
$2.25
CS 89

ALGOL W (REVISED)

DECK SET-UP pp. 1 to 2

LANGUAGE DESCRIPTION pp. 1 to 49

ERROR MESSAGES pp. 1 to 9

NOTES pp. 1 to 41
NUMBER REPRESENTATION pp. 1 to 12

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

~ MARCH 1968

: ALGOL W

DECK SET-UP

1 E.H.Satterthwaite, Jr,

i COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

- AlgolW Deck Set-Up

| < Job Card 2

| //J0BLIB DD DENAME=SYS2, PROGLIB,DISP=(OLD,PASS)

// EXEC ALGOLW

//ALGOLW .8YSIN DD *

$AIGOL

Hx < program>

* < data >

|

* Optional

| Note: The maximum execution time or number of printed lines for the
| job may optionally be specified on the $ALGOL card. Columns 10-29

of that card are scanned for such specification according to the

| following syntax:

| <limit specification> c+= <time limit, | <time limit>, <line limit>
| <time limit> : = <minutes specification2 |
; <minutes specification® : <seconds specification?
| <minutes specification> ::= <unsigned integer> (empty }

<seconds specification) {:= <unsigned integer? (empty)

<line limit> r.'= <unsigned 1nteger> (empty)

| :

. An empty field 1s given the value Zero. 1f the time limit specified is

| zero, termination for excess time 1s controlled by the gs jcb card. Ot her
wise, the program 1s automatically terminated 1f necessary at the end

of the indicated time. similarly, if the line limit specified is zero,

termination for excess lines 1s controlled by the fs job card; otherwise,

the program 1s automatically terminated 1f necessary after the indicated

number of lines have been printed.

C

|

ALGOL W

LANGUAGE DESCRIPTION

| Henry R, Bauer

| Sheldon Becker
Susan L. Graham

COMPUTER SCIENCE DEPARTMENT

oo STANFORD UNIVERSITY

JANUARY 1968

"A Contribution to the Development

of ALGOL" by Niklaus Wirth and C+ A. R.

Hoare.) was the basis for a compiler de-

veloped for the IBM 360 at Stanford Univer-

sity. This report 1s a description of the

implemented language, ALGOL W. Historical

background and the goals of the language

may be found in the Wirth and Hoare paper.

1) Wirth, Niklaus andHoare,C. A. R.,"A
Contribution to the Development of ALGOL",

Comm. ACM 9, 6(Junel966), pp. 413-431.

1

| CONTENTS

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS. tv: vo seo seen oe , oul

| 1.1, Notation . . teiiiieosriirniosooanovsononsssansssnsasssal
: 1.2, Definitions . . . + « « + tioveovsnnononosssnesnscesansenal

| 2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES «vvevvevneenaen «ob

2.1. BasiC Symbols iii iii.

- 2.2. Syntactic Entities... cvioninorenriisiiiisiinneaads5

Z, IDENTIFIERS... otto stuotossosssossnesooasossessosnssassnnsasesDd

| 4. VALUES AND TYPES. . +s sreneeeeennnnnnneeseeesinnneseesennsesO

| A,1]., NUMDEYS +o co seaoosssonosessoosooosoonsosessossssssasdlO
- 4,2, Logical Values ..eeeesessstcassosassansvsasauranaoll

| 4,3, Bit SEQUENCES . trot roosssoosossoonesansonsnssssasll

| | 4,4, Strings ceeivons sosossosescssssssossssssossasssass 12
| 5.5, REfEIrENCES «oecesseuusseoeeasansasssososanasessssasl?

5. DECLARATIONS. + +t tt vso veo esseononnnnssnonocnnnsonasusneesnesl?

5.1. Simple Variable Declarationsovesevevcoeesesl?

| ' 5.2. Array Declarationsccssessvossssosscoesssssld

5.3. Procedure Declarationsoeeveessvosoasaseacsslh

LC 5.4. Record Class Declarationso.ceeeesseveassn.20

6. EXPRESSIONS + oeveeoonnuoesncncesannoncoeasnoooscsnnsooennase20

: E.l. VATioDLES + «coven enuerenoneaosnossonessnnsensssall

oo 6.2. Funct 1on DesignatorsS .oevececosronsoesaosscnsseesld

Co ii

-

| CONTENTS (cont.)

6.3. Arithmetic EXPressions teeesessencennessnnceseessd

| 6.4. Logical EXPressions 50000028

6.5. Bit Expressions . . . + cesisisiisniieiiiiiiaeaieeaies30

0.0. String EXPressions . . . « ceveereureeniiivenaransess3l

0.7. Beferemce EXpressions . . . «viii eee RR

6.8. Precedence of Operators + + v vv vv vv vv ee ee ee eee e033

! To STATEMENTS : + sev eteeaneneseneneeenenenaseenannnnneeenens3h

7.2. Assignment Statements. . + + vv vv ve weenie35

| 7.%. Procedure Statementsvviviiieiiiiiiiiineoy 0 0237

| Tod, Goto Statemenis wiv wv vv vv vie reese ese en 59
7.5. If Statements © & vv cif tiie titre inert vaccacoaasBU

T.0. Case StabemaiilsS. vee es irr eneoneennoneneeneneeesnesbil

: 7.7. Iterative Statementsiiaaial.bE

| 7.8. Standard Procedures . . .eiveireinaeniieienaaaaan.bh

7.8.1. Read StatementsS.......eeeeeeeeee....4 5

| 7.8.2. Write Statements....................h 6

| 8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS....... . . «.c. bb

| 8.1. Standard Transfer FUNCLIONS svi vrrnernnrnnennssdf
8.2. Standard Functions of Analysis ...eeeeeeeennnneoid]

; 8.3. Qverflow and Underflowc.oceuuunenn li
8.3.1. Predeclared Variables.......vo.ou.....48

|
111

: CONTENTS (cont.)

i 8.3.2. Standard Message Function 48

— iv

| 1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure language, defined by

: a formal metalanguage. This metalanguage makes use of the notation and

definitions explained below. The structure of the language ALGOLW

: . 1s determined by:

1 (1) V¥, the set of basic constituents of the language,

- (2) U, the set of syntactic entities, and

(3)P, the set of syntactic rules, or productions.

1.1. Notation

_ A syntactic entity 1s denoted by its name (a sequence of letters)

enclosed in the brackets < and >». A syntactic rule has the form

i A> i= Xx | | |

= where <A> is a member of U, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a "sequence".

: - The form

1s used as an abbreviation for the set of syntactic rules

<A> i= X

] _ <A> ::=Yy

| <A> 1i= 2

| 1.2, Definitions

|) 1. A sequence x 1s sald to directly produce a sequence y 1f and

only 1f there exist (possibly empty) sequences u and w, so that

| either (i) for some <A in U, x = Dw, yv = uvw, and <A ::=

| v 1s a rule in Pj; or (ii) x = uw, yv = ww and v is a "comment"
(see below).

i 2. A sequence x 1s sald to produce a sequence y 1f and only if

| there exists an ordered set of sequences s[0], s[1], . . . , s[n],
] so that x = s[0], s[n] = vy, and s[i-1] directly produces s[i] for

3. A sequence x 1s said to be an ALGOL W program 1f and only if

1 its constituents are members of the set V, and x can be produced

; from the syntactic entity <progran>.

: | The sets V and U are defined through enumeration of their members

in Section 2 of this Report (cf. also k.k,). The syntactic rules are

| given throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL W programs, the letter sequences denoting

| | syntactic entities have been chosen to be English words describing
] approximately the nature of that syntactic entity or construct, Where

words which have appeared-in this manner are used elsewhere in the

: - text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol T may occur. It 1s understood

oC that this symbol must be replaced by any one of a finite set of English

1 words (or word pairs). Unless otherwise specified in the particular

| section, all occurrences of the symbol T within one syntactic rule

- must be replaced consistently, and the replacing words are

2

integer logical

real bit

long real string

complex reference

] long complex

| For example, the production

| <J term> ::= <T factor> (ef. 6.3.1.)

| corresponds to

<lnteger term> : t= <integer factor>

| <real term> w= <real factor>

| <long real term> :¢= <long real factor>

<complex tern> : t= <complex factor>

| <long complex term> ::= <long complex factor>

The production

J, primary> ::= long <I, primary> (cf. 6.3.1. and
table for long

| corresponds to 6.3.2.7.)

| <long real primary> ::= long <real primary?

<long real primary> :¢= long <integer primary>

<long complex primary> ::= long <complex primary>

It 1s recognized that typographical entities exist of lower order

| than basic symbols, called characters. The accepted characters are

those of the IBM System 3¢0 EBCDIC code.

The symbol comment followed by any sequence of characters not

containing semicolons, followed by a semicolon, is called a comment.

A comment has no effect on the meaning of a program, and 1s ignored

during execution of the program. Aan identifier (cf. 3.1.) immediately

5

following the basic symbol end is also regarded as a comment.

] The execution of a program can be considered as a sequence of

: units of action. The sequence of these unitsof action is defined as

the evaluation of expressions and the execution of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs 1s either (1) de-

fined by System 360 operations, e.g., real arithmetic or (2) left

“ undefined, e.g., the order of evaluation of arithmetic primaries in

| expressions, or (3) said to be not valid or not defined.

| 2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

| 2.1. Basic Symbols
Al BIC .

| B | IDlelrlolalr|olk]ls|u|n]oln]
! el Rlslolulv|w|x]|v]|z]

| olifels|uls]el7]8]9] |
: true | false |" I null T # I |

integer | real | complex | logical | bits | string |
reference | long real | long complex | array

procedure | record |

Sli l:sl.1(])] pegin | end | if | then | else |

case [of |v | -1 1/1" | giv | rem | ste | oma | i |
abs | long | short | and | or | =| 1 | = | = = | < | TT

i= | goto | go to for | step | until | do | while |
comment | value | result

: : A) n

All underlined words, which we call “reserved words . are repre-

sented by the same words in capital letters in an actual program, with

ne intervening blanks

i

Adjacent reserved words, identifiers (cf. 3.1.) and numbers must have

no blanks and must be separated by at least one blank space. Otherwise

blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list> 71.3 <formal type> 2.3

<actual parameter> 71.3 <go to statement> 7.4

| <bit factor> 6.5 | ~<hex digit> 4.3
<bit primary> 6.5 | <identifier list> 3.1

<bit secondary> 6.5 | <identifier> 35.1

<bit term> 6.5 | -<imaginary number> 4,1

<block body> 7.1 | <increment> TT

| <block head 7.1 | <initial value> 7.7
<blocé 7.1 | <iterative statement> T.7

<bound pair list> JV¢ | <label definition> 7.1

<bound pair> 5.2 | <label identifier> 35.1

| <case clause> 6 <letter> 3.1

<case statement> 7.6 | <limit> 7.7

| <control identifier> 5.1 | <logical element> 6.4
<declaratior> 5 <logical factor> 6.4

<digit> 5-1 | <logical primary> 6.4
<dimension specification> De3 |
cempty> see page 3k <logical term> 6.4
<equality operator> 6.4 | <logical value 4.2

<expression list> 6.7 | <lower bound> >.2

<field 1list> j 4b |<null references b.5

<for clause> 7.7 | <procedure declaration> 2.3

<for 1list> 7-7 | <procedure heading> 2:3

<formal array parameter3 2:3 | <procedure identif ier> 3.1

<formal parameter list> 2:5 | <procedure statement> 7:3

<formal parameter segment> 2.3 <progreant> 7

>

: <proper procedure body> 5.3| <subscript list> 6.1
<proper procedure <substring designator> 6.6

declaration 5 <J array declaration> 5,0
<J array designator> 6.1

<record class declaration> g J
| | Co <J array identifier> 3.1

<record class identifier> 3.1 . :Ce <J assignment statem
<record class identifier J ent> 7.2

List> 5.1 <T expression list™ 6
<record designator> 6.7 <J expression> 6
<relatiom> 6.4 <J factor> 6.3

_ <relational operator> 5.4 | <I field designator> 6.1

<scale factor> 4.1 <I field identifier> 3.1
<sigr> y 1 | J function designator> 6.0

| <simple bit expressior> 6.5 <I function identifier> 3.1
— : ‘

<simple logical expressiom 6.4 <J function procedure body» 5.3

| <simple reference «J function procedure
expression> 6.7 declaratiom> 5.3

<simple statement3 7 «<J left part> 7.2
| . <simple string expressiom> 6.6 <7 number> 4.1

<simple T expressiom> 6.7 | <I primary> 6.3
| <simple J variable 6.. | < subarray designator> 7.3

| B "| <I term> 6.3
<simple type=> 5,1 <I variable» 6.1
<simple variable <J variable 1dentifier> 3.1

“ declaration 0-1 | <unscaled real> 4.1
<statement list> 7.6 <upper bound 5.2

| <statement> 7 <while clause 7.7
<string primary> 6.6 |

<string> LL

<subarray designator list> 7.3
<subscript> 6.1

3. IDENTIFIERS

5.1. Syntax

<identifier> : i= cletteps | <identifier> <letter> | <identifier> <digit>
‘«J variable identifier> :: = <identifier>

6

2 <7 array 1dentifier> ::= <identifier>

<procedure identifier> ::=x <identifier>

1 <J function identifier> ... <identifier>
<record class identifier> ::= <identifier>

<I field identifier> ::= <identifier>

: <label 1identifier> t= <identifier>

<control 1identifier> ;:= <identifier>

<letter> ::= |AlBlclolelr|elu]|z]a|k|s|u]|
oo Viole lalrls rlulviw|x|y]|z

<digit> z= ofa f2|s|h]s|6[7]8]g
<identifier 1list> ,.:= <identifier> | <identifier list> , <identifier>

- 3.2. Semantics

| Variables, arrays, procedures, record classes and record fields
| are sald to be quantities. Identifiers serve to identify quantities,

| or they stand as labels, formal parameters or control identifiers.
- Identifiers have no inherent meaning, and can be chosen freely in the
|

- reference language. In an actual program a reserved word cannot be

used as an identifier.

Every 1ldentifier used in a program must be defined. This is

achieved through

(a) a declaration (cf. Section 5), if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

J variable identifier, T array identifier, T procedure identifier,

T function identifier, record class identifier or J field iden-

tifier, where the symbol J stands for the appropriate word re-

flecting the type of the declared quantity;

(b) a label definition (cf. T.l.), if the identifier stands as a

!

label. It is then said to be a label identifier;

: (c) its occurrence in a formal parameter list (cf. 5.3.). It is then

| sald to be a formal parameter;

(d) 1ts occurrence following the symbol for in a for clause (cf. 7.7.).

It 1s then said to be a control identifier;

: (e) its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables (cf. 8.3) may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier 1s de-

| termined by the following rules:
Step 1. If the identifier 1s defined by a declaration of a

| quantity or by its standing as a label within the smallest block

| (ef. 7.1.) embracing a given occurrence of that 1dentifier, then
it denotes that quantity or label. A statement following a pro-

| cedure heading (cf. 5.3.) or a for clause (cf. 7.7.)is considered
-

to be a block.

. Step 2. Otherwise, 1f that block 1s a procedure body and if the

| given identifier 1s identical with a formal parameter in the asso-
ciated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block 1s preceded by a for clause

and the identifier 1s identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.

8

i If either step 1 or step 2 could lead to more than one definition,

8 then the 1dentification 1s undefinsd.

The scope cf a quantity, a ‘abel, a formal parameter, or a con-

trol identifier is the set of statements in which occurrences of an

identifier may refer by the above ruies to the definition of that

g quantity, label, formal parameter or control identifier.

3.3. Examples,

I

3 PERSON

g ELDERS IBLING

g x15, X20, x25

4, VALUES AND TYPES

Constants and variables (cf. €.l.} are said to possess a value.

| The value of a tonstant is determined by the denotation of the con-

stant . Inthe language, aliconstants (except references) have a

reference denotation f{ef. 4.1.4 k.). Tke value of a variable 1s the

| one most recently assigns2 to that variable. A value is (recursively)

| defined as either a simpie value or a structured value (an. ordered set

of one or more values). Every value 13 said to be of a certein type.

The following types of simple values are distinguished:

: integer: the value is a 32 bit integer,

3 real: the value is a 3? bit floating point number,

Long real: the value 1s a 6h bit floating point number,

complex: the value is a complex number composed of two

numbers of type real,

| 5

tomqmp Lex : the value 1s a complex number composed of two
long real numbers,

logical: the value is a logical value,

bits: the value is a linear sequence of 32 bits,

string: the value 1s a linear sequence of at most 256 char-
acters,

reference: the value 1s a reference to a record.

The following types of structured values are distinguished:

array: the value 1s an ordered set of values, all of 1identi-
cal simple type, -

record: the value 1s an ordered set of simple values.

A procedure may yield a value, 1in which case 1t 1s said to be a

- function procedure, or it maynotiyield a value, in which case it is

called a proper procedure. The value of a function procedure 1s de-

fined as the value which results from the execution of the procedure

body (cf. 6.2.2.).

Subsequently, the reference denotationof constants 1s defined.

- The reference denotation of any constant consists of a sequence of

characters. This, however, does not imply that the value of the de-

noted constant 1s a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, 1n the case

of strings.

4.1. Numbers

4.1.1. Syntax

<long complex number> ::= <complex number>L

<complex number> ::= <imaglnary number>

<lmagilinary number> ::= <real number>T | <integer number>T

10

2 <long real number> ::= <real number>l | <integer number>I,
<real number> : := <unscaled real> | <unscaled real> <scale factor>

<integer number> <scale factor> | <scale factor>

1 <unscaled real> ::= <integer number> .<integer number> |
FC *<integer number> | <integer number> .

<scale factor> : := '<integer number> | '<sign> <integer number>

<integer number> ::= <digit> | <integer number> <digit>
<sign> ::= + | -

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Fach

| number has a uniquely defined type. (Note that all <J number>s are
unsigned.)

1
4.1.3. Examples

| 1 a) 11
. 0100 1'3 0.671

] 3.1416 6.02486" +23 1IL
2.71028182845904523 53602871 2.31.6

| L.2. Logical Values
L.2.1. syntax

<logical value> ::= true | false

4.3. Bit Sequences

4.3.1. Syntax

<bit sequence> ::= # <hex digit> | <bit sequence> <hex digit>

<hex digit>::= 0 [1 [2 |3 [4 |5]6|7|8]9 als]
c|Dp|E|F

11

Note that 2 |... Por .ote tha | | F corresponds to 2. |... 15,

4.3.2. Semantics

The number of bits in a bit sequence is 32 or 8 hex digits. The

bit sequence is always represented by a 32 bit word with the specified

bit sequence right justified in the word and zeros filled in en the

~ left.

4.3.3. Examples

#4F = 0000 0000 0000 0000 0000 0000 0100 1111

- #9 = 0000 0000 0000 0000 0000 0000 0000 1001

- 4.4. Strings

L.h.1. Syntax

<string> ::= "<sequence of characters>"

- 4.4.2. Semantics

Strings consist of any sequence of (at mast 256) characters ac-

cepted by the System 360 enclosed by ", the string quote, If the

string quote appears in the sequence of characters it must be 1imme-

diately followed by a second string quote which 1s then ignored. The

- number of characters in a string is said te Be the length of the

string.

4.4.3. Examples

-— 11] JOHN"

"is the string of length 1 censisting of the string

— quote.

12

- 4.5. References

4.5.1. Syntax

<null reference3 ::= null

4.5.2. Semantics

The reference value null fails to designate a record; 1f a refer-

ence expression occurring in a field designator (cf. 6.1.) has this

_— value, then the field designator is undefined.

_ 5. DECLARATIONS

Declarations serve to associate identifiers with the quantities

= used in the program, to attribute certain permanent properties to

these quantities (e.g. type, structure), and to determine their scope.

The quantities declared by declarations are simple variables, arrays,

- procedures and record classes.

Upon exit from a block, all quantities declared or defined within

. that block lose their value and significance (cf. 7.1.2. and 7.4.20).

syntax:

- <declaratior> 1! := '<simple variable declaration> | <T array

~ declaration> | <procedure declaratior> |
<record class declaration>

5.1. Simple Variable Declarations

= 5.1.1. Syntax

<simple variable declaratior> : := <simple type> <identifier list=>

- <simple type> ::= integer | real | long real | complex | long

complex | logical | bits | bits (32) |

13

1 string | string (<integer>) reference
(<record class identifier list>)

| <record class identifier 1list> ::= <record class identifier> i
| <record class identifier list> ,

: <record class identifier>

5.1.2. Semantics

| Each 1dentifier of the identifier list 1s associated with a

variable which 1s declared to be of the indicated type. A variable is

called a simple variable, if its value is simple (cf. Section 4). If

| a variable 1s declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (cf. 7.2.2.)

can be assigned to it. It 1s understood that the value of a variable

1s equal to the value of the expression most recently assigned to it.

A variable of type bits is always of length 32 whether or not

| the declaration specification 1s included.

| A variable of type string has a length equal to the unsigned

| integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16 characters.

A variable of type reference may refer only to records of the

record classes whose identifiers—appear in the record class identi-

| fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, K, M, N

real X, Y, Z

| long complex C

Logical

bits G, H

14

3 string (10) S, T
reference (PERSON) JACK, JILL

5.2. Array Declarations

5.2.1. Syntax

<T array declaration> ::= <simple type array <identifier 1list>

(<bound pair 1list>)

<bound pair lists $:= <bound pair> | <bound pair list>,<bound
pair>

L <bound pair> i= <lower bound> :: <upper bound

<lower bound> ::= <integer expressior>

. <upper bound> ::= <integer expressior>

| 5.2.2, Semantics
Each identifier of the identifier list of an array declaration 1s

| associated with a variable which is declared to pe of type array,
variable of type arrayis an ordered set of variables whose type is the

simple type preceding the symbol array, The dimension of the array is
RA coc

| the numberof entries in the bound pair list,
i

Every element of anerrayis identified by a list of indices.

The 1ndices are the integers between and including the values of the

lower bound and the upper bound, Every expression in the bound pair

list 1s evaluated exactly once upon entry to the block in which the

declaration occurs. The bound pain cxpressions can depend only on

variables and procedures global to the block in which the declaration

occurs« In order to be valid, for every bound pair, the value of' the

upper bound must not be less than the value of the lower bound.

5.2.3. Examples

integer array H(1::100)

15

real array A, Bil::M,1: :N,

string (12) array STREET, TOWN, CITY [J: :K + 1°

».%. Procedure Declarations

| 5 0 31, Syntax

| <procedure declaration> ::= <proper procedure declaratiomn> |

<J function procedure declarat iorm>

| <proper procedure declaratior> ::= procedure <procedure heading>;

<proper procedure body>

<I function procedure declaration> : := <simple type> procedure

| <procedure heading>;

<I function procedure bhody>

<proper procedure body> i= <statement>

| <J function procedure body> : 1= <J expressior> | <block body>
<J expression> end

<procedure heading> :::= <ident if ier> | <ident if ier» (<formal

parameter list;>)

<formal parameter list> : := <formal parameter segment> |

<formal parameter list>; <formal

] parameter segment>

| <formal parameter segment> !:= <formal type> <identifier list> |
| <formal array parameter>
| <formal type> ::= <simple type> | <simple type> value | <simple
| type> result | <simple type> value result |

<simple type> procedure | procedure

<formal array parameter> : := <simple type array <identifier

| list> («dimension specification>)

| <dimension specif icat io> ::= * | <dimension specificatior> , *

| 5.3.2. Semantics

| A procedure declaration associates the procedure body with the

| identifier immediately following the symbol procedure. The principal

: part of the procedure declaration is the procedure body. Other parts

: of the block in whose heading the procedure 1s declared can then cause

this procedure body to be executed or evaluated. A proper procedure

| is activated by a procedure statement (cf. 7.3.), a function procedure

| by a function designator (cf. 6.2.). Associated with the procedure

] body 1s a heading containing the procedure identifier and possibly a

: list of formal parameters.

| 5.%.2.1. Type specification of formal parameters. All formal para-
meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

| the actual parameter of this specified type leads to correct ALGOL W

| expressions and statements (cf. 7.3.2.).

| 5.3.2.2. The effect of the symbols value and result appearing in a

formal type 1s explained by the following rule, which 1s applied to

the procedure body before the procedure 1s invoked:

(1) The procedure body is enclosed by the symbols begin and end

| 1f 1t 1s not already enclosed by these symbols;

| (2) For every formal parameter whose formal type contains the

! symbol valueor result (or both),

i (a) a declaration followed by a semicolon is inserted after

| the first begin of the procedure body, with a simple
type as indicated in the formal type, and with an iden-

tifier different from any identifier valid at the place

of the declaration.

(b) throughout the procedure body, every occurrence of the

| :

formal parameter identifier 1s replaced by the identifier

defined in step 2a;

B (3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by a semicolon 1s inserted

after the declarations of the procedure body. Its left part

contains the identifier definedin step 2a, and its expres~-

| sion consists of the formal parameter identifier. The sym-

| bol valueis then deleted;-

| (4) If the formal type contains the symbol result, an assignment

| statement preceded by a semicolon 1s inserted before the

| —_ symbol end which terminates a proper procedure body. In
| the case of a function procedure, an assignment statement

| - is inserted after the final expres-

sion of the function procedure body. Its left part contains

| the formal parameter identifier, and 1ts expression consists

.. of the identifier defined in step 2a. The symbol result 1s

then deleted.

) 5.3.2.3. Specification of array dimensions. The number of "¥"'s

| _ appearing in the formal array specification 1s the dimension of the

| array parameter.

> 0 33 Examples

| 8 procedure INCREMENT; X := X+1

| real procedure MAX (real value X, Y);

_ if X < Y then Y else X

procedure COPY (real array U, V (%,%); integer valueA, B);
far I := 1 until A do

for J := 1 until B do U(I,J) := V(I,J)

real procedure HORNER (real_array A (*); integer value N;

: begin real S; S := 0;

i for I := 0 untilN doS := S * X + A(1);

long real procedure SUM (integer K, N; long real X);

1 begin long real Y; Y := 0; K := N;
while K > = 1 dc

begin Y :=Y +X; K := K - 1

end;

|

| reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);
begin reference (PERSON) P, M;

P := YOUNGESTOFFSPRING (rATHER (FATHER (R))); |

while (P = = null) and (-1 MALE (P)) or

(P = FATHER (R))

| P := ELDERSIBLING (P);

| M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

! while (M = = null) and (nn MALE (M)) do

| M := ELDERSIBLING (M);

if P = null then M else

1f M = null thenP else

if AGE(P) < AGE(M)_ then P else M

5.4. Record Class Declarations

5.4.1. Syntax

| <record class declaration> ::= record <identifiler> (<field list>)
| <field list> ¢::= <simple variable declaration | <field list> ;

<simple variable declaration>

| 5.4.2. Semantics

| A record class declaration serves to define the structural pro-

perties of records belonging to the class. The principal constituent

of a record class declaration 1s a sequence of simple variable declara-

tions which define the fields and their simple types for the records

of this class and associate identifiers with the individual fields.

A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) IerT, RIGHT)

record PERSON (string NAME; integer AGE; logical MALE;

reference (PERSON) FATHER, MOTHER,, YOUNGESTOFFFSPRING,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed

from existing ones. These new values are obtalned by performing the

operations indicated by the operators on the values of the operands.

| Several simple types of expressions are distinguished. Their struc-

.ture is defined by the following rules, in which the symbol T has to

| 20

1 be replaced consistently as described in Section ly; and where the

5 triplets To» Tyo Ts have to be either all three replaced by the same
3 one of the words

: logical

: bit

3 string

reference

i or by any combination of words as indicated by the following table,

which yields Ts given I and Ty

; J To : | |
1 integer real complex

1 integer integer real complex

! real real real complex

: complex complex complex complex

Ts has the quality "long" if either both 75 and Ts have that
quality, or 1f one has the quality and the other is "integer"".

| Syntax:

i <J expression>::= <simple J expressior> | <case clause
(<T expression list>)

<T, expression> ::= <if clause> <simple Ty expressior> else
<J, expression>

| . <T expression list> ::= <I expression>

J, expression list> ::= <I; expression list> <J, expression>
<if clav - t= if <logical cxpression> then.

1 <case clause> 1::3= case <integer expression> of

1 The operands are either constants, variables or function designa-

] tors or other expressions between parentheses,The evaluation of

operands other than constants may involve smaller units of action such

: as the evaluation of other expressions or the execution of statements,,

| 21

= The value of an expression between parentheses 1s obtained by evaluating

; | that expression. If an operator has two operands, then these operands
may be evaluated in any order with the exception of the logical operators

| discussed in 6.4.2.2. The construction

<1f clause> <gimple Ty expression> else J, expression>

causes the selection and evaluation of an expression on the basis of

the current value of the logical expression contained in the 1f clause.

If this value 1s true, the simple expression following the 1f clause

- 1s selected, 1f the value 1s false, the expression following else is
| selected. If 7, and Ts are simple type string, both string expressions

must have the same length. The construction

L <case clause> (J expression list>)
causes the selection of the expression whose ordinal number in the

il expression list 1s equal to the current value of the integer expression

contained in the case clause. In order that the case expression be

defined, the current value of this expression must be the ordinal number

of some expression in the expression list. If J is simple type string,

all the string expressions must have the same length.

6.1. Variables

6.1.1. Syntax

<simpleJ variable> ::= <I variable identifier> | <J field designator> |

<J array designator>

<J "variable> ::= <simpleJ variable>

<string varilable> ::= <substring designator>

<J field designator> ::= <I field identifier> (<reference expression>)
J array designator> ::= <J array identifier> (<subscript list;>)

<subscript 1list> ::= <subscript> | <subscript 1list>, <subscript>

<subscript> ::= <integer expression>

22

6.1.2. Semantics

. An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field in the record referred to

by 1ts reference expression. The simple type of the field designator

1s defined by the declaration of that field identifier in the record

] class designated by the reference expression of the field designator

(cf. 5.k.).

6.1.3. Examples

X A(I) M(I+J, I-J)

FATHER (JACK) MOTHER(FATHER(JILL))

| 6.2. Function Designators

| 6.2.1. Syntax

<T function designator> ::= <J function identifier> | <J function

identifier> (<actual parameter list>)

| 6.2.2. Semantics .

A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy 1s made of the body of the function procedure

whose procedure identifier 1s given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.

23

 — Step 5. The copy of the function procedure body, modified as in-

dicated in steps 2-4,is executed, The value of the function

oo designator 1s the value of the expression which constitutes or 1s

part of the modified function procedure body. The simple type

of the function designator i8 the simple type in the corresponding

function procedure declaration.

6.2.3. Examples

MAX (X ** 2, Y ** 2)

SUM (I, 100, H(1))

SUM (I, M, SuM (J, N, A(I;J)))

| YOUNGESTUNCLE (JILL)

- SUM (1, 10, x (1) * ¥(1))

HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol 7

must be systematically replaced by one of the following words (or

- word pairs):

integer .

= real

long real oo |

complex | |

long complex

— The rules governing the replacement of the symbols To 7 and Ts are

given in 6.3.2.

<simple J expression> ::= <Tterm> | + <T term> | - <7 term>

2h

3 <simple 7, expression> :: = <simple T, expression + <I, term>
<simple TJ. expression> —- <J, term>

| <T term» ::= <J factor>

Js term> = <7, term xT, factor;,"
<7, term> 1:= <T. term» / <T, factor>
<integer term> :;:= <integer term> div <integer factor> |

<integer term> rem <integer factor>

<I, factor> ::= <I, primary> | <J, factor> ** <integer primary>
<J, primary> ::= abs <I primary> | abs <3; number>
J, primary> ::= long J, primaryv>
J, primary> ::= short <7, primary>

<J primary> ::=<J variable> | <I function designator> |
(<J expression) | <J number>

<lnteger primary> ::= <control i1dentifier>
|
L

6.3.2, Semantics

| An arithmetic expression 1& a rule for computing a number.
According to its simple type it is called an integer expression,

| real expression, long real expression, complex expression, or long
complex expression.

.

6.3.2.1. The operators +, -, %, and / have the conventional meanings

of addition, subtraction, multiplication and division. In the rele-

| vant syntactic rules of 6.3.1. thesymbolsT 7, and 7, have to be re-
placed by any combination of words according to the following table

which indicates To for any combinaticn of 7 and T

Operators + | -

J |
I. 2 lnteger real complex

integer integer read complex

real real real complex

complex complex complex complex

25

- Ts has the quality "long" if both I and Ts have the quality

"long", or 1f one has the quality "long" and the other is "integer".

Operator *

| Yq c integer real complex

integer integer long real long complex

| real long real long real long complex

| complex long complex long complex long complex

J, or J, having the quality "long" does not affect the type of

the result.

Operator /

J

TS > 2 integer real complex
integer real real complex

real real real complex

complex complex complex complex

T, has the quality "long" if both 7 and Ts have the quality

"long", or 1f one has the quality "long" and the other 1s "integer".

6.3.2.2. The operator "-" standing as the first symbol of a simple

| expression denotes the monadic operation of sign inversion. The type

of the result is the type of the operand. The operator "+" standing

as the first symbol of a simple expression denotes the monadic opera-

tion of identity. |

6.3.2.3. The operator div 1s mathematically defined (for B 4 0) as

A div B= SGN (A XB) X D (abs A, abs B) (cf. 6.3.2.6.)

26

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

if A < B then 0 else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as

A rem B=A-~- (A divB) X B

6.3a2.5. The operator ** denotes exponentiation of the first operand

to the power of the second operand. In the relevant syntactic rule of

6.3,1. the symbols To and 7 are to be replaced by any of the follow-

ing combinations of words:

wo | on
real integer

real real

complex complex

Ts has the quality "long" if and only if 7 does,

6.3.2.6. The monadic operator abs yields the absolute value or modulus

of the operand. In the relevant syntactic rule of 6.3.1. the symbols Ts

and Ty have to be replaced by any of the following combinations of words:

SO

- integer integer

real real

real complex

If 7 has the quality "long", then so does Tor

2]

6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation 1s of simple type real, complex, long real, or long complex

then 1t 1s the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1, the symbols Ts and T
must be replaced byany of the following combinations of words (or

word pairs):

Operator long

| long real | real | oo
” long real, | integer EE

long complex | complex -

Operator short

To | Ty |

real long real

complex long complex

6.3.3. Examples

C+ A(1) * $(I)

EXP(-X/(2 * sIGMA)) / SQRT (2 * SIGMA)

6.4. Logical Expressions

6X.1l. Syntax

= In the following rules for <relation> the symbols Ts and J, must
either be identically replaced by any one of the following words:

28

string

reference

or by any of the words from:

; complex

| long complex
| real

long real

integer

and the symbols Ts or 7, must be identically replaced by string or
must be replaced by any of real, long real, integer.

| <simple logical expressiorn> :!:!= <logical element> <relation>

| <logical element> ::= <logical term> | <logical element;> or
<logical term>

<logical term> ::= <logical factor> <logical term> and

| <logical factor>

| <logical factor> ::= <logical primary=> | =1<logical primary>

<logical primary> :!:= <logical value | <logical variable |

<logical function designator> |
(<logical expressiorn>)

<relation> ::= <simple Ts expressior> <equality operator>

<simple 7 expressior> | <logical element>
<equality operator> <logical element> |

<simple reference expression> is

<record class ildentifier> |

| <simple J, expression> <relational operator>

<simple Ts expression>
<relational operator> ::=< < = > = >

<equality operator> ::= = — =

6.4.2. Semantics

A logical expression is a rule for computing a logical. value.

29

6.4.2.1. The relational operators represent algebraic ordering for

arithmetic arguments and EBCDIC ordering for string arguments. If two

strings of unequal length are compared, the shorter string is extended

to the right by characters less than any possible string character,

The relational operators yield the logical value true 1f the relation

1s satisfied for the values of the two operands; false otherwise. Two

references are equal if and only if they are both null or both refer

to the same record. Two strings are equal if and only if they have

the same length and the same ordered-sequence of characters.

6.4.2.2. The operators = (not), and, and or, operating on logical

values, are defined by the following equivalences:

— X if X then false else true

X and Y 1f X then Y else false

XorY 1fX then true else Y

0.4.3. Examples

Por q

(X CY) and (Y C Z)

YOUNGESTOFFSPRING (JACK) = = null

FATHER (JILL) 1s PERSON

6.5. Bit Expressions .

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expression>

or <bit term>

<bit term> ::= <bit factor> | <bit term> and <bit factor>

<bit factor> ::= Cbit secondary> | — <bit secondary>

Cbit secondary> ::= <bit primary> | <bit secondary> shl
<integer primary> | <bit secondary> shr

<integer primary>

<bit primary> ::= <bit sequence> | Cbit variable> | <bit

B function designator> | (<bit expression>)

50

6.5.2. Semantics

] A bit expression 1s a rule for computing a bit sequence.

[The operators and, or, and = produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

follows:

X Y - X Xand Y XorY

0 0 1 0 0 -

0 1 1 - 0 1

| 1 0 0 0 1

| 1 1 0 1 1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions in-

dicated by the absolute value of the integer primary. Vacated bit,

| positions to the right or left respectively are assigned the bit value

0.

| 6.5.3. .Examples

G and H or #38

G and = (H or G) shr 8.

0.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string> <string variable> <string

function designator> (<string expression>)

<substring designator> ::= <simple string variable>

(<integer expression ¥ <integer number>)

31

| 0.6.2. Semantics

! A string expression is a rule for computing a string {sequence of

characters).

| 6.6.2.1. A substring designator denotes a sequence of characters of
| the string designated by the string variable. The integer expression

preceding the § selects the starting character of the sequence. The

value of the expression indicates the position in the string variable.

'The value must be greater than or equal to 0 and less than the declared

| length of the string variable. The first character of the string has

! position 0. The integer number following the § indicates the length

of the selected sequence and 1s the length of the string expression,

The sum of the integer expression and the integer number must be less

: than or equal to the declared length of the string variable.

| 6.6.3. Example

string (10) S;

Ss (403)

s (I+TwWl)

string (10) array T (l::m,2::n);

T (4,6) (3W 5)

6.7. Reference Expressions

6.7.1. Syntax

; <simple reference expression> ::= <null reference’, | <reference

| variable>| <reference function

| designator> | <record designator> |
(<reference expression>)

| 32

i ;

|

3 <record designator> i= <record class 1identifier> | <record
| class identifier> (<expression list>]

L <expression list> ::= <T expression> | <expression list>,
<J expressior>

- 6.7.2. Semantics

A reference expression 1s a rule for computing a reference to a

- record. All simple reference expressions 1n a reference expression

L must be of the same record class.

The value of a record designator 1s the reference to a newly

~ created record belonging to the designated record class. If the

record designator contains an expression list, then the values of the

- expressions are assigned to the fields of the new record. The entries

a. in the expression list are taken in the same order as the fields in

the record class declaration, and the simple types of the fields must

— be assignment compatible with the simple types of the expressions

(cf. 7.2.2.).

6.7.3. Example

. PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING

(Ja cK)) .

6.8. Precedence ofOperators

— The syntax of 6.3.1., 6.L.1., and 6.5.1. implies the following

hierarchy of operator precedences:

shl, shr, ** |
— I

*, /, div, rem, and

34

|
-

+, =, Or

— <, <==, =,>=>,18

Example

A= B and C is equivalent to A = (B and C)

7. STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action,which may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

syntax:

<program> ::= <block> .

<statement> ::= <simple statement> | <iterative statement> |

- <if statement> | <case statement>

<simple statement> ::= <blocé& | <T assignment statement> |

<empty> | <procedure statement> |
<goto statement>

. 7.1. Blocks

7.1.1. Syntax

<block> ::= <block body> <statement> end

<block-body? ::= <block head> | <block body> <statement>; |
<block body? <label definition>

<block head ::= begin | <block head> <declaration> ;
~ <label definition> ::= <identifier> :

| 7.1.2. Semantics

Every block introduces a new level of nomenclature. This 1s

— realized by execution of the block in the following steps:

Step 1. If an identifier, say A, defined in the block head or in

a label definition of the block body 1s already defined at the
—

place from which the block 1s entered, then every occurrence of

a. that identifier, A, within the block except for occurrence in

array bound expressions 1s systematically replaced by another

= identifier, say APRIME, which 1s defined neither within the

block nor at the place from which the block 1s entered.

Step 2. If the declarations of the block contain array bound

= expressions,then these expressions are evaluated,

_ Step 3. Execution of the statements contained in the block body

begins with the execution of the first statement following the

ha block head.

After execution of the last statement of the block body (unless

it 1s a goto statement) a block exit occurs, and the statement follow-

- ing the entire block is executed.

7.1.3. Example

begin real U;

_ u::=X; X=Y; Y :=2;Z = u
end

“ 7.2. Assignment Statements

| 7.2.1. Syntax

In the following rules the symbols Ts and 7, must be replaced by

- words as indicated in Section 1, subject to the restriction that the

type 7s 1s assignment compatible with the type as defined in 7.2.2,

35 |

| Jos assignment statement> ::= aR left part> J, expression> |
<<, left par-D J, assignment
statement>

-

<J left part> ::= J variable>:=

- 7.2.2. Semantics

(The execution ofa simple assignment statement

To assignment statement>::= NUN left part> J, expression>

i causes the assignment of the value of the expression to the variable.
If a shorter string 1s to be assigned to a longer one, the shorter

|

- string 1s first extended to the right with blanks until the lengths are

| equal. In a multiple assignment statement
= (<<, assignment statement> = J; left parte J assignment
| statement>)
-

the assignments are performed from right to left. The simple type of

_ each left part variable must be assignment compatible with the simple

| type of the expression or assignment variable immediately to the right.

= A simple type Ty 1s sald to be assignment compatible with a simple

L type Ty if either
(1) the two types are identical ((except that if Ty and Ty are

LC string, the length of the Ts variable must be greater than

or equal to the length of the T, expression or assignment), or|

~ (2) To 1s real or long real, and 7 1s 1nteger, real or long
weal rr

I-

(3) To 1s complex or long complex, and Ty 1s integer, real,

L long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer

~ to a record of the class specified by the record class identifier asso-

ciated with the reference variable in its declaration.

|

36

|
I -

7.2.3. Examples

— Z := AGE (JACK) :=28

X t= Y + abs Z

. C:=I1+X + C

Pi=X—=Y

= 7.3. Procedure Statements

_ 7.3.1. Syntax

<procedure statement>::= <procedure identifier> | <procedure

a. identifier> (<actual parameter 1list>)

<actual parameter list> ::= <actual parameter> | <actual para-

| meter list> , <actual parameter>

<actual parameter> ::= <J expressior> | <statement> | <J subarray

| designator> | <procedure identifier> |
-

<J function identifier?

<I subarray designator:> ::= <JT array identifier> | <T array

— identifier> (<subarray designator

list>)

. <subarray designator list> ::= <subscript> | * | Csubarray

designator 1list>,<subscript> |

_ <subarray designator list>,*

7.3.2. Semantics

” The execution of a procedure statement 1s equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose

- procedure identifier 1s given by the procedure statement, and of

the actual parameters of the latter.

C

Step 2. If the procedure body 1s a block, then a systematic

. change of identifiers in 1ts copy 1s performed as specified by

37

0]

8

step 1 of 7.1.2. |
.

| Step 3. The copies of the actual parameters are treated in an

. undefined order as follows: If the copy 1s an expression differ-

ent from a variable, then it 1s enclosed by a pair of parentheses,

— or 1f it 1s a statement it 1s enclosed by the symbols begin and

end.

. AS
Step 4. In the copy of the procedure body every occurrence of an

o identifier identifying a formal parameter 1s replaced by the copy

of the corresponding actual parameter (cf. 7.3.2.1.).En order
!

- for the process to be defined, these replacements must lead to

| correct ALGOL W expressions and statements.
-

Step 5. The copy of the procedure body, modified as indicated in

— steps 2-4, is executed.

7.3.2.1. Actual formal correspondence. The correspondence between

the actual parameters and the formal parameters 1s established as

1 follows: The actual parameter list of the procedure statement (or

of the function designator) must have the same number of entries as

the formal parameter list of the procedure declaration heading. The

_ correspondence is obtained by taking the entries of these two Lists
in the same order.

= 7.3.2.2. Formal specifications. If a'formal parameter is specified |

1 by value, then the formal type must be assignment compatible with the |
type of the actual parameter. If it 1s specified as result, then the

— type of the actual parameter must be assignment compatible with the |

_ 33 |

-

a

formal type. In all other cases, the types must be identical. If an
{

L actual parameter 1s a statement, then the specification of its corre-

sponding formal parameter must be procedure.

-

7.3.2.3. Subarray designators. A complete array may be passed to a

Co procedure by specifying the name of the array if the number of sub-

scripts of the actual parameter equals the number of subscripts of

= the corresponding formal parameter. If the actual array parameter has

| more subscripts than the corresponding formal parameter, enough sub-

| scripts must be specified by integer -expressions so that the number of

. ¥'s appearing in the subarray designator equals the number of sub-

scripts of the corresponding formal parameter. The subscript positions
!

~~ of the formal array designator are matched with the positions with *'s

in the subarray designator in the order they appear.

7.3.35. Examples

= INCREMENT

COPY (A, B, M, N)

_ INNERPRODUCT (I, N, A(I,*), B(*,J))

~ 7.4. Goto Statements

_ 7.4.1. Syntex

<goto atatement> ::= goto <label identifier> | go to <label
L identifier>

| 7.4.2. Semantics
_

An identifier 1s called a label identifier 1f it stands as a

_ label.

39

_ A goto statement determines that execution of the text be contin

1 N ued after the label definition of the label identifier. The ident ifi-

oo | cation of that label definition 1s accomplished in the following steps:

- Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier,

then this 1s the designated label definition. Otherwise,

_ Step 2. The execution of that block is considered as terminated

and Step 1 1s taken as specified above.

] 7.5. If Statements
7.5.1. Syntax

| <if statement)- ::= <if clause> <statement> | <if clause>
<simple statement> else <statement>

| <if clause> ::= if <logical expressior> then
7.5.2, Semantics

. The execution of 1f statements causes certain statements to be .

| executed or skipped depending on the values of specified logical ex=
pressions. An if statement. of the form

<if clause> <statement)

1s executed in the following steps:

-Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement -

following the 1f clause 1s executed. Otherwise step 2 causes

no action to be taken at all.

40

| An 1f statement of the form

<1f clause> <simple statement> else <statement>

| 1s executed in the following steps:

Step 1. The logical expression in the 1f clause 1s evaluated.

Step 2. If the result of step 1 is true, then the simple state-

ment following the 1f clause 1s executed. Otherwise the state-

- ment following else 1s executed.

7.5.3. Examples

| if X = Y then goto L

ifX< Y then U :=X else if Y < Z then U := Y else V := Z

i 7.6. Case Statements

7.6.1. Syntax

<case statement> ::= <~ase clause> begin <statement 1list> end

<statement 1list> ::= <statement> | <statement 1list> ; <statement>

) <case clause> ::= case <integer expressior> of

7.6.2. Semantics ’

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause 1s evaluated.

Step 2. The statement whose ordinal number in the statement list

: 1s equal to the value obtained in Step 1 1s executed. In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

41

i statement of the statement list.

: 7.6.%, Examples

i case 1 of
begin X := X + Y;

| Y = Y + Z;
Z =7 + X

{ end

| case J of

begin H(1) = -H(I);

] begin H(I-1) := H(I-1) + H(I); I := I-1 end;

: begin H(I-1) := K(I-1) x H(I); I := I-1 end;

: begin H(H{I-1)) := H(I); I := I-2 end
] end

T.-7T. Iterative Statements

| 7.7.1. Syntax

: <iterative statement> ::: <for clause> <st. ‘ement> | <while
clause> <statement>

<for clause> ::= for <identifier>:= <initial value>

1 step <increment> until <limit> do | for
: <ldentifier>i= <initial value until <limit>

do | for <identifier> (= <for list> do

1 <for list> ::= <integer expression> | <for list>, <integer

expression>

i <initial value€> ;::= <integer expression>

<increment>. ::= <integer expression

<limit> ::= <integer expressior>

j <whille clause> ::= while <logical expression> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

1 Lo

: executed repeatedly depending on certain conditions specified by a

i for clause or a while clause. The statement following the for clause

or the while clause always acts as a block, whether it has the form of

: a block or not. The value of the control identifier (the identifier

following for) cannot be changed by assignment within the controlled

statement.

(a) An 1lterative statement of the form

4 for <identifier> :=Elstep E2 until E3 do<statement>

1 1s exactly equivalent to the block

] begin <statement-0>; <statement-P ... ; <statement-L1>;

. . ., <statement-N> end

] in the 1 statement every occurrence of the control identifier

: 1s replaced by the value of the expression (El + I X E2).

The index N of the last statement is determined by

N < (E3-El) / E2 < Ntl. If N < 0, then it is understood that

the sequence 1s empty. The expressions El, E2, and E3% are

evaluated exactly once, namely before execution of <statement-0).

Therefore they can not depend on the control identifier.

(b) An iterative statement of the form

for <identifier> := El untilE3 do<statement>

: 1s exactly equivalent to the iterative statement

: for <identifier> := El step 1 until E5do <statement>

(c) An iterative statement of the form

for <identifier> := El, E2, ..., EN _do <statement>

| is exactly equivalent to the block

43

- begin <statement-D; <statement-a ... <statement-I> ; ...

<statement-N> end

;) when in the IB statement every occurrence of the control identifier

is replaced by the value of the expression El.

a (d) An iterative statement of the form

while E do <statement>

1s exactly equivalent to

begin
: L: if E then

Bh begin <statement> ; goto L end

1 end

: 70 73. Examples

_ forV. :=1 step 1 until N-1 do S := S + A(U,V)

while (J> 0) and (CITi(J) = = S)do J := J-1

i . for I := x, x+1, x + 3,X + 7 do P(I)

7.8. Standard Procedures

| . The standard procedures differ from explicitly declared procedures

i in that they may have one or more parameters of mixed simple type.

N In the following descriptions J is to be replaced by any one of

i integer bit
real string

long real

Fb complex

long complex

| Ly

| 7.8.1. Read Statements

| Implicit declaration heading:
| procedure read(J result X,» 7 result X, . + +, JT result XJ;

procedure readon(J result X,, I result X, . . . , J result SOF

(where n > 1)

i Both read and readon designate free field read statements. The

; quantities on the data cards must be separated by one or more blank col-

: umns . All 80 card columns can be used and quantities extending to col-

| umn 80 on one card can be continued beginning in column 1 of the next
card. In addition to the numbers of 4.1., numbers of the following

| syntactic forms are acceptable quantities on the data cards:
| 1) <sigr> <7 number>

| where J is one of integer, real, long real, complex, long complex.

| 2) <sigr> <I, number> <sign> <I, number>
| where To 1s one of integer, real, long real, and I 1s one of
| complex, long complex.

| The quantities on the data cards are matched with the variables of

the variable list in order of appearance. The simple type of each quan-

tity read must be assignment compatible with the simple type of the

variable designated. The read statement begins scanning for the data

on the next card. The readon statement begins scanning for the data

: where the last read or readon statement finished.
| 7.8.1.2. Examples

| read (X,A{I))
for I := 1 untilN do readon (A(I))

45

] 7.8.2. Write Statements

Implicit declaration heading:

procedure write (7 value X,, I value Xs eee T value xX);

(where n > 1);

The values of the variables are output 1n the order they appear

in the variable list in a free field form described below. The first

field of each WRITE statement begins on a new line. If there is insuffi-

1 cicnt space remaining on the 132 character print line for a new field,
that line 1s printed and the new-field starts at the beginning of a new

: print line. : LT REE

integer: rightyjustified in field of 14 characters followed by 2
} blanks. Field size can be changed by assignment to Intfieldsize.

real: same as 1nteger except the field size cannot be changed.

d long real: right justified in field of 22 characters followed

by 2 blanks.

complex: two adjacent real fields always on the same line.

1 long complex: two long r<:l fields adjacent always on the same
[line.

logical: TRUE or FALSE right justified in a field of 6 characters

followed by 2 blanks.

string: placed in a field large enough to contain the string

| and may extend to a new line if the string is larger

than 132 characters.

: bits: same as real.

: reference: same as real.

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS .

8.1. Standard Transfer Functions

Implicit declaration headings:

| L6

| integer procedure round (real value X);

= integer procedure truncate (real value X);

integer procedure entier (real value X);

; - real procedure realpart (complex value X);
long real procedure.longrealpart (long complex value X);

_ real procedure imagpart (complex value X);

| long real procedure longimagpart (long complex value X);

complex procedure imag (real value X);

comment complex number XI;

long complex procedure longimag (long real value X);

; oo logical procedure odd (integer-value X);
bits procedure bitstring (integer value X);

| ~ comment binary representation of number X;
| integer procedure number (bits value X);
| - comment integer with binary representation X;
{ integer procedure decode (string (1) value 8S);
: comment numeric code of the character S;

string (1)procedure code (integer value X);

comment character whcse numeric code is X REM 256;

: 8.2. Standard Functions of Analysis

N real procedure sin (real value X);

long real procedure longsin (long real value X);

ET real procedure cos (real value X);

| | - long real procedure' longcos (long real value X);

lo real procedure arctan (real value X);

comment -n/2 < arctan (X) <u/2;

B long real procedure longarctan (long real value X);

| comment -n/2 < longarctan (X) < n/2;

: | real procedure ln (real value X);

oo comment logarithm base e;

long real procedure longln (long realvalueX);

: = comment logarithm base e;

real procedure log (real value X);

BN comment logarithm base 10;

long real procedure longlog (long real value X);

~ comment logarithm base 10;

real procedure exp (real value X);

— long real procedure longexp (long real value X);

real procedure sqrt (real value X);

_ long real procedure longsqrt (long real value X);

complex procedure complexsqgrt (complex value X);

comment principal square root;

BN long complex procedure longcomplexsgrt (long complex value X);
: comment principal square root;

| 8.3. Overflow and Underflow

8.3.1. Predeclared Variables

_ wogidedr £ 1 ow;

comment initialized to false. Set to true at occurrence

- of a floating-poins,-underflow interrupt;

| logical overflow;

comment initialized to false. Set to true at occurrence

_ of a floating-point or fixed-point overflow or divide-by?

zero interrupt;

8.3.2. Standard Message Function

integer procedure msglevel (integer value X);

- comment The value of a system integer variable MSG controls

| the number of underflow/overflow messages printed during
L—

| program execution. MSG 1s initialized to zero.

MSG = 0
—

No messages are printed.

L8

MSG > 0

Underflow and overflow messages are printed.

After each message 1s printed, MSG 1s decreased py 1.

MSG < 0

Overflow messages are printed. After each message

1s printed, MSG 1s increased by 1.

Each message gives the type of interrupt and a source card number

near which the interrupt occurred.

Examples

OVERFLOW NEAR CARD 002%

UNDERFLOW NEAR CARD 0071

DIV BY ZERO NEAR CARD 0372

The predeclared integer procedure msglevel 1s used to interro-

gate and to set the value of MSG. The old value of MSG is the value

of the procedure msglevel, and the new value given to MSG is the

value of the argument of msglevel.

8.4. Output Field Sizes

integer intfieldsize;

comment indicates number of digits including minus sign 1if

any. Initialized to lk; can be changed by sagsignment state-

ment;

8.5. Fimem ction

integer procedure time (integer value X);

comment if X = 1, time is returned in 60%1s of a second,

If X = 2, time is printed in minutes, seconds and 60%"sof

a second and returnedin 60%'s of a second.

L9

| .

ALGOL W

| ERROR MESSAGES

HenryR. Bauer

Sheldon Becker

| Susan L.. Graham

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

{

oo

ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the pro-

gram listing. The message format 1is

CARD NO. (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) 1s one of-those listed below:

- INCORRECT SPECIFTN syntactic entity of a declaration 1s

incorrect, e.g. variable string length.

INCORRECT CONSTANT syntax error 1n number or bitstring.

] MISSING END an END needed to close block.

MISSING BEGIN an attempt to close outer block be-

fore end of code.

MISSING)) is needed.

ILLEGAL CHARACTER a character, not in a string, 1s

unrecognizable.

MISSING END . program must conclude with the se-

quence END .

} STRING LENGTH ERROR string is of 0 length or length

greater than 256.

BITS LENGTH ERROR bits constant denotes no bits or

| more than 3%2 bits.

MISSING ((1s needed.

COMPILER TABLE OVERFLOW terminating error — a complle time

table has exceeded its bounds.

1

| TOO MANY ERRORS the maximum nuber of errors for Pass
One records has been reached. Com-

pilation continues but messages for

succeeding errors detected by Pass

| One are suppressed.

ID LENGTH > 256 more than 256 characters in' identifier.

| See also discussion of PROGRAM CHECK in IV.

| II. PASS TWO MESSAGES

; The format of Pass Two error messages 1s

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

| symbol)

If a $STACK card is included anywhere in the source deck, the

| SYNTAX ERROR message is followed by

STACK CONTAINS:

. (beginning of file)

<symbol-1>

<symbol-m (top of stack)

- The symbol names may differ-somewhat from the metasymbols of

the syntax.

If any Pass One or Pass Two errors occur, compilation 1s termi-

nated at the end of Pass Two.

INCORRECT SIMPLE TYPE <number> <simple type> of entityis improper

as used. Number indicates explana-

tion on list of simple type errors.

2

ARRAY USED INCORRECTLY a variable must be used here.

IDENTIFIER MUST BE RECORD reference declaration 1s incorrect,
CLASS ID

MISMATCHED PARAMETER formal parameter does not correspond

to actual parameter.

| MULTIPLY-DEFINED SYMBOL <iden- | oo
tifier> symbol defined hore than , once

; in a block.

UNDEFINED SYMBOL <identifier9 symbol 1s not declared or defined,

INCORRECT NUMBER OF ACTUAL

PARAMETERS the number of actual parameters to

a procedure does, not equal the number

of formal parameters declared for

the procedure.

; INCORRECT DIMENSION the array has appeared previously
with a different/number of dimensions..

DATA AREA EXCEEDED too many declarations in the block.

INCCRRECT NUMBER OF FIELDS the number of fields specified in a

record designator doe's not equal the

number of fields the declaration of

the record indicates.

IN "OMPATIBLE STRING LENGTH length of assigned string 1s greater

than length of string assigned to.

II"JOMPATIBLE REFERENCES record class bindings are inconsistent.

BLOCKS NESTED TOO DEEP blocks ere nested more than 8 levels.

-REFERENCE MUST REFER TO RECORD N :
CLASS reference must be bound to a record

class.

: EXPRESSION MISSING IN PROCEDURE
BODY body of typed procedure must end with.

an expression.

3

3 =. RESULT PARAMETER MUST BE <T VAR> the actual parameter corresponding

» to a result formal parameter must

be a <T VARIABLES.

. PROCEDURE HEW LACKS SIMPLE TYPE proper procedure ends with an ex-

pression.

<SYMBQL-1> UNRELATED TO <SYMBOL-a the symbol at the top of the stack

(<SYMBOL-I>) should not be followed

by the incoming symbol (<SYMBOL-&).

SYNTAX ERROR construction violates the rules of

the grammar. The input string is

skipped until the next END, ";",

- BEGIN, or the end of the program.

More than one error message may be

| generated for a single syntax error.

| Simple Type Errors

| 25. Upper and lower bounds must be integer.
- 29. Upper and lower bounds must be integer.

: 32. Simple type of procedure and simple type of expression in pro-
“ | cedure body do not agree.

: 71. Substring index must be integer. ”

| 73. Variable before '(' must be string, procedure identifier, or array
identifier. .

Th. Substring length must be integer.

76. Field index must be reference or record class identifier. :

77. Array subscript must be integer. |
81. Array subscript must be integer.

84i. Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree. |

9%. Expressions in if expression do not agree.

Oh. Expressions in case expression do not agreé. |
95. Expression in if clause must be logical.

L

98. Expressions in case expression do not agree, |
_ 99. Expression in case clause must be integer. 5

101. Arguments of = or 1= do not agree. 3
_ 102. Arguments of relational operators must be integer, ¥ead, Or i

long real. i
103. Argument before 1s must be reference. ;
106. Argument of unary + must be arithmetic. ;
107. Argument of unary - must be arithmetic. i
108. Arguments of + must be arithmetic. 3

| 109. Arguments of - must be arithmetic. :
— 110. Arguments of or must be both logical or both hits. :

112. Record field must be assignment compatible with declaration.]
- 117. Arguments of * must be arithmetic. 3

118. Arguments of / must be arithmetic. 4
119. Arguments of div must be integer. i

} 120. Arguments of rem must P€ integer.
121. Arguments of and must be both logical or both bits.

B 123. Argument of -1 must be logical or bits.

125. Exponent or shift quantit' must be integer: expression to be

i. shifted must be bi =.

126. Shift quantity must be .Dteger; expression to be shifted must be

- bits.

130. Actual parameter of standard function has incorrect simple type.

134. Argument of long must be integer, real, or complies

1%. Argument of short must be long real or long ecempiex

13. Lrgument of abs must be arithmetic.
148. .Record field must be assignment compatible with declaration.

181. Expression cannot be assigned to variable.

182. Result of assignment cannot be assigued to variable.

188. Limit expression in _for clause mst be hteger
— 190. . Expression in for list must be integer.

191. Assignment to for variable must be integer.

- 193. “Expression in for list must be integer.

195. Step element must be integer.
197. ‘Expression in whileclaude must be logical.

>

III. PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

*¥H¥¥ (message)
¥¥6%¥ NEAR CARD (number)

The number indicates the number of thé card near which the error

occurred. The message may be

PROGRAM SEGMENT OVERFLOW the amount of code-generated for a

procedure exceeds 4096 bytes.

CONSTANT POINTER TABLE TOO LARGE too many literals appear 1n a pro-

|
L cedure.

BLOCKS NESTED TOO DEEP parameters 1n procedure call are nested,

. too deeply; procedure calls in 'block
| nested too deeply.

| DATA SEGMENT OVERFLOW too many verlables declared in the
block.

IV. RUN TIME ERROR MESSAGES

The form of run error messages is

RUN ERROR NEAR CARD (number) - (message)

SUBSTRING INDEXING sub&ring selected not within named

string.

CASE SELECTION INDEXING index of case Btatement or case ex-

pression is less than 1 or greater

than number of cases.

ARRAY SUBSCRIPI'ING array subscript not within deé&red
bounds.

6

LOWER BOUND > UPPER BOUND lower bound 1s greater than upper

bound in array declaration.

ARRAY TOO LARGE The (n-1) dimensional array obtained

by deleting the right-most bound-

pair of the array being declared has

too many elements The maximum number

of elements allowed in this (n-1)

dimensional array 1s given below,

according to the declared type of

the array.

maximum # of

elements 1n

first (n-1)

type dimensions

logical, string 32767

integer, real 8191

bits, reference 8191

long real, complex 4095

long complex 2047

ASSIGNMENT TO NAME PARAMETER assignment to a formal name parameter

whose corresponding actual parameter

1s an expression, a literal, control

identifier,? or procedure name.

DATA AREA OVERFLOW storage available for program execu-

tion has been exceeded.

ACITJAL-FORMAL PARAMETER MISMATCH the number of actual parameters in

LV FORMAL PROCEDURE CALL a formal procedure call 1s different
from the number of formal parameters

in the called procedure, or the

parameters are not assignment

Co compatible.

RECORD STORAGE AREA OVERFLOW no more storage exists for records.

I

: LENGTH OF STRING INPUT string read is not assignment com-
patible with corresponding declared

| string.

LOGICAL INPUT quantity corresponding to logical

quantity 1s not true or false.

NUMERICAL INPUI numerical input not assignment com-

patible with specified quantity.

REFERENCE INPUT reference quantities cannot be read.

READER EOF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to

| address a record, or a reference

bound to two or more record classes

| was used to address a record class
to which it was not currently pointing.

| I/O ERROR see consultant

| LINE ESTIMATE EXCEEDED line estimate on %ALGOL card is
. exceeded.

TIME: ESTIMATE EXCEEDED time estimate on %ALGOL card is

1 exceeded.

| Counts of certain exceptional conditions detected during program
compilation orexecution are malntained. If any of these are non-zero 4

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (module 10000) 1s

given by nnnn; the nature of the condition is indicated by xx

according to the following table:

8

- 08 integer overflow

09 integer division by zero

12 real exponent overflow

15 real exponent underflow

15 real division by zero

This counting 1s not affected by the value of MSG.

V. OTHER

PRG PSW (16 hexidecimg]l digits) compiler error, see consultant

|

\

ALGOL W NOTES

FOR INTRODUCTORY

COMPUTER SCIENCE COURSES
L

| by

| Henry R. Bauer
Sheldon Becker

[Susan L, Graham

‘COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

Introduction a.

The textbook Introduction to AIZOL by Baumanm, Feliciano, Bauer,

and Samelson describes the internationally recognized language AIGOL 60

) for algorithm communication. ALGOL W can be viewed as an extension of‘

ALGOL. |

Part I of these notes describes the differences between similsr

constructs of the two languages.

For clarity, Part I 1s numbered according to the sections of the

textbook. In general only differences are mentioned; 1tems which arc

] the same 1n both languages are usually not discussed.
Part II presents some of the details concerning the new features

of AIGOL W. A complete syntactic and semantic description of these

| constructs as well as of all othersin the language 1s available in
| "AIGOL W Language Description”.

|

l

S — CONTENTS
h aa——

PART I ooh LLL, 2

| PART IT LA AE EE IE J . . . * ao 8 31

l. Procedures ,, Creed . 21

1.1 Call by Result Cheer eeenennas | 2]

1.2 Call by Value Result ~~ «+ x 31

_ ‘2. Procedure Calls , ,.,.,.......... Coe, 37
2.1 Sub-arrays as Actual Parameters 3

HO. . .

3. String Variables | || | |. kkk 3%

| 4. Records and ReferencesCe 36
4,1 Record Class Declarations 36

| 4.2 Reference Declarations . 37
: “.3 Reference Expressions _ 38

~ 4.4 Record Designators 3g

4.5 Field Designators 40

| o ~~ PART I: Dpifferencea between AILGOL60 and ALGOL W |
a 1 . Basic Symbols of the Language

_ 1.1. The basic symbols

: 1.1.1. Letters |

| Only tipper case letters are used.

1.1.3. Other symbols

The following a a .
7g are the same in ALGOL'60 andALGOLM.

i=

| =< >

| The following are different in the two languages. The
. correspondence between the symbols is shown in the following

I table:

10 '

a = no equivalent

v OR

2

- AIGOL 50 AIGOLW

oo A AND

J one blank space

< < =

> > =

ror :: (cf. section 6.1 and 4.2.1)

no equivalent i

All characters indicated for AIGOLW are on the IBM 029

key-punch,

The significance of spaces in ALGOLW will be discussed in
J

L

subsequent sections.

{

L 1.2+2; Numbers

| A number 1s represented in its most general form with'a scale
factor to the base 10 as in ¢ nventional scientific notation.

| EXAMPLE ~~ 3,164981'-4 means 3.164981 x10
This 1s often called the floating point form, Co

_ Certain abbreviations

om’ ting unessential parts are permissible.

I
v

EXAMPLES 77 317.092 126"Ok

| 551. 5384 0h. 719"2
30 0.710 9.123 "+1

7 0 ot .6

'-3 009.123 '+01 2.0"-06

To represent a long floating point (cf. Section 2.3.1) number an

>

| EXAMPLES 77L 317. 092L 126° O4L

In ALGOL W, complex numbers (short and long forms) may be used.

The imaginary part of a complex number 1s written as an unsigned real

number followed by an I.

EXAMPLES LT 4.81 40.5]

Long imaginary numbers are followed by an L.

EXAMPLE L.8IL

1 Numbers may be written in a variety of equivalent forms.

EXAMPLE 12'0k = ,12'6 = 1.2'05 = 120000.0
LC

No spaces may appear within an unsigned number. The magnitude of

| an integer or the integer part before the decimal point in a floating
point number must be less than or equal to 2147483647, The magnitude

- of a non-zero floating point r-umber must be between approximately

! 5.4 x 10777 and 7x1077 (1/16x 167%" and (1-267%) x 16%),
!

1.3. Identifiers

A -letter followed by a sequence of letters and/or digits constitutes

an identifier, Identifiers may be as short, as one letter or as long

as 256 letters and digits.

Identifiers may be chosen freely and have no inherent meaning.

However, AILGOL W recognizes a set of reserved words which must not be

used as identifiers.

3 RESERVED WORDS

; ABS GOTO REM |

AND GO TO RESULT

ARRAY IF SHL

BEGIN INTEGER SHORT

BITS IS SHR

CASE. LOGICAL STEP

COMMENT LONG STRING

COMPLEX NULL THEN

DIV OF TRUE

no OR UNTIL

| ELSE PROCEDURE VALUE

| END REAL WHILE
FALSE RECORD

| FOR REFERFN"E

~ The reserved word BOOLEAN can be used in place of LOGICAL. Spaces
ire used to separate reserved words and identifiers from each other and

{.-om numbers.

Certain identifiers are predefined for use by the programmer but

are not reserved words. Their meaning will be discussed later, Among

these are three input and output identifiera: READ, READON, WRITE,

(See Sections 2.2.2, and 2.5.)

1.4 Nonarithmetic symbols

The symbols which are printed in bold type in the text are usually

underlined in typewritten COPY. They are contained in the list of
reserved words (cf. Section 1.3) for AIGOL W. They are not distinguished

p

in any other way but they must not be used for any purpose other than

| that for which they are specifically intended. The symbol END, for

example, must not be used as an identifier.

! 2, Arithmetic Expressions

2.1. Numerical Expressions

1 The basic arithmetic operators of ALGOL W are

+ - * [/ #% DIV REM

1 EXAMPLES

3.1459. CL 7 DIV 3

(3.47'-4 + 9.01"+1) / 4 17 REM 12

| 9% 8% 7 /(1L*2%3) -1.2

(9+ 2.7)/ (-3)

| (((1.5%3 = 4) *3 + 0.19'1)* 3 = 2.6'3) * 3

10+1.4/ (1 +09/ (7-0.4/3))

The symbol * denotes multiplication while ** denotes exponentiation.

For instance, 4.5 ** 3 means 4.53, The exponent must alwaysbe an

| integer in AILGOLW. An integer to any exponent gives a real result.

| EXAMPLES

AIGOL W form Conventional form

| 1.1 - 3 %* 2 1.1 - 3°

(4.1 - 3) ** (4.1 - 3)°

| 3.2 ¥* 2 + 5.2 5.2° + 5.2
—4 ** 2 Le

! 0

x - AIGOLW form Conventional form

| (-4) ** 2 (4)?

: 5 %% 2 % 3 52 «3

1 : Also notice

oxxsiny om (20)

In ALGOL W the following two constructs are not allowed because

1 the exponent 1s a real number:)

= 3.2%%(2 +5,2) and 2¥*(3*xL),

| 2.2.2. Assignment of numerical values through input

If the value of an identifier 1s to be provided by input it 1is

assumed that this value appears on a data card which 1s in the card

LL reader waiting to be read. The statement

READIN (V)

5 where V stands for variable identifier, reads the next number on the

current input card, If there are no more numbers on the current input

card; s-ubsequent cards are read until a number is found. This statement

assigns the value of the number to the variable whose name 1s specified.

L READAN(V. , V.,,. CV)

is equivalent to

READEN (V,); READEN (V,);...; READGN (Vv)

5 The constants on the data cards are assigned in the same order as

;

7

———————————

g a the variable names in the READGN statement, One or several numbers

3 - may appear on a single card separated by one or more blank spaces with

| column 80 of one card immediately followed by column 1 of the succeeding
card,

The statement

| READ (V)

1s similar to READ@N (V) except that scanning for the number begins on

a new input card.

| The statement

: READ (V,,V,,V5 000,)
)
1 1s equivalent to

| READ (V.); READGN APOLSYIRPA AY
Numbers are punched into data cards in the forms described in

| Section 1.2, and may be prefixeiby "-". Numbers corresponding to
variables of type integer must not contain decimal fractions or

~ scale parts.

EXAMPLES READ@N (A2)

- In this case the data card must contain at least one number,

say 1.279'-7 if A2 1s not an integer variable,,

READ (B10,B11,B12,B15);

The data cards must contain four numbers, say

3.41 7. 149 825'1 9 if B10, Bll, B12 are not

integer variables, B15 may be an integer variable or a real

variable. One could spread these constants over several cards

1f desired.

8

SE In general input read into the machine must be assignment compatible

with the corresponding variable (cf. Section 2.3.2).

2.3. Assignment of numerical values through expressions

CL b a
Exponentiationa (a**b)s defined by repeated multiplication if

b is a positive integer andby 1/ a IPI when b is negative. Pp must have

type integer. If one desires the result of Af where R 1s real, use

EXP (R * IN (A)).

2.3.1. Evaluation of expressions

The discussion in this paragraph of Baumann et. al. 1s correct.

| However, in ALGOL W the type of a resulting expression is defined for
each type and each operator. The type complex and the discussion of

- the long forms 1s provided for completeness and may be ignored by

: beginning programmers (cf. ALGOL W Language Description, Section 6.3),
I ——————————————————————————

I: A+B, A-B

B

A integer real complex

integer integer real complex

real real real complex

complex complex complex complex

The result 1as the quality "long" if both A and B have the quality

"long", or 1f one has the quality "long" and the other is integer.

9

TH II: A *B

B .

| 2 integer real complex
: “integer integer long real long complex

| real long real long real long complex
‘complex long complex long complex long complex

T n not affect the resultantA or B having the quality "long" does

type of the expression,

III: A / B

B . | SNA integer | real comp Lex
| integer real real complex

real real real complex
L complex complex complex comp lex

1) I" i for +: long" are those givenThe specifications for the quality 8

and - .

b

IV: A *x B

| A B integer
integer real

real real

complex complex

; if A does.The result has the quality "long" if and only

10

V: ABS A means the "absolute value of A".

A ABSA

integer integer

real real

complex real

2.3.2, Type of the variable to which a value is assigned,

The assignment V := E is correct only if the type of E is

assignment compatible with V. That is, the type of V must be lower or

on the same level in the list below as the type of E.

integer

real, long real

complex, long complex

Several transfer functions are provided as standard functions

(cf. Section 2.4). For example, to change the type of expression E from

real to integer either ROUND (E), TRUNCATE(E) or ENTIER(E) may be used.,

2.3.4. Multiple assignments

The assignment of the value of an expression can be extended to

several variables. As in ALGOL 60, the form in ALGOL W is

Vy — Vs 25 yee o= v, «= E;

The multiple assignment statement 1s possible only 1f all the

variables occurring to the left of Vi:i= are assignment compatible with

the type of the variable or expression to the immediate right of the .-,

11

: 2.4 Standard Functions

All the standard functions listed 1n this section are provided in

ALGOL W except sign and abs. ABS is a unary operator in AIGOLW. In

addition the following standard functions are provided.

truncate (E) if E- 0, then entier(E)

if E < 0, then -entier(-E)

round (E) if E > 0, then truncate (E + 0.5)

if E < 0, then truncate (E - 0.5)

log(E) the logarithm of E to the base 10

| (not defined for E < 0)

| time (E) if E = 1, elapsed time returned in 60th of 4 second

if E = 2, elapsed time returned in 601g of a second

| and printed in minutes, seconds, and 60tRig of 4

| second

| 2.5. output

| The identifier "print" should be replaced by "write" . A print

line-consists of 132 characters.

- EXAMPLES WRITE (E) ; WRITE(E, ,E,,.. ,E_);

The format of the values of each type of variable 1s listed below:

integer right justified in field of 14 characters and

followed by two blanks, Field width can be

changed by assignment to INTFIRLDSIZE.

real same as integer except that field width 1s

invariant.

12

long real right justified in field of 22 characters

| followed by 2 blanks.

complex two adjacent real fields.

long complex two adjacent long real fields.

| logical TRUE or FALSE right justified, in a field of

6 characters followed by 2 blanks.

| string field large enough to contain the string and

continuing onto the next line 1f the string

| is longer than 132 characters.

bits same as real.

| In order to provide headings or labels for printed results, a

sequence of characters may be printed by replacing any expression 1n

i the write statement by the sequence of characters surrounded by ".

| If the " mark is desired in a string it must be followed by a ".

| EXAMPLES

| WRITE ("N =", N)

| This statement will cause the following line to be printed if

N is integer and has the value 3.

N = 5

| WRITE ("SHAKESPEARE WRATE ""HAMLET""")

This statement will cause the following line to be printed.

SHAKESPEARE WR@TE "HAMLET"

In the statement

WRITE (EsEgs-0 +E)

15

5 the type of each E; determines the field in which its value will be

B placed. The field for Ea follows the field for E, on the current

| print line. If there 1s not enough space remaining on the current

- print line, the line 1s printed and the field for E. 4 begins at the

beginning of a new print line. The first field of each write statement

begins on a new print line.

5. Constructionof the program

—

3.1 Simple Statements

§ Note that the simple assignment statement takes the form V := E

| and that the input-output statements are
READ (V), READON(V), and WRITE (E)

where V 1s a variable or a variable list and E 1s an expression or

expression list.

| 3.2 Compound Statements
In later descriptions in these notes *" compound statements" will be

synonomous with "blocks without declarations".

3.44 Comments

The construction

comment text;

may appear anywhere in an ALGOL W program. However, in ALGOL W the

comment following an end 1s limited to one identifier which 1s not a

reserved word.

1h

- 3.5. Example.

c To clerify the change necessary to form an ALGOL W'program from

the program endlosed in the box, the example is shown as it would be

punched. Note that an ALGOL W program must end with a + (period).

_ BEGIN COMMENT EVALUATION OF A POLYNOMIAL;

REAL AO, Al, A2, A3, Xl, Pp;

READ (RAO, Al, A2, A3, X1);

P := ((A3 *¥ X1 + A2) * X1 + Al) * X1 + AO;

WRITE (P)

END.

Note that the indentation, although not required, allows the begin

and end to be matched easily. In complicated programs indentation will

improve readability and therefore reduce the number of careless errors.

“Loops

b.1. Repetition

The variable V of the for statements described 1s always of the

type integer and cannot be declared in ALGOL W; 1ts declaration 1s

implicit (cf. Section 7), and its value cannot be changed by explicit

assignment within the controlled statement. Each expression E of the

for clause must be of type integer.

The statement of the form

.. for V i= HysHyse ost 405;

is correct for n 2 1 in ALGOL W only if Eee are all integer

' expressions,

I

8 The form

1 for V := E step 1 until E.do S;

| may be abbreviated as

for V := Euntil Edo S;

4.2. Subscripted Variables

In AIGOL W the subscript expression must be of type integer. Any

other type will result in an error detected during compilation,

4.2.1. Array declarations

a .
. In the text, the : in array declarations must be replaced by ::

| for AIGOL W. The word array must always be preceded by its type.
ARRAY A[1:10,1:20]; is incorrect and should be written

L REAL ARRAY A (1::10, 1::20);
Only one set of subscript bounds may be given in an array declaration.

Hence, the examples should be corrected for AIGOL W to read

» EXAMPLES

| real array A, B, C(1::10);
real array D, EG(1::10, 1::20);

integer array N, M(1::4);

4.4.2. Example

In AIGOL W the example in the box would be written as listed below.

16

oo BEGIN COMMENT DERIVATIVE OF A POLYNOMIAL;

INTEGER Nj; REAL P, C;

REAL ARRAY A(1::20);

READ (N, C);

| FOR I .= 1 UNTII, N DO READON(A(I));
| P :=0;

FOR I := N STEP -1 UNTIL 1 DO

P i= P¥C + I*A(I);

- WRITE (P) oo | oo

| 5. The Conditional Statement

| Conditional statements are very useful and are used in AIGOL W as
discussed in this chapter for AIGOL60. Note that the symbols <

>
- 2?

: and 4 must be replaced by < =, > =, and
. - =, respectively.

6u . Jumps

6.1. Labels

All labels in AIGOL W must be identifiers which are not reserved

words. The final expression in a function procedure may be labeled,

6.2. The Jump Statement

g0 to may be written as GO TO or GOTO in AIGOL W.

6.2.1. Jumps out of loops or conditional statements

The value of the loop variable 1s not accessible outside of the

loop in AIGOL W.

17

= 6.2.2, Inadmissible Jumps

- It 1s not possible to jump from outside into a loop in ALGOL W.

Likewise, it is not possible to jump“into a conditionalstatement.

In general, 1t 1s not possible to jump into the middle of any

statement, viz. for statement, conditional statement, while statement,

compound statement, block,

. 6.4, Another Form of Loop Statement

The statement described in the text does not exist in ALGOL W.

However, AIGOL W has another form of loop statement which is

X useful -- 1t 1s called the while statement.

FORM while B do S;

B is a condition like that described in Chapter5. As long as B is

true, the statement S will be repeated. It is possible that S is

never executed. More precisely, this loop may be interpreted

L: 1f B then

begin S; goto L

end

The example in Section 6.3 can be rewritten as follows:

BEGIN COMMENT DETERMINATION CF THE CUBE ROOT;

REAL A, APPROXIMATIONVALUE, X, Y, Dg

READ (A, APPROXIMATIONVALUE);

X «= APPROXIMATIONVALUE; D = ABS X;

18

WHILE D > .5'-9 *¥ ABS X DO

BEGIN

Y i=; x = (2%Y 4 A/(Y¥*Y))/3;

D := ABS (X-Y);

END;

END.

f.. Block Structure

For the purposes of block structure in ALGOL W compound statements

must be considered as blocks, namely blocks without declarations. A

compound statement with a label defined in 1t 1s a block. (Reread the

notes in this paper concerning Chapter 6.) In for statements the scope

of the variable V in the for clause 1s the statement S following the do.

7.4. Dynamic Array Declarations

The expressions specifying the subscript bounds in dynamic array

declarations must be of type integer.

8. Propositions and Conditions

The word "Boolean" 1n the text should be replaced throughout by

"logical".

8.1. Qogieatat 1 ons

Some of the symbols for logical operations are different in

ALGOL W.

19

] Operation ALGOL ALGOLW READ AS

negation — — not

| conjunction A AND and

| disjunction V CR or |

equivalence = ~ is equivalent to

| ALGOL W does not have an equivalent form of the ALGOL implication

| symbol, OD. The effect of AB is gotten by (—A) OR B. The ALGOL W
expression A = B is equivalent to the ALGOL 60 expression-, (&B).

The following hierarchical arrangement defines the rank cof the

operator with respect to other cperators.

Level Operations Symbol

) | Lome, sHORT, ABS

2 SHL, SHR, #*¥

| 3 A

4 AND, *, /, J.V; REM

0 OR, +, -

| 6 <G < my >, om, =, 4 o=, IS

In a particular construct, the operations are executed in a sequence

frm the highest level (smallest number) to the lowest level (largest

| number). Operations of the same level are executed in order from left

to right when logical operations are involved and in undefined order

in arithmetic expressions.

The discussion 1n this section 1s correct except concerning the

hierarchy of operators. In general, the extra parentheses are required

in ALGOL W when using arithmetic expressions with logical operators.

The examples below are correct ALGOL W and correspond to examples in

20

the text. All parentheses are necessary.

NB EXAMPLES

(A >5) OR (B >» = 1)

= (A*B>=C+D)=(ABS (21 + Z2) > M)

(0< = xjAND (X <= 1)

(X=3)0R(1 <=X)AND (X <=2)

means (X = 3) OR ((1 < = X) AND (X < = 2))

9. Designational Expressions

The designational expressions described in the text do not exist

in AIGOL W. The chapter may be skipped.

However, AIGOL W provides a designational statement and expression

which 1s equivalent to that described by the text.

9.1. The Case Statement

The form

CASE E OF

BEGIN

513855... 11 0

END

is called a case statement. The expression E must be of type integer.

The value of the expression, E, selects the Sg statement between the

BEGIN END pair. Execution is terminated if the value of E 1s less

than 1 or greater than n. After the designated expression is executed,

execution continues with the statement following the END.

21

. CASE I OF

: | BEGIN

LL | BEGIN J := I; GOTO Ll;

END;

I :=1 + 1;

IF J < I THEN GOTO Ll

END

If the value of the expression, p,q 3, for example, the statement,
L IF J < I THEN GOTO Ll is executed

vo " If J >=1 then execution continues

| following the END,
9.2, The Case Expression

| Analogous to the case statement, the case expression has the form
CASE E OF (BLE yun E N

| The value of the case expression 1s the value of the expression selected
1

by the value of the expression E. If the value of E is e, then the

| value of E 1s the value of the case expression.
e The type of the case

expre.=ion 1S

integer if all E,'sare integer

real if any E, is real and no Ei 18 complex or long
complex

long- real if any E, is long real and all E's are long real
or integer

complex if any E, is complex
long complex if any E is long complex and all E's are long

complex, long real, or integer

22

: | EXAMPLE"

Co CASE 3 OF (4.8, 12, 17, 4.9) has the value 17 in floating

point representation since the type of the case expression 1s real.

10. Procedures

10.1.1. Global and formal parameters

© Labels may not be used as formal parameters. Switches do not exist

ii? AIGOL W.

10,1.2.1. Arguments

L

Arguments serve to introduce computational rules or values into

(the procedure. A rule of computation can be brought into the procedure

| 1f the computation 1s defined by means of another procedure declaration,
or a statement.

Formal simple variables, formal arrays, and formal procedures can

be arguments.

Example 3 1s correct in the text.

A formal array can be used as an argument in only one way, "call

by name". The discussion concerning "call by value" should be ignored.

10.1.2.3. Exits

Because labels may not be used as actual parameters to a procedure,

the text's discussion of exits is not correct for AILGOL W. However,

a statement (in particular a GOTO statement) may be used as an actual

parameter corresponding to a formal procedure identifier. In this way

side exits leading out of the procedure are provided,

25

oT 10.1.3. Function procedures and proper procedures

| From given pieces of programs, procedures can be derived either

in the form of function procedures or in the form of proper procedures.

— The body of a function procedure 1s either an expression or a

| block with an expression before the final END in the procedure body.

- The value of the expression 1s the value of the function procedure.

The way 1n which a procedure 1s set up and used 1s a fixed

characteristic of the procedure and 1s established directly in the

~ declaration by means of the introducing symbols. The declaration of

functions 1s introduced by the symbols

E INTEGER PROCEDURE

REAL PROCEDURE

LOGICAL PROCEDURE

according to the type of the resulting value, The type of the expression

giving the value of the procedire must be assignment compatible with

the declared type of the function procedure.

The declaration of the proper procedure begins with the symbol

PROCEDURE

No resulting expression can be placed at the end of the procedure

body.

10.1.4. The procedure head

All necessary assertions about the formal parameters and the use

of the procedure are contained in the head of the procedure declaration.

In AIGOL W the head consists of three parts:

2h

(1) Introductory symbol

(2) Procedure name

(3) List of formal parameters, and théir specifications

(1) The introductory symbol determines the later use of the procedure

(cf. Section 10.1.3.)

(2) The procedure name can be chosen almost arbitrarily. The only

restriction 1s the general limitation concerning some reserved

. names (ct. Section 1.3).

(3) The type, value specification, and identifier name of formal

parameters appear 1n the list of formal parameter specifications,

and not separately as in AILGOL 60. The comma serves as the

general separation symbol between formal parameter identifiers

of the same type and value specification. The semicolon serves

as the general separation symbol between specifications of formal

parameters of different types or value specifications,

The type of the formal parameter 1s specified by the symbols

REAL

LONG REAL

INTEGER

COMPLEX

LONG COMPLEX

LOGICAL

REAL ARRAY

LONG REAL ARRAY

= COMPLEXARRAY

LONG COMPLEX ARRAY

INTEGER ARRAY

LOGICAL ARRAY

25

- REAL PROCEDURE

- LONG REAL PROCEDURE

COMPLEX PROCEDURE

: LONG COMPLEX PROCEDURE

INTEGER PROCEDURE

LOGICAL PROCEDURE

PROCEDURE

The value specification 1s used only for parameters called by

value + It 1s specified by the symbol value, It may only follow the

types INTEGER, REAL, LONG REAL, LOGICAL, COMPLEX, LONG COMPLEX,

1 EXAMPLES
PROCEDURE P (REAL X, Y; INTEGER VALUE I; PROCEDURE Q, R);

| REAL PROCEDURE Z (LOGICAL L, M, N; REAL PROCEDURE P);

| Note that in the case of formal parameters used as array identifiers,
information about the number of dimensions must be given. The last .

. identifier following each array specification must be followed by "("

; followed by one asterisk for each dimension separated by commas, followed

| by Bh
EXAMPLE

PROCEDURE P (REAL ARRAY X, Y (%,*); REAL ARRAY Z (*)).

10.2. The Procedure Call

The procedure call in ALGOL W iJ unchanged from ALGOL 60. This

section should be read carefully,

Since labels are not allowed as parameters, 1t was earlier suggested

that jump statements be used and that the corresponding formal parameter

be a'proper procedure (cf. 10.1.4. Example 8). In general, any

26

statement may be used as an actual parameter corresponding to a formal

proper procedure which 1s used without parameters,

EXAMPLE

| BEGIN
PROCEDURE VECTOROPERATIONS (inTEceR Jj; INTEGER VALUE N;

PROCEDURE P);

BEGIN J := 1;

| WHILE J < = N DO

BEGIN P; J := J + 1

END

END;

REAL PROD; INTEGER I;

REAL ARRAY A, B, C(1::10);

(initialize A and B)

Ll: VECTOROPERATIONS (I, 10, C(l1) := A(l) + B(1l));

PROD := 0.0;

L2: VECTOROPERATIONS (I, 10, PROD := PROD + A(l) * B(1l));

END

The statement Ll is a procedure call which causes a vector addition

of A and B to be placed in C. The statement L2 causes the element-by-

element vector product of A and B to be calculated and placed in PROD.

27

10.3. Example

REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;

REALVALUEA, B; INTEGER VALUE ORD);

BEGIN REAL Tl, L;

ORD := ENTIER ((ORD + 1) / 2);

BEGIN INTEGER F, N; REAL M, S;

REAL ARRAY U, T (1 :: @RD);

L := B-A;

T(1) := (FcT(A) + FCT(B)) / 2;

U(1) := FCT ((a + B) / 2);

FF 3= = 1;

FOR H :=2 UNTIL QRD-1 DO

BEGINN := 2 * N; S := 0;

M :=L/ (2 * Nj;

FOR J $= 1 STEP 2 UNTIL 2 # N - 1 DO

S :=S+ FCT (A + J % M);

UH) := S/N;

T(H) := (P(H - 1) + UH - 1)) / 2;

CF oi= 1

FOR J $= H - 1 STEP -1 UNTIL 1 DO

} BEGIN F := 4 * PF;

(5) t= T(J + 1) + (2 + 1) - TD) / (F - 1);
Ug) := UF +1) + (UT + 1) - uw) /(F-1);

END;

END

IF ORD > 1 THEN

28

BEGIN

T(2) = (U1) + TQ) [2

| T(1) := 0(2) + (2(2) - T(1)) /(4 * F - 1)
END;

: TL := T(1)

| T1 * L

The names of standard functions and standard procedures cannot appear

| as actual parameters in ALGOL W. Therefore the calls to REMBERGINT
in Section 10.3 are incorrect. However, this situation may be overcome

by declaring a procedure which returns the value of the standard function

| or performs the computation of the standard procedure.
EXAMPLE

REAL PR@CEDURE SINE (REAL VALUE X); SIN(X);

Then a call to R@MBERGINT might be

| A := ROMBERGINT (SINE, X(1), x(2), lo):

| EXAMPLE6

REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

BEGIN REAL S;

| s :=0;

FOR I := 1 UNTIL N DO

S :=S + A(I,I);

S

END

29

| — EXAMPLE'/

PROCEDURE COUNTUP (INTEGER X);

} : X =X +1

EXAMPLES

~— PROCEDURE ROOTEX (REAL VALUE X; REAL Y; PROCEDURE P);

IF X > = 0 THEN

oo Y : = SQRT(X)

| BEGIN Y := SQRT{ABS X);

END

| The actual parameter corresponding to the formal parameter P

should be a jump statement.

I. PART II: Some Extensions of ALGOL 60 in ALGOL W

SE l. Procedures

| 3.1. Call by Result

Besides "call by value” and "call by name",AIGOL W sllows parameters

to be called by result, The formal simple variable is handled as a local

quantity although no declaration concerning this quantity 1s present,

The value of the simple variable 1s not initialized at the procedure

call, If the procedure exits normally; the value corresponding to th.

| formal simple variable 1s assigned to the corresponding actual parameter.

L The formal parameter must be assignment compatible with the actual

| parameter. To specify:a result parameter, insert the word RESULT after
the type and before the identifier (as with VALUE),

EXAMPLE

| PROCEDURE R(REAL RESULT X,Y; INTEGER VALUE I; LONG COMPLEX RESULT 2);
1.2. Call by Value Result

Formal simple variables may be called both by value and result,

This combines the calls of value and result so that the formal identifier

1s initialized to-the value of the corresponding actual parameter at

procedure call and the value of the formal identifier 1s assigned to

the corresponding actual parameter at a normal procedure exit, To

specitfy-a value result parameter, insert the words VALUE RESULT after

the type and before the identifiers.

EXAMPLE

PROCEDURE Q(INTEGER VALUE RESULT 1I1,J,K);

31

2. Procedure Calls

| 201. Sub-arrays as Actual Parameters

; In ALGOL W, it 1s possible to pass any rectangular sub-array (array

| of few dimensions, 1.e., a generalized row) of an actual or formal array

to a procedure. Those dimensions which are to be passed to the procedure

are specified by *'s, and those which are to remain fixed are specified

by integer expressions. The number of dimensions passed must equal the

number of dimensions specified for the corresponding formal array.

EXAMPLE

L The actual parameter may be a sub-array of a three dimensional

| real array A. Examples of possible actual parameter specifications and
corresponding formal parameter specifications are listed below.

| Actual Parameter Corresponding Formal Parameter Specification
A or A(**7*) real array B(%,%,%)

} A(T,*,%) real array B(%,%)
A(¥*,I,%) real array B(%,%)

A(*,%,1) real array B(¥,*)

A(I,J,%) real array B(¥)

A(L,*,J) real array B(¥)

EXAMPLE

Read in the size of one dimension of a cubic array X, then

read in the elements of X.

Calculate and write out the sum of the traces of all possible

two dimensional arrays in A using the previously defined real procedure

TRACE.

32

z BEGIN
| REAL SUM;

| REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

BEGIN COMMENT THE BODY OF THIS PROCEDURE IS GIVEN IN A

PREVIOUS EXAMPLE;

END;

INTEGER N;

READ(N);

= BEGIN

| REAL ARRAY X(1::N,1::N,1::N);
FORT :=1 UNTIL N DO

L FOR J :=1 UNTIL N DO

FOR K:= 1 UNTIL N DO READON(X(I,J,X));

~ SUM := 0;

FORT :=1 UNTIL ™ DO
.

SUM := SUM + TRACE(X(I,*,, "+ TRACE (x(*,L%) N)
| + RACE (X(*,%,I),N);

WRITE (SUM)

END

3. String Variables

Frequently, 1t 1s desirable to manipulate sequences of characters,

This facility 1s available in ALGOL W in the form of string variables,

Each variable has a fixed length specified in the string declaration,,

| The form of the declaration 1s

33

string (<integer number>) <variable list>

The integer number must be greater than 0 and less than or equal to

| 256. The specification "(<integer number>)" may be omitted; a default

length of 16 is assigned to the variables, Arrays of strings also may

| be declared,

STRING A, B, C

STRING (24) X,Y,2

STRING (10) ARRAY R,8(0::10,5::15)

In order to be able to inspect elements of the string or to

| manipulate portions of the string, a substring designator 1s provided,

of the form:

<string identifier> (E | <integer number>)

! The: expression E must be of type integer, This string expression

selects a substring of the length specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the stringhasposition O.

EXAMPLE

BEGIN STRING (5)A;

A := "QRSTU";

A (3]2):= A (0]2);

WRITE (A)

Co END

In this example the constant string "QRSTU", is assigned to the

variable A which is declared to be of length, 5. Then the character

positions G and 1 of A are assigned to positions 3 and 4 of A.

3

Consequently, when the string A 1s written its value 1s QRSQR. It

should be noted that the assignments are made character by character

| from left to right. If the second assignment statement in the example

above had been

| A (2]3) := a(0]3)

the resulting value of A would have been QRQRQ.

The variable on the left of an assignment statement must be of

length greater than or equal to the length of the expression on the

right. Ifashorter string 1s assigned to a longer string, the shorter

string 1s extended to the right with blanks until the lengths are equal.

EXAMPLE

BEGIN STRING(5)S;

S := "ABCDE"; S := "XY"; WRITE(S)

END;

The string XY 1s printed.

Strings within a CASE exprcssion or an IF expression must be all

of the same length.

All the relational operators may be used with string arguments.

The EBCDIC representations of the strings are compared character by

character. If one string is shorter than the other, the shorter string

1s filled with characters less than any possible EBCDIC character..

. Strings of unequal length are never equal.

EXAMPLE

Relation Value

UU TRUE

"a o — "aH FALSE

L. Records and References

Records and structured quantities composed of quantities of any

| of the simple types such as REAL, INTEGER, STRING, etc. Records

themselves do not have values; only the quantities which compose the

records may have values.

| 4.1. Record Class Declarations

| Record declarations indicate the composition of a record. Unlike

simple type declarations or array declarations no storage 1s reserved

for a record when the record declaration 1s encountered. Essentially,

the record declaration only describes the form of records to be created.

The record declarations appear with all' other declarations. The form is:

RECORD V (<declarations of variables of simple type>);

The name V 1s the name of the record class. The variables

declared between the parentheses are called the fields of the record.

EXAMPLES

RECORD A(INTEGERI,J; REAL Z; STRING (5) S);

RECORD B(REAL X; LONG REAL IX; REAL Y);

36

3 The punctuation of the examples should be noted carefully., The

: | names 1r. the list of identifiers following the indication of the simple

: type are separated by ",". The list is ended with a ";" unless the

| ";" would immediately precede the closing ")".

L.2. Reference Declarations

of type reference 1s an address of a record. This address is some-

times called a pointer to a record.

Reference declarations appear in a program where all other declarations

| appear,

FORM

t

REFERENCE (V) Vis

_ V 1s a name of a record class. vy 1s a name of a reference

variable or a list of names of reference variables separated by ",".

EXAMPLE

| REFERENCE (A) R1, R2; R3;

The name V af a record class may also be a list of names

separated by “,"”. This list indicates the record classes to which

records referenced by the reference variables must belong.

EXAMPLE

REFERENCE (A,B) R4, R5;

R4 and R5 may point only to records of record class A or B.

37

3 The reserved word NULL stands for a reference constant which

fails to designate a record,

: Arrays of references are declared and used analogously fc arrays

of other simple types. The form of the declaration 1s:

REFERENCE (V) ARRAY vy (<subscript bound+);

EXAMPLE

REFERENCE (A,B) ARRAY AR1, AR? (1::10),3::7);

The implementation requires that all reference arrays declared in

| ablock be declared in the same reference array declaration or
immediately following a reference array declaration.

REFERENCE (A) ARRAY AR1, AR2 (1::10,3::7);

g REFERENCE (B) ARRAY AR (2::17);

| I~ the example above, any «:her declaration except a reference
4: 3 declaration 1s not allowed between the two reference array

seclarations.

. Reference Expressions

duantities of simple type reference may be used in assignment

statements and comparisons,

EXAMPLES

R1 :=R2

R1 := NULL

R1 = RZ

R2 = = R3

58

- Only the relations = and—=are allowed between references. In

g order to inquire to which record class a reference expression is bound,

the IS operator 1s provided. The form 1s:

E ISv

E 1s a reference expression and V is a name of a record class. gp.

value of the IS operator is logical, either TRUE or FALSE.

EXAMPLE
C

R4 IS B

4.4. Record Designators

L A particular type of reference expression 1s the record designator.
A record designator 1s the name of a record class.

EXAMPLE 1

: RL := A

| R4 := B

When the record class name 1s encountered, the value 1s a pointer

to a new record of that class. The values of the fields of the new

record are undefined.

AIGOL W provides a short notation for creating a record and

initializing its fields. This modified record creator has the form

(E,)

V is the name of the record class. The expression list E. between the
parentheses 1s the list of the values of the fields specified in the

order they aprear in the record class declaration.

59

] EXAMPLE 2

BEGIN RECORD H (INTEGER C,D; STRING (2) S);

g REFERENCE (H) R1;

END?

Examples 2 1s a short program which declares a record class H and

| one reference variable Rl whose values may point to records of class H.

One record of class H 1s created and each field of the record pointed

to by Rl is initialized.

4.5 Field Designators

In order to manipulate the values of the fields of a record, the

| expression

| exists in ALGOL W. E is a reference expression. vy 1s a field of the
record class of the record pointed to by E. The type of the field

designator is the type of the variable ve

EXAMPLES

z(R1)

IX(RY)

LO

3 EXAMPLE 2 can be rewritten aS:

BEGIN RECORD H (INTEGER C,D; STRING (2) S);

REFERENCE (H) R1;

S(R1) T= VAL
END.

4

NOTES ON NUMBER REPRESENTATION

ON SYSTEM/360

| AND RELATIONS TO ALGOL W

L by

L
George E. Forsythe

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360

computers. Because we are using Algol W, some refer-

N ences are made to that language. However, very little

| of what 1s said here depends on the peculiarities of
Algol W, and this exposition 1s mostly applicable to

Fortran or Algol 60 with slight changes in wording,

It will also do for the floating-point numbers and
o

full-word integers of PL/1. Users of shorter or

_ longer integers or decimal arithmetic in PL/1 will

. need more orientation.

|

|

N On IBM's system $60, the following units of information storage
| are used:

LC a) the hit, a single 0 or 1

| b) the byte, a group of eight consecutive bits
p- ¢) the (short) word, a group of four consecutive bytes=--

i.e., 32 consecutive bits

d) the long word, a group of two consecutive short words--

i.e., eight bytes or 64 bits,

For number representation in Algol W the words and long words are

the main units of interest .

INTEGERS

. Integers are stored in (short) words (Of the 32 bits of 8 short
word, one is reserved for the sign (Ofor+ and 1 for -), leaving

L 31 bits to represent the magnitude, A positive or zero integer 1s
stored in a binary (base 2) representation Thus 21, | (the subscript

| means base 10) is stored as
0000 0000 0000 0000 0000 0000 0001 0101 .

Sign bit
| To confirm this, note that

21 =0 x 2°04 vo + 0x22 + 1x2 + 0x20 + x1 2% 0x gt + 1 x 2°,
The largest integer that can be stored in a word ig

| 00, 29 + A ~ N ~ ook qo (2147483647), .
Any attempt to create or store an integer larger than ol 1 will

produce erroneous results, and (unfortunately) the user will not always

be warned of the error, (see below,)

To save space in wri-king words on paper, each group of four bits

in a word 1s frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:

Base base 16 base 2 base 16

Co 0000 0 1000 8
0001 i 1001 9

| 0010 2 1010 A

0011 3 1011 B
: 0100 h 1100 C

| 0101 5 1101 D
| 0110 6 1110 E

0111 7 1111 F

Thus A, B, C,D. E, F are used as base-16 representation6 of the decimal

numbers 10,11, 12; 13, J-4, 15 respectively, Nevertheless, integers are
stored as base-2 numbers

i Using hexadecimal notation, the decimal number 21 1s represented
by

~ 00000015°16
£

| Note that 15.6 is the base-16 representation of 21,4)
| Negative integers are stored in what is called the "two's complement

| form", Tor example, -1 is stored as
1111 1111 1111 1111 1111 1111 1111 1131 ,
= FF 0FFFFEF,

. Also, ~21 is stored as

; | 1111 1 1 1 1 1111 13111 1111 1111 10 1011
1 = FFFFFFEB, :

Ti.e representation for -21 is obtained from that for +21 by changing |

every 0 toland every 1 to 0, and then adding + 1 in bage-2 arithmetic |

tothe result, Similarly for any negative integers, Every negative

integ.r has 1 as its sign bit, The smallest integer storable in

System/360 is 22 = -2147483648 , and is represented by 80000000, - :
Another way to think of the representation of negative numbers is

to consider a 32-place binary accumulating register (the base-2 equivalent

of the decimal accumulating register in a desk calculating machine), !

If one s-tarts with all zeros in this register, one get6 the representation

for -1 by subtracting 1. The process require6 a "borrow" to propagate | .
to the left all the way across the register, leaving all ones, just 86 |

on a decimal accumulator this would leave all nines. (Continue& sub- -

traction will give the representations for =2,~3, = :

From the point of view of an accumulator we can 8lso see what

happens when we create a positive number larger than 51 -1. For

example, if we add 1 to 2, the resulting carry will go ali the
way Into the sign bit, leaving a sign bit of 1 with all other digits

zero, But this 1s the representation of 22h, Thus the attempt to
| produce positive numbers in the range from pot to approximately 02

will yield a negative sign bit, Consequently, positive integers that

| "overflow" into this range are sensed as negative by System, 360. Any

| ar.omalous appearance of negative integers in a computation should
lead the programmer to suspectTinheger onerflowhh a n i s ms o f

Algol W for detecting integer overflow (not described in this document)

can be used to detect addition6 or subtractions that produce integers

| outside the range from 221 to >Los, The presence of an integer
product outside that range 1s not at present detectable in Algol W,

although the compiler could (and perhaps should) be modified to make

a test. Attempts to divide an integer by 0 wiil yield an error message

and an irr:levant quotient and remainder.

| The behavior of System/360 on integer overflow is quite different
from the Burroughs B5500. In th- atter machine, any integer that

overflows 1s replaced by a rour.d floating-l1+. =% number, There are

ad—zntages to either approach t integer overflow, depending on the

| a lcation.

| If the user suspects that Integers in hi6 program are getting

| anywhere near 107, he should convert them to double-precision floating-
poin* numbers by use of the Algol W operator LONG, Conversion to single-

prac . -n floating-point numbers may lose some precision,

The most important thing fcr a scientific user to remember is that

inte. *» in the range ot to 22h are stored without any approximation.
Moreovey. operations on Integers (adding, subtracting, multiplying) are

done without any error, sc long a6 ali intermediate and final results

are integers between ee anda It 1s perhaps easier tc remember
as safe the interval from =-2 x 109 to 2 x 109 , obtained from the

| useful approximation 210 © 147

s The operations of division without remainder (called DIV in Algol
W) and taking the remainder on division (called REM in Algol W) always

give integer answers, If the divisor is 0, an error message is given,,

In Algol W two operations on integers give results that are not

stored as integers--namely / and **.

3 FLOATING-POINT NUMBERS

] Numbers in many scientific computations will grow in magnitude
1 well beyond the range of integers described above, To provide for

i this, System/360 and most scientific computers have a second way to

represent numbers--the so-called floating-point representation,

. The significance of the name "floating-point" is that the radix point
3 --for example, the decimal point in base-10 numbers-s-is permitted to

floatto the right or left, thus permitting scaling of numbers by

various powers of the radix, Although a decimal point tha% has floated

off to the left will produce a number written like 0,001%45, the

| numbers are actually represented in a form closer to what is often

called scientific notation, here 1,345X10" .

In System/360, floating- .int numbers =re always represented in

base-16 notation;i.e., the Te 1X or number base .s 16, This permits

| us tc write numbers in abbrevi ted form (as we did with integers earlier),

! More important, the use of base-16 conforms with the hardware arithmetic

] processes in which shifting is done four bits at a time to speed up the

operations. The speed-up 1s achieved at a slight cost in precision,

as is learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by

| a single word of 32 bits, This is the so-called single-precision
or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered from 0 to 31, from left to right, just to identify

them, In floating-point representation the left-hand eight bits (bits 0

| to 7, equivalent to two hexadecimal digits) are devoted to the sign of

| the number and the exponent of 16 associated with the number, The right-

| hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)

4

3 represent six significant hexadecimal digits (the gignificand) of the |
number,

| As with integers, the sign of the number is denoted by bit O,

with 0 representing + and 1 representing -, :

Bits 1 to 7 give the binary (base-2) representation of a non-

negative integer in the range 0-6 to 12714 2 inclusive. This 1n-
teger 1s called the biased exponent, for reasons now to be explained.

IT this integer were taken directly as the exponent, we would have no

negative exponents, and our range of floating-point numbers could not

inciude such numbers as 167° 1% 1s desirable to have an exponent
range that is approximately symmetric about zero, jn System/360 one

obtains the true exponent of the floating-point nuuiber by subtracting

64 from the biased exponent represented by bits 1 to 7. Aga result,

| the actual exponen“:.:ge from -64 to 63.
ha Te 2° bits 8 to 31 of a number are regarded as six hexadecimal

Lgit s with a hexadecimal point at the left-hand end, If the floating-

L point number zero ig being represented, all the hexadecimal. digits are
zero, as are all the other bits, Otherwise, at least one of the hexa=- |

L decimal digits must be nonzero. a floating-point number is said to be

normalized if the left-hand hex decimal digit \cz:most significant

digit) of the significand is nonzero. In System/360 the floating-point

j m> bers are ordinarily normalized, and we will not consider any other

| forms .
We now give the floating-point representations of some sample

nuns.~ As we said before, the number zero 1s represented by 32 zero

bits, i.2., by eight 0 hexadecimal digits, Thus zero is represented

by the same words in floating-point or integer form. No other number

has this property,

The number 1.0 1s represented by the word !

sign bit

Ls 0.100 0001, 0001 0000 0000 0000 0000 0000, .
biased ‘os ;

exponent significand |

To check this, note that the sign is 0 (representing +). The biased

exponent 1s 1000001, or 6510 Subtracting oh yields 1 as the
true exponent. The hexadecimal significand is 100000, Putting a
hexadecimal point at the left end gives the hexadecimal fraction

, which equals 1/16. Thus the above word represents

8/16 16 1 or 1.0 .
To save writing, the above word 1s ordinarily written in the

hexadecimal form 41100000 . While one gradually learns to recognize

some floating-point numbers in this form, the author knows no easy way

| to convert such a hexadecimal word into a real number. One just has
to take the right-hand six hexadecimal-digi%s, and prefix a hexadecimal

point, Then one examines the left-hand two-hexadecimal-digit number

| (here 41). If this is less than 80, ¢ » the floating-point number is
| positive and one gets the true exponent by subtracting 40, ¢ = 641, .
i If the left-hand two-hexadecimal-digit number is 80, or larger, the

floating-point number 1s negative, and one gets the true exponent by

subtracting CO, ¢ = 80, + +0, ¢ = 1921, and affixing a minus sign.
Some facility with hexadecimal arithmetic 1s required, if one has to

deal with such numbers.

In this presentation, we Lave considered the radical point to be ,

| at the left of the six significant hexadecimal digits, and regarded
| the exponent as biased high by 6410 . As an alternative, the reader

may prefer to place the radix point Just to the right of the most

significant digit of the significand, and regard the exponent as biased

high-by 6510 . This brings the significand closer to usual scientific
; notation but, of course, requires a trickier conversion to get the

true exponent, The fact that either interpretation (and many others) |

: are possible shows that really the radical point 1s just in the eye of

| the beholder, and not in the computer!

| Several examples of floating-point numbers are now given in hexa-
decimal notation, with the confirmation left to the reader.

|

decimal floating-point
0.0 = 00000000

1.0 = 41100000

| 0.0625 = 40100000

16.0 = 42100000

256.0 = 43100000

-1.0 = C1100000

-16.0 = 2100000

3.5 = 11380000

The largest floating-point number 1s 7FFFFFFF, representing

FFFFFF x16 or (1-160) x 162% 27.23 X 10/°. (sere 10 and 16
denote decimal numbers,)

The smallest positive normalized floating-point number 1s 00100000,

representing

2 x16 2 5.0 x 10777
Negatives of these two numbers can also be represented, and are

the extremes 1n magnitude of representable negative numbers,

Very few numbers can be exactly represented with six significant

decimal digits. (Exercise: Which ones can?) For example, 1/3= «3333334
only approximately. In the same way, very few numbers can be exactly

represented with six significan’ .¢xadecimal digits, (Exercise:

Which ones can?) For example, 3 = 5555551 7 approximately.
Moreover, some numbers that are exactly representable in decimal are

only approximately representable in hexadecimal; for example,

1/10 = .100000,, exactly; but

1/10 = .19999A, only approximately.
. Thus_round-offerror -enters into the representation of most

floating-point numbers on System/360, and the round off differs from

that with decimal numbers. This can easily give rise to unexpected

results. For example, if the above number 199994, (2 0.14) is
multiplied by the integer 100 5 = Oho 5 one gets not A. 00000, -

3 10.0, » but instead A.00003, 5 asa cumulative effect of the slightly,

high approximation to 0.1,5- And A.0000316 rounds to 10.00002, ,
on conversion to decimal,

The precision of a single-precision hexadecimal number 1s roughly

10". One can think of this as being crudely equivalent to seven sige

7

nificant decimal digits-.

Not only do errors appear In the representation of numbers inside

System/360 (or any computer), but they arise from arithmetic operations

performed on numbers, For example, the product of two floating-point

| numbers may have up to 12 significant hexadecimal digits. When the
] product 1s stored as a single-precision floating-point number, it must

be rounded to six hexadecimal digits, This introduces an error, even

though the factors might have been exact,

| The story of round off and its effect on arithmetic 1s a complex

| and interesting one. Only within the current decade have there begun
to appear even partly satisfactory methods to analyze round off, and

we cannot go into the matter now, Some idea of this is obtained in

Computer Science 137.

| When an Algol W program assigns decimal numbers or integer values

| to variables of type REAL, these are immediately converted to hexadecimal

floating-point numbers, with (usually) a round-off error, When one

| outputs numbers from the computer in Algol W; they are converted to

decimal, Both conversions are done as well as possible, bu% introduce

changes in the numbers that the rrogrammer must be aware of, And, of

course, all intermediate opera++.ons introduce further round offs and

possible errors, It is unthinkable to do the analysis necessary to

counteract these errors and get the true answer to the problem, If the

user wishes answers uncontaminated by round off, he should use integers

| and integer arithmetic, and be prepared to guard against overflow,

Fortunately most users can accept an indeterminate amount of

round off in their numbers, provided they have some assurance that

| round off is not growing out of control It is the business of numerical

analysts to provide algorithms whose round-off properties are reasonably

| under control. This has been well accomplished in some areas, and hardly
at all in others.

DOUBLE PRECISION

| The precision of single-precision floating-point numbers seems

8

very adequate for most scientific and engineering purposes,being at the

level of seven decimals, However, a considerable number of computations

require Still more precision in the middle somewhere, just in order to

came out with ordinary accuracy a% the end, As a result, System/360

has provided an easy mechanism for getting a great deal more precision

in the computations, For this purpose a double word of 64 bits is used

to store a floating-point number of so-called double precision or long

precision. In this representation, the sign and biased exponent are

found in the firs% word of the double-word, with precisely the same

interpretation as with single-precision floating-point numbers. The

. second word of the double-word consists of eight hexadecimal digits

immediately following the six found wthe firs% word, There is no

_ sign or exponent in the second word. Thus a double-word represents
a signed floating hexadecimal number with 14 significant hexadecimal

digits. As before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzero.

Examples:

- long significand

1.0L = 41'10000000000000

- 0.1L = 40 199999 9999999A

There 1s a full set of arithmetic operations for both single

and double-precision operations. Very crudely, for an example, single-

precision multiplication of single-precision factors takes around 4 micro-

| seconds, while that for double-precision factors takes around 7 micro-

seconds, For modes% problems the extra time 1s completely lost 1n the

several seconds of time lost to systems and compilers, and the use of

double-precision 1s strongly recommended for all scientific computation.

Normally the only possible disadvantage of using long precision 1s the

i doubling in the amount of storage needed, If one has arrays with tens

of thousands of elements, the extra storage may be very costly, &her-

Bn wise, it should no% matter,

since 1671 = 1077, the double-precision numbers are crudely
equivalent in precision to 17 significant decimal digits.

For a machine with the speed of the 360/67, a number precision of

9

.

six hexadecimal digits (roughiy se ven dscimai s) . 8 considered very low,

- while a precision of 14 hexadecimsldigits(rougtly 17 decimals) is

very adequate.

_ 2 floating-point arithmetic
hardware of System/360 prcvides the possibility of detecting when

numbers have gone outside the «xponent range stated above. The reader

may think that a range from rc.ghly 1c 7 fe 1077 saouid cover all
reasonable computations. Whiie exponent overflow and exponent underflow

- are no% very common, they can be the cause of very elusive errors,

The evaluation of a determinant is a common computation, and for a matrix

- of order 40 1s quite rapidly done (if you know how), If the matrix

elements are of the quite reasonable magnitude 1072, the magnitude of
8 the determinant will be no larger than roughly po” (and probably

much smaller), well below ths range of representeabie floating-point

3 numbers, Such problems are a frequent source of exponent underflow.
Wz shall not discuss here the mechanisms of Aigol W for de%ec%ing

exponent overflow and underflow, for these should be written up in

a another place, Even withcut these. we see that floating-point numbers

behave well for numbers that are at least 100° times as large as %he
— largest integer in %he system: Hence use of floating-point numbers

meets almost all the problems raised by integer verfiow., And, of

- course, it permits the use of a large set of rational numbers, which

do not 2aven enter the integer system.

.

ALGOLWREALS AND LONGREALS

= The Algol W manual tells how to represent real variables and

numb=rsto take advantage of both single-and doublz-precision. The

— purpose of this section is to bring this information into rapport with

| the hardware representation of numbers. If a variablz X is declared

L REAL, one word 1s set aside for its valuzg, and itwill be stored in
single-precision floating-point form. 1f a variabie.s declared toc be

C LONG REAL, a double-word is set aside to hold its values. and it will
be stored in double-precision form

-

10

—

ll

If a number is written in one of the decimal forms without an L

= at the end, it will be rounded to single-precision, no matter how many

digits are set down, Thus 3.141592652%58979%2 will be immediately

rcunded to single-precision in the program, and all the superfluous

digits are lost at once. Thus the assignment statement

oo xx := 3,1415926535897932
will result in the double-word XX receiving a well-rounded form of =

in the more significant half, and all zeros in the less significant

half! Thus one gets a precision of only approximately seven decimals

for the pain of writing 17, and this may well contaminate all the rest

- of the computation.

If one wants XX to be precise to approximately full double precision,

- one must write the statement in the form

xx := 3.14159265358979%2L .

With the declaration REAL X, the statement

X := 3.1415926535897932L

wlll result in X having a single-precision approximation to m , as

the long representation of ™ 1s rounded upon assignment to X.

The reader should now go back and examine the specifications of

) the types of various arithmetic expressions, as stated on pages 9, 10,

11 of the Algol W Notes, and ou Pp. 25, 26 of the Language Definition,

. Some of the less expected effects are the following: Suppose we have

declaractions

REAL x, Y, Zz;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y is LONG REAL; I*¥*J is REAL; I*X is LONG REAL;

The assignment statement

B XX = X := Y¥Z

will result in XX having a single-precision rounded version of Y¥Z in

= the more significant half, and zeros in the less significant word,

Moreover, I*I is INTEGER, but I*%2 1s REAL.

11

|

If the reader understands the language Algol W and the preceding

pages on number representation, he should have a good basis for under-

= standing the effects of mathematical algorithms . But he should always

remain wary of what a computer is actually doing to his numbers9

-

N 12

