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Algol W Deck Set-Up

< Job Card >

//JOBLIB DD DSNAME=SYS2. FROGLIB,DISP=(OLD,PASS)

// EXEC ALGOLW

//ALGOLW .8YSIN DD *

[ $ALGOL

** < program>
_%EOF

* < data >

%EOF

/*

* QOptional

Note : The maximum execution time or number of printed lines for the
job may optionally be specified on the $ALGOL card. Columns 10-29

of that card are scanned for such specification according to the

following syntax:

R

<limit specification> <time limit, | <time limit>, <line limit>

<time limit> <minutes specification2

<minutes specification> : <seconds specification2

<minutes specification> ::= <unsigned integer> \ (empty}

<seconds specification) 3:= <unsigned integer? \ (empty)
<line limit>

<unsigned integer> \ (empty)
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An empty field is given the value zero.

If the time limit specified is

zero, termination for excess time is controlled by the @S jcb card. Other—

wise, the program is automatically terminated if necessary at the end

of the indicated time. gimilarly, if the line limit specified is zero,
termination for excess lines is controlled by the ¢S job card; otherwise,
the program is automatically terminated if necessary after the indicated

number of lines have been printed.
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"A Contribution to the Development
of ALGOL" by Niklaus Wirth and C+ A. R.

1)

Hoare ’ was the basis for a compiler de-
veloped for the IBM 360 at Stanford Univer-
sity. This report is a description of the
implemented language, ALGOL W. Historical
background and the goals of the language

may be found in the Wirth and Hoare paper.

1) Wirth, Niklaus and Hoare, C. A. R., "A
Contribution to the Development of ALGOL",
Comm. ACM 9, 6(Junel966), pp. 413-L31.
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1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language 1s a phrase structure language, defined by
a formal metalanguage. This metalanguage makes use of.the notation and
definitions explained below. The structure of the language ALGOL W
is determined by:

(1) ¥, the set of basic constituents of the language,
(2) W, the set of syntactic entities, and

(3) P, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form

where <A> is a member of U, x is any possible sequence of basic con-
stituents and syntactic entities, simply to be called a "sequence".

The form
<A =X | y | cos | 2

is used as an abbreviation for the set of syntactic rules

¢

<A 1=z

1.2, Definitions

1. A sequence x 1s said to directly produce & sequence y if and



only if there exist (possibly empty) sequences u and w, so that
either (i) for some <& in U, x = W, v = uvw, and <A ::=

v is a rule in P; or (ii) x = uw, y = uvw and v is a "comment"

(see below).
2. A sequence x 1s said to produce a sequence y if and only if
there exists an ordered set of sequences s[0], s[1], . . . , s[n],

so that x = s[0], s[n] =y, and s[i-1] directly produces s[i] for

alli=1, . . ., n.

3. A sequence x is said to be an ALGOL W program if and only if
its constituents are members of the set ¥, and x can be produced

from the syntactic entity <program>.

The sets ¥V and W are defined through enumeration of their members
in Section 2 of this Report (cf. also k.k,). The syntactic rules are
given throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL W programs, the letter sequences denoting
syntactic entities have been chosen to be English words describing
approximately the nature of that syntactic entity or construct, Where
words which have appeared-in this manner are used elsewhere in the
text, they refer to the corresponding syntactic definition. Along
with these letter sequences the symbol T may occur. It is understood
that this symbol must be replaced by any one of a finite set of English
words (or word pairs). Unless otherwise specified in the particular
section, all occurrences of the symbol T within one syntactic rule

must be replaced consistently, and the replacing words are



integer logical

real bit
long real string
complex reference

long complex

For example, the production
<7 term> ::= <J factor> (cf. 6.3.1.)

corresponds to

<integer term> : = <integer factor>
<real term> :v= <real factor>

<long real term> :¢= <long real factor>
<complex term> ::= <complex factor>
<long complex term> ::= <long complex factor>

The production

<TO primary> ::= long <T1 primary> (cf. 6.3.1. and
table for long
6.3.2.7.)

corresponds to

It

<long real primary> long <real primary?2

<long real primary> :¢= long <integer primary>

<long complex primary> ::= long <complex primary>

It is recognized that typographical entities exist of lower order
than basic symbols, called characters. The accepted characters are
those of the IBM System 3%0 EBCDIC code.

The symbol comment followed by any sequence of characters not
containing semicolons, followed by a semicolon, is called a comment.
A comment has no effect on the meaning of a program, and is ignored

during execution of the program. an identifier (cf. 3.1.) immediately

3
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following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of

units of action. The sequence of these units of action is defined as

the evaluation of expressions and the execution of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs is either (1) de-

fined by System 360 operations, e.g., real arithmetic or (2) left
)

undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

A]B]CID]EIFIGIHI
Qlrls|T]ufv|w]|x|

-

v lklzs]im|n]o|p]
|z |
ol1lels]uls|el7]8]9]|

true | false |" 1 null 1 # 1|

integer l real [ complex IlOgicall bitsl Stringl

reference | long reall long complex farray[

<

procedure ’recordl

PR “[beglnlendllf__Jthenlelsel
case | of | + [ -~ 7]»]| div | rem | she j <n1 | is |
abs | long Ishort fand | or | = ,I' | ~=]<|
<=|>]>=]: |

= | goto | go to | for | step | until lggl while |

comment f value ] result

4 1 A\} n
All underlined words, which we call “reserved words , are repre-

sented by the same words in capital letters in an actual program. with

nc intervening blanks



Adjacent reserved words, identifiers (cf. 3.1.) and numbers must have
no blanks and must be separated by at least one blank space. Otherwise
blanks have no meaning and can be used freely to improve the read-

ability of the program.

2.2. Syntactic Entities

(with corresponding section numbers)

<actual parameter list> 7.3 | <formal type> 5.3
<actual parameter> 7.3 | <go to statement> 7.4
<bit factor> 6.5 | -<hex digit> 4.3
<bit primary> 6.5 | <identifier list> 3.1
<bit secondary> 6.5 | <identifier> 3.1
e | S e 7.5
<bit term> 6.5 | -<imaginary number> 4,1
<block body> 7.1 | <increment> 7.7
<block head> 7.1 | <initial value> 7.7
<blocé& 7.1 | <iterative statement> 7.7
<bound pair list> iz | <label definitiom> 7.1
<bound pair> 5.2 | <label identifier> 3.1
<case clause> 6 <letter> 3.1
<case statement> 7.6 | <limit> 7.7
<control identifier> 3.1 | <logical element> 6.4
<declaratior> 5 <logical factor> 6.4
<digit> 2.1 | <logical primary> 6.4
<dimension specification> 5.3 ,
<empty>  see page 3k <logical term> 6.4
<equality operator> 6.4 | <logical value> 4.2
<expression list> 6.7 | <lower bound> 5.2
<field list> j 04 [ <null reference> k.5
<for clause> 7-T | <procedure declaration> 2.3
<for list> 7-T | <procedure heading> 5.3
<formal array parameter3 5:3 | <procedure identif fer> 3.1
<formal parameter list> 2:3 | <procedure statement> 7:3
' <formal paremeter segment> 5.3 <progren> . T

NIt
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<proper procedure body>

<proper procedure
declaration>

<record class declaration>
<record class identifier>

<record class identifier
Llist>
<record designator>

<relation>

~ <relational operator>

<scale factor>
<sigr>

<simple bit expressiom>
<simple logical expression>

<simple reference
expression>

<simple statement3

<simple string expressior>
<simple 7. expressiom>
<simple T variable
<simple type=>

<simple variable
declaration>

<statement list>
<statement>
<string primary>

<string>
<subarray designator list>

<subscript>

3.  IDENTIFIERS

3.1. Syntax

<identifier> : = <ietters
'«<T variable identifier> ¢ =

6.4

6.7

6.6
6.%

5.1

5.1
7-6

6.6
b

T3
6.1

<identifier> <letter>
<identifier>

<subscript list>
<substring designator>

.<J array declaration>
<J array designator>

<J array identifier>

<7 assignment statement>

<J expression list>

<J expression>

<J factor>

<T field designator>

<T field identifier>

<J function designator>

<7 function identifier>

<J function procedure body>

«<J function procedure
declaratiom>

«<J left part>

<7 number>

<7 primary>

<J subarray designator>
<J term>
<J variable>

<J variable 1dentifier>

<unscaled real>
<upper bound>

<while clause

NN W oo oo

6.3
6.1
3.1
6.2
3.1
5.3

5.3
7.2
4.1
6.3

7.3
6.

6.1
5.1
k.1
5.2

7.7

<identifier> <digit>
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<T array identifier> ;:= <identifier>

<procedure identifier> :::z <identifier>

<7 function identifier> ;.. <identifier>

<record class identifier> ::= <identifier>

<T field identifier> ::= <identifier>

<label identifier> ;:= <identifier>

<control identifier> := <identifier>

<letter> ::=AlBlcID]EIFIGIHIIIJIK]LIMI
NIO!P[Q[RISIT]U[vlw]xlylz

<digit>::= o1 ]2 |34 ]s5]|6[7]8]59

<identifier list> ::= <identifier> | <identifier list> , <identifier>

3.2. Semantics
Variables, arrays, procedures, record classes and record fields

are said to be quantities. 1dentifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the
reference language. In an actual program a reserved word cannot be
used as an identifier.
Every identifier used in a program must be defined. This is
achieved through
(a) a declaration (cf. Section 5), if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, T array identifier, T procedure identifier,
T function identifier, record class identifier or T field iden-
tifier, where the symbol T stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a
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label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then
said to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7.).
It is then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,
standard functions, and predefined variables (cf. 8.3) may be

considered to be declared in a block containing the program.

The recognition of the definition of a given identifier is de-

termined by the following rules:

Step 1. If the identifier is defined by a declaration of a

quantity or by its standing as a label within the smallest block
(cfﬁ?.l) embracing a given occurrence of that identifier, then
it denotes that quantity or label. A statement following a pro-

cedure heading (cf. 5.3.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, if that block is a procedure body and if the

given identifier is identical with a formal parameter in the asso-
ciated procedure heading, then it stands as that formal parameter.
Step 3. Otherwise, if that block is preceded by a for clause

and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered.



If either step 1l or step 2 could lead to more than one definition,
then the identification is undefined.

The scope cf a quantity, a labei, a formal parameter, or a con-
trol identifier is the set of statements in which occurrences of an
identifier may refer by the above ruies to the definition of that

quantity, label, formal parameter or coatrol identifier.

3.3. Examples,

I

PERSON
ELDERS IBLING
x15, X20, x25

4, VALUES AND TYZPES

Constants and variables (cf. 6.1.)} are said to possess a value.
The value of a tonstant is determined by the denotation of the con-
stant . Inthe languege, aliconstants (except references) have a
reference denotation f{ef. 4.1.-4 k.). Tke value of a variable i1s the
one most recently assignsd to that variable. A value is (recursively)
defined as either a simpie value or a structured value (an. ordered set
of one or more values). Every vaiue ls said to be of a certein type.

The following types of simple vsiues are distinguished:

integer: the value is a %2 bit integer,
real: the value is a 3% bit floating point number,
Long real: the value is a 64 bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,



comqmp 1l ex : the value is a complex number composed of two

long real numbers,
logical: the value is a logical value,
bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is an ordered set of values, all of identi-

cal simple type,
record: the value is an ordered set of simple values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may notiyield a value, in which case it is
called a proper procedure. The value of a function procedure is de-
fined as the value which results from the execution of the procedure
body (cf. 6.2.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
characters. This, however, does not imply that the value of the de-
noted constant is a sequence of characters, nor that it has the pro-
perties of a sequence of characters, except, of course, in the case

of strings.

4.1. Numbers

4.1.1. Syntax

<long complex number> !:= <complex number>L
<complex number> ::= <imaginary number>
<imaginary number> ::= <real numbeﬁ>I| <integer number>I

10
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<long real number> ::= <real numbeﬁ>Lf <integer number>I,

<real number> : := <unscaled real> | <unscaled real> <scale factor>
<integer number> <scale factor> l <scale factor>

<unscaled real> ::= <integer number> .<integer number> ]

*<integer number> | <integer number>

<scale factor> : := '<integer number> ,'<sigd> <integer number>
<integer number> ::= <digit>f <integer number> <digit>
<sign> ::= + | -

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceding it. Each

number has a uniquely defined type.

unsigned.)

(Note that all <T number>s are

4.1.3. Examples

1 .5 11
0100 1'3 0.671
3.1416 6.02486" +23 1IL

2.71828182845904523 53602871, 2.3'-6

k.2, Logical Values

L.2.1. syntax

<logical value> ::= true | false

k.3, Bit Sequences

4.3.1. Syntax

<bit sequence> ::= # <hex digit>[ <bit sequence> <hex digit>
<hex digit>::=0 |1 |2 |3 |4 |56 789 |a]B|
ClplE|F

11



Note that 2 | ... | F correspends to 20l 1 155

4.2.2, Semantics

The number of bits in a bit sequence is %2 or 8 hex digita. . The
bit sequence is always represented by a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in en the

left.

4.3.3. Examples

FUF
#9

0000 0000 0000 0000 0000 0000 0100 1111
0000 0000 0000 0000 0000 0000 0000 1001

4.4. Strings

L.4.1. Syntax

<string> ::= "<sequence of characters>"

4.4.2. Semantics
Strings consist of any sequence of (at mast 256) characters ac-

1"

cepted by the System 360 enclosed by ", the string quote, If the
string quote appears in the sequence of characters it must be imme-
diately followed by a second string quote which is then ignored. The

number of characters in a string is said te Be the length of the

string.
4.4.3. Examples

" JOI_INH
""" is the string of length 1 censisting of the string

quote.

12



4,5, References
4,5.1. Syntax

<null reference3 ::= null

4.5.2. Semantics
The reference value null fails to designate a record; if a refer-
ence expression occurring in a field designator (cf. 6.1.) has this

value, then the field designator is undefined.

5. DECLARATIONS

Declarations serve to associate identifiers with the quantities
used in the program, to attribute certain permanent properties to
these quantities (e.g. type, structure), and to determine their scope.
The quantities declared by declarations are simple variables, arrays,
procedures and record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and T7.k.2.).

Syntax:

- <declaratior> ::= '<simple variable declaration> |<T array
declaration> | <procedure deClaratioﬁ>|

<record class declaratiom>

5.1. Simple Variable Declarations

5.1.1. Syntax

<simple variable declaratiorn> ::= <simple type> <identifier list=>

<simple type> ::= integer| real | long real | complex | long

complex |logical | bits |bits (32)|

13



string | string (<integer>) I reference
(<record class identifier 1list>)
<record class identifier list> ::= <record class identifier>
<record class identifier list> ,
<record class identifier>
5.1.2. Semantics
Each identifier of the identifier list is associated with a
varisble which is declared to be of the indicated type. A variable is
called a simple variable, if its value is simple (cf. Section 4). If
a variable is declared to be of a certain type, then this implies that
only values which are assignment compatible with this type (cf. 7.2.2.)
can be assigned to it. It is understood that the value of a variable
is equal to the value of the expression most recently assigned to it.
A variable of type bits is always of length 32 whether or not
the declaration specification is included.
A variable of type string has a length equal to the unsigned
integer in the declaration specification. If the simple type is
given only as string, the length of the variable is 16 characters.
A variable of type reference may refer only to records of the

record classes whose identifiers—appear in the record class identi-

fier list of the reference declaration specification.

5.1.3. Examples

integer I, J, K, M, N
real X, Y, Z
long complex C

Logical
bits G, H

14
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string (10) s, T
reference (PERSON) JACK,; JILL

5.2, Array Declarations

5.2.1. Syntax

<T array declaration> ::= <simple type> array <identifier list>
(<bound pair 1list>)

<bound pair lists ::= <bound pair> |<bound pair list>,<bound

pair>
<bound pair> ::= <lower bound> :: <upper bound>
<lower bound> ::= <integer expression>
<upper bound> :i= <integer expressior>

5.2.2., Semantics

Each identifier of the identifier list of an array declaration is
associated with a variable which is declared to be of type array,
variable of type array is an ordered set of variables whose type'is the
simple type preceding the symbol array, The dimension of the array is
the number of entries in the bound pair list,

Every element of an array is identified by a list of indices.
The indices are the integers between and including the values of the
lower bound and the upper bound, Every expression in the bound pair
list is evaluated exactly once upon entry to the block in which the
declaration occurs. The bound pain cxpressions can depend only on
variables and procedures global to the block in which the declaration
occurs « In order to be valid, for every bound pair, the value of' the

upper bound must not be less than the value of the lower bound.

5.2.3. Examples

integer array H(1::100)

15



A

real array A, B{l::M, 1: :N,
string (12) array STREET, TOWN, CITY { J: :K + 1!

. _ . /
».%5. Procedure Declarations

~

5 0 31, Syntax

<procedure declaration> ::= <proper procedure declaratioﬁ>|
<J function procedure declarat iom>
<proper procedure declaration> ;:= procedure <procedure heading>;
<proper procedure body>
<J function procedure declaration> : := <simple type> procedure
<procedure heading>;
<J function procedure body>
<proper procedure body> = <statement>
<T function procedure body> : 3= <J expressioﬁ>| <block body>
<7 expression> end
<procedure heading> :::= <ident if ier> | <ident if ier> (<formal
parameter list;> )
<formal parameter list> : := <formal parameter segment>
<formal parameter list> ; <formal
parameter segment>
<formal parameter segment> ::= <formal type> <identifier list>
<formal array parameter>
<formal type> ::= <simple type> |<simple type> zglgg| <simple

type> result |<simple type> value result|

<simple type> procedure | procedure
<formal array parameter> : := <simple typé& array <identifier
list> (<dimension specificatior>)

<dimension specif icat ion> ::= * | <dimension specificatiom> , ¥

5.3.2. Semantics
A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

16



part of the procedure declaration is the procedure body. Other parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper procedure
is activated by a procedure statement (cf. 7.3.), a function procedure
by a function designator (cf. 6.2.). Associated with the procedure
body is & heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal parameters. All formal para-
meters of a formal parameter segment are of the same indicated type.
The type must be such that the replacement of the formal parameter by
the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a

formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the symbols begin and end
if it is not already enclosed by these symbols;
(2) For every formal parameter whose formal type contains the

symbol value or result (or both),

(a) a declaration followed by a semicolon is inserted after
the first begin of the procedure body, with a simple
type as indicated in the formal type, and with an iden-
tifier different from any identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the

17



formal parameter identifier is replaced by the identifier
defined in step 2a;

(3) If the formal type contains the symbol value, an assignment
statement (cf. 7.2.) followed by a semicolon is inserted
after the declarations of the procedure body. Its left part
contains the identifier defined in step 2a, and its expres-
sion consists of the formal parameter identifier. The sym-
bol value is then deleted;-

(4) If the formal type contains the symbol result, an assignment
statement preceded by a semicolon is inserted before the
symbol end which terminates a proper procedure body. In
the case of a function procedure, an assignment statement

is inserted after the final expres-
sion of the function procedure body. Its left part contains
the formal parameter identifier, and its expression consists
of the identifier defined in step 2a. The symbol result is

then deleted.

5.%3.2.3. Specification of array dimensions. The number of "*''s
appearing in the formal array specification is the dimension of the

array parameter.

5 0 33 Examples
procedure INCREMENT; X := X+l

real procedure MAX (real value X, Y);

if X < Y then Y else X
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procedure COPY (reai array U, V (*,%); integer value A, B);
for I :=1 until A do
far J := 1 until B do U(Z,J) := V(I,J)

real procedure HORNER (real_array A (¥); integer value N;

real value X);

begin real S; S := 0;
for I := 0 until N do_ S := S *¥ X + A(l);
S

end

long real procedure SUM (integer K, N; long real X);
begin long real Y; Y := 0; K := N;
while K > = 1 dc
begin Y =Y +X; K := K - 1

end;
Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);
begin reference (PERSON) P, VM;
P := YOUNGESTOFFSPRING (rATHER (FATHER (R)));
while (P - = null) and (-1 MALE (P)) or
(P = FATHER (R))'
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));
while (M = = null) and (- MALE (M)) do
M ¢= ELDERSIBLING (M) ;

if P = null then M else
if M = null then P else
if AGE(P) < AGE(M)_ then P else M

end
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5.4. Record Class Declarations

5.4.1. Syntax

<record class declaration> ::= record <identifier> (<field 1list>)

<field list> t¢:= <simple variable declaratioﬁ>| <field list> ;

<simple variable declaration>

5.4.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of simple variable declara-
tions which define the fields and their simple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)
record PERSON (string NAME; integer AGE; logical MALE;
reference  (PERSON) FATHER, MOTHER,, YOUNGESTOFFFSPRING,
ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed
from existing ones. These new values are obtained b§ performing the
operations indicated by the operators on the values of the operands.
Several simple types of expressions are distinguished. Their struc-

.ture is defined by the following rules, in which the symbol T has to
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be replaced consistently as described in Section 1, and where the

triplets IO’ Tl, 12 have to be either all three replaced by the same

one of the words

logical
bit
string

reference

or by any combination of words as indicated by the following table,

which yields TO given Tl and 72:

T TE . §

1 integer real complex
integer integer real complex
real real real complex
complex complex complex complex

TO has the quality "long" if either both Il and Té have that

quality, or if one has the quality and the other is "integer"".

Syntax:

<J expression> ::= <simple T expressioﬁ>| <case clause

<TO expression> :s=

. <7 expression list>"
<TO expression list>
<if clav - 3= if

(<T expression list>)

<if clause> <simple Tl expression>
<TE expression>
s:= <J expression>

1= <Tl expression list> , <72 expression>

<logical cxpression> then .

<case clause€> ::= case <integer expression> of

The operands are either constants, variables or function designa-
tors or other expressions between parentheses,
-operands other than constants may involve smaller units of action such

as the evaluation of other expressions or the execution of statements,,
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The value of an expression between parentheses is obtained by evaluating

that expression. If an operator has two operands, then these operands
may be evaluated in any order with the exception of the logical operators
discussed in 6.4.2.2. The construction

<if clause> <gimple Tl expression> else <32 expression>

causes the selection and evaluation of an expression on the basis of
the current value of the logical expression contained in the if clause.
If this value is true, the simple expression following the if clause

is selected, if the value is false, the expression following else is

selected. If Tl and 72 are simple type string, both string expressions
must have the same length. The construction

<case clause> (<J expression list>)
causes the selection of the expression whose ordinal number in the
expression list is equal to the current value of the integer expression
contained in the case clause. 1In order that the case expression be
defined, the current value of this expression must be the ordinal number
of some expression in the expression list. If T is simple type string,

all the string expressions must have the same length.

6.1. Variables

6.1.1. Syntax

<simple T variable> ::= <J variable identifier> | <J field designator>

<J array designator>
<T “variable> ::= <simple T variable>

<string variable> ::= <substring designator>

<J field designator> ::= <J field identifier> (<reference expression>)
<J array designator> ::= <J array identifier> (<subscript list;>)
<subscript list> ::= <subscript> | <subscript list>, <subscript>
<subscript> ::= <integer expression>
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6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript must lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The simple type of the field designator
is defined by the declaration of that field identifier in the record
class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

X A(T) M(I+J, 1-0)
FATHER (JACK) MOTHER ( FATHER (JILL) )

6.2. Function Designators

6.2.1. Syntax

<J function designator> ::= <J function identifier> |<I function

identifier> (<actual parameter list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a
process performed in the following steps:

Step 1. A copy is made of the body of the function procedure

whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.
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Step 5. The copy of the function procedure body, modified as in-
dicated in steps 2-4, is executed, The value of the function
designator is the value of the expression which constitutes or is
part of the modified function procedure body. The simple type

of the function designator is the simple type in the corresponding

function procedure declaration.

6.2.3. Examples

MAX (X %% 2, Y ** 2)

SUM (I, 100, H(1))

SUM (I, M, SuM (J, N, A(IyJ)))
YOUNGESTUNCLE (JILL)

SUM ((I, 10, x(1) * ¥(I))
HORNER (X, 10, 2.7)

6.3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules, every occurrence of the symbol T
must be systematically replaced by one of the following words (or
word pairs):

integer .
real

long real
complex

long complex

The rules governing the replacement of the symbols IO’ Tl and I2 are
given in 6.3.2.
<simple T expression> ::= <7 term> | + <J term> | - <T term>
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<simple TO expression> :: = <simple ff'1 expression> -~ <72 term> ]

<simple 7. expressiom> —- <TZ term>

<J term> ::= <J factor>

<TO term> = <3'l term> *<<ff9 factor;,"

<1TO term> = <3’l term> / <—T2 factor>

<integer term> ::= <integer term> div_ <integer factor> |

<integer term> rem <integer factor>

<TO factor> ::= <TO primary> | <Tl factor> ** <integer primary>

<TO primary> ::= abs <le primary> | abs <3'l number>
<TO primary> ::= long /\Tl primary>

<J, primary> ::= short <J, primery>

<T primary> ::=<J variable> l <J function designator>

(<T expression>) | <J number>
<integer primary> ::= <control identifier>
6.3.2, Semantics
An arithmetic expression i3 a rule for computing a number.
According to its simple type it is called an integer expression,
real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, %, and / have the conventional meanings
of addition, subtraction, multiplication and division. In the rele-
vant syntactic rules of 605.1..thesymbolsfo, J’l and 72 have to be re-
placed by any combination of words according to the following table

which indicates TO for any combinaticn of Tl and T

2!
Operators + | -
T .
Il'l 2 integer real complex
L
integer integer real complex
real real real complex
complex complex complex complex
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TO has the quality "long" if both Tl and 72 have the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

>~ 7. .. .

Jl e integer real complex
integer integer long real long complex
real long real long real long complex
complex long complex long complex long complex

T, or T, having the quality "long" does not affect the type of

the result.
Operator /
T .
Tl 2 integer real complex
integer real real complex
real real real complex
complex complex complex complex

T, has the quality "long" if both Tl and Tg have the quality

"long", or if one has the quality "long" and the other is "integer".

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type
of the result is the type of the operand. The operator "+" standing
as the first symbol of a simple expression denotes the monadic opera-

’

tion of identity.
6.%.2.3. The operator div is mathematically defined (for B # 0) as

A div B = SGN (A X B) X D (abs A, abs B) (cf. 6.3.2.6.)
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where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

if A < B then 0 else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathematically defined as

A rem B =A-~- (A div B) X B
6.3a2.5 . The operator ¥*¥ denotes exponentiation of the first operand

to the power of the second operand. In the relevant syntactic rule of

6.3,1. the symbols TO and Tl are to be replaced by any of the follow-

ing combinations of words:

TO Tl
real integer
real real
complex complex

TO has the quality "long" if and only if Tl does,

6.3.2.6. The monadic operator abs yields the absolute value or modulus
of the operand. In the relevant syntactic rule of 6.3.1. the symbols TO

and Tl have to be replaced by any of the following combinations of words:

TO Tl
integer integer
real real
real ~complex

If Tl has the quality "long", then so does To.

27



6.3.2.7. Precision of arithmetic. If the result of an arithmetic

operation is of simple type real, complex , long real, or long complex

then it is the mathematically understood result of the operation per-
formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1., the symbols TO and Tl
must be replaced byany of the following combinations of words (or

word pairs):

Operator long

T0 : - Il
long resal ‘real -
long real integer
long complex complex

Operator short

IO Tl

real long real

complex long complex

6.3.3. Examples

CC o+ A(1) * $(I)
EXP(-X/(2 * SIGMA)) / SQRT (2 * SIGMA)

6.4. Logical Expressions

6X.1. Syntax

In the following rules for <relation> the symbols IO and Tl must

either be identically replaced by any one of the following words:
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bit
string

reference
or by any of the words from:

complex

long complex
real

long real

integer

and the symbols T2 or T3 must be identically replaced by string or

must be replaced by any of real, long real, integer.

<simple logical expressior> ::= <logical element> | <relation>
<logical element> ::= <logical term>| <logical element;> or

<logical term>

<logical term> ::= <logical factor> l <logical term> and
<logical factor>

<logical factor> ::= <logical primary=> | -1 <logical primary>

<logical primary> ::= <logical value | <logical variable |

<logical function designator> |
(<logical expression>)
<relatior> ::= <simple TO expression> <equality operator>
<simple Tl expression> | <logical element>
<equality operator> <logical element> |
<simple reference expression> is
<record class identifier>|
<gimple Tq_expressioﬁ> <relational operator>
<simple 3'3 expressiorn>
<relational operator> ::=< |<=|>= | >
|- -

<equality operator> :i:= =

6.4.2. Semantics

A logical expression is a rule for computing a logical. value.
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6.4.2.1. The relational operators represent algebraic ordering for
arithmetic arguments and EBCDIC ordering for string arguments. If two
strings of unequal length are compared, the shorter string is extended
to the right by characters less than any possible string character,
The relational operators yield the logical value true if the relation
is satisfied for the values of the two operands; false otherwise. Tyo
references are equal if and only if they are both null or both refer
to the same record. Two strings are equal if and only if they have

the same length and the same ordered-sequence of characters.

6.4.2.2. The operators - (not), and, and or, operating on logical
values, are defined by the following equivalences:

- X if X then false else true
X and Y Aif X then Y else false

Xg_x: Y _:EX then true else Y

6.4.3. Examples

P or Q
(X C Y) and (Y C 2)
YOUNGESTOFFSPRING (JACK) = = null
FATHER (JILL) is PERSON

6.5. Bit Expressions

6.5.1. Syntax

<simple bit expression> ::= <bit term> | <simple bit expression>
or <bit term>

<bit term> ::= <bit factor> I <bit term> and <bit factor>

<bit factor> ::= Cbit secondary> | = <bit secondary>

Cbit secondary> ::= <bit primary> |<bit secondary> shl
<integer primary> | <bit secondary> shr
<integer primary>

<bit primary> ::= <bit sequence> | Cbit variable> | <bit

function designator> | (<bit expression>)
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6.5.2. Semantics
A bit expression is a rule for computing a bit sequence.
The operators and, or, and = produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

follows:
X Y -1 X X and Y X_(_)_EY
0 0 1 0
0 1 1 -0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the
left and to the right respectively by the number of bit positions in-
dicated by the absolute value of the integer primary. Vacated bit,
positions to the right or left respectively are assigned the bit value

0.

6.5.3. .Examples

G and H or #38
G and = (H or G) §2£_8.

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

<string primary> ::= <string>| <string variable>»| <string
function designator> | (<string expression>)

<substring designator> ::= <simple string variable>

(<integer expression ¥ <integer number>)
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6.6.2. Semantics

A string expression is a rule for computing a string {seguence of

characters) .

6.6.2.1. A substring designator denotes a sequence of characters of
the string designated by the string variable. The integer expression
preceding the @ sclects the starting character of the sequence. The
value of the expression indicates the position in the string variable.
'The value must be greater than or equal to 0 and less than the declared
length of the string variable. The first character of the string has
position 0. The integer number following the § indicates the length

of the selected sequence and is the length of the string expression,
The sum of the integer expression and the integer number must be less

than or equal to the declared length of the string variable.

6.6.3. Example

string (10) S;
s (4U3)
s (I+Jw1)

string (10) array T (l::m,2::n);
T (4,6) (3% 5)

6.7. Reference Expressions

6.7.1. Syntax

<simple reference expression> ::= <null reference'’, l <reference
variablé>| <reference function
designator> | <record designator>

(<reference expression>)
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<record designator> ::= <record class identifier> | <record
class identifier> (<expression list>]
<expression list> ::= <7 expression>| <expression list>,
<J expressior>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a
record. All simple reference expressions in a reference expression
must be of the same record class.

The value of a record designator is the reference to a newly
created record belonging to the designated record class. If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries
in the expression list are taken in the same order as the fields in
the record class declaration, and the simple types of the fields must
be assignment compatible with the simple types of the expressions

(cf. 7.2.2.).

6.7.3. Example

PERSON ("CAROL", O, fals_aea, JACK, JILL, null, YOUNGESTOFFSPRING
( Ja cK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.L.1., and 6.5.1. implies the following
hierarchy of operator precedences:

long , short, abs

shl, shr, *»

—

¥, /, div, rem, and

34
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Example

A=Band C is equivalent to A = (B and C)

7. STATEMENTS

A statement denotes a unit of action. By the execution of a
statement is meant the performance of this unit of action,which may
consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

Syntax:

<program> ::= <block>

<statement> ::= <simple statement> | <iterative statement> |

<if statement>| <case statement>

<simple statement> ::= <bloc& | <J assignment statement> |
<empty>| <procedure statement> |
<goto statement>

7.1. Blocks

T7.1.1. Syntax

<block> ::= <block body> <statement> end

<block-body? ::= <block head> | <block body> <statement>;
<block body? <label definitiom>

<block head> ::= begin | <block head> <declaration> ;

<label definition> ::= <identifier>

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:
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Step 1. If an identifier, say A, defined in the block head or in
a label definition of the block body is already defined at the
place from which the block is entered, then every occurrence of
that identifier, A, within the block except for occurrence in
array bound expressions is systematically replaced by another
identifier, say APRIME, which is defined neither within the

block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions,.then these expressions are evaluated,

Step 3. Execution of the statements contained in the block body

begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless
it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

T.1.3. Example

begin real U;
u:=X; X:i=Y; Y

W
&
N
Il
o

end

7.2. Assignment Statements

7.2.1.  Syntax
In the following rules the symbols TO and Il must be replaced by
words as indicated in Section 1, subject to the restriction that the

type T, is assignment compatible with the type Tl as defined in 7.2.2,
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<TO assignment statement> ::= <TO left part> <Il expression>

<To left par-D <Tl assignment
statement>

<J left part> ::= <J variable> :=

7.2.2. Semantics

The execution of a simple assignment statement

<TO assignment statement> ::= <TO left part> <31 expression>
causes the assignment of the value of the expression to the variable.
If a shorter string is to be assigned to a longer one, the shorter
string is first extended to the right with blanks until the lengths are
equal. In a multiple assignment statement

(<Zr0 assignment statement> : = <TO left part> <Tl assignment

statement>)

the assignments are performed from right to left. The simple type of
each left part variable must be assignment compatible with the simple
type of the expression or assignment variable immediately to the right.

A simple type TO 1s said to be assignment compatible with a simple
type Tl if either

(1) the two types are identical ((except that if TO and Tl are

string, the length of the TO variable must be greater than
or equal to the length of the Tl expression or assignment), or
(2) T, is real or long real, and 7, is integer, real or long

0]

@eal r

(3) TO is complex or long complex, and Tl is integer, real,

long real, complex or long complex.

In the case of a reference, the reference to be assigned must refer
to a record of the class specified by the record class identifier asso-
ciated with the reference variable in its declaration.
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7.2.3. Examples

Z := AGE (JACK) :=28
X =Y + abs Z
C:=I+X+C
P:=X—a=Y

Procedure Statements

7.3.1. Syntax

<procedure statement> ::= <procedure identifier> I <procedure
identifier> (<actual parameter list>)
<actual parameter list> i:= <actual parameter> | <actual para-
meter list> , <actual parameter>
<actual parameter> ::= <J expressioﬁ>| <statement>>l <7 subarray
designator> |<procedure identifier>,
<J function identifier9
<T subarray designator:> ::= <J array identifier> |<T array
identifier> (<subarray designator
list>)
<subarray designator list> ::= <subscripﬁ>| *| Csubarray
designator 1list>,<subscript>

<subarray designator list>,¥

7.3.2. Semantics

The execution of a procedure statement is equivaient to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statement, and of

the actual parameters of the latter.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by
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step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an
undefined order as follows: If the copy 1s an expression differ-
ent from a variable, then it is enclosed by a pair of parentheses,
or if it is a statement it is enclosed by the symbols begin and

end.

Step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal parameter is replaced by the copy
of the corresponding actual parameter (cf. 7.3.2.1.). En order
for the process to be defined, these replacements must lead to

correct ALGOL W expressions and statements.

Step 5. The copy of the procedure body, modified as indicated in

steps 2-4, 1is executed.

7.3.2.1. Actual ‘formal correspondence. The correspondence between
the actual parameters and the formal parameters 1is established as
follows: The actual parameter list of the procedure statement (or
of the function designator) must have the same number of entries as
the formal parameter list of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two Lists

in the same order.

7.3.2.2. Formal specifications. If a'formal parameter is specified
by wvalue, then the formal type must be assignment compatible with the
type of the actual parameter. If it is specified as result, then the

type of the actual parameter must be assignment compatible with the
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formal type. 1In all other cases, the types must be identical. 1If an
actual parameter is a statement, then the specification of its corre-

sponding formal parameter must be procedure.

7.3.2.3. Subarray designators. A complete array may be passed to a
procedure by specifying the name of the array if the number of sub-
scripts of the actual parameter equals the number of subscripts of

the corresponding formal parameter. If the actual array parameter has
more subscripts than the corresponding formal parameter, enough sub-
scripts must be specified by integer -expressions so that the number of
*¥'s appearing in the subarray designator equals the number of sub-
scripts of the corresponding formal parameter. The subscript positions
of the formal array designator are matched with the positions with *'s

in the subarray designator in the order they appear.

T7.3.3. Examples

INCREMENT
COPY (A, B, M, N)
INNERPRODUCT (I, N, A(I,*), B(*,J))

7.4. Goto Statements

7.%.1. Syntex

<goto ctatement> ::= goto <label identifier> |gg to <label
identifier>

7.4.2. Semantics

An identifier is called a label identifier if it stands as a

label.
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A goto statement determines that execution of the text be contins

ued after the label definition of the label identifier. The ident ifi-

cation of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently acti-
vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified above.

7.5. If Statements

7-5.1. Syntax

<if statement)- ::= <if clause> <statement> [ <if clause>
<simple statement> else <statement>

<if clause> ::= if <logical expression> then

7 .5.2. Semantics
The execution of if statements causes certain statements to be

executed or skipped depending on the values of specified logical ex=

pressions. An if statement. of the form
<if clause> <statement)
is executed in the following steps:
-Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of Step 1 is true, then the statement
following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

40



An i1f statement of the form

<if clause> <simple statement> else <statement>

is executed in the following steps:

7.6.

Step 1. The logical expression in the if clause is evaluated.

Step 2. If the result of step 1 is true, then the simple state-
ment following the if clause is executed. Otherwise the state-

ment following else is executed.

7.5.3. Examples
f X =Y then goto L

1
1fX< Y then U :=X else if Y < Z then U := Y else V :=

Case Statements

7.6.1. Syntax

<case statement> ::= <case clause> begin <statement list> end
<statement list> ::= <statement>| <statement list> ; <statement>
<case clause> ::= case <integer expression> of

7.6.2. Semantics

The execution of a case statement proceeds in the following

Steps:

Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list

is equal to the value obtained in Step 1 is executed. 1In order

that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some
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statement of the statement 1list.

7.6.%, Examples

case I of

begin X := X + Y;

Y =Y + Z;
Z :=Z+ X
end
case J of
begin H(1) := -H(I);
begin H(I-1) := H(I-1) + H(I); I := I-1 end;
begin H(I-1) := K(I-1) x H(I); I := I-1 end;
begin H(H(I-1)) := H(I); I := I-2end
end

Iterative Statements

7.7.1: Syntex

<iterative statement> ::: <for clause> <st. tement> | <while

clause> <statement>
<for clause> ::= for <identifier> := <initial value>

step <increment> until <limit> dol for

<identifier> := <initial value> until <limit>

do | for <identifier> := <for 1list> do

<for list> ::= <integer expression> | <for list> , <integer
expression>
<initial value> ::= <integer expression>

<increment>. ::= <integer expressicr>
<limit> ::= <integer expressior>

<while claus€ ::= while <logical expressiorn> do

7.7.2. Semantics

The iterative statement serves to express that a statement be
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executed repeatedly depending on certain conditions specified by a

for clause or a while clause. The statement following the for clause
or the while clause always acts as a block, whether it has the form of
a block or not. The value of the control identifier (the identifier
following for) cannot be changed by assignment within the controlled
Statement.

(a) An iterative statement of the form

for <identifier> :=Elstep E2 until E3 do <statement>

is exactly equivalent to the block

begin <statement-0>; <statement-P ... ; <statement-L>;

.} <statement-N> end

in the Ith statement every occurrence of the control identifier
is replaced by the value of the expression (E1 + I X E2).
The index N of the last statement is determined by
N < (E3-El) / E2 < N+l. If N < 0, then it is understood that
the sequence is empty. The expressions El, E2, and E3 are
evaluated exactly once, namely before execution of <statement-0).

Therefore they can not depend on the control identifier.
(b) An iterative statement of the form
for <identifier> := El until E3 do <statement>

is exactly equivalent to the iterative statement

for <identifier> El step 1 _until E3_do <statement>

(c) An iterative statement of the form

for <identifier> := El, E2, ..., EN_do <statement>

is exactly equivalent to the block
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begin <statement-D; <statement-a ... <statement-I> ;...

<statement-N> end

when in the I'H statement every occurrence of the control identifier

is replaced by the value of the expression El.

- (d) An iterative statement of the form
while E do <statement>
is exactly equivalent to

begin
L: if E then
- begin <statement> ; goto L end

end

70 7.3 Examples

for V. :=1 step 1 until N-1 do S := S + A(U,V)

while (J> 0) and (CIT:(J) = = S)do J := J-1

for I =%, x+1, x +3 X+ 74do P(I)

7.8. Standard Procedures

The standard procedures differ from explicitly declared procedures
in that they may have one or more parameters of mixed simple type.

In the following descriptions J is to be replaced by any one of

integer bit

- real string
long real

- complex

long complex

Ly



7.8.1. Read Statements
Implicit declaration heading:

procedure read (T result Xl, T result X2 . , J result Xn);

procedure readon (T result Xl,T rQEHiE_Xg . , J result Xn);
(where n > 1)

Both read and readon designate free field read statements. The
quantities on the data cards must be separated by one or more blank col-
ums . All 80 card columns can be used and quantities extending to col-
umn 80 on one card can be continued beginning in column 1 of the next
card. In addition to the numbers of %.l., numbers of the following
syntactic forms are acceptable quantities on the data cards:

1) <sig> <7 number>

where T is one of integer, real, long real, complex, long complex.
2) <sigr> <To number> <sigr> <Tl number>

where TO is one of integer, real, long real, and Tl is one of

complex, long complex.

The quantities on the data cards are matched with the variables of
the variable list in order of appearance. The simple type of each quan-
tity read must be assignment compatible with the simple type of the
variable designated. The read statement begins scanning for the data
on the next card. The readon statement begins scanning for the data
where the last read or readon statement finished.

7.8.1.2. Examples

read (X,A{I))
for I :=1 until N do readon (A(I))
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7.8.2. Write Statements
Implicit declaration heading:
procedure write (T _value Xl,T value X5, <+« , T value Xn);
(where n > 1);

The values of the variables are output in the order they appear

in the variable list in a free field form described below. The first

fiel

d of each WRITE statement begins on a new line. If there is insuffi-

cicnt space remaining on the 132 character print line for a new field,

that

line is printed and the new-field starts at the beginning of a new

print line.

8.1.

integer: right justified in field of 14 characters followed by 2

blanks. Field size can be changed by assignment to Intfieldsize.

real: same as integer except the field size cannot be changed.

long real: right justified in field of 22 characters followed
by 2 blanks.

complex: two adjacent real fields always on the same line.

long complex: two long rr:l fields adjacent always on the same

line.

logical: TRUE or FALSE right justified in a field of 6 characters
followed by 2 blanks.

string: placed in a field large enough to contain the string
and may extend to a new line if the string is larger

than 132 characters.
bits: same as real.

reference: same as real.

STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

Standard Transfer Functions

Implicit declaration headings:

Lé



integer procedure round (real value X);

integer procedure truncate (real value X);

integer procedure entier (real value X);

real procedure realpart (complex value X);

long real procedure.longrealpart (long complex value X);

real procedure imagpart (complex value X);

long real procedure longimagpart (long complex value X);

complex procedure imag (real value X);

comment complex number XI;

long complex procedure longimag (long real value X);

logical procedure odd (integer-value X);

bits procedure bitstring (integer value X);

comment binary representation of number X;

integer procedure number (bits value X);

comment integer with binary representation X;

integer procedure decode (string (1) value S);

comment numeric code of the character S;

string (1) procedure code (integer value X);

comment character whcse numeric code is X REM256;

8.2. Standard Functions of aaalysis

real procedure sin (real value X);

long real procedure longsin (long real value X);

real procedure cos (real value X);

- long real procedure' longcos (long real value X);

real procedure arctan (real value X);

comment -n/2 < arctan (X) <u/2;

long real procedure longarctan (long real value X);

comment -n/2 < longarctan (X) < n/2;

real procedure 1ln (real value X);

comment logarithm base e;

long real procedure longln (long real value X);

comment logarithm base e;
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8.3.

real procedure log (real value X);

comment logarithm base 10;

long real procedure longlog (long real value X);

comment logarithm base 10;

real procedure exp (real value X);

long real procedure longexp (long real value X); -

real procedure sgrt (real value X);

long real procedure longsqrt (long real value X);

complex procedure complexsqgrt (complex value X);

comment principal square root;

long complex procedure longcomplexsqrt (long complex value X);

comment principal square root;

Overflow and Underflow

8.3.1. Predeclared Variables

bogidad r £ 1 ow ;
comment initialized to false. Set to true at occurrence
of a floating-point,-underflow interrupt;

logical overflow;
comment initialized to false. Set to true at occurrence

of a floating-point or fixed-point overflow or divide-by?
zero interrupt;

8.%.2. sStandard Message Function

integer procedure msglevel (integer value X);

comment The value of a system integer variable MSG controls
the number of underflow/overflow messages printed during
program execution. MSG is initialized to zero.

MSG = 0

No messages are printed.
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MSG > 0
Underflow and overflow messages are printed.

After each message is printed, MSG is decreased by 1.

MSG < 0
Overflow messages are printed. After each message

is printed, MSG is increased by 1.
Each message gives the type of interrupt and a source card number

near which the interrupt occurred.

Examples

OVERFLOW NEAR CARD 0023
UNDERFLOW NEAR CARD 0071
DIV BY ZERO NEAR CARD 0372

The predeclared integer procedure msglevel is used to interro-
gate and to set the value of MSG. The old value of MSG is the value
of the procedure msglevel, and the new value given to MSG is the

value of the argument of msglevel.

8.4. oOutput Field Sizes

integer intfieldsize;
comment indicates number of digits including minus sign if
any. Initialized to 1lkj can be changed by assigmnment state-

ment;

8.5. Fimection

integer procedure time (integer value X);

comment if X = 1, time is returned in 60ths of a second,

If X = 2, time is printed in minutes, seconds and 60“% of
a second and returned in 60ths of a second.
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ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the pro-

gram listing. The message format is

CARD NO. (number)

(message)

The (number) corresponds to the card number on which the error

was found. The (message)

INCORRECT SPECIFTIN

INCORRECT CONSTANT
MISSING END

MISSING BEGIN

MISSING )

ILLEGAL CHARACTER

MISSING END

STRING LENGTH ERROR

BITS LENGTH ERROR

MISSING (

COMPILER TABLE OVERFLOW

is one of-those listed below:

syntactic entity of a declaration is

incorrect, e.g. variable string length.

syntax error in number or bitstring.
an END needed to close block.

an attempt to close outer block be-

fore end of code.
) is needed.

a character, not in a string, is

unrecognizable.

program must conclude with the se-

quence END

string is of 0 length or length
greater than 256.

bits constant denotes no bits or

more than 32 bits.
( is needed.

terminating error — a compile time

table has exceeded its bounds.



TOO MANY ERRORS the maximum nuber of errors for Pass
One records has been reached. Com-
pilation continues but messages for
succeeding errors detected by Pass

One are suppressed.

Ip LENGTH > 256 more than 256 characters in' identifier.
See also discussion of PROGRAM CHECK in IV.

II. PASS TWO MESSAGES

The format of Pass Two error messages 1is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

symbol)

If a $STACK card is included anywhere in the source deck, the

SYNTAX ERROR message is followed by

STACK CONTAINS:
(beginning of file)

<symbol-1>

<symbol-m (top of stack)

- The symbol names may differ-somewhat from the metasymbols of
the syntax.
If any Pass One or Pass Two errors occur, compilation is termi-
nated at the end of Pass Two.
INCORRECT SIMPLE TYPE <number> <simple type> of entity is improper

as used. Number indicates explana-

tion on list of simple type errors.



ARRAY USED INCORRECTLY a variable must be used here.

IDENTIFIER MUST BE RECORD reference declaration 1s incorrect,
CLASS 1D
MISMATCHED PARAMETER formél parameter does not correspond

to actual parameter.

MULTIPLY-DEFINED SYMBOL <iden- ’ )
tifier> symbol defined .tore than , once

in a block.
UNDEFINED SYMBOL' <identifier9 symbol is not declared or defined,

INCORRECT NUMBER OF ACTUAL
PARAMETERS the number of actual parameters to

a procedure does, not equal the number
of formal parameters declared for

the procedure.

INCORRECT DIMENSION the array has appeared previously

with a different/number of dimensions..
DATA AREA EXCEEDED too many declarations in the block.

INCCRRECT NUMBER OF FIELDS the number of fields specified in a
record designator doe's not equal the
number of fields the declaration of

the record indicates.

IN"OMPATIBLE STRING LENGTH length of assigned string is greater
than length of string assigned to.

II'COMPATIBLE REFERENCES record cless bindings are inconsistent.
BLOCKS NESTED TOO DEEP blocks are neésted-more than 8 levels.
-REFERENCE MUST REFER TO RECORD o v
CLASS reference must  be bound to a record
class.

EXPRESSION MISSING IN PROCEDURE
BODY body of typed procedure must end with.

an expression.
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RESULT PARAMETER MUST BE <T VAR> the actual parameter corresponding

to a result formal parameter must

be a <T VARIABLE>.

PROCEDURE HEW LACKS SIMPLE TYPE proper procedure ends with an ex-
pression.

<SYMBQL-1> URRELATED TO <SYMBOL-a the symbol at the top of the stack

(<SYMBOL-I>) should not be followed
by the incoming symbol (<SYMBOL-&).

SYNTAX ERROR construction violates the rules of
the grammar. The input string is
skipped until the next END, ";",
BEGIN, or the end of the program.
More than one error message may be

generated for a single syntax error.

Simple Type Errors

25. Upper and lower bounds must be integer.

29. Upper and lower bounds must be integer.

32. Simple type of procedure and simple type of expression in pro-
cedure body do not agree.

71l. Substring index must be integer. ’

73. Variable before '(' must be string, procedure identifier, or array
identifier.

7h. Substring length must be integer.

76. Field index must be reference or record class identifier.

77. Array subscript must be integer.

8l. Array subscript must be integer.

84. Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree.

93. Expressions in if expression do not agree.

9k. Expressions in case expression do not agreé.

95. Expression in if clause must be logical.
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98.

101.
102.

103.
106.
107.
108.

" 109.

110.
112.
117.

118.

119.
120.
121.
123.
125.

126.

175 -
130,
148.
181.
182.
188.
190.
191.
193.
195.
197.

Expressions in case expression do not agree,

Expression in case clause must be integer.

Arguments of = Or I= do not agree.

Arguments of relational operators must be integer =xead, oOr
long real.

Arqument before is must be reference.

Argument of unary + must be arithmetic.

Argument of unary - must be arithmetic.

Arguments of + must be arithmetic.

Arguments of - must be arithmetic.

Arguments of or must be both logical or both hits.

Record field must be assignment compatible with declaration.

Arguments of * must be arithmetic.

Arguments of / must be arithmetic.

Arguments of div must be integer.

Arguments of rem must P€ integer.

Arguments of and must be both logical or both kits.

Argument of -1 must be logical or bits.

Exponent or shift gquantit' must be integer; expression to be
shifted must be bi 3.

Shift quantity must be Wnteger; expression to be shifted must be
bits.

Actual parameter of standard function has incorrect simple type.

Argument of long must be integer, real, or comptex

Argument of short must be lang real or long eemples

irgument of abs must be arithmetic.

Record field must be assignment compatible with decleration.

Expression cannot be assigned to variable.
Result of assignment cannot be assiguned to veriable.

Limit expression in _for clause mist be integexr,

.Expression in for list must be integer.

Assignment to for variable must be integer.

_Expression in for list must be integer.

Step element must be integer.

‘Expression in while clause must be leogical-

p)
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III. ©PASS THREE ERROR MESSAGES

The form of Pass Three error messages is

*HHKX  (message)
*¥¥%6%% NEAR CARD (number)

The number indicates the number of theé card near which the error

occurred. The message may be
PROGRAM SEGMENT OVERFLOW the amount of code-generated for a
procedure @xceeds 4096 bytes.

COMPILER STACK OVERFLOW constructs nested too deeply,
CONSTANT POINTER TABLE TOO LARGE too many literals appear in a pro-

cedure.

BLOCKS NESTED TOO DEEP parameters in procedure call are nested,

too deeply; procedure calls in 'block
nested too deeply.

DATA SEGMENT OVERFLOW too many verlables declared in the
block.

IV. RUN TIME ERROR MESSAGES

The form of run error messages is

RUN ERROR NEAR CARD (number) - (message)
SUBSTRING INDEXING sub&ring selected not within named
string.
CASE SELECTION INDEXING index of case statement or case ex-—

pression is less than 1 or greater

than nuliber of cases.

ARRAY SUBSCRIPTING array subscript not within des&red

bounds.

6



LOWER BOUND > UPPER BOUND

ARRAY TOO LARGE

ASSIGNMENT TO NAME PARAMETER

DATA AREA OVERFLOW

lower bound is greater than upper

bound in array declaration.

The (n-1) dimensional array obtained
by deleting the right-most bound-
pair of the array being declared has
too many elements The maximum number
of elements allowed in this (n-1)
dimensional array is given below,
according to the declared type of
the array.

maximum # of
elements in

first (n-1)

type dimensions
logical, string 32767
integer, real 8191
bits, reference 8191
long real, complex Logs5
long complex 2047

assignment to a formal name parameter
whose corresponding actual parameter
is an expression, a literal, control

identifier,? or procedure name.

storage available for program execu-

tion has been exceeded.

AUTTAL-FORMAL PARAMETER MISMATCH the number of actual parameters in

IN FORMAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

a formal procedure call is different
from the number of formal parameters
in the called procedure, or the
parameters are not assignment

compatible.

no more storage exists for records.
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LENGTH OF STRING INPUT string read is not assignment com-

patible with corresponding declared
string.
LOGICAL INPUT quantity corresponding to logical

quantity is not true or false.
NUMERICAL INPUT numerical input not assignment com-

patible with specified quantity.
REFERENCE INPUT reference quantities cannot be read.

READER EOF a system control card has been

encountered during a read request.

REFERENCE the null reference has been used to
address a record, or a reference
bound to two or more record classes

was used to address a record class

to which it was not currently pointing.

I/0 ERROR see consultant

LINE ESTIMATE EXCEEDED line estimate on $AIGOL card is
exceeded.

TIME: ESTIMATE EXCEEDED time estimate on $ALGOL card is
exceeded.

Counts of certain exceptional conditions detected during program

compilation orexecution are maintained. If any of these are non-zero
14

they are listed after the post-compilation or post-execution elapsed

time message in the following format:

nnnn PROGRAM CHECK NO xx

The number of times the condition was detected (module 10000) is
given by nnnn; the nature of the condition is indicated by xx

according to the following table:
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08 integer overflow

09 integer division by zero
12 real exponent overflow
15 real exponent underflow
15 real division by zero

This counting is not affected by the value of MSG.

V. OTHER

PRG PSW (16 hexidecimal digits) compiler error, see consultant
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Introduction

The textbook Introduction to LIB-__Q_Q by Baumann, Feliciano, Bauer,
and Samelson describes the internationally recognized language AIGOL 60' )
for algorithm communication. aA1GOL W can be viewed as an extension of"
ALGOL.

Part I of these notes describes the differences between similar
constructs of the two languages.

For clarity, Part I is numbered according to the sections of the
textbook. In general only differences are mentioned; items which are
the same in both languages are usually not discussed.

Part II presents some of the details concerning the new features
of AIGOL W. A complete syntactic and semantic description of these
constructs as well as of all others.in the language is available in

"AIGOL W Language Description".
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PART I:

Basic Symbols of the Language

1.

1.

The basic symbols

1.1.1. Letters

Only tipper case letters are used.

l.1.3. Other

The following are the same in 'A’I.GOI;'.GO'

+ - /. s

()=

=< >

The following are different in the two languages. The

correspondence bPetween the symbols is shown in the fOllowing

table:

AIGOL 60

10

X

-4

1}

U

Differencea between ALGOL60 and ALGOL, W

symbols

AILGOL W

no equivalent

OR

and ALGOL .
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AIGOL 50 AIGOL W

A AND
- one blank space
£ - =
< < =
> > =
for :: (cf. gsection 6.1 and 4.2,1)
no equivalent 1 #

All characters indicated for AILGOL W are on the IBM 029

key-punch,

The significance of spaces in AIGOLW will be discussed in

subsequent sections.

1.2, Numbers

A number is represented in its most general form with'a scale

factor to the base 10 as in ¢ nventional scientifie notation.

EXAMPIE  3.164981'-4 means 5,16l+981'x1o‘LL

This 1 f lled the floati int f
his 1s often calle e oating poin orm, Certain abbreviations

om*tting unessential parts are permissible.

EXAMPLES 7 317.092 126' Ok
551 . 538k ok.719'2
'30 0.710 9.123 '+1
-1 0 2'-6
-3 009.123 '+01 2.0'-06

To represent a long floating point (cf. Section 2.3.1) number an



EXAMPLES T7L 317.092L 126 o4,

In ALGOL W, complex numbers (short and long forms) may be used.

The imaginary part of a complex number is written as an unsigned real

number followed by an I.
EXAMPLES LT L.81 451

Long imaginary numbers are followed by an L.

EXAMPLE L. 8IL

Numbers may be written in a variety of equivalent forms.

1]

EXAMPLE 12'0k = [12'6 = 1,2'05 = 120000.0

No spaces may appear within an unsigned number. The magnitude of
an integer or the integer part before the decimal point in a floating
point number must be less than or equal to 2147483647, The magnitude
of a non-zero floating point r-umber must be between approximately

5.4 x 10779 and 7x 107 (1/16x 16" and (1-1670)x16%3).

1.3. Identifiers

A -letter followed by a sequence of letters and/or digits constitutes
an identifier, Identifiers may be as short, as one letter or as long

as 256 letters and digits.

Identifiers may be chosen freely and have no inherent meaning.
However, AIGOL W recognizes a set of reserved words which must not be

used as identifiers.



RESERVED WORDS

ABS GOTO REM
AND GO TO RESULT
ARRAY IF SHL
BEGIN INTEGER SHORT
BITS IS SHR
CASE. LOGICAL STEP
COMMENT LONG STRING
COMPLEX NULL THEN
DIV OF TRUE
Do OR UNTIL
ELSE PROCEDURE VALUE
END REAL WHILE
FALSE RECORD

FOR REFERFN"E

The reserved word BOOLEAN can be used in place of LOGICAL. Spaces

ire used to separate reserved words and identifiers from each other and

{.>om numbers.

Certain identifiers are predefined for use by the programmer but

are not reserved words. Their meaning will be discussed later. Among

these are three input and output identifiera: READ, READON, WRITE,

(See Sections 2.2,2, and 2.5.)

1.4 Nonarithmetic symbols

The symbols which are printed in bold type in the text are usually

underlined in typewritten copy. They are contained in the list of

.

reserved words (cf. Section 1.3) for AIGOL W, They are not distinguished



in any other way but they must not be used for any purpose other than

that for which they are specifically intended.

example, must not be used as an identifier.

2. Arithmetic Expressions

2.1. Numerical Expressions

The symbol END, for

The basic arithmetic operators of AIGOL W are

+ - % / %% DIV REM
EXAMPLES
3.1k459. S 7 DIV 3
(3.47'-4 + 9.01"+1) / 4 17 REM 12
9% 8*7/(1L*2%*3) -1.2
(9+2.7) / (-3)

(((1.5 %3 - 4) * 3 + 0.19'1) * 3 - 2.6'3) * 3

10+1.4/ 1 +09/ (7-0.4/3))

The symbol * denotes multiplication while *¥* denotes exponentiation.

For instance, 4.5 ** 3 means h.53. The exponent must always be an

integer in AIGOL W. An integer to any exponent gives a real result.

EXAMPLES
AIGOL W form Conventional form
4.1 - 3 ¥ 2 4,1-32
(4.1 - 3) ** 3 (4.1 - 3)8
3.2 % 2 + 5.2 5.2° 4 5.2
—4 %% _h2



AIGOL W form Conventional form

(-4) ** 2 (-4)2
4 x5

L x5 /2 %3 17
2

5 %% 2 % 3 52 . 3

Also notice
2xx3%xl = ()"

In ALGOL W the following two constructs are not allowed because

the exponent is a real number:

3.2%%(2 +5,2)  and = 2%*(3*x*y),

2.2.2. Assignment of numerical values through input

If the value of an identifier is to be provided by input it is
assumed that this value appears on a data card which is in the card

reader waiting to be read. The statement
READAN (V)

where V stands for variable identifier, reads the next number on the

current input card, If there are no more numbers on the current input
card, s-ubsequent cards are read until a number is found. This statement

assigns the value of the number to the variable whose name is specified.

READAN(V,, V. - . ,),)
is equivalent to

READ@N (V,); READ@N (V,);...; READGN (vn)

The constants on the data cards are assigned in the same order as -
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the varigble names in the READ¢N statement, One or 8everal numbers

may appear on a single card separated by one or more blank spaces with
column 80 of one card immediately followed by column 1 of the succeeding
card,

The statement

READ (V)

is similar to READ¢N (V) except that scanning for the number begins on
a new input card.

The statement
READ (Vl,vg,v3 yees ,Vn)
is equivalent to
READ (Vl); READ@N (V2,V5,...,Vn)

Numbers are punched into data cards in the forms described in
Section 1.2, and may be prefixe. by "-". Numbers corresponding to
variables of type integer must nof contain decimal fractions or

scale parts.

EXAMPLES READGN (A2)
- In this case the data card ﬁust contain at least one number,

say 1.279'-7 if A2 is not an integer variable,,

READ (B10,B11,B812,B15);

The data cards must contain four numbers, say

3.4 7. 149 825'1 9 if Bl0, Bll, Bl2 are not
integer variables, Bl5 may be an integer variable or a real
variable. One could spread these constants over several cards

if desired.
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In general input read into the machine must be assignment compatible

with the corresponding variable (cf. Section 2.3.2).

2.3. Assignment of numerical values through expressions

D b
Exponentiation a  (a**b);s defined by repeated multiplication if
b is a positive integer and by 1/ a 11 when b is negative. P must have
type integer. If one desires the result of AR where R is real, use

EXP (R ¥ IN (n)).
2.3.1. Evaluation of expressions

The discussion in this paragraph of Baumann et. al. is correct.
However, in ALGOL W the type of a resulting expression is defined for
each type and each operator. The type complex and the discussion of
the long forms is provided for completeness and may be ignored by

beginning programmers (cf. ALGOL W Language Description, Section 6.3).

I: A+B,A-B

B
Z\\\\\\\\\\ integer real complex
integer integer real complex
real real real complex
complex complex complex complex

The result 1as the quality "long" if both A and B have the quality

"long", or if one has the quality "long" and the other is integer.



II: A *3

A B integer real complex
“integer integer long real long complex
real long real long real long complex
complex long complex long complex long co

affect the resultant
A or B hdving the quality "long" does not

type of the expression.

III: A /B
A B 1nteger real - complex
integer real real complex
real real real complex
complex complex complex complex

" " i for +
i long" are those given
The specifications for the quality g

a.nd—.

IV: A *x 3
A B integer
integer real
real real
complex complex

i does.
The result has the quality "long" if and only if A does

10



V: ABS A means the "absolute value of A".

A . ABSA
integer integer
real real
complex real

2.3.2. Type of the variable to which a value is assigned,

The assignment V := E is correct only if the type of E is

assignment compatible with V. That is, the type of V must be lower or

on the same level in the list below as the type of E.

integer
real, long real

complex, long complex

Several transfer functions are provided as standard functions
(cf. Section 2.4). For example, to change the type of expression E from

real to integer either ROUND(E), TRUNCATE (E) or ENTIER(E) may be used.,

2.3.4. Multiple assignments

The assignment of the value of an expression can be extended to

several variables. As in ALGOL 60, the form in ALGOL W is

The multiple assignment statement is possible only if all the
variables occurring to the left of V'j_:= are assignment Compatj_ble with

the type of the variable or expression to the immediate right of the .,

11



2.4 Standard Functions

All the standard functions listed in this section are provided in
ALGOL W except sign and abs. ABS is a unary operator in AILGOL W. In

addition the following standard functions are provided.

truncate (E) if E.- 0, then entier(E)

e

if E < 0, then -entier(-E)

round (E) if E > 0, then truncate (E + 0.5)

if E < 0, then truncate (E - 0.5)

log(E) the logarithm of E to the base 10

(not defined for E < 0)

time (E) if B 1, elapsed time returned in 6djlgof a second

2, elapsed time returned in 60th's of a second

if E
and printed in minutes, seconds, and 6Oth!S of a

second

2.5. output
The identifier "print" should be replaced by "write" . A print
line-consists of 132 characters.
- EXAMPLES WRITE (E) ; WRITE(El,Ee,.:.,En);

The format of the values of each type of variable is listed below:

integer right justified in field of 14 characters and
followed by two blanks, Field width can be
changed by assignment to INTFIBLDSIZE.

real same as integer except that field width is

invariant.

12



long real right justified in field of 22 characters

followed by 2 blanks.

complex two adjacent real fields.
long complex two adjacent long real fields.
logical TRUE or FALSE right justified, in a field of

6 characters followed by 2 blanks.

string field large enough to contain the string and
continuing onto the next line if the string
is longer than 132 characters.

bits same as real.

In order to provide headings or labels for printed results, a
sequence of characters may be printed by replacing any expression in
the write statement by the sequence of characters surrounded by ".
If the " mark is desired in a string it must be followed by a ".

EXAMPLES

WRITE ("N =", N)

This statement will cause the following line to be printed if
N is integer and has the value 3.
N = 3

WRITE ("SHAKESPEARE WRATE ""HAMLET""" )

This statement will cause the following line to be printed.

SHAKESPEARE WR¢TE "HAMLET"

In the statement

WRITE (El,EE, ces ,En')

15
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the type of each Ei determines the field in which its value will be

placed. The field for Ei+ follows the field for Ei on the current

1
print line. If there is not enough space remaining on the current
print line, the line is printed and the field for Ei+l begins at the

beginning of a new print line. The first field of each write statement

begins on a new print line.

3.  Construction of the program

3.1 Simple Statements

I
=

Note that the simple assignment statement takes the form V :

and that the input-output statements are
READ (V), READON(V), and WRITE (E)

where V is a variable or a variable list and E is an expression or

expression list.

3.2 Compound Statements

In later descriptions in these notes "compound statements" will be

synonomous with "blocks without declarations".
3.4 Comments

The construction

comment text;

may appear anywhere in an ALGOL W program. However, in ALGOL W the

comment following an end is limited to one identifier which is not a

reserved word.

14



3 5. Example.
To clarify the change necessary to form an ALGOL W'program from

the program endlosed in the box, the example is shown as it would be

punched. Note that an AILGODL W program must end with a . (period).

BEGIN COMMENT EVALUATION OF A POLYNOMIAL;
REAL AO, Al, A2, A3, X1, P;
READ (AO, Al, A2, A3, x1);
P := ( (A3 *¥ X1 + A2) * X1 + Al) * X1 + AO;
WRITE {(P)

END.

Note that the indentation, although not required, allows the begin
and end to be matched easily. In complicated programs indentation will

improve readability and therefore reduce the number of careless errors.
.

k, Loops

k.1, Repetition

The variable V of the for statements described is always of the
type integer and cannot be declared in ALGOL W; its declaration is
implicit (cf. Section T), and its value cannot be changed by explicit
assignment within the controlled statement. Each expression E of the
for clause must be of type integer.

The statement of the form

for V := Hl’HQ” oo,}fng_g_S;

is correct for n 2 1 in AIGOL W only if “ are all integer

expressions,



The form

for Vv := E step 1 until E,do S;

may be abbreviated as
for V := Eyuntil Eydo S;

4.2, Subscripted Variables

In AIGOL W the subscript expression must be of type integer. Any

other type will result in an error detected during compilation,

4,2,1. Array declarations

In the text, the : in array declarations must be replaced by ::

for ALGOL W. The word array must always be preceded by its type.

ARRAY A[l:lo,l;eo]; is incorrect and should be written

REAL ARRAY A (1::10, 1::20);
Only one set of subscript bounds may be given in an array declaration.

Hence, the examples should be corrected for AIGOL W to read
EXAMPLES
real array A, B, C(1::10);

real array D, EG(1::10, 1::20);

integer array N, M(1::4);

4.4.2. Example

In AIGOL W the example in the box would be written as listed below.

16
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BEGIN COMMENT DERIVATIVE OF A POLﬂW»ﬂAL;

INTEGER N; REAL P, C;
REAL ARRAY A(1;:20);
READ (N, C);
FOR I .= 1 UNTIL N DO READON(A(I));
P :=0;
FOR I := N STEP -1 UNTIL 1 DO
P := PXC + IxA(T);

WRITE (P)

5. The Conditional Statement

Conditional statements are very useful and are used in AIGOL W as

discussed in this chapter for AIGOL60. Note that the symhols <

-

’?.:

and must be replaced by < =, > =, and
d P Y ’ ? -~ =, respectively.

6. Jumps

6.1. Labels

All labels in AIGOL W must be identifiers which are not reserved

words. The final expression in a function procedure may be labeled,

6.2. The Jump Statement

g0 to may be written as GO TO or GOTO in AIGOL W.

6.2.1. Jumps out of loops or conditional statements
The value of the loop variable is not accessible outside of the

loop in AIGOL W.
17



6.2.2. Inadmissible Jumps

It is not possible to jump from outside into a loop in ALGOL W.
Likewise, it is not possible to jump“into a conditionalstatement.

In general, it is not possible to jump into the middle of any
statement, viz. for statement, conditional statement, while statement,

compound statement, block,

6.4, Another Form of Loor Statement

The statement described in the text does not exist in ALGOL W,
However, ALGOL W has another form of loop statement which is

useful -- it is called the while statement.
FORM while B do S

B is a condition like that described in Chapter 5. As long as B is
true, the statement S will be repeated. It is possible that S is

never executed. More precisely, this loop may be interpreted

L: if B then

begin S; goto L

end
The example in Section 6.3 can be rewritten as follows:

BEGIN COMMENT DETERMINATION OF THE CUBE ROOT;
REAL A, APPROXIMATIONVALUE, X, Y, D;
READ (A, APPROXIMATIONVALUE);

X = APPROXIMATIONVALUE; D := ABS X;

18



WHILE D > .5'-9 * ABS X DO

BEGIN

END;

END.

7.. Block Structure

For the purposes of block structure in ALGOL W compound statements

must be considered as blocks, namely blocks without declarations. A
compound statement with a label defined in it is a block. (Reread the
notes in this paper concerning Chapter 6.) In for statements the scope

of the variable V in the for clause is the statement S following the do.

7.4. Dynamic Array Declarations

The expressions specifying the subscript bounds in dynamic array

declarations must be of type integer.

8.  Propositions and Conditions

The word "Boolean" in the text should be replaced throughout by

"logical".

8.1. Qogieatat ions

Some of the symbols for logical operations are different in

ALGOL W.

19



Operation ALGOL ALGOLW READ AS

negation - - not

conjunction A AND and

disjunction \% CR or

equivalence = ~ is equivalent to

ALGOL W does not have an equivalent form of the ALGOL implication

symbol, D. The effect of OB is gotten by (—A) OR B. The ALGOL W

expression A~ = B is equivalent to the ALGOL 60 expression-, (&B).
The following hierarchical arrangement defines the rank cof the

operator with respect to other cperators.

Level ] Operations Symbol
L LONG, SHORT, ABS
2 SHL, SHR, ¥¥
3 —/
L AND, ¥, /, ).V, REM
P OR, *, -
6 <G < my >, > o=y, =, o=, IS

In a particular construct, the operations are executed in a sequence
fr m the highest level (smallest number) to the lowest level (largest
number). Operations of the same level are executed in order from left
to right when logical operations are involved and in undefined order
in arithmetic expressions.

The discussion in this section is correct except concerning the
hierarchy of operators. In general, the extra parentheses are required
in ALGOL W when using arithmetic expressions with logical operators.

The examples below are correct ALGOL W and correspond to examples in

20



the text. All parentheses are necessary.

EXAMPLES
(A >5) OR (B > = 1)
(A*B>=C+D)= (ABS (21 +Z2)> M)

(0< = xjAND (X <= 1)

(X = 3)0R (1< =1X)AND (X <= 2)

means (X = 3) OR ((1 < = X) AND (X < = 2))

9. Designational Expressions

The designational expressions described in the text do not exist

in AIGOL W. The chapter may be skipped.

However, AIGOL W provides a designational statement and expression

which is equivalent to that described by the text.

9.1. The Case Statement

The form

CASE E JF

BEGIN
Sl;SQ;...96 n
END

is called a case statement. The expression E must be of type integer.

The value of the expression, E, selects the SE statement between the

BEGIN END pair. Execution is terminated if the value of E is less

than 1 or greater than n. After the designated expression is executed,

execution continues with the statement following the END.
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! I

1

v

EXAMPLE

CASE I OF

BEGIN

BEGIN J := I; GOTO L1;

END;

IF J < I THEN GOTO L1

END

If the value of the expression,

I, is 3, for example, the statement,

IF § < I THEN GOTO Ll is executed, p 5 _ T then execution continues

following the END,

9.2, The Case Expression

Analogous to the case statement, the case expression has the form

CASE E OF (El,Ee,”..,Ev/

"

!

The value of the case expression is the value of the expression selected

by the value of the expression E, If the value of E is e,then the

value of E is the value of the case expression.
e The type of the case

expre.=ion 1s

integer

~eal

long- real

complex
long complex

if all Eﬁ‘san?integer

if any Ei is real and no Ei i8 complex or long

complex

if any Ei is long real and all.Ei's are long real
or integer

if any Ei is complex

if any Ei is long complex and all Ei's are long

complex, long real, or integer
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EXAMPLE"

CASE 3 OF (4.8, 12, 17, 4.9) has the value 17 in floating

point representation since the type of the case expression is real.

10.  Procedures
10.1.1. Global and formal parameters

Labels may not be used as formal parameters. Swyitches do not exist

ii? ALGOL W.
10.1.2.1. Arguments

Arguments serve to introduce computational rules or values into
the procedure. A rule of computation can be brought into the procedure
if the computation is defined by means of another procedure declaration,
or a statement.

Formal simple variables, formal arrays, and formal procedures can
be arguments.

Example 3 is correct in the text.

A formal array can be used as an argument in only one way, 'call

by name". The discussion concerning "call by value" should be ignored.
10.1.2.3. Exits

Because labels may not be used as actual parameters to a procedure,
the text's discussion of exits is not correct for ALGOL W. However,
a statement (in particular a GOTO statement) may be used as an actual
parameter corresponding to a formal procedure identifier. 1In this way

side exits leading out of the procedure are provided,
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10.1.3. Function procedures and proper procedures

From given pieces of programs, procedures can be derived either
in the form of function procedures or in the form of proper procedures.
The body of a function procedure is either an expression or a
block with an expression before the final END in the procedure body.
The value of the expression is the value of the function procedure.
The way in which a procedure is set up and used is a fixed
characteristic of the procedure and is established directly in the
declaration by means of the introducing symbols. The declaration of
functions is introduced by the symbols
INTEGER PROCEDURE
REAL PROCEDURE

LOGICAL PROCEDURE

according to the type of the resuiting value, The type of the expression
giving the value of the procedire must be assignment compatible with
the declared type of the function procedure.

The declaration of the proper procedure begins with the symbol
PROCEDURE

No resulting expression can be placed at the end of the procedure

body.
10.1.4. The procedure head

All necessary assertions about the formal parameters and the use
of the procedure are contained in the head of the procedure declaration.

In AIGOL W the head consists of three parts:
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(1)

(2)

(1) Introductory symbol
(2) Procedure name

(3) List of formal parameters, and’théir speéifications

The introductory symbol determines the later use of the procedure
(cf. Section 10.1.3,)

The procedure name can be chosen almost arbitrarily. The only
restriction is the general limitation concerning some reserved
names (ct. Section 1.3).

The type, value specification, and identifier name of formal
parameters appear in the list of formal parameter specifications,
and not separately as in AIGOL 60. The comma serves as the
general separation symbol between formal parameter identifiers

of the same type and value specification. The semicolon serves
as the general separation symbol between specifications of formal

parameters of different types or value specifications,

The type of the formal parameter is specified by the symbols

REAL
LONG REAL
INTEGER

COMPLEX

LONG COMPLEX
LOGICAL

REAL ARRAY

LONG REAL ARRAY
COMPLEXARRAY
LONG COMPLEX ARRAY
INTEGER ARRAY
LOGICAL ARRAY

25
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REAL PROCEDURE

LONG REAL PROCEDURE
COMPLEX PROCEDURE
LONG COMPLEX PROCEDURE
INTEGER PROCEDURE
LOGICAL PROCEDURE
PROCEDURE

The value specification is used only for parameters called by
value « It is specified by the symbol value, It may only follow the

types INTEGER, REAL, LONG REAL, ILOGICAL, COMPLEX, LONG COMPLEX,

EXAMPLES

PROCEDURE P (REAL X, Y; INTEGER VALUE I; PROCEDURE Q, R);

REAL PROCEDURE Z (LOGICAL L, M, N; REAL PROCEDURE P);

Note that in the case of formal parameters used as array identifiers,
information about the number of dimensions must be given. The 1last
identifier following each array specification must be followed by "("
followed by one asterisk for each dimension separated by commas, followed
by "),

EXAMPLE

-PROCEDURE P (REAL ARRAY X, Y (*,*); REAL ARRAY 7 (*)).

10.2., The Procedure Call

The procedure call in ALGOL W i3 unchanged from, ALGOL 60. This
section should be read carefully,

Since labels are not allowed as parameters, it was earlier suggested
that jump statements be used and that the corresponding formal parameter

be a'proper procedure (cf. 10.1l.4. Example 8); In general, any
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statement may be used as an actual parameter corresponding to a formal
proper procedure which is used without parameters,

EXAMPLE

BEGIN

PROCEDURE VECTOROPERATIONS (inTeceR Jj; INTEGER VALUE N;
PROCEDURE P);
BEGIN J := 1;
WHILE J < = N DO
BEGIN P; J:= J + 1
END
END;
REAL PROD; INTEGER I;
REAL ARRAY A, B, C(1::10);

(initialize A and B)

L1: VECTOROPERATIONS (I, 10, C(l) := A(l) + B(1l));

PROD := 0.0;

L2: VECTOROPERATIONS (I, 10, PROD := PROD + A(l) * B(1l));

END

The statement Il is a procedure call which causes a vector addition

of A and B to be placed in C. The statement L2 causes the element-by-

element vector product of A and B to be calculated and placed in PROD.
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10.3. Example
REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;;

REALVALUEA, B; INTEGER VALUE ORD);
BEGIN REAL T1, L;
ORD := ENTIER ((ORD + 1) / 2);
BEGIN INTEGER F, N; REAL M, S;
REAL ARRAY U, T (1 :: ORD);
L := B-A;
T(1) := (FCT(A) + FCT(B)) / 2;

U(1) := FCT ((& + B) / 2);

FOR H :=2 UNTIL ORD-1 DO
BEGIN N := 2 * N; S := O3
M := L/ (2 % Nj;
FOR J := 1 STEP 2 UNTIL 2 #* N - 1 DO
S :=S + FCT (A + J % M;
U(H) := 8 /N
T(H) := (T(H - 1) + U(H - 1)) / 2;
P =1,
FOR J 5= H - 1 STEP -1 UNTIL 1 DO
BEGIN F := L * F;
T(3) 1= (3 + 1) + (2(T + 1) - M) / (F - 1);
U(d) t= U(T + 1) + (U(T + 1) - UuW)) /(F-1);
END;
END;
IF ORD > 1 THEN
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BEGIN
T(2) := (U() + T(1)) / 2;
T(1) = T(2) + (T(2) - T(1)) /{4 *F - 1)

END;

The names of standard functions and standard procedures cannot appear

as actual parameters in ALGOL W. Therefore the calls to R@MBERGINT

in Section 10.3 are incorrect. However, this situation may be overcome
by declaring a procedure which returns the value of the standard function

or performs the computation of the standard procedure.

EXAMPLE

REAL PR@CEDURE SINE (REAL VALUE X); SIN(X);
Then a call to RPMBERGINT might be

A := ROMBERGINT (SINE, X (1), x(2), lo);

-EXAMPLE 6
REAL PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);
BEGIN REAL S;
s :=0;

FOR I

1 UNTIL N DO

S s + A(I,I);

END

29



- EXAMPLE"

PROCEDURE COUNTUP (INTEGER X);

EXAMPLES
- PROCEDURE ROOTEX (REAL VALUE X; REAL Y; PROCEDURE P);
IF X > = O THEN
Y : = SQRT(X)
ELSE
BEGIN Y := SQRT(ABS X);
- | P

END

The actual parameter corresponding to the formal parameter P

should be a jump statement.
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PART II: Some Extensions of AIGOL 60 in ALGOL W

1. Procedures

+.1. Call by Result

Besides "call by value" and “call by name", ALGOL W allows parameters
to be called by result, The formal simple variable ishandled as a local
quantity although no declaration concerning this quantity is present,

The value of the simple variable is not initialized at the procedure
call, If the procedure exits normally; the value corresponding to tt.
formal simple variable is assigned to the corresponding actual parameter.
The formal parameter must be assignment compatibte with the actual
parameter. To specify:a result parameter, insert the word RESULT after

the type and before the identifier (as with VALUE),

EXAMPLE
PROCEDURE R(REAL RESULT X,Y; INTEGER VALUE I; LONG COMPLEX RESULT 2);

1.2. Call by Value Result

Formal simple variables may be called both by value and result,
This combines the calls of value and result so that the formal idenfifier
is initialized to-the value of the corresponding actual parameter at
procedure call and the value of the formal identifier is assigned to
the corresponding actual parameter at a normal procedure exit, To
specify-a value result parameter, insert the words VALUE RESULT after

the type and before the identifiers.

EXAMPLE

PROCEDURE Q( INTEGER VALUE RESULT 1I,J,K);

31



-

—

2. Procedure Calls

201. Sub-arrays as Actual Parameters

In ALGOL W, it is possible to pass any rectangular sub-array (array
of few dimensions, i.e., a generalized row) of an actual or formal array
to a procedure. Those dimensions which are to be passed to the procedure
are specified by *'s, and those which are to remain fixed are specified
by integer expressions. The number of dimensions passed must equal the

number of dimensions specified for the corresponding formal array.

EXAMPLE

The actual parameter may be a sub-array of a three dimensional
real array A. Examples of possible actual parameter specifications and

corresponding formal parameter specifications are listed below.

Actual Parameter Corresponding Formal Parameter Specification
A or A(***) real array B(¥,%,%)
A(T,*,%) real array B(%,%)
A(*,T,%) real array B(¥,%)
A(%*,%,1) real array B(¥,%)
A(I,J3,%) real array B(¥)
A(T,*,J) real array B(¥)
EXAMPLE

Read in the size of one dimension of a cubic array X, tpen
read in the elements of X.

Calculate and write out the sum of the traces of all possible
two dimensional arrays in A using the previously defined real procedure
TRACE.
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BEGIN

REAL SUM;
REAL PROCEDURE TRACE (REAL ARRAY A(**); INTEGER VALUE N);
BEGIN COMMENT THE BODY OF THIS PROCEDURE IS GIVEN IN A
PREVIOUS EXAMPLE;
END;
INTEGER N;
READ(N);
BEGIN
REAL ARRAY X(1::N,1::N,1::N);
FORI :=1 UNTIL N DO
FORJ :=1 UNTIL N DO

FOR K := [ UNTIL N DO READON(X(I,J,k))
SUM := 0;

.
b

FOR1 := | UNTIL ™ DO
SUM = SUb + TRACE(X(I, *, .. "V + TRACE (y(x | %) N)
+ RACE (X(*,%,1),N);
WRITE (SUM)
END

Ty
Iu"
SN,

3. String Variables

Frequently, it is desirable to manipulate sequences of characters,
This facility is available in ALGOL W in the form of string variables,,
Each variable has a fixed length specified in the string declaration,,

The form of the declaration is
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string (<integer number>) <variable list>

The integer number must be greater than 0 and less than or equal to
256. The specification "(<integer number>)" may be omitted; a default

length of 16 is assigned to the variables, Arrays of strings also may °

be declared,

EXAMPLE
STRING A, B, C
STRING (24) X,Y,2
STRING (10) ARRAY R,8(0::10,5::15)
In order to be able to inspect elements of the string or to
manipulate portions of the string, a substring designator is provided,

of the form:
<string identifier> (E ] <integer number>)

The expression E must be of type integer, This string expression
selects a substring of the length specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the stringhasposition O,

EXAMPLE
BEGIN STRING (5) A;

A = "Q’RSTU";
A (3]2):= A (0]2);
WRITE (A)

END

In this example the constant string "QRSTU", is assigned to the
variable A which is declared to be of length, 5. Then the character
positions G and 1 of A are assigned to positions 3 and 4 of A.
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Consequently, when the string A is written its value is QRSQR. It
should be noted that the assignments are made character by character
from left to right. If the second assignment statement in the example

above had been
A (2]3) = a(0]3)
the resulting value of A would have been QRQRQ.
The variable on the left of an assignment statement must be of
length greater than or equal to the length of the expression on the

right. Ifashorter string is assigned to a longer string, the shorter

string is extended to the right with blanks until the lengths are equal.

EXAMPLE
BEGIN STRING(5) S;
§ := "ABCDE"; S :="XY"; WRITE(S)
END;

The string XY is printed.

Strings within a CASE exprcssion or an IF expression must be all
of the same length.

All the relational operators may be used with string arguments.
The EBCDIC representations of the strings are compared character by
character. 1If one string is shorter than the other, the shorter string

is filled with characters less than any possible EBCDIC character..

Strings of unequal length are never equal.
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EXAMPLE

Relation Value

"A" <"B" TRUE

Ty o g TRUE

"AM >N FALSE

A, = AT FALSE
L.  Records and References

Records and structured quantities composed of quantities of any
of the simple types such as REAL, INTEGER, STRING, etc. Records
themselves do not have values; only the quantities which compose the

records may have values.

4.1. Record Class Declarations

Record declarations indicate the composition of a record. Unlike
simple type declarations or array declarations no storage is reserved
for a record when the record declaration is encountered. Essentially,
the record declaration only describes the form of records to be created.

The record declarations appear with all' other declarations. The form is:
RECORD V ( <declarations of variables of simple type> );

The name V is the name of the record class. The variables

declared between the parentheses are called the fields of the record.

EXAMPLES
RECORD A(INTEGERI,J; REAL Z; STRING (5)S);

RECORD B(REAL X; LONG REAL IX; REAL Y),
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The punctuation of the examples should be noted carefully., The

names ir. the list of identifiers following the indication of the simple
type are separated by ",". The list is ended with a ";" unless the

"on

;" would immediately precede the closing ")".

4.2, Reference Declarations

REFERENCE is a simple type in ALGOL W. The value of a variable

of type reference is an address of a record. This address is some-

times called a pointer to a record.

Reference declarations appear in a program where all other declarations

appear,

FORM

REFERENCE (V) Vl;

V is a name of a record class. Vl is a name of a reference

variable or a 1list of names of reference variables separated by ",",
EXAMPLE
REFERENCE (A) R1,R2; R3;

The name V af a record class may also be a list of names
separated by ",". This list indicates the record classes to which
records referenced by the reference variables must belong.

EXAMPLE

REFERENCE (A,B) R4, R5;

R4 and R5 may point only to records of record class A or B.
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The reserved word NULL stands for a reference constant which

fails to designate a record,

Arrays of references are declared and used analogously to arrays

of other simple types. The form of the declaration is:

REFERENCE (V) ARRAY Vl (<subscript bound+);

EXAMPLE

REFEKENCE (A,B) ARRAY AR1, AR? (1::10),3::7);

The implementation requires that all reference arrays declared in
L ablock be declared in the same reference array declaration or

immediately following a reference array declaration.
‘ EXAM. 1L
REFERENCE (A) ARRAY AR1, AR2 (1::10,3::7);

. REFERENCE (B) ARRAY AR (2::17);

1~ the example above, any <;her declaration except a reference
4y declaration is not allowed between the two reference array

saeclarations.

Reference Expressions

Quantities of simple type reference may be used in assignment

stateuments and comparisons,

EXAMPLES
Rl :=R2
R1 := NULL
R1 = R2
Re=—==R3
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Only the relations = and—=are allowed between references. In

order to inquire to which record class a reference expression is bound,

the IS operator is provided. The form is:
EIsv

E is a reference expression and V is a name of a record class. .

value of the IS operator is logical, either TRUE or FALSE.

EXAMPLE

R4 IS B

4.4. Record Designators

A particular type of reference expression is the record designator.

A record designator is the name of a record class.

EXAMPLE 1
Rl := A
R4 :=B

When the record class name is encountered, the value is a pointer

to a new record of that class. The values of the fields of the new

record are undefined.

AIGOL W provides a short notation for creating a record and

initializing its fields. This modified record creator has the form

V(EL) .

V is the name of the record class. Tpe expression list EL between the

parentheses is the list of the values of the fields specified in the

order they aprear in the record class declaration.
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EXAMPLE 2
BEGIN RECORD H (INTEGER C,D; STRING (2) S);
REFERENCE (H) R1;
Rl : = H(5, 8, "AZ")

END*

Examples 2 is a short program which declares a record class H and
one reference variable Rl whose values may point to records of class H.
One record of class H is created and each field of the record pointed

to by Rl is initialized.

4.5 Field Designators

In order to manipulate the values of the fields of a record, the

expression
v, (E)
exists in ALGOL w. E is a reference expression. v, is a field of the
record class of the record pointed to by E. The type of the field
designator is the type of the variable v, -
EXAMPLES
z(R1)

IX(RY)
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EXAMPLE 2 C€an be rewritten as:

BEGIN RECORD H (INTEGeg C,D; STRING (2) S);

REFERENCE (H) R1;

Rl:= H;
C(R1) := 5;
D(R1) := 8;
S(R1) : = tpgn

END.
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The following notes are intended to give the

student of Computer Science 136 some orientation

into how numbers are represented in the IBM System/360
computers. Because we are using Algol W, some refer-
ences are made to that language. However, very little
of what is said here depends on the peculiarities of
Algol W, and this exposition is mostly applicable to
Fortran or Algol 60 with slight changes in wording,

It will also do for the floating-point numbers and
full-word integers of PL/1. Users of shorter or
longer integers or decimal arithmetic in PL/1 will

need more orientation.
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On IBM's system $60, the following units of information storage

are used:
a) the Rit, a single 0 or 1
b) the ﬂ’;t_i a group of eight consecutive bits
¢) the (short) de, a group of four consecutive byteg=-
i.e., 32 consecutive bits
d) the long word, a group of two consecutive short words--
i.e., eight bytes or 64 bits,

For number representation in Algol W the words and long words are

the main units of interest .

INTEGERS

Integers are stored in (short) words (f the 32 bits of’ 8 short
word, one is reserved for the sign (Ofor+ and 1 for -), leaving

31 bits to represent the magnitude, A positive or zero integer is

stored in a binary (base 2) representation Tpyg 211 (the subscript
0
means base 10) is stored as

0000 0000 0000 0000 0000 0000 0001 0101 .

1
sign bit
To confirm this, note that
O [y ] /
21r9x25 + .,,e,+O><2>+J_><2”l+o><25 + x1 2%0'x21+1x20.

The Jargest integer that can be stored in a word ig
30 29 + 1 0
e+ 2 vee + O 4+ D = 251 -1 = (211+7h856l+7)lo .
Any attempt to create or store an integer larger than oL 1 will

produce erroneous results, and (unfortunately) the user will not always

be warned of the error, (gee below, )
To save space in wri-king words on paper, each group of four bits

in a word is frequently converted to a single base-16 (hexadecimal)

digit, according to the following code:
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DBase base 16 base 2 base 16
0000 0 1000 8
0001 i 1001 9
0010 2 1010 A
0011 3 1011 B
0100 ki 1100 c
0101 5 1101 D
0110 6 1110 E
0111 7 1111 F

Thus A, B, C,D, E, F are used as base-16 representation6 of the decimal
numbers 10,11, 12; 13, J-4, 15 respectively, Nevertheless, integers are
stored as base-2 numbers
Using hexadecimal notation, the decimal number 21 is represented
by
OOOOOOJ.S16 .

Note that 1516 is the base-16 representation of 2110,,
Negative integers are stored in what is called the "two's complement

form", Tor example, -1 is stored as
1111 1111 1111 1111 1111 1111 1111 1111 ’
= FFFFFFFFlG

Also, -21 is stored as

111211 1 1 1 1111 4111 1111 1111 10 1011

= FFFFFFEB16 o
Ti.e representation for -21 is obtained from that for +21 by changing
every 0 toland every 1 to O, and then adding + 1 in bage-2 arithmetic
tothe result, Similarly for any negative integers, Every negative
integ.r has 1 as its sign bit, The smallest integer storable in
System/360 is 2ot ~2147483648 |, and is represented by 8000000016°
Another way to think of the representation of negative numbers is
to consider a 32-place binary accumulating register (the base-2 equivalent
of the decimal accumulating register in a desk calculating machine),
If one s-tarts with all zeros in this register, one get6 the representation
for -1 by subtracting 1. The process require6 a "borrow" to propagate
to the leftall the way across the register, leaving all ones, just 86
on a decimal accumulator this would leave all nines. (Continue& sub-

traction will give the representations for =2,=3, = |
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From the point of view of an accumulator we can &lso see what
231 ~1. For
example, if we add 1 to -231-1, the resulting carry will go ali the

happens when we create a positive number larger than

way into the sign bit, leaving a sign bit of 1 with all other digits
zero. But this is the representation of 27t Thus the attempt to
produce positive numbers in the range from 22t 1o approximately 272
will yield a negative sign bit, Consequently, positive integers that
"overflow" into this range are sensed as negative by System/360. Any
ar.omalous appearance of negative integers in a computation should

lead the programmer to suspect inheger oneeflow, a n i s m s o f
Algol W for detecting integer overflow (not described in this document)

can be used to detect addition6 or subtractions that produce integers
outside the range from 23t to 2741, The presence of an integer
product outside that range is not at present detectable in Algol W,
although the compiler could (and perhaps should) be modified to make

a test. Attempts to divide an integer by 0 wiil yield an error message
and an irr:levant quotient and remainder.

The behavior of System/360 on integer overflow is quite different
from the Burroughs B5500. 1Inth-7atter machine, any integer that
overflows is replaced by a rour.d floating-1+. o number, There are
ad—~zntages to either approach t integer overflow, depending on the
a lilcation.

If the user suspects that Integers in hi6 program are getting
anywhere near 109, he should convert them to double-precision floating-
poin* numbers by use of the Algol W operator LONG, Conversion to single-
pr=c . -n floating-point numbers may lose some precision,

The most important thing fcr a scientific user to remember is that
intep »» in the range -251 to 2211 are stored without any approximation.
Morcovey . operations on integers (adding, subtracting, multiplying) are
done without any error, sc long a6 all intermediate and final results

51 and Ejl»lu. It is perhaps easier t¢ remember

are integers between =2
as safe the interval from -2 x 109 to 2 x 109 , obtained from the

useful approximation 210 - 153



The operations of division without remainder (called DIV in Algol
W) and taking the remainder on division (called REM in Algol W) always
give integer answers, If the divisor is 0, an error message is given,,

In Algol W two operations on integers give results that are not

stored as integers--namely / and **.
FLOATING-POINT NUMBERS

Numbers in many scientific computations will grow in magnitude
well beyond the range of integers described above, To provide for
this, System/360 and most scientific computers have a second way to

represent numbers--the so-called floating-point representation,

The significance of the name "floating-point” is that the radix point
--for example, the decimal point in base-10 numbers-s-is permitted?
float to the right or left, thus permitting scaling of numbers by
various powers of the radix, Although a decimal point tha% has floated
off to the left will produce a number written like 0,001345, the
numbers are actually represented in a form closer to what is often

called scientific notation, here 1,3‘45x1o‘5 .

In System/360, floating- .int numbers are always represented in

base-16 notation;i.e., the re ix_or number base .s 16, This permits
us tc write numbers in abbrevi ted form (as we did with integers earlier),
More important, the use of base-16 conforms with the hardware arithmetic
processes in which shifting is done four bits at a time to speed up the
operations. The speed-up is achieved at a slight cost in precision,
as is learned from detailed error analyses which we cannot go into here.

We first consider the floating-point representation of numbers by
a single word of 32 bits, This is the so-called single-precision
or short real number, the number of type REAL in Algol W. The 32 bits

of a word are numbered from 0 to 31, from left to right, just to identify

them, In floating-point representation the left-hand eight bits (bits 0
to 7, equivalent to two hexadecimal digits) are devoted to the sign of
the number and the exponent of 16 associated with the number, The right-

hand 24 bits (bits 8 to 31, equivalent to six hexadecimal digits)
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vepresent six significant hexadecimal digits (the gignificand) of the

number,

As with integers, the sign of the number is denoted by bit 0,
with O representing + and 1 representing -,

Bits 1 to 7 give the binary (base-2) representation of a non-—

negative integer in the range | to 12710, inclusive. This in-

10
teger is called the biased exponent, for reasons now to be explained.

If this integer were taken directly as the exponent, we would have no

negative exponents, and our range of floating-point numbers could not

_25, 1% 1is desirable to have an exponent

inciude such numbers as 16
range that is approximately symmetric about zero, n System/360 one
obtains the true exponent of the floating-point nwiber by subtracting

64 from the biased exponent represented by bits 1 to 7. Asa result,

the actual exponen*:.:ge from -64 to 63.

™ 2' bits 8 to 31 of a number are regarded as six hexadecimal
.git s with a hexadecimal point at the left-hand end, If the floating-
point number zero ig being represented, all the hexadecimal. digits are
zero, as are all the other bits, Otherwise, at least one of the hexa-
decimal digits must be nonzero. . floating-point number is said to be
normalized if the left-hand hex .decimal digit (cc:most significant
digit) of the significand is nonzero. In System/360 the floating-point
mrbers are ordinarily normalized, and we will not consider any other
forms .

We now give the floating-point representationg of some sample
nunibre. >3 . " As we said before, the number zero is represented by 32 zero
bits, i.e2., by eight 0 hexadecimal digits, Thus zero is represented
by the same words in floating-point or integer form. No other number
has this property,

The number 1.0 is represented by the word

sign bit
. 0,100 0001, 0001 0000 0000 0000 0000 0000,
biased -
exponent significand



To check this, note that the sign is 0 (representing +). The biased
exponent is 1000001, or 65100 Subtracting 64, yields 1 as the
true exponent. The hexadecimal significand is 10000016" Putting a
hexadecimal point at the left end gives the hexadecimal fraction

. ]4’\

+1/160Q90r}]6€s 16 1, or 1.0

To save writing, the above word is ordinarily written in the

, which equals 1/16, Thus the above word represents

hexadecimal form 41100000 . While one gradually learns to recognize
some floating-point numbers in this form, the author knows no easy way
to convert such a hexadecimal word into a real number. One just has
to take the right-hand six hexadecimal-digi%s, and prefix a hexadecimal
point, Then one examines the left-hand two-hexadecimal-digit number
(here 41). If this is less than 8016 s the floating-point number is
positive and one gets the true exponent by subtracting h016 = 641, .
If the left-hand two-hexadecimal-digit number is 8016 or larger, the
floating-point number is negative, and one gets the true exponent by
subtracting €O, = 8016 + 1;016 = 1%2,, and affixing a minus sign.
Some facility with hexadecimal arithmetic is required, if one has to
deal with such numbers.

In this presentation, we Lave considered the radical point to be ,
at the left of the six significant hexadecimal digits, and regarded
the exponent as biased high by 61+lo . As an alternative, the reader
may prefer to place the radix point Just to the right of the most
significant digit of the significand, and regard the exponent as biased
high-by 6510 . This brings the significand closer to usual scientific
notation but, of course, requires a trickier conversion to get the
true exponent, The fact that either interpretation (and many others)
are possible shows that really the radical point is just in the eye of
the beholder, and not in the computer!

Several examples of floating-point numbers are now given in hexa-

decimal notation, with the confirmation left to the reader.



decimal float Lng—point

0.0 = 00000000
1.0 = 41100000
0.0625 = 40100000
16.0 = 42100000
256.0 = 43100000
-1.0 = C1100000
-16.0 = €2100000
3.5 N 141380000

The largest floating-point number is 7FFFFFFF, representing
FFFFFF x167 or (1 -16°) x 1622 27.23 X 1017, (Here 10 and 16
denote decimal numbers,)

The smallest positive normalized floating-point number is 00100000,

representing

1 16'64

16
Negatives of these two numbers can also be represented, and are

2 5.40 x 10717

the extremes in magnitude of representable negative numbers,

Very few numbers can be exactly represented with six significant
decimal digits. (Exercise: Which ones can?) For example, 1/3:.35333310
only approximately. In the same way, very few numbers can be exactly
represented with six significan’ .cxadecimal digits, (Exercise:

Which ones can?) For example, '5:.55555516

Moreover, some numbers that are exactly representable in decimal are

7 approximately.

only approximately representable in hexadecimal; for example,
1/10 = ‘,J.OOOOOlO

1/10 = "19999Al6 only approximately.
. Thus round-off error -enters into the representation of most

floating-point numbers on System/360, and the round off differs from

exactly; but

that with decimal numbers. This can easily give rise to unexpected
results. For example, if the above number 019999A1 (2 O"llo) is
multiplied by the integer 10010:&1.6’ one gets not A.oooool6 =
lO.Olo , but instead A"0000516’ as a cumulative effect of the slightly,
high approximation to O.llo. And A.0000316 rounds to 10.0000210
on conversion to decimal,

The precision of a single-precision hexadecimal number is roughly

10". One can think of this as being crudely equivalent to seven sig-

T



nificant decimal digits-.

Not only do errors appear in the representation of numbers inside
System/360 (or any computer), but they arise from arithmetic operations
performed on numbers, For example, the product of two floating-point
numbers may have up to 12 significant hexadecimal digits. When the
product is stored as a single-precision floating-point number, it must
be rounded to six hexadecimal digits, This introduces an error, even
though the factors might have been exact,

The story of round off and its effect on arithmetic is a complex
and interesting one. Only within the current decade have there begun
to appear even partly satisfactory methods to analyze round off, and
we cannot go into the matter now, Some idea of thisis obtained in
Computer Science 137.

When an Algol W program assigns decimal numbers or integer values
to variables of type REAL, these are immediately converted to hexadecimal
floating-point numbers, with (usually) a round-off error,  When one
outputs numbers from the computer in Algol W; they are converted to
decimal, Both conversions are done as well as possible, bu% introduce
changes in the numbers that the rrogrammer must be aware of, And, of
course, all intermediate opera++.ons introduce further round offs and
possible errors, It is unthinkable to do the anaiysis necessary to
counteract these errors and get the true answer to the problem, If the
user wishes answers uncontaminated by round off, he should use integers
and integer arithmetic, and be prepared to guard against overflow,

Fortunately most users can accept an indeterminate amount of
round off in their numbers, provided they have some assurance that
round off is not growing out of control It is the business of numerical
analysts to provide algorithms whose round-off prcperties are reasonably
under control. This has been well accomplished in some areas, and hardly

at all in others.
DOUBLE PRECISION

The precision of single-precision floating-point numbers seems
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very adequate for most scientific and engineering purposes,being at the
level of seven decimals, However, a considerable number of computations
require still more precision in thz middle somewhere, just in order to
came out with ordinary accuracy a% the end, As a result, System/360
has provided an easy mechanism for getting a great deal more precision
in the computations, For this purpose a double word of 64 bits is used
to store a floating-point number of go-called double precision or long

precision. In this representation, the sign and biased exponent are
found in the firs% word of the double-word, with precisely the same
interpretation as with single-precision floating-point numbers. The
second word of the double-word consistz of eight hexadecimal digits
immediately following the six found wthe firs% word, There is no
sign or exponent in the second word. Thus a double-word represents
a signed floating hexadecimal number with 14 significant hexadecimal

digits. As before, nonzero numbers are normalized so that the most

significant digit of the 14 is nonzerc.

Examples:
long significand
1.0L = 41'100000 00000000
0.1L = 40 199999 9999999A

There is a full set of arithmetic operations for both single
and double-precision operations. Very crudely, for an example, single-
precision multiplication of single-precision factors takes around 4 micro-
seconds, while that for double-precision factors takes around 7 micro-
seconds, For modes% problems the extra time is completely lost in the
several seconds of time lost to systems and compilers, and the use of
double-precision is strongly recommended for all scientific computation.
Normally the only possible disadvantage of using long precision is the
doubling in the amount of storage needed, If one has arrays with tens
of thousands of elements, the extra storage may be very costly, gher-
wise, it should no% matter,

since 16_14 = 10'17, the double-precision numbers are crudely
equivalent in precision to 17 significant decimal digits.

For a machine with the speed of the 3%60/67, a number precision of
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six hexadecimal digits (roughly se ven dscimai s ) . s considered very low,
while a precision of 14 hexadecimaldigits(rougtly 17 decimals) is
very adequate.

72 floaeting~point arithmetic
hardware of System/360 prcvides the possibility of detecting when
numbers have gone outside the ¢xponent ran%e stated above. The reader

may think that a range from rcighly1C el lOf5 guouid cover all

reasonable computations. Whiie exponent overflow and exponent underflow

are no% very common, they can be thecause of very elusive errors,

The evaluation of a determinant is a common computation, and for a matrix
of order 40 is quite rapidly done (if you know how), If the matrix
elements are of the quite reasonable magnitude 1005,,, the magnitude of
the determinant will be no larger than roughly PO‘90 (and probably
much smaller), well below ths range of representabie floating-point
numbers, Such problems are a frequent source of exponent underflow.

Wz shall not discuss here the me-hanisms of Aigol W for de%ec%ing
exponernt overflow and undertlow, for these shouid be written up in
another place, Even without these, we see that flosting-point numbers
behave well for numbers that* are at least 1066 times as large as %he
largest integer in %he system: Hence ugeof fioating point numbers
meets almost all the problems raised by integer verflow. And, of
course, it permits the use of a large set of' rational numbers, which

do not 2ven entar the integer system,
ALGOLWREALS AND LONGREALS

The Algol W manual tells how to represent real variables and
numb=rs to take advantage of both single-and double-precision. The
purpose of this section is to bring thig information into rapport with
the hardware representation of numbers. If a variabls X is declared
REAL, one word is set aside for its valusg, and itwiil be stored in
single-precision floating-point form. if a variable.s declared tc be
LONG REAL, a double-word is szet acide to hold its valuzs. and it will

be stored in double-precision form

10



o

If a number is written in one of the decimal forms without an L
at the end, it will be rounded to single-precision, no matter how many
digits are set down, Thus 3.1415926535897932 will be immediately
rcunded to single-precision in the program, and all the superfluous
digits are lost at once. Thus the assignment statement

xx 1= 3,1415926535897932
will result in the double-word XX receiving a well-rounded form of #
in the more significant half, and all zeros in the less significant
half! Thus one gets a precision of only approximately seven decimals
for the pain of writing 17, and this may well contaminate all the rest

of the computation.

If one wants XX to be precise to approximately full double precision,

one must write the statement in the form
xx 1= 3.1415926535897932L .
With the declaration REAL X, the statement
X = 3.1415926535897932L
will result in X having a single-precision approximation to T, as
the long representation of M 1is rounded upon assignment to X.
The reader should now go back and examine the specifications of
the types of various arithmetic expressions, as stated on pages 9, 10,
11 of the Algol W Notes, and ou pp. 25, 26 of the Language Definition,
Some of the less expected effects are the following: Suppose we have

declaractions

REAL x, Y, z;

LONG REAL XX, YY, ZZ;

INTEGER I, J, K;

Then X*Y is LONG REAL; I¥J is REAL; I*X is LONG REAL;

The assignment statement

XX 1= X = Y¥Z

will result in XX having a single-precision rounded version of Y¥Z in
the more significant half, and zeros in the less significant word,

Moreover, I*I is INTEGER, but I** is REAL.

11



If the reader understands the language Algol W and the preceding
pages on number representation, he should have a good basis for under-
standing the effects of mathematical algorithms . But he should always

remain wary of what a computer is actually doing to his numbers9
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