the object deck, and finally a %EQOF control card.

] : Thus the deck is in the form used by SYSTUP to

— | load a program. For each program identification
] card in the deck, the input tape is searched for

- - the specified program. The search is started
(without rewinding and, if necessary, continued

{ to the starting point after rewinding. Therefore,
| no specific order is required for program identi-

g fication cards, but it is more efficient to punch
decks in the same order as the programs appear on

the tape. The first "%" control card read ends

- the punch run. The closing input tape rewind op-
tion is performed. $COPY or $LIST should not be

— used with $PUNCH.

: $COPY The initial input and output tape rewind options

— | are performed. In the stand-alone system, a
{ monitor is first put on the output tape as de-

- scribed in section 6.2.2. All the programs spe-
cified by program identification cards are copied

} from the input tape onto the output tape. Each
program is located on the input tape in the same

_ manner as described for $PUNCH. Since no specific
order is required for program identification cards,

a copy run can be used to reorder a system tape.

— The first "%" control card read ends the copy run.

- o7

A final tape mark is written on the output tape.

The closing input and output tape rewind options

are performed. $PUNCH or $LIST should not be

used with $COPY.

$LIST The initial input tape rewind option is performed;

all the program identification records on the in-

put tape are listed on the printer; then the

ks closing input tape rewind option is performed.

| | $PUNCH or $COPY should not be used with $LIST.

i If a $PUNCH, $COPY, or $LIST card is not encountered among the

mode control cards, then an update run is performed. In the stand-

alone system, a monitor is written first on the tape followed by a

tape mark (see section 6.2.2). In the 0S system only a tape date

record and a logical tape mark are written.

An update run is a sequential merge between the input tape and

the changes specified by the card deck. Neither the input nor the

output tape is rewound during the update. Therefore, the order of

updating must correspond to the order of the programson the input tape.

The first "%" control card that is not %EOF or the first %EOF card

that does not pair with a program identification card ends the input

card deck. The update function operates as follows: |

1... If the next card to be processed is $INSERT then one of the

| following occurs: |

a. If the end of the input tape has been read or if columns

10-17 are blank, then the deck set following the $INSERT

card is immediately loaded onto the output tape without

reference to the input tape. A deck set consists of a pro-

28 |

L

i gram identification card followed by a deck indication (see |
section 3.5.4).

L b. If columns 10-17 are not blank, then the input tape is copied

L onto the output tape up to and including the program named
in columns 10-17. Then the following deck set is loaded as

l | above.
~ 2. If the next card to be processed is $RENAME then one of the fol-

L | lowing occurs: |

L a. If the end of the input tape has been read, then the cardis ignored and a skip is made to the next "%" control card.

L b. Otherwise, the input tape 1s copied onto the output tape up oo
to the program named in columns 10-17. The next card in the

L deck replaces the old program identification record on the

L output tape, the program is copied from the input tape onto
the output tape, and a skip is made to the next "%" control

| card.
) 3. If the next card to be processed is a program identification card

L then one of the following occurs:

| : a. If the end of the input tape has been read, the program is
: simply loaded onto the output tape. |

g b. Otherwise, the input tape is copied onto the output tape up
| to the program named on the program identification card. If

L | a "%" control card follows the identification card, the named

(program is not placed on the output tape; otherwise a deck

L indication (see section 3.5.4) must follow and the new ver-

-

Ce)

4] ;

sion of the program is loaded onto the output tape. The input

| tape is moved forward to the next program. | |
lk. If the end of the card deck has been reached, then the rest of

the input tape is copied onto the output tape. An update run with

no update deck copies all the input tape programs to the output

tape. | | |

| Thus, the update mode has the following general features:

1. All programs on the input tape that are not specified in the up-

date deck are sequentially copied to the output tape.

2. Programs can be inserted, changed, deleted, or renamed. The re- |

name feature can change the program name, the version identifica- |

| ~~ tion, or both. |

3 The %EOF card separates each update step in the program, and each

FEOF card signifies a return to the normal updating mode. Each

update step is dependent on previous steps only because of order.

L. The end of both the card deck and the input tape must be reached

before the update is completed. If the end of the input tape is

reached while searching the input tape for a program name, then

~~ the current update step is completed as if the end of the input

tape had been read before starting that step. |

3.5.4. Deck Indications |

There are three weye to specify the location of the object program

associated witha given program identification card.

1. A $TAPEn card with columns 10-17 blank immediately follows. It

indicates that the program is unlabeled and can be found on device n.

30

r rea : - ss —e———ee

|

-

However, n cannot be the same as the input or the output device. |

1 Column 19 specifies the rewind option. The initial rewind option |

is performed, the program is loaded, and then the closing rewind |

- option is performed. If the card following $TAPEn is not a "%" |

L control card, then a card object deck must follow. It is also
loaded and the combined program is written onto the output tape. |

iN If n is omitted, then device 5 1s used.

) 2. A $TAPEn card with columns 10-17 not blank immediately follows.

. | It indicates that the program is to be found labeled on another

1 system tape on device n. However, n cannot be the same as the |
input or output device. Column 19 specifies the rewind option.

L The initial rewind option is performed and the tape is searched .
r | for the program named in columns 10-17. The search is the same as

. that described above for $PUNCH. That program is loaded and the
9 closing rewind option is performed. If the card following $TAPEn |

is not a "%" control card, then a card object deck must follow.

L It is also loaded and the combined program 1s written onto the
] output tape. If n is omitted then device 5 is used. The program

g name on the $TAPEn card need not be the same as the one on the | |
i program identification card. Therefore, this feature can be used

: to rename a program. | |

~ 3 Otherwise, a card object deck must immediately follow in the card
reader. It is loaded until the next "%" control card (usually a

L %EOF card).

g

L Y
i

.
wd

5.5.5. Examples of Usage |

1. Copy the system tape from device 4 to device 9. oo

| %SYSTUP oo IE

FEOF

2, List the program headers on the system tape on device 6.

| hSYSTUP |
$INPUT6 | |

- $LIST |

oo PEOF | | |

3, Punch object decks of PL360 and TUP from system tape on device Lk. |

 %SYSTUP | | |

$ PUNCH | |
PL360 N

| TUP | | | |

| FEOF | |

32

—

| 4. Compile LISTER program and update the system tape from device 6

— to device 8 with the new version of LISTER. Also insert an ob-

ject deck of PNAME immediately after LISTER, and delete PNAMEZ2
n

from the new system tape.

$NOGO

fl | {LISTER source deck]
ng |

EOF

| - %SYSTUP

— | | $INPUTE
: $OUTPUT |

— ~ LISTER

$TAPE

a FEOF |
| $INSERT

PNAME
—

{object deck]

| FEOF

~ PNAME2

%EOF

— %EOF

- Note: The final card of any SYSTUP deck may be a "%" control card for

the next joh in place of the final %EOF card shown in the ex- no

— amples above.

u

— 33

5.6. Source File Tape Updating Program (SFTUP) |

| SFTUP can be used to list, copy, or update the contents of source Co

program file tapes. The mechanism is hasically the same mechanism used

by SYSTUP (see section 3.5). SFTUP does not have a punch option because .

TUP (see section 3.4) can be used whenever it is necessary to punch NB

a decks from a source tape. The program assumes the update mode unless a |
control card changes the mode. All mode control cards must occur before

~the first program identification card, $INSERT card, $RENAME card, |

$URDATE card or $RESEQ card. The mode control cards can occur in any |

order because all mode cards are read before any action is taken. |

3.6.1. Source Program Formats on Tape

Each source program is written on tape in a blocked format. Each

tape record consists of eight source card images of eighty bytes each

with an eight byte sequence field preceding each card image. The end |

of a source deck is indicated by a card image record with a special

associated sequence field. Source programs are separated on tape by a

special record. Source tapes for the stand-alone and 0S systems are

compatible. Each program on a source file tape is preceded by a header

record with the format of a program identification card (see section 3.6.2).

This record gives an eight character name or label to the program. It is

this name that is used by SFTUP, PL360, TUP, XREF or SYNPROC to recognize

the program. On all "$" control cards referring to a labeled. source pro-

gram, the program name is punched in columns 10-17. Unlabeled source pro- |

grams do not have a header record. Theendof a sourcefile tape is indicated

2h

| |

-

by the occurrence of two successive special records. The first one

B indicates the end of the previous source program, the second indicates

8 the end of the source file tape.

At times it is desirable to control the rewinding of tapes con-

. taining source programs so that unnecessary tape positioning can be

3 avoided when accessing more than one source program on a tape. There-

= fore, a rewind option exists on most "$" control cards. Column 19 is

4) used to specify the option. "B" causes the tape to be rewound only
| before use; "A" causes the tape to be rewound only after use; "N"

L causes no rewinding; any other punch in column 19 (including blank)

i causes rewinding both before and after using the tape. |
| 3.6.2. Program Identification Card

- The copy and update modes of SFTUP are controlled by program iden-

_ tification cards. Columns 2-9 of each card contain the program name
by which each program is to be recognized by the various system pro-

L grams; columns 10-72 form a comment field to be used for version

; identification; columns 73-80 constitute the version date field. If

- the date field is blank then the current date is copied into it.

1 Column one is ignored on the card.

u

:

— 35

-

Ce]

3.6.3. Mode Control Cards

$INPUTn The input tape is identified with logical device

number n. Device-6 is the standard input unit if

$INPUTn is not used or n is omitted. If n is Ba

zero, 1t is assumed that there is no input tape.

Column 19 specifies the rewind option.

i $OUTPUTn The output tape is identified with logical device

| number n. Device 7 is the standard output unit oF

3 if $OUTPUTn is not used or n is omitted. Column

19 specifies the rewind option. ,

$COPY The initial input and output tape rewind options

- are performed. All the programs specified by oe

program identification cards are copied from the

input tape onto the output tape. Each program is UR

: located by searching the input tape for the spe-

cified program. The search is started without

rewinding and, if necessary, continued to the

starting point after rewinding. Since no specific

order is required for program identification cards, |

a copy run can be used to reorder a source file

tape. The first "%" control card read ends the |

) copy run. A final special record is writtenon

the output tape. The closing input and output

tape rewind options are performed. $LIST should

not be used with $COPY. |

$LIST The initial input tape rewind option is performed;
all the program identification records on the

input tape are listed on the printer; then the

closing input tape rewind option is performed.

$COPY should not be used with $LIST.

36

oo CTE Co

(|

L

» If a $COPY or $LIST card is not encountered among the mode control

= cards, then an update run is performed. The initial input and output

_ tape rewind options are performed: However, if the input unit is logi-
cal device zero, then no input tape is used, and the update run makes

9 a new source file tape from the input card deck.

i An update run is a sequential merge between the input tape and

— the changes specified by the card deck. Neither the input nor the

1) output tape is rewound during the update. Therefore, the order of
updating must correspond to the order of the programs on the input

C tape. The first "%" control card that is not %EOF or the first %EOF

! card that does not pair with a program identification card, $UPDATE |

L card, or $RESEQ card ends the input card deck. The update function |
1 operates as follows: |

1. If the next card to be processed is $UPDATE than one of the follow-

L ing occurs:

a. If the endof the input tape has been read, the card is ig-

L nored and a skip is made to the next "%" control card. |

1 i b. Otherwise, the input tape is copied onto the output tape up
| to the program named in columns 10-17. The deck following
;

L $UPDATE up to the next "%" control card is then used with

§ | the designated source program on the input tape to produce
an updated source program on the output tape. The form of

L the update deck is the same as that used in TUP (see TUP
update mode description in section 3.4). |

i 2. If the next card to be processed is $RESEQ then one of the follow-

| ing occurs: ’
- 37

|
-

a ST

a. If the end of the input tape has been read, the card is ig-

nored and a skip is made to the next "%" control card. B

b. Otherwise, the input tape is eopied onto the output tape up

to the program named in columns 10-17. Each source record

of the designated program is read from the input tape, pro-

. vided with a new sequence number, and written onto the output

tape. The sequence numbers start with 00010 and are incre- |

- mented by 10.

3. = If the next card to be processed is $INSERT then one of the follow-

ing occurs: -. |

a. If the end of the input tape has been read or if columns

10-17 are blank, the deck set following the $INSERT card is -

| loaded onto the output tape without reference to the input |
tape. A deck set consists of a program identification card

followed by a deck indication (see section 3.6.4).

b. If columns 10-17 are not blank, the input tape is copied onto

the output tape up to and including the program named in |

: columns 10-17. Then the following deck set is loaded as

above,

h.. If the next card to be processed is $RENAME then one of the follow-

| ing occurs: |

a. If the end of the input tape has been read, the card is ig-

nored and a skip is made to the next "%" control card.

b. Otherwise, the input tape is copied onto the output tape up

to the program named in columns 10-17. The next card in

the deck becomes the program identification record for the |

38

-_-_— ss wm |

| |
—

| source program, the source program is copied from the input

~ tape onto the output tape, and a skip is made to the next "%" |

| control card. -
{_-

5. If the next card to be processed is a program identification card

« then one of the following occurs:

3 a. If the end of the input tape has been read, the deck set is

— loaded onto the output tape. :

-) b. Otherwise, the input tape is copied onto the output tape up
| to the program named on the program identification card. If

L a~"%" control card follows the program identification card,

| the named program is not placed on the output tape; other- |
~ wise, a deck indication (see section 3.6.4) must follow, and |

1 the new version of the source program is loaded onto the
| output tape. The input tape is moved forward to the next
:

. program.

6. If the end of the card deck has been reached, then the rest of the

w input tape is copied onto the output tape. An update run with no |

) update deck copies all the input tape programs to the output tape.
-

! | Thus, the update mode has the following general features:

= 1. All programs on the input tape that are not specified in the up-
L date deck are sequentially copied to the output tape.

2. Programs can be inserted, completely changed, deleted, renamed,

- updated or resequenced. The rename feature can change the pro- |
gram name, the version identification, or both. |

= 3. The %EOF card separates each file update step in the program, and

- 39

- | ’

each $EOF card signifies a return to the normal updating mode.

Each file update step is dependent on previous steps only because oo

of order. .

4. The end of the card deck and the input tape must be reached before

the file update is completed. If the end of the input tape is

. reached while searching the input tape for a program name, then

| the current file update step is completed as if the end of the

h input tape had been read before starting that step.

3.6.4. Deck Indications

There are three ways to specify the location of the source pr oO- a

gram assoclated with a given program identification card. oo
1. A $TAPEn card with columns 10-17 blank immediately follows. Tt

indicates that the program is unlabeled and can be found on device :

n. However, n cannot be the same as the input or output device.

Column 19 specifies the rewind option. The initial rewind option |

1s performed for device n, the source program is loaded onto the |
output tape, the closing rewind option is performed, and a skip

is made to the next "%" control card. If n is omitted then device

5 is used. The source program is copled without changing sequence

numbers. |

2. A $TAPEn card immediately follows, with columns 10-17 not blank.

It indicates that the program is to be found labeled on another

source file tape on device n. However, n cannot be the same as

the input or output device. Column 19 specifies the rewind option.

The initial rewind option for device n is performed and the tape |

40

: is searched for the program named in columns 10-17. The search

— oo is the same as that described above for $COPY. That program is

| loaded onto the output tape, the closing rewind option for device
.

n is performed, and a skip is made to the next "%" control card.

_ | The program name on the $TAPEn card need not be the same as the

x one on the program identification card. Therefore, this feature

~ also can be used to rename a program. If n is omitted device 5

! a is used. The source program is copied without changing sequence
—

numbers.

(

. 3. Otherwise, a source deck must immediately follow in the card

(reader. It is loaded onto the output tape until the next "%"

L control card. Each source record is given a sequence number .
| (starting with 00010 and incremented by 10).

L 3.6.5. Examples of Usage
1. Copy the source file tape from device 6 to device 7.

. %SFTUP
FEOF

{ ;
- 2. List the program headers on the source tape on device 7.

i | %SFTUP
— $INPUTT7 |

$LIST |

L %EOF

L |

— hl

{
-

3, Produce a new source file tape on device 7 from device 6. Update

the source program TUP, resequence the source program XREF, insert

the source program LISTER immediately after XREF and delete the

source program PNAME. Assemble TUP and LISTER putting both object |

programs on device 5. Finally, make a new system tape from device

4 to device 9 with the new object versions of TUP and LISTER (in-

: serted after XREF) and rename the object program PNAME to be
. PNAMEZ2.

} FSFTUP

$UPDATE TUP |
~ | {update deck} |

%EOF

$RESEQ XREF

FEOF

$INSERT

LISTER

{source deck}

FEOF | |
PNAME

FEOF

FEOF

%PL360 |

$OUTPUT B

$TAPE TUP B |
FEOF |

%PL360

$OUTPUT A

$TAPE LISTER A

FEOF

bSYSTUP

TUP |

$TAPE - B

42

\

5

| FEOF

— $ INSERT XREF

| | | LISTER

$TAPE) A
— .

FEOF

| $RENAME PNAME
~ PNAME2

3 | %EOF
~~ %EOF

L Note: The final card of any SFTUP or SYSTUP deck may be a "%" control

card for the next job in place of the %EOF card shown in the

— examples above,

: |

.

|

:

L |

_

3.7. Syntax Processor (SYNPROC)

The syntax processor program can be used to process simple prece-

dence grammars in order to determine the precedence matrix and the f ;

and g functions as described by Wirth and Weber [3]. The main input to

the processor consists of the productions of the language. A maximum

of 499 productions containing 255 distinct symbols can be processed.

Each production is punched on one card. Columns 1-72 of the card are

used for the production and divided into six l12-character symbol fields. |

The left part symbol of the production occurs in columns 1-12. (If

columns 1-12 are blank, then the left part of the previous production

is used as the left part of the current production). The right part

consistsof 1 to 5 symbols punched in columns 13-24, 25-326, 37-48, 49-60,

and 61-72 respectively. (Note that blank spaces are significant.) | oo

| As standard procedure, the syntax processor reads and lists all

of the productions, constructs a symbol table in two parts (nonterminal

and terminal), assigns each symbol a number, and finally determinesthe |

precedence matrix if it exists or prints out the conflicts that make

the matrix not exist. |

. The following option cards are recognized by SYNPROC:

$SYMBOLS The symbol table is to be read in before reading oo
the productions. Each symbol must be on a separate

: card in columns 1-12. The nonterminal symbols are

read first. A "$$" card signifies the end of the

nonterminals and the start of the terminals. A

second "$$" card is used to separate the terminal

symbols from the productions. Every symbol in the BE

| language must occur on a card. The terminal and

nonterminal symbol groups can be ordered in any

desired fashion. In this way the user cah specify

his own symbol numbers.

vi

eee

 —

$SYMPUNCH This causes the symbol table to be punched in the

_ form used by SYNPROC (including the "$SYMBOLS"
and two "$$" cards).

1 $CHECK | After the symbol table has been listed, a check is
| | made for any productions having identical right

| parts. All such occurrences are listed. No check
= is made if the card is omitted.

$MATRIX If the precedence matrix exists then it is printed

out in blocks 100 symbols wide. If the grammar

- has more than 99 symbols, then the matrix will be

= printed in two parts or in three parts if there

: are more than 199 symbols.

~ $LEFT) In general it is tedious to look up relations
: using the precedence matrix. If the precedence |
— matrix exists, the $LEFT will cause each symbol to |

: | be listed along with the relation and symbol of
— all symbols that have a relation to the right of |

| the symbol. Five relations are printed per line

_ in order to condense output.

$RIGHT This is entirely analogous to $LEFT.

— $FUNCT IONS If the precedence matrix exists, then the f and
. g precedence functions are calculated. If they

- exist then they are listed; otherwise the prece-
dence chain that makes them not exist is printed.

— $TAPEN Subsequent source records are read from the tape
: | unit with logical number n. If n is omitted,
_ device 7 is used. Columns 10-17 of the card spe-

| cify the program name. If the name field is not

. | | blank, the tape is searched for that program from
| the starting point to the end. Column 19 specifies

| the rewind option (see section 3.6.1). $TAPEn

~ is the last card read by SYNPROC from the card deck.

— 45

$OUTPUT The results of the syntax processor are put on

device n. If n is omitted device 5 is used.

Column 19 specifies the rewind option. If the

matrix does not. exist then only a closing tape

mark is written. If the functions are requested

then they are written on tape if they exist. The

output consists of an 80-character control record |

followed in order by the symbol table, production

| table, matrix, and functions (if calculated), .

] described as follows:

1. . Control record

Cols 1-4 number of nonterminal symbols

Cols 5- 8 total number of symbols, M

Cols 9-12 total number of productions, N

Cols 13-16 length of symbol table in bytes, 12(M + 1) |

| Cols 17-20 length of production table in bytes, 12(N + 1)

Cols 21-24 length of matrix in bytes, 64(M + 1) |

| Cols 25-28 length of functions in bytes, 2(M + 1)

2. Symbol table |

The symbol table consists of twelve byte entries which are the

; nonterminal and terminal alphabetic symbols ordered by number.

Symbol O is the blank symbol; thus the symbol table has M + 1 |

~ elements and is a 12(M + 1) byte record.

3. Production table

Each production is represented by six short integers that contain

the symbol number for each part of the rule. All symbol numbers B

are doubled in the table in order to facilitate half-word indexing

in function calculations. The symbol number O fills out all right

46

—

| parts that consisted of less than five symbols. Since each rule

= takes 12 bytes and the first entry is not used, there are 12(N + 1)

. bytes in the record. The processor can handle a maximum of 499
| productions.

1
4. Matrix

il The matrix is written in a completely packed form with 2 bits
} used for each relation (00 for no relation,Ol for< relation,

L) 10 for& relation, 11 for = relation). The processor can handle
! a maximum of 255 symbols so there are 64 bytes for each row. The

- first row corresponds to symbol O so there are 64(M + 1) bytes in

| the record. |

_ | 5. Functions
The f and g functionsare respectively the last two records on |

| the tape. The function values are short integers so each record

| is 2(M+ 1) bytes long, including a functional value of O for
. symbol O,

L The control cards can appear in any order and at any place in the
(| deck, except that $SYMBOLS and the symbol cards must obviouslybe

b placed before the first production.
| |

L

L

L y
LN

!
: ¥ be

. EE iE

. ad :

*

-

.

-

- |

3.8. Program to Generate Cross-Reference Tables of Identifiers (XREF)

The cross-reference program will list alphabetically all identi-

fiers in a source program with the numbers of the lines on which they
I

occur. An identifier is defined as a string of one or more letters

. and digits, with the first character a letter. According to various

» input options, one may request that certain identifiers not be referenced

— (e.g. reserved words) or that only specified identifiers be cross-re-

i - ferenced. The input program may be on cards or tape, and a listing of
I.

~~ 1t may be suppressed.

- ~
3.8.1. Control Cards

L 1. %XREF |
2. $PL360 Ignore all PL360 basic tokens, standard identi-

— | fiers and identifiers on card(s) 3, cross-refer-
; encing all others.

or

] $IGNORE Ignore the identifiers on card(s) 3, monitoring
—

all others.

; _ |
] or
Lo

$MONITOR Cross-reference only the identifiers on card(s)
t }

L : 3, ignoring all others.

| ($IGNORE is assumed if card 2 is omitted.) |

— 3. Specify a list of identifiers in free field,

taking as many cards as necessary.

((If omitted, the list is assumed to be empty.)

.

— 18

—

L. $NOLIST Suppress the listingof the input program.

or | h

$LIST List the input progran.

($LIST is assumed if 4 is omitted. These cards

may occur anywhere within the input deck to obtain |

appropriate listing action.) |

5. $CARD The input program is on cards. Each card is pro- B

vided with a sequence number (starting with 00010

i | and incremented by 10).

or

$TAPEN ~The input program is on tape n. If n is omitted »

device 7 is used. Columns 10-17 of the card spe- |

cify the program name, If the name field is not oo

blank, the tape is searched for that program from

the starting point to the end. Column 19 specifies

the rewind option (see section 3.6.1). $TAPEn is |

the last card read by XREF. The sequence number

associated with each tape record is used by XREF.

(Card 5 must not be omitted.)

3.8.2. Program Size Limitations |

500 unique identifiers |

3000 total characters of identifiers

8000 total references to the identifiers |

200 unique special identifiers to be monitored or
ignored

1000 total characters of special identifiers

49

| 3.8.3. Sample Deck Setups
-

| 1. Cross-reference all identifiers. List the card program.— FXREF

| | $CARD

L {input deck }

|i EOF
2. Cross-reference all but the standard PL360 identifiers. List the

L i card program.
FXREF

i] $PL360
$CARD

| {input deck}
%EOF |

| 3. Cross-reference all but the standard PL360 identifiers and the

| identifiers ALFA BETA GAMMA. The unlabeled program is on de-
vice 6. Do not list the program.

| %XREF
$PL360

| . | ALFA BETA GAMMA |$NOLIST

| $TAPE6

ee

4. The PL360 Environment

This chapter presents some detailsof the provided environment h
that are of importance to the PL360 programmer. In particular, storage

organization and the reaction of the systemto unintended situations

| are described. Further information about the input/output facilities

provided by the two systems is included in Chapters 5 and 6.

h.1. Storage Organization

The storage available to PL360 programs is organized as indicated

in the following diagram.

- 9 BN

| — Program Segments .| R53 =

) Data Segments

Before each program is loaded,the entire storage area is set to ZEIT 0.

During the loading process, the segment reference table (see [1],

) Chapter 5) is completed. This table consists of 80 entries, 6h of which

are available for user program and data segments, and is: either the

first entry in data segment O (OS system) or included in the monitor

area (stand-alone system). Each program is then treated as a procedure

and called with the following information in registers:

R2 return address

R3 address of the first byte following the "last" |

program segment

RL address of the first byte of the "first" data

segment
ps |

_
: - ~~ R6 record length parameter (OS system only, see 5.2.1)

— | oo or 32767 (stand-alone system).

L PL360 programs are compiledas if they were declared as segment proce-
dures. Additionally, the return address is saved upon entry and re-

. stored upon exit. | |

i 4.2, Program Execution (Run-Time) Errors
PL360 program execution is terminated by the detection of input/

- output errors, by expiration of a specified time interval, by external

4 intervention (stand-alone system only), and conditionally by the de-
tection of program interrupts. System action in the last case is

. determined by interrogation of an extended program check mask. If the
| bit of that mask selected by the interrupt code (see [L4]) is a one, the

- program is terminated; otherwise, the condition code is set to 3

(overflow) and execution continues. Part of the mask may be set by
;
-

the standard function SETPMASK.

_ SETPMASK Use the low-order byte of register RO to set the

extended program check mask according to the
{ -

L following table. |

Bit Interrupt Condition

— 2h fixed-point overflow

: 25 fixed-point divide
L 26 decimal overflow

27 decimal divide

L | 28 exponent overflow
| 29 exponent underflow |

30 significance

- 31 floating-point divide

— 52

Mask bits for all other program interrupts are always set to one. Counts

of the maskable interrupts listed above are maintained and printed (if

non-zero) after termination of program execution.

Every abnormal program termination results in the printingof an

error message and a dump of the data area of the interrupted program.

The standard procedure SETDUMP provides for a selective dump. |

SETDUMP Set the beginning of the area to be dumped upon

. abnormal termination to the address contained in

} ~ register RO; set the lengthof that area (in

bytes) to the value of register Rl. Register R2

~ and the condition code are altered.

The message provides an indication of the nature of the error.

- The PSW at the point of detection of that error is printed, and, if

appropriate, the address is also given as a (decimal) segment number |

and (hexadecimal) displacement. For errors related to input/output,

the PSW displayed by the OS system is a pseudo-PSW in which the high-

order word contains the logical device number. The format of these

messages may differ somewhat between the two systems. The follow-

ing conditions are detected.

1.. PRG CHK

A program check interrupt was detected, and the corresponding
mask bit was a one. |

2. END DS or END CRD |

An attempt was made to read beyond the next PL360 system job. card

on logical device 2 or (0S system only) beyond the end of the |

data set on a logical tape unit.

25

| 3. DEV NOP

— An input/output device was addressed which either does not exist

| or was not operable. In the OS system, a device is considered not

L operable if the associated data set cannot be successfully opened
(usually because of a missing DD card). See section 5.3.

_ 4. I/O ERR:
An input/output error occurred after initiation of the correspond-

’ ing channel program. Channel status and device sense information,
 —

which must be interpreted according to the particular physical

” device, is also provided with this message. In the OS system, if

~ ~ this message references logical device 5 and that device is imple-
mented in main storage (see section 5.2.1), it indicates that in-

- sufficlent storage was available, and the status and sense infor-
mation is not relevant.

.

— 5. I/O CHK |

: | An illegal input/output operation, such as one specifying an illegal

- address or record length, was attempted. Channel status information
may:.be provided.

— 6. XS TIME or . EXT INT

The job was terminated by expiration of the specified time interval

C or (stand-alone system only) by operator intervention.

- After program termination due to an error, an attempt will be made
_

to continue processing with the next PL360 system job. In the OS sys-

tem, however, certain serious input/output errors will not be accepted

| | by OS but will instead cause termination of processing of the PL360

— batch. In addition, PL360 programs use the same memory protection key

Do as the PL360/0S subsystem monitor and thus can cause its failure.

- 54

Hi

»
H

- : ¥

= :
. : t

ERT

~~

»

Tr

a NN

-

-

-

rT

g
5. Use of the PL360/0S System |

— ~ This chapter describes the use of the PL360 systemas a subsystem

of IBM's Operating System/360 (0S). Section 5.1 contains a very brief |
|N_-—

| summary of some concepts of O05 job and data management important for

g programming in PL360 under 0S. Section 5.2 provides further information

% about the use of previously described PL360 input/output functions under
- OS and also summarizes points of incompatibility between the 0S and

. a stand-alone systems. Section 5.3% describes the 0S deck setup and Job
| Control Language statements required for the use of the system. Fin-

L ally, section 5.4 presents some sample deck setups for typical tasks

and system configurations. In general, the 0S control statements shown

L in these examples will need some modification toreflect the conventions |

| for naming device classes, storage volumes, and data sets used by a

~ particular installation. Thus normally some familiarity with OS con-

- cepts and terminology will be required and in parts of Section 5.3% is
assumed. The publication IBM System/ 360 Operating System Concepts and

- Facilities [5] contains an introduction.to OS and further references.

— 5.1. Background and General Organization

| Both 0s /360 and the PL360/08 subsystem process sequences of jobs

- under the direction of control statements. The relationship between
3 them, as well as the terminology to be used in the remainder of this

chapter, is summarized as follows: An OS job, which is the OS unit of |

“ accounting and scope of certain names, consists of one or more 0S job

steps, each delimited by OS Job Control Language (JCL) statements as

— described in section 5.3. The PL360/08 system 1s processed as a
.

- 55

sensi A

single OS job step and, in turn, processes a PL360 batch, which consists -

of one or more PL360 system jobs, each delimited by PL360 system control

cards as described in Chapter 2. Thus a sequence of PL360 system jobs |

can be processed in a single 0S job step. These relations are shown

schematically in the following diagram:

0S_Job
TT

OS Job Step ... OS Job Step ... OS Job Step

~~PL360a Job .. PL360 Job
Ne TT TTT |

PL360 Batch

PL360/08 is a closed subsystem; output from its language proces-

sors cannot be used as input to the OS linkage editor, nor can the output

of IBM language processors be loaded by the PL360/0S system.

Input and output for the PL360/0S system are directed to OS data a

sets (i.e., delimited collections of associated records) rather than to

physical input/output devices. These data sets are referenced in PL360 -

programs by logical device. numbers. The association of data sets and

logical devices is determined by OS Job Control Language Data Defini- |

tion. (DD) statements for each PL360 batch. The association is fixed BN
for each batch but may vary between batches. The PL360/0S system pro-

vides for two data set organizations. In the first, logical records

have a fixed length and must be processed sequentially. These data

sets correspond tophysical unit record equipment and for compatibility

are referenced by the unit record input/output functions of the stand-

alone system (READ, WRITE, PAGE, PUNCH). The second type of data set

56

OGBGERSSSSSSSSSSSSSSSSSSSSSSSS......—_—_

L
' consists of arbitrary length records. This type of data set must be

t

= sequentially organized but may be accessed in a non-sequential manner

| by the use of certain marking and positioning functions. Such data
_ | |

sets correspond to physical tape units and for compatibility are refer-

- enced by the tape input/output functions of the stand-alone system.

; The standard PL360/08 system supports nine logical devices. These

— devices and associated logical characteristics are as follows:

— Device Number Logical Device Type

! 1 | line printer
-

— 2 card reader

3 card punch

L L tape (system) |

| 5 tape (scratch)

u 6 tape
7 tape

8 tape
n |

9 tape

5.2. PL360 System Programs Under OS

Lo 5.2.1. Input/Output Considerations
| S_—

| Supervisor input/output function: statements are written in PL360

— as described in section 3.1.2.4; however, the following restrictions

are made:

- |

1. READ

Attempting to read past the end of the data set associated with

— the reader (logical device 2) will cause immediate termination of
the PL360 system. The message

= | ¥ END OF READER DS

~— of

|

: |

will beprintedat the top of the next (logical) page. In many

cases, the reader data set will be placed in an OS system input oo
| stream (i.e., an input stream from which 0S Job Control Language

statements are being read andinterpreted). In such cases, any oo
logical record with a "/¥" in columns 1 and 2 will be interpreted
by OS to mean that the preceding record terminated the data set.

2, Tape Functions

: a, Logical tape marks are written by the PL360/0S system as oo
| special records. Such records are 18 bytes long; the first

14 bytes are #EO (corresponding to 0-2-8)punches). Since
| such records are recognized as special marks by the system,

they should not be written using the WRITETAPE function.

b. The functions FSPREC, BSPREC, READTYPE, and WRITETYPE are not

supported by the PL360/0S system. The corresponding identi-)
fiers are not predeclared in the OS PL360 compiler.

Cc. OS requires that the length of each record in a data set be or

in the range of 18 bytes to 32760 bytes inclusive. In addi-

tion, for data sets on direct access devices, record lengths -
| cannot exceed the track capacity of the device unless the

track overflow feature is available and specified (see sec- BN
| tion 5.3.5). These track capacities are as follows:

Physical Device Track Capacity (bytes) -

2311 disk 2625

: 2714 disk 7204 |

2302 disk Logh

2301 drum 20483 | =
230% drum 4.892 :

2321 data cell 2000 |

Attempts to write records longer than those allowed for the

physical device will cause termination of the OS job step with

58 |

- |

an 0S-supplied error message. For each PL3%60 batch, a record

i length parameter may optionally be specified (see section

5.3.4); its default value is 3520. This parameter is passed

g to each program in that batch in register 6. In addition,
it is used by the PL360 compiler and system tape update pro-

i grams as described in section 5.2.2.

| d. For installations requiring rapid processing of PL360 jobs
LL and with large amounts of core storage available, an option

has been provided to use a core storage area for logical de-

i vice 5. The size of this area is adjusted to the total amount
| of storage available and in the standard system will lie in

8 the range of 32K bytes to 128K bytes (K=1024). Track size
considerations do not apply to device 5 when so implemented.

i This option is selected by an OS job step parameter (see sec-tion 5.3.4); if it is not specifically selected, transfer to

| or from an OS data set 1s assumed.
5.2.2. System Program Considerations

L In addition to the input/output considerations above, the follow-

i ing points concerning the use of the system programs in the PL 360/08
system should be noted.

L 5.2.2.1. The PL360 Compiler

| | Some programs which can be compiled by the stand-alone system will
cause segment overflow errors in the OS version, since the first 368

i bytes of data segment O are unavailalle for data and since supervisor
function statements generate twelve bytes of code instead of two. Com-

| piled segments will be written on the scratch data set as multiple

| records, if necessary, to limit maximum record length to that specified |
by the record length parameter.

L 59

:5.2.2.2, The System Tape Updating Program |

Maximum record length on any new system tape generated will not |

exceed that specified by the record length parameter.

5.3. 08 Job Control Language Requirements | |

In parts of this section, the reader is assumed to be familiar |

3 with OS concepts and terminology and is referred to the publication |
LBM System/360 Operating System Job Control Language [6].for further

informationand explandtion. Use of the system with a card object

~ module and complete set of Job Control Language (JCL) statements will

be described. The number of non-PL360 system cards required is greatly

reduced if the installation provides a load module of the monitor in a | |
. private or system library and provides an appropriate catalogued pro-

cedure. Documentation of the use of such facilities is considered an |

installation responsibility. |

5.3.1. 0S Job Organization and Deck Setup

A PL360/08 job consists of two or more OS job steps. In the first |

_ step, the OS linkage editor is used to produce an executable load

module of the monitor. In each subsequent step, a batch of PL360 jobs

is ‘processed. The card deck erganization required is shown schematically

below. -..

60

Repeat os Require

4% | CS y Delimiter Cord
PL360 Job Step DD Cards

<> PL36O Job Step EXEL Cord
~ Delimiter Card

- PL360/0S Monitor Object Module

Linkage Editor Step Control Cords
Job Card

Note: A delimiter card contains a "/*¥"' in columns 1 and 2.

The 0S JCL statements required are described below. Information concern-

ing the syntax and format of cards containing these statements may be

found in the IBM JCL manual [6]. The PL360 batch must contain PL360

system control cards as described in Chapter 2. In particular, it

should be noted that the OS delimiter card is not a substitute for a

 PL360 %EOF card (see section 5.2.1).

5.3.2, The Job Card |

This card is prepared according to individual installation stan-

dards.

61

| oo -

5.3.3. The Linkage Editor Job Step Control Cards

If avallable, an installation catalogued procedure may be used for

the linkage editing step. Otherwise,the JCL statements for this step

should be copied from the installation's standard catalogued procedure

ASMFCLG, with any DD statements for SYSLIB omitted and with SYSLIN

| naming the following object module cards. A typical set of statements

follows.

#/IKED EXEC PGM=IEWL |

//SYSUT1 DD SPACE=(3076,(5,5)),UNIT=SYSDA |
//SYSPRINT DD SYSOUT=A |

//SYSIMOD DD DSNAME=&GOSET(GO) , UNIT=SYSDA,SPACE=(3076,(2,1,1)), X |
// DCB=(RECFM=U, BLKSIZE=3076) , DISP= (NEW, PASS) =

//SYSLIN DD * | |

5.3.4. The EXEC Statement

Execution of the load module containing the monitor and produced

in a linkage editing step named LIKED is specified by a statement of

one of the following forms:

//stepname EXEC PGM=%,LKED . SYSLMOD

. or |

//stepname EXEC PGM=%,LKED.SYSIMOD, PARM=parameter

The name of each step within a job should be unique. The parameter is |

of the form given by

parameter ::= C unsigned-integer | C unsigned-integer

The C specifies that logical device 5 is to be implemented in main core

storage; the unsigned integer specifies the record length parameter

(see section 5.2.1).

62

5.3.5. The DD Statements

DD statements serve to associate PL360 system logical device numbers |

| with OS data sets. The DDstatementfor logical device n is named

DEVICEn, and its operand field describes the corresponding data set.

| All data sets processed by the PL 360/08 system must be sequentially or-

ganized. The table below summarizes the logical characteristics re-

quired of the data sets to be associated with each device. |

} | oo | 0S Format Logical Record
Device Type of Access Record Format Code Length (bytes)

1 output fixed ~ FBA 133 *

2 input fixed FB 80

3 output fixed FB 80 |

| 4 input undefined U variable

5 input/output undefined U variable

6 input/output undefined U variable

T input/output ~ undefined U. variable

8 input/output undefined U variable
9 input/output undefined U variable

* |

: Includes a USASI carriage control character supplied by the monitor.

~ Detailed information about DD statements will be found in the IBM

JCL manual [6]; section 2 of that manual contains model DD statements

for many common applications. In general, each DD statement contains

sufficient information to name, locate, and indicate the status of each

‘data set. In addition, by use of the DCB operand it is possible to |

supply information that describes the organization of the data set and

oo is used to complete internal control blocks. The following DCB informa-

| | SE : - ee

tion is required for PL360 data sets: oo N | oo

1. For devices 1, 2, and 3, appropriate values for the physical block
size (BLKSIZE) and number of buffers (BUFNO) must be specified. | |

2. For devices 4 through 9, the record format (RECFM) must be specified
as UT if the track overflow feature is to be used for direct access
data sets. Otherwise, the record format is assumed to be U(which

| may be explicitly specified). |

In addition, DCB information specifying device-dependent options (re- |

cording density, stacker selection, etc.) may also be supplied.

~ DD statements for devices 1, 2, and 4 are always required. A DD

statement for device 5 is required unless device 5 is implemented in |

main storage (see section 5.2.1). DD statements for device 3 and for

| devices 6 through 9 are optional. If a device in the latter set is

referenced and the corresponding DD statement is missing,the PL360 job

will be terminated with an I/O error message.

5.4. Examples |

In this section, examples are given of both individual DD state-

ments and appropriate sets of JCL statements for PL360 job steps in

some typical situations. |

5.0.1. DD Statement Examples

5.4.1.1. Fixed Format Data Sets |

1. //DEVICE1 DD SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=1) |

Output records are directed to the system printer output stream.

64

2. //DEVICE2 DD * |

The data set follows. This must be the last DD statement for the

job step, and the reader data set must immediately follow in the

system input stream. Appropriate DCB information is supplied by

the system.

3. //DEVICE2 DD DDNAME=SYSIN

. The data set is identified with the data set specified by the DD

statement named SYSIN. This form is primarily used in catalogued

. procedures.

%. //DEVICE3 DD UNIT=SYSCP,DCB=(BLKSIZE=80,BUFNO=2)

Output records are punched on a system card punch.

5. //DEVICE3 DD DSNAME=A000.CARDS,UNIT=2314,VOLUME=SER=SYSO7, X |

// DCB=(BLKSIZE=1600,BUFNO=1),SPACE=(1600,(20,10)), X

| // DISP=(NEW,KEEP)

Card-image output records are blocked and placed in a newly created

direct access data set for later processing, such as editing.

6. / /DEVICE2 DD DSNAME=A000.CARDS,UNIT=2314,VOLUME=SER=SYSO7, X

// DCB=(BLKSIZE=1600,BUFNO=1) ,DISP=(OLD,KEEP)

A previously created card-image data set on a direct access volume

] 1s processed as reader input. Note that such a data set must con-

tain PL360 control cards but no 0S control statements.

‘5.4.1.2. Undefined Format Data Sets

Tapes

1. //DEVICE4+ DD DSNAME=DUMMY1,UNIT=TAPE9,VOLUME=SER=SS0050, X |

// LABEL=(,NL) ,DISP=(OLD,KEEP)

The system library is identified as a data set on unlabeled tape.

A dummy data set name is required because a disposition of KEEP

is specified.

65

2. //DEVICE4F DD DSNAME=AOOO.TAPESYS,UNIT=TAPEQ,VOLUME=SER=SGOO0OL, X

// DISP=(OLD,KEEP) -

The system library is identified as a data set on labeled tape.

%, //DEVICES DD UNIT=TAPEQ,LABEL=(,NL) |

An unlabeled scratch tape is specified.

ki //DEVICE7 DD UNIT=(TAPE9,,DEFER),LABEL=(,NL)

As above, but the tape need not be mounted until (and unless)
needed. |

5. //DEVICEQ DD DSNAME=AOOO.PL360SYS,UNIT=282,VOLUME=SER=GSG140, X

© // DISP=(NEW,KEEP)

A new data set is to be created on a labeled tape mounted on unit

282.

~ Direct Access Devices

6. //DEVICE4 DD DSNAME=A0O0O0.PL360SYS,UNIT=2311,VOLUME=SER=SLACAO, X

// | DISP=(OLD, KEEP)

The system library is identified as a 2311 data set named. JU.

A000, PL3QOSYS .

7. //DEVICE} DD DSNAME=AQ00.PL360SYS,UNIT=2314 ,VOLUME=SER=SYSOl, X

} // DCB=(RECFM=UT) ,DISP=(OLD, KEEP)

The system library is identified as a 2314 data set written using

the track overflow feature.

8.° //DEVICES DD UNIT=SYSDA,SPACE=(3500,(10,5)) |

A scratch data set on a direct access volume is specified.

9. //DEVICE5 DD SPACE=(TRK, (10,5)),DCB=(RECFM=UT), X

// VOLUME=REF=8YS1.UT2

A scratch data set on a system utility volume is specified.

66

|

10. //DEVICE6 DD DSNAME=AOOO.SOURCE,DCB=(RECFM=UT),DISP=(OLD,KEEP)
.

An existing catalogued data set is specified.

11. //DEVICE7 DD DSNAME=AOOO.SFILE,UNIT=2321,VOLUME=SER=CAMP38, X

// SPACE=(CYL,(50,20) ,RLSE) ,DISP=(NEW,KEEP)

A new data set is created on a 2321 volume. Any allocated but un-

used space is to be released at the end of the job step.

12. //DEVICE9 DD DSNAME=AOOO.SYSTEM.MOD,UNIT=2314 ,VOLUME=SER=PUBOO1,X

// DCB=(RECFM=UT) ,SPACE=(CYL, (2,1));DISP=(NEW, KEEP)

: A new data set is created on the 2314 volume PUBOOL.

Other Devices

13. //DEVICESDD UNIT=SYSCP,DCB=(RECFM=U,MODE=C)

Output is directed to the system card punch, operating in column

binary mode.

5.4.2. Sample Job Steps

The following examples illustrate sample JCL and, when appropriate,

PL360 deck setups for OS job steps. The linkage editing step is not

included but is assumed to be named LKED.

. 1. //PL360 EXEC PGM=%.LKED.SYSLMOD,PARM=3625 |

//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=133%,BUFNO=1)

//DEVICEY DD DSNAME=DUMMY,UNIT=283,VOLUME=SER=GSG1LO, X

: // LAREL=(,NL),DISP=(OLD,KEEP)

| //DEVICES DD UNIT=2311,SPACE=(TRK,(10,5))

//DEVICE2DD *

{PL.360 Job Batch}

/*

This example illustrates typical minimal JCL for a smaller machine

installation. The systemis on an unlabeled tape volume named

GSG140; the scratch area is on a 2311.

67

2. //PL30 EXEC PGM=%.LKED.SYSLMOD,PARM=C32760

//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=133,BUFNO=1)

//DEVICE4L DD DSNAME=AOO0O.PL360SYS,UNIT=2314 ,VOLUME=SER=PUBOOl, X

// DCB=(RECFM=UT) ,DISP=(OLD, KEEP)

//DEVICE2 DD * |
{PL360 Job Batch}

/* |

1 This example illustrates typical minimal JCL for a larger machine

installation. The system is on the disk volume PUBOOl; main

N storage is used as the scratch area.

68

So .

3. //STEP1L EXEC PGM=*%.LKED.SYSLMOD,PARM=32760

| //DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=13%,BUFNO=1) |
//DEVICE4 DD DSNAME=AOO0O.PL360SYS,UNIT=231k,VOLUME=SER=PUBOOl, X |

// DCB=(RECFM=UT) , DISP=(OLD, KEEP)

//DEVICE5 DD DSNAME=SYS1.UT2,DCB=(RECFM=UT),DISP=(OLD,KEEP)

//DEVICE6 DD DSNAME=AOOO.SFILE,UNIT=2321,VOLUME=SER=CAMP38, X

// DISP=(OLD,KEEP)

; //DEVICE7 DD DSNAME=SYS1.UT3,DCB=(RECFM=UT),DISP=(OLD,KEEP)

| //DEVICEQ DD DSNAME=AOOO.TEMPSYS,UNIT=231L4,VOLUME=SER=PUB002, = X

. // DCB=(RECFM=UT) ,SPACE=(CYL, (2,1) ,RLSE),DISP=(NEW,PASS)

//DEVICE2 DD *

: {Updat e Decks} |SYSTUP See section 3.6.5, example 3, for a :
{Update Specifications} possible update deck.

%EOF

/*

| //STEP2 EXEC PGM=*.LKED.SYSIMOD,PARM=C 32760
//DEVICEL DD SYSOUT=A,DCB=(BLKSIZE=13%3,BUFNO=1)

//DEVICEL DD DSNAME=%.STEPl.DEVICE9,DCB=(RECFM=UT), X

// DISP=(OLD, KEEP)

//DEVICE2 DD *

{Test Programs}

/*

In this example, a system program source file is updated and used

to create a new copy of the system on device 9. The new system is |

passed to a second job step as device 4, which tests the update and

: saves it. Previously allocated and catalogued scratch data sets

are used for devices 5 and 7.

69

[]

EY

.

I

han= SN

-

. .

of

6. Use of the PL360 Stand-Alone System

This chapter describes the use of the PL360 systemas a completely |

independent, self-loading program. Section 6.1 contains information

about the input/output facilities provided. Section 6.2 describes the

PAUSE control card and system program facilities unique to the stand-

3 alone system. Finally, section 6.3 contains information about loading

and operating the system and serves as an operator's guide.

6.1. Input/Output Facilities

Input and output for the stand-alone system are directed to an

appropriate physical device. These devices are designated by logical

device numbers. In the standard system, ten logical devices are pro- |

| vided, with the following characteristics.

Logical Device Number Device Type

0) operator's console

1 printer

2 card reader

3 card punch

L system tape

| 5 tape

6 tape

: 7 tape

8 tape

| 9 tape

The correspondence between logical device numbers and actual device ad-

dresses is established by a device table, which may be examined and

altered from the operator's console (see section 6.3).

70

6.2. Special System Facilities

6.2.1. The PAUSE Card |

The following additional control card (see Chapter 2) is provided: |

PAUSE Columns 1 through 50 of the card are typed on the
| operator's console as a message to the operator,

and the system waits for instructionsto be entered

| at the console (see section 6.3).

6.2.2. The System Tape Update Program (SYSTUP)

B In the stand-alone system, a self-loading monitor is included on

the system tape. In either an update or copy run of the program SYSTUP,

it is necessary te first put a copy of the monitor on the new tape.

Normallythe monitor can be copied from the input tape, and that is the

default option. However, two mode control cards are provided to spe-

| cify alternate sources, as follows: | |

a. $LOAD signifies that the monitor is to be loaded from the cards

following in the card reader. The object deck is assumed to be an

absolute 360 assembly language object deck. The transfer address

on the END card must specify the initial program status word. The

length of the monitor 1s determined from the ESD card and is

aligned to a half-segment address. The first PL360 control card

signifies the end of the monitor deck.

b. $MONITOR signifies that the monitor is to be copied from low core. |

The length of the monitor must be the same as the one on the input

tape (aligned to a half-segment address). The address at which

executionWill start must be in the half-word starting at memory

location 20 (decimal). This feature is intended mainly to facili-

tate the creation of system tapes with different device assignments.

71

CTT I EE...

After these options have been processed, a normal copy or update is per-

formed. |

6.3. Initial Loading and Operating the System

Initial loading of the PL360 system is accomplished by the follow-

ing procedure:

+ a. Reset the system.

b. Mount the system tape on an appropriate unit.

C. Stack jobs, including the control cards of Chapter 2, on the card

reader.

d. Make the card reader, line printer, and logical tape 5 (scratch

tape) ready. |
e. Select the unit carrying the system tape on the load unit rotary

switches.

f. Press the load key. |

g. Enter the date (8 characters) from the console.

Operation of the system requires that the device addresses for the

operator's console, card reader, and line printer be correctly loaded.

If any of these addresses must be changed, the following additional

steps should be executed when the processor enters the wait state

following step f. They use the storage select switch and address keys,

the display and store keys, and the storage data switches according to

the detailed procedures for each processor model.

72

ro. -_

fl. Press the stop key. |

f2. FExamine the half-word at hexadecimal location 16 (decimal 22) |

to determine the device table address. |

£3. Modify the half-word device address entries in the device table,
as follows:

° | : Displacement in ~~. Standard
Device Device Table ~ Device Address

} (hexadecimal) (hexadecimal) | | |

- console 0 | 0009

line printer 2 OOOE

card reader | 4 | 000C : |

fli. Press the start key.

~~ f5. If the console address required modification, press the attention

key on the console. |

Addresses of other devices may be changed from the console if an initial

PAUSE card is included in the job sequence.

~ After initial loading, execution of the job sequence stacked on

] the card reader is immediately started. Pressing the external interrupt

key causes the job currently being executed to be terminated and the

next job in sequence to be started. Control is returned to the operator |

when a PAUSE control card is encountered. The computer then accepts

instructions from the operator via the console. Fach message must be

terminated with an EOB (end of block) character. The following free-

field instructions are accepted:

I

a. dump XXXXXX, NNNNNN ECB

dump XXXXXX EOB E

| dump EOB N

The values of the registers and of the NNNNNN byte cells starting

«+ from the initial address XXXXXX are listed on the line printer in

hexadecimal form. If the initial address is omitted, it is taken

as the end of the user's program segment area, and if the count

- is omitted, the dump extends over the entire data segment area

- (see section k.1).

b. device XX EOB

The address AAA of the device with logical unit number XX is typed

| out. Subsequent typing of the device address BBB causes that de-

| vice to be assigned the logical unit number XX, and the device with

address AAA to be given the logical unit number YY, which previously

designated device BBB (if any). As a result, every device in the

system will always be designated by at most one logical unit number.

before : after

- XX : AAA XX : BBB

YY : BBB YY =: AAA

-¢. EOB

: Processing resumes with the next job in sequence.

The operator is also informed about abnormal conditions encountered

by the error analysis routines of the elementary input/output programs

contained in the monitor. The following messages are typed:

Th

a. XX YYY NOT RDY | | | -
| b. XX YYY NOT OP

c. XX YYY I/O ERROR CCCC DDDD

d. XX YYY DEV END CCCC DDDD |

| XX represents the logical number af the affected device, YYY its physical
address, CCCC the encountered channel status, and DDDD the device status.

B Messagea. is given when the device is not ready. Execution resumes

| when the device is put into the ready state. Messages b., c., and d. |

are respectively given when a device is not operating, when a malfunction

is encountered, or when an error is discovered upon device end interrupt

caused by the reader, punch, or printer. The operator must reply with |

one of the following messages:

| a. ignore EOB

| b. exit EOB (resume processing with next job)
~ c. EOB (retry the operation after I/O ERROR;

ignore the DEV END condition).

If the operator response is not recognized by the system, then

"RETRY" is typed out. In order to cancel a response, the CANCEL char-

acter must be typed before typing EOB. In either case, a correct re-

" sponse should then be typed by the operator.

IP;

|

7. PL360 System Organization and Storage Requirements

~ This chapter contains information concerning the internal organiza- |

| tion and storage requirements of certain parts of the PL360 systems.

Knowledge of this chapter is not required for normal use of the systems,

and certain sections assume a familiarity with OS control program ser-

vices.

T.1l. General Organization

Both PL360 systems consist of a monitor, originally coded in IBM

360 assembly language, and a set of PL360 system programs, originally
coded in PL 360, on a system tape (or OS sequential data set). The

monitors are core-resident; they process requests for various super-

visor services and also perform initialization functions. Among the

PL360 system programs is a job sequencing routine which is also core-

resident and, in conjunction with the monitor, processes PL360 system

control cards. Other system programs are loaded upon demand as required

by these control cards.

. 7.2. The PL360/0S System | |

7.2.1. Resource Requirements

The PL360/0S system requires a machine configuration capable of

| supporting 0S/360 and additionally providing

1. at least 64K bytes of storage for user programs, and

2. devices and space for at least two additional sequential data

sets, one for the system library (about 140K bytes for a

system consisting of the programs described in Chapter 3) and |

| one for scratch use. |

7.2.2. Storage Organization

During execution of a PL360 system job, storage is organized as

indicated schematically in the following diagram.

OS Partition

§ 1 Co |

| T. OS Working Storage
|

| (optional) |

| E Job Sequencing |

6 |

= OS Dedicated Storage =~
le~~"= 7

The areas numbered 2 through ‘f occupy a contiguous block of storage

obtained by a single GETMAIN. Area 8 contains the buffers and access

. method routines for data sets opened unconditionally (see 7.2.3) as

well as for certain OS control blocks allocated during the initializa-

tion process. Areas 4 through 6 are considered PL360 system storage

areas. Area 2 is specifically released to OS to provide storage for

buffers (device 3 only) and access routines required by data sets opened

on demand (see 7.2.3) as well as for OS transient work areas. The

monitor occupies approximately 5000 bytes. Sizes of the other areas

are determined by the OS control program or by the values of certain

symbolic quantities, defined.in the monitor source code, as summarized

Tr

in the following table.

Description Minimum Maximum Actual

Total Storage COREMIN+SYSFREE COREMAX+SYSFREE Xx+SYSFREE

OS Working Storage SYSFREE SYSFREE SYSFREE

Device 5 Storage
(if specified) COREMIN/2 BUFFMAX min(x/2, BUFFMAX)

: PL360 System Storage

| 1. Device 5 in Core COREMIN/?2 max (COREMAX /2, max (x/2,
~ COREMAX~-BUFFMAX) x-BUFFMAX)

2. Device 5 External COREMIN COREMAX x

Standard values for the symbolic quantities are as follows:

COREMIN 64K

COREMAX o12K (K = 1024 bytes)
SYSFREE LK

BUFFMAX 128K

7.2.3. Input/Output Routines

Characteristics of the input/output routines are summarized in the

following table. |

Logical Access Open | Open
; Device Method Option Selection |

1 QSAM INPUT unconditional

2 QSAM OUTPUT unconditional

3 QSAM OUTPUT on demand

ly BSAM INPUT unconditional
5 BSAM OUTIN unconditional

6 BSAM * on demand

I BSAM * on demand .

8 BSAM * on demand

9 BSAM * on demand | |

*

OUTIN if the function forcing opening implies write access; other-
wise, INOUT.

78

7.3. The PL360 Stand-Alone System |

7.3.1. Resource Requirements

The minimal configuration requirements for the stand-alone version

are as follows: |

a. 64K bytes of core memory, with or without memory protection;

- b. a line printer, a card reader, an operator's console type-

| writer, and two tape drives. |

7:3.2. Storage Organization

During job execution, storage is organized as indicated schematically

| ~ below: N |

[mESubroutines |

Card Loader oo |

| Tape Loader
1

_ Dump Routine
2 _ a |

User Program Segments| 3
: Free Area |

User Data Segments

Area 1 constitutesthe monitor, which is a self-loading program placed at

the beginning of the system tape. Areas 1 and 2 are memory protected

(if possible) during the execution of each job.

9 |

7.3.3. Input/Output Routines

The input/output routines of the monitor generate channel programs |

for the following IBM devices.) |

Device Type IBM Model Number |

operator's console 1052

a card reader 2540
- line printer 140%

card punch 254.0

: tape drive 2 00-2402

In many cases, such programs are suitable for similar devices with

different model numbers.

80

|SE

a

r

’

-

.

- .

-

‘Appendix: Additions and Changes to the PL360 Language

The PL360 language is described in a companion report [1]. The

following additions and changes have been made to the language since

that report was issued.

l. Function Format Code Extensions

3 Section 2.2.8 of [1] describes function declarations. The format

code description given there does not provide for literal strings or

numbers as parameters in function statements except as immediate data.

Therefore, the function format codes have been extended to allow literal

strings and numbers as parameters. The table on the following page de-

scribes the format and allowed parameters for each function code. An

| integer value parameter is considered to be illegal if the value is

too large to fit into the specified field or if the value is negative.

A cell designator used as a parameter for a single byte field is con-

sidered to be illegal if its relative address has a base register or

if the displacement exceeds 255.

The following example shows the effective declaration of the stan-

dard function identifiers: |

| function MVI(L,#9200), CLI(L,#9500),

~ mve(5,#D200), CLC(13,#D500),

STM(3,#9000), ~~ LM(3,#9800),

SRDL(9,#8C00), SLDL(9,#8D00),

1c(2,7#4300), STC(12,#4200),

| LA(11,7#4100), RESET(8,#9200),

| SET (8,#92FF), UNPK(10,#F300),

cvD(12,#4E00), EX (2,#4400),

ED(5 ,#DEQO), TR(5 ,#DCO0),

TEST(8,#95FF)

81

i _

Format No. of Definition R = XK register
Code Parameter of Parameter C = J cell designator |

Fields in Fields L = TJ value or string
Function) (Literal)™"

| I = integer value”
LD %

oS = string

0 0 [1

6 1 [Ir[|

7 1 [Tes|

: 1

” A EE

11 2 | [R] ICS | |

12 2 EE

| 0 8 16 32

Table of Function Format Codes

N |

value used directly in instruction field.
*%

address of value used in instruction field.

82

2. Cell Declaration Additions |

Section 2.2.4 of [1] describes cell declarations. Cell declarations

have been modified to allow nested repetition of initialization elements

in order to facilitate initializing arrays of cells to patterns of num-

bers or strings. The reserved word character has also been added to the

1 ‘language and is equivalent to the reserved word byte. The syntax for

| cell declarations becomes:

© <simple byte type> ::= byte | character

<simple short integer type> ::= short integer

<simple integer type> ::= integer | logical

<simple real type> ::= real

<simple long real type ::= long real

<J type> ::= <simple J type array <integer number> <simple J type

<T cell declaratiom> ::= <J type item> | <T cell declaration ,<item>

<item> ::= <identifier> | <identifier> = <fill value

<fill value» ::= <J values | <string> | @<7 cell designator> |

<repetition list> <fill value>)

<repetition list> ::= (| <integer number> (|

<repetition listo <fill value ,

a. Boundary alignment is performed only for the cell declara-

tion; there is no further automatic alignment within the

fill value. Care must be taken when initializing with combi-

: nations of numbers and strings in order to maintain the

desired alignment for each number.

b. As a convenience to the programmer, the number of low order

bytes appropriate for the type of the declared cell is taken

for each J-value. Strings are never expanded or truncated.

yo mmmmm mmm ee _

Cc. short integer, integer, and logical cells can be initialized oe

| to the address of a J cell designator. Two or four bytes

are filled with the relative_address (i.e., index register

number, base register number, and displacement) of theJ cell

designator. The index register must be zero when initializing

short Integer cells. Cells cannot be initialized to absolute

: addresses. |
- d. The repetition count is specified by the integer number in

- the repetition list. If the count is omitted, it is assumed

to be one. The count must not be negative. If the count is

Z€ro, no initlalization takes place for the list.

e. The total length of the fill value for each item must be less |

| than or equal to the space allocated for the item.

Examples: |

short integer I = 108, J = (5), BADDR = @B5

array 132 byte line = 132 (" "), buff = 4(33(" "))

array 15 integer X = 3 (@line, "ABCD",3(5))

Slt

| 5. Standard Integer Identifier Declarations
A set of fourteen standard integer identifiers have been declared.

| These identifiers are often useful -in function statements. Their
declaration is equivalent to the following: oo

| integer MEM syn Oj
i integer Bl syn MEM(R1), B2 syn MEM(R2),B3 syn MEM(R3), B4 syn MEM(RL),

. B5 syn MEM(R5), B6 syn MEM(R6),
| B7 syn MEM(R7), B8 syn MEM(R8),

- B9 syn MEM(R9), B1O syn MEM(R10),

Bll syn MEM(R11l), B12 syn MEM(R12),

B13 syn MEM(R13);

85

L. Global and External Segment Procedures |

A primitive method of defining global and external segments to

allow linkage to separately compiled PL360 procedures has been pro-

vided. These facilities are primarily intended for system use; however,

these features can be used by any programmer in order to avoid recom- |

piling certain standard parts of his programs. |

| The following syntax updates section 2.2.11 (Segment Base Declara-
“ tions) and section 2.3.7 (Procedure Declarations) of [1] in order to

include the global and external features: |

| <segment head> ::= segment global <integer number> |

external <integer number>

<segment base declaratior> ::= <segment head base <integer register> |

| <procedure heading> ::= procedure <identifier> (<integer register>); | |

<segment head> procedure <identifier>
(<integer register>);

<procedure declaratior> ::= <procedure heading> <statement> |

Program and data segment numbers are assigned consecutively

) starting at 00 by the PL360 compiler to each new segment, not explicitly

numbered by its declaration, when it is encountered. In order to use

conveniently a compiled segment as an external segment for another

program, the programmer can use the global segment facility to specify

assignment of a particular segment number. The integer number in the

segment head is taken as the segment number. The permissible range

: of segment numbers for user programs is 00 to 63. Use of such a seg-

ment in another program requires the declaration of an external data

or program segment with the same segment number. References between

86

| external segments are by number only. No identifiers are used.The following comments apply to the use of global and external N

| segments: Co.
a. Global program and data segments are distinguished by the compiler

|

only by the fact that segment numbers are assigned by the program-

.. mer instead of the compiler.

b. External program and data segments are compiled in exactly the

h same way as other segments. However, these segments produce no

B compiler object output. Thus any data initialization specified

or any compiled code is ignored. (The body of an external pro-

cedure normally is the statement null.) Such segment declarations

are used only to name and describe the corresponding segment.

| However, the programmer must insure that each use of a separately |
compiled procedure containing cell declarations has a valid base

register for the declarations of thet procedure. This could mean

that the declarations must be repeated each time a corresponding

external procedure declaration is used in another program or that

- the procedure contains its declarations in global or external

data segments declared within the procedure. The problem occurs

because declarations are static in PL360 and not dynamic.

| Cc. Since the external base declaration loads the specified base

register and since all variables declared in the segment will use

that register as the base register for addressing, the base regis-

ter used in the external declaration need not be the same as the

register used when the segment was compiled using the global declar- :

ation. The segment- numbers must be the same for both forms.

87

d. Since the return register is used in both the call and the return

from a procedure, the external and global procedure declarations |
must specify the same return register as well as the same segment

number. | | |

e. Object card decks for previously compiled external segments can

a be used with PL360 (see Section 3.1.1) and with the $TAPEn deck

indications for SYSTUP (see Section 3.5.4). External segments

” can be recognized in object decks by referring to the description

© of object deck formats (Section 3.1.6).

88

References

[1] N. Wirth, "A programming language for the 360 computers’, Technical
Report CS 53 (revised), Stanford University, June 1967
(also, J. ACM. 15, 37 (January 1968)).

[2] H. R. Bauer, S. Becker, and S. L. Graham, "ALGOL W" , Technical
f Report CS 89, Computer Science Department, Stanford University,

January 1968.

- [3] N. Wirth and H. Weber, "EULER, a generalization of ALGOL, and its
formal definition", Part 1, Comm. ACM.9, 1 (January 1966),

B pp. 13-23,

[4] IBM System/360 Principles of Operation, IBM Systems Reference
Library, Form A22-6821.

[5] IBM System/360 Operating System Concepts and Facilities, IBM Sys-
tems Reference Library, Form C28-653%5. |

| [6] IBM System/360 Operating System Job Control Language, IBM Systems
Reference Library, Form C28-65 39.

89

0 ~~

*

a

-

»

-

