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1. Introduction. In [10] it was shown that a freely ordered relax-
ation process or, in particular, a Gauss-Seidel type of successive "over-
relaxation" method converges for certain nonlinear problems. We will
show below that this process may be extended to group (or block) relaxa-
tion. In its extreme form this becomes a modified form of Newton's
method in n dimensions.

We obtain, moreover, a less restrictive choice of the relaxation
parameters than that given in [10]. It is also shown that the residu-
ally ordered processes given in [1l] for linear equations can be extend-
ed to this class of nonlinear problems. Here one obtains an estimate
for the error, as in the linear case. A special form of this method
was outlined without proof by Householder [6, p. 134].

.A proof is also given for a cyclic process (sometimes referred to
in the scalar case as "nonlinear overrelaxation" [11]) which is simpler
than that given for the freely ordered.process.

Some related work is given in [8] and other results in the direction
of finding asymptotic convergence rates may be found in [7]. These meth-
ods are usually applied to the solution of large systems arising from
finite difference approximations of nonlinear elliptic equations as shown
in [10]. Such applications go back at least ten years (see, for example,
[4] and [5]). Some more recent applications are given in [1], [2],[3],

and [97.
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2, Definitions. Let G(u) ¢ C (Rn) be a real valued funcwuion,
twice continuously differentiable over the whole Euclidean n space

*
Rn. We seek a global minimum of G(u), that is, a solution u of

(2.1) r(u) = grad G(u) =0
L= u )b, v, () =G
where r(u) = (rl(u), .o rn(u)) pu = gy eee, W), Ty u.(u) =
i
%E_ G(u). Let A(u) = (aij(u)) = (Gu 4 (W) denote the n by n Hess-
i I1i

ian matrix of G; A(A) and A(aA) will denote the minimum and maximum
eignevalues of a symmetric matrix A, respectively. For a column vector
u we write |u|2 = (u,u) = uTu and let e ll, = sup |r(u)]. write

’ Y ueD
A>0 (_>_ 0) when A is a positive definite (semidefinite) matrix, and
A > § means A -~ 61 > 0 for the identity I of order n.

Let Z

(13,2,...,n) and call g = (il, iy eess ik) a multi-index

oforderk_<_nifl§il<12<. . .<ik<n. Let g' = Z - g be the

multi-index of order n - k remaining in,' Z when g 1is removed. Denote

the set of all multi-indices of order k by an and let Qn =UE—len'

@
pip=0’ &
dering covers Z infinitely often if, for each i e¢ Z, i ¢ gP for in-

Any sequence {g D € Qn will be called an ordering. A n o

finitely many p; we then say that it is freely ordered.'

We use the notation of [11] for subvectors and submatrices. That is,

ug')v= u:'|.
v

where i, ¢ 8- Similarly, if h e an then Agh denotes the k by m

if g e Q’kn then ug is a subvector of u of dimension k: (

submatrix of A whose (v,u) element is aij s i\f;g, jueh. If g=h
Vvou

th A is a principal submatrix of A and let A _ = A(A A =
en A, p p , o ( gg), .

A(Agg) for any geQ.
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For any ordering we denote by S = (hl, Ce ht) the set of differ-
ent multi-indices that appear in the ordering and is called the minimal

set of theordering. If the ordering covers Z then so does S.

3. Relaxation process. Given an ordering'{gp} and an ihitial
vector uo we may define, for a given sequence of numbers ﬁgp}, the
iteration

(3.1) R TS L o
' g g PP g' g

where d_P = -A;;(up)rg(up) and 9=y providing the inverses exist.

We call (3.1) a relaxation process with ordering {gp}. The wp are

called relaxation parameters.

This process is well knwn for linear problems, especially when the
gp are :0f order one, and has been studied extensively. It 1is sometimes
called a group or block relaxation process, with the gP indicating the
"groups". For nonlinear problems, (3.1) was treated in [10] for freely

ordered processes where each gp was of order one (a scalar process).

We will show here that for various 'orderings (3.1) will converge to a

. . . 0
solution of (2.1) for a suitably restricted G(u), {wp} and u . These
conditions are found to be met by many nonlinear elliptic problems, as

shown in [lo].-

2
4, Basic Lemmas. We assume henceforth that' G, (u) e¢ C (Rn) and

satisfies

(4.1) A(u) >0 for all u e R®
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*
so that (3.1) is defined. This also implies uniqueness of u @5 shown

in [10]). For a given iterate v and index g = gp of (3.1) we define,

for any vV e R":
y v = A v)d a d d % 0
wp( ) (dp’ gg( ) P)/( P’ P)’ P

fula(u) < G(uP)}

(w}
Il

(k.2)

. (p) _ ,P)
X\IP) = min )\(Agg(u)), A - >\Z

ueD

= 20 /AP
D =g ! D, »9p pp/rg

©
I

whenever DP is bounded.

For a given g let Bg be the closed unit ball lv‘sl in the sub-
space Rg, which is the set of veR® such that Ve = 0y keg'. For
= B = P =fw|w-up<2d w , = u,}. wh D i

g gp let DP u.+2|dp|Bg . I l_ ‘ Pl’ g g'} en D is

bounded we define

NE = Mg (@i 5 2 ®) = ag)
1P) = nin Gu(a(a)a e D, e s)
(4, 3) Aép) = max {A(Ahh(u))lu ¢ DY, hes)
KP = Dp + GP Bg
HCPPIIDP,E = max {top(VHV ¢ Dy Vor = u‘gt}
and let
(1.1) vy = o (@) layllp if 4, # 0,
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but if d = 0, set v = 1.
P P

It then follows that

NORENCORISS

(Lk.5) —T‘) _'%—)‘ ﬁ— 1.

For the special case when 8y = Z we write

* ”rZ”DO = “rHDO P (0,) & D, + * 5

where now BZ is the full unit ball-in R If {gp} is an arbitrary
ordering (with 8y in particular, any multi-index) we let A* be the
number obtained by replacing Do in the definition (4.3) of ASO)’ by
K*. Let y = (O)/A 5 then this constant depends only on uQ and the
minimal set of the ordering. From (4.5) it follows that y* < v

We will show that for a suitable choice of uO and u)P the relaxa-
tion process will be well defined and the -G(up) (and the Dp) will be

nonincreasing as p - .

0
Lemma 4.1. Let u eRn be such that

(4.6) DO is bounded.

Le_ﬁ g = 8y be any multi-index in 0 and let Y be a constant such

*
that 0 <y <y <y, < 1. If Wy is chosen in the interval

(L.7) 0<y<wy<2y, ~y<2

then, for ul defined by (3.1),

(1.8) -465 = 6(2”) - 6(h) 2 ¢glr, (a))?
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where €, = wo(co + 2 Y)/Aéo) >0,
go = l-(lle"DO,g)/(l‘wOllDo) >0
1 1 x *

and ueDoDDl,D CcK,vy<y SY]_'

Proof. Let do =} 0 and let I(uo,ul) denote the open line segment
joining uo and u 1. Then Taylor's theorem in n dimensions gives us

(4.9) a(ud) - a(®) = (r(u°), u* - O

v 3 (- O, A (- )
for some zeI(uO,ul). From (3.1), (4.2), and (4.7) we get that

(0
ot - ) < 2lay) < 2po/xé ) _ oy

1.0
Since'%i- and uo differ by a vector in Rg u €D  and therefore 2zeD.

From (4.9) we get

-AG, = wo((Agg(uo)do’dO) - % wO(do’Agg(Z)do))

0
= % o.(d,,d )(2co('u0) — w.o(2)).
= 2 Y%\%*% 0%

Since Zg' = “g" we get from (4.3) and (4.7) that

06y > B vapdgsag)llap0 > O

Thus u 1c-:Do and also zeDo. We may then estimate further from

w9, (2) < (2y, - v)llwollpo,g,= 205N (1 - ) - Y“‘"o“no,g

-4C

02 wo(go%(uo) * & vllagloy &) (80 (22)d0) [ ()



> ug(gy + V() () )/a0 e 1 () °
>3 Yzlrg(uo) 1%/,

If &, = 0 then r (u.o) = 0 and the lemma is valid. Thus from

(0]
* *
D. O D.,,we get that x(l) ~ X(O) > KQO) >t A(O) and that p, €0 aro, <0 .
o~ "L g — 8 ~— 8 = 1= 1
* *
This implies that DY c K and Aél) < A. From (h5) it follows that

4.‘.'
*
Y2 which completes the proof.

*
Lemma 4.2. Let an ordering‘{gp} be given and let 1P,Y,Y Yo

satisfy the hypotheses of Lemma 4.1. Then there exist {wp} satis-

fying

*
0 < < 2 - < <
(4.10) YSuw, S22y, - v ¥<y Sy

such that the iterates (uP} of the relaxation process (3.1) satisfy

2
(k.11) -06_ = a(dP) - G(up+l) > e IT (up)l
P P g
where g = gpi
L VP) S 2/ = * >
epzwp(gp+ay)//\g _‘IQ‘Y/A € 0

ch
I

=1-(flogly, o)/ Uleyllpe) > o,
Pl

for P o’l,E,COCV -
proof. The proof follows by induction by using Lemma 4.1 as the
initial and inductive step.

Corollary 4,1, Under the hypotheses of Lemmas 4.1 and 4.2 it fol-

lows that for any ordering @%}, Ty (®) - 0 as p - =,
P
Proof. This follows from the fact that all the iterates up lie

in D, so that {6(uP)} 1is a sequence bounded from below. Since these.
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are monotone nonincreasing with p,G(up)-'Gb, which implies that
AE% - 0. The result then follows from Lemma 4.2,
Remarks. We note from the proofs that Lemmas 4.1, 4.2, and the coro-

llary are valid even if we only assume A(u) > 0 but require that

*
Agg(u) > 0 for all u and all g = gpe:S, and replace x(o) by J\éo) in g .

For the scalar case we get a simple form for YP:
P s
Yp = aii(u )/Haii”Dp’ 1=y
where
- b p D P Y
”aii”DP = max fa,, (a5, 55..., RPT VL AP un) |uieIp}

Ip = {uillui- u?‘ < Q\ap[}.

In [10] it was shown that for a free ordering with scalar indices
the relaxation process converged for a choice of YP which was some
fixed constant less than y*. We will show below that the relaxation
process converges in the more general case of (4.7) for a free ordering.
Since the cyclic orderings are more important and easier to prove, we
give first a proof of their convergence.

5. Cyclic Orderings.. We assume that.a finite set of t multi-

t

o ~ o b
indices S —-{hi?i=l, h; €Q , 1is given such that Ui=lhi o> Z. If a

sequence {gP1 runs through the list S in a cyclic fashion, i.e.,

(5.1) g

o = Po(moat) + 17 P 7 0r1s2,...

then we say that the ordering is cyclic with S as minimal set.

R
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Theorem 5.1. Let G (u) éﬁldtilﬁofv (4.1) and (4.6) and let

{e.} be a cyclic ordering with minimal set S. ZIhen, if the o}
D R

*
i@gﬁisgg %.10), the 3 . 1 ) converge to the solution u _i?_f_

(2.1).

p -
proof. From Corollary 4.1 we get that rgp(u )~ 0 as p © and

that G(uP) - G_. It follows from Lemma k.2 that for any p <4
- Yy 12
b - qy _ - q'-l * -9 lI' u\) .
(5.2) 6(aP) - 6(u?) = -ET A6 > e T gv( )]

This implies that for all p,q such-that ]p - ql < t,

gd-1

ol

tg\)(u\)) | - o.

2
Furthermore, since GeC (DO) there exists a constant M depending.

only on, uO and G such that for any i, 1< 1 < ¢,

gy, @) - x (@] <Ml ) - e g |

g

hi i v v

< Ml‘rg (u?) |

{
where M, = 2M/)\S‘.,O), This implies that the left side of

q P q-1 v+1) v
r. (W) -r (WP)] <o |r (u -r. (W)
|hi( ) hy vl hy. by

<M zg;ll)\rgv(uv) 1

goes to zero for |p—q| <t as p and g = » For i fixed and any

p >0 set g = []ta]t + i-1 (where [%] is the greatest integer con-

/Fl)=

tained in p/t), then ‘p—ql < t while g, = h;. Thus rhi\u

9

q

P
rg (u?) which goes to zero as p = «, whence rh.(u ) = 0 and
1

q
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r(up) - 0 as p = <«
This implies that every limit point of {V.p} is a stationary point
of G(u), and since DO is bounded there is at least one limit point. .

It follows, however, as in [10], that there 1is at most one stationary

Y

* * .
point u , so that uw - u and the proof is complete.

Corollary 5.1 Let G(u) and u’ satisfy (4.1) and (4.6), w

satisfy (h.lO), then a modified Newton's method:
(5.2) W COLIC)

*
converges to the solution u of (2.1).

Proof. This follows from Theorem 5.1 by taking t = 1 and S to
consist of the set Z.
We will see in the next section that we can estimate the convergence

rate of (5.2).

6. Residually Ordered Processes. We will show that the basic lemmas

of Section 4 may be used to obtain an extension of Theorem 1 of [11]. A

residually ordered process (r.o.p.) may be defined in the same way as in

[11], as follows:

(p)

: (p)
Let M= (g\P),...,gN )’NP <N <mn, g,

1

coverings of Z and {H*Hp} a given sequence of norms on R".  Assume

eQ,n be a given sequence of

further that there exist positive constants Tlp, Tor T that satisfy, for
any weRn,

rtphrl® < Il <ol B = 0,520,

0<Tp'ﬂpsnp, O<'r_<_.'rp_<_l.

10



L
L
L
L

r— r—

rrr— r— r— r— r

—

r— r— r-

A relaxation process whose ordering {gp] is given by the multi-index
such that
®p

!

is called an r.o.p. For this process we prove

Theorem 6.1, Let G(u) and u’ satisfy (4.1) and (4.6), then if

(2.1). The iterates converge like a geometric series; that is, there

exist positive constants 6, @ such that

(6.1) uf - u*l2§ ecvp[uo - u*lg, 0<a<l
proof. From Lemmas 4.1 and 4.2 we obtain

6.2 - Py |2 Py |12

(6.2) £G > eplrgp(u " > epHrgP(u M/,

v

2
(ep/anp)xheﬁpHrh(up)Hp
> (egr /1) |2(e®) 1 2 ("/M) [x(uP) |°

Thus r(up) - 0 as p = «» and, as in the cyclic case, it follows that

*
up-*u,

*
To show that (6.1) holds, we set ep = up -u. From (4.9)

VP = 6(uP) - G(u*) = % (eP,A(v)ev) , veI(up,u*)

*
On the other hand, there is a ZeI(up,u ) such that

(r(a),eP) = V, = & (P, A(z)eP).
If eP#O we set

oy =1+ ming Lo ( (eP,A(y)ep)/(epfA(W)éP) )

>14 207" e

and then

[r(up) | ]ep| > ]vap,

lr(uP)]® > 3w @y
P P

11



r-— r— r— [

re-

rr-- r— 7 r R

-

If eP= 0, set uP = 2. From (6.2) we get that

-0G_=v_-V_ _>BV >B8V
p Vp 7 o2 P2 B

2w g (0) 2%
where BP—A “PGP"E;/N" B=2X MGT/Nf_E}P'

h V. < (1 - V <(1-8)V.
so that p+l—( Bp)p—( )P

Since C? <1l- Yp? then ey < wp(2 - wp)/Ql\g(P) and
P

0 < 2 - (P) (P)
<B<B, < mP( wp)'rp)\ /Np[\gp <1

if N >1. If N=1, thenB < 1l
P P p -

*
Setting o =1-8,6 = A /)\(O) we get

2
v, <@V,

or that ep|2 < eafpleOIZ

which proves the theorem.

Corollary 6.1. Under the hypotheses of Corollary 5.1 the modified

Newton's Method (5.2) converges like a geometric series.

Proof. This follows from Theorem 6.1 since for all p, " consists
of the single multi-index Z and is automatically an r.o.p.

7. -Free Orderings. In [10] it was shown that for the scalar case,
convergence is obtained for free orderings, that is, where a sequence
{ip} is arbitrary but all indices of Z appear infinitely often. On
the other hand, this was proved for group relaxation for linear problems
in [11]. We will now combine these two results into one, in which the

less stringent condition on wP as given by (4.10)is used.

12
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Theorem 7.1 _Let G(u) and u  satisfy (b4.1) and (4.6). Let,{gp} be

freely ordered; then if {wp} satisfy (4.7), the relaxation process

* .
(3.1) converges to the solution u of (2.1).

Proof. The idea of the proof is similar to that used in Theorem

3.1 of [10]. From Lemma 4.2 and Corollary 4.1 we get that r (up) -0
g

Y
as p—sm.

Let x be a limit point of the sequence {QPL We may assume that
r(x) # 0, otherwise we get convergences as before. TLet S be the mini-

mal set of the ordering and set

o = min{lr (o) jo () £ 0, ees).

Let v be the maximal order of the multi-indices of S and let A,A be

positive constants such that

X(WJW) < (W)A(u)w) < A(W:W)

for all ueD,, and all weR".

0
Define U to be the neighborhood of x such that

u-x| <6, =vyo/2A/T
and let N be sufficiently large that for all p > N
1 %22
-AGP <I[€ 8.
We get from (4.11) and (3.1) that

-AGP > e*(x/wp)2|up - up+1|2

13
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so that

,up-up+lI< 6, p> N

If for all uPeU, p > N, Ty (x) = 0, then (up+l - o, r(x))

D
By the same argument used in Theorem 3.1 of [10], all the up, p >N

(')’

will have to be in U from some point on. If, say, r, (x) # 0 for
some index #y 1 < # < n, then n can appear at most a finite number

of times among the gP in the ordering. This contradicts the hypothe-

sis on the infinite covering of Z.
If, on the other hand, there is for some p > N a upeU such that

T (x) # 0, then for each neg, there is a wel(u’,x) such that
P

|rn(up) - rn(x)l < |A(w)(up -x)| < ps < o/2/%.

Thus for g = Ip? |rg(wp)- rg(x)! < p/2 or ’rg(up)l > /2.
Since 2 Py, Pl _ D ptl _ D
- A - : -
ol ()] - 18 (PR - o)) < 4P - P
7 (W) <8Ny = of35 < ko

we get a contradiction and the proof is complete.

8. Remarks. i) It follows from the proof given above that instead
of the requirements on G(u) to prevail on the whole of R® we could
simply assume them only in some domain containing K*.

ii) Another condition which is sufficient for convergence is as
follows: Assume that G(u)eCe(Rn) and A(u) > 0 for all u. Let there

*
exist a point u  such that

14
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*
(a) G(u) > G(u) for all ueRn,

r—-

(b) A(u*) > 0, and

(e) Agg(up) > 0 for g = gp, p = 0,1,2,... .
Then the relaxation processes described above in Sections 5 and 6 will
converge for any starting uo.

Thus we must show that for each z the set D, = fula(u) < 6(z)}

*
is bounded. We may without loss assume that u = 0 and assume ]% is

unbounded for some z. Then there exists a ray tv, t > 0, for some

fixed v, which lies in Dz' Setting - @(t) = G(tv), then o(t) is
convex in t and ©'(0) = 0, «"(0) > 0. Thus there exists a ty > 0

such that co'(to) > 0. Let {tE} be a sequence of increasing numbers,

— r—

- 1 !
such that tp >t,p >0, t ~ @ Since ¢ (tp) > cp'(to) > 0 and

r—

G(z) - 6(0) > m(Qtp) - to(tp) > co'(’_cp)tp,

we get that cp'(tp) - 0, which is impossible.

*
This argument may be used to show that the minimum w is unique,

r— r—

which then guarantees convergence.

iii) A single condition which assures convergence for any initial

re-

guess 1s the existence of a constant p such that A(u) > u > 0 for

all ueR™. This occurs in the case-of certain uniformly elliptic prob-

-

lems, as shown in [10],
iv) In [10], it was required that a uniform'upper bound be avail-

able for the aii(u) for the scalar processes. That is, a # was

— r

sought such that aii(u) < u for all vand i. If such a bound is

available, then an allowable choice of w would be @ = aii(up)/u < 'yp.
P P I

r—

This implies that the iteration



. p+l _ P
up+l = llP - I‘i(up)/n, 1= ip’ uiv = Ui

would converge if any of the sufficient conditions for convergence were
satisfied. In the case of a discrete Plateau problem, it was shown in

[10] that a.,(u) < L for all u and i. It was also shown there that

L

L

L

L_ aii(up) > hh6/G(uo)3, where h is the mesh size of the net. If «
is a positive number < h6/G(uO)3, then, for example, a choice of

L‘ wp =% aii(up) - v, 1= ip would yield convergence for any starting

L. u . This represents a considerable improvement over the allowable choice
of of given in [10].

v) If a system of equations is given by r(u) = 0, riﬁﬂeC'(Rn)

and if the Jacobian matrix A(u) of this system is symmetric for all u,
then there is a G(u) such that r(u) = gradG(u). If A(u) > 0 for

all u, one can check the other sufficient conditions for convergence.

An example of this is given by r(u) = Cu + f(u) where C is a con-

1

L

L

L stant symmetric matrix such that C > 0 and f(u) has a symmetric
Jacobian matrix f'(u) > - 3 - X(C). In this case A(u) > u = h(C) -

L » > 0, so that any starting guess will yield convergence for the relaxa-

[- tion processes described above. This example is realized in the approxi-
mate solution of semilinear elliptic boundary problems, when f'(u) 1is

L often a diagonal matrix. Thus if one is to solve the usual discrete

| form of -Aw + g(w) = 0 with, say, Dirichlet boundary data, and g'(e)

> 0, then the relaxation methods given above will converge from any

starting guess. To determine, say, Yo» o©one needs an upper bound on

) . o . *
g'(ui) for u in DO. At times an a priori bound on the solution u

placed by a uniformly elliptic self-adjoint, but possibly nonlinear, operator.

L may be used to bound g! A similar situation is obtained if =Aw is re-
L y
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