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1, Introduction. In [10] it was shown that a freely ordered relax-

~ ation process or, in particular, a Gauss-Seidel type of successive "over-

. relaxation" method converges for certain nonlinear problems. We will
show below that this process may be extended to group (or block) relaxa-

L tion. In its extreme form this becomes a modified form of Newton's

method in n dimensions.

- We obtain, moreover, a less restrictive choice of the relaxation

parameters than that given in [10]. It is also shown that the residu-

ally ordered processes given in [11] for linear equations can be extend-
i

L ed to this class of nonlinear problems. Here one obtains an estimate

{ for the error, as in the linear case. A special form of this method
was outlined without proof by Householder [6,p. 134].

. .A proof 1s also given for a cyclic process (sometimes referred to
in the scalar case as "nonlinear overrelaxation" [11]) which 1s simpler

than that given for the freely ordered.process.

Some related work 1s given in [8] and other results in the direction

of finding asymptotic convergence rates may be found in [7]. These meth-

ods are usually applied to the solution of large systems arising from
-

finite difference approximations of nonlinear elliptic equations as shown

. in [10]. Such applications go back at least ten years (see, for example,

[4] and [5]). Some more recent applications are given in [1], [2],[3],

. and [9].

L

L
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2, Definitions. Let G(u) ¢ C (R™) be a real valued funcuion,

— twice continuously differentiable over the whole Euclidean n space

*

R™, We seek a global minimum of G(u), that 1s, a solution u of
—

: (2.1) r(u) = grad G(u) = 0

T T =
where r(u) = (r,(u), Coe. r (a) , U = (a, coe uw) p r, (u) =G, (u) =

| a
— — —_— -—

3a; G(u). Let A(u) (a;(u)) @, a, (@) denote the n by n Hess
g ian matrix of G; A(A) and A(A) will denote the minimum and maximum

eignevalues of a symmetric matrix A, respectively. For a column vector

L u we write |u|” = (wu) = alu and let lr|. = sup |lr(u)]|. write? D ueD

| A> 0 (>0) when A is a positive definite (semidefinite) matrix, and
—

A > § means A = 61 > 0 for the identity I of order n.

{

Let 2 = (1,2,...,n) and call g = (il, iy eoss i) a multi-index

of order k <n if 1 <1, <i, <. . . <i <n. Let g' = Z - g be the

— multi—-index of order n - k remaining 1in,' Z when g 1s removed. Denote

the set of all multi-indices of order k by Un and let QU a SRL
— 0

Any sequence e Q will be called an ordering. A n Or -—y seq 8} peo? &p © 9 9
!

L dering covers Z infinitely often 1f, for each 1 e¢ Z, 1 ¢ 9, for in-
finitely many p; we then say that 1t is freely ordered.’

L We use the notation of [11] for subvectors and submatrices. That is,

if ge Un then u,’ is a subvector of u of dimension k: (4g), = %
where i, € & Similarly, if h e Qn then Ash denotes the k by m

submatrix of A whose (v,u) element is a, . , 1g8s Jeh., If g=hA u H
then A 1s a principal submatrix of A and let A_ = A(A A =oe P P : g = MA )A

u MA, ) for anyg ¢ Q.



.
: For any ordering we denote by § = (h,, Coe. h,) the set of differ-
|

| ent multi-indices that appear in the ordering and 1s called the minimal

set of theordering. If the ordering covers Z then so does S.

3. Relaxation process. Given an ordering e,} and an ihitial

— vector a0 we may define, for a given sequence of numbers lwp} the
iteration

—

(3.1) PoP rpg, PH u?,
g g PP g' g

o

where d_ = A" (uP)r (WP) and g=g_, providing the inverses exist.
P g€ g D

- We call (3.1) a relaxation process with ordering ley} The are
called relaxation parameters.

—

This process is well known for linear problems, especially when the .

= are :0f order one, and has been studied extensively. It 1s sometimes-

called a group or block relaxation process, with the 95 indicating the

-— "groups". For nonlinear problems, (3.1) was treated in [10] for freely

ordered processes where each Ip was of order one (a scalar process).
he

We will show here that for various 'orderings (3.1) will converge to a

. solution of (2.1) for a suitably restricted G(u), {o,} and u . These
conditions are found to be met by many nonlinear elliptic problems, as

-— shown in [lo].-

2 n
4, Basic Lemmas. We assume henceforth that' G,(u) ¢ C (R’) and

}

satisfies

L n
(4.1) A(u) >0 for all ueR

—
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so that (3.1) is defined. This also implies uniqueness of u as shown

in [10]. For a given iterate uw? and index g = gy of (3.1) we define,
for any Vv ¢ RY:

= A d d ,d d 0

: 0(v) = (a, A(v)a)/(a,a.), of
D, = (ula) < G(u®))

- (4.2)

»‘P) = min AA (u)) \ (Pp) = ASF)
g ugh gg ? Z

oT _ I Z 24 AVP)op = rg pop = 2e/Ag
{ p

whenever D, 1s bounded.
\

space RE, which is the set of veR® such that Vy = 0, keg'. For
~ a p op

g = 8, let DF = aPr2la |B, _ fu] pv-u lal Wot = we te When D, 1S
bounded we define

|

?) _ CR) o AYP)
AS = IAA, (w)llpp y A Ay

—

(p) _ _.

—

(h 3) AP) _ max (AGA(w)|ueDP, he S)

K =D _ + B
P p °p g

leo! = max {o (v)|v e D, V = uP)
Pp - p J SA °¢ ag

L and let

— = p if d_ #0

— hy

—



i but 1f d = 0, set vy = 1.
P P

- It then follows that

L hs AP) WP) (WP)«5 < 57 < ToT < < 1.
S g D

-

For the special case when 8p = Z we write
-

* *¥ *, (0 ¥* *"= lrgly = tell, 5 0" =20°A(% "=p +o",
{ 0 0
'g

where now B, is the full unit ball-in R. If le} is an arbitrary
.

L ordering (with gy» 1n particular, any multi-index) we let A* De the
number obtained by replacing p° in the definition (4.3) of NO), by

L x (0),*. 0Kx. Let yv = Ag /N 3; then this constant depends only on u’ and the
¥

( minimal set of the ordering. Fram (4.5) it follows that vy < Yor
L

We will show that for a suitable choice of ul and w_ the relaxa-
P

{

| tion process will be well defined and the G(uP) (and the D_) will be
) nonincreasing as Pp — o,

O _n
— Lemma 4.1. Let u eR be such that

. (4.6) D, is bounded.

Let g = g, be anymulti-indexin and let y be a constant such
|-

*

that 0 < vy < vy < Yo S l. If Wy 1s chosen in the interval: —at —° Too oo os eevee
{

~—

(k.7) 0<y<wy<2yy=-vy<2

then, for u defined by (3.1),

0 2

L (4.8) 06, = 6(u0) - 6(uh) > e Jr (0))F > 00 - 0'"g

{

L 2
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L
where e =u, +3 )/nl0) > 0{ fo 0) Co g =

—

L
AE 1 * *

and ueDy > Dy, D CK, v<y < Yq

h.. 0 1
Proof. Let dy 1 0 and 1lét I(u ,U") denote the open line segment

L joining n and u L Then Taylor's theorem in n dimensions gives us

1 0 0) 1 0)
1 (4.9) out) - 6(u°) = (r(a%), ut - 0)

. 0) 1 0FE (da,A(z) =u?)

L 0 1
for some zeI(u’,u”). From (3.1), (4.2), and (4.7) we get that

_ 1 0 1, (0)
lum - uw] <2la| < 2005/2 = 0:

1 0 1.0 n 0— Since 'u- and u differ by a vector in Rg uw eD” and therefore Zed .

From (4.9) we get

0)

06, = wo((Agg(W)dgsd) _  w(a,A  (2)d,))
—

ne

= 3 0y(dgrd,) Cae’) — wgr(2))-
— 0

Since Zgt = Ur we get from (4.3) and (4.7) that

= -0G > 3 yar (dd) op lO > 0.

[- Thus u feD,, and also zeD ye We may then estimate further from

| 00 (2) < (yn = Vlad = 20, = ¢) = VliagllpL o¥2) = (2vg 0'py,g.~ “0 0™"Dose

. “AC, > wa (u°) RIN )(d,A (u))a ) [co (0) |Yo2 Wo GoPolt / Yiiooip,e’ “0 ge 0//9\4

fom 6 :
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1 0 0 (0) _ 0y 12
> wy(gy + & v(x(0)r (07) )/A = ep Ir (7) |

2 Oy12, %

>% yr (W)[7/0

If dy = 0 then ru ) = 0 and the lemma is valid. Thus from |

(1) ._, (0) (0) (0) ox *
Lo Dy oD Dis we get that ‘eg, > Aa = Ag TA and that p; Zo Qr o, <0.ok.

* n

This implies that pt c K and A) < A. From (4.5) it follows that
*

— Yi Y which completes the proof.
0 *

Lemma 4.2. Let an ordering LN, be given and let u ,v,y »Yo
—

satisfy the hypotheses of Lemma 4.1. Then there exist (w} satis- |
fying-

»

0 <y < < 2y = < <(4.10) YS, Sey ¥<Y Sv

such that the iterates (&f} of the relaxation process (3.1) satisfy

— 2

(4.11) 06 = 6(W®) - a(u®) 3 clr (uP)]
p Pp £

—
where = ;
wile-c g Ep?

'P) 1 2, %  %— € Ww + = AY > A =¢ > 0p= pll E/N 28Y |

- C, = 1 LA o)/ (ley llpe) > o,
for p = 0,1,2,... .

proof. The proof follows by induction by using Lemma 4.1 as the

— initial and inductive step.

' Corollary 4.1. Under the hypotheses of Lemmas 4.1 _and 4.2_it fol-

- | > |
lows that for any ordering (q,}, r, (u) = 0 as p = «.

p

_ Proof. This follows from the fact that all the iterates uf lie
in Dy so that fa(uP)} is a sequence bounded from below. Since these.

= 7



are monotone nonincreasing with p, G(uf) ~ G_, which implies that

L AG, - 0. The result then follows from Lemma 4.2.
[ Remarks. We note from the proofs that Lemmas 4.1, 4.2, and the coro-

llary are valid even if we only assume A(u) > 0 but require that
) *

i Age(1) > 0 for all u and all g = 8,5) and replace (0) by 140) in q .

I For the scalar case we get a simple form for Yo
p .

1 Yp = a, ; (u ATURY =i
where

L _ PP Pp oP Pp
lag; llpp = max fa; (us 5500s Gp5u505 15eees wp) use}

I= (ug | Iu, url < 2a, 11.

L In [10] it was shown that for a free ordering with scalar indices

the relaxation process converged for a choice of Yo which was some
[ ‘

fixed constant less than y . We will show below that the relaxation

| process converges in the more general case of (4.7) for a free ordering.
Since the cyclic orderings are more important and easier to prove, we

{

[ give first a proof of their convergence.

| 5 Cyclic Orderings.. We assume that.a finite set of t multi-I t- ndi = Ss qiindices S thy V1 h, €Q > 1s given such that Ulin, 0 Z . If a

[ sequence le? runs through the list S in a cyclic fashion, 1i.e.,
. == oe 2 oe &

| (5.1) €p = "p(moat) + 17 P 7 Or b%
( then we say that the ordering is cyclic with S as minimal set.
—

{

!
|.
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Theorem 5.1. Let G(u) sad lsfy (4.1) and (Lk.6) and let

- {ey} be a cyclic ordering with minimal set S. Then,1f the fo}
*

(881s py 4.10), the 3 1 ) converge to the solution u of
—

(2.1).

L proof. From Corollary L.1 we get that 7g (4) =~ 0 as p » @ and
that G(uP) - G . It follows from Lemma h.2 that for any p <q

- Vy 12
Dy _ qy _ _¢d-1 *..a=1 7(5.2) 6(P) - 6(u?) =~ > e Eyl : )|

-

This implies that for all p,q such-that |p - ql < t,

L q-1 V
z r (u - 0.

ales (40)

Furthermore, since GeC (Dy) there exists a constant M depending.

{ only on, @ and G such that for any i, 1 <1 < ¢t,
L

v1 V wl ov wl Vv

ES (u ) - rz, (u)] < Mu -u¥| = Mju) ug |
i 1 1 Vv v

v
<M lIr_ (u

(0) Ca
where M, = 2M/\g ’. This implies that the left side of

: ir (0d) - x (®)] < 22 e @ - x (@Y)]h. h. — “v=p' h, h,
1 “1 1 1

L a-1 Vv |< r nu) |

— goes to zero for | p-qa| < t as p and gq =» «= For 1 fixed and any

L p > 0 set g = [£16 + i-1 (where [2] 1s the greatest integer con-
r, {ud) =tained in p/t), then |p-q| < t while gq = Bye Thus Tp "7 =

{ p

L r, (u?) which goes to zero as p — ®, whence Tp (U ) =~ 0 and
q 1



! r(u®) » 0 as p — =.
This 1mplies that every limit point of {u } is a stationary point

i of G(u), and since D, is bounded there is at least one limit point. .
It follows, however, as in [10], that there 1s at most one stationary

* D *
C point u , so that u” =u and the proof is complete.

| Corollary 5.1. Let G(u) and a’ satisfy (4.1) and (L.6), “5
satisfy (4.10), then a modified Newton's method:

— (5.2) PLUS J ay A” (uP )r (uP)
%

- converges to the solution u of (2.1).

| Proof. This follows from Theorem 5.1 by taking t = 1 and S to
consist of the set 7.

L We will see 1n the next section that we can estimate the convergence
rate of (5.2).

L 6. Residually Ordered Processes. We.will show that the basic lemmas
j of Section 4 may be used to obtain an extension of Theorem 1 of [11]. A
he

residually ordered process (r.o.p.) may be defined in the same way as in

L [11], as follows:
_ (VP) (p) (p)

Let 1 = EN pee oO DN, <N <n, g, ¢Q be a given sequence of
- coverings of Z and tl a given sequence of norms on R. Assume
| further that there exist positive constants Tyr To? 7 that satisfy, for
ke. n

any WweR7,

2 2
wil < |wl| < Ww = 0,1,2,...L cael?< ol $l p= 012s,

| 0 < < 0< rt <r <1.L Tsp = Tp? = "p=

L ’



A relaxation process whose ordering le} is given by the multi-index

L &, such that

L is called an r.o.p. For this process we prove
Theorem 6.1. Let G(u) and u’ satisfy (4.1) and (4.6), then if

| the fw] satisfy (4.10), the r.o.p. converges to the solution a of
L (2.1). The iterates converge like a geometric series; that 1s, there

exist positive constants 6, ¢ such that

—
*)\2 ¥,2

(6.1) | - 0 "< 0Plu’ - 0 ]5, 0 <<.

L proof. From Lemmas 4.1 and 4.2 we obtain

| (6.2) “06, > e lr, (D7> flr (P|L P= DP &, — Pg p ToP

pup?
>

[ > (eM) Pry [17m 2
> (er /N) |r(uP) 1 > (e'7/N) |x(a®) |°

L -= ppp =
Thus r(uP) —- 0 as p =» ®» and, as in the cyclic case, it follows that

{ uw? - a
( p_p_*

To show that (6.1) holds, we set ee =u -u. From (4.9)

1 * | *

L vy = G(uP) - G(u ) = (ef, A(v)e") , veI(u?,u )
*

1 On the other hand, there is a zeI(u®,u’) such that
(r(u®),eP) = V_ = § (eP,A(z)eP).

L Tf es # 0 we set
f uw = 1+ min ( (e®,A(y)eP)/(eP, A(w)eP) )
] P y,weD
- P

(0), *
21+ 27 /p =u

L and then
p p

riu et > Vv

L Py12 1 (P)lr(w) |" > Fur Bly
p P

L 11



If e, = 0, set Hy = 2. From (6.2) we get that

“NG =v -V > B.V > B8V

P P pr1 2 Ppp 2 Vs
(p) 2 (0) 2 *

where = € 2N = A e v/2N <By A hoe [28 B ue v/ <B,

so that Ys < (1 - Vv. <(1-B)V.pr = Bp) p= P
—

: Since <1 - thene. <w (2 ~ w_)/2p(P) d
: p= p S 02 = wy)/ g,

-

0<B<B <w(@-w)ra®/NalP<1
p<By Sonu, Mole—

: ifN >1. If N=1, thenB < 1.
b P D

*

— Setting a =1-8, 6 =A 1 (0) we get

P

-— vs <o A

2 012
Lo or that eP| < gor |e |

which proves the theorem.
|

| Corollary 6.1. Under the hypotheses of Corollary 5.1 the modified

L Newton's Method (5.2) converges like a geometric series.

¢ Proof. This follows from Theorem 6.1 since for all p, m consists
L of the single multi-index 7 and is automatically an r.o.p.

7. -Free Orderings. In [10] it was shown that for the scalar case,
—

convergence 1s obtained for free orderings, that 1s, where a sequence

o EM 1s arbitrary but all indices of 7 appear infinitely often. On
0. the other hand, this was proved for group relaxation for linear problems

in [11]. We will now combine these two results into one, in which the

: less stringent condition on w as given by (4.10) is used.
u P

, 12

LL

,
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L

| 1 Theorem 7.1 Let G(u) and u satisfy (4.1) and (4.6). Let le] be
freely ordered; then if fw} satisfy (4.7), the relaxation process

*

4 (3.1) converges to the solution u of (2.1).
Proof. The idea of the proof 1s similar to that used in Theorem

i 3.1 of [10]. From Lemma 4.2 and Corollary 4.1 we get that r uP) - 0
Sp

| as Pp —* x,

— Let x be a limit point of the sequence ful}. We may assume that

r(x) # 0, otherwise we get convergences as before. Tet S be the mini-
-

mal set of the ordering and set
f
1

.
5 = min{|r (x) | o(%) £ 0, geS}.

L Let v be the maximal order of the multi-indices of S and let A A be
4 ' '

8 positive constants such that

A (w,w) < (wy A(u)w) < Nw, w) |

for all ueDp, and all weR.
L Define U to be the neighborhood of x such that

LC lu - x] <8, &=yo/2A/¥

L and let N be sufficiently large that for all p > N

' 1 * 2 2
~-AG < Ny,L 5 Le 26

L We get from (4.11) and (3.1) that
¥* 2 1,2

| -06 > e (Ww) |e - oP)
( p= p
-

- 13



{ so that

L If for all wPeU, p > N, rg (x) = 0, then (uP - uf, r(x)) = 0.
p

i By the same argument used in Theorem 3.1 of [10], all the oP, p > N
will have to be in U from some point on. If, say, rr, (x) # 0 for

.

L some index #y L <n <n, then un can appear at most a finite number

of times among the I, in the ordering. This contradicts the hypothe-

L sis on the infinite covering of Z. )

L If, on the other hand, there 1s for some p > N a WPeU such that
r, (x) # 0, then for each neg there is a wel(u®,x) such that

| Pp
|r, (u ) - r (x)] < AG) (WP = x) < nas < o/2/m.

L Thus for g = g_, |r (vP)- (x) | < o/2 or |r (uP)| > pf2.
p g g g

L Since p py P*l _ D ptl _w_{r (u = JA (uv }{(u - < Alu - ut

L |x (v9) <8Ny = o/a/v £ % 0,

| we get a contradiction and the proof 1s complete.
8. Remarks. 1) It follows from the proof given above that instead

L of the requirements on G(u) to prevail on the whole of Rr" we could
*

L simply assume them only in some domain containing K ,
11) Another condition which is sufficient for convergence 1s as

2

L follows: Assume that G{(u)eC (R") and A(u) > 0 for all u. Let there
*

{ exist a point u such that

L 2



[
: (a) G(u) > au’) for all ueR",

g (b) A(w) > 0, and

i (ec) Ag (u") > 0 for g = Ey P = 0,1,2,... .
Then the relaxation processes described above in Sections 5 and 6 will

8 converge for any starting ©
Thus we must show that for each z the set D, = fula(u) < ¢(z)}

L is bounded. We may without loss assume that N = 0 and assume D is
unbounded for some z. Then there exists a ray tv, t > 0, for some

| fixed v, which lies in D_. Setting . p(t) = G(tv), then oft) is
convex in t and o'(0) = 0, ©"(0) > 0. Thus there exists a ty > 0

- such that o' (t,) > 0. Let tt) be a sequence of increasing numbers,
| such that LE >t, p > 0 5 = ®, Since p(t) > ' (t,) > 0 and

i 6(z) - 6(0) > w(2t)) = w(t) > o' (t)t,

u we get that 9" (t,) = 0, which is impossible.
This argument may be used to show that the minimum a@ 1s unique,

i which then guarantees convergence.
111) A single condition which assures convergence for any initial

L guess 1s the existence of a constant p such that A(u) > pup > 0 for

t all ueR". This occurs in the case-of certain uniformly elliptic prob-
lems, as shown in [10].

i iv) In [10], it was required that a uniform'upper bound be avail-
able for the asq(u) for the scalar processes. That 1s, a # was

L sought such that a; (a) <u for all vand 1. If such a bound is
avallable, then an allowable choice of “ would be w bn a; (WP)/ug Yor

~ This implies that the iteration

L 15
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|

|
uP = ay - r. (uP) /x, i = 1 u2h wr a?

L would converge 1f any of the sufficient conditions for convergence were
I satisfied. In the case of a discrete Plateau problem, it was shown in

| [10] that a... u) < Lb for all u and i. It was also shown there that

. as, (0®) > 4 /6(u%)3, where h 1s the mesh size of the net. If
is a positive number < 10 /6(u%)3, then, for example, a choice of

g “p = a, (0) - vy, 1 = i, would yield convergence for any starting
i a®. This represents a considerable improvement over the allowable choice

of wf given in [10].
|

1 v) If a system of equations is given by r(u) = 0, r, (u)eC' (R")
and 1f the Jacobian matrix A(u) of this system 1s symmetric for all u,

L then there is a G(u) such that r(u) = gradG(u). If A(u) > 0 for

L all u, one can check the other sufficient conditiens for convergence.
An example of this 1s given by r(u) = Cu + f(u) where C 1s a con-

I stant symmetric matrix such that C > 0 and f(u) has a symmetric
Jacobian matrix f'(u) > -n3 = X(C). In this case A(u) > pup = h(C) -

L vw > 0, so that any starting guess will yield convergence for the relaxa-

| tion processes described above. This example is realized in the approxi-
mate solution of semilinear elliptic boundary problems, when f'(u) 1s

I often a diagonal matrix. Thus if one is to solve the usual discrete
| form of -Aw + g(ow)= 0 with, say, Dirichlet boundary data, and g'(wm)

1 > 0, then the relaxation methods given above will converge from any

L starting guess. To determine, say, Yo? one needs an upper bound on
g' (uy) for u 1n p?, At times an a priori bound on the solution N

I may be used to bound g! A similar situation is obtained if =Aw is re-
| placed by a uniformly elliptic self-adjoint, but possibly nonlinear, operator.

L 16
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