
QS ¥b6

$2.25

ALGOL W

NOTES pp. 1 to 40

DECK SET-UP page 1

LANGUAGE DESCRIPTION pp. 1 to 49

UNIT RECORD EQUIPMENT pp. 2-17 to

~ 2-16
ERROR MESSAGES pp. lto7

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

ALGOL W NOTES

FOR INTRODUCTORY

COMPUTER SCIENCE COURSES

thy

Henry R. Bauer

Sheldon. Becker

Susan L. Graham

COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

JANUARY 1968

- Introduction

The textbook Introductionto AILGOL by Baumann,Feliciano, Bauer,

and Samelson describes the internationally recognized language ALGOL 60

for algorithm communication. ALGOL W can be viewed as an extension of

.— ALGOL.

Part I of these notes describes the differences between similar

= constructs of the two languages.

, For clarity, Part I 1s numbered according to the sections of the

textbook. In general only differences are mentioned; items which are

— the same 1n both languages are usually not discussed.

Part II presents some of the details concerning the new features

o of AIGOL W. A complete syntactic and semantic description of these

constructs as well as of all others in the language 1s available in

"AIGOL W Language Description”.

-

-

—

—

.
1

i

1. Basic Symbols of the Language

1.1. The basic symbols

1.1.1. Letters

Only upper case letters are used.

| l.1.3. Other symbols

The following are the same in ALGOL 60 and ALGOL W

M— + _ /] ,

i=

(1) =

— = < >

The following are different in the two languages. The

correspondence between the symbols 1s shown in the following

table:
——

AIGOL 60 AIGOL W

{—

10

X *
~.

t *%

L [(

|)
L

€ 1

| + DIV
—

— = no equivalent

4 M OR
2

8 ALGOL 60 AIGOL, W

A AND

tom one blank space

] : : or :: (cf. section 6.1 and 4.2.1)

: no equivalent i

All characters indicated for ALGOL W are on the IBM 029

o key-punch.

The significance of spaces in AIGOL W will be discussed in

he subsequent sections.

| — 1.2. Numbers

A number 1s represented in 1ts most general form with a scale

- factor to the base 10 as in conventional scientific notation.

Co EXAMPLE 3.164981'-4 means 3.164981 x10" +

This 1s often called the floating point form. Certain abbreviations

omitting unessential parts are permissible.

— EXAMPLES 77 317.092 126 ' 04

551 538k ok. 719'2

'30 0.710 9.123 '+1

-— 0 2'-6
ee

"3 009.123 '+01 2.0'-06

= To represent a long floating point (cf. Section 2.3.1) number an

3

n

I. must be added as part of the number specified,

- EXAMPLES TTL 317. 092L 126° 0OLkL

In AIGOLW, complex numbers (short and long forms) may be used,
—

The imaginary part of a complex number 1s written as an unsigned real

L number followed by an I.

EXAMPLES LI 4,81 4i-5T1
-

Long 1maginary numbers are followed by an L.

|
- \ |

EXAMPLE L,8IL

L Numbers may be written 1n a variety of' equivalent forms.

| EXAMPLE 12°0k = .12'6 = 1.2'05 = 120000.0
No spaces may appear within an unsigned number, The magnitude of

{

— an integer or the integer part before the decimal point in a floating

point number must be less than or equal to 2147483647. The magnitude

= ofa non-zerc floating point number must be between approximately
¢ - =~ - } _

| 5,4 x 10 9 and 7 x 1077 (1/16 x 16 ok and (1-16 by X 183,

1.3%. Identifiers
-

| A letter followed by a sequence of letters and/or digits constitutes
|

= an identifier, Identifiers may be as short as one letter or as long

| as 256 letters and digits,
~ Identifiers may be chosen freely and have no inherent meaning.

1 However, AILGOL W recognizes a set of' reserved words which must not 'be
(used as 1dentifiers,,

-

— 4

—

i

BN RESERVED WORDS

3 ABS GOTO REM

AND GO TO RESULT

ARRAY IF SHL

| BEGIN INTEGER SHORT

- BITS IS SHR

Co CASE LOGICAL STEP

| COMMENT LONG STRING

- COMPLEX NULL THEN

DIV OF TRUE

” DO OR UNTIL

_ ELSE PROCEDURE VALUE

END REAL WHILE

— FALSE RECORD

FOR REFERENCE

Spaces are used to separate reserved words and identifiers from

= each other and from numbers.

Certain 1dentifiers are predefined for use by the programmer but |

| are not reserved words. Their meaning will be discussed later. Among

- these are three input and output identifiers: READ, READON, WRITE,

(See Sections 2.2.2. and 2.5.)

1.4 Nonarithmetic symbols

—

The symbols which are printed in bold type in the text are usually

_ underlined in typewritten copy, They are contained in the list of

reserved words (cf. Section 1.3) for ALGOL W. They are not distinguished
—

d

ee

2 . in any other way but they must not be used for any purpose other than

that for which they are specifically intended, The symbol END, for

| example, must not be used as an identifier,

2. Arithmetic Expressions

2.1. Numerical Expressions

- The basic arithmetic operators of ALGOL W are

+ - % / ¥x DIV REM -

a EXAMPLES

i 3.1459 7 DIV 3

] (3.471-4 + 9.01741) / 4 17 REM 12

: } 9% 8x7 /(1L*%2% 3) -1.2

| | (9 + 2.7)/ (-3)

: (((Le5 * 3 - 4) ¥ 3 + 0,19'1)* 3 - 2,6'3) * 3

10 + Lh / (1 +09 /(7-0.4/3))

: The symbol * denotes multiplication while ** denotes exponentiation.

Co For instance, 4.5 *¥¥ 3 means 4.5%. The exponent must always be an

| integer in ALGOL W. An integer to any exponent gives a real result.

EXAMPLES

; AIGOLW form Conventional form

(4.1 - 3) ** 2 (h,1 - 5°

oo 3.0 ¥% 2 + 5,0 3.2% + 5,0
| ox 2 ye
i

oo
6

3

AILGOLW form Conventional form

1 A) *¥ 2| (=4) ** 2 (1)

bh * 5 / 0 %% 3 4x0

! | D

Also notice

D¥XZARY = (22)

. In AIGOLW the following two constructs are not allowed because

g the exponent is a real numbers

3.2%%(2 +5 , 2) and 2%*(3%*L)

i 2.202. Assignment of numerical values through input

If the value cf an identifier is to be provided by input it is

| assumed that this value appears on a data card which 1s in the card

| reader waiting to be read, The statement

READGN {¥)

where V stands for variable identifier, reads the next number on the

| current input card. If there are no more numbers on the current input
card, subsequent cards are read until a number 1s found., This statement

assigns the value of the number to the variable whose name 1s specified,

Lo READE (Vo Vee es V)

| is equivalent to

: READEN (V.); READYN (7.);...; READUN (V :
1 c ’ n

1

| The constants on the data cards are assigned in the same order as

7

the variable names in the READ@N statement. One or several numbers

| may appear on a single card separated by one or more blank spaces with

column 80 of one card immediately followed by column 1 of the succeeding

—. : card.

The statement

READ (V)

— 1s similar to READEN (V) except that scanning for the number begins on

a new 1nput card.

- The statement

— READ (V1sVosVgseessV)

1s equivalent to

READ (VD; READ@N (VosVsseen iV) :

Numbers are punched into data cards in the forms described in

| Section 1.2, and may be prefixed by "-"., Numbers corresponding to

variables of type integer must not contain decimal fractions or

— scale parts.

EXAMPLES READZN (A2)

In this case the data card must contain at least one number,

. say 1l.279'-7 if A2 is not an integer variable.

READ (B10,B11,B12,B15);

The data cards must contain four numbers, say

= 3,01. 7. 149 82511 g if Bl0, Bll, B12 are not

integer variables, Bl may be an integer variable or a real

variable, One could spread these constants over several cards

1f desired,
8

—

-

In general input read into the machine must be assignment compatible

| with the corresponding variable (cf. Section 2.3.2).

2.5. Assignment of numerical values through expressions

Exponentiation 2° (a**b) 1s defined by repeated multiplication if

b 1s a positive integer and by 1/ oP! when b 1s negative. Db must have

_ type integer. If one desires the result of pf where R 1s real, use
EXP (R * IN (A)).

2.5.1. Evaluation of expressions

~ The discussion in this paragraph is correct, However, in AILGOL W

the type of a resulting expression 1s defined for each type and each

operator. The type complex and the discussion of the long forms 1s

_ provided for completeness and may be ignored by beginning programmers,

I: A+ B, A -B

A BA integer real complex
-_

integer integer real complex

— real real real complex

complex complex complex complex
_

The result has the quality "long" if both A and B have the

— quality "long", or if one has the quality "long" and the other 1s

: integer.
—

— 9

[[.. r f r r f [f [(r f [r

|! Qo HH ct HA

<3 an H S HHLe] QQ HH . an
ry {D

= Q = al > = Oo + ie a= oO > 0 = pe > >
= O (D Hat oy 0 (D HD > I 0) MD 3
(© = Q + XK 4) = QO ct O = AY ot x

je = (D x ia! HH (D ~~. ct Hs ie! — (D
i = 0g 7 Fd 0] = = a wy,
(D IQ I» td Lo] (MD MD td MD td {D [0
mn > ~~ M > Hs to pe tg td
fot td O) D ny
bi Hr pos jy
«t+ Hh QJ <

pi R =

iy 0 MD jo
a AV) mn rq
6) ct n

. Pe ® = ~ - = ct = — to jie
. ct 0 H = O » Q)) Oo my QO GC » s
NE jm O ((8) H = joy; ct i] MD 8) i) ct +

qv = A 4) i 4) fe pi — (D ° oq oq 0) (D
{o} = a Ui j—! 0Q Ne’ aa om

Ne! = oq rh 0 (MD jo 0 Hs ((
c D Md O 3 Hs QW C D Fs ao
0 > H H a = QO

: = pte 3 =
I c+ ct =

; ct a3 ~< 0< OD _ >4

= KK —
pe? jo QO

OO [i] [a ®) ~~ = H 4 ~~ oo = a
0Q ito 9, aM (D D = O O O 0)

- ct = Av) jv QO 3 oS 3 Qo
~ = jeri ps — of Q 4]! ie p=

pe Ft ' 0)

: ~H = ® q 0 HS HS
: pd m O {D (Th

OI $0] I) ei
= ‘ + (D

O >
= jv Q

“ “(D ~h
(MD

ps ct 0 0 0 0 0.

> n go] ® ro La A 3 fa i) =
D NE ny ke Ga 0G | ©

Q 0) ® 0) M (D fed
oO 18) > > > > 0 p) g) (D
0 H- = C Q Q >mn < MD = = =
° 0) w an ie G

= c
3 MD MD (D

Hh ct > 4 PS
OQ 4
H jn

} ot
+

Lo

V: ABS A means the "absolute value of A".

A ABS A

integer integer

real real

— complex real

2.3.2. Type of the variable to which a value 1s assigned,

The assignment V := E 1s correct only 1f the type of E 1s

. assignment compatible with V. That 1s; the type of V must be lower or

on the same level in the list below as the type of E.

integer

= real, long real

complex, long complex
| —

Several transfer functions are provided as standard functions

— (cf. Section 2.4). For example, to change the type of expression E from

real to integer either ROUND(E), TRUNCATE(E) or ENTIER(E) may be used,

2.5.4, Multiple assignments

The assignment of the value of an expression can be extended to

_ several variables. As in AIGOL 60, the form in ALGOL W is

vq r= Vs T= ae. o= VN i= BE;

. The multiple assignment statement 1s possible only 1f all the

- variables occurring to the left of VWs= are assignment compatible with

the type of the variable or expression to the immediate right of the :=,

11

5

—
2.4 Standard Functions

- All the standard functions listed 1n this section are provided in

AIGOL W except sign and abs. ABS is a unary operator in ALGOL W. In

— addition the following standard functions are provided.

_ truncate (E) if E < 0, then entier(E)

if E < 0, then -entier(-E)

round (E) if E > 0, then truncate (E + 0.5)

if E < 0, then truncate (E - 0.5)

log(E) the logarithm of E to the base 10

— 1

(not defined for E < 0)

o time (E) if E = 1, elapsed time returned in 60th 1g of a second

if E = 2, elapsed time returned in 60 1g of a second

= and printed in minutes, seconds, and 60t1 1g of a

second

2.5. output
—

The identifier "print" should be replaced by "write". A print

- line consists of 1%2 characters.

~-EXAMPLES WRITE (E) ; WRITE(E, ,E 50.0 ,E);

The format of the values of each type of variable 1s listed below:

~ integer right justified in field of 14 characters and

followed by two blanks. Field width can be
be

changed by assignment to INTZIELDSIZE.

— real same as 1nteger except that field width 1is

invariant.

he

12

|

3

—

long real right justified in field of 22 characters

_ followed by 2 blanks,

complex two adjacent real fields.

— long complex two adjacent long realfields.

logical TRUE or FALSE right justified, in a field of

” 6 characters followed by 2 blanks.

_ string field large enough to contain the string and

continuing onto the next line 1f the string 1is

~— longer than 13! characters,,

| bits same as real.
—

In order to provide headings or labels for printed results, a

C sequence of characters may be printed by replacing any expression 1n

the write statement by the sequence of characters surrounded by ". If

the " mark is desired in a string it must be followed by a ".

— EXAMPLES

WRITE ("NM =", N)
—

This statement will cause the following line to be printed if

~ N is integer and has the value 3.

— N= 3

WRITE ("SHAKESPEARE WR@TE "“HAMIET""')
-

This statement will cause the following line to be printed,

3 SHAKESPEARE WR@TE "HAMLET".

_ In the statement

WRITE (BE. ,Egsee eB)
13

.

the type of each Ej determines the field in which its value will

] be placed. The field for Bil follows the field for E, on the current

print line. TETEE BRITS EE.

If there 1s not enough space remaining on the current print line, the

1 new print line. The first field of each write statement begins on a

: new print line.

; 3. Constructionof the program

3.1. Simple Statements

Note that the simple assignment statement takes the form V := FE

and that the input-output statements are respectively

| READ (V) and WRITE (E)

where V 1s a variable or a variable list and E 1s an expression or

expression list.

3.2. Compound Statements

In later descriptions in these notes "compound statements" will be

| synonomous with "blocks without declarations”.

| 3.4. Comments

The construction

comment text;

may appear anywhere in an AIGOL W program. However, in AIGOL W the

comment following an end 1s limited to one identifier which 1s not a

reserved word.

14

| —

5.5. Example

To clarify the change necessary to form an AIGOL W program from

the program enclosed 1n the box, the example is shown as it would be

punched, Note that an AIGOL W program must end with a , (period).

BEGIN COMMENT EVALUATION OF A POLYNOMIAL;

REAL AO, Al, A2, A3, X1, P;

READ (AO, Al, A2, A3, X1);

P := ((A3 * X1 + A2) * X1 + Al) * X1 + AQ;

WRITE (P)

END.

Note that the indentation, although not required, allows the begin

and end to be matched easily. In complicated programs indentation will

improve readability and therefore reduce the number of careless errors.

L. Loops.

L.1. Repetition

The variable V of the for statements described 1s always of the

type integer and cannot be declared in AIGOL W; its declaration 1is

implicit (cf. Section 7), and its value cannot be changed by explicit

assignment within the controlled statement. Each expression E of the

for clause must be of type-integer.

The statement of the form

for V i= HioHoseeo Ho do 5;

is correct for n > 1 in AIGOL W only if HysHyseen sl are all integer

expressions.

15

oe

EL

The form

for V := E step 1 until E.do S;

may be abbreviated as

: for V := Eyuntil Edo S;

4.2. Subscripted Variables

In AIGOL W the subscript expression must be of type integer. Any

other type will result 1n an error detected during compilation.

4.2.1. Array declarations

In the text, the : in array declarations must be replaced by ::

: for AIGOL W. The word array must always be preceded by its type.

ARRAY A[1:10,1:20]; is incorrect and should be written

| REAL ARRAY A (1::10, 1::20);

Only one set of subscript bounds may be given in an array declaration.

Hence, the examples should be corrected for AIGOL W to read

- EXAMPLES

real array A, B, C(1::10);

real array D, EG(1::10, 1: :20);

i integer array N, M(1::L4);

L.h,2, Example

In ALGOL W the example in the box would be written as listed below,

3 BN BEGIN COMMENT DERIVATIVE OF A POLYNOMIAL;

INTEGER Nj; REAL P, C;

3 REAL ARRAY A(1::20);

me READ (N, C);

FOR I := 1 UNTIL N DO READON (A(I));

i - P :=0;

{ FOR I := N STEP -1 UNTIL 1 DO

DP := P*C + I*A(I);

ae WRITE (P)

END.

: 5. The Conditional Statement

| Conditional statements are very useful and are used in ALGOL W as

- discussed in this chapter for ALGOL 60. Note that the symbols <, >,

and A must be replaced by < =, > =, and - =, respectively.

6. Jumps

6.1. Labels

All labels 1n AIGOL W must be 1dentifiers which are not reserved

— words.

i 6.2. The Jump Statement

go to may be written as GO TO or GOTO in AIGOL W,

6.2.1. Jumps out of loops or conditional statements

i The value of the loop variable 1s not accessible outside of the

: loop in AIGOL W.

17

LC
6.2.2. Inadmissible Jumps

L It is not possible to jump from outside into a loop in ALGOL W.

/ Likewise, 1t is not possible to jump into a conditional statement.

In general, it is not possible to jump into the middle of any

| statement, viz, for statement, conditional statement, while statement,
-

| compound statement, block.

i

L © 6.4. Another Form of Loop Statement

; The statement described in the text does not exist in ALGOLW,
—

However, AIGOL W has another form of loop statement which 1s

i useful -- it 1s called the while statement.
: FORM while B do S;
|

B 1s a condition like that described in Chapter 5. As long as B is
¢

true, the statement S will be repeated. It is possible that S is

1 never executed. More precisely, this loop may be interpreted
L: 1f B then

Lo begin S; goto L

:] end

= The example in Section6.3 can be rewritten as follows:

:
Lo BEGIN COMMENT DETERMINATION OF THE CUBE ROOT;

{ REAL A, APPROXIMATIONVALUE, X, Y, I;

L READ (A, APPROXIMATIONVALUE);

| X := APPROXIMATIONVALUE; 2 += ABS X;

|

18

g

WHILE D> .5'-9 * ABS X DO

-

BEGIN

_ Y :=X; x := (2%Y + A/(Y*Y))/3;

D := ABS (X-Y);

- END;

END.

L

_ (. - Block Structure

| For the purposes of block structure in ALGOL W compound statements
— must be considered as blocks, namely blocks without declarations. A

! compound statement with a label defined in it 1s a block. (Reread the
-

notes in this paper concerning Chapter 6.) In for statements the scope

3 of the variable V in the for clause 1s the statement S following the do.

. 7.4. Dynamic Array Declarations
| The expressions specifying the subscript bounds in dynamic array

L declarations must be of type integer.

:.
8. Propositions and Conditions

. The word "Boolean" in the text should be replaced throughout by

"logical".

L 8.1. Logical Operations

L -Some of the symbols for logical operations are different in
ALGOL w.

i

i
19

i

(

Operation ALGOL AIGOL W READ AS

negation — — not

conjunction A AND and

disjunction V OR or

equivalence = = 1s equivalent to

AIGOL W does not have an equivalent form of the ALGOL implication

symbol, 2.

, The following hierarchical arrangement defines the rank of the

N operator with respect to other operators.

= Level | Operation Symbol

_ 1 LONG, SHORT, ABS

2 SHL, SHR, *¥

3 =

L | AND, *, /, DIV, REM

B 5 OR, +, -

6 <; N=, 2 2 =, 55 n=, IS

In a particular construct, the operations are executed in a sequence

” from the highest level (smallest number) to the lowest level (largest

_ number) : Operations of the same level are executed in order from left

to right when logical operations are involved and in undefined order in

~ arithmetic expressions.

The discussion in this section 1s correct except concerning the

- hierarchy of operators, In general, the extra parentheses are required

_ in AIGOL W when using arithmetic expressions with logical operators,

The examples below are correct AIGOL W and correspond to examples in

20

—

tne text. All parentheses are necessary.

- EXAMPLES

(A> 95) OR (B>=1)

be

(A ¥*3>= Cc +p) = (Ass (Z1 + 22)> M)

(0 < =X) AND (X < =1)
—

(X= 3) OR (1 < =X) AND (X < = 2)

means (X = 3) OR ((1 < =X) AND (X <= 2))

Q. Designational Expressions
!

The designational expressions described 1n the text do not exist

L in AIGOL W. The chapter may be skipped.
However, ALGOL W provides a designational statement and expression

L which 1s equivalent to that described by the text.

| 9.1. The Case Statement

| The form
CASE E OF

| BEGIN

| S.35,5 . Eh
END

| 1s called a case statement. The expression E must be of type integer.
. The value of the expression, E, selects the Sp statement between the

L BEGIN END palr. Execution is terminated if the value of E is less
d than 1 or greater than n. After the designated expression is executed,
L

execution continues with the statement following the END.

4
21

EE ————————]

.

|—_—

EXAMPLE

C CASE I OF

BEGIN

— ee Te. :
BEGIN J := I; GOTO Ll;

| END;
-

I =1 + 1;

|

LC IF J < I THEN GOTO Ll

END

|
—

If the value of the expression, I, is 3, for example, the statement,

4 IF J < I THEN GOTO Ll is executed, If J > = I then execution continues

i following the END.
9.2. The Case Expression

L Analogous to the case statement, the case expression has the form

i CASE = OF (E|,E ,...,E)

| The value of the case expression 1s the value of the expression selected
by the value of the expression E. If the value of E 1s e, then the

| value of E, is the value of the case expression. The type of the case
expression 1s the type of the E, expression whose type 1s lowest on the

I list

| integerreal

’ long real

| complex

I long complex

22

i

EXAMPLE

C CASE 3 OF (4.8, 12, 17, 4.9) has the value 17 in floating

: point representation since the type of the case expression 1s real.

| 10. Procedures
i

10.1.1. Global and formal parameters

- Labels may not be used as formal parameters. Switches do not exist
| in -ALGOL W.

1041.2... Arguments

C

Arguments serve to introduce computational rules or values into

1 the procedure. A rule of computation can be brought into the procedure
1f the computation 1s defined by means of another procedure declaration,

or a statement.

Formal simple variables, formal arrays, and formal procedures can

be arguments.
{

L Example 3 1s correct in the text.

A formal array can be used as an argument in only one way, "call

— by name". The discussion concerning "call by value" should be ignored.

C 10.1.2.3. Exits

Because labels may not be used as actual parameters to a procedure,

the text's discussion of exits is not correct for AILGCOL W. However,

| a statement (in particular a GOTO statement) may be used as an actual
parameter corresponding to a formal procedure identifier. In this way

_ side exits leading out of the procedure are provided,

— 3

-

10.1.3. Function procedures and proper procedures
T

L From given pieces of programs, procedures can be derived either

| in the form of function procedures or in the form of proper procedures,,
The body of a function procedure 1s either an expression or a

| block with an expression before the final END in the procedure body.
The value of the expression 1s the value of the function procedure,

L The way 1n which a procedure 1s set up and used 1s a fixed

| characteristic of the procedure and 1s established directly in the
declaration by means of the introducing-symbols, The declaration of

| functions 1s introduced by the symbols
INTEGER PROCEDURE

| REAL PROCEDURE

| LOGICAL PROCEDURE

| according to the type of the resulting value. The type of the expression

| giving the value of the procedure must be assignment compatible with
the declared type of the function procedure.

| The declaration of the proper procedure begins with the symbol

| PROCEDURE
No resulting expression can be placed at the end of the procedure

| body.

| 10.1.4. The procedure head
| All necessary assertions about the formal parameters and the use
L of the procedure are contained in the head of the procedure declaration,

(In AIGOL W the head consists of three parts:
he

24

!

(1) Introductory symbol

| (2) Procedure name
—

(3) List of formal parameters and their specifications

—

(1) The introductory symbol determines the later use of the procedure

Co (cf. Section 10.1.3.)

(2) The procedure name can be chosen almost arbitrarily. The only

- restriction 1s the general limitation concerning some reserved

, names (cf. Section 1.3).
-

(3) The type, value specification, and identifier name of formal

C parameters appear 1n the list of formal. parameter specifications,

and not separately as in AIGOL 60. The comma serves as the
!
— general separation symbol between formal parameter identifiers

of the same type and vaiue specification. The semicolon serves
-—

as the general separation symbol between specifications of formal

parameters of different types or value specifications.

; The type of the formal parameter 1s specified by the symbols
-

REAL

LONG REAL
~—

INTEGER

COMPLEX

—

LONG COMPLEX

LOGICAL

- REAL ARRAY

LONG REAL ARRAY

i COMPLEX ARRAY

LONG COMPLEXARRAY

_ INTEGER ARRAY
LOGICAL ARRAY

25

|

(
—

REAL PROCEDURE

LONG REAL PROCEDURE

= COMPLEX PROCEDURE

LONG COMPLEX PROCEDURE

INTEGER PROCEDURE

LOGICAL PROCEDURE

“ PROCEDURE

The value specification 1s used only for parameters called by
—

value. It is specified by the symbol value. 71t pay only follow the

types INTEGER, REAL, LONG REAL, LOGICAL, COMPLEX, LONG COMPLEX.

[EXAMPLES
PROCEDURE P (REAL X, Y; INTEGER VALUE I; PROCEDURE Q, R);

{

L REAL PROCEDURE 7 (LOGICAL L, M, N; REAL PROCEDURE P);

Note that in the case of formal parameters used as array identifiers,

L
information about the number of dimensions must be given. The

{

| last identifier following each array specification must be followed
by (followed by one asterisk for each dimension separated by commas,

L followed by).

| EXAMPLE
PROCEDURE P (REAL ARRAY X, Y (*,*¥); REAL ARRAY z (*)) .

10.2. The Procedure Call

| The procedure call in ALGOL W is unchanged from ALGOL 60. This

| section should be read carefully.
Since labels are not allowed as parameters, 1t was earlier suggested

(

that jump statements be used and that the corresponding formal parameter
C

be a proper procedure (cf. 10.1.4. Example 8). In general, any

L

26

{
{

LC

statement may be used as an actual parameter corresponding to a formal

. proper procedure which 1s used without parameters.

EXAMPLE

|N_—

BEGIN

Co PROCEDURE VECTOROPERATIONS (INTEGER J; INTEGER vALUE Nj

PROCEDURE P);

— BEGIN J := 1;

WHIIE J < = NV DO

“

BEGIN P; J := J +1

L END

END;

¢

he REAL PROD; INTEGER I;

REAL ARRAY A, B, C(1::10);
-

(initialize A and B)
f
f

| Ll: VECTOROPERATIONS (I, 10, C(1) := A(l) + B(1l));

PROD := 0.0;

L L2: VECTOROPERATIONS (I, 10, PROD := PROD + A(l) *¥ B(1l));

| END
—

| The statement Ll 1s a procedure call which causes a vector addition
of A and B to be placed in C. The statement L2 causes the element-by-

| element vector product of A and B to be calculated and placed in PROD.

27

i

: 10.3. Example
- REAL PROCEDURE ROMBERGINT (REAL PROCEDURE FCT;

i ~ REAL VALUE A, B; INTEGER VALUE ORD);
| BEGIN REAL Tl, L;

— ORD := ENTIER ((ORD + 1) / 2);

; BEGIN INTEGER F, N; REAL M, S;

” REAL ARRAY U, T (1 :: ORD);

L := B-A;

| T(1) := (FcT(A) + FCT(B)) / 2;
| - U(l) := FCT ((A + B) / 2);

Fi=N:= 1;

- FOR H :=2 UNTIL ORD-1 DO

BEGIN N := 2 * N; S := 0;

M:=1L/ (2 % N);

| _ FOR J := 1 STEP 2 UNTIL 2 * N - 1 DO
| S := S + FCT (A + J * M);

- UH) :=8 / N;

| r(x) := (TH - 1) +U(E-1)) / 2;

| FE os=1;
- FOR J := H - 1 STEP -1 UNTIL 1 DO

| BEGIN F := 4 * F;
. T(J) := T(J + 1) + (D(T +1) -T(T))/ (r-1);

U(J) := UJ +1) + (UW@+ 1) -U0W)) /(F-1);

| END;
| _ IF ORD > 1 THEN

- 28

|

3 BEGIN

| n(7) t= (U(1) + T(1)) /2;

| T(1) t= (2) +(2(2) - T(1)) Jb * F - 1)
| END;

TL := T(1)

END;

END;

TL ¥ I

The names of standard functions and standard procedures cannot appear

| as actual parameters in AIGOL W. Therefore the calls to R@MBERGINT

I in Section 10.3 are incorrect. However, this situation may be overcome
by declaring a procedure which returns the value of the standard function

or performs the computation of the standard procedure.
v

| EXAMPLE
REAL PRPCEDURE SINE (REAL VALUE X); SIN (X);

Then a call to RPMBERGINT might be

A := RPMBERGINT (SINE, x(1), X(2), 10);

EXAMPLE®6

REAL, PROCEDURE TRACE (REAL ARRAY A(*,*); INTEGER VALUE N);

BEGIN REAL S;

S = 0;

FOR I:= 1 UNT'IL N DO

S:=S+A(1,I);

S

END

29

EXAMPLE 7

PROCEDURE COUNTUP (INTEGER X);

X =X + 1

EXAMPLES

PROCEDURE ROOTEX (REAL VALUE X; REAL Y; PROCEDURE P);

IF X > = OTHEN

Y : = SQRT(X)

ELSE

BEGIN Y := SQRT(ABS X);

P

END

The actual parameter corresponding to the formal parameter P

should be a jump statement.

50

PART II: Some Extensions of ALGOL 60 in ALC W

1. Procedures

| 1.1. Call by Result

Besides "call by value”and "cali by nam', AIGOL W allows parameters

| to be called by result. The formal simple variabie 1s handled as a local

| quantity although no declaration concerning tnis quantity 1s present,

| The value of the simple variable 1s not initializedat the procedure

call, If the procedure exits normally, the value correspoinding to the

formal simple variable 1s assigned to the corresponding actual parameter.

The formal parameter must be assignment compatib:s with the actual

parameter. To specify a result parameter, insert the word RESULT after

the type and before the identifier (as with VAiUE).

EXAMPLE

PROCEDURE P (REAL RESULT X,Y; INTEGER VALUE I; LONG COMPLEX RESULT Z);

1.2. Call by Value Result

Formal simple variables may be called beti ty value and result.

- This combines the calls of value and result sc¢ that the formal identifier

1s 1nitialized to the value of the corresponding actual parameter at

— procedure call and the value of the formal identifier 1s assigned to

the corresponding actual parameter at a normal procedure exit, To

specify a value result parameter, insert the words VALUE RESULT after

— the type and before the identifiers.

EXAMPLE

PROCEDURE Q(INTEGER VALUE RESULT I,J,XK);

|

2. Procedure Calls

- 2.1. Sub-arrays as Actual Parameters

In AIGOL W, 1t 1s possible to pass any rectangular sub-array of an
-

actual or formal array to a procedure, Those dimensions which are to be

- passed to the procedure are specified by *'s, and those which are to

remain fixed are specified by integer expressions. The number of

dimensions passed must equal the number of dimensions specified for

the corresponding formal array.
|_-

EXAMPLE

L The actual parameter may be a sub-array of a three dimensional

i real array A. Examples of possible actual parameter specifications and
corresponding formal parameter specifications are listed below.

L Actual Parameter Corresponding Formal Parameter Specification

A or A(¥,*,¥) real array B(*,*,*)

- A(T, *,%) real array B(*,%)
. Ax, Tx) real array B(*,¥)

A(¥,*,T) real array B(*,*)

L - A(I,d,*) real array B(*)
- A(TI,%,J) real array B(*)

L

| EXAMPLE
Read 1n the size of one dimension of a cubic array X, then

| read in the é&lemenys qf KX.. - +7 i.
Calculate and write cut the sum of the traces of all possible

. two dimensional arrays in A using the previously defined real

procedure TRACE.

— 32

BEGIN

REAL SUM;

REAL PROCEDURE TRACE (REAL, ARRAY A{#*,*); INTEGER VALUE N);

BEGIN COMMENT THE BCDY CF THIS PROCEDURE IS GIVEN IN A

PREVIOUS EXAMPLE: ;

END;

INTEGER Nj;

READ (N) ;

BEGIN

REAL ARRAY X(i::N, 1:sN, 1::N);

FOR I := 1 UNTIL N DO

FOR J := 1 UNTIL N DC:

FOR K := 1 UNTIL N DO READON(X(I,J,K));

SUM = 0;

FOR I := 1 UNTIL N DO

SUM := SUM + TRACE(X(I,*,*),N) + TRACE (X{*,I,%),N)

+ TRACE (X(*,%,1),N);

WRITE (SUM)

END

5. String Variables

| Frequently, it 1s desirable to manipulate sequences of characters.

. This facility is available in AIGCL W in the form of string variables,

ha=n variable has a fixed length specified in 4he string declaration.

Tne form of' the declaration 1s

25

| string (<integer number>) <variable list>

The integer number must be greater than 0 and less than or equal to

2560 The specification "(<integer number>)'" may be omitted; a default

length of 16 is assigned to the variables. Arrays of strings also may

be declared,

EXAMPLE

| STRING A, B, C

STRING (24) X, Y, Z

| STRING {10) ARRAY R, S{0::10, 5::15)

In order fo be able to inspect elements of the string or to

manipulate portions of the string, asubstring operationis provided.

| FORM <string identifier> (E | <integer number>?

| The expression E must be of type integer, This string expression

selects a substring of the length specified by the integer number from

the string variable beginning at the character specified by the integer

expression, The first character of the string has position O.

EXAMPLE

BEGIN STRING (5) A;

A : = "QRSTU";

A (3]2) := a (0]|2);

WRITE (A)

END

In this example the constant string "QRSTU", 1s assigned to the

variable A which 1s declared to be of length 5. Then the character

positions 0 and 1 of A are assigned to positions 3% and 4 of A.

34

: Consequently, when the string & is written its vaize 1s QRSQR. It

; should be noted that the assignments are made cnaracter bycharacter.

[If the second assignment statement in the example above had been

A (213) = A(O[3)

the resulting value of A would have been QRZEQ.

: l, Records and References

+ Rezords are structured quantities composed of quantities of any

of “he simpie types such as REAL, INTEGER, STRING, ete. Records

tnemseives do not have values; only the quantities which compose the

records may have values. |

L,1., ,Record Class Declarations

Record declarations indicate the composition of a record. Unlike

simple type declarations or array declarations no storage 1s reserved

for a record when the record deci aration is encozntered. Ebasentl ally,

the record declaration only describes the form of recorasto ‘be created,

tne record deciaranlons appear wi th all other declaratlons,

|

FORM¢

) Is —T or = | Qo 1 |] A
RECORD V (<declarations of variables of simple hype>);

The name V is the name of the record class . The var iat . es

declared between the parentheses are called tne f ie lds of the record.

_ EXAMPLES

RECORD A(INTHGER I,J; REAL Z; STHING (5) 3),

RECORD BY REAL X; LONG REAL LK; EBAL Y);

55

| - . :
The punctuation of the examples should be noted carefully, The

names 1n the list cf i1dentifiers following the indicationof the simple
a

type are separated by ",". The listis ended with a ";" unlessthe

“ ";" would immediately precede the closing " }".

i.2. Reference Declarations

ee

In order to specify a recordof some record ciass, REFERENCE 1s a

“ simple type in ALGOL W. The value of a variable of type reference

1s an address of a record, This address 1s sometimes called a pointer

-

to a record..

Reference declarations appear 1n a program where ail other declarations
he

appear.
i

~ FORM

REFERENCE (V) Vis

V 1s a name of a record class, Vy 1s a name of a reference

~ variable or a list of names of reference variables separated by ",".

: EXAMPLE
-

REFERENCE (A) Kl, R2, R3;

. 0

The name V of a record class may also be a list of Tames

separated 'by ",". This list indicates the record classes to which
_

records referenced by the reference variables must 'belong.

~ EXAMPLE

REFERENCE (A,B) 34, 35;
|—_—

Ri ard E5 may point, only to records of record class A or B.

36

—

— ———_—_—_——m——r——

q

| The reserved word NULL stands for a reference constant which

3 fails to designate a record,

i Arrays of references are declared and used analogously to arrays

1 of other simple types.

: FORM

REFERENCE (V) ARRAY V,. (<subscript bounds>);

REFERENCE (A,B) ARRAY ARl, AR2 (1:310, 3:27);

1 The implementation requires that all reference arrays declared in

a biock be declared in the same reference array declarationor

| immediately following a reference array declaration.

REFERENCE (A) ARRAY ARl, AR2 (1::10, 3::7};

REFERENCE (B) ARRAY AR? (2: 317);

In the example above, any other declaratica except a reference

array declaration 1s not allowed between the two reference array

declarations,

4.3, Reference Expressions

Quantities of simple type reference may be used in assignmeni;

statements and comparisons,

EXAMPLES

Lo R1 := R2
RI := NULL

Kl= R2

R2 = = F3

37

!

-

Only the relations = and—m = are allowed between references. In
{

Co order to inquire to which record class a reference expression 1s bound,

the IS operator 1s provided.

FORM

!

| E IS V
-—_

| E 1s a reference expression and V 1s a name of a record class. The
-

value of the IS operator 1s logical, either TRUE or FALSE.

| "EXAMPLE
1

4,4, Record Designators

y A particular type of reference expression 1s the record designator.
| A record designator 1s the name of a record class when used as an

expression.

L EXAMPLE

| Rl := A
R4 := B

L When the record class name 1s encountered, the value 1s a pointer

| to a new record of that class. The values of the fields of the new
record are undefined.

L L.,5. Field Designators

| In order to manipulate the values of the fields of a record, the
expression

L FORM

E

38

-

exists in AILGOL W. E is a reference expression. vy 1s a field of the

record class of the record pointed to by E. The type of the field

designator 1s the type of the variable Vin

EXAMPLES

Z(R1)

B IX(RL)

~~ EXAMPLE 1

BEGIN RECORD mB (INTEGER C,Dj; STRING (2) SY;

REFERENCE (H) R1;]

_ Rl := H:

C(R1) := 5;

- D(R1) := 8;

S(RL) := "Az"

- EN-D.

- Example 1 1s a short program which declares a record class H and

one reference -variable Rl whose values may point to records of class H.

— (ne record of class H 1s created and each field of the record pcinted

to by kl 1s 1nitialized,
—

AIGOL W provides a short notation for creating a record and

— initializing its fields, This modified record creator has the form

V(E;) .

V 1s the name of the record class. The expression list E between the

*-- parentheses 1s the list of the values of the fields specified in the

order they appear in the record. class declaration.
A

= 39

—

2
CY

EXAMPLE

B{L,8, 3.141597, 86)

Example 1 may be rewrliten as follows:

| EXAMPLE 2

BEGIN RECORD H (INTEGER C,I'; STRING (2) 8);

REFERENCE (H) R1;

— Rl := H(5, 8, “AzZ")

END.

—

—

¢

-

|_—

—

.—

_-—

L

|
-

1

- LO

-

*,

x > ow

5 9 SEps + :

© E 2 Q ~ CL

Hs £2, = = 0 & Q 0I) A Oo oo co
a JAN NA ci Q 5 [0) ay, = Q5 Qu Lo = t= td i)© ip ° 2 =

2 = 8 2 g =i

= V o SOB og =
5 = 2 4) o
\4 og

2 5
v8) i»

@p]

3 3
& cr
- -
pd ®

Ne
Oo
==

wn

s

2

A.

—

ALGOL W

“ LANGUAGE DESCRIPTION

by

—

Henry R.Bauer

1 Sheldon Becker
Suzan L. Graham

{

ee

L

|
L COMPUTER SCIENCE DEPARTMENT

| STANFORD UNIVERSITY
- JANUARY 1968

i

L

{

]

"A Contribution to the Development

= of ALGOL" by Niklaus Wirth and C. A. R.

Hoar lL was the basis for a compiler de-
—

veloped for the IBM %0 at Stanford Univer-

— sity. This report Is a description of the

implemented language, ALGOL W. Historical

-

background and the goals of the language

| may be found 1n the Wirth and Hoare paper.
_—

—

{

|
—

|
-

J

-

{

1) "
{ Wirth, Niklaus and Hoare, C. A. R., "A

- Contribution to the Deveicpment of ALGOL"',
Comm. ACM 9, 6{(June 1966), pp. 413-431.

- i

CONTENTS

1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS. :«cccoeeesoooressl

1.1. NOLALION + ev vvnsenconeearooasoansoseonsnsansenosasl

| 1.2, Definitions «e-eceeveonroemnensenonennenaonennonsil

i 2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES. NO « vv «vv oonoo ook

2.1. Basic Symbols eeeA

2.2. Syntactic Entities.cccecovoccoconoovoesoososonosss)

h. VALUES AND TYPES. «tee evoveemneesenneeeaneeesnoneeanseenanesssd

J .l., NUMDETrS «occoeecorsssonossnscssasonoosneavavssenasll

L.2. Logical ValuesI8

4.3. Bit Sequences ...eecccorrececcioeosariaaacroonaoall

Ih. Strings see soos soos ooucassoeccessoasoesooosoceeseld

I .5, REFEYeNCEeS «s:ceoecosssosaoosssoonsonnsonanssasassl?

5. DECLARATIONS. « + co co 0c so eos esoosoaoosaosouocnoossseosossossoosssnsodld

5.1. Simple Variable DeclarationsPOI

_ 5.2. Array Declarations ..veuveooueeeneoosseaovonssanes4

> .3- Procedure Declarations ...ceceecvosavoavooecaccee 16

5 4. Record Class Declarations .eeocececossonssssosossal

- 6. EXPRESSIONS + oceevecocenoonvoonnasaoocaasnonosncoasssossesasal

| 6.1. Variables +s cococossosvonssossococooncossvanosonsssaoll

6.2. Function DeSignators+ ceesscsoeonsasoacnoucnonssl)

11

B CONTENTS {cont)

6.3%. Arithmetic EXPressSions voveuosavecsssnconoaasssscl

: 6.4, Logical EXPTessions ..v.eeecovesscosesosnssssassesll

J — 6 E] 5 » Bit Express ions FU LI $1} a og LL 0 Oo « Uo U 2 6 0 0 0 O° ta ou * oo 0 & 0 OC 0 30

6 JF 2 String Expressions vou Ue eu 0 ec uu 60 6 8 0 © 3 0 oo 8» 0 w-% 0 0 3 oOo a 6 > 31

a 6.7. Reference Expressionsx

6.8. Precedence of OperatorsceoeoeaooovocnocoononID
_ } - I Se .

i 7 STATEMENTS . © oo veer scone. wo vuvouoacooosoanosonwsoonaoasassan Sb
—

I ? 1 o Blocks 7 » OQ [5 J VI ¢ LH vo ' [hd u RJ roo [¢] 2 a tw bl aon [vd cu [+] wv [v] [a] &* LJ ae 0 4 0 0 J [v] 0 [»] [4] 3h

- 7.2. Assignment Statements poe oevoy 8 0 0 © Cenrcooavessoeses I)

7 3. Procedure statements .o..vevcovcoucooocovanonosad

— 7.4 70to Statements “esac evuiaooeste aos cassoeevaaens 99

7.5. If Statements Se seo sec soo sce esoeececeenovoeessaolD
|—

7 6 " ASE Statements dou 0 eu 0 0 ee 9 on 0 0 nC Ye 0 0 0 0 ve 0 dF 0 DG Oo un 41

7.7. Iterative STAboMeNUE soos oes sococcoooonscosnssssod
— [ETRETPR=P JNJ LNT TUS x AL el, rel LT MY ag,

7 : 8. Standard kr Coedres F000 LL DU 0 0 00 LC 0% uv Be UU V0 Nn 6 0008 G00 Jal

— { Rel i u Read Statements $Y 00s 2 0 0 D0 0 0 0 6 0 a 0 8 u5

—-~ 7 8 C2 Write Statements. LANNE FURR « J - HS HN HO EY NY FON HY (J + HE - TE I - I OR 1] hE

|S—

8. STANDARD FUNGTICNS AND FREDECIARED IDENTIFIERS. .:eoevecv.css bd

- 8.1. Standard Transfer Functionsceceosuvovocsscdf

8.2. Standard Functionsof Analysis »..vvsecsecessaaoolt]

S) L] 2. Over flow and Underfiow (EA > 0 0 0 6 0 a ¢ 0 uu ¢o0 0 0 G6 6 8 60 0 vu ou 48

8.%.1. Predeclared Variables...c.ovoovson. 48
i

- Coos
11.1

—

- CONTENTS (cont .)

- 8.3.2. Standard Message Function...........4 8

8.4. Output Field Sizesgq

5 Time Functioncc.0... J048428904480084 0d ko

L

.

1v

- 1. TERMINOLOGY, NOTATION AND BASIC DEFINITIONS

The Reference Language is a phrase structure langauage, defined by

a formal system. This formal system makes use of the notation and

definitions explained below. The structure of the language ALGOL W

1s determined by three quantitites:

(1) V, the set of basic constituents of the language,

(2) U, the set of syntactic entities, and

(3), the set of syntactic rules, or productions.

1.1. Notation

_ A syntactic entity 1s denoted by its name (a sequence of letters)

enclosed in the brackets < and >. A syntactic rule has the form
|
-

<A> i= Xx

I where <A> is a member of U,x is any possible sequence of basic con-

| stituents and syntactic entities, simply to be called a "sequence".
The form

_ <A> i= x | y “on | v4

1s used as an abbreviation for the set of syntactic rules

<A i= Xx

<A> i= y

<& 1:= z

1.2. Definitions

1. A sequence x 1s sald to directly produce a sequence y 1f and

1

Co

| only if there exist (possibly empty) sequences u and W, so that

- either (1) for some <A in U, x = WW, Vv = UvW, and<& ::=
2 v'is a rule in P; or (ii) x = uw, y = ww and v is a "comment"

(see below).

- 2. A sequence x 1s said to produce a sequence y 1f and only 1f

_ there exists an ordered set of sequences s[0], s[1], . . . , sla],

so that x = s[0], s{n] = y, and s[i-1] directly produces s[i] for

— all 1=1,. . . , n.

_ 3. A sequence x 1s sald to be an ALGOL W program if and only if

its constituents are members of the set If, and x can be produced

i from the syntactic entity <program>.

The sets V and U are defined through enumeration of their members

in Section 2 of this Report (cf. also 4.4.). The syntactic rules are

— given throughout the sequel of the Report. To provide explanations

for the meaning of ALGOL W programs, the letter sequences denoting

~ syntactic entities have been chosen to be English words describing

| approximately the nature of that syntactic entity or construct. {here
-

words which have appeared in this manner are used elsewhere in the

I text, they refer to the corresponding syntactic definition. Along

with these letter sequences the symbol J may occur. It is understood

- that this symbol must be replaced by any one of a finite set of English

L words (or word pairs). Unless otherwise specified in the particular
section, all occurrences of the symbol J within one syntactic rule

3 must be replaced consistently, and the replacing words are

|
2

i

integer logical

real bits

long real string

complex reference

long complex

For example, the production

<J term> ::= <T factor> (cf. 6.3.1.)

corresponds to

<integer tern += <integer factor>

<real ternp> ::= <real factor>

<long real tern> : = <long real factor>

<complex tern s0t= <complex factor>

<long complex term> ::= <long complex factor>

The production

<J, primary> ::= long J, primary> (cf. 6.3.1. and
table for long

corresponds to 6.3.2.7.)

<long real primary> : += long <real primary>

<long real primaryv> :s= long <integer primary",

<long complex primary> ::= long <complex primary>

- It 1s recognized that typographical entities exist of lower order

| than basic symbols, called characters. The accepted characters are

those of the IBM System 360 EBCDIC code.

| The symbol comment followed by anysequence of characters not

containing semicolons, followed by a semicolon, is called a comment.

A commenthas no effect on the meaning of a program, and 1s ignored

during execution of the program. An identifier (cf. 3.1.) immediately

3

following the basic symbol end 1s also regarded as a comment.

The execution of a program can be considered as a sequence of

— units of action. The sequence of these units of action is defined as

the evaluation of expressions and the execution of statements as de-

noted by the program. In the definition of the implemented language

the evaluation or execution of certain constructs 1s either (1) de-

fined by System 360 operations, e.g., real arithmetic, or (2) left

I. undefined, e.g., the order of evaluation of arithmetic primaries in

expressions, or (3) said to be not valid or not defined.

| 2. SETS OF BASIC SYMBOLS AND SYNTACTIC ENTITIES

2.1. Basic Symbols

AlBlc|o|le|F|lelu|I|d]lk|s]|M|N]|]oO]|P|

3 e|R|s|r]ulv|iw|x]|Y]|z]

olrl2|3|s]s5]6]l7]8]9]

true | false | "| null | # ||
integer | real | complex | logical | bits | string |

oo reference | long real | long complex | array |

procedure | record

, | ; | oe |] () | begin | end | if | then | else | |

case | of | + | - * | / | » | giv | rem | shr | shl | is |
abs | long | short I andI or I = | = | = = | < |
<= [>1 >=i: |

:= | goto | go to | for | step | until | do | while |
— comment | value | result

All underlined words, which we call "reserved words", are repre-

sented by the same words in capital letters in an actual program.

in

Adjacent reserved words, identifiers (ef. 3.1.) and numbers must be

separated by at least one blank space. Otherwise blanks have no mean-

_ ing and can be used freely to improve the readability of the program,

| 2.2, Syntactic Entities

(with corresponding section numbers)

| - <actual parameter lists 7.5 | <formal type 5.3

<actual parameter> 7-2 | <go to statement> 7.k

| <bit factor> 6.5 | <hex dig:-"> 4.3
<bit primary’, 6.5 <ldentifier list 3.1

<bit secondary> 6.5 <identifier> 3.1

- <bit sequence> 4.3 | <if clause> 6
<bit term> 6.5 | <imaginary number> 4.1

<block body> 7.1 | <increment> 7.7

<block head> (-41 | <initial wvalue> 7.7

- <block> (.1 | <iterative statement> 7.7

<bound pair iist> 5.2 | <label definition> 7.1

— <bound pair> 5.2 | <label identifier> 3.1

<ease clause> 6 <letter> 3.1

<case statement> 7.6 | <iimit> Tf

B <control 1dentifier> 5.1 | <logical element> 6.4
<declaratior> p < logical factor> 6.k

oT <digit3 5.1 | <logical primary> 6.4

<dimension specificatiorn> 5.3 | <logical term> 6.4

- <equality operator> 6.4 <logical value 4.2

<expression list> 6.7 | <lower bound 5.2

- <field 1list> 5.4 | <null reference L.5

<for clause> 7-7 | <procedure declaratior> 5.3

8 <for list> 7-7 | <procedure heading> 5.3

<formal array parameter> 5.5 | <procedure identifier> 3.1

<formal parameter list> > «J | <procedure statement> 7.3

<formal parameter segment3 5.3 | <program> 7

= p)

-

g

| <proper procedure body» 5.% | <subscript tist> 6.1

— <prcper procedure <3 array declaratiocr 5.2
oT +9 3» ”

i declaration 0-3 <J array designator> 6.1
ro me - . _

i. <recorc class declaratior> 5.4 <7 arrey identifier» 2.1
| <recora class identifier> 3.1 <7 assigmment statement> 7.2

L Srecone oles identifier _. <T expression list> 6
<recora designator> 6.7 <I expressiom> 6

3 relations 64 <I factor> 6.3
<relational cperator> 6.4 <J field designator> 6.1

| <scale factors Lo 1 <J field identifier> 3.1
he. <sigm Wl <I function designator> 6.2

| <simple tit expression> 6.5 <J function identifier> 5-1
<simple logical expressiomn> 6.4 <7 function procedure body> 5.3
<simple reference <T function procedure

| expressions 6.7 declaratior> 5.3
<gimple statement> 7 <J left part> 7.2

| <simple string expression» 6.6 <f mabe hel
<gimpie J expressiom> 5.3 <I primary» 6.3
simple T variables £1 <J subarray designator> 7.3%

L <glmplz type> 5.1 <7 term> 6.3
<gimple variable <J variable identifier> 3.1

. ceclaration> 5.1] <unscaled real> L.1
<stetemznt lisgt> 7.6 | <upper bound> 5.9

| <statement> ! <while clause> 7.7
<string primary> 6.6

l <string> TR
<subarray designator list» 7.3

| <subscriphi> 6.1
L

5. _ IDENTIFIERS

i

] <identifier> ::= <letter> | <ldentifierl> <letter> | <identifier> <digit>
<J-rariasble identifier> ::= <identifier>

|
a

i

[

<T array identifier> ::= <identifier>

<procedure 1identifier> ::= <identifier>

<I function identifier> ::= <identifier>

<record class 1identifier> ::= <identifier>

<J field identifier> ::= <identifier>

— <label identifier> ::= <identifier>

<control identifier> ::= <identifier>

_ <letter> ::= A|B|cCc|D|E]|]F|c|H]|I|J]|K]|L]|M|

N]o|P|Q|R]|s|T|]Uu|Vv]|w]|x]|Y]2Z

<digit> ::= oOo | 12 | 34567809

<identifier list> ::= <identifier> | <identifier list> , <identifier>

3.2. Semantics

Variables, arrays, procedures, record classes and record fields

are said to be quantities. Identifiers serve to identify quantities,

or they stand as labels, formal parameters or control identifiers.

Identifiers have no inherent meaning, and can be chosen freely in the

reference language. In an actual program a reserved word cannot be

used as an identifier.

Every identifier used in a program must be defined, This 1is

achieved through

(a) a declaration (cf. Section 5), if the identifier identifies a

quantity. It is then said to denote that quantity and to be a

JT variable identifier, J array identifier, J procedure identifier,

T function identifier, record class identifier or J field iden-

tifier, where the symbol J stands for the appropriate word re-

flecting the type of the declared quantity;

(b) a label definition (cf. 7.1.),if the identifier stands as a

|

|_—

label. It 1s then said to be a label identifier;

(c) 1ts occurrence in a formal parameter list (cf. 5.3.). It 1s then

— sald to be a formal parameter;

(d) its occurrence following the symbol for in a for clause (cf. 7.7.).

= It 1s then said to be a control identifier;

(e) its implicit declaration in the language. Standard procedures,

standard functions, and predefined variables may be considered

— to be declared in a block containing the program.

| The recognition of the definition of a given identifier is de-
|

termined by the following rules:

~~ Step 1. If the identifier 1s defined by a declaration of a

quantity or by its standing as a label within the smallest block

(cf. 7.1.) embracing a given occurrence of that identifier, then

O it denotes that quantity or label. A statement following a pro-

cedure heading {(cf.5.3.) or a for clause (cf. 7.7.) is considered

— to be a block.

| Step <2. Otherwise, if that block is a procedure body and if the

given identifier 1s identical with a formal parameter 1n the asso-

— clated procedure heading, then it stands as that formal parameter.

L Step 3. Otherwise, if that block is preceded by a for clause
. and the identifier 1s identical to the control identifier of

{

L that for clause, then it stands as that control identifier.

L Otherwise, these rules are applied considering the smallest
block embracing the block which has previously been considered,

f

!

o
8

!

i

If either step 1 or step 2 could lead to more than one definition,

then the identification 1s undefined.

“- The scope of a quantity, a label, a formal parameter, or a con-

trol identifier 1s the set of statements in which occurrences of an

= identifier may refer by the above rules to the definition of that

quantity, label, formal parameter or control identifier.
|_—

5.35. Examples
—

I

| PERSON
—

ELDERSIBLING

| x15, X20, x25

L 4, VALUES AND TYPES

Constants and variables (cf. 6.1.) are said to possess a value.
—

The value of a constant 1s determined by the denotation of the con-

Lo stant. In the language, all constants (except references) have a

| reference denotation (cf. 4.l.-bk.k.). The value of a variable is the
one most recently assigned to that variable. A value is (recursively)

- defined as either a simple value or a structured value (an ordered set
of one or more values). Every value is sald to be of a certain type.

L The following types of simple values are distinguished:

integer: the value is a 32 bit integer,

| real: the value is a 32 bit floating point number,
long real: the value is a 64% bit floating point number,

| complex: the value 1s a complex number composed of two
numbers of type real,

{

C
9

L

on
Lo

iong complex: the value is a complex number composed of two
long real numbers,

logical: the value 1s a logical value,

bits: the value is a linear sequence of %*2 bits,

string: the value is a linear sequence of at most 256 char-
acters,

reference: the value is a reference to a record.

_ The following types of structured values are distinguished:

array: the value 1s an ordered set of values, all of identi-

— cal simple type,]

record: the value is an ordered set of simple values.

I~ A procedure may yield a value, in which case it is said to be a

function procedure, or it may not yield a value, in which case it is

called a proper procedure. The value of a function procedure is de-

- fined as the value which results from the execution of the procedure

body (cf. 62.2.).

— Subsequently, the reference denotation of constants 1s defined.

The reference denotation of any constant consists of a sequence of

characters. This, hcwever, does not imply that the value of the de-

- noted constant 1s a sequence of characters, nor that it has the pro-

perties of a sequence of characters, except, of course, in the case

= of strings. |

- 4.1. Numbers

1 4.1.1. Syntax
<long complex number> :s3= <complex number>L

| <complex number> ::= <imaginary number>

<imagilinary number>::= <real number>T | <integer number>I

(
10

|
L

ee ——————EEEEEn

<long real number> ::= <real number>L | <integer number>L

ET <real number> ::= <unscaled real> | <unscaled real> <scale factor> |
<integer number> <scale factor> | <scale factor>

— <unscaled real> ::= <integer number> . <integer number>

—-<integer number>

— <scale factor> ::= ‘<integer number> | ‘sign <integer number>

<integer number> ::= <digit> | <integer number> <digit>

<sigm> i:= + | -

. 4.1.2. Semantics

Numbers are interpreted according to the conventional decimal

— notation. A scale factor denotes an integral power of 10 which is

multiplied by the unscaled real or integer number preceeding 1t. Each

o number has a uniquely defined type.

4.1.3. Examples

1 I) 11

= 0100 1'3 0.671

3.1416 6.02486'+23 1IL

— 2.718281828459045235360287L 0.21.6

_ 4.2. Logical Values

4.2.1. Syntax
|

<logical value> ::= true false

.

4.3%. Bit Sequences

- L.3.1. Syntax

. <bit sequence> ::= # <hex digit> | <bit sequence <hex digit>
<hex digit>::= O12 | 34% |5]6]|7]8|9]a]|s]

| c|p|E|F
(_

11

_

| Note that 2 |... | F corresponds to 2.0 | .. . 5.

4.3.2, Semantics

- The number of bits in a bit sequence is 32 or 8 hex digits. The

bit sequence is always represented by a 3%2 bit word with the specified

bit sequence right justified in the word and zeros filled in on the

left.

41.3.3. Examples

#4F = 0000 0000 OOOO OOOO OOOO 0000 0100 1111

#9 = 0000 0000 0000 0000 0000 0000 0000 1001

| 4.4, Strings

4.4.1. Syntax

— <string> ::= "<sequence of character@"

4.4.2. Semantics

Strings consist of any sequence of (at most 256) characters ac-

- cepted by the System 360 enclosed by", the string quote. If the

string quote appears in the sequence of characters it must be imme-

diately followed by a second string quote which 1s then ignored. The

number of characters in a string 1s said to be the length of the

string.

= L.L.3, Examples

| " JOHN"
—

"MY js the string of length 1 consisting of the string

quote.

12

|

4 5. References

L.5.1. Syntax

<null reference> : ¢= null

4.5.2. Semantics

The reference value null falls to designate a record; if a refer-

- ence expression occurring in a field designator (cf. 6.1.) has this

val 1e, then the field designator 1s undefined.

= DECLARATIONS

Declarations serve to associate identifiers with the quantities

used 1n the program, to attribute certain permanent properties to

these quantities (e.g. type, structure), and to determine their scope,

The Juantities declared by declarations are simple variables, arrays,

procedures and record classes.

Upon exit from a block, all quantities declared or defined within

that block lose their value and significance (cf. 7.1.2. and 7.4.2.).

Svntax:

<deciaratior> ::= <simple variable declaratior> | <J array

declaration> | <procedure declaration> |
<record class declaration>

".1. Simple Variable Declarations

L 5...1. Syntax

{gimple variable declaratiorn> ::= <simple type> <identifier list>

<3lmrle type> ::: integer | real | long real | complex | long

complex | logical | bits | bits (32) |

13

ee ———

i

string | string (<integer>) | reference
(<record class identifier list»)

: <reccrd class identifier 1list> :2= «record class identifier> |
TT <record class identifier list> ,

<record class 1identifier>

5.1.2. Semantics

| Each identifier of the identifier list 1s associated with a

variable which 1s declared to be of the indicated type. A variable is

= calied a simple variable, if its value is simple (cf. Section 4). rf

a variable is declared to be of a certain type, then this implies that

only values which are assignment compatible with this type (ef. 7.2.2.)

_ can be assigned to it. It is understood that the value of a variable

1s equal to the value of the expression most recently assigned to it.

= A var labie of type bits is always of length 32 whether or not

the declaration specification is included.

A variabie of type string has 3 lengih equal to the unsigned

integer in the declaration specification. If the simple type is

given only as string, the length of the variable is 16.

A variable of type reference may refer only to records of the

record classes whose identifiers appear 1n the record class Identi-

fier list of the reference declaration specification.

5.1.3. Examples

long complex C

14

|
-

| string (10) s, T
Fo reference (PERSON) JACK, JILL

| 5.2" Array Declarations

_ 5.2.1. Syntax

<J array declaration» ::= <simple type> array <identifier list>

_ (<bound pair list>)

<bound pair list> ::= <bound pair> | <bound palr list>,<bound

| pair>

<bound pair> ::= <lower bound> :: <upper bound>

| <lower bound> ::= <integer expression">

Tm <upper bound> ::= <integer expressior>

CO 5.2.2. Semantics

Each identifier of the identifier list of an array declaration 1is

= associated with a variable which is declared to be of type array.

variable of type array 1s an ordered set of variables whose type 1s the

simple type preceding the symbol array. The dimension of the array is

_ the number of entries in the bound pair list.

Every element of an array 1s identified by a list of indices.

~— The indices are the integers between and including the values of the

lower-bound and the upper bound. Every expression in the bound pair

list 1s evaluated exactly once upon entry to the block in which the

_ declaration occurs. In order to be valid, for every bound pair, the

value of the upper bound must not be less than the value of the lower
|

- bound.

5.2.3.Co p pb) Examples

integerr a y H(1l: :100)

_

15

|
b

|-—

__

real array A, B(1l::M, 1::N)

string (12) array STREET, TOWN, CITY (J::K + 1)

5.3. Procedure Declarations

_ 5.3.1. Syntax

<procedure declaratior> ::= <proper procedure declaration> |

- <J function procedure declaration>

<proper procedure declaration> ::= procedure <procedure heading>;

_ <proper procedure body>

<J function procedure declaration> » i= <simple type> procedure

| <procedure heading>;

= <J function procedure body>

| <proper procedure body=> ::= <statement>
- <J function procedure body> = <7J expression> | <block body>

<J expression> end
- <procedure heading> ::= <identifier> | <ldentifier> (<formal

parameter list>)

a <formal parameter list> ::= <formal parameter segment> |
<formal parameter 1list> ; <formal

L parameter segment>
<formal parameter segment> := <formal type> <identifier list3 |

| <formal array parameter>
<formal type> ::= <simple type> | <simple type> value | <simple

| type> result | <simple type> value result |
L <simple type> procedure | procedure

<formal array parameter> ::= <simple type> array <identifier

t list> (<dimension specification>)

-<dimension specification> =::= * <dimension specification> , *

i
5.3.2. Semantics

i A procedure declaration associates the procedure body with the
identifier immediately following the symbol procedure. The principal

i I
16

i

ss

part of the procedure declaration 1s the procedure body. Other parts

- of the block 1n whose heading the procedure 1s declared can then cause

— this procedure body to be executed or evaluated. A proper procedure

is activated by a procedure statement (cf. 7.3.),a function procedure

- by a function designator (cf. 6.2,). Associated with the procedure

body 1s a heading containing the procedure identifier and possibly a

list of formal parameters.

= 5.3.2.1. Type specification of formal-parameters. All formal para-

meters of a formal parameter segment are of the same indicated type.

The type must be such that the replacement of the formal parameter by

— the actual parameter of this specified type leads to correct ALGOL W

expressions and statements (cf. 7.3.2.).

—

5.3.2.2. The effect of the symbols value and result appearing in a

- formal type 1s explained by the following rule, which is applied to

the procedure body before the procedure is invoked:

— (1) The procedure body 1s enclosed by the symbols begin and end

1f it 1s not already enclosed by these symbols;

- (2) For every formal parameter whose formal type contains the

L symbol value or result (or both),

, (a) a declaration followed by a semicolon is inserted after

L the first begin of the procedure body, with a simple

] type as indicated in the formal type, and with an iden-
tifier different from any identifier valid at the place

| of the declaration.

| (b) throughout the procedure body, every occurrence of the
3 -

4

yy ee |

| formal parameter identifier 1s replaced by the identifier

defined in step 2a;

. (3) If the formal type contains the symbol value, an assignment

statement (cf. 7.2.) followed by 5 semicolon is inserted

= after the declarations of the procedure body. Tts left part

: contains the identifier defined in step 2a, and its expres-
sion consists of the formal parameter identifier. The sym-

L bol value 1s then deleted;

| (4) If the formal type contains the symbol result, an assignment
| statement preceded by a semicolon 1s inserted before the

| symbol &nd which terminates a proper procedure body. n
the case of a function procedure an assignment statement

L 1s 1nserted after the final expres-
i sion of the function procedure body. 71t+g5 left part contains

= the formal parameter identifier, 4nd its expression consists

i of the identifier defined in step 2a. 7pg¢ symbol result is
then deleted. :

i 5.3.2.3. Specification of array dimensions. The number of "*"'g
| appearing in the formal array specification 1s the- dimension of the

array parameter.

L 5.3.3. Examples

| procedure INCREMENT; X ¢= X+1
” Meal procédure X (real value X, Y);

if X < Y then Y else X
|

|
18

{

EE

procedure COPY (real array U, Vv (*,%); integer valueA, B);

for I := 1 until A do

| for J := 1 until B do U(Z,J; := V (I,J)

LT real procedure HORNER (real array A (*); integer value N;
real value X);

| — begin real S; S := 0;

for I := 0 untilN do S :=S * X + A(l);

_— S

end

— long real procedure SUM (integer K, N; long real X);

begin long real Y;Y := 0;K ¢= Nj;

o while XK> = 1 dc

begin Y t= Y¥ +X; K t= K - 1

end;

Y

end

reference (PERSON) procedure YOUNGESTUNCLE (reference (PERSON) R);

begin reference (PERSON) P, VN;

— P := YOUNGESTOFFSPRING (FATHER (FATHER (R)));

while (P = = null) and(= MALE (P)) or

(P = FATHER (R)) do

P ¢= ELDERSIBLING (P);

M := YOUNGESTOFFSPRING (MOTHER (MOTHER (R)));

while (M — = null) and (— MALE (M)) do

_ M := ELDERSIBLING (M);

if P = null then M else

1f M = null then P else

- if AGE(P) < AGE(M) then P else M

-

Co

L 19

L

-

5.4. Record Glass Declarations
— -

5.4.1. Syntax

- <record class declaratiom> $:= record <identifier> (<field list>)

<field list> ::= <simple variable declaration> | <field 1list>;
<simple variable declaration>

| 5.4.2. Semantics
-

A record class declaration serves to define the structural pro-

| perties of records belonging to the class. The principal constituent

| of a record class declaration 1s a sequence of simple variable declara-
tions which define the fields and their simple types for the records

| of this class and associate identifiers with the individual fields.
A record class identifier can be used in a record designator (cf. 6.7.)

| to construct a new record of the given class.

| 5.4.3. Examples
record NODE (reference (NODE) LEFT, RIGHT)

l record PERSON (string NAME; integer AGE; logical MALE;
reference (PERSON) FATHER, MOTHER, YOUNGESTOFFSPRJP,

| ELDERSIBLING)

| 0. EXPRESSIONS

| Expressions are rules which specify how new values are computed
from existing ones. These new values are obtained by performing the

| operations indicated by the operators on the values of the operands.

| Several simple types of expressions are distinguished. Their struc-
ture 1s defined by the following rules, in which the symbol J has to

L 20

ee ————————————————EEEEEEE —

—

be replaced consistently as described in Section I, and where the trip-

lets 7 Tis Ts have to be either consistently replaced by the words

— logical

bits

_ string

reference

w or by any combination of words as indicatedby the following table,

which yields Ts given 7. and Ty
-

J
J 2

i 1 integer real complex
integer integer real complex

| real real real complex
complex complex complex complex

— Ty has the quality "long" if either both Ty and To have that

| quality, or 1f one has the quality and the other 1s "integer".

| syntax:
- <J expression> ::= <simple TJexpressior> | <case clause?

(<T expression list»)

- Tq expression» ::= <<if clause> <simpie 7, expression» else
<J, expression>

| <I expression list» ::= <J expressiom>
<J, expression list» ::= <T expression list> | <J, expression>

| <1f clause> ::= if <logical expressiorm> then
<case clause> i= case <integer expression> of

| The operands are either constants, variables or function designa-
tors or other expressions between parentheses, The evaluation of

| operands other than constants may invcive smaller units of action such

| as the evaluation of other expressions or the execution of statements.
21.

- The value of an expression between parentheses 1s obtained by evaluat-

ing that expression. If an operator has two operands, then these oper-
|_

ands may be evaluated in any order with the exception of the logical

a operators discussed in 6.4.2.2. The construction

) <if clause> <simple Ty expression> else <J, expressiomn>
|

L causes the selection and evaluation of an expression on the basis of

1 the current value of the logical expression contained in the if clause.
If this value 1s true, the simple expression following the 1f clause

| 1s selected, 1f the value 1s false, the expression following else 1s
selected. The construction

L <case clause> (<7 expression 1list>)

| causes the selection of the expression whose ordinal number in the
expression list 1s equal to the current value of the integer expres-

| sion contained in the case clause. In order that the case expression
be defined, the current value of this expression must be the ordinal

i number of some expression 1n the expression list.

| 6.1. Variables
6.1.1. Syntax

| <simple J variable> ::= <J variable identifier> | <I field designator> |
<I array designator>

| <J variable> ::= <simple J variable { <simple string variable3
(<integer expressior> § <integer number>)

[<T field designator> :<J field identifier> (<reference expressiorn>)<J array designator3 ::= <T array identifier", (<subscript list>)

<subscript 1list> ::= <subscript> <subscript list>, <subscript>

[<subscript> ::= <integer expressior>

I 22

| 0.1.2. Semantics

An array designator denotes the variable whose indices are the

current values of the expressions in the subscript list. The value of

each subscript must lie within the declared bounds for that subscript

position.

A field designator designates a field 1n the record referred to

by 1ts reference expression. The simple type of the field designator

1s defined by the declaration of that field identifier in the record

class designated by the reference expression of the field designator

= (cf. 5.4.).

{ 6.1.3. Examples

X A(T) M(I+J, I-J)

FATHER (JACK) MOTHER (FATHER (JILL))

. 6.2. Function Designators

: 6.2.1. Syntax
CL

<T function designator>::= <J function identifier> | <J function

identifier> (<actual parameter list>)

6.2.2. Semantics

i

“ A function designator defines a value which can be obtained by a

process performed in the following steps:

Step 1. A copy 1s made of the body of the function procedure

| whose procedure identifier 1s given by the function designator
and of the actual parameters of the latter.

i Steps 2, 3, 4, As specified in 7.3.2.
23

Step 5. The copy of the function procedure body, modifed as in-
ee

dicated in steps 2-4, 1s executed. The value of the function
£

! designator 1s the value of the expression which constitutes or 1s

i part of the modified function procedure body. The simple type
- of the function designator 1s the simple type in the corresponding

L function procedure declaration.

| 6.2.3. ExamplesMAX (x ¥*¥2, Y ¥*2)

SUM (I, 100, H(1))

| SUM (I, M, SUM (J, N, A(I,J)))
YOUNGESTUNCLE (JILL)

| SUM (I, 10, x (1) * Y(I))
HORNER (X, 10, 2.7)

6 .3. Arithmetic Expressions

| 6.3.1. Syntax

| In any of the following rules eyery occurrence of the symbol T
must be systematically replaced by one of the following words (or

| word pairs):
integer

| real
long real

| complex
long complex

| The rules governing the replacement of the symbols Tor 71 and Ts are
given in 6.3.2.

| <simple J expressiom> ::= <JT term> | + <J term> | - <T term>

24

(

—

,

| <simple Ts expression> ::= <simple J, expression> + <I, term> |-

<simple TJ. expressior> - <T, term>
<J term> ::= <J factor>

. <J 4 term> ::= <7, tern> * <J, factor>
J tern> ::= <7, term> / <I, factor>

— <integer term> ::= <integer term> div <integer factor> |

<integer ternm> rem <integer factor>

b J, factor> ::= <J, primary> | <7, factor> ** <integer primary>
J, primary> ::= abs <3 primary> | abs <3 number>

L <I, primary> i= long <7, primary>
<I, primary> ::= short <J; pr imary>

a <I primary=> ::= <T variable> | <T function designator> |
(<T expression>)| <I number>

| <integer primary> ::= <control identifier>
|

| 6.3.2. Semantics
- An arithmetic expression 1s a rule for computing a number.

According to its simple type it 1s called an integer expression,
-

real expression, long real expression, complex expression, or long

i complex expression.

| 6.3.2.1. The operators +, -,¥%, and / have the conventional meanings
of addition, subtraction, multiplication and division. In the rele-

i vant syntactic rules of 6.3.1. the symbols To 74 and J, have to be re-
placed by any combination of words according to the following table

i which indicates Ts for any combination of I and To
| Operators + | -

T :
| Ty 2 integer real complex
C

integer integer real complex

| real real real complex
(.

complex complex complex complex

{ ”

ee——;;;;;e——EEEEEEEEEE———

{

Ty has the quality "long" if both 7 and Is have the quality
LS.

"long", or if one has the quality "long" and the other is "integer".

— Operator *

T : |
o Tq 2 | integer real complex

integer integer long real long complex

- real long real long real long complex

complex long complex long complex long complex

= I or Ts having the quality "long" does not affect the type of
the result.

Operator /

-

J

~~ | integer real complex
.

EE

L integer real real complex

real real real complex

1 complex complex complex complex

To has the quality "long" if both I and J, have the quality

L "long", or if one has the quality "long" and the other is "integer" .

| 6.3.2.2. The operator "-" standing as the first symbol of a simple
expression denotes the monadic operation of sign inversion. The type

L of the result 1s the type of the operand. The operator "+" standing
| as the first symbol of a simple expression denotes the monadic opera-

tion of identity.

I 6.3.2.3. The operator div is mathematically defined (for B # 0) as

| A div B = SGN (A X B) X D (abs A, abs B) (cf. 6.3.2.6.)

} 20

|

1

| where the function procedures SGN and D are declared as
SE

integer procedure SGN (integer value A);

_ if A < 0 then -1 else 1;

integer procedure D (integer value A, B);

— 1f A < B then 0 else D(A-B, B) +1

| 6.3.2.4. The operator rem (remainder) 1s mathemetically defined as
—

A rem B=A- (A div B) X B

L

6.3.2.5. The operator * denotes exponentiation of the first operand

i to the power of the second operand. In the relevant syntactic rule of
6.3.1. the symbols To and I are to be replaced by any of the follow-

L ing combinations of words:
| T
L 0 7

| real integerreal real

complex complex

L Ty has the quality "long" if and only if 7 does.
| 6.3.2.6. The monadic operation abs yields the absolute value of the

operand. In the relevant syntactic rule of 6.3.1. the symbols Ts and

L 7 have to be replaced by any of the following combinations of words:

| To 3
integer integer

| real real
real complex

| If 7 has the quality "long", then so does Ts

27

L

-

6.3.2.7. Precision of arithmetic. If the result of an arithmetic
|S—

operation 1s of simple type real, complex, long real, or long complex

SE then 1t 1s the mathematically understood result of the operation per-

formed on operands which may deviate from actual operands.

= In the relevant syntactic rules of 6.3.1. the symbols Ty and I
must be replaced by any of the following combinations of words (or

-

word pairs):

— Operator long

|

long real real

i long real integer
long complex complex

|
— Operator short

real long real

| complex long complex

] 6.3.3. Examples |
C + A(I) * B(I)

] EXP (-X/(2 *SIGMA)) / SQRT (2 * SIGMA)

I 6.4. Logical Expressions
6.4.1. Syntax

i In the following rules for <relation> the symbols Ts and I must

| either be identically replaced by any one of the following words:

28

ee ———————EE—

bit

string

reference

= or by any of the words from:

complex

long complex

| real

long real

Cd integer
—]

and the symbols Ts or 7 must be replaced by any of real, long real,
integer.

<simple logical expressior> ::= <logical element> | <relatiord>

1 <logical element> ::= <logical term> | <logical element? or
<logical tern>

<logical term> ::= <logical factor> | <logical term> and
Lo aisha

<logical factor>

<logical factor> ::= <logical primary> | —1 <logical primary>

.- <logical primary> ::= <logical value> | <logical variable> | |

| <logical function designator> |(<logical expression>)

<relatior> ::= <simple Ts expression> <equality operator>

| <simple 7 expressior> | <logical element,
<equality operator> <logical element> |

. <reference expression> is <record class identifier> |
<simple Ts expression> <relational operator>

| <simple Ts expressiorn>
<relational operator> s:= < |< =|> = | >

| <equality operator> i= = | —_ =

| 6.4.2. Semantics
A logical expression 1s a rule for computing a logical value.

| y

! 6.4.2.1. The relational operators have their conventional meanings,

and yield the logical value true if the relation is satisfied for the
t

L values of the two operands; ddléeerwil se. Two references are

(equal 1f and only if they are both null or both refer to the same

L record. Two strings are equal 1f and only 1f they have the same

i length and the same ordered sequence of characters.
6.4.2.2. The operators = (not), and, and or, operating on logical

L values, are defined by the following equivalences:

| - X if X then false else true
X and Y if X then Y else false

| XorY 1f X then true else Y
6.4.3. Examples

I > or 0
(X < Y) and (Y <2)

| YOUNGESTOFFSPRING (JacK) = = null
FATHER (JILL) is PERSON

i 6.5. Bit Expressions
| 6.5.1. Syntax

| <simple bit expression>- ::= <bit tern> | <simple bit expression>

| or <bit term>
<bit term> ::= <bit factor> | <bit term> and <bit factor3

| <bit factor> ::= <bit secondary> | 1 <bit secondary3
<bit secondary3 ::= <bit primary", | <bit secondary=> shl

| <integer primary> | <bit secondary> shr
<integer primary2

| <bit primary> :!:= <bit sequence | <bit variable> | <bitfunction designator> | (<bit expression>)

| o

-

0.5.2. Semantics
-

A bit expression 1s a rule for computing a bit sequence.

C The operators and, or, and = produce a result of type bits, every

. bit being dependent on the corresponding bits in the operand(s) as
follows:

i X Y = X Xand Y XorY
0 0 1 0 0

. 0 1 1 0 1
1 0 0 0 1

L 1 1 0 1 1

i The operators shl and shr denote the shifting operation to the
left and to the right respectively by the number of bit positions in-

| dicated by the absolute value of the integer primary. Vacated bit

| positions to the right or left respectively are assigned the bit value
0.

i 6.5.3. Examples
G and H or #38

| Gand = (H or G) shr 8

| 6.6. String Expressions
6.6.1. Syntax

-- <simple string expressiom> : .- <string primary>

| <string primary> ::= <string> | <string variable | <string
function designator> <string variable>

(<integer expression> | <integer number>) |

| (<string expressior>)

31

ee___

a

6.6.2. Semantics

A string expression 1s a rule for computing a string (sequence

of characters).

- 6.6.2.1. The integer expression preceding the § selects the starting

- character of the sequence from the string variable specified. The

value of the expression indicates the position in the string variable.

= The value must be greater than or equal to 0 and less than the declared

| length of the string variable. The first character of the string has

position 0. The integer number following the B indicates the length

. of the selected sequence and 1s the length of the string expression. The

| sum of the integer expression and the integer number must be less than

L or equal. to the declared length of the string variable.
|

- 6.6.3. Example

i string (10) S;
s (LB 3)

| Ss (I+J Pi)

i string (10) array T (l::m,2::n);
(4,6) (305)

| 6.7. Reference Expressions

I 6.7.1. Syntax
<gimple reference expressions> ::= <null reference> | <reference

| variable> | <reference function
designator> | <record designator> |

| (<reference expression>)

i
32

L

|

Eo

Eo
[-—

<record designator> ::= <record class identifier> <record
—

class identifier> (<expression list>)

<expression list> ::= <J expression> | <expression list>,

— <J expression>

| 0.7.2. Semantics

: A reference expression 1s a rule for computing a reference to a
|
w record. All simple reference expressions 1n a reference expression

| must be of the same record class.
The value of a record designator 1s the reference to a newly

| created record belonging to the designated record class. Tf the
record designator contains an expression list, then the values of the

§ expressions are assigned to the fields of the new record. The entries

i in the expression list are taken in the same order as the fields in
the record class declaration, and the simple types of the fields must

| be assignment, compatible with the simple types of the expressions

| (ct. 7.2.2.).
i 6.7.3. Example

| PERSON ("CAROL", 0, false, JACK, JILL, null, YOUNGESTOFFSPRING
(JACK))

i 0.8. Precedence ofOperators
| The syntax of 6.3.1., 6.4.1., and 6.5.1. implies the following

hierarchy of operator precedences:

| long, short, abs
shl, shr, *¥

i -
*¥, /, div, rem, and

= 33

EE —

<<, << my im, TY, > =, > is

Example

A =B and C 1s equivalent to A = (B and C)

7. STATEMENTS

A statement denotes a unit of action. By the execution of a

- statement is meant the performance of this unit of action which may

consist of smaller units of action such as the evaluation of expres-

— sions or the execution of other statements.

syntax:

<program'> s:= <blocé& .

<statement> ::= <simple statement, | <iterative statement> |

= <if statement> | <ease statement>

<simple statement> ::= <block> | <I assignment statement> |

= <empty> | <procedure statement> |

(<goto statement>

~ 7.1. Blocks

3 7.1.1. Syntax
| <block> ::= <block body> <statement> end

| <block body> : := <block head | <block body> <statement>; |
<block body> <label definition>

i <block head ::= begin | <block head> <declaration>;
<label definitior> :s:= <identifier> :

L 7.1.2. Semantics

| Every block introduces a new level of nomenclature. This is
realized by execution of the block in the following steps:

Bh

|

Step 1. If an identifier, say A, defined in the block head or in

a label definition of the block body 1s already defined at the

place from which the block 1s entered, then every occurrence of

that identifier, A, within the block 1s systematically replaced

by another identifier, say APRIME, which is defined neither

within the block nor at the place from which the block 1s entered.

Step 2. If the declarations of the block contain array bound

~ expressions, then these expressions are evaluated.

Step 3. .Execution of the statements contained in the block body

begins with the execution of the first statement following the

— block head.

After execution of the last statement of the block body (unless

1t 1s a goto statement) a block exit occurs, and the statement follow-

-— ing the entire block is executed.

7.1.3. Example

begin real U;

u ==; X =Y;, Y i= z; z := U
|

end

- 7.2. Assignment Statements

7.2.1. Syntax
-

In the following rules the symbols 7s and T must be replaced by

| words as indicated in Section 1, subject to the restriction that the
type Ts 1s assignment compatible with the type I] as defined in 7.2.2.

|

|

35

rr ————

~ J, assignment statement>::= <J, left part> <7, expression> |
<5 left part> <J, assignment
statement>

— <I left parts ::= <J variable> :=

_ 71.2.2. Semantics

The execution of a simple assignment statement

— <J, assignment statement> ::= <I left part> <I, expression>

| causes the assignment of the value of the expression to the variable.

~ In a multiple assignment statement

{ (<7, assignment statement>:i= <J, left part> <I, assignment
statement>)

3 the assignments are performed from right to left. The simple type of
each left part variable must be assignment compatible with the simple

L type of the expression or assignment variable immediately to the right.

i A simple type Ty 1s said to be assignment compatible with a
simple type 7 if either

| (1) the two types are identical (except possibly for length
specifications), or

i (2) 7, is real or long real, and I is integer, real or long
| real or

3) Io 1s complex or long complex, and I 1s integer, real, long

| real, complex or long complex.
In the case of a reference, the reference to be assigned must

i refer to a record of the class specified by the record class identi-

| fier associated with the reference variable in its declaration.

| y
L

—_

| 7.2.3. Examples
Co

Z := AGE(JACK) := 28

X := VY + abs Z
—

C:=I +X +C

Pe¢e=X=-=Y

(.%5. Procedure Statements

= 7.3.1. Syntax

. <procedure statement9 ::= <procedure identifier> | <procedure
|—_—

identifier9 (<actual parameter list>)

<actual parameter 1list9 ::= <actual parameter> | <actual para-

~ meter list9 , <actual parameter>

<actual parameter> ::= <J expression? | <statement9 | <7 subarray

L designator? | <procedure identifier> |
<J function identifier>

<J subarray designator9 ::= <J array identifier9 | <J array

identifier9 (<subarray designator

list>)

Csubarray designator 1list> ::= <subscript> | * | <subarray

designator list>,<subscript> |
Lo : .

<subarray designator list>,*

|

[7.3.2. Semantics

| The execution of a procedure statement 1s equivalent to a process
L performed in the following steps:

| Step 1. A copy is made of the body of the proper procedure whose
procedure identifier 1s given by the procedure statement, and of

| the actual parameters of the latter.

| Step 2. If the procedure body 1s a block, then a systematic
change of identifiers in its copy 1s performed as specified by

37

4

step 1 of 7.1.2.

Step 3. The copies of the actual parameters are treated in an

- undefined order as follows: If the copy 1s an expression differ-

B ent from a variable,, then it is enclosed by a pair of parentheses,

| or 1f it 1s a statement it is enclosed by the symbols begin and

. end.

step 4. In the copy of the procedure body every occurrence of an

identifier 1dentifying a formal parameter 1s replaced by the copy

of the corresponding actual parameter {cf. 7.3.2.1.). In order

for the process to be defined, these replacements must lead to

ne correct ALGCL W expressions and statements”

Step 5 The copy cf the procedure body, modified as indicated in

steps 2 4, is executed.

T 7.3.2.1. Actuai-formal correspondence, The correspondence between

| the actual parameters and the forma. parameters is established as

follows: The actual parameter list of the procedure statement (or

o of the function designator) must have the same number of entries as

the formal parameter iist of the procedure declaration heading. The

~ correspondence 1s obtained by taking the =ntries of these two lists

in the same order.

7 3.2.2. Formal specifications. If a formal parameter is specified

has by value, then the formal type must be assignment compatible with the

type of the actual parameter. If it is specified as result, then the
{|N—_—

type of the actual varsmeter must be assignment compatible with the

= 38

|

a.

| formal type. In all other cases, the types must be identical. 1f an

| actual parameter is a statement, then the specification of its corre-

sponding formal parameter must be procedure.

7.3.2.3. Subarray designators. A complete array may be passed to a

= procedure by specifying the name of the array 1f the number of sub-

scripts of the actual parameter equals the number of subscripts of

the corresponding formal. parameter. If the actual. array parameter has

“ more subscripts than the corresponding formal parameter, enough sub-

scripts must be specified by integer expressions so that the number of

= ®¥'s appearing in the subarray designator equals the number of sub-

scripts of the corresponding formal parameter. The subscript positions
|

of the formal array designator are matched with the positions with #*'s

“ in the subarray designator in the order they appear.

1.5.3. Examples
-

INCREMENT

COPY (A, B, M, N) |

- INVERFRODUCT (I, N, A(I,*), B(*,J))

-

7 «+. Goto Statements

|
he 7.4.1. Syntax

| <goto statement>i= poto <label identifier> | go to <label
identifier>

li

L 7 4.2. Semantics

| An identifier 1s called a label identifier 1f it stands as a
label,

) 39

1 A goto statement determines that execution of the text be contin-

ued after the label definition of the label identifier. The identifi-

: cation of that label definition 1s accomplished in the following steps:

Step 1. If some label definition within the most recently acti-

vated but not yet terminated block contains the label identifier,

then this 1s the designated label definition. Otherwise,

i Step 2. The execution of that block 1s considered as terminated

; and Step 1 is taken as specified -above.

7.5. If Statements

4 7.5.1. Syntax

1 <1f statement> ::!= <if clause <statement> | <if clause>
<simple statement> else <statement>

1 <if clause> i= 1f <logical expressior> then

1 7.5.2. Semantics

; The execution of 1f statements causes certain statements to be

executed or skipped depending on the values of specified logical ex-

4 pressions. An if statement of the form

i <if clause=> <statement>

1s executed in the following steps:

Step 1. The logical expression in the if clause 1s evaluated.

step 2. If the result of Step 1 1s true, then the statement

following the if clause is executed. Otherwise step 2 causes

no action to be taken at all.

40

An 1f statement of the form

<1f clause> <simple statement> else <statement>

1s executed in the following steps:

Step 1. The logical expression in the if clause 1s evaluated.

Step 2. If the result of step 1 is true, then the simple state-

ment following the 1f clause 1s executed. Otherwise the state-

ment following else 1s executed.

7.5.3. Examples

if X = Y then goto L

1fX<YthenU :=X else if Y <:then U := Y else V i=Z

7.6. Badsatements

7.6.1. Syntax

<case statement> ::= <case clause> begin <statement list> end

<statement 1list> ::= <statement> | <statement list>; <statement>;

<case clause> ::= case <integer expressior> of

7.6.2. Semantics

The execution of a case statement proceeds in the following

steps:

Step 1. The expression of the case clause 1s evaluated.

Step 2. The statement whose ordinal number in the statement list

1s equal to the value obtained in Step 1 1s executed. In order

that the case statement be defined, the current value of the ex-

pression 1n the case clause must be the ordinal number of some

41

1 statement of the statement list.

7.6.3. Examples

: case I of

begin X i= X + Y;

Y t= Y + Z;

| 2 ¢= 72 + X

end

case j of

 begin_E-: (I) := ~E(1);

begin H(I-1) z= H{I-1) + H(I); I := I-1 end;

begin H(1-1) = H(I-1)xH(I); I 3= I-1 end;

begin, H(H(I-1)) = H(l); I := I-2 end

end

; 7.7. Iterative Statements

(.7.1L. Syntax

<iterative statement> ::= <for clause> <statement> | <while
clause> <statement>

| <for clause> ::= for <control identifier> := <initial value

| step <lIncrement> until <iimit> do | for
<identifier> := <initial value> until <limit>

| do | for <identifier> := <for 1list> do

<for 1ist> ::= <integer expression | <for list» , <integer
expression»

<initial value» ::= <integer expression

<increment;> : = <integer expressiord

- <limit> ::= <integer expressior>

<while clause> : := while <logical expression> do

7.7.2. Semantics

The iterative statement serves to express that a statement be

47

(

executed repeatedly depending. on certain conditions specified by a

for clause or a while clause, The statement following the for clause

or the while clause always acts as a block, whether it has the form of

a block or not. The value of the control identifier cannot be changed

by assignment within the controlled statement.

(a) An iterative statement of the form

| for <control identifier>:= El step E2 until E3 do <statement>

1s exactly equivalent to the block

begin <statement-D; <statement-D ... ; <statement-D;

| ... ; <statement-D end

th
in the 1 statement every occurrence of the control i1denti-

fier 1s replaced by the reference denotation of the value of the

expression El+= IX EZ, enclosed in parentheses.

The index N of the last statement 1s determined by

N < (E3-E1) / E2 < N+1. If N < 0, then it is understood that

the :zequence 1s empty. The expressions El, E2, and E3 are evalu-

ated exactly once, namely before execution of <statement-0>.

(b) An iterative statement of the form

for <control 1dentifier> := El untilE3 do <statement>

i 1s exactly equivalent to the 1terative statement

. for <control identifier> := El step 1 until E3 do <statement>

(¢) An iterative statement of the form
-

for <control identifier> := El, E2,... , EN do <statement>

1s exactly equivalent to the block

43

begin <statement-D; <statement-B . . . <statement-* ; . . .

) <statement-N> end

when in the oF statement every occurrence of the control identi-

fier is replaced by the reference denotation of the value of the

g expression EI. |

(d;An iterative statement of the form

while E do <statement>

1s exactly equivalent to

if E then

begin <statement> ;

while E do <statement>

) end

7.7.3. Examples

for 7: 1 step 1 until N-1 do S := S + A(U,V)

while (7 > 0) and (2ITY(J) = = 8)do J := J-1

for Te=X, X+1,X +3, X+7do 2(I)

7.8. Standard Procedures

The standard procedures differ from explicitly declared procedures

in that they may have one or more parameters of mixed simple type.

'n the following descriptions J is to be replaced by any one of

integer bits

real. string

- long real.

complex

long complex

hi

| 7.8.1. Read Statements
Tmplicit declaration heading:

| procedure read(J result X,, I result Xo ovo y T result. Xj;
procedure readon (J result X;» J result Xp ov» J result X J)

: (where n >1)

| Both read and readon designate free field read statements. The
quantities on the data cards must be spearated by one or more blank col-

umns. All 80 card columns can be used and quantities extending to col-

| ann 80 on one card can be continued beginning in column lL of the next

| card. In addition to the numbers of 4.1., numbers of the following

sytactic forms are acceptable quantities on the data cards:

1) <sigr> <7 number>

where J is one of integer, real, long real, complex, long complex.

2) <sign> J, number> <sigr> J, number>

| where To is one of integer, real, long real, and I, 1s one of
| complex,, long complex.

The quantities on the data cards are matched with the variables of

the variable list 1n order of appearance. The simple type of each quan-

tity read must be assignment compatible with the simple type of the

| variable designated. The read statement begins scanning for the data

on the next card. The readon statement begins scanning for the data

where the last read or readon statement finished.

7.8.1.2. Examples

read (X,A[I))

for I := 1 untilN do readon (A(T;

| L5

| —

7.8.2. Write Statements

Implicit declaration heading:

- procedure write (T value X1, T value X2, ..., TJ value X,);

(where n > 1);

= The values of the variables are output 1n the order they appear

| in the variable list in a free field form described below. The first

- field of each WRITE statement begins on a new line. If there is insuffi-

cient space remaining on the 132 character print line for a. new field,

— that line 1s printed and the new field starts at the beginning of a new

print line.

integer: right. justified infield of 14 characters followed by 2
blanks. Field size can be changed by assignment to intfieldsize.

real: same as integer except the field size cannot be changed,

” long real:: right justified in field of 22 characters followed

by 2 blanks.

) complex:: two adjacent real fields always on the same line.

long complex: two long real fields adjacent always on the same

line.

_ logical: TRUE or FALSE right justified in a field of 6 characters

foil-owed by 2 blanks.

- string: placed in a field large enough to contain the string

and may extend to a new line 1f the string 1s larger

than 132 characters.

bits: same as real.

— reference: same as real.

8. STANDARD FUNCTIONS AND PREDECLARED IDENTIFIERS

- 8.1. Standard Transfer Functions

Implicit declaration headings:

= L6

| integer procedure round (real value X};
| - integer procedure truncate (real value X);

integer procedure entier (real value X);

— real procedure realpart (complex value X);

long reali procedure longrealpart (long complex value X);

— real procedure imagpart <complex value X);

long real procedure longimagpart (long complex value X);

_ complex procedure imag (real value X);
comment complex number XI;

long complex procedure longimag (long real value X);

- logical procedure odd (integer value X);

bits procedure bitstring (integer value X);

— comment binary representation of number X;

| integer procedure number (bits value X);

_ comment integer with binary representation X;

integer procedure decode (string (1.) value S);

comment numeric code of the character S;

string (1) procedure code (integer value X);
comment character whose numeric code is X REM 256;

8.2. Standard Functions ofAnalysis

N real procedure sin (real value X);
long real procedure longsin (long real value X);

= real procedure cos (real value X);

-long real procedure longeos (long real value X);
— real procedure arctan (real value X);

comment -n/2 < arctan (X) < =/2;

- long real procedure longarctan (long real value X);
comment -n/2 < longarctan (X) < n/2;

L real procedure ln (real value X);
comment logarithm base e;

long real procedure longln (long real value X);

= comment logarithm base e;

hr

—

poe

| real. procedurs Log (real value 7);

— comment 'Logarithm base 17;

long real procedure longleg (long real value X);

- comment, Logarithm base 28

real procedure exp (real, value X);

long real procedure longexp (long real value X);
wpm)

real procedure sqrt (real value X),

long real procedure longsgrt (long real value X);

complex pgogedure complexsqrt (complex value X);

c omme nt principa. square root;

= icng compiex procedure longcomplexsqrt (long complex value X);

comment principal square root .

8.3. Overflcw and Underflow

8.3.1. Predezlared Variables

logical underflow;

comment initialized to false. Set to Lrue at occurrence

“ of a fioating- pei 3: underflow interrupt;

—— '

comment initialized to false. OSe-t, to true at occurrence

of" a f loat ing-peint or fixed-point overflow or divide-by-

zero 1nterrupt ;

8.3.2. Standard Message Function
—-—

intager procedure msglevel (integer value X);

- comment The vaius of a system integer variable MSG controls

the number of underfiow/overfiow messages printed during

” program execution. MSG ig 1nltialized to zero.

MSG =_0

No messeges are priated

— 48

|
[

Lo.

MSG > 0

Underflow and overflow messages are printed.

After each message 1s printed, MSG 1s decreased by 1.

MSG < 0

Overflow messages are printed. After each message

~- 1s printed, MSG 1s increased by 1.

Each message gives the type of interrupt and a source card number

near which the interrupt occured.

— Examples

OVERFLOW NEAR CARD 0023

UNDERFLOW NEAR CARD 0071

DIV BY ZERO NEAR CARD 0372

= The predeclared integer procedure msglevel 1s used to interro-

gate and to set the value of MSG. The old value of MSG is the value

of the procedure msglevel, and the new value given to MSG is the

_ value of the argument of msglevel.

| 8.4. Output Field Sizes
—

integer intfieldsize;

= comment indicates number of digits including minus sign 1if

any, Initialized to 1k; can be changed by assignment state-
-

men-t;

|

L §.5. Fim ction

| integer procedure time (integer value X);
comment if X = 1, time is returned in 60s of a second.

i If X = 2, time is printed in minutes, seconds and 60thg

| a second and returned in 50°%s of a second.
- 49

*

UNIT RECORR EQUIPMENT

_ COMPUTATION CENTER
CAMPUS FACILITY

STANFORD UNIVERSITY

%

” Reprinted from the Campus Facility USERS MANUAL. December 196%

J 2.2.2 Unit Record Equipment

| Necessary unit record equipment .
Y quip 1s available in Pine Hall, and may

SE be operated by Users to prepare
p y PEEP and correct punched cards and list,

interpret and duplicate punch : : :
: P ed card decks. Brief operating instruc-

Cibns appear below. The personnel in Dispatch will be happy to assist

the User in learhing how to use and operate the machines. A word of

. caution -- in the event of a card jam or machine failure, contact a

Dispatch clerk immediately and do not attempt to clear the failure or

Jam.

'l. 519 Reproducing Punch

Read Punch

| Feed Feed
Operatin

Q Nn d Lo £2 9 : % . f 5 oo - ¥ oeLaA.
Indicators hall, cl enhEE

SAR iCe “ i)2- £3 5 p) 1 nh ~ :Eo id | E : |
4 v hl g Je - Co on e - - Pit : - Te ji 1) Conduitfed41 j Eo a : i

J Jei err ELE “of Bi Can Ble | i — —

Stacker a SELMER RE BORE

1 N as Ea 3 Cote woe pIsnark]

3 SC TE CT rlah ER
BEer So EE {
age 1 co Sil 'Ndicator

i bs Baie50Yak yA5h Lo : LE ; i i . E : ee :Control Posdre 0 od]

Panel — PIELLER

h agg iPap

2-1

To duplicate a deck, place the source cards into the READ FEED with the

top of the cards, face down and toward your right. In the same way,

place a supply of blank cards in the PUNCH FEED. Open the CONTROL

PANEL cover, insert the 80 X 80 DUPLICATE Control Panel and then

reclose the cover. Control panels should be handled with care. Hold.

down the START key for a couple of seconds. The cards will begin feed-

ing and will fall into their respective STACKERS. Always stop the ma-

chine to replenish the blank card or source card supply. When the last

source card has been read, remove the remaining cards from the PUNCH

FEED and hold down the START key a few seconds until all cards are in

the STACKERS.

Cards can be duplicated in columns 1-76 and punched with new sequence

numbers in columns 77-80. On the Col. 1-76 DUPE and 77-80 NEW SEQ Control

Panel select the switch setting desired: count by units or count by 10's.

On a blank card, keypunch the starting number you want in your deck,

into columns 77-80. Put this card in front of your blank card supply

and then load and operate the machine as explained for 80 X 80 dupli-

- cating. WARNING: The 519 Reproducing Punch cannot be used to reproduce

binary cards.

- For comparing, the "Compare" Control Panel is used. The master deck is

put in the left-hand feed, and reproduced deck in the right-hand feed.

_ The machine will stop and the red "ERROR" light will glow, 1f a dis-

crepancy 1s encountered.

2-8

+ 3

[

1
i

[1

: Interpreter

= } ' | "

el aha a :- gy Frint Position
a - Dial

= START STOP Fi corsraue fi 4. WS . yu d . FEN) fete brat

DR a a
OE.

Lo

< Ee

ERRATA ZT og RR STD Sl aS : SIAN REr aoo TetTERRE Aly Nr Ini da 1 (,sini fAEER LN ee———ee he — aSe eT enRT Riad r
=THe SeFe ware ade fT TeGRRly ;Poe neeEERee“a ——WRG BT sdoe d = H 0)
vo. 8koi RP. sandPa oo SEER (RO— p——

Lo 2s EVAN IE SR A SE | le bE LC cEEEay Sk]pot A EY AR EA i, ote 4 20 SCR BE Sf es EEN
Lo SEL SE 1 ER SN SWE BL SU i EGBi SERN RO | a. FS Spin TEaeGa a heEa picEn Ro BE SR rhA Nt ry
oo 2 5 8°) IT moe ae CEi BS Ban ft is Tm SRE Clon age Sle I
od NESS BY EERE TI ASEfe CoRRSE Ci. le LS LA i ata aSoba aa HE

S t ac Kk : ris ISenet gi Kin
BR A TX RBACRITYS. OCTrs2 +e TTUIONYE A 0% Sun1ET

g CT ae i a ow :=gougeSE Iea ABE NODI EAON aii hd REPIE Ch leSnEE E ACER poSoEERE CENmsaaloet Da UlEe EN

- :uaaSatnaEola EE Load. Tr on iiiiopepro ee|i SC (ce,ay ddr Ee Jain at rom Ta Faa Somatid LE SE ead Rorneitl Pa de ES es lit TRE BL TIL g
LEeans {neem———— Coe a TR Je
:LSAEELiieA RE Taeaa BERARThe faCLR ele pe ERSER ees :agef LnonSahel se foe 0Rl EN \Roa ie atLaLa Lf i Her :Fa agre ay SeadLahalien CA fs uelleee ontLO eet Sa ChaER roSendraa eyGnasHElt at iE)
Sa anaie es HE SUS EAP ApaNenad EEREe eR StewEaPRE ahHo SRT ed G3 EoinaREe wtLe oe hESE |Coa Sh eid PR deSeyNCRah Sa a ; .tiki 0afereeEeEa.DR : I
5 ee on ca aaLS .a EHIRAA hSNERLe Bh. |

1

The interpreter reads information |punched into a card and prints it

d at the rate of 100 cards per minute . Up to 60 charact

be printed i oo1n a single pass through the hi

) ugn machine. The remain 2characters on the c ant ! .ard can be tea1 be printedRAN ES EWE 2

‘ | I = on a second pass. prj| .e positioned on the card»v auy SRN. Av any one or' 25 lines. This machine 1
L]

yet equipped to int —Virem- SN SA FAer rats ali 360/607 codeJO eRI LAE.wn rerBC sa.

[

RE

Operating Instructions |

C 0 Be sure the main power switch on the right-hand end of the machine
near the hopper is in the "ON" position, and verify that the proper

| control board 1s in the machine.
0 Joggle the cards into perfect alignment, and place them face down

{

| in the hopper with the 12-edge inward (to the left).

| 0 Set the printing position control (the clear plastic knob with
L numbers on the edge) to the desired print line. Line No. 1 1s

above the 12-line on the top edge of the card; line No. 2 is the

| 12-punch line; line No. 3is between the 11 and 12 punch lines,
etc. The odd-numbered lines (3 through 23) are between the punch

8 lines.
0 Set the "ENTRY" toggle switch at the right-hand end of the controls

to the "UP" position for entry 1 (the first 60 characters), or the
I-

"DOWN" position for entry 2 (the remaining 20 characters), and push

1 the black "START" button.
0 The machine will interpret the punches 1n the cards, which will

| emerge 1n thelr original order in the stacker.
L

0) The machine will stop automatically when the final card has been

1 interpreted, when the stacker is full, if the feed mechanism fails
or 1f the "STOP" button is pushed.

(

L 0 A special control board is provided for interpreting binary cards.

| 2-10

.__]

3. 82 Sorter

|e Sort Brush Feed Hopper

Column-Selector HandleNL = /

fu. prin LoaREETTgrCS ——— Tih |Bisid 5 4cope aELSEs LyWINS 5 2M Bi ii “ai Gega Seaia i ie oy Xd p n 4 2 / - Selection. By : Se —— covet J FO v Switches
i i ; a rg ad Rw yr IF Ir fh Te poo 8
BE SE A A wml I Main-LineTE I UE I BE | I Hla be Hi Switch

~. Co. = Lo wipale | apienieps . SRE ¥Co pnyRII corer pion momySRSE,SS ERa; —- Ait csee|Leas Start and

_ LhEL NEN ge ls Eo I en Cas fiSEyenFare¥SunAad SA gies!rr est EEER Se arABasi Gea lad igTeddiie Fi 3CE en LE a FALSoya SEG SR@& wen PockCee RN i Joint i SE heDl EEas aeSa Ln a 5 cketsCe TERe EdED a. FEER RTECae Comen ad on a:
2 oT EE Saoa ra Ges a hiFngtB EG A SE |L. HE DECC EE iBh RON gl Pe tat 3SETS ee mrad Sn na he aLSR UR Ch HEaa
mo no ET SEE isab i : Ee Heal LaLa i - EECEivr FY2 s 3Sa3 ER a Kips A, &RERUN:+ Lohtsen £1 Lanlagins 3 4

~ * BE bidfoie i of CRE : rynl1aa ie ios Coneea.Se i SaietiewT ge on Sa oie FER Sobaein wk ee Sez path tgi LG fd ap. Ea 5aefa Brel. ARE 1 SEE Cp5 4 E-4
& SRR 0Gee 4 F& Br ie DlaEe nk £ BE |§ CoiEn Ne | 7 EEE
$ TeaBR }of

The sorter arranges punched cards 1n eith |

. er alphabetical| or numerical
sequence, sortin/ g a single column at a time.

1

Operating Instatin nstructions

—

O B the sure e malin power supply switch on the riight-hand sid

- y | and side of
| machine 1s "ON"| [J
[|S_

O After a 2-mi-minute warm-up period, press the "START" k

the machin eeee of d

5 of any cards left by the previ
ous User.

0 Joggle th
| e e cards into perfect alignment and pl |- place them in the1

pper at the right-hand end of th| e machine, then/ put the cardweight on top of the stack Th. e cards must be face d

oe own with—edge t d the th
. owar e roat (left).

4

“

| 2-11
+

0) Set the control switches as follows:

a) The "SORTING SUPPRESSION" toggle switch should be set at "OFF".

b) The "CARD COUNT" toggle switch (black) should be "ON" if a card

count is desired, and the counter manually set to zero.
c) The "COLUMN INDICATOR" (the crank above the selection switches)

1s set to the card column to be sorted. Sorting is done one

column at a time.

- d) The "SELECTION SWITCHES" are set as follows:

C NUMERIC SORTING
All tabs set away

from center ring

—- ALPHABETIC SORTING -

Move red tab to for sorting out zone (0,11 and 12)
_ center ring punches only. Cards without a zone

punch are rejected.

The, cards with 1etters A-I are put

oC into the 12 pocket. The cards with
J through R are put into the 11-

pocket, and those with S through Z

go into the zero pocket. Cards with

= numerals and blank go to pocket R.

Move red tab away from Sort the cards with the letters

_ center ring A-I, J-R, and S-Z separately.

0) Press the "START" button until the machine starts feeding cards from

o the bottom of the stack. Each card passes under the brush head,

which determines which of the 13 stacker pockets will accept it,

There 1s a pocket for each punch position in the card, and a reject

pocket for cards without a valid punch 1n the column being sorted.

L 0) The machine will stop when a pocket is full, when the hopper 1s empty,

when the cover over the brush is raised, or when the "STOP" button

1s pressed.
-

L

—

2-12

1

i . eypunc

Id .

$ BT . wn Cele ty ah FEE .

RI asl pa Nag LE ll TO waoo|’ Fra de iy %) a rbd Ek gmaae HE
TREAT pn TE SESS % A . &ann CEE EYBEEme dy a faa |' REE Tn. ET A - SE » Ba GESn BRECE Re nid.. : Gn

TEneeiei. AL TL Een omnes od a= EET aSEPluralCE ck URE
The ve iE SE RRR boonEE EE Ee ee i

{ SEA i fotena Th Ga LD a eT Lk -
fh ETE Cee. NR wa
Uy Ehy we NRRL SET Te SE es,

Cn Cae Ae aw EERE. SE

de i RO. 3 v PE . * . oe . - oo a)

CEE CREE . eC. . LnTRE NEE J SeSE

CTE — Rr Lm he a sice EX :

8 MN Ee odieCE . po on g N om ® heel I CETe
EhNa a en it »,wpaay Hy bi 43 ES REREa ii v HT . fe Yn" at, inTSBE ey ce pein A erSHR FE EE © y : EIT EEE oT aR TOR hana SERRE Sma,

J
, i

5 :

I : LE

| | |

jo

\

3 1

| |L]

* r

. f

t

L |
,

YE : E 3 Lo PRES =] van Fiend Fe

tH @ % 1B he be© | 3 / 2 fo REL | PROS:

FdTNR E E: 3 [EE: F: 3 ; 3 4 E E E E: E FE E Foie: foam i i REE

.) a f &= 2 ¥ H dd F Se © EE REETSR REE © Rt m-Ue pp TL ian

’ SmaHa naFiSOaEEv ————' AEE TN 0
| EEAA rR se EN SRS ae a Rr TaEE rve——; ERTIES ReReSEGRE a

ML iLLLi es Te TEE TT RA a Cider RSEseI te LT

C a) acE Lee:

[]

1)
Wh “

’

“ . .

Key ALPHABETIC NUMERIC

I 11-8 Q 12-8-6 +
-— 2 0-6 Ww 0-8-5 _

3 12-5 E 11-8-5)
4 11-9 R 12-8-2 | ¢

5 0-3 T 0-8-2 0-8-2
6 0-8 Y 12-8-7

- 7 12-1 A none none
8 0-2 S 0-8-6 >
9 12-4 . D 8-2 :

10 12-6 . F 11-8-6 ;
. 1 12-7 G 11-8-7 =

12 12-8 H 8-5 :

13 0-9 Zz none none
14 0-7 X 0-8-7 ?
15 12-3 C 8-7 "

16 0-5 \Y 8-6 -
— 17 12-2 B 11-8-2

19 11-5 N 12-8-5 (

20 NT 0 P 10 &
/ 0

2) 0-4 u 1
— 22 12-9 2 2

23 11-6 0} 3 3
24 11-1 J 4 4

25 11-2 K 5 5
27 11-3 L 6 6

= 28 11-4 M 7 7
0-8-3 ' 8 8

29 12-8-3 9 9
33] - } -
40 8-4 @ 8-3 #

~ 41 0-8-4 % 0-8-3 ,
42 11-8-4 * 11-8-3 $
43 12-8-4 < 12-8-3

- Key Graphics and Punched-Hole Codes

| ® Cards can be punched under "manual" control or " program" control.

"Program" controlled punching 1s advisable when preparing a large

| number of cards all with a similar format. "Manual" punching 1s

= simple and 1s recommended when a few or randomly formatted cards

: are to be prepared.

= o Manual Control Punching:

a) Put the supply of cards to be punched into the hopper on the

— upper right-hand side of the machine.

| -b) Turn the three switches "AUTO FEED","AUTO SKIP", "AUTO DUP", and

- "PRINT" to the "ON" position..

c) Press the "FEED" key at the right of the keyboard‘twice. This

| will bring down two cards. The first card 1s ready for punching.

d) If you punch through col. 80 the machine will automatically

eject the card punched, position the next card for punching and §
 N—_—

feed another card.

= 2-14

;

— e) If you want to eject a card before reaching col. 80, manual:,y

press the "REL" key.

_ f) When punching a very few cards, you'can insert cards into the

punch station at the right of the machine. Press "REG" and begin,

. punching,

g) To duplicate a card, put a blank card in the punch station and

the source card in the read station (to the left) and then press

] "REG". Next, hold down the "DUP" key for continous duplicating,

or use the "DUP" key to duplicate column by column. This procedure

1s commonly used to correct punching errors.

0 Program Controlled Punching
 S_

a) Preparing a "program" card. In the program control mode, the

_ program card controls the format of the cards and the characters
(alphabetic or numeric) to be punched.

1) Program control symbols

1 This punch allows punching of alphabetic characters

b A blank column allows punching of numeric characters

= 0 This symbol causes duplicating from the column at
the read station to the column at the punch station

. A 2-punch causes printing of leading zeros and all’
characters

+ A + symbol in each column in the field, except the
— first, defines a field.

—

-

i
{
.

-

2-15

-

i 2) This example of a program card shows all common combinations
: » or codes and their resultant products.

L | g .

RVR =rmsEr a = —\
» 0 0 00 000 00 00CUOOOOUOOOUGUOOOU +hrough $0 - will skip out \

uO 1)
000000000000~000

C | | | | | | | . olfAENbhp 7 7 1 | T T ! ! rLlrSERRE ERY | 1 TIL TI IITTTae222(1(J229 |
ott GC

| | (
(Joo(Jo0000000000000000006000000000000000000000000000000600000000000000000600800005080 29
12345678 8101121311516 171819202122232425262728293023132333435363738 39404) 42 43 44 45 46 47 48 49 50 5) 525) 545556 57 58 58 60 616263 6465656768637071 72737415767778 9 00

! Rt ERR EERE RRR RRR RRR RRR RRR ARERR RR ERR RRR RRR RRREEY
L) | 222222222(J22(J222 |

(| 3333()33333()333
L AA444444440[44444440444444440444444044444440004448880444444444444448444444444444 |

| 55555555555555(/55565

1 | 6666666666666(/6666656665666G666666666686
1017171111111 7001000000000 00 0000009911770 19971001177117117171717117171711711711711111

| | 88888888888888888888880888808888808880688888888888808888888888886888868680608868C688888838 8
: nrREE A RP EEE FE EER EE RE RARAARAREREER EX RELY

IE 0 The keypunch is designed for punching and duplicating only those| | | characters contained on the keyboard. Heavily coded cards (e.g.,
| Co - cards with more than 3 punches per column) cannotbe duplicated

. on the *machines.

i 0) Please remember to consider the other users and clean up the . 1. - machine before leaving it. Dispose of cards in a nearby "CARD

EE | disposal can."

i A !
f 0 See the Dispatchers for assistance with keypunch machines and to

report failures.

i oo 2-16

i

|N

ALGOL W

—_

ERROR MESSAGES

by

|
“

Henry R. Bauer

Sheldon Becker

= Susan L. Graham

(.

(a.

= COMPUTER SCIENCE DEPARTMENT

STANFORD UNIVERSITY

be JANUARY 1968

{

{

-

\
|

Lo

—

ALGOL W ERROR MESSAGES

o I. PASS ONE MESSAGES

| All Pass One messages appear on the first page following the pro-

gram listing. The message format is

CARD NO. (number) -- (message)

= The (number) corresponds to the card number on which the error

was found. The (message) is one of those listed below.
La

INCORRECT SPECIFIN syntactic entity ofa declaration is
| S—_— '

incorrect, e.g. variable string length.
f

INCORRECT CONSTANT syntax error in number or bitstring.

MISSING END an END needed to close block.

- MISSING BEGIN an attempt to close outer block be-

fore end of code.

C MISSING)) is needed.

ILLEGAL CHARACTER a character, not in a string, is

— unrecognizable.

MISSING END . program must conclude with the se-

— quence END .

| STRING LENGTH ERROR string is of 0 length or length
-

greater than 256.
{

BITS LENGTH ERROR bits constant denotes no bits or
—

more than 32 bits.

i MISSING ((1s needed.
| COMPILER TABLE OVERFLOW terminating error = a compile time

. table has exceeded its bounds.

i 1
:
!

L

[

LC TOO MANY ERRORS the maximum number of errors for Pass
. One records has been reached. Com-

Lo pilation continues but messages for

succeeding errors detected by Pass

| One are suppressed

ID LENGTH > 256 more than 256 characters in identifier.

L

3 II. PASS TWO MESSAGES
The format of Pass Two error messages 1S

L
(message), CARD NUMBER IS (number). CURRENT SYMBOL IS (incoming

| symbol) .

| If a $STACK card is included anywhere in the source deck, the
SYNTAX ERROR message 1s followed by

STACK CONTAINS:

[(beginning of file)
<symbol-1>

<symbol-0 (top of stack)

) The symbol names may differ somewhat from the metasymbols of
| the syntax.

If any Pass One or Pass Two errors occur, compilation 1s termi-

| nated at the end of Pass Two.

i INCORRECT SIMPLE TYPE <number> <simple type> of entity is improper
as used. Number indicates explana-

(tion on list of simple type errors.

| 2

w

INCORRECT TYPE a variable, label, procedure, record

= field, record, array, standard func-

tion, standard procedure or control

— identifier 1s used improperly.

MISMATCHED PARAMETER formal parameter does not correspond

— to actual parameter.

MULTIPLY-DEFINED SYMBOL <iden-

- tifier> symbol defined more than once

in a block.

— UNDEFINED SYMBOL <identifier> symbol 1s not declared or defined.

[INCORRECT NUMBER OF ACTUAL

_ PARAMETERS the number of actual parameters to

a procedure does not equal the number

of formal parameters declared for

the procedure.

INCORRECT DIMENSION the array has appeared previously

with a different number of dimensions.

_ DATA AREA EXCEEDED too many declarations in the block.

INCORRECT NUMBER OF FIELDS the number of fields specified in a

PL record designator does not equal the

number of fields the declaration of

the record indicates.

INCOMPATIBLE STRING LENGTH length of assigned string 1s greater

- than length of string assigned to.

: INCOMPATIBLE REFERENCES record class bindings are inconsistent.

— BLOCKS NESTED TOO DEEP blocks are nested more than 8 levels.

i REFERENCE MUST REFER TO RECORDCLASS reference must be bound to a record

class.

i

- EXPRESSION MISSING IN PROCEDURE

BODY body of typed procedure must end with

| an expression.
5

-

|,

RESULT PARAMETER MUST BE <T VAR> the actual parameter corresponding

— to a result formal parameter must

be a <7 VARIABLE>.

| = PROCEDURE BODY LACKS SIMPLE TYPE proper procedure ends with an ex-

| pression.

| <SYMBOL-1> UNRELATED TO <SYMBOL-a the symbol at the top of the stack

(<SYMBOL-1,) should not be followed

_— by the incoming symbol (<SYMBOL-a).

SYNTAXERROR construction violates the rules of

— the grammar. The input string 1s

skipped until the next END, "3",

_ BEGIN, or the end of the program.
| More than one error message may be

8 generated for a single syntax error.

— Simple Type Errors

25. Upper and lower bounds must be integer.

= 29. Upper and lower bounds must be integer.

32 Simple type of procedure and simple type of expression in pro-

— cedure body do not agree.

fl. Substring index must be integer.

o 73. Variable before '(' must be string, procedure identifier, or array
identifier.

Th. Substring length must be integer

76. Field index must be reference or record class identifier.

((. Array subscript must be integer.

= 81. Array subscript must be integer.

84. Actual parameters and formal parameters do not agree.

L 88. Actual parameters and formal parameters do not agree.
95. Expressions in if expression do not agree.

Oh| Expressions in case expression do not agree.

9% . Expression in if clause must be logical.

= 4

|
—

-

g

98. Expressions in case expression do not agree.

— 99. Expression in case clause must be logical.

: 101. Arguments of= or= = do not agree.

| 102. Arguments of relational operators must be integer, real, or

. 103. Argument before is must be reference.
106. Argument of unary + must be arithmetic.

§ 107. Argument of unary - must be arithmetic.
108. Arguments of + must be arithmetic.

i 109. Arguments of - must be arithmetic.
110. Arguments of or must be both logical or both bits.
112. Record field must be assignment compatible with declaration.

i 117. Arguments of * must be arithmetic.
118. Arguments of / must be arithmetic.

| 119. Arguments of div must be integer.
120. Arguments of rem must be integer.

i 121. Arguments of and must be both logical or both bits.
123. Argument of — must be logical or bits.

| 125. Exponent or shift quantity must be integer; expression to be
shifted must be bits.

126. Shift quantity must be integer; expression to be shifted must be

130. Actual parameter of standard function has incorrect simple type.

[134. Argument of long must be integer, real, or complex.
125. Argument of short must be long real or long complex,

| 136. Argument of abs must be arithmetic.
148. Record field must be assignment compatible with declaration.

| 181. Expression cannot be assigned to variable.
182. Result of assignment cannot be assigned to variable.

| 188. -Limit expression in for clause must be integer.
190. Expression in for list must be integer.

191. Assignment to for variable must be integer.

| 193. Expression in for list must be integer.
.... Step element must be integer.

[.... Expression in while clause must be logical.
>

i

LC III. PASS THREE ERROR MESSAGES

The form of Pass Three error messages 1S

*¥XX¥X (message)
*¥%%%¥ NEAR CARD (number)

The number indicates the number of the card near which the error

w occurred. The message may be

PROGRAM SEGMENT OVERFLOW the amount of code generated for a

= procedure exceeds 4096 bytes.

COMPILER STACK OVERFLOW constructs nested too deeply.
i
|—-—

CONSTANT POINTER TABLE TOO LARGE too many literals appear in a pro-

| cedure.
|_

BLOCKS NESTED TOO DEEP parameters 1n procedure call are nested

too deeply; procedure calls in block

nested too deeply.

Lo DATA SEGMENT OVERFLOW too many variables declared in the
block.

—

Iv. RUN TIME ERROR MESSAGES

L
The form of run error messages 1S

|
he (segment number) (message) RUN ERROR NEAR CARD (number)

| SUBSTRING INDEXING substring selected not within named
o—

string.

i CASE SELECTION INDEXING index of case statement or case ex-
pression 1s less than 1 or greater

| than number of cases.
ARRAY SUBSCRIPTING array subscript not within declared

[bounds.
6

Eo

—

LOWER BOUND> UPPER BOUND lower bound 1s greater than upper

= bound in array declaration.

ARRAY TOO LARGE array must have fewer elements:

ASSIGNMENT TO NAME PARAMETER assignment to a formal name parameter

whose corresponding actual parameter

1s an expression, a literal, control

identifier, or procedure name.
-

DATA AREA OVERFLOW storage available for program execu-

tion has been exceeded.

— -—
ACTUAL-FORMAL PARAMETER MISMATCH

INFORMAL PROCEDURE CALL the number of actual parameters in

be a formal procedure call is different

‘ from the number of formal parameters

i in the called procedure,: or the
parameters are not assignment com-

i patible.
RECORD STORAGE AREA OVERFLOW no more storage exists for records.

L LENGTH OF STRING INPUT string read 1s not assignment com-
patible with corresponding declared

L string.

| LOGICAL INPUT quantity corresponding to logicalquantity 1s not true or false.

i NUMERICAL INPUT numerical input not assignment com-patible with specified quantity.

| REFERENCE INPUT reference quantities cannot be read.
READER EOF a system control card has been en-

L countered during a read request.
REFERENCE the null reference has been used to

| address a record, or a reference
bound to two or more record classes

. was used to address a record class
to which 1t was not currently pointing.

| f

