QS P¥6

$2.25

ALGOL W

NOTES pp. 1to 40
DECK SET-UP page 1
LANGUAGE DESCRIPTION pp. 1to 49
UNIT RECORD EQUIPMENT pp. 2-17+to
2-16
ERROR MESSAGES pp. lto7

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

ALGOL W NOTES

FOR INTRODUCTORY

COMPUTER SCIENCE COURSES

by

Henry R. Bauer
Sheldon Becker
Susan L. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

r-

r—- r—

Introduction

The textbook Introduction to AIGOL by Baumann,Feliciano, Bauer,

and Samelson describes the internationally recognized language ALGOL 60
for algorithm communication. ALGOL W can be viewed as an extension of

ALGOL.

Part I of these notes describes the differences between similar
constructs of the two languages.

, For clarity, Part I is numbered according to the sections of the
textbook. In general only differences are mentioned; jtems which are
the same in both languages are usually not discussed.

Part II presents some of the details concerning the new features
of AIGOL W. A complete syntactic and semantic description of these

constructs as well as of all others in the language is available in

"AIGOL W Language Description".

-

—

1.

Basic Symbols of the Language

1.1. The basic symbols

1.1.1. Letters
Only upper case letters are used.
1.1.3. Other symbols

The following are the same in ALGOL 60 and ALGOL W

+'/-:

()=

=< >

The following are different in the two languages. The

correspondence between the symbols is shown in the following

table:
AIGOL 60 AIGOL W
10 !
X *
t **¥
[(
1)
€ "
- DIV
> no equivalent
v OR
2

AIGOL 60 AIGOL W

A AND

— one blank space
- =

< < =

> > =

: or :: (cf. section 6.1 and 4.2.1)

no equivalent 1 #

All characters indicated for AILGOL W are on the IBM Q29
key-punch.
The significance of spaces in AIGOL W will be discussed in

subsequent sections.

1.2. Numbers
A number is represented in its most general form with a scale

factor to the base 10 as in conventional scientific notation.

EXAMPLE 3.164981'-L means 5.164981x10'h

This is often called the floating point form. Certain abbreviations

omitting unessential parts are permissible.

EXAMPLES 77 317.092 126 ' 04
551 5384 ok.719'2
'30 0.710 9.123'+1
- 0 2'-6
'3 009.123 '+01 2.0'-06

To represent a long floating point (cf. Section 2.3.1) number an

i
)
I3
|
—

el

r—

r— r

-

r

—

I must be added as part of the number specified,
EXAMPLES T7L 317, 092L 126° 0O4L

In AIGOL W, complex numbers (short and long forms) may be used,
The imaginary part of a complex number is written as an unsigned real

number followed by an I.
EXAMPLES LT 4,81 L+-51
Long imaginary numbers are followed by an L.
EXAMPLE L, 8IL -
Numbers may be written in a variety of' equivalent forms.

EXAMPLE 2ok = ,12'6 = 1,2'05 = 120000.0

No spaces may appear within an unsigned number, The magnitude of
an integer or the integer part before the decimal point in a floating
point number must be less than or equal to 2147483647. The magnitude
of a non-zerc fioasting point number must be between approximately

79

5.4 x 107 and 7 x 1077 (1/16 x 16'61* and (1-1‘6'6) x 1 5).

i.3. Identifiers

A letter followed by a sequence of letters and/or digits constitutes
an identifier, Identifiers may be as short as one letter or as long
as 256 letters and digits,

. Identifiers may be chosen freely and have no inherent meaning.
However, AIGOL W recognizes a set of' reserved words which must not 'be

used as identifiers,,

[T

RESERVED WORDS

ABS GOTO REM
AND GO TO RESULT
ARRAY IF SHL
BEGIN INTEGER SHORT
BITS IS SHR
CASE LOGICAL STEP
COMMENT LONG STRING
COMPLEX NULL THEN
DIV OF TRUE
DO OR UNTIL
ELSE PROCEDURE VALUE
END REAL WHILE
FALSE RECORD

FOR REFERENCE

Spaces are used to separate reserved words and identifiers from
each other and from numbers.

Certain identifiers are predefined for use by the programmer but
are not reserved words. Their meaning will be discussed later. Among
these are three input and output identifiers: READ, READON, WRITE,

(See Sections 2.2.2. and 2.5.)

1.4 Nonarithmetic symbols

The symbols which are printed in bold type in the text are usually
underlined in typewritten copy, They are contained in the list of

reserved words (cf. Section 1.3) for ALGOL W. They are not distinguished

in any other way but they must not be used for any purpose other than
that for which they are specifically intended, The symbol END, for

example, must not be used as an identifier,

2. Arithmetic Expressions

2.1. Numerical Expressions

The basic arithmetic operators of ALGOL W are

- + - % / %% DIV REM -
EXAMPLES
3.1459 7 DIV 3
(3.477-4 + 9,01'+1) / 4 17 REM 12
9% 8*7/ (1L*2%*3) -1.2
(9 + 2.7) / (-3)

(((1.5 * 3 - 4) * 3 4+ 0,19'1) ¥ 3 - 2,6'3) * 3
10+ L/ (1+09/(7-0.4/3))

The symbol * denotes multiplication while ** denotes exponentiation.
For instance, 4.5 ** 3 means 4.55n The exponent must always be an

integer in ALGOL W. An integer to any exponent gives a real result.

EXAMPILES
AIGOL W form Conventional form
| 1.1 -3 % 2 b1 - 37
b (4.1 - 3) ** 2 (b1 - 3)°
) 3.2 %% 2 + 5,2 3.2% + 5.2
w2 4=

AIGOL W form Conventional form

(-4) *x 2 (1)

b *5 /2 %% 3 4x5
2

5 %% 2 % 3 52, 3

Also notice

()"

DHKZ XKLy

In AIGOL W the following two constructs are not allowed because

the exponent is a real numbers

3.2%%(2 +5 , 2) and 2%*¥(3%*k)

2.202. Assignment of numerical values through input

If the value cf an identifier is to be provided by input it is
assumed that this value appears on a data card which is in the card

reader waiting to be read, The statement
READEN {V)

where V stands for variable identifier, reads the next number on the
current input card. If there are no more numbers on the current input
card, subsequent cards are read until a number is found., This statement

assigns the value of the number to the variable whose name is specified,

READZN (Vi,vé,o.,,Vh)
is equivalent to

READEN (Vi); READ¢N (Vé);q,o; READYN (Vh) .

The constsants on the data cards are assigned in the same order as

[N

/
~—

the variable names in the READ@N statement. One or several numbers

may appear on a single card separated by one or more blank spaces with
column 80 of one card immediately followed by column 1 of the succeeding
card.

The statement
READ (V)

is similar to READ@N (V) except that scanning for the number begins on
a new input card.

The statement

READ (V{,V5Vsg 500 ,Vn)

is equivalent to
READ (Vl); READ@N (VQ,VB,..,.,VH)

Numbers are punched into data cards in the forms described in
Section 1.2, and may be prefixed by "-". Numbers corresponding to

variables of type integer must notv contain decimal fractions or
scale parts.
EXAMPLES READZN (A2)
In this case the data card must contain at least one number,
say 1.279'-7 if A2 is not an integer variable.
READ (B10,B11,B12,B15);

The data cards must contain four numbers, say

3.4t 7. 149 8251 g if BlO, Bll, B12 are not
integer variables, Bl5 may be an integer variable or a real
variable, One could spread these constants over several cards

if desired,

ey

-

In general input read into the machine must be assignment compatible

with the corresponding variable (cf. Section 2.3.2).

2.5. Assignment of numerical values through expressions

Exponentiation ab (a**b) 1is defined by repeated multiplication if
b is a positive integer and by l/ alb| when b is negative. b must have
type integer. If one desires the result of AR where R is real, use

EXP (R * IN (4)).

2.3.1. Evaluation of expressions

The discussion in this paragraph is correct, However, in AIGOL W
the type of a resulting expression is defined for each type and each
operator. The type complex and the discussion of the long forms is

provided for completeness and may be ignored by beginning programmers,

I: A+B,A -8B

A B | integer real complex
integer integer real complex
real real real complex
complex complex complex complex

The result has the quality "long" if both A and B have the
quality "long", or if one has the quality "long" and the other is

integer.

II:

A *B

B . A :
A integer real complex
integer integer long real long complex
real long real iong real long complex
complex long complex long complex iong complex

A or B having the quality “long" does not affect the resultant

type of the expression.,

I11

and

IV:

©
.

A/ B

MIIIIIWII integer real complex
integer real real complex
real real real complex
compiex coemplex complex complex

The specifications for the quality “long" are

A ¥x B

A B integer
integer real
real real
complex complex

The result has the quality “long’ if and only

10

those gilven for +

if A does.

e

V: ABS A means the "absolute value of A".

A ABS A
integer integer
real real
complex real

2.3.2, Type of the variable to which a value is assigned,

The assignment V := E is correct only if the type of E is

assignment compatible with V. That is; the type of V must be lower or

on the same level in the list below as the type of E.

integer
real, long real

complex, long complex

Several transfer functions are provided as standard functions

(cf. Section 2.4). For example, to change the type of expression E from

real to integer either ROUND(E), TRUNCATE (E) or ENTIER(E) may be used,

2.3.4. Multiple assignments

The assignment of the value of an expression can be extended to

several variables. As in AIGOL 60, the form in ALGOL W is

The multiple assignment statement is possible only if all the
variables occurring to the left of Vrs= are assignment compatible with

the type of the variable or expression to the immediate right of the :

11

2.4 Standard Functions

All the standard functions listed in this section are provided in
AIGOL W except sign and abs. ABS is a unary operator in AIGOL W. In

addition the following standard functions are provided.

truncate (E) if E £ 0, then entier(E)

if E < 0, then -entier(-E)

round (E) if E > 0, then truncate (E + 0.5)

if E < 0, then truncate (E - 0.5)

log(E) the logarithm of E to the base 10

(not defined for E < 0)

time (E) if E = 1, elapsed time returned in 60th's of a second
if E = 2, elapsed time returned in 60th 's of a second

and printed in minutes, seconds, and 6 's of a

second

2.5. output
The identifier "print" should be replaced by "write". A print
line consists of 1%2 characters.

-EXAMPLES WRITE (E) ; WRITE(El,Eg, cos ,En);

The format of the values of each type of variable is listed below:

integer right justified in field of 14 characters and
followed by two blanks. Field width can be
changed by assignment to INTFIELDSIZE.

real same as integer except that field width is

invariant.

12

long real right justified in field of 22 characters

followed by 2 blanks,

complex two adjacent real fields.
long complex two adjacent long real fields.
logical TRUE or FALSE right justified, in a field of

6 characters followed by 2 blanks.

string field large enough to contain the string and
continuing onto the next line if the string is
longer than 132 characters,,

bits same as real.

In order to provide headings or labels for printed results, a
sequence of characters may be printed by replacing any expression in

the write statement by the sequence of characters surrounded by ". If

the " mark is desired in a string it must be followed by a ".

EXAMPLES
WRITE ("N = ", N)

This statement will cause the following line to be printed if

N is integer and has the value 3.
N = 3
WRITE ("SHAKESPEARE WR@TE "“HAMIET""")
This statement will cause the following line to be printed,
SHAKESPEARE WR@TE "HAMLET".
In the statement

5B)

WRITE (El,EE,,, N

13

the type of each Ej determines the field in which its value will
be placed. The field for Ei+l follows the field for Ei bn' the current
print line. I N

If there is not enough space remaining on the current print line, the
line is printed and the field for Ei+l begins at the beginning of a

new print line. The first field of each write statement begins on a

new print line.

3. Construction of the program

3.1. Simple Statements

1
=

Note that the simple assignment statement takes the form V :

and that the input-output statements are respectively

READ (V) and WRITE(E)

where V is a variable or a variable list and E is an expression or

expression list.

3.2. Compound Statements

In later descriptions in these notes "compound statements" will be

synonomous with "blocks without declarations”.
3.4. Comments
The construction
comment text;

may appear anywhere in an ALGOL W program. However, in AIGOL W the

comment following an end is limited to one identifier which is not a

reserved word.

14

3.5. Example

To clarify the change necessary to form an AIGOL W program from
the program enclosed in the box, the example is shown as it would be

punched, Note that an AIGOL W program must end with a . (period).

BEGIN COMMENT EVALUATION OF A POLYNOMIAL;
REAL AO, Al, A2, A3, X1, P;
READ (A0, Al, A2, A3, X1);
P := ((A3 * X1 + A2) * X1 + Al) * X1 + AO;
WRITE (P)

END.

Note that the indentation, although not required, allows the begin
and end to be matched easily. In complicated programs indentation will

improve readability and therefore reduce the number of careless errors.

L. Loops

L.1. Repetition

The variable V of the for statements described is always of the
type integer and cannot be declared in AIGOL W; its declaration is
implicit (cf. Section 7), and its value cannot be changed by explicit

assignment within the controlled statement. FEach expression E of the
for clause must be of type-integer.
The statement of the form

for V := Hl’HE""’Hn do 83
is correct for n > 1 in AIGOL W only if Hl,H2,...,Hn are all integer

expressions.

15

The form

for V := E step 1 until E,do S;

may be abbreviated as

for V := Eluntil EPQQ_S;

4.2. Subscripted Variables

In AIGOL W the subscript expression must be of type integer. Any

other type will result in an error detected during compilation.

4.2.1. Array declarations

In the text, the : in array declarations must be replaced by
for ALGOL W. The word array must always be preceded by its type.
ARRAY A[1:10,1:20]; is incorrect and should be written
REAL ARRAY A (1::10, 1::20);
Only one set of subscript bounds may be given in an array declaration.

Hence, the examples should be corrected for AIGOL W to read

EXAMPLES
real array A, B, C(1::10);
real array D, EG(1::10, 1: :20);

integer array N, M(1::h4);

L.L.2. Example

In ALGOL W the example in the box would be written as listed below,

e

[

BEGIN COMMENT DERIVATIVE OF A POLYNOMIAL;
INTEGER N; REAL P, C;
REAL ARRAY A(1::20);
READ (N, C);
FOR I := 1 UNTIL N DO READON (A(I));
P :-0;
FOR I := N STEP -1 UNTIL 1 DO
P := P*C + I*A(I);
WRITE (P)

END.

5. The Conditional Statement

Conditional statements are very useful and are used in ALGOL W as
discussed in this chapter for ALGOL 60. Note that the symbols <, >,

and ¥ must be replaced by < =, > =, and - =, respectively.

6. Jumps

6.1. Labels

All labels in AIGOL W must be identifiers which are not reserved

words.

6.2. The Jump Statement

go to may be written as GO TO or GOTO in AILGOL W,

6.2.1. Jumps out of loops or conditional statements

The value of the loop variable is not accessible outside of the

loop in AIGOL W,
17

r—

i

-

r— r—

rr— r— [~

"._,-‘,..

—

—

r—

6.2.2. Inadmissible Jumps

It is not possible to jump from outside into a loop in ALGOL W.
Likewise, it is not possible to jump into a conditional statement.

In general, it is not possible to jump into the middle of any
statement, viz, for statement, conditional statement, while statement,

compound statement, block.

6.4. Another Form of Loop Statement

The statement described in the text does not exist in AILGOL W.
However, ALGOL W has another form of loop statement which is

useful -- it is called the while statement.

FORM while B do S;

B is a condition like that described in Chapter 5. As long as B is
true, the statement S will be repeated. It is possible that S is

never executed. More precisely, this loop may be interpreted
L: if B then
begin S; goto L
end
The example in Section 6.3 can be rewritten as follows:
BEGIN COMMENT DETERMINATION OF THE CUBE ROOT;
REAL A, APPROXIMATIONVALUE, X, Y, I;

READ (A, APPROXIMATIONVALUE);

X := APPROXIMATIONVALUE; 2 := ABS X;

18

.
i

r— I - T

—

WHILE D> .5'-9 ¥ ABS X DO
BEGIN

Y ¢

X; x := (2%Y + A/(Y*Y))/3;
D := ABS (X-Y);
END;

END.

7. - Block Structure

For the purposes of block structure in ALGOL W compound statements
must be considered as blocks, namely blocks without declarations. A
compound statement with a label defined in it is a block. (Reread the
notes in this paper concerning Chapter 6.) In for statements the scope

of the variable V in the for clause is the statement S following the do.

1.4, Dynamic Array Declarations

The expressions specifying the subscript bounds in dynamic array

declarations must be of type integer.

8. Propositions and Conditions

The word "Boolean" in the text should be replaced throughout by
"logical".

8.1. Logical Operations

-Some of the symbols for logical operations are different in

ALGOL w.

19

r

Operation ALGOL AIGOL W READ AS

negation - - not

conjunction A AND and

disjunction \ OR or

equivalence = = is equivalent to

AIGOL W does not have an equivalent form of
symbol, 2,
;, The following hierarchical arrangement

operator with respect to other operators.

the AILGOL implication

defines the rank of the

Level f Operation Symbol
1 LONG, SHORT, ABS
2 SHL, SHR, *¥
3 =
L I anD, %, /, DIV, REM
5 OR) +9 -
6 <, <=,>,>=,=, =, IS

In a particular construct,

the operations are executed in a sequence

from the highest level (smallest number) to the lowest level (largest

number): Operations of the same level are executed in order from left

to right when logical operations are involved and in undefined order in

arithmetic expressions.

The discussion in this section is correct except concerning the

hierarchy of operators,

In general, the extra parentheses are required

in ALGOL W when using arithmetic expressions with logical operators,

The examples below are correct AIGOL W and correspond to examples in

20

|
-

—

r— r— r—

tne text. All parentheses are necessary.

EXAMPLES

(A >5) OR (B>=1)

(A *3>=C + D) (BBs (21 + Z2) > M)

(0 < =X) AND (X < = 1)

(X =3) OR (1 <=1X) AND (X <= 2)

means (X = 3) OR ((1 < = X) AND (X < = 2))

9. Designational Expressions

The designational expressions described in the text do not exist
in AIGOL W. The chapter may be skipped.
However, ALGOL W provides a designational statement and expression

which is equivalent to that described by the text.

9.1. The Case Statement

The form

CASE E OF
BEGIN

5,38

PPpie - 38y

END
is called a case statement. The expression E must be of type integer.
The value of the expression, E, selects the Sp statement between the
BEGIN END pair. Execution is terminated if the value of E is less
than 1 or greater than n. After the designated expression is executed,

execution continues with the statement following the END.

21

{
i
[
[N

-

-

r——-‘\ r—m

— r

EXAMPLE
CASE I OF
BEGIN
BEGIN J := I; GOTO IL1;
END;
I =1+ 1;
IF J < I THEN GOTO Il

END

If the value of the expression, I, is 3, for example, the statement,
IF J < I THEN GOTO Ll is executed, If J > = I then execution continues

following the END.

9.2. The Case Expression

Analogous to the case statement, the case expression has the form
CASE & OF (El,EE,...,En)

The value of the case expression is the value of the expression selected
by the value of the expression E. If the value of E is e, then the
value of Ee is the value of the case expression. The type of the case
expression is the type of the Ei expression whose type is lowest on the
list

integer
real

long real
complex

long complex

22

|
“

r—

EXAMPLE

CASE 3 OF (4.8, 12, 17, 4.9) has the value 17 in floating

point representation since the type of the case expression is real.

10. Procedures
10.1.1. Global and formal parameters

Labels may not be used as formal parameters. Switches do not exist

in -ALGOL W,
10.1.2.1. Arguments

Arguments serve to introduce computational rules or values into
the procedure. A rule of computation can be brought into the procedure
if the computation is defined by means of another procedure declaration,
or a statement.

Formal simple variables, formal arrays, and formal procedures can
be arguments.

Example 3 is correct in the text.

A formal array can be used as an argument in only one way, "call

by name". The discussion concerning "call by value" should be ignored.

10.1.2.3, Exits

Because labels may not be used as actual parameters to a procedure,
the text's discussion of exits is not correct for AILGOL W. However,
a statement (in particular a GOTO statement) may be used as an actual
parameter corresponding to a formal procedure identifier. In this way

side exits leading out of the procedure are provided,

23

L

— r—— r

r—r

r—

10.1.3. Function procedures and proper procedures

From given pieces of programs, procedures can be derived either
in the form of function procedures or in the form of proper procedures,,
The body of a function procedure is either an expression or a
block with an expression before the final END in the procedure body.
The value of the expression is the value of the function procedure,
The way in which a procedure is set up and used is a fixed
characteristic of the procedure and is established directly in the
declaration by means of the introducing-symbols, The declaration of
functions is introduced by the symbols
INTEGER PROCEDURE
REAL PROCEDURE

LOGICAL PROCEDURE

according to the type of the resulting value. The type of the expression
giving the value of the procedure must be assignment compatible with
the declared type of the function procedure.

The declaration of the proper procedure begins with the symbol
PROCEDURE

No resulting expression can be placed at the end of the procedure

body.
10.1.4. The procedure head

All necessary assertions about the formal parameters and the use
of the procedure are contained in the head of the procedure declaration,

In AIGOL W the head consists of three parts:

el

;
j
-

-

r

(1) Introductory symbol
(2) Procedure name

(3) List of formal parameters and their specifications

(1) The introductory symbol determines the later use of the procedure
(cf. Section 10.1.3.)

(2) The procedure name can be chosen almost arbitrarily. The only
restriction is the general limitation concerning some reserved

, names (cf. Section 1.3).

(3) The type, value specification, and identifier name of formal
parameters appear in the list of forma'. parameter specifications,
and not separately as in ALGOL 60. The comma serves as the
general separation symbol between formal parameter identifiers
of the same type and vaiue specification. The semicolon serves
as the general separation symbol between specifications of formal

parameters of different types or value specifications.

The type of the formal parameter is specified by the symbols

REAL
LONG REAL
INTEGER

COMPLEX

LONG COMPLEX
LOGICAL

REAL ARRAY
LONG REAL ARRAY
COMPLEX ARRAY
LONG COMPLEXARRAY
INTEGER ARRAY
LOGICAL ARRAY

N
N

L

f— e

==

REAL PROCEDURE

LONG REAL PROCEDURE
COMPLEX PROCEDURE
LONG COMPLEX PROCEDURE
INTEGER PROCEDURE
LOGICAL PROCEDURE
PROCEDURE

The value specification is used only for parameters called by

value. It is specified by the symbol value. 1t pay only follow the

types INTEGER, REAL, LONG REAL, TOGICAL, COMPLEX, LONG COMPLEX.

EXAMPLES
PROCEDURE P (REAL X, Y; INTEGER VALUE I; PROCEDURE Q, R);

REAL PROCEDURE Z (LOGICAL L, M, N; REAL PROCEDURE P);

Note that in the case of formal parameters used as array identifiers,
information about the number of dimensions must be given. The
last identifier following each array specification must be followed
by (followed by one asterisk for each dimension separated by commas,

followed by).

EXAMPLE

PROCEDURE P (REAL ARRAY X, Y (*,%); REAL ARRAY z (¥)).

10.2. The Procedure Call

The procedure call in ALGOL W is unchanged from ALGOL 60. 1yig
section should be read carefully.
Since labels are not allowed as parameters, it was earlier suggested

that jump statements be used and that the corresponding formal parameter

be a proper procedure (cf. 10.1.4. Example 8). 1, general, any

26

r— r— r— r—

— -

statement may be used as an actual parameter corresponding to a formal

proper procedure which is used without parameters.

EXAMPLE
BEGIN
PROCEDURE VECTOROPERATIONS (INTEGER J; INTEGER vaLue N;
PROCEDURE P);
BEGIN J := 1;
WHILE J < = N DO
BEGIN P; J := J + 1
END
END;
REAL PROD; INTEGER I;
REAL ARRAY A, B, C(1::10);
(initialize A and B)
L1: VECTOROPERATIONS (I, 10, C(1) := A(1l) + B(1l));
PROD := 0.0;
L2: VECTOROPERATIONS (I, 10, PROD := PROD + A(l) * B(l));

END

The statement L1 is a procedure call which causes a vector addition

of A and B to be placed in C. The statement L2 causes the element-by-

element vector product of A and B to be calculated and placed in PROD.

27

10.3. Example

REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;
REAL VALUE A, B; INTEGER VALUE ORD);
BEGIN REAL T1, IL;
ORD := ENTIER ((ORD + 1) / 2);
BEGIN INTEGER F, N; REAL M, S;

REAL ARRAY U, T (1 :: ORD);

T(1) := (FcT(A) + FCT(B)) / é;

U(1) := FCT ((A + B) / 2);

F =N :=1;

FOR H :=2 UNTIL ORD-1 DO

BEGIN N := 2 * N; S := 0;
M:=L/ (2 ¥ N);
FOR J := 1 STEP 2 UNTIL 2 * N - 1 DO

S := S + FCT (A + J * M);

U(H) :=8 / N;
() = (T(H - 1) +U(H - 1)) / 2;
Foe=1;
FOR J := H - 1 STEP -1 UNTIL 1 DO
BEGIN F := 4 * F;

T(J) :=T(F + 1) +(D(d + 1) -T(3))/ (r-1);

U(J) := U@ + 1) + (U + 1) - UW)) /(F-1);
END;

IF ORD > 1 THEN

28

i
:
r
[

BEGIN

T(?) := (U(1) + T(1)) /25

T(1) == T(2) +(T(2) - T(1)) f(4 * F - 1)

END;
TL := T (1)
END;
END;
T * L
END;

The names of standard functions and standard procedures cannot appear
as actual parameters in AIGOL W. Therefore the calls to R¢MBERGINT

in Section 10.3 are incorrect. However, this situation may be overcome

by declaring a procedure which returns the value of the standard function
or performs the computation of the standard procedure.

EXAMPLE
REAL PRPCEDURE SINE (REAL VALUE X); SIN(X);

Then a call to R¢MBERGINT might be

A := RgMBERGINT (SINE, x (1), X(2), 10);

EXAMPLE6
REAL, PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);
BEGIN REAL S;
S := 0;
FOR T:=1 UNT'IL N DO

S:=s+A(1,1);

END

29

EXAMPLE 7

PROCEDURE COUNTIUP (INTEGER X);

EXAMPLES8
PROCEDURE ROOTEX (REAL VALUE X; REAL Y; PROCEDURE P);
IF X > = OTHEN
Y : = SQRT(X)
ELSE
BEGIN Y := SQRT(ABS X);
P

END

The actual parameter corresponding to the formal parameter P

should be a jump statement.

30

PART II: Some Extensions of ALGOL 60 in ALisC 4 W

1. Procedures

i.1. Call by Result

Besides "call by value" and "cali by nam ", AIGOL W allows parameters
to be called by result. The formal simple varizbie is handled as a local
quantity although no declaration concerning tnis quantity is present,

The value of the simple variable is not initialized at the procedure
call. If the procedure exits normally, the value correspoinding to the
formal simple variable is assigned to the curresponding actual parameter.
The formal parameter must be assignment compatib:e with the actual
parameter. To specify a result parameter, inser® the word RESULT after

the type and before the identifier (as with VAilE).

EXAMPLE

PROCEDURE P (REAL RESULT X,Y; INTEGER VALUE I; LONG COMPLEX RESULT Z);

1.2. Call by Value Result

Formal simple variables may be called boti by value and result.
This combines the calls of value and result s¢ that the formal identifier
is initialized to the value of the corresponding actual parameter at
procedure call and the value of the formal identifier is assigned to
the corresponding actual parameter at a normal procedure exit, To
specify a value result parameter, insert the words VALUE RESULT after

the type and before the identifiers.

EXAMPLE

PROCEDURE Q(INTEGER VALUE RESULT I,J,k);

31

L

r— r—

— r— r—

r—-—\

r-—v—-‘

2. Procedure Calls

2.1. Sub-arrays as Actual Parameters

In AIGOL W, it is possible to pass any rectangular sub-array of an
actual or formal array to a procedure, Those dimensions which are to be
passed to the procedure are specified by *'s, and those which are to
remain fixed are specified by integer expressions. The number of

dimensions passed must equal the number of dimensions specified for

the corresponding formal array.

EXAMPLE
The actual parameter may be a sub-array of a three dimensional
real array A. Examples of possible actual parameter specifications and

corresponding formal parameter specifications are listed below.

Actual Parameter Corresponding Formal Parameter Specification
A or A(¥,*,* real array B(¥,*,%)
A{T,*,%) real array B(*,*)
Afx T, %) real array B(*,¥)
A(*, %, 1) real array B(*,*)
A(TI,J,%) real array B(*)
~A(I,*,3) real array B(¥*)
EXAMPLE

Read in the size of one dimension of a cubic array X, then
read in the elemends Q€. K. -

Calculate and write cut the sum of the traces of all possible
two dimensional arrays in A using the previously defined real

procedure TRACE.
32

BEGIN

REAL SUM;

REAL PROCEDURE TRACE {REAL ARRAY A({*,*); INTEGER VALUE N);

BEGIN COMMENT THE B(DY CF THIS PROCEDURE IS GIVEN IN A
PREVIOUS EXAMPLE: ;

END;

INTEGER N;

READ (N) ;

BEGIN

END

END.

REAL ARRAY X(i::N, 1::N, 1::N);
FOR I := 1 UNTIL N DO

FOR J := L UNTIL N DC:

FOR K := 1 UNTIL N DO READON(X(I,J,K));

SUM = O;
FOR I := 1 UNTIL N IO

SUM := SUM + TRACE(X(I,*,*),N) + TRATE (X(*,I,*),N)

+ TRACE (X(*,%,1),N);

WRITE (suM)

5. String Variables

Frequently, it 1s desirable to manipulate sequences of characters.,

Tnis facility is available in AIGCL W in the form of string variables,

Fa~n variable has a fixed length specified in +4he string declaration.

The form of' the declaration is

33

string (<integer number>) <variable list>

The integer number must be greater than 0 and less than or equal to
2560 The specification "(<integer number>)'" may be omitted; a default

length of 16 is assigned to the variables. Arrays of strings also may

be declared,
EXAMPLE
STRING A, B, C
STRING (24) X, Y, Z

STRING {10) ARRAY R, S{0::10, 5::15)

In order to be able to inspect elements of the string or to

manipulate portions of the string, a substring operation is provided.

FORM <string identifier> (E |<hﬁ£ger number>?

The expression E must be of type integer, This string expression
selects a substring of the length specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the string has position 0.

EXAMPLE
BEGIN STRING (5) A;
A : = "QRSTU" ,
A (3]2) := A (o]2);
WRITE (A)

END

In this example the constant string "QRSTU", is assigned to the
variable A which is declared to be of length 5. Then the character
positions 0 and 1 of A are assigned to positions 3 and 4 of A.

34

Consequently, when the string & is written its vaiue 1 s QRSQR. It
should be noted that the assignmenis are made character by character.

If the second assignment statement in the examplie above had been
A (2]3) := A(o]3)

the resulting value of A would have been QREEQ.

L, Records and References

Records are structured guantities composed of quantities of any
of +he simpie types such as KEAL, INTEGER, STRING, etce. Records
themselves do not have values; only the quanfities which compose the

records may have values,

4,1. ,Record Class Declarations

Record declarations indicate the composition of a record. Unlike
simpie type declarations or array declarations no storage is reserved
for a record when the record decl ara®ion 1s encozntered. igsenti ally,
the record declaration only describes the form of recoros to ‘be created,
Une record decaiaratnilons appear with all othe r declarati ons.

FORM:

RECORT V (<declarations of variables of simple hype>);

The name V is the name of *the record class . The var iak . es
declared between the parentheses are called the f ie 1lds of the record.
EXAMPLE
RECORD A(INTHGER I,J; REAL Z; STRING (5} 3)

REGORD B/REAL, X3 ILONG REAL IX; EHAL Y);

35

L

.

The punctuation of the examples should be noted carefully, The

names in the list ¢f identifiers following the indication of the simple

v W,

type are separated by ",". The listis ended with a “;" unless the

"o

;" would immediately precede the closing " -,

k.2, Reference Declarations

In order to specify a record of some record class, REFERENCE is a
simple type in ALGOL W. The value of a variable of type reference
is an address of a record, This address is sometimes called a pointer
to a record..

Reference declarations appear in a program where ail other declarations

appear.

FORM

REFERENCE (V) Vl;

V is a name of a record class, Vi is a name of a reference

[T

variable or a list of names of reference variables separated by ",".
EXAMPLE
REFERENCE (A) R1, K2, R3;

The name V of a record class may also be a 1list of Tames

separated 'by ",". This list indicates the record classes to which
records referenced by the reference variables must 'belong.
XAMPLE
REFERENCE (A,B) 34, 35;

Rl ard R5 may point, only to records of record class A or B,

36

The reserved word NULL stands for a reference constant which
fails to designate a record,
Arrays of references are declared and used analogously to arrays

of other simple types.

FORM

REFERENCE (V) ARRAY Vl,(<subscript bounds>) ;

EXAMPLE
rReFERENCE (A,B) ARRAY ARl, AR2 (1::10, 3::7);
The implementation requires that ail refereace arrays declared in
a biock be declared in the same reference array declaration or
immediately following a reference array declaration.
EXAMPLE
REFERENCE (A) ARRAY ARl, AR2 (1::10, 3::7);

REFERENCE (B) ARRAY AR3 (2: :17);

In the example above, any other declaraticn except a reference
array declaration is not aliowed between the two reference array

declarations,

4.3, Reference Expressions

Quantities of simple type reference may be used in assignmeni;

statements and comparisons,

EXAMFLES
Rl := R2
RI := NULL
kl = R2
R2 = = E3

37

]

r--

r—

o

r—

—

—

~—

—

Only the relations = and — = are allowed between references. In

order to inquire to which record class a reference expression is bound,

the IS operator is provided.

FORM

E ISV

E is a reference expression and V is a name of a record class. The

value of the IS operator is logical, either TRUE or FALSE.

'EXAMPLE

4.4, Record Designators

A particular type of reference expression is the record designator.

A record designator is the name of a record class when used as an

expression.
EXAMPLE
Rl := A
R4 := B

When the record class name is encountered, the value is a pointer
to a new record of that class. The values of the fields of the new

record are undefined.

4,5, Field Designators

In order to manipulate the values of the fields of a record, the
expression
FORM
v, (E)

38

exists in AIGOL W. E is a reference expression. Vl is a field of the
record class of the record pointed to by E. The type of the field

designator is the type of the variable Vl'

EXAMPLES
Z(R1)

IX(RL)

EXAMPLE 1
BEGIN RECORD r (nTeGER C,D; STRING (2) S);

REFERENCE (H) R1;

Rl := H:
C(R1) := 5;
D(R1) := 8;
S(R1) := "Az"

EN-D.

Example 1 is a short program which declares a record class H and
one reference -variable Rl whose values may point to records of class H.
(ne record of class H is created and each field of the record pcinted
to by Rl is initialized,

AIGOL W provides a short notation for creating a record and

initializing its fields, This modified record creatcr has the form

V(EL) .

V is the name of the record class. The expression list ELI between the
parentheses is the list of the values of the fields specified in the

order they appear in the record. class declaration.

39

oe

I

r- —

—

EXAMPLE

BL.8, 3.141591,, 8'6)

Example 1 may be rewriliten as

EXAMPIE 2

BEGIN RECORD H (INTEGER

REFERENCE {(H) R1;

C,0; STRING {2)

Rl := H(5, 8, “Az")

END.

folLows:

—

r--

r— r— r— rm r-

—

Algol W Deck Set-Up
< Job Card >
//JOBLIE DD DSNAME-SYS2.,PROGLIB,DISF-{OLD,PASS
// EXEC ALGOLW
//ALGOLW .SYSIN DD *
PALGOL |
< program >
$EOF
< data >

%EOF

/*

* QOptional

*¥% May be repeated

r——

[S—-—

-

—

r—-

r— r—— r— rm

—

—

ALGOL W

LANGUAGE DESCRIPTION

by

Henry R.Bauer
Sheldon Becker
Si:zan L. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

rwy?""?“.

r—

r— r—

r—-

~ —

-

"A Contribution to the Development
of ALGOL" by Niklaus Wirth and C. A. R.

1)

Hoar € ' was the basis for a compiler de-
veloped for the IBM 360 at Stanford Univer-
sity. This report Is a description of the
implemented language, ALGOL W. Historical
background and the goals of the language

may be found in the Wirth and Hoare paper.

1) Wirth, Niklaus and Hoare, ¢. A. R., "A
Contribution to the Develcpment of ALGOL"',
Comm. ACM 9, 6(June 1966), pp. 413-431.

CONTENTS

TERMINOLOGY, NOTATION AND BASIC DEFINITIONS...... S |
1.1. Notation .cccoeoseccsacconoonssansoass W eesasecnasoo. 1
1.2, Definitions .ccececvoossosooooson eereeaa e emae .1

SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. NnO « ..« o se 't
2.1. Basic SYMbOLS + + + + ceocerernincorirnoaannas el ol
2.2. Syntactic Entities......... e ee oo a e e 5
IDENTIFIERS .+ :ctoveoacocoononsnas coseas o coeano s o enosseos N
VALUES AND TYPES....... e e e, 9
4.1, Numbers «ccoeeecosss e s r oo s sao oo 10
4.2, Logical Values «.coveoccsnscooseonsuss cevsosoeeaoall
b.3. Bit SEqUENCES «+evrrceoeraneasvonassscensssoonsosll
L, Strings «voceeeveorecvennnnnn Cevraasesaeoese e .12
k.5, References «:-ceoeooo- Ceeeccuvacacsun e e e e veesl?
DECLARATTONS - ¢ v e v v vvvvns e e eeanae e PR benol?
5.1. Simple Variable Declarations P 5
5.2. Array DeclarationsS ..esoeecoesasacnoas Ceoureneae e 15
> 3. Procedure Declarationseoeeeunocvoouncroanocs 16
5.4. Record Class Declarations ceesanans Ceseanee 20
EXPRESSIONS :ooececcoasesooscoonsoas cooe e ccvsavsaseen s 0oas20
6.1. Variables -«coeons Ceveeieeeasoecune Ceeieeseaaeas 22
6.2. Function Designators «-eeorsesescosonoanvnns vee..23

ii

6.3,

CONTENTS {cont.)

Arithmetic Expressions

6.4, Logical

Expressions ...

6.5.

6.6

Bit Expressions

String Expressions ...

6.7.

Reference Expressions

6.8.

STATEMENTS

Blocks

e h—

7.2. As

signment Statements

Procedurc Statements

Goto Statements

a0 6 a0 e

J
o
SN

~J
(@)

'If Stagggents s eoaae

sass Statements. ...

~

C
.

i

Codeoo

: 7.8.2.

7
i

EI‘)

STANDARD FUNCTICNS AND FREDECLARED IDENTIFIERS.

8.1. Standard Transfer Functions ...

Stangard Froo

“

Precedence of Operators

T T A fua e

o

P

voe e ow

Iterative Statzments ..

Read Statements..

wWrite Statements. ..

v oe oow

8.2. Standard Functions of Analysis

Over flow and Underfiow

8.3.1.

Predeciared Variabies.....

i1i

oo e o0 00

o o

°

o

©

°

.2k
.28
.30
.31
.32
»33

A6

<47

NN NS

2]

8.4.

8.5.

CONTENTS_ (cont.)

8.3.2. Sstandard Message Function

Output Field Sizes

Time Function

iv

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure langauage, defined by
a formal system. This formal system makes use of the notation and
definitions explained below. The structure of the language ALGOL W
is determined by three quantitites:

(1) ¥, the set of basic constituents of the language,
(2) U, the set of syntactic entities, and

(3) P, the set of syntactic rules, or productions.

1.1. Notation
A syntactic entity is denoted by its name (a sequence of letters)

enclosed in the brackets < and >. p syntactic rule has the form

—

<& = x

where <& is a member of W, x is any possible sequence of basic con-

stituents and syntactic entities, simply to be called a "sequence".

The form
N <k ni=x |y | ..z

is used as an abbreviation for the set of syntactic rules

e |

< = x
<& =y
<& =z
1.2. Definitions
1. A sequence x 1is said to directly produce a sequence y if and

o

—

only if there exist (possibly empty) sequences u and w, so that
either (i) for some <& in U, x = WBW, V¥ = UVW, and<& ::=

v'is a rule in P; or (ii) x = uw, y = uww and v is a "comment"

(see below) .
2. A sequence x 1s said to produce a sequence y if and only if
there exists an ordered set of sequences s[0], s[1], . . . , s[n],

so that x = s[0], s[n] = y, and s{i-1] directly produces s[i] for

alli=1, . . ., n.

3. A sequence x is said to be an ALGOL W program if and only if
its constituents are members of the set If, and x can be produced

from the syntactic entity <program>.

The sets V and U are defined through enumeration of their members
in Section 2 of this Report (cf. also 4.4.). The syntactic rules are
given throughout the sequel of the Report. To provide explanations
for the meaning of ALGOL W programs, the letter sequences denoting
syntactic entities have been chosen to be English words describing
approximately the nature of that syntactic entity or construct. {here
words which have appeared in this manner are used elsewhere in the
text, they refer to the corresponding syntactic definition. Along
with these letter sequences the symbol T may occur. It is understood
that this symbol must be replaced by any one of a finite set of English
words (or word pairs). Unless otherwise specified in the particular
section, all occurrences of the symbol T within one syntactic rule

must be replaced consistently, and the replacing words are

integer
real

long real
complex

long complex

For example, the production

<T term> ::= <J factor>

corresponds to

<integer term>

<real tern>

0

<long real term>

=

<complex term>

<long complex term> ::
The production
<TO primary>

corresponds to

<long real primary>

<long real primary> H

<long
It is

than basic symbols,

called characters.

logical
bits
string

reference

(cf. 6.3.1.)

<integer factor>
<real factor>
<long real factor>
<complex factor>

<long complex factor>

se= long <Tl primary> (cf. 6.3.1. and
table for long
6.3.2.7.)

long <real primary>

long <integer primary",

complex primary> ::= long <complex primary>

recognized that typographical entities exist of lower order

The accepted characters are

those of the IBM System 360 EBCDIC code.

The symbol comment followed

containing semicolons,

A comment has no effect on the meaning of a program,

during execution of the program.

followed by a semicolon,

by any sequence of characters not
is called a comment.
and is ignored

An identifier (cf. 3.1.) immediately

following the basic symbol end is also regarded as a comment.

The execution of a program can be considered as a sequence of
units of action. The sequence of these units of action is defined as
the evaluation of expressions and the execution of statements as de-
noted by the program. 1In the definition of the implemented language
the evaluation or execution of certain constructs is either (1) de-
fined by System 360 operations, e.g., real arithmetic, or (2) left
undefined, e.g., the order of evaluapipn of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

Alslc|o|lEe|Flaelr|I]dg]lk]|L|M|Nn]|oOo]|P]
elr|s|z]ulv]w]|x]|Y]|z]
olrla]|z|s]s|6]7]8]9]

true | false | " | null | # |'|

integer |real |complex |logical| bitsl string |

reference |long real| long complexl array|

procedure |record |

> s 1+l 1 ()| begin | end | if | then | else |
case | of | + | - | *| /| » | div | rem | shr | shl | is
absl lonql short I and I or I ﬂll I = |—1= |< |

<= >1 >= i |

1= | gotol go to | for | step | until l do l while I

comment |value| result

All underlined words, which we call "reserved words", are repre-

sented by the same words in capital letters in an actual program.

i

Adjacent reserved words, identifiers (ef. 3.1.) and numbers must be

separated by at least one blank space.

Otherwise blanks have no mean-

ing and can be used freely to improve the readability of the program,

2.2, Syntactic Entities

(with corresponding section numbers)

<actual parameter list>

<actual parameter>
<bit factor>

<bit primary',
<bit secondary>
<bit sequence>
<bit term>
<block body>
<block head>
<block-

<bound pair iist>
<bound pair>
<ease clause>

<case statement>

<control identifier>

<declaratior>

<digit3

<dimension specificatior>

<equality operator>
<expression list>
<field list>

<for clause>

<for list>

<formal array parameter>
<formal parameter list>

<formal parameter segment3

1

A Sal

N1oA\w T Aan

(SRR

B R A I e NG, BEE GV ¥ BN GV B N I, T Rt R Y'e N N N o N o N R

']_J

}._I

\v]

[0

o

TRV T B B = T S

<formal type>

<go to statement>
<hex dig:-">
<identifier list>
<identifier>

<if clause>
<imaginary number>
<increment>
<initial value>
<iterative statement>
<label definition>
<label identifier>
<letter>

<iimit>

<logical element>
<logical factor>
<logical primary>
<logical term>
<logical value>
<lower bound>

<null reference

<procedure declaratior>

<procedure heading>
<procedure identifier>
<procedure statement>

<progran>

5.3
7.4
4.3
3.1
3.1

4.1
7.7
7.7
7.7
7.1
3.1
z.1
7.7
6.4
6.4
6.4
6.4
4.2
5.2
4.5
5.3
5.3
3.1
1.3

t

—

—

r—

— — —

—

<proper proceaure body>

<prcper procedure
declaration>

<record clags declaratior>
<record class identifier>

<record class identifier
list>

A
i<

ecord designator>
<relation>

<relational cperator>
<scale factor>

<sign>

<simple kit expressior>
<simple logical expression>

erence

<simple ref
ession>

expr
<gimple shtatement>

<simple string expressiom>

w

<gimpie J expressiom>
<simple T variable>
<gimplz type>

<gimplie variable
declaratiomn>

<statamznt list>

<gubarray designator list>

<subscript>
. IDENTIFIERS

3.1. Syntax

<identifier> ::= <letter> | <identifier> <letter>

1

(ST

s

=3 FON N -3 WU

[9)%

OO FF oo N WU

[O 2NN N

-

°

s

U R RGO

.

3

(o)

.
N

=

= O

<subscript rist>

or
<J

<T
<T
<J
<J
<T
<T
<

<7
<J

array declaraticr>>
array designator>
arrey identifier>
assignment statement>
expression 1list>
expression>

factor>

field designator>
field identifier>
function designator>

function identifier>

function procedure body>

function procedure
declaratiomn>

left part>

numbexrs>

primary:>

subarray desigrator>
ternd>

variable identifier>

<unscaled real>

<upper bound>

<while clause>

<T-rariable identifier> s:= <identifier>

6.1
5.2
6.1
3.1
7.2

6.3
6.1
3.1
6.2
3.1
5.3

53
7.2
L.1
6.3
7.3
6.3
3.1

5.2
7.7

<identifier> <digit>

e

<J array identifier> ::= <identifier>

<procedure identifier> ::= <identifier>

<J function identifier> ::= <identifier>

<record class identifier> ::= <identifier>

<J field identifier> ::= <identifier>

<label identifier> ::= <identifier>

<control identifier> ::= <identifier>

<letter> ::= A|B|Cc|D|E|F|ce|H|I]|]J|K]|L]|M|
njolPlalr|s|r]ulv]w|lx]|y]z

<digit> ::= O | 1|2 | 3|4 |5 |6]7]8]9

<identifier 1list> ::= <identifier> l ?identifier list> , <identifier>

3.2. Semantics
Variables, arrays, procedures, record classes and record fields
are said to be quantities. Identifiers serve to identify quantities,
or they stand as labels, formal parameters or control identifiers.
Identifiers have no inherent meaning, and can be chosen freely in the
reference language. In an actual program a reserved word cannot be
used as an identifier.
Every identifier used in a program must be defined, This is
achieved through
(a) a declaration (cf. Section 5), if the identifier identifies a
quantity. It is then said to denote that quantity and to be a
T variable identifier, T array identifier, T procedure identifier,
J function identifier, record class identifier or J field iden-
tifier, where the symbol T stands for the appropriate word re-
flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.), if the identifier stands as a

prr

r— r— r

r——

— r

label. It is then said to be a label identifier;

(c) its occurrence in a formal parameter list (cf. 5.3.). It is then
sald to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7.).
It is then said to be a control identifier;

(e) 1its implicit declaration in the language. Standard procedures,
standard functions, and predefined variables may be considered

to be declared in a block containing the progranm.

The recognition of the definition of a given identifier is de-

termined by the following rules:

Step 1. If the identifier is defined by a declaration of a
quantity or by its standing as a label within the smallest block
(cf. 7.1.) embracing a given occurrence of that identifier, then
it denotes that quantity or label. A statement following a pro-
cedure heading {cf.5.3.) or a for clause (cf. 7.7.) is considered

to be a block.

Step 2. Otherwise, if that block is a procedure body and if the

given identifier is identical with a formal parameter in the asso-

clated procedure heading, then it stands as that formal parameter.

Step 3. Otherwise, if that block is preceded by a for clause
and the identifier is identical to the control identifier of

that for clause, then it stands as that control identifier.

Otherwise, these rules are applied considering the smallest

block embracing the block which has previously been considered,

r

f r— r

o

—

r-\ — r‘-,’—

—

If either step 1 or step 2 could lead to more than one definition,
then the identification is undefined.

The scope of a quantity, a label, a formal parameter, or a con-
trol identifier is the set of statements in which occurrences of an
identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.

3.2. Examples

I

PERSON
ELDERSIBLING
x15, X20, x25

4, VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.
The value of a constant is determined by the denotation of the con-
stant. In the language, all constants (except references) have a
reference denotation (cf. L4.l.-k.k.). The value of a variable is the
one most recently assigned to that variable. A value is (recursively)
defined as either a gimple value or a structured value (an ordered set
of one or more values). Every value is said to be of a certain type.
The following types of simple values are distinguished:

integer: the value is a 32 bit integer,
real: the value is a 32 bit floating point number,
long real: the value is a 64 bit floating point number,

complex: the value is a complex number composed of two
numbers of type real,

—

-

—

iong complex: the value is a complex number composed of two
long real numbers,

logical: the value is a logical value,
bits: the value is a linear sequence of 32 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

The following types of structured values are distinguished:

array: the value is an ordered set of values, all of identi-

cal simple type,
record: the value is an ordered set of simple values.

A procedure may yield a value, in which case it is said to be a
function procedure, or it may not yield a value, in which case it is
called a proper procedure. The value of a function procedure is de-
fined as the value which results from the execution of the procedure
body (cf. 62.2.).

Subsequently, the reference denotation of constants is defined.
The reference denotation of any constant consists of a sequence of
characters. This, hcwever, does not imply that the value of the de-
noted constant is a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

of strings.

4.1. Numbers

4.1.1. Syntax

<long complex number> ::= <complex number>L

<complex number> ::= <imaginary number>
<imaginary number> ::= <real numbeﬁ>I| <integer number>I
10

<long real number> ::= <real numbeﬁ>L| <integer number>L

<real number> ::= <unscaled real> | <unscaled real> <scale factor>
<integer number> <scale factor> |<scale factor>

<unscaled real> ::= <integer number> . <integer number> |

-<integer number>

<scale factor> ::= ‘'<integer number> |'<sign> <integer number>
<integer number> ::= <digit> | <integer number> <digit>
<sigr> ::= + ! -

4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceeding it. Each

number has a uniquely defined type.

4.2.

b.3.

4.1.3. Examples

1 (] 1T
0100 1'3 0.671
3.1416 6.02486"+23 1L

2.718281828459045235 3602871 2.%21.4

Logical Values

4.2.1. Syntax

<logical wvalue> ::= true | false

Bit Sequences

4.3.1. Syntax

<bit sequence> ::= # <hex digit>| <bit sequence <hex digit>
<hex digit>::= O] 1|2 |3 |4 |5]6]7]8|9|a]s]
c|p|E]|F

11

Note that 2 | ... | F corresponds to 210 . 1510,

4.3.2, Semantics

The number of bits in a bit sequence is 32 or 8 hex digits. The
bit sequence is always represented by a 32 bit word with the specified
bit sequence right justified in the word and zeros filled in on the

left.
4.3.3. Examples

#LF = 0000 0000 0000 0000 0000 0000 0100 1111
#9 = 0000 0000 0000 0000 0000 0000 0000 1001

4.4, Strings

4.4.1. Syntax

<string> ::= '"<sequence of character@"

4.4.2. Semantics

Strings consist of any sequence of (at most 256) characters ac-
cepted by the System 360 enclosed by ", the string quote. If the
string quote appears in the sequence of characters it must be imme-
diately followed by a second string quote which is then ignored. The
number of characters in a string is said to be the length of the

string.
4.4.3. Examples

1 JOHN"
19191199

is the string of length 1 consisting of the string

quote.

12

4 5. References
L.5 1. Syntax

<nulil reference> : = null

4.5.2, Semantics
The reference value null fails to designate a record; if a refer-
ence expression occurring in a field designator (cf. 6.1.) has this

val 1e, then the field designator is undefined.

DECLARATIONS

Declaraticns serve to associate identifiers with the quantities
used in the program, to attribute certain permanent properties to
these quantities (s.g. type, structure), and to determine their scope,
The gJuantities declared by declarations are simple variables, arrays,
procedures and record classes.

TUpon exit from a block, all quantities declared or defined within

that blozk iose their value and significance {(c¢f. 7.1.2. and 7.4.2.).

Svntaxs

<declaratiorn> ::= <simple variable declaration> I <J array
dec.'l.aratidn>| <procedure declaration> |

<record class declaratior>

.1, Simple Variable Jeclarations

<simple variable declaration> ::= <simple type> <identifier list>
<simple type> ::: integer | real | long real | complex | long

complex | logical | bits | bits (32) |

13

<rezcrd class identifier 1list> s:=

5.1.2. Semantics

string

string (<integer>) l reference

(<record class identifier list>»)

<record class identifier>
<record class identifier

<record class identifier>

Each identifier of the identifier list is associated with a

list> ,

variable which is declared to be of the indicated type. A variable is

calied a simple variabie, if its value is simple (cf.

Section 4).

If

a variable is declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (ef. 7.2.2.)

can be assigned to it .

It 1s understood that the value of a variable

is equal to the value of the expression most recently assigned to it.

A var lable of type bits is always of length %2 whether or not

the declaration specification is included.

A variabie of type string has 3 lengih equal to the unsigned

integer in the declaration specification.

If the simple type is

given only as_§E£i29, the length of %the variable is 16.

A variable of type £§£g£§nce may »r=fer only to records of the

racord classes whose identifiers appear in the record class identi-

fier list of the reference declaration specification.

N
P
N

Exampies

long complex C

dlogical L

bits G, H

1k

r

r-

r—

string (10; s, T
reference (PERSON) JACK, JILL

5.2" Array Declarations

5.2.1. Syntax

<T array declaratiom> ::= <simple type> array <identifier list>
(<bound pair list>)
<bound pair list> ::= <bound pair> |<bound pair list>,<bound

pair>
<bound pair> ::= <lower bound> :: <upper bound>
<lower bound> ::= <integer expression">
<upper bound> ::= <integer expressiomn>

5.2.2. Semantics

Each identifier of the identifier list of an array declaration is
associated with a variable which is declared to be of type array.
variable of type array is an ordered set of variables whose type is the
simple type preceding the symbol array. The dimension of the array is
the number of entries in the bound pair list.

Every element of an array is identified by a list of indices.
The indices are the integers between and including the values of the
lower-bound and the upper bound. Every expression in the bound pair
list is evaluated exactly once upon entry to the block in which the
declaration occurs. In order to be valid, for every bound pair, the

value of the upper bound must not be less than the value of the lower

bound.

5.2.3. Examples

integerr a vy H(1: :100)

15

Fo

—

— r

F—

real array A, B(1::M, 1::N)
string (12) array STREET, TOWN, CITY (J::K + 1)

5.3. Procedure Declarations

5.3.1. Syntax

<procedure declaration> ::= <proper procedure declaration>|
<J function procedure declaratiorn>
<proper procedure declaration> ::= procedure <procedure heading>;
<proper procedure body>
<J function procedure declaration> ti= <simple type> procedure
<procedure heading>;
<T function procedure body>
<proper procedure body=> ::= <statement>
<T function procedure body> ::= <TJ expression> | <block body>
<J expression> end
<procedure heading> ::= <identifier> | <identifier> (<formal
parameter list>)
<formal parameter list> ::= <formal parameter segment> |
<formal parameter 1list> ; <formal
parameter segment>
<formal parameter segment> ::= <formal type> <identifier 1list3 I
<formal array parameter>
<formal type> ::= <simple type> |<Simple type> value I<Simple

type> result l <simple type> value result

<simple type> procedurel procedure

<formal array parameter> ::= <simple type> array <identifier
list> (<dimension specification>)

-<dimension specification> ::= * | <dimension specification> , *¥

5.3.2. Semantics
A procedure declaration associates the procedure body with the

identifier immediately following the symbol procedure. The principal

16

r

part of the procedure declaration is the procedure body. Other parts
of the block in whose heading the procedure is declared can then cause
this procedure body to be executed or evaluated. A proper procedure
is activated by a procedure statement (cf. 7.3.), a function procedure
by a function designator (cf. 6.2,). Associated with the procedure
body is a heading containing the procedure identifier and possibly a

list of formal parameters.

5.3.2.1. Type specification of formal-parameters. All formal para-
meters of a formal parameter segment are of the same indicated type.
The type must be such that the replacement of the formal parameter by
the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

5.3.2.2. The effect of the symbols value and result appearing in a
formal type is explained by the following rule, which is applied to
the procedure body before the procedure is invoked:
(1) The procedure body is enclosed by the symbols Eggig_and ggg
if it is not already enclosed by these symbols;
(2) For every formal parameter whose formal type contains the

symbol wvalue or result (or both),

(a) a declaration followed by a semicolon is inserted after
the first begin of the procedure body, with a simple
type as indicated in the formal type, and with an iden-
tifier different from any identifier valid at the place
of the declaration.

(b) throughout the procedure body, every occurrence of the

17

-

r— r— r

r—

.y

formal parameter identifier is replaced by the identifier

defined in step 2a;

(3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by 5 semicolon is inserted
after the declarations of the procedure body. Tts left part

contains the identifier defined in step 2a, and its expres-
sion consists of the formal parameter identifier. The sym-

bol value is then deleted;

(4) If the formal type contains the symbol result, an assignment
statement preceded by a semicolon is inserted before the
symbol &nd which terminates a proper procedure body. n
the case of a function procedure, an assignment statement

is inserted after the final expres-
sion of the function procedure body. 71tg left part contains
the formal parameter identifier, snd its expression consists
of the identifier defined in step 2a. The symbol result is

J

then deleted.

5.3.2.3. Specification of array dimensions. The number of "¥"'g
appearing in the formal array specification is the- dimension of the
array parameter.

5.3.3. Examples

procedure INCREMENT; X := X+l

Meal procAdure X (real value X, Y);
if X < Y then Y else X

18

[

-

—

procedure

COPY (real array U, V (¥,¥); integer value A, B);

for I ¢= 1 until A do
for J := 1 until B do U(Z,J) := V(I,J)

real procedure HORNER (real array A (*); integer value N;

real value X);

begin real S; S := 0;

end

for I := 0 until N do S := S ¥ X + A(1);
S

long real procedure SUM (integer K, N; long real X);

begin long real Y; Y := 0; K := N;

end

reference

while K> = 1 dc
begin Y := ¥ +X; K:=K -1
end;

Y

(PERSON) procedure YOUNGESTUNCLE (reference (PERSON)

begin reference (PERSON) P, M;

end

P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));
while (P = = null) and (= MALE (P)) or
(P = FATHER (R)) do
P := ELDERSIBLING (P);
M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));
while (M = = null) and (- MALE (M)) do
M := ELDERSIBLING (M);

if P = pull then M else
if M = null then P else
if AGE(P) < AGE (M) then P else M

rr——

19

R);

1
C

I

-

r—

5.4. Record Glass Declarations

5.4.1, Syntax

<record class declaration> ::= record <identifier> (<field list>)

<field list> ::= <simple variable declaration> | <field list> ;

<simple variable declaratiorn>

5.4.2. Semantics

A record class declaration serves to define the structural pro-
perties of records belonging to the class. The principal constituent
of a record class declaration is a sequence of simple variable declara-
tions which define the fields and their simple types for the records
of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

to construct a new record of the given class.

5.4.3. Examples

record NODE (reference (NODE) LEFT, RIGHT)
record PERSON (string NAME; integer AGE; logical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRJP,

ELDERSIBLING)

6. EXPRESSIONS

Expressions are rules which specify how new values are computed
from existing ones. These new values are obtained by performing the
operations indicated by the operators on the values of the operands.
Several simple types of expressions are distinguished. Their struc-

ture is defined by the following rules, in which the symbol T has to

20

[

r— r— r— {— r

-

be replaced consistently as described in Section I, and where the trip-
lets TO’ Tl, 72 have to be either consistently replaced by the words

logical
bits
string

reference

or by any combination of words as indicated by the following table,

which yields TO given 7. and T2:

T
T 2 .

1 integer real complex
integer integer real complex
real real real complex
complex complex complex complex

TO has the quality "long" if either both Tl and Tz have that

quality, or if one has the quality and the other is "integer".

Syntax:

<J expression> ::= <simple T expressior> | <case clause?
(<T expression list>)

<TO expression> ::= <if clause> <simple Tl expression> else

<I2 expregsion>
<J expression list> ::= <J expression>
<TO expression list> i:= <Tl expression list> | <T2 expressiorn>
<if cleause> ::= if <logical expression> then

<case clause> ::= case <integer expression> of

The operands are either constants, variables or function designa-
tors or other expressions between parentheses, The evaluation of
operands other than constants may invcive smaller units of action such
as the evaluation of other expressions or the execution of statements.

21

e

-

-

The value of an expression between parentheses is obtained by evaluat-
ing that expression. If an operator has two operands, then these oper-
ands may be evaluated in any order with the exception of the logical
operators discussed in 6.%.2.2. The construction

<if clause> <simple Tl expression>_else <J'2 expressiorn>
causes the selection and evaluation of an expression on the basis of
the current value of the logical expression contained in the if clause.
If this value is true, the simple expression following the if clause
is selected, if the value is false, the expression following else is
selected. The construction

<case clause> (<J expression list>)
causes the selection of the expression whose ordinal number in the
expression list is equal to the current value of the integer expres-
sion contained in the case clause. In order that the case expression
be defined, the current value of this expression must be the ordinal
number of some expression in the expression list.
6.1. Variables

6.1.1. Syntax

<simple T variable> ::= <J variable identifieﬁ>| <J field designator>

<T array designator>
<J veriable> ::= <simple T variable 1<simple string variable3

(<integer expressior> B <integer number>)

<T field designator> :<J field identifier> (<reference expression>)

<J array designator3 ::= <¥ array identifier", (<subscript list>)
<subscript list> ::= <subscript> | <subscript 1list>, <subscript>

<subscript> ::= <integer expression>

22

o

e

r—

—

r—

6.1.2. Semantics

An array designator denotes the variable whose indices are the
current values of the expressions in the subscript list. The value of
each subscript must lie within the declared bounds for that subscript
position.

A field designator designates a field in the record referred to
by its reference expression. The simple type of the field designator
is defined by the declaration of that field identifier in the record
class designated by the reference expression of the field designator

(cf. 5.4.).

6.1.3. Examples

X A(T) M(I+J, I-J)
FATHER (JACK) MOTHER (FATHER (JILL))

6.2. Function Designators

6.2.1. Syntax

<T function designator> ::= <J function identifier> | <T function
identifier> (<actual parameter list>)

6.2.2. Semantics

A function designator defines a value which can be obtained by a

process performed in the following steps:
Step 1. A copy is made of the body of the function procedure
whose procedure identifier is given by the function designator

and of the actual parameters of the latter.

Steps 2, 3, 4, As specified in 7.3.2.

23

3
1
t

— r

Step 5. The copy of the function procedure body, modifed as in-
dicated in steps 2-4, is executed. The value of the function
designator is the value of the expression which constitutes or is
part of the modified function procedure body. The simple type

of the function designator is the simple type in the corresponding

function procedure declaration.

6.2.3. Examples

MAX (x **2, Y **2)

SUM (I, 100, H(1))

SuM (I, M, suM (J, N, A(IyJ)))
YOUNGESTUNCLE (JILL)

SUM (I, 10, x(1) * Y(I))
HORNER (X, 10, 2.7)

6 .3. Arithmetic Expressions

6.3.1. Syntax

In any of the following rules every occurrence of the symbol T
must be systematically replaced by one of the following words (or
word pairs):

integer
real

long real
complex

long complex

The rules governing the replacement of the symbols IO’Tl and 72 are
given in 6.3.2.

<simple T expression> ::= <T term> , + <7 term> |- <T term>

24

o

-

r-—

—

<simple TO expression> ::= <simple Tl expressiom> + <J'2 term>
<simple Tl expressior> - <12 term>

<J term> ::= <J factor>

<To term> ::= <Tl term> * <J, factor>

<T, term> = <J, term> / <I, factor>

<integer term> ::= <integer term> div <integer factor>

<integer term> rem <integer factor>

<TO factor> ::= <TO primary> |<Tl factor> ¥¥ <integer primery>
<TO primary> ::= abs <Tl primary> |§9§_<Tl number>

: <TO primary> ::= long <Tl primary>
<TO primary> ::= short <Tl primary>

<7 primary=> <I variable> |<T function designator>

(<T expression>) | <T number>

<integer primary> ::= <control identifier>

6.3.2. Semantics

An arithmetic expression is a rule for computing a number.

According to its simple type it is called an integer expression,
real expression, long real expression, complex expression, or long

complex expression.

6.3.2.1. The operators +, -, ¥, and / have the conventional meanings
of addition, subtraction, multiplication and division. In the rele-
vant syntactic rules of 6.3.1. the symbols TO’?i and 72 have to be re-
placed by any combination of words according to the following table

which indicates TO for any combination of Tl and T2.

Operators + | -

T .
Tl 2 integer real complex
integer integer real complex
real real real complex
complex complex complex complex

25

r—

—

TO has the quality "long" if both Tl and 72 have the quality

"long", or if one has the quality "long" and the other is "integer".

Operator *

T
Tl 2 | integer real complex
integer integer long real long complex
real long real long real long complex
complex long complex long complex long complex

Tl or 72 having the quality "long" does not affect the type of

the result.
Operator /
T .
Tl 21 . integer real complex
integer real real complex
real real real complex
complex complex complex complex

Jo has the quality "long" if both Tl and 72 have the quality

"long", or if one has the quality "long" and the other is "integer"

6.3.2.2. The operator "-" standing as the first symbol of a simple

expression denotes the monadic operation of sign inversion. The type
of the result is the type of the operand. The operator "+" standing
as the first symbol of a simple expression denotes the monadic opera-

tion of identity.
6.3.2.3. The operator div is mathematically defined (for B # 0) as

A div B = SGN (A X B) X D (abs A, abs B) (cf. 6.3.2.6.)

26

.

—

~—=

where the function procedures SGN and D are declared as

integer procedure SGN (integer value A);

if A < 0 then -1 else 1;

integer procedure D (integer value A, B);
if A < B then 0 else D(A-B, B) + 1

6.3.2.4. The operator rem (remainder) is mathemetically defined as

A rem B=A- (Adiv B) X B

6.3.2.5. The operator ¥ denotes exponentiation of the first operand

to the power of the second operand.

In the relevant syntactic rule of

6.3.1. the symbols IO and Il are to be replaced by any of the follow-

ing combinations of words:

TO Tl
real integer
real real
complex complex

TO has the quality "long" if and only if Tl does.

6.3.2.6. The monadic operation abs yields the absolute value of the

operand. In the relevant syntactic rule of 6.3.1. the symbols IO and

Tl have to be replaced by any of the following combinations of words:

j-O Tl
integer integer
real real
real complex

If Tl has the quality "long", then so does TO.

27

rv o8

r

e

—

r—

6.3.2.7. Precision of arithmetic.

operation is of simple type real,

If the result of an arithmetic

complex, long real, or long complex

then it is the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

In the relevant syntactic rules of 6.3.1. the symbols TO and Tl

must be replaced by any of the following combinations of words (or

word pairs):

Operator long

To

T

long real
long real

long complex

Operator short

%o

real
integer

complex

T

real

complex

6.3.3. Examples

C + A(I) * B(I)

long real

long complex

EXP (-X/(2 *SIGMA)) / SQRT (2 * SIGMA)

6.4. Logical Expressions

6.4.1. Syntax

In the following rules for <relatiorn> the symbols TO and Tl must

either be identically replaced by any one of the following words:

28

v v

r—

—

bit
string

reference

or by any of the words from:

complex

long complex
real

long real

integer

and the symbols T, or T3 must be replaced by any of real, long real,

integer.
<simple logical expressior> ::= <logical element> | <relatior>
<logical element> ::= <logical term>| <logical element2 or
<logical term>
<logical term> s:= <logical factor> | <logical term> and
<logical factor>
<logical factor> ::= <logical primary>.| -1 <logical primary>
<logical primery> ::= <logical valu€>| <logical variabl€>|
<logical function designator>|
(<logical expressiorn>)
<relatior> = <simple TO expression> <equality operator>
<simple Tl expressior> [<logical element,
<equality operator> <logical element> l
<reference expressior> is <record class identifier>
<simple 12 expressior> <relational operator>
<simple T, expressior>
<relational operator> ::= < | <= |> = | >
<equality operator> 3= = | — =

6.4.2. Semantics

A logical expression is a rule for computing a logical value.

29

{

r—

—-

6.4.2.1. The relational operators have their conventional meanings,

and yield the logical value true if the relation is satisfied for the

values of the two operands; ddléeerwise . Two references are

equal if and only if they are both null or both refer to the same

record. Two strings are equal if and only if they have the same

length and the same ordered sequence of characters.

6.4.2.2. The operators = (not), and, and or, operating on logical

values, are defined by the following equivalences:

6.5.

- X if X then false else true

X and Y if X then Y else false
XorY if X then true else Y

6.4.3. Examples

PorQ

(X< v) and (Y <2
YOUNGESTOFFSPRING (JacK) = = null
FATHER (JILL) is PERSON

Bit Expressions

6.5.1. Syntax

<simple bit expression>- ::= <bit term>| <simple bit expressiorn>

or <bit term>

<bit term> ::= <bit factor> | <bit term> and <bit factor3
<bit factor> ::= <bit secondary>| —1<bit secondary3
<bit secondary3 ::= <bit primary",| <bit secondary=> shl

<integer primary>| <bit secondary> shr
<integer primary?2
<bit primary> ::= <bit sequence l <bit variable> | <bit

function designator> |(<bit expression>)

30

-

r

r-

r— r— r—

6.5.2. Semantics

A bit expression is a rule for computing a bit sequence.

The operators and, or, and = produce a result of type bits, every

bit being dependent on the corresponding bits in the operand(s) as

follows:
X Y =X Xand Y Xory
0 0 1 0 0
0 1 1 0 1
1 0 0 0 1
1 1 0 1 1

The operators shl and shr denote the shifting operation to the

left and to the right respectively by the number of bit positions in-

dicated by the absolute value of the integer primary. Vacated bit

positions to the right or left respectively are assigned the bit value

0.

6.5.3. . Examples

G and H or #38
Gand = (H or G) shr 8

6.6. String Expressions

6.6.1. Syntax

<simple string expression> ::= <string primary>

1]

<string primery> ::= <string> | <string variable | <string
function designator> l <string variable>
(<integer expression> | <integer number>)|

(<string expression>)

31

T

6.6.2. Semantics

A string expression is a rule for computing a string (sequence
of characters).
6.6.2.1. The integer expression preceding the § selects the starting
character of the sequence from the string variable specified. The
value of the expression indicates the position in the string variable.
The value must be greater than or equal to 0 and less than the declared
length of the string variable. The first character of the string has
position 0. The integer number following the B indicates the length
of the selected sequence and is the length of the string expression. The
sum of the integer expression and the integer number must be less than

or equal. to the declared length of the string variable.

6.6.%, Example

string (10) S;

s (4+®3)

s (1+3 B1)

string (10) array T (l::m,2::n);

T (,6)(3085)

6.7. Reference Expressions

6.7.1. Syntax

<simple reference expressions> ::= <null reference> | <reference
variable>| <reference function
designator> l <record designator>

(<reference expression>)

32

<record designator> ::= <record class identifier> I <record
class identifier> (<expression list>)
<expression list> ::= <J expression> | <expression list>,
<J expressior>

6.7.2. Semantics

A reference expression is a rule for computing a reference to a
record. All simple reference expressions in a reference expression
must be of the same record class.

The value of a record designator is the reference to a newly
created record belonging to the designated record class. If the
record designator contains an expression list, then the values of the
expressions are assigned to the fields of the new record. The entries
in the expression list are taken in the same order as the fields in
the record class declaration, and the simple types of the fields must
be assignment, compatible with the simple types of the expressions

(cf. 7.2.2.).

6.7.3. Example

PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING
(JACK))

6.8. Precedence of Operators

The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following
hierarchy of operator precedences:

long, short, abs
shl, shr, *¥
|

%, /, div, rem, and

33

e

—

Example

A =B and C is equivalent to A = (B and C)

STATEMENTS

A statement denotes a unit of action. By the execution of a

statement is meant the performance of this unit of action which may

consist of smaller units of action such as the evaluation of expres-

sions or the execution of other statements.

7.

1.

Syntax:

<program'> ::= <blocé& .
<statement> ::= <simple statement,| <iterative statement>|
<if statement>| <ease statement>

<simple statement> :: <block>| <J assignment statement> |

i

<empty>| <procedure statement> |

<goto statement>

Blocks

7-1.1. Syntax

<block> ::= <block body> <statement:> end

<block body> ::= <block head>| <block body> <statement>;
<block body> <label definition>

<block head> ::= begin | <block head> <declaratior> ;

<label definitiorn> ::= <identifier> :

7.1.2. Semantics

Every block introduces a new level of nomenclature. This is

realized by execution of the block in the following steps:

Bh

—

—

Step 1. If an identifier, say A, defined in the block head or in
a label definition of the block body is already defined at the
place from which the block is entered, then every occurrence of
that identifier, A, within the block is systematically replaced
by another identifier, say APRIME, which is defined neither

within the block nor at the place from which the block is entered.

Step 2. If the declarations of the block contain array bound

expressions, then these expressions are evaluated.

Step 3. .Execution of the statements contained in the block body
begins with the execution of the first statement following the

block head.

After execution of the last statement of the block body (unless
it is a goto statement) a block exit occurs, and the statement follow-

ing the entire block is executed.

7.1.3. Example

begin real U;
end

7.2. Assignment Statements

7.2.1. syntax
~In the following rules the symbols TO and Il must be replaced by
words as indicated in Section 1, subject to the restriction that the

type IO is assignment compatible with the type Tl as defined in 7.2.2.

35

r—

e

—

—

<TO assignment statement> ::= <TO left part> <Tl expressiorn>
<TO left part> <Tl assignment
statement>

<J left parts ::= <J variable> :=

71.2.2. Semantics

The execution of a simple assignment statement

-<TO assignment statement> ::= <TO left part> <Tl expression>
causes the assignment of the value of the expression to the variable.

In a multiple assignment statement

(<TO assignment statement> ::= <TO left part> <Tl assignment

statement>)

the assignments are performed from right to left. The simple type of
each left part variable must be assignment compatible with the simple
type of the expression or assignment variable immediately to the right.

A simple type TO is said to be assignment compatible with a
simple type Tl if either

(lb the two types are identical (except possibly for length

specifications), or

(2) TO is real or long real, and Tl is integer, real or long

real or

{3) TO is complex or long complex, and Tl is integer, real, long

real, complex or long complex.

In the case of a reference, the reference to be assigned must
refer to a record of the class specified by the record class identi-

fier associated with the reference variable in its declaration.

36

|
L

— r -

-

7.3.

7.2.3. Examples

Procedure Statements

7.35.1. Syntax

<procedure statement9 ::= <procedure identifier> | <procedure
identifier9 (<actual parameter list>)
<actual parameter list9 ::= <actual parameter>| <actual para-
meter list9 , <actual parameter>
<actual parameter> ::= <J expression9 | <statement?9 I <T subarray
designator9| <procedure identifier>,
<J function identifier>
<J subarray designator9 ::= <J array identifier9 I <T array
identifier9 (<subarray designator
list>)
Csubarray designator list> ::= <subscript> |* |<subarray
designator list>,<subscript> |

<subarray designator list>,¥

7.3.2. Semantics

The execution of a procedure statement is equivalent to a process

performed in the following steps:

Step 1. A copy is made of the body of the proper procedure whose
procedure identifier is given by the procedure statement, and of

the actual parameters of the latter.

Step 2. If the procedure body is a block, then a systematic

change of identifiers in its copy is performed as specified by

31

step 1 of 7.1.2.

Step 5. The copies of the actual parameters are treated in an
undefined order as follows: If the copy 1s an expression differ-
ent from a variable,, then it is enclosed by a pair of parentheses,
or if it is a statement it is enclosed by the symbols begin and

end.

step 4. In the copy of the procedure body every occurrence of an
identifier identifying a formal parameter is replaced by the copy
of the corresponding actual parameter {cf. 7.3.2.1.). 1In order
for the process to be defined, these replacements must lead to

correct ALGCL W expressions and statements"

Step 5 The copy cf the procedure body, modified as indicated in

steps 2 k4, is executed.

7.3.2.1. Actuai-formal correspondence, The correspondence between
the actual parameters and the forma. parameters is established as
follows: The actual parameter list of the procedure statement (or
of the function designator) must have the same number of entries as
the formal parameter iist of the procedure declaration heading. The
correspondence is obtained by taking the entries of these two lists

in the same order.

7 %.2.2. Formal specifications. If a formal parameter is specified
by walue, then the formal type must be assignment compatible with the
type of the actual parameter. If it is specified as result, then the

type of the actual tavameter must be assignment compatible with the

38

s

r—

—

formal type. 1In all other cases, the types must be identical. 7T1f an
actual parameter is a statement, then the specification of its corre-

sponding formal parameter must be procedure.

7-3.2.3. Subarray designators. A complete array may be passed to a

procedure by specifying the name of the array if the number of sub-
scripts of the actual parameter equals the number of subscripts of

the corresponding formal. parameter. If the actual. array parameter has
more subscripts than the corresponding formal parameter, enough sub-
scripts must be specified by integer expressions so that the number of
¥'s appearing in the subarray designator equals the number of sub-
scripts of the corresponding formal parameter. The subscript positions
of the formal array designator are matched with the positions with *'s

in the subarray designator in the order they appear.

7.3.3. Examples

TNCREMENT
COPY (A, B, M, N)
INNERFRODUCT (I, N, A(I,*), B(*,J))

.+« . Goto Statements

7.4.1. Ssyntax

<goto statement> ::= poto <label identifier> | go to <label

identifier>

7 4.2. Semantics

An identifier is called a label identifier if it stands as a

label.

39

A goto statement determines that execution of the text be contin-
ued after the label definition of the label identifier. The identifi-

cation of that label definition is accomplished in the following steps:

Step 1. If some label definition within the most recently acti-
vated but not yet terminated block contains the label identifier,

then this is the designated label definition. Otherwise,

Step 2. The execution of that block is considered as terminated

and Step 1 is taken as specified -above.

7.5. If Statements

7.5.1. Syntax

<if statement> ::= <if clause <statement> | <if clause>
<simple statement> else <statement>

<if clause> ::= 1f <logical expressior> then

7.5.2. Semantics
The execution of if statements causes certain statements to be
executed or skipped depending on the values of specified logical ex-—

pressions. An if statement of the form
<if clause=> <statement>
is executed in the following steps:
Step 1. The logical expression in the if clause is evaluated.

step 2. If the result of Step 1 is true, then the statement
following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

L0

An if statement of the form
<if clause> <simple statement> else <statement>
is executed in the following steps:
Step 1. The logical expression in the if clause 1is evaluated.

Step 2. If the result of step 1 is true, then the simple state-
ment following the if clause is executed. Otherwise the state-

ment following else is executed.

7.5.3. Examples

1

if X = Y then goto L
i

ifX<YthenU =X else if Y <:then U := Y else V := Z

7.6, Basatements
7.6.1. Syntax
<case statement> ::= <case clause> begin <statement list> end
<statement list> ::= <statement> | <statement list> ; <statement>;
<case clause> ::= case <integer expressiorm> of

7.6.2. Semantics
The execution of a case statement proceeds in the following

steps:
Step 1. The expression of the case clause is evaluated.

Step 2. The statement whose ordinal number in the statement list
is equal to the value obtained in Step 1 is executed. 1In order
that the case statement be defined, the current value of the ex-

pression in the case clause must be the ordinal number of some

41

statement of the statement 1list.

7.6.3. Examples

case I of

begin X := X + ¥;
Y ¢= Y + Zj
4 os= 7 +X

end

case j of

" begin_E-: (I) := -E(1);

begin H(I-1) := H(I-1) + H(I); I s= I-1 end;
begin H(1-1) := H(I~-1)xH(I); I := I-1 end;
begin, H(H(I-1)) &= H(1l); I := I—2_end

end

Iterative Statements

7.7.1. Syntax

<for clause> <statement> | <while

<iterative statement> ::

clause> <statement>
<fer clause> ::= for <control identifier> := <initial wvalue
step <increment> until <ilimit> do | for

<identifier» := <initial value> until <limit>

do | for <identifier> := <for list> do
<for 1list> ::= <integer exkpresgiorn> <for list>» , <integer
exprassiorn»
<initial wvalue> ::= <integer expressior>

<increment;> : :== <integer expressior>

- <limit> ::s <integer expressiom>

<while clause> : := yhile <logical expressior> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

42

Froe

executed repeatedly depending. on certain conditions specified by a
for clause or a while clause, The statement following the for clause
or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier cannot be changed
by assignment within the controlled statement.
(a) An iterative statement of the form

for <control identifier> := E1 step E2 until E3 do <statement>

is exactly equivalent to the block

92239 <statement-D; <statement-D ... ; <statement-D;
; <statement-D end

in the Ith statement every occurrence of the control identi-
fier is replaced by the reference denotation of the value of the
expression E1 + IX E2, enclosed in parentheses.

The index N of the last statement is determined by
N < (E3-E1) / B2 < N+l. If N < 0, then it is understood that
the sequence is empty. The expressions El, E2, and E3 are evalu-
ated exactly once, namely before execution of <statement-O>.

(b) An iterative statement of the form
for <control identifier> ¢= El until E3 do <statement>
is exactly equivalent to the iterative statement

. for <control identifier> := El step 1 until E3 do <statement>

(c) An iterative statement of the form
for <control identifier> := El, E2,..., EN do <statement>

is exactly equivalent to the block

43

begin <statement-D; <statement-B . . . <statement-* ; .
<statement-N> end

th

when in the I statement every occurrence of the control identi-

fier is replaced by the reference denotation of the value of the
expression EI,

(d) An iterative statement of the form
while E do <statement>
is exactly equivalent to

if E then
begin <statement> ;
while E do <statement>

end

e

7.7.3. Examples

for 7: .. 1 step 1 until N-1 do S := S + A(U,V)

while (7 > 0) and (CITY(J) = = §)do J := J-1

for T:=X, X +1, X+ 3, X+7d P1I)

7.8. Standard Frocedures

The standard procedures differ from explicitly declared procedures
in that they may have one or more parameters of mixed simple type.

'n the following descriptions T is to be replaced by any one of

integer bits
real. string
long real.

complex

long complex

Ly

7.8.1. Read Statements
Tmplicit declaration heading:
procedure read (J result X5 T result Xy oo, T result Xn);

procedure readon (J result X5 T result X, ..., T result Xn);

2
(where n > 1)

Both read and readon designate free field read statements. The
guantities on the data cards must be spearated by one or more blank col-
umns. All 80 card columns can be used and quantities extending to col-
amn 80 on one card can be continued beginning in column 1 of the next
card. In addition to the numbers of Lk.l., numbers of the following
sytactic forms are acceptable gquantities on the data cards:

1) <sigr> <J number>
where J is one of integer, real, long real, complex, long complex.
2) <sign> <TO number> <sigrn> <3’l number>
where TO is one of integer, real, long real, and T,l is one of
complex,, long complex.

The quantities on the data cards are matched with the variables of
the variable list in order of appearance. The simple type of each quan-
tity read must be assignment compatible with the simple type of the
variable designated. The read statement begins scanning for the data
on the next card. The readon statement begins scanning for the data
where the last read or readon statement finished.

7.86.1.2. Examples

read (X,A[I))
for T := 1 until N do readon {(A(I]

L5

T

7.8.2. Write Statements
Implicit declaration heading:
procedure write (T value X1, T value X2, ..., T value Xn);
(where n > 1);
The values of the variables are output in the order they appear

in the variable list in a free field form described below. The first
field of each WRITE statement begins on a new line. If there is insuffi-
cient space remaining on the 132 character print line for a. new field,
that line is printed and the new field starts at the beginning of a new
print line.

integer: right. Jjustified in field of 14 characters followed by 2
blanks. Field size can be changed by assignment to intfieldsize.

real: same as integer except the field size cannot be changed,

long real:: right justified in field of 22 characters followed
by 2 blanks .

complex:: two adjacent real fields always on the same line.

long complex: two long real fields adjacent always on the same

line.

logical:y TRUE or FALSE right justified in a field of 6 characters
foil-owed by 2 blanks.

string: placed in a field large enough to contain the string
and may extend to a new line if the string is larger

than 132 characters.
bits: same as real.

reference: same as real.

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

8.1. Standard Transfer Functions

Implicit declaration headings:

L6

integer procedure round (real value X};

integer procedure truncate (real value X);

integer procedure entier (real value X);

real procedure realpart (complex value X);

long real procedure longrealpart (long complex value X);

real procedure imagpart <complex value X);

long real procedure longimagpart (long complex value X);

complex procedure imag (real value X);

comment complex number XI;

long complex procedure longimag (long real value X);

logical procedure odd (integer value X);

bits procedure bitstring (integer value X);

comment binary representation of number X;
integer procedure number (bits value X);
comment integer with binary representation X;

integer procedure decode (string (1.) value S);

comment numeric code of the character S;

string (1) procedure code (integer value X);

comment character whose numeric code is X REM 256;

8.2. Standard Functions of Analysis

real procedure sin (real value X);

long real procedure longsin (long real value X);

real procedure cos (real value X);

-long real procedure longcos (long real value X);

real procedure arctan (real value X);

comment -7/2 < arctan (X) < n/2;

long real procedure longarctan (long real value X);

comment -n/2 < longarctan (X) < n/2;

real procedure ln (real value X);

comment logarithm base e;

long real procedure longln (long real value X);

comment logarithm base e;

r-w*; -

8.3.

real. procedurz Log (real value ¥);

comment, 'Logarithm base 12;

long real procedure longlog (long real value X);

comment, Logarithm base i
real procedure exp (real, vaiue %)
long real procedure longexp (long real value X);

real procedure sqrt (real value),

long real procedure longsgrt (lorg real_value X);
complex pgogpdure complexsqrt (complex value X);
C_omme nt principal square root;

icng compiex procedure longcomplexsqrt (long complex value X);

comment principal square root .

Overflcw and Underflow

8.%3.1. Predezlared Variables

logical underfliow;
comment initialized to false. Set to Lrue at occurrence
of a floating- pci 3: -underflow interrupt;

overflow;
camment initialized to faise. Se-t, %o frue at occurrence
of" a f icaf ing-peint or fixecd-point overflow or divide-by-
zero interrupt ;

838 Standard Message Function
integer procedure msglevel (integer value X);
comment The valus of a system integer variable MSG controls
the number of underflow/overfmw messages printed during
program execution. MSG is initialized to zero.
MSGr=_0

No messeges are prioted

48

e

r—

MSG > 0
Underflow and overflow messages are printed.

After each message is printed, MSG is decreased by 1.

MSG < 0

Overflow messages are printed. After each message

is printed, MSG is increased by 1.
Each message gives the type of interrupt and a source card number

near which the interrupt occured.

Examples

OVERFLOW NEAR CARD 0023
UNDERFLOW NEAR CARD 0071
DIV BY ZERO NEAR CARD 0372

The predeclared integer procedure msglevel is used to interro-
gate and to set the value of MSG. The old value of MSG is the value
of the procedure msglevel, and the new value given to MSG is the

value of the argument of msglevel.

8.4. Output Field Sizes

integer intfieldsize;
comment indicates number of digits including minus sign if
any, Initialized to 1l4; can be changed by assignment state-

men-t;

8.5, Fimemmction

integer procedure time (integer value X);

comment if X = 1, time is returned in 60“5 of a second.
If X = 2, time is printed in minutes, seconds and 60tPg ¢
a second and returned in 60ths of a second.

49

*
UNIT RECORR EQUIPMENT

COMPUTATION CENTER
CAMPUS FACILITY
STANFORD UNIVERSITY

*
Reprinted from the Campus Facility USERS MANUAL. December 196%

e r— r—

2.2.2 Unit Record Equipment

Necessary unit record equipment is available in Pine Hall, and may

be operated by Users to prepare and correct punched cards and list,
interpret and dupli '

| p plicate punched card decks. Brief operating instruc-
tibns appear below. The personnel in Dispatch will be happy to assist
the User in learhing how to use and operate the machines. A word of
caution -- in the event of a card jam or machine failure, cdntact a
Dispatch clerk immediately and do not attempt to clear the failure or

jam.
', 519 Reproducing Punch
Read
Operating
Controls
a nd
Indicators
Punch
Read “Stacker:
Stacker
Comparison
Indicato;
Control
Panel

2=

-

To duplicate a deck, place the source cards into the READ FEED with the
top of the cards, face down and toward your right. In the same way,
place a supply of blank cards in the PUNCH FEED. Open the CONTROL
PANEL cover, insert the 80 X 80 DUPLICATE Control Panel and then

reclose the cover. Control panels should be handled with care. Hold.
down the START key for a couple of seconds. The cards will begin feed-
ing and will fall into their respective STACKERS. Always stop the ma-
chine to replenish the blank card or source card supply. When the last
source card has been read, remove the remaining cards from the PUNCH

FEED and hold down the START key a few seconds until all cards are in

the STACKERS.

Cards can be duplicated in columns 1-76 and punched with new sequence
numbers in columns 77-80. On the Col. 1-76 DUPE and 77-80 NEW SEQ Control
Panel select the switch setting desired: count by units or count by 10's.
On a blank card, keypunch the starting number you want in your deck,

into columns 77-80. Put this card in front of your blank card supply

and then load and operate the machine as explained for 80 X 80 dupli-
cating. WARNING: The 519 Reproducing Punch cannot be used to reproduce

binary cards.

For comparing, the "Compare" Control Panel is used. The master deck is
put in the left-hand feed, and reproduced deck in the right-hand feed.
The machine will stop and the red "ERROR" light will glow, if a dis-

crepancy 1s encountered.

2-8

- 2. 557 Interpreter

Print Position
[N N
Dial
Card
-Hopper
- Entry
Switch
Stacker
Control
Panel
The interpreter reads information punched into a card and prints it on
-the card at the rate of 100 cards per minute. Up to 60 characters can
} be printed in a single pass through the machine. The remaining 20
—

characters on the card csn bLe printzd on a second pass. printing can

be positioned on the card »v auy one or' 25 lines. This machine is not

Yet equipped to intersref: ali %60/67 cude .

r—

r——

Operating Instructions

0

Be sure the main power switch on the right-hand end of the machine

near the hopper is in the "ON" position, and verify that the proper

control board is in the machine.

Joggle the cards into perfect alignment, and place them face down

in the hopper with the 12-edge inward (to the left).

Set the printing position control (the clear plastic knob with
numbers on the edge) to the desired print line. Line No. 1 is
above the 12-line on the top edge of the card; line No. 2 is the
12-punch line; 1line No. 3is between the 11 and 12 punch lines,

etc. The odd-numbered lines (3 through 23) are between the punch
lines.

Set the "ENTRY" toggle switch at the right-hand end of the controls
t& the "UP" position for entry 1 (the first 60 characters), or the
"DOWN" position for entry 2 (the remaining 20 characters), and push
the black "START" button.

The machine will interpret the punches in the cards, which will

emerge in their original order in the stacker.

The machine will stop automatically when the final card has been
interpreted, when the stacker is full, if the feed mechanism fails

or if the "STOP" button is pushed.

A special control board is provided for interpreting binary cards.

2-10

r—

82 Sorter

Sort Brush Feed Hopper

Column-Selector Handle\\ k/

Hand Feed

Selection
" Switches

/”,4f,4f,¢’—"‘,ﬂ“ﬂ,f’ P 7 ' .lj 4. Main-Line

REAN ‘ | =

. . Start and
Stop Keys

Pockets

The sorter arranges punched cards in either alphabetical or numerical

sequence, sorting a single column at a time.

Operating Instructions

O

Be sure the main power supply switch on the right-hand side of

the machine is "ON".

After a 2-minute warm-up period, press the "START" key to clear

the machine of any cards left by the previous User.

Joggle the cards into perfect alignment and place them in the
hopper at the right-hand end of the machine, then put the card
weight on top of the stack. The cards must be face down with

the o-edge toward the throat (left).

2-11

Set the control switches as follows:

a) The "SORTING SUPPRESSION" toggle switch should be set at "OFF".

b) The "CARD COUNT" toggle switch (black) should be "ON" if a card
count is desired, and the counter manualyy set to zero.

c) The "COLUMN INDICATOR" (the crank above the selection switches)
is set to the card column to be sorted. Sorting is done one

column at a time.
d) The "SELECTION SWITCHES" are set as follows:

NUMERIC SORTING

All tabs set away
from center ring

ALPHABETIC SORTING -

Move red tab to for sorting out zone (0,11 and 12)
center ring punches only. Cards without a zone
punch are rejected.

The, cards with ietters A-I are put
into the 12 pocket. The cards with
J through R are put into the 1l1-
pocket, and those with S through Z
go into the zero pocket. Cards with
numerals and blqpk go to pocket R.

Move red tab away from Sort the cards with the letters
center ring A-I, J-R, and S-Z separately.

Press the "START" button until the machine starts feeding cards from

the bottom of the stack. FEach card passes under the brush head,
which determines which of the 13 stacker pockets will accept it,
There is a pocket for each punch position in the card, and a reject

pocket for cards without a valid punch in the column being sorted.

The machine will stop when a pocket is full, when the hopper is empty,
when the cover over the brush is raised, or when the "STOP" button

is pressed.

2-12

L. 029 Keypunch

{

r— r...; S

r-—

2-13 .

[

Key ALPHABETIC NUMERIC
Number | Card Code Graphic Cord Code Graphic
1 11-8 Q 12-8-6 +
2 0-6 w 0-8-5 -
3 12-5 E 11-8-5)
4 11-9 R 12-8-2 ¢

5 0-3 T 0-8-2 0-8-2
) 0-8 Y 12-8-7 I

7 12-1 A none none
8 0-2 s 0-8-6 >
9 12-4 - D 8-2 :
10 12-6 . F 11-8-6 H
. n 12-7 G 11-8-7 -
12 12-8 H 8-5 '

13 0-9 z none none
14 0-7 X 0-8-7 ?
15 12-3 C 8-7 "
16 0-5 v 8-6 =
17 12-2 B 11-8-2 {
19 11-5 N 12-8-5 (
20 1A P 10 &
/ 0
2] 0-4 u 1 1
22 12-9 | 2 2
23 11-6 o 3 3
24 11-1 J 4 4
25 11-2 K 5 5
74 11-3 L) é
28 -4 M 7 7
0-8-3 ’ 8 8
2 12-8-3 . 9 9
33 n - 1 -
40 8-4 @ 8-3 #
“ 0-8-4 % 0-8-3)
42 11-8-4 * 11-8-3 $
43 12-8-4 < 12-8-3 .

Key Graphics and Punched-Hole Codes

Cards can be punched under "manual" control or " program" control.
"Program" controlled punching is advisable when preparing a large

.number of cards all with a similar format. "Manual" punching is
simple and is recommended when a few or randomly formatted cards

are to be prepared.

Manual Control Punching:

a) Put the supply of cards to be punched into the hopper on the
upper right-hand side of the machine.

-b) Turn the three switches "AUTO FEED","AUTO SKIP","AUTO DUP", and
"PRINT" to the "ON" position..

c) Press the "FEED" key at the right of the keyboard‘twice. This
will bring down two cards. The first card is ready for punching.

d) If you punch through col. 80the machine will automatically

eject the card punched, position the next card for punching and

feed another card.

2-1h

-

e) If you want to eject a card before reaching col. 80, manual:,y
press the "REL" key.

f) When punching a very few cards, you'can insert cards into the
punch station at the right of the machine. Press "REG" and begin,
punching,

g) To duplicate a card, put a blank card in the punch station and
the source card in the read station (to the left) and then press
"REG" . Next, hold down the "DUP" key for contirmous duplicating,
or use the "DUP" key to duplicate column by column. This procedure

is commonly used to correct punching errors.

" Program Controlled Punching

a) Preparing a "program" card. In the program control mode, the
program card controls the format of the cards and the characters
(alphabetic or numeric) to be punched.

1) Program control symbols

1 This punch allows punching of alphabetic characters
b A blank column allows punching of numeric characters
0 This symbol causes duplicating from the column at

the read station to the column at the punch station

A 2-punch causes printing of leading zeros and all’
characters

+ A + symbol in each column in the field, except the
first, defines a field.

f_),_] [

2) This example of a program card shows all common combinations

e

» or codes and their resultant products.

§
t -
o - ; .
’ (”‘*73§:&& LN NXA_DPADONAABDH A DR D DA .]
;L‘ 0 0 00 000 00 0OCUOOO0OCO0OCOCOOU +hrough $0 - will skip out
Ut 0 0
{ 000000000000~000
L_ 123458578 9101121314151617181920202223 24252629 28 29 30 31 32 33 34 35 36 37 33 39 AD.41 42 43 44 45 46 47 48 49 50 51 52 53 56 55 56 57 58 59 60 61 62 63 64 65 66 67 68 6970 71 72 73 74 75 76 77 78 79 80

T1itttt1ttttti~ttt1itrtttirtttatrttri ettt ittt t11111i111~

22200222
B] SurdanrT

(000 © | 7\

C

r.:—..'—. r._._..»‘)

Uﬂ00000000000ﬂ0000ﬂ00000000000000000000ﬂb00000000Bﬂ00000000000000000000000000000
12345678 310012134151617181920252220242572527 282930 31 32 33 34 35 3 37 38 39 4041 42 43 44 45 45 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 65 67 68 63 70 71 72 73 74 75 76 77 78 79 80
llIIl1IIDI1|llllllllllIllIllllllllllllllllll!lllllll'Illllllllllllllllllllllllll

r—

2222222220220222
333303333303333333333333}333
44444444444@44
55555555555555ﬂ555
6656B666666660566865665666666666666858656866656565666666865666666666666566666666
70777777777177777777777777177777717777777777717777777777777777777777777777777777
8888888388888888008888888886008088888888880888888868888038888888668888806866658688868888

— o

9999898
9 9 99999999999%9999999999999939999999999939399939999999%%%%%%%%%%9?399999999

A28 867 § 90 NI 1118719 2721 2-20-24-25726 2128 2830313233 342536 30 38 39 4041 42 43 44 45 45 41 4§ 49 50 51 52 53 54 55 56 57 38 59 80 61 AU 1018 80

-~ IBM 5081 : ce /

5 o The keypunch is designed for punching and duplicating only those
— A characters contained on the keyboard. Heavily coded cards (e.g.,

- cards with more than 3 punches per column) cannot be duplicated

- on the *machines.

o) Please remember to consider the other users and clean up the
- " machine before leaving it. Dispose of cards in a nearby "CARD

disposal can."

— o) See the Dispatchers for assistance with keypunch machines and to

report failures.

2-16

—

[

r—

e

— r—

-

ALGOL W

ERROR MESSAGES

by

Henry R. Bauer
Sheldon Becker
Susan L. Graham

COMPUTER SCIENCE DEPARTMENT
STANFORD UNIVERSITY
JANUARY 1968

=

—

- r f — r—

S

ALGOL W ERROR MESSAGES

I. PASS ONE MESSAGES

All Pass One messages appear on the first page following the pro-

gram listing. The message format is

CARD NO. (number) -- (message)

The (number) corresponds to the card number on which the error

was found. The (message) is one

INCORRECT SPECIFTN

INCORRECT CONSTANT
MISSING END

MISSING BEGIN

MISSING)

ILLEGAL CHARACTER

MISSING END

STRING LENGTH ERROR

BITS LENGTH ERROR

MISSING (

COMPILER TABLE OVERFLOW

of those listed below.

syntactic entity of a declaration is

incorrect, e.g. variable string length.
syntax error in number or bitstring.
an END needed to close block.

an attempt to close outer block be-

fore end of code.
) is needed.

a character, not in a string, is

unrecognizable.

program must conclude with the se-

quence END .

string is of 0 length or length
greater than 256.

bits constant denotes no bits or

more than 32 bits.
(is needed.

terminating error = a compile time

table has exceeded its bounds.

——

TOO MANY ERRORS the maximum number of errors for Pass
One records has been reached. Com-
pilation continues but messages for
succeeding errors detected by Pass

One are suppressed.

ID LENGTH > 256 more than 256 characters in identifier.

II. PASS TWO MESSAGES

The format of Pass Two error messages is

(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming
symbol) .
If a $STACK card is included anywhere in the source deck, the

SYNTAX ERROR message is followed by

STACK CONTAINS:
(beginning of file)

<symbol-1>

<symbol-0 (top of stack)

The symbol names may differ somewhat from the metasymbols of

the syntax.

If any Pass One or Pass Two errors occur, compilation is termi-
nated at the end of Pass Two.
INCORRECT SIMPLE TYPE <number> <simple type> of entity is improper

as used. Number indicates explana-

tion on list of simple type errors.

r

— rm rrmrm r

r— r

INCORRECT TYPE

MISMATCHED PARAMETER

MULTIPLY-DEFINED SYMBOL <iden-
tifier>

UNDEFINED SYMBOL <identifier>

INCORRECT NUMBER OF ACTUAL
PARAMETERS

INCORRECT DIMENSION

DATA AREA EXCEEDED

INCORRECT NUMBER OF FIELDS

INCOMPATIBLE STRING LENGTH

INCOMPATIBLE REFERENCES
BLOCKS NESTED TOO DEEP

REFERENCE MUST REFER TO RECORD
CLASS

EXPRESSION MISSING IN PROCEDURE
BODY

a variable, label, procedure, record
field, record, array, standard func-
tion, standard procedure or control

identifier is used improperly.

formal parameter does not correspond

to actual parameter.

symbol defined more than once

in a block.

symbol is not declared or defined.

the number of actual parameters to
a procedure does not equal the number
of formal parameters declared for

the procedure.

the array has appeared previously

with a different number of dimensions.
too many declarations in the block.

the number of fields specified in a
record designator does not equal the
number of fields the declaration of

the record indicates.

length of assigned string is greater

than length of string assigned to.
record class bindings are inconsistent.

blocks are nested more than 8 levels.

reference must be bound to a record

class.

body of typed procedure must end with

an expression.

3

[e

r-

o

RESULT PARAMETER MUST BE <T VAR> the actual parameter corresponding

to a result formal parameter must
be a <J VARIABLE>.

PROCEDURE BODY LACKS SIMPLE TYPE proper procedure ends with an ex-

pression.

<SYMBOL-1> UNRELATED TO <SYMBOL-a the symbol at the top of the stack

(<SYMBOL-1i,) should not be followed
by the incoming symbol (<SYMBOL-a).

SYNTAXERROR construction violates the rules of

25 .
29.
32,

71.

h
76.

77.

the grammar. The input string is
skipped until the next END, ";",
BEGIN, or the end of the program.
More than one error message may be

generated for a single syntax error.

Simple Type Errors

Upper and lower bounds must be integer.

Upper and lower bounds must be integer.

Simple type of procedure and simple type of expression in pro-
cedure body do not agree.

Substring index must be integer.

Variable before '(' must be string, procedure identifier, or array
identifier.

Substring length must be integer

Field index must be reference or record class identifier.

Array subscript must be integer.

8l. Array subscript must be integer.

84. Actual parameters and formal parameters do not agree.

88. Actual parameters and formal parameters do not agree.

93.
Oh .
% .

Expressions in if expression do not agree.
Expressions in case expression do not agree.

Expression in if clause must be logical.

r— r—-

r—

98.
99.
101.
102.

103.
106.
107.
108.
109.
110.
112.
117.
118.
119.
120.
121.
123,
125.

126.

1%0.
13k4.
135,
136.
148.
181.
182.
188.
190.
191.
193.

Expressions in case expression do not agree.

Expression in case clause must be logical.

Arguments of= or = = do not agree.

Arguments of relational operators must be integer, real, or

long real.
Argument before is must be reference.

Argument of unary + must be arithmetic.
Argument of unary - must be arithmetic.
Arguments of + must be arithmetic.
Arguments of - must be arithmetic.

Arguments of or must be both logical or both bits.

Record field must be assignment compatible with declaration.
Arguments of ¥ must be arithmetic.
Arguments of / must be arithmetic.
Arqguments of div must be integer.

Arguments of rem must be integer.

Arguments of and must be both logical or both bits.

Argument of - must be logical or bits.

Exponent or shift quantity must be integer; expression to be

shifted must be bits.

Shift quantity must Dbe integer; expression to be shifted must be

bits.

Actual parameter of standard function has incorrect simple type.

Argument of long must be integer, real, or complex.

Argument of short must be long real or long complex,

Argument of abs must be arithmetic.

Record field must be assignment compatible with declaration.
Expression cannot be assigned to variable.

Result of assignment cannot be assigned to variable.

-Limit expression in for clause must be integer.

Expression in for list must be integer.

Assignment to for variable must be integer.

Expression in for list must be integer.

Step element must be integer.

Expression in while clause must be logical.

5

¢
-

R

r

r— r—-

r—

ITII. PASS THREE ERROR MESSAGES
The form of Pass Three error messages is

*HHX% (message)
*¥%%% NEAR CARD (number)

The number indicates the number of the card near which the error

occurred. The message may be

PROGRAM SEGMENT OVERFLOW the amount of code generated for a
procedure exceeds 4096 bytes.

COMPILER STACK OVERFLOW constructs nested too deeply.

CONSTANT POINTER TABLE TOO LARGE too many literals appear in a pro-

cedure.

BLOCKS NESTED TOO DEEP parameters in procedure call are nested

too deeply; procedure calls in block

nested too deeply.

DATA SEGMENT OVERFLOW too many variables declared in the
block.

Iv. RUN TIME ERROR MESSAGES

The form of run error messages is

(segment number) (message) RUN ERROR NEAR CARD (number)

SUBSTRING INDEXING substring selected not within named
string.
CASE SELECTION INDEXING index of case statement or case ex-

pression is less than 1 or greater

than number of cases.

ARRAY SUBSCRIPTING array subscript not within declared

bounds.

6

r

-

— r

r—

LOWER BOUND> UPPER BOUND

ARRAY TOO LARGE

ASSIGNMENT TO NAME PARAMETER

DATA AREA OVERFLOW

ACTUAL-FORMAL PARAMETER MISMATCH
INFORMAL PROCEDURE CALL

RECORD STORAGE AREA OVERFLOW

LENGTH OF STRING INPUT

LOGICAL INPUT

NUMERICAL INPUT

REFERENCE INPUT

READER EOF

REFERENCE

lower bound is greater than upper

bound in array declaration.
array must have fewer elements:

assignment to a formal name parameter
whose corresponding actual parameter
is an expression, a literal, control

identifier, or procedure name.

storage available for program execu-

tion has been exceeded.

the number of actual parameters in
a formal procedure call is different
from the number of formal parameters
in the called procedure,: or the
parameters are not assignment com-

patible.
no more storage exists for records.

string read is not assignment com-
patible with corresponding declared

string.

quantity corresponding to logical

quantity is not true or false.

numerical input not assignment com-

patible with specified quantity.
reference quantities cannot be read.

a system control card has been en-

countered during a read request.

the null reference has been used to
address a record, or a reference
bound to two or more record classes
was used to address a record class

to which it was not currently pointing.

7

