CS 119

o

- .

HMPL'

MATHEMATI CAL PROGRAMMING LANGUAGE

BY
RUDOLFBAYER M CHAELB. M'GRATH
JAMES H BIGELOW PAULD. PINSKY
GEORGEB. DANTZIG STEPHENK. ~ SCHUCK
DAVID J. GRIES CHRI STOPHW TZGALL

TECHNI CALREPORT NO. CS119
MY 15, 1968

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

|
}
|-

— r— r—

r——

r— r—— r—

MPL

MATHEMATICAL PROGRAMMING LANGUAGE

- by
Rudolf Bayer Michael B. McGrath
James H. Bigelow Paul D. Pinsky
George B. Dantzig . Stephen K. Schuck
David J. Gries Christoph Witzgall

Computer Science Department
Stanford University

Stanford, California

Research partially supported by National Science Foundation Grant GK-6431;
Office of Naval Research Contract ONR-N-00014-67-A-0112-0011 and Contract
ONR-N-00014-67-A-0112-0016; U.S. Atomic Energy Commission Contract

- AT[04-3] 326 pPA #18; National Institutes of Health Grant GM 14789-01 Al;

and U.S. Army Research Office Contract DAHC04-67-C0028.

L

r—

Sl S e e el S ann G

r

MPL

MATHEMATICAL PROGRAMMING LANGUAGE

PART I

A SHORT INTRODUCTION

Rudolf Bayer Michael B. McGrath

James H. Bigelow Paul D. Pinsky

'George B. Dantzig Stephen K. Schuck

David J. Gries Christoph Witzgall

The purpose of MPL is to provide a language for writing mathematical
programming algorithms that will be easier to write, to read, and to modify than

those written in currently available computer languages. It is believed that the
writing, testing,and modification of codes for solving large-scale linear programs
will be a less formidable undertaking once MPL becomes available. Tt is hoped that
by the Fall of 1968, work on a compiler for MPL will be well underway.

The language proposed,is standard mathematical notation. This, at

least, has been the goal. Whether or not there is such a thing as a standard
notation and whether or not MPL has attained it, 5 yp to the reader to decide.

The Manual to MPL comes in three parts

PART I:- A SHORT INTRODUCTION
PART II: GENERAL DESCRIPTION
PART III: FORMAL DEFINITION

L
'

, “.,..
ro-“.

—

— r r—

— —

r—

1/a

FUORWARD

Mathematical programming codes for solving linear programming problems
in industry and government are very complex. Although the simplex algorithm (which
is at the heart) might be stated in less than twenty instructions nevertheless error
checks, re-inversion, product-form'inverses for compactness, compacting of data,

special restart procedures, sensitivity analysis and parametric variation are

necessary for practical implementation. Tyenty thousand instructions are not
uncommon. The cost to program such a system is several hundreds of thousands of
.dollars.

Recently, there has been much interest in extending mathematical
programming codes. into the large-scale, nonlinear, and integer programming areas.
The large-scale mathematical programming applications are among the largest
mathematical systems ever considered for practical solution by man. For example,
a system of close to a million variables and thirty five thousand variables has

already been solved using the decomposition principle.

If large-scale dynamic linear programs could be successfully solved
it would have enormous potential for industrial, pational,and international

long-range planning.

For this reason, there is considerable interest in solving large-scale
dynamic systems. Many papers have been written on this subject and the number of
theoretical proposals now number in the hundreds. vyery little in the way of
empirical tests have been made. (Occasionally, a "soft-ware" company has dared to
go from a theoretical proposal to a commercial program with inclusive results. It
is like going from a drawing board to a battleship when all that has been built

before has been a rwboat.

The need then is to be able to write elaborate codes for solving
mathematical programming systems; to test them out on sample problems; and to
compare them with competitive and modified codes. present day computer languages
like FORTRAN, ALGOL, PL/l1 are not in the same world as machine language of 0 1 bits.
Nevertheless, it is a formidable undertaking to read codes in these languages,

particularly when they involve some twenty thousand instructions. The finding of

\
L

S e sl e e

r—

—

1/b

errors (debugging) is time consuming. It is often difficult for the author of a
program to decipher his own hierogliphics assuming he is available for consultation.
This difficulty becomes ever more acute when extended to proposals for solving
large-scale systems. It is one of the chief stumbling blocks to progress in getting

practical large-scale system codes.

For this reason, the chief effort of MPL has been directed towards
readability. The objective is not to invent a powerful new language but to have

a highly readable language, hence one easy to read, correct, and modify.

The Iverson Language is an example of a powerful language. With a
small amount of effort it could have been set up in standard mathematical notation
and made readable (to a non-expert) as well. It is probably possible to implement

MPL by using Iverson Language as a translator. This is not our plan.

It is possible to view MPL as nothing more than a beefed-up ALGOL or
FORTRAN. The new programming language PL/1 is very powerful and could also be used
to realize MPL. This is being considered. Moreover, recently there have become
available excellent compilers for compilers that make easier the job of
developing a compiler that would directly translate MPL into machine language.

We are seriously considering this as our approach for implementing MPL.

— o o7

-

1/1

COMPARATIVE MATH VS MPL NOTATION

The short introduction (Part I) that follows is not a formal description
of the language. This is done in Part III; nor is it a general manual as Part II;
rather our purpose is to motivate the need for MPL and to provide a short comparision
with standard mathematical notation. MPL notation assumes that a standard key-punch
or its equivalent is all that is generally available at present for program preparation.

This limits the alphabet to Capital Roman and replaces A

— r—

~——

e

o e

r
]

equivalent A(I,J).

MATH MPL
SUBSCRIPTS: Ry A(1,J)
SUPERSCRIPT: Ali’j A(K)(I,J)
MATRICES: A A
Matrix Addition A+B A+B
Matrix Product AB or A-B A*B
Transpose A' _9___AT TRANSPOSE (A)
Inverse At INVERSE (R)
A=Matrix, K=Scalar, L=Scalar A/K A/K
AK AxK
KA K%xA
KL K*L
Composing a matrix M from M= Pﬁ M := (A,B)#
submatrices A, B, C, D C (c,D) ;
or M := (A,B)#(C,D) ;
M=(A,B,C) M := (A,B,C);
Column of a matrix A A. . A(%x,J)
Row of a matrix Ai,. A(I,x)
Determinant |A| DETERMINANT (A)

Array of Consecutive Integers

(k, ktl,...,0)

., by its functional
i,5

(X,...,L)

L

—

r—

-

r—

r r

e

'r‘.h&

1/2
MATH MPL
OPERATORS :
Matrices or Scalars:
Addition, Subtraction, +,.-, +, -, *
Multiplication
Division by Scalar A/K A/K
2
Exponent A A%x2
-1
A INVERSE (A)
Sign 2, 4+2,-2 2 +2,-2
Substitution Operator (=) New value of A := B+C; (meaning:
A=value of B+C change the
value of A
h on LHS to
equal the
value of
B+C on RHS.)
Logical Operators AND, OR, NOT AND, OR, NOT
MATH: If A>B, C>D, and not D =0
MPL: | FA>B AND C >= D AND NOT D = (0 THEN
MATH: If A>B o r C > D,
MPL: IF A > B OR C > D THEN
- Relational Operators =, <, >, 2, <, =, <, >, >=, <=,
#, =,
Set Operators AU B, A+B A OR B
AN B, A-B A ANDB
AN (not B), A AND NOT B
or ANB
MAPPINGS, PROCEDURES, SUBROUTINES:
B, X, Y...Matrices, Sets, Scadars Y = F(X) Y 1= F(X);
Y = SIN(X) Y = SIN(X);
Y = ZBX2 Y 1= 2%Bx(X%x%x2);
Y =51 Y := INVERSE (B);

—

—

SYMBOL REPLACEMENT:

SETS:

SET

Index Set or Domain of a vector A

Index Set of a matrix A

Defining of Set where P(I) a
Boolean Expression or
property is true

Empty Set

FUNCTIONS:

Suppose S = (Sl,...,S) is a
l-dimensional “array of
integers and we wish to pick
out column vectors A ,A 5--A
s s s
1 2 m
to form a matrix B.

1/3

MATH

Let W = f(x,y)

(any set of elements)
s = {1,3,-2,5}

s = {1,.. . ,n}

I ¢S

I e AUBUC

I e ANBAC

I ACB

D = (AUB)NC.
Domain of A

Row Domain of A

{1eR:P(I) = true)

{IeR:P(1)} or
{ieR|P(1)}
{ieR|Ai> 0}
{1|Ai > 0}

@, Null, Empty

B= (A ,A ,...,A)
Sl SZ Sm

MPL

LET W := F(X,Y);
(meaning do not compute
W but replace it by
F(X,Y) wherever W
appears later on.)
(Index sets only)

s := SET(1,3,-2,5);

S = (1,00.,N);
I IN S

I IN A OR B OR C
I IN A AND B OR C
I IN A AND NOT B

D :=(A Ok B) AND C;

DOM (A)

ROW_DOM(A)

(I IN R|P(I) = TRUE)

(I IN R|P(T))

(I IN R|AI) > 0)

(I IN DOM(A)[A(I) > 0)

NULL
B := A(S);
B := (A(J) FOR J IN S);

B := (A(S(I)) FOR I 1IN
(1,...,M))3

However,

B := (A(S(I)),...,
A(S(M))) is not
correct because
(P,...,Q) means

(P,P+1,P+2,...,Q)in MPL

]
L
L

— r -

—

—

SYMBOLS:

CAPS

Lower Case

Greek

Integers

Multi-Character Symbol:
as function name:
as variable name:

Brackets

PIVOT(M,R,S)
SIN(X)
(not used)

{} (]

MPL

A, B, —
(not available yet)

(not available yet)

0, 1,0‘0’99, -0

PIVOT(M,R,S)
SIN(X)
B2, BASIS, X-S

(not available yet)

L

— = — o

. — — r— —

1/5

SYNTAX

In general, a procedure has the form:
PROCEDURE F(X,Y,Z)

Statement;

Statement;
FINI;
Certain reserve words like FOR and IN can be interspersed in place of commas in

F(X,Y,2) as in the example given below.

Example Giyen an array of integers R, we wish to write an algorithm, called SUM,

that yields S =] F(j)
jeR

PROCEDURE SUM(F)
"SET UP A STORAGE REGISTER S TO ACCUMULATE

THE SUM OF TERMS. INITIALLY,"

(1): S = 0; "LET S' BE THE UPDATED VALUE OF S. WE WANT
TO STORE S' IN THE SAME PLACE AS S AND
. THEREAFTER CALL IT S."

(2): SAME LOCATION(S,S');

(3): §' := S + F(l) FOR I IN DON(F); "ITERATIVELY ADDS F (1) TO S."

(4): SUM := s; '"SETS THE VALUE OF THE FUNCTION EQUAL TO S"

(5): RETURN; " 'RETURN' MEANS: RETURN TO MAIN ROUTINE."
FINI; " 'FINI' MEANS : END OF WRITE-UP."

Onee the Z symbol, or rather SUM, 1s in the procedure library we can use
n
it to write a statement like P = z 12 in MPL.
-1

P := SUM(I%x2 FOR I 1IN T) WHERE T := (1,¢..,N);

'1
L

— — 0

el ennlN cunlN e s G e G

P —

1/6

The reference numbers like (1), (2),..., on the left are called labels. They

are not necessary in the above example and may be omitted. Labels can be a string

of characters or numbers like (1), (2). If the latter, they need not be consecutive.

Labels are used to locate a statement-'when a program branches.

A statement like the one with label (3) is called a substitution statement because
s' = S+ F(l); means: Substitute for the current value of S' on the left a new value

equal to the current value of S + F(1) on the right.

In general, A := B; means updated A = Current B.' A statement S := S + F(1);
looks like nonsense but means: Updated S = Current (S + F(l)). Hence a programmer
not interested In readability would probably boil down the procedure SUM to two

lines.

PROCEDURE SUM (F)

SUM := 0; SUM := SUM + F(J) FOR J IN DOM(F); RETURN; FINI;

|

RN

1/7

There are several different types of statements that one can draw upon to

write a procedure:
Procedure Name If Define
- Substitution For Release
L Let Same Location Fini
f Return Go to
- and some words like "then“, '"otherwise'", "endif", "do", endfor" that indicate
different parts of a compound "if" or "for" statement.
-
Procedure Name Statement: PROCEDURE F (X) PROCEDURE F("IN" X, "OUT" Y)
N E where X, Y represents a list of one or more
& symbols.
Examples: PROCEDURE SIN (X)
- PROCEDURE PIVOT(A,R,S)
PROCEDURE SIMPLEX (A,B,C,BV)
— PROCEDURE ARGMIN(F(I) ror 1 1n T)
g "where ARGMIN finds the first index or argument
where the minumum occurs."
-
Substitution Statement: A := Arithmetic Expression;
L
Examples: § t= 03 M := ARGMIN(H(J) ror J 1N R);
L A := PIVOT(A,R,S); G := INVERSE(MATRIY + H;

S := ARGMIN(C(J) FOR J IN T). WHERE T := (1,...,N);

t Let Statement: LET A := Arithmetic Expression;

|

| Examples: . LET A := B;

L LET T := (I IN DOM(B)|A(I,S) > 0);

LET R := ARGMIN(B(I)/A(I,S) FOR I IN T);

L

= ——

— r— r— r—

—

- — r— r— r— r—

r—

-

1/8

If LET is used to simplify only one statement,

a WHERE can be used instead using inverse order.

G &+ = INVERSE(B) WHERE B := TRANSPOSE (A);

Return Statement: RETURN;

If this statement is reached during execution of the subroutine,

the next step is to return to the main routine.

If Statement: IF P THEN statement ;...; statement;
~ OTHERWISE statement ;...; statement;
ENDIF;
Example: IF R = NULL THEN GO TO (21); OTHERWISE

A := PIVOT(A,R,S); ENDIF;

All statements up to "OTHERWISE" are executed if proposition p is true and

then sequence control skips to the statement following ENDIF. However, as in the
above example, there is a GO TO statement preceding the OTHERWISE then control
skips to wherever GO TO directs. If p is not true, control skips to statements
following "OTHERWISE". For the case of several parallel conditional statements

OR IFstatements are available = see Part II and III. (OTHERWISE can be omitted if

immediately followed by ENDIF,

For Statement: FOR I IN T DO statement ;...; statement; ENDPBR;

Example: FOR I 1N (1,...,M) DO

S'

S + F(1);
T' = S' + G(1);

ENDFOR;

et

1/9

Same Location Statement: SAME LOCATION (A, B);

A and B will be assigned the same set of storage locations in the computer.

An alternative way to accomplish the same thing would be to write: LET A = B g5y
psychological reasons, it seems best to separate the concept: "A is another symbol

for B" from the concept "same storage location".

Go to Statement:

GO TO & (where & is a label). This means that control is to skip to the

statement that has § as a label.

-

Define Statement:

Example: DEFINE B DIAGONAL M BY M;

Used to define the size of storage array needed for a symbol whose value will be

computed piecemeal later on.

Release Statement:

To release a symbol and its storage assignment a release statement takes the

form:
RELEASE A,B;

Its purpose is to conserve storage and permit re-use of the same symbol for some

other purpose. A special type of automatic release is available that allows release

of all symbols in a block of code.

Release occurs automatically when g procedure returns to a main routine; all
symbols defined in the procedure and their storage are released except the output

symbols, which are treated as part of the symbols of the main routine,

Symbols used as dummies as G in the statement: Z := A+G WHERE G := INVERSE (M);

r— r— r—

e

1/10

are treated as local to the statement and are immedigtely released. The same applies
to the running index in a compound For statement and to a dummy parameter in a Let

statement as I in : LET G(I):= B(I)/A(I,J); .

1/11

EXAMPLE : SIMPLEX ALGORITHM

- PROCEDURE SIMPLEX ("IN'! A,B,C,BV, "OUT" BV', B', Z', CASE);
"WARNING: ALL INPUTS ARE MODIFIED IN THE COURSE OF CALCULATIONS."
"THE PROBLEM IS TO FIND MIN Z, X > O SUCK THAT:
~ AX-B, CX=2.
L IT IS ASSUMED THAT:
L A IS IN CANONICAL FORM WITH RESPECT TO
BV THE INITIAL SET OF BASIC VARIABLES.
— B>0 ARE THE X VALUES OF BV, I.E. X(BV) = B.
THIS INITIAL BASIC SOLUTION IS REQUIRED TO BE FEASIBLE,
I.e. B 2 0.
BV' IS THE OPTIMAL SET OF BASIC VARIABLES.
B' ARE THE X VALUES OF BV', I.E. X(BV') =B"'.
- z' = MIN Z
CASE = FINITE OR UNBOUNDED.
—
BV', B', Z' REFER TO LAST BASIC SOLUTION IN THE CASE THAT
'"CASE = UNBOUNDED'."
-
"INITIALIZATION"
- DEFINE CASE CHARACTER;
(1): 2z s70; "PRIMES WILL BE USED FOR UPDATED VALUES OF VARIOUS SYMBOLS.

THESE WILL BE STORED IN THE SAME LOCATION."

—

(2): SAME LOCATION (A, A'), (B, B'), (C, c'), (BvV, BV'), (X,X"),(Z,2");
"ITERATIVE LOOP"

"LET S BE COLUMN COMING INTO BASIS."

1/12

(3): MIN-LI("IN" C, "OUT" S, C.S);

"MIN-1 IS A FUNCTION THAT RETUNS THE INDEX AND THE

'
{

MINIMUM COMPONENT OF A VECTOR, IN THIS CASE VECTIOR = C."

"WE NOW TEST WHETHER X (BV) = B IS OPTIMAL."

—

(4): IF C.S = 0 THEN CASE := '‘FINITE' ; RETURN; OTHERWISE

"LET R BE THE INDEX OF THE BASIC VARIABLE DROPPING."

L (5) + MIN_1("IN" (B(I)/A(I,S) FOR I IN DOM(B))A(I,S) > 0), "OUT" R,Q);

"IF ABOVE SET EMPTY, MIN.-1 RETURNS R = NULL, Q = 0o;
OTHERWISE THE INDEX' R AND THE MINIMUM RATIO, CALLED

Q, IS RETURNED."

—

(6): IF R = NULL THEN CASE := JUNBOUNDED%® ; RETURN; ENDIF;

"UPDATE EVERYTHING BY PIVOTING ON A(R,S), PRIMES WILL

r— [

BE USED FOR UPDATED SYMBOLS. THESE ARE STORED IN SAME

T LOCATION, SEE (2)."
1d

(7): B'(R) = 0Q;
-

(8): A'(R,%x) := A(R,x)/A(R,S);
-

"ROW_DOM(B) IS THE DOMAIN OF INDICES FOR B."

L 9) FOR I IN ROWDOM(B) [T = =R DO

(10): B'(I) = B(1) - A(L,S) * Q;
—

(11): A" (I,%) := A(I,x) - A(I,S) % A'(R,x); ENDFOR;
o
, (12): C' := C = C(S) * A" (R,%); -

(13): z' = Z + C(S) % Q ;

r— r— r— r—

- —

—

-

(14): BV'(R) = S;

(15): GO TO (3); FINI;

1/13

"THE REMAINING COMPONENTS OF BV ARE UNCHANGED AND

SINCE BV AND BV'

UPDATING IS COMPLETE,

ARE STORED IN THE SAME LOCATION.

RECYCLE."

!
-

—

—

r— r— r— — r— r— — .1

Rudolf Bayer
James H. Bigelow
George B. Dantzig

David J. Gries

MPL

MATHEMATICAL PROGRAMMING LANGUAGE

PART II

GENERAL DESCRIPTION

March - 1968

Prepared by Paul D. Pinsky

The Manual to MPL comes in three parts

PART I: A SHORT INTRODUCTION
PART II: GENERAL DESCRIPTION

PART lll: FORMAL DEFINITION

Michael B. McGrath
Stephen K. Schuck

Christoph Witzgall

i

— o c

SRS
\

— r— r— r— r— /0 r— — 1

[

-

2/a

STRAC

The objective is to develop a _readable language for writing experimental codes
to solve large-scale mathematical programming systems. Readability is defined as
standard mathematical notation with minor adjustments reflecting current limitations
of input-output equipment. Thus symbols are restricted to those found on a standard
keypunch; subscripts (or superscripts) like Ai,j appear as A(I,J). Starting in
the Spring of 1967, several test algorithms written in the proposed language gave

evidence that readability was an achievable objective.

A task group in the latter part of 1967 began to define the proposed language in
BACKUS Normal Form with the intent of using a special compiler's compiler to

implement the language.

2/b

TABLE OF CONTENTS

i

-
. PAGE
{
“
1.0 INTRODUCTION " " " " 2/1
i
I
S
\ 2.0 MPL LANGUAGE ELEMENTS " " . " " 2/3
- 2.1 VARIABLES SO - 2/3
;i 2.2 CONSTANTS " " “ v 2/5
—
2.3 OPERATORS . " “ “ 2/7
{ :
{ 2.4 RESERVED WORDS " " o “ 2/9
| —
2.5 COMMENT STATEMENTS S . “ & 2/9
%
e -~
L— 3.0 EXPRESSIONS " " o - 2/11
3.1 LOGICAL EXPRESSIONS " " “ “ " 2/11
! 3.2 ARITHMETIC EXPRESSIONS " " " o 2/12
—
3.2.1 COMPUTATIONAL EXPRESSIONS " “ “ 2/12
" 3.2.2 FUNCTION REFERENCES " " “ “ 2/13
3.2.3 ARRAY BUILDERS " " o o 2/13
4.0 STATEMENTS " " o " 2/16
4.1 LABELED STATEMENTS " " o o 2/16
- 4.2 -UNLABELED STATEMENTS " " “ o 2/16
4.2.1 ASSIGNMENT STATEMENT . . - * o 2/16
- 4.2.2 PROCEDURE CALL STATEMENT " - o o " 2/17
¢ 4.2.3 KEYWORD STATEMENTS " " o o 2/17
-
4,2.3.1 GO TO STATEMENT " o o 2/17
{
. 4.2.3.2 CONDITIONAL STATEMENTS " o 2/17
4,2.3.3 ITERATED STATEMENT - * “ " 2/18
4.2.3.4 LET STATEMENT a o o " 2/19

4.2.3.5 DEFINE STATEMENT ' 2/20

2/c

— 5.0 STATEMENT BLOCKS S L S 2/23

i 5.1 PROCEDURE BLOCKS S 2/23

- 5.2 STORAGE ALLOCATION BLOCKS .* N N N 2/25

‘L 5. 3 ITERATION BLOCKS ST ¥ ¥ ¥ 2/26
5.4 CONDITIONED BLOCKS X X y K X 2/26

-

. 6.0 EXAMPLES OF MPL PROCEDURES - - - . 2/28

e

-

E

. -

S

L

— —

—

~— - r r— — r—

2/1

1.0 INTRODUCTION

This paper describes recent work on a computer programming language for
the implementation of mathematical programming algorithms on a digital computer

the objectives of the language are:

a) to facilitate programming an algorithm from
theoretical form to computer code in as short
a time as possible, and

b) to enable other mathematical programmers to

understand and modify an existing code with

a minimum of effort. The present efforts are
being directed toward the coding of experimental
mathematical programming algorithms rather than
commercial techniques. By and large, the first
report (Mathematical Programming Language, June
1967) represented the thinking of persons with
mathematical programming backgrounds. Since
then, several computer scientists contributing
to the project have brought the language much
closer to implementation.

The purpose of this report is to explain the use and the reasons for the
concepts being developed in MPL. This part of the Manual attempts to explain the
reasons for using the specific concepts of MPL while the third part developed
unéer the guidance of David Gries gives a formal definition of the language in a
modified form of BACKUS Normal Form. Part III is primarily the work of Stephen
Schuck, who, since joining the project last summer, has been a driving force behind
the implementation of MPL. His work in turn uses several concepts develpped by
Rudolf Bayer and Christoph Witzgall of the Boeing Scientific Research Laboratories.
At present, the BACKUS Normal Form is used to describe the legal programs, not the

phrase structure of the language.

David Gries of Stanford University is currently developing a technique of

writing compilers, called the Kompiler Implementation System (KIS), which, it 1is

planned will be used in the implementation of the Language. Many of the concepts

R,

rr — — (— r—

L

—

r—

— r—

—

2/2

presented herein, are the same as or similar to those found in existing compiler
languages (ALGOL, FORTRAN, COBOL, PL/1l, etc.). One of the difficulties
encountered thus far in writing a formal definition of MPL is that mathematical
notation depends upon the context for its meaning. (Pl""’PM) may mean

(Pl’ P2, P3,...,PM) or it may mean. (P1, P1 + 1, Pl + 2,...,PM). This is defined

in MPL to mean the latter.

There are certain concepts planned for MPL that have not yet been set down in
BACKUé Normal Form. In particular, the representation of index sets has not been
completely formalized; the ability to operate with matrices whose elements are
matrices (useful for example in the decomposition principle) has not yet been fully
developed. Procedure parameters need more work. Input-output statements have not
yet been defined, nor storage commands that would reflect the variable size and

speed of different memory locations.

2/3

2.0 MPL LANGUAGE ELEMENTS

— The set of characters upon which MPL is built is the character set found
on standard key-punches (such as the IBM 029 key-punch). For convenience, we
- shall group these characters into the categories of letters, digits, and special
_ characters. The letters are A through Z, the digits are 0 through 9, and
' the special characters are as follows:
!h-.
O <>, .+ = % [/ 3 A~=" 1 f$ @ % & |
:; and a blank. Elementaﬂof MPL are defined to be one of the following four constructs-
variable, constant, operator, or reserved word. Let us now delve more deeply into
- each of the above elements.

Variables are symbols which represent those data values which may change

L
L 2.1 VARIABLES
L

during the execution of the program. There are several types of variables -arithmetic,
1 logical, set and character.
) 9

For example, if C is a row vector and Q a scalar both previously defined

-

then

D := (C, SIN(Q));
sets up a new row vector D with one more component than C. The function sin(x)

is a reserve word and "sin" cannot be used as symbol for a variable on the left hand

—

side of an equation.

A variable may have zero, one, or two dimensions. A zero-dimensfonal variable

—

is a scalar, a one-dimensional variable a vector, a two-dimensional variable a matrix.

\
f
—

2/4

In the remainder of this report, an array refers to any variable whose dimension

is greater than zero. ©Each matrix has associated with it a structure shape

commonly used in mathematical programming algorithms. These shapes are rectangular,
diagonal, wupper triangular, lower triangular, and sparce (meaning few non-zero
elements). The concept of structure shape is useful in conserving memory space

and execution time. An example of the use of shape matrices is in the storage and
multiplication of two diagonal matrices of size nxn. Storing them as diagonal

in the computer requires only n memory words for each (as opposed to n2 for a
rectangular matrix), and the multiplication of two diagonal matrices requires

only n elementary multiplications as opposed to n3 for rectangular matrices.
Vectors have the shape of row or column; this distinction is required for
multiplying vectors by vectors or matrices. An additional feature of MPL is that
the elements of an array may be arrays. This construct is helpful in coding algorithms

such as the decomposition principle. Another variable allowed is an index set

variable. This consists of an ordered set of integers. Examples of index sets are:

/

(1,...,M)
SET(1, 3, -4, 3, 12)

(I IN (1 .M |A(T,9) > 0)

4

More will be said about how to define and use variables later on.

The symbols which constitute variables have two parts, the variable name and
an optional subscript. The variable name alone completely identifies the variable
under consideration if that variable is a scalar or an entire storage structure
(vector, matrix, etc.). If the variable represents a subset (element, row, column,
etc.) of a larger array, the variable-name part only identifies the larger array,
subscripts being needed to specify the particular subset. vVariable names always

begin with a letter, but the characters which follow it may be any number of letters,

2/5

digits, or underscores. Reserved words (defined in Section 2.4) may not be used

as variable names.

L
L

Examples of variable names are

-

A

r—

OBJECTIVE-1
KEY-SET

BASIS-INVERSE

r~—

However, variable names with blanks like KEY SET are not allowed. Subscripts
are either scalar arithmetic expressions or the symbol * . Scalar arithmetic
expressions (defined fh Section 3.2) are automatically bounded to the nearest

integer value when used as a subscript. The subscript % refers to an entire

r—

dimension of a storage structure. Thus

r——

A(x, J) refers to the Jth column while

h
A(I, %) refers to the I™ row of the matrix A

=

The following examples illustrate the use of subscripts:

r—

j M(B + c, 3)
-
B_INVERSE(1l, %)
i
.‘L_ X_VALUE(BASIS_LIST(I)).
f 2.2 CONSTANTS
. SONoIANIS
} Constants are of four types—--arithmetic, logical, set and character. The
[

type of a constant determines how the number will be stored in the machine and used

. in calculations.

o

r—

—

r—

2/6

ARITLMETIC CONSTANTS may be either integer or real.

INTEGER ARITHMETIC CONSTANTS are written as a string of digits without

.a .ecimal point, examples 1, 10, 10090.

REAL ARITHMETIC CONSTANTS may or may not have an exponent. Ap exponentless

real number is a sequence of digits containing a decimal point, Examples: 1
: 1.,

1.0, .3925, 102.34. The exponent form of the real constant allows writing the
constant in modified scientific notation. This form consists of an exponentless
real number followed by an E (meaning 10 to the power) followed by an optionally

signed string of digits.

Examples:
2.5E02 (25.x10% = 2500.)
1.0E-02 (1.0¥1072 = .01)
. 8E03 (.8x10° - g00.)
9.1E+05 (9.1x10° = 910000.)
LOGICAL CONSTANTS are TRUE and FALSE.
A SET CONSTANT is NULL.
ChARACTER CONSTANTS are any string of characters enclosed by single quotes (')
Examples:

' TABLEAU'

' PRICES ARE’

L
L

r—

r(— r—— r— r— r—

—

—

r

2.3 OPERATORS

2/7

Operators are the connecting elements which allow the grouping of variables

and constants into larger language phrases called expressions.

five classes:

The use and meaning of the first three operators is quite similar to

in existing languages

a)

b)

c)

d)

e)

(ALGOL)

arithmetic operators-unary: + and - ;

Operators are of

and binary: 4 (addition), - (subtraction),

* (multiplication), / (division), and

*% (exponentation).

logical operators-unary: NOT ;

and binary: AND, OR.

relational operators = = (equal),

-1 = (not equal), >= (greater than or
equal) , <= (less than or equal),

> (strictly greater than),

< (strictly less than).

concatenation operators (for building
up matrices from elements) : a
comma (,) is used for horizontal
concatenation; a number sign (#) is

used for vertical concatenation.

set operators = OR (union),
AND (intersection), AND NOT (relative

complement) .

operators

while the concatenation operator may be new to the

2/8

reader. This operator isused to build larger storage structures from smaller

L

ones. For now an example of concatenation operators will be given; the detailed
explanation of their use being presented in Section 3.2.3. Suppose A, B, C, and D

.are matrices of the same dimensions. Then M.:= (A, B)#(C,D)§ represents a

N

larger matrix of the following form: M -‘é g] . If the programmer writes

M := (A, B)#(C, D); partly on one punch card and partly on the next it takes the

form M:= (A, B)# .
(C, D);

r_._“ r_ _—

To resolve ambiguities which can develop In forming combinations of elements,
each operator has an associated precedence. In the absence of parenthesis to
dictate the meanings of such combinations, the meaning will be given by the

precedence of the operators, with those having higher precedence being first.

r— — 1

Operators of equal precedence will be performed from left to right as one would

expect. Section 2.5.2 in Part III Interprets the operator ® ymbolr inorder of

—

decreasing precedence. A # before an operator indicates that its precedence 18 the

same as the preceeding operator. The following examples show the meaning of

r—-

precedence.

—

A-B/C+D is Interpreted u A= (B/C)+D

! (A, B)#C is Interpreted u (A, B)
— c
I B + C/D aa BaA is interpreted as B + ((C/(D#anE))#A)
|
—

Ambiguous notation in two of the examples can be avoided, of course, by use
'\
L of parentheses.
{
-
-

- rr— c— r— (— r—

[

o

- .
2/9

2. Reserved Words

Reserved words in MPL fall into the cstegories of keyword symbols or
standard function names such as sin(x) spng procedure names. Recall that
reserved words may not be used as variable [pas. . Keyword symbols (such as
FOR, 1IN, END, GO TO) will be discussed in Section 4e2e3e

Functions:

A standard, fypction name identifies a Btandard function. Tt is hoped

that extensive use of gstandard functions will lead to ease in programming and

Bhhance the readability of the resulting codes. presented in Section 5, Part III

is a list of standard- functions, which hopefully will grow as MPL developes.

Reference to a standard function is of the form V := F(P) where V represents

the value of the function, F represents the name of the function, and P

represents one or more arguments which we will refer to as a parameter list.

Depending upon the function, the value may be integer or real, scalar, vector, or

matrir,and if matrix, it may have any structure shape.

as

These properties as well

the properties of the parameter list are described in Paxt III. Following are

a8 few examples of the use of standard functions. let C and X be vectors
14

A a matrix, and T an index set all pteviously defined:

2.5

Z = SUM(C(I)*X(I)PORI IN T) ;

R := ARGMIN (B(I)/A(L,s) FOR I IN T|P(1,8)>0);

Comment Statements (Quote Symbols)

In the algorithms coded thus far by the MPL group, it has been

found that comments are essential for readability of computer codes. Comments may

be

placed between any two sentences amd are separated from the program by quote

r— — r

r—

2/10

marks before and after the comment. Example:

SAME LOCATION (COUNT, COUNT');

A =8B + c;
"A IS THE SUM OF B AND C"

FOR I IN SEL_1, COUNT! := COUNT + 1;
"WHERE COUNT' IS THE UPDATED VALUE OF
COUNT WHICH IS STORED IN THE SAME
LOCATION AS COUNT AND REFERRED TO HERE-

AFTER AS COUNT."

The general objective of MPL is readability. It is however, doubtful that
a program will be readable unless liberally interlaced with comments statements
whereby the programmer explains to the reader why he is doing the various steps.
In experiments with mathematical programming reutines, almost two lines of comments
are needed on the average to explain an executable line of code. Comment statements

can consist of one or several lines set off at the beginnkng and end by quote makes.

"PIVOTING WILL BE DONE ON THE FULL
MATRIX D WHICH INCLUDES A, THE

RHS B, AND COSTS C."

D := (7, B)#
(¢, 0);

"WE NOW INCREMENT COUNT AND RECYCLE'."

COUNT' = COUNT + 1; GO TO (21);

C

, ri

—

2/11

3.0 Expressions

Variables, constants, and operators are combined into larger language
phrases called expressions. Expressions are either arithmetic, logical, set or
character. In addition, the value of an arithmetic expression has a shape
(rectangular, diagonal, lower triangular, upper triangular, sparce). The
following sections explain the use and meaning of some of the special features

of MPL expressions.

3.1 Logical Expressions

A logical expression, having the value of TRUE or FALSE,1is a comparison
between two arithmetic expressions. Two arithmetic expressions which are compared
by a relational operator must be identical in type, form and shape. Following

are examples of logical expressions:

A>B
NOT (X(I) > Y(I))
(Z > M) AND (B + C At D)

(H(I) = z(I)) OR (M =Q)

When A and B are scalars and p is a relational operator, then the interpretation
of A p B is clear. However, in the case of arrays, the meaning of A 2> B can
differ by author. Table 1 below defines precisely what is meant by the relational

operators in MPL.

|
“

— r r—

—

2/12

TABLE 1

In this Table, A and B are arrays identical in type, form, and shape.

A,, B, refer to elements of A and B.

i i
MPL Statement Mathematical Meaning
A =3B =
Ai Bi v:i.
A< B <
Ai_Bi VI
A <B
Ai < Bi Vl
A>B
2 Ay 2By 4
- A > B A >
178 ¥
A —=B .
Ai # Bi for some i
3.2 Arithmetic Expressions

Arithmetic expressions are any combination of the following types—-—

computational expressions, function references, and array builders.

3.2.1 Computational Expressions

Computation expressions are of the structure 'left-operand'-'operator'
'right-operand'. If the left operand is missing, the operator is unary (one
operand) - Example:-A, + (o-z/B) . If both operands are present, they are
connected by a binary operator -(two operands) - Example: A+B, C**D At execution
time the expression will be evaluated to produce a result. In addition to being
defined, an operation can only be performed if the operands conform to the
conventional restrictions of matrix algebra (for example = M and N are matrices’

then MsN has meaning if and only if the number of columns of M equals the

number of rows in N). Section 2.5 of Part III describes these relationships in

detail.

r

PRI

— o o

2/13

3.2.2 Function References

A function reference expression involves the use of predefined functions
as set forth in Section 2.4. Examples of function references used with

computational expressions to form new arithmetic expressions are given below.

X*SUM(Y)
A*TRANSPOSE (B)

BASIC_COSTS*INVERSE(BASIS)

We shall see further use of function references in array builders in the next

section.

3.2.3 Array Builders

There are two types of array builders--concatenahors and array designators.

A concatenator is a notational device for constructing vectors and matrices

by concatenation. The rules for the use of a concatenator will be given followed

by several examples.

Operations within a concatenator are horizontal concatenation (denoted by
a comma) and vertical concatenation (denoted by a number sign). Horizontal
concatgnation has precedence over vertical concatenation and is performed first
whenever both operations appear. Two structures being concatenated must conform,
i.e., have the same number of rows for horizontal concatenation and the same
number of columns for vertical concatentition. Both of the structures being
concatenated must be of the same type, all arrays must be rectanguilr and the

result is also rectangular. As an example of the use of &rray constructors,

consider the following:

2/14

- A has M rows and N columns (matrix)
% B has M rows and 1 column (column vector)
|

C has 1 row and N column (row vector)

T
(B, TRANSPOSE(C)) has M rows and 2 columns: (B C)

-

'{- (A,B) or A,B has M rows and N+1 columns: (A B)

- (A#(C) has M+l rows and N columns A
cI

1‘ (A,B)#(C,0) has M+l rows and N+l columns A B

| c o

The above examples of correct usage of the array constructor while the

—

following examples display incorrect usage because of the incompatability of the

rows and columns,

r___ﬁ
{

(A, ©

—

(A #B)-

An array designator is used to horizontally concatenate several matrices

o~

D(J) for J in some index set L. For example L might be a list of basic

columns L(1l), L(2),...,L(M). Then the basis B is given by

e

B := (A(%x,J) FOR 5 I~ L);

>

Alternatively, it can be written

(-,
B := (A(x, L(I)) FOR I 1IN (1,...,M));

e however, it should not be written
“ B := A(x,J) FOR J IN L;
L because without the concatenation symbol it is equivalent to
\ FOR J IN 1L DO
-

B = A(*, J);

ENDFOR:

2/15

which is quite different. Nor should it be written

B = (A(*, L(1))ye . « rue L(M)));

because this does not define the running index and (k,...,%) in MPL means

(k, k+l,...,2). Still simplier we can write

—=

- | f“’“‘

‘r—-v..

[et —

———

2/16

4.0 Statements

All statements in MPL are categorized first by whether or not they are

preceeded by a label. All statements are ended by the terminator semi-colon (3).

4.1 Labeled Statements

A label is a means of providing a specific location in a program to which
execution control may be transferred. Labels are either a string of digits enclosed
in éarentheses or can have a name like a variable. p 1zpeled statement consists of a
label, followed by a colon followed by an "unlabeled statement" (defined in 4.2) and

may be used only once as a label within each storage block. A label can only be

referred to later in GO TO statements. Examples:
VAR := x + Y;

UPDATING: TITERATIONS':= ITERATIONS + 1;

€0 TO UPDATING;

4.2 Unlabeled Statements

Unlabeled statements are of three types—--assignment statements, procedure

call statement8&, and keyword statements.

4.2.1" Assignment Statement

Assignment statements are used for transferring data values between data
storage locations. The form of a substitution statement is V := AE; where V
is any variable as defined in Section 2.1 and AE is any arithmetic expression

as defined in Section 3.2. Examples:

A = B+C;
S := ARGMIN(¥);

A(L,%) := B+C — 34D;

r—

.

2/17

4.2.2 Procedure Call Statement

A procedure call statement transfers execution control to a procedure. When

the execution of theprocedure is completed, control returns to the statement

following the procedure reference. More will be said about procedures in Section 5.1.

Examples:

PIVOT (M,R, S);

SIMPLEX("IN" a,B,C, "OUT" Z, BV, X.BV);

4.2.3 Keyword Statements

-

Much of the bower of MPL lies in the use of keyword statements. Formally,
a keyword statement is one which begins with reserve words such as DEFINE, FOR,
IF, GO TO, LET, ENDIF, RELEASE, RETURN. The complete-list will be found in 3.2.4
in Part III. The keyword indicates to the computer and the programmer what type
of action is desired. Some of the keyword statemnts will be discussed here, the

remainder being discussed in Chapter 5 (Statement Blocks).

4,2.3.1 GO_TO Statement

A GO TO statement is used to alter the normal sequential flow of contrél
during the execution of a program. The form is GO TO & ; where £ is any label

as defined in Section 4.1. Example:

ITERATE: I': =1+ 1;

G0 TO ITERATE;

4.2.3.2 Simple Conditional Statement (IF)

A simple conditional statement enables one to execute a single statement only

L
L
L
L
L

o

2/18 ;__;

if certain conditions hold, and skip it otherwise. The form is

s IF le;

where le is any logical expression as defined in Section 3.1 and s is an

assignment statement. Examples:

§ = 0 IF A(*% J) = B;
R = S+T IF Z = 03
K ¢=RIFU = 0;

L :=535 IF V > 0;

If the logical expressions 1le is true, the program is executed with s replacing

the entire conditional statement. If not true, the program goes to the next
statement.
In section 5.4 a compound conditional form is discussed. Its form is

IF le THEN Sl,..“

OR IF le THEN Sl+1,.”. n

OTHERWISE Sm+l,...,sn

ENDIF;

4.2.3.3 Sinple Iterated Statement (FOR)

A simple iterated statement is used to perform a given statement several
times in such a manner that during each execution an iteration index is changed

according to a predetermined pattern. The form is

s FOR v IN set;

L
L

— o — o

r— r— — r—

|

(-

2/19

where v is any variable name as defined in Section 2.1, get is any index set

variable as defined in Section 2.1 and s is a statement. s in general depends

on v . The first part of the conditioned statement (the FOR phrase) states that

the values of an iteration index (Vv are to range over set). The first cycle

through s is executed with the first value of v in setj the second cycle is

executed, the second value of v in set, and so forth until the last value of
the iteration index has been used in the execution of s. Then control is passed

onto the next statement. Example:

A(I) := B(I,J) FOR I IN (1,...,M);

In Section 5.3 & compound iterated statement is discussed. Its form is

FOR V IN set DO
SpreiS_
ENDFOR;

4,.2.3.4 Let Statement

The let statement enables one to represent one symbol by another and was

introduced into MPL to ehhance readability. This statement is similar to a MACRO -

It-causes modification of the program at compiler time instead of execution time*

The let statement will be explained by showing several examples of its use.

a) LET M := MATRIX;
A = MxB;
is equivalent to A = MATRIX * B;

b) LET L(1) := RHS(I)/A(I,S); LET T := (1,...,M);
R := ARGMIN (L(T));
is equivalent to " R = ARGMIN (L(J) FOR J IN T);
or equivalent to R := ARGMIN(RHS(I)/A(I,S) FOR I IN (1,...,M);

r—

— o =

2/20

c) LET BI := BASIS-INVERSE; LET BC := BASIG’_COSTS;
PI := BC*BI;
is equivalent to PI := BASIC_COSTS*BASIS_INVERSE;

Note alSO in the firSt example that T iS a dummy and that another symbol
J was used in its place later on.. The form of a let statement is LET v := e

where v 1is a variable and e is an expression.

In the case that let is only used to simplify a single statement, an inverted

let -or WHERE form can be used.

R := ARGMIN(L(J) FOR J IN T)

WHERE T := (1,...,M);

4.2.3.6 Define Statement

Before a variable name may be used in a program the type, structure and
storage requirements of the values which it represents must be explicitly or
implicitly defined. The only exception to this rule is that an undefined variable
may be used as a dummy iteration index or as a dummy variable in a let or where
situation. The declaration may be done in two ways. One is to define the variable

but not give it any values:

DEFINE V 1 BY M;

The other is to define the variable and assign it values at the same time. In the
example below V is a new variable while A and B have been previously

defined.

V := A + B;

Let us now explore the details and meaning of the define statement.

.

2/21

The form of an explicit DEFINE statement is

SIZE
DEFINE Variable Type Shape Dimensions or Domain
name ARITHMETIC RECTANGULAR m BY n
DIAGONAL (ml,...,mz) BY (nl""’nZ)

UPPER TRIANGULAR
LOWER TRIANGULAR

SPARSE WITH K NONZEROS

name LOGICAL
name CHARACTER m
name SET n

Words "ARITHMETIC", "RECTANGULAR" will be understood if type, shape or size
descriptors are omitted. Scalar 1is assured if size description is missing. Let
symbols k, m, n, m;, My, By, M, be any previously defined integers or integer
expressions. A matrix "SPARSE WITH K NON-ZEROS" means the matrix has at most

k non-zeros. It will -be stored as a sparse matrix. A list which has neither row

nor column interpretation may be indicated by "(m)" where m is the number of

elements. Examples:
1. DEFINE E M BY N;
2. DEFINE D, E DIAGONAL P BY B;
3. DEFINE D (1,...,M) BY (X,...,1);
4, DEFINE J;
5. DEFINE M SPARSE WITH P NONZEROS;
6. DEFINE ¢ 1 BY N;
7. DEFINE B M BY 1;
8. DEFINE L CHARACTER;
9. DEFINE 3§ SET;

o,

-

2/22

The form of a domain descriptor is SRL where SRL is a subscript range

L

list, a series of subscript ranges separated by a BY- A subscript range

—

is two arithmetic expressions separated by ,..., . Example of subscript range

list: (1,...,M) BY (M+N,...,K). Each subscript range determines the minimum and

maximum values of the array's subscripts. The number of subscript ranges in the

—

subscript range list determines the number of dimensions of the storage structure.
If the domain is of the form (1,...,M) BY (1,...,N) it is written in Dimension
form M BY N or simply M for a one-dimensional list or set. The description

shape and size descriptions may appear in any order in a define statement.

—

L_ The second é@nd most used) method of defining a variable is implicitly. The
form of an implicit define statement is vn != ae; where vn 1is a

r—

variable name as defined in Section 2.1 and ae is an arithmetic expression as

! defined in Section 3.2. 1In this version of the define statement the variable
—
name being defined is given the same form, type, and structure as the value of
1
the first arithmetic expression. Examples:
-
— M := (A, B)#
(C, D)3
(- M := (A, B[C);
B := (P(%, BL(I)) FOR I 1IN (1,...,M));
-
D :=E + F¥xG; "WHERE E AND F ARE MATRICES"
-

o

r,';;

e

2/23

5.0 Statement Blocks

A program in MPL consists of a sequence of statements (defined in 4.0)
and statement blocks. A statement block ig a sequence of statements with special
initiating and terminating statements. There are four kinds of statement blocks—-
procedure plocks, storage allocation blocks, conditional blocks and iteration
blocks. The entire program is a procmxhjre block. A block can have other blocks
imbedded within it,or it may be imbedded in other blocks,but no two blocks

partially overlap.

5.1 Procedure Blocks

A procedure is designed to carry out a specific sequence of operations which
may be required over and over again. Rather than rewriting the sequence of steps
each time, they may be written once in a form which can be utilized whenever needed.
It is hoped that a library of procedures written in MPL will be developed, thereby
enabling the work of one programmer to be available tb6 others. This will not only
speed up the writing of MPL codes, but will also enhance the readability. Later on

we will say how to call a procedure in a program.

If one wants to write a procedure (which will 3ater be called by some main
routine), the ' procedure is initiated by a pxx)cechlre statement, contains a
statement sequence, and is terminated by a finistatement. A procedure statement
consists of the reserved word PROCEDURE followed by a procedure identifier.

The procedure 1dentifier specifies both the procedure name and the local names of
the input-output parameters. The form of a procedure identifier is a variable name

followed usually by a 1list of parameters enclosed in a pair of parentheses.

'}.*,_._..ﬁ,

-

2/24

The fini statement is used to mark the end of a procedure write up. In
contrast, RETURN is a signal during execution of a program that control is to
be passed back to the main routine. thig also terminates any storage allocation,
iteration, or conditional blocks which were initiated but not explicitly or

implicitly terminated within the .-procedure,

Control is paased to a procedure by either a function or a procedure
reference call. A procedure may have several return statements, each one may cause
termination during execution. vyalues are transferred to and from the procedure

by means of substitution statements in the input-output section of the procedure

identifier. 1In general, new variables for the main routine may be defined in the

output section.

As an example of the use of the return statement in a procedure

consider the following routine for checking whether two column vectors are equal.

COMPARE := 0 means A = B.

PROCEDURE COMPARE (A, B)

(1) . IF ROWDIM(A) == ROW-DIM(B) THEN
COMPARE := 1;
RETURN;

" OTHERWISE

(2): FOR I IN ROW_DOM(A) DO

IF A(I) —= B(1) THEN
COMPARE := 1;

RETURN;

ENDIF;
ENDFOR;

COMPARE := 0;
(3): RETURN;
ENDIF;

FINI ;

2/25

Next suppose that in a program we have the following sequence of statements:

——

IF COMPARE (X,Y)=0 THEN GO T0(21); OTHERWISE GO TO (23); ENDIF;
L_
i thus if the vector X equals the vector Y in each component, control 1is
R
: transferred to the statement (21), if not, it goes to (23).
!
-

5.2. Storage Allocation Blocks, Release Statements

r;;.

Storage allocation blocks are required for the efficient use of memory

—-

core in a computer. To release a symbol and any storage for other use, the

statement takes the form:

r._,_m
!

RELEASE A, B;
.E_ After much debate, it was decided that in writing mathematical programming codes,
block storage allocation was preferable to continual re-allocation.
i
i Release of symbols takes place automatically, however, with subprogram
—
v blocks and special release blocks.
L_
All symbols and storage except outputs, generated within a procedure are
E; released when the procedure returns to the main routine. Hence the same symbols
outside the procedure can be used with entirely different meanings.
_ G in-the statement
|
i_ Z = A + G WHERE G := INVERSE (M) ;
? is treated as a dummy variable locally defined within the block and immediately
—
' released. However, in the situation
L_
QET G := INVERSE (M) ;
; Z = A+ G;
L

the release of G is not possible until the end of a procedure unless by a special

.

—

2/26

release statement

RELEASE G;

5.3 Iteration Blook

An iteration block is a statement sequence which is repeated a number of
times only with an iteration index changed between each execution. As such, this
is a generalization of the iterated statement (Section 4.2.3.3). An iteration
bloek is initiated by a for statement, contains a statement sequence, and is
terminated by an endfor statement. The for statement (very similar to the
for phrase of Sectiqf 4.2.3.3) governs the behavior of the iteration by specifying
the values Eor the iteration index. 1Iteration blocks do not release symbols and

storage like a subroutine blocks. Example: The form is

FOR v IN set DO

Sl,....SZ

ENDFOR;
FOR I IN (1,...,M) DO
X(1) := Y(I);

J' =0+ 1;

A(x,I) := B(I);

ENDFOR;

5.4 Conditional Blocks

Conditional blocks are constructions wherein the program seélects between
a set of mutually exclusive courses of action. A conditional block is initiated
by an if statement and terminated by an endif statement. Or if and otherwise

statements allow for the provision of multiple alternatives. This construct is a

2/27

— generalization of the conditional statement (Section 4,2.3.2). Conditional blocks

i do not release symbols generated within them. The form is:

[IF }e THEN 8;,.../8,
N8
. OR IF le THEN 8., m
i vresS
| OTHERWISE 8 15+++5S,
—
ENDIF;
.
IF A = B THEN GO TO (7);
i OR IF A = C THEN GO TO (8);
-
OTHERWISE
L _ B = A%
ENDIF;

The OR IF and OTHERWIBE are optional in a conditional block. For example

IF le THEN 8;,...,8, ENDIF;

r——

—

o

r

|

— o

r— r [A

-

6.0 Examples of MPL Procedures

PROCEDURE SUM(F)

"SUMS A VECTOR F OVER ITS DOMAIN"

"ACCUMULATE THE RUNNING SUM IN S."

(2) © SAME LOCATION (S', S);

"S' WILL BE THE UPDATED VALUE OF S TO BE STORED IN THE SAME

LOCATION AS S AND THEREAFTER REFERRED TO AS S."

-~.

(3): 8" := s + F(1) FOR I

"ITERATIVELY ADDS F (1)

(4): SUM := s;

(5): RETURN; FINI;

PROCEDURE MIN_1("IN" F, "OUT" K, M)

"K IS THE FIRST INDEX I WHERE F (1)

VALUE M OVER DOMAIN OF F."
"INITIALIZE K AND M"

(1): K := DOM(F)(1);

(2): M = F(K);

(3): SAME LOCATION (K, K'), (M,

"K', M', ARE UPDATED VALUES OF K, M"

IN DOM(F);

TAKES ON ITS MINIMUM

"I.E. THE FIRSTCOMPONENT OF THE SET DOM(F)"

2/29

~ (4): FOR I IN DOM(F) DO
IF F(l) < M THEN
- K' := I;

M' = F(I);

f

ENDIF;
ENDFOR;

A |

(5): RETURN; FINI;

PROCEDURE COL_PIVOT (a,P,R);

"WARNING - MODIFIES A AND STORES THIL RESULT A' IN THE

SAME LOCATION AS A."

"PIVOTS (A, P) ON P(R) WHERE A IS A MATRIX AND PA

r—

COLUMN VECTOR, AND RETURNS A', THE MODIFIED A PART ONLY."

(1): SAME LOCATION (A', A);

(2): M := ROW_DIM(A);

"

(3): LET T := (1,...,M) AND NOT R;

r—

A'(R, *) := AR, *)/P(R);

. (5): A'(I, %) := A(I, *) - A"(R, %) * P(1) FOR I IN T;

r—

(6): COL_PIVOT := A';

iL (7) RETURN; FINI;

~ PROCEDURE REVISED_SIMPLEX 2 ("IN" A,D,C,BV, "ouT" STATUS,X,Z,H);
"REVISED_SIMPLEX_2 IS JUST PHASE 2.

- A = MATRIX, C =COSTS, D = RHS, BV = BASIC VARIABLES,
X = BV VALUES, Z = OBJECTIVE VALUE, K = ITERATIONS"

- "THE PROBLEM IS TO FIND MIN Z, X > 0, AX = D, CX = Z.

L_ IF MIN Zz IS FINITE, STATUS = FINITE, OTHERWISE STATUS =

L INFINITE. IT IS ASSUMED THAT BV IS A BASIC FEASIBLE SET

OF VARIABLES."

L
L
L

— o

—

r r— — - r—

2/30

"INITIALIZATION"

(1): K := 0;

(2) : STATUS := 'FINITE';

"THE FIRST STEP IS TO SET UP THE INITIAL BASIS WHICH CONSISTS'
OF THE SET OF BASIC VARIABLE COLUMNS, BV, OF A. THUS
BASIS := A(BV). LET G BE THE INVERSE OF THE BASIS.

WE ARE INTERESTED IN COMPUTING G AND LATER UPDATING IT."

(3): G := INVERSE(BASIS) WHERE BASIS := A(BV);

"ALSO X, THE VALUES OF THE BASIC VARIABLES, ARE INITIALLY"

(4): x =G %D

"ITERATIVE LOOP"

"THE COSTS ASSOCIATED WITH BASIC COLUMNS ARE C(BV) = HENCE

THE SIMPLEX MULTIPLIERS P ARE GIVEN BY"

(5): P :=C(BV) % G;

"LET S DENOTE THE INDEX OF THE COLUMN OF A COMING INTO THE

BASIS AND G.S = C(S)."

— r— e

2/31

(6) : MIN_1("IN" C-P % A, "OUT" S, C_S) ;

(7): GO

(8): v

"WHICH IS THE INDEX (ARGUMENT) OF THE SMALLEST COMPONENT
OF ThE VECTOR OF RELATIVE COSTS C-P % A."

"TEST FOR FINITE MIN Z"

TO (16) IF C_S > 03

"LET Y BE THE REPRESENTATION

TERMS OF THE BASIS."

=G*A(", s5);

"LET R DENOTE THE INDEX OF THE COLUMN IN THE BASIS TO BE

REMOVED"

LET T := (I IN DOM(Y) |Y(I) > 0);

IF T = NULL THEN

STATUS := 'INFINITE';

GO TO (16);

ENDIF;

(9): MIN_1("IN" (X(I)/Y(I) FOR I IN T), "OUT" R, Q);

"UPDATE X, G, K, BV DENOTED BY X', G', K', BV' "

(lo): saME LOCATION (X, X'), (G, G'), (K, K'), (BV, BV');

(11): '

=K + 1;

2/32

(12): x' = X-Y % Q;
X'(R) = Q;

(13): G' := COL_PIVOT(G,Y,R);

"COL-PIVOT PIVOTS (G,Y) ON Y(R) AND RETURNS MODIFIED G

PART."
(14) : BV'(R) := S;
"CHANGE R-TH BASIC VARIABLE TO S."
I - "UPDATING COMPLETE, RECYCLE"
(15): GO TO (8);
y "TERMINATION"

(16): Z := C(BV) * x;

(171 RETURN;

(18) : FINI;

r-—;-‘

—

—

— o

—

— — — — r—

MPL

MATHEMATICAL PKOCRAMMINC LANGUAGE

PARTIII

A FORMAL DEFINITION O F MPL

PREPAREDBY STE P HE N KeSCHUCK
APPIL 1968

COMMITTEE MEMBERS

RUDOLF BAYER MICHAEL MCGRATH
JAMES BIGELOW PAUL PINSKY
GFORGE DANTZIG STEPHEN SCHUCK

DAVID GRIES CHRISTOPH WITZGALL

THISISTHETHIRDOFTHREE PARTS:

PARTI A SHORT INTRODUCTIUN
PART Il A GENERAL’ DESCRIPTION
PARTIII A FORMAL OEFINITION

NOTE: BECAUSE THE DEVELOPMENT OF PARTS I AND IT WA SSLIGHTLY
CUTOF PHASEWITHTHE DEVELOPMENT OF PARTIII THE READER M A Y
CBSERVE SOME NOTICEABLE, ALTHOUGHNOTSIGNIFICANY, OESCREPENCIES
BETWEENTHEM. THESEDESCREPENCIES ARE DUE TO THE FACT THATMPLIS
NOTVYET FULLY BEVELOPEDAND MANYIOEAS ARESTILL EXPERIMENTAL.

o(1)
0-1 ABSTRACT

COMMUNICATION WITH A DIGITAL COMPUTERIS A PROBLEMWHICH HAS
OCCUPIED MANY PEOPLE FOR A LONG TIME. IN OKDERTO ALLOW THE
COMPUTER TOBE MOREWIDELYUSED AS A COMPUTATIONALTOOL MUCH OF
THIS EFFORT HAS GONEINTO OEVELOPING SYSTEMS THROUGH WHICH 4
PERSON ‘“MAY COMMUNICATEHIS DESIRES EVEN THROUGH HEIS NOT FAMILIAR
WITHTHE SOPHISTICATED ANDHIGHLYODETAILEDPROGRAMMING LANGUAGE S
AVATLABLEs THEMATHEMATICAL PROGRAYMING LANGUAGE IS ANOTHER
ATTEMPT TO PROVIDE A LANGUAGE IN WHICH THE NON-PROGRAMMER MAY
WRITE PROGRAQS. THEVALUEDF THIS WORKLIES IN THE FACTTHAT IT
IS ORIENTED DIRECTLY TOWARD MATHEMATICAL PROGRAMMING. CONSEQUENTLY
CONSIDERABLE EFFORT HASRBEENMADETOIMAKE YPLLOOKAS MUCHLIKF
STANDARD MATHEMATICAL NCTATION ASPOSSIBLE.

IT ISHOPED THAT THIS WORK WILL PRODUCE A RIGOROUSLYDEFINED LANGUAGE
INWHICH MATHEMATICAL PROGRAMMERS CANDESCRIBEALGORITHMS WHICH
WILLATTHE SAME TIMEBEEASILY UNDERSTOOD BYOTHERMATHEMATICAL
PROGRAMMERSAND MEANINGFUL 4NDVALIOCOYPUTEQ PROGRAMS.

SINCEMJYPLIS A LANGUAGF INTENDED FOR COMMUNICATIONBOTHWITHOTHER
INDIVIDUALS-AND W I T HCOMPUTERS,y ITS DEVELOPMENT IS AN EFFORT TD
PROVIDE A'READABLE* PROGRAMMING LANGUAGE. HOWEVER, FORA PROGRAM
TOBE READABLE (AN EASYTO USE AND RAP10 METHODFOR TRANSFERRIYG
INFORMATION) ITMUST BEBOTH ‘UNDERSTANDABLE’ (THE NOTATION IS
FAMILIAR OR SELF-EXPLANATORY WITHIN ITS CONTEXT) AND *COMPREHENDABLE"
(THE PAKTS OF A PROGRAM MUSTINTERRELATEIN A MEANINGFUL MANNER

FOR THE PROGRAM READER)« IN“THIS RESPECT THE EMPHASIS OF MPL

IS UPOY PROVIDING ANUNDERSTANDABLE LANGUAGE. COMPREHENDABILITY
WILLSTILLBETHE USER’SRESPONSIBILITY,.

— — = — & — & @~ & &= "F-f$™"—@>“6@©“"B8>“>&> —r~

(g}
{
N

4?(“)00
|
HwWN -

o
[}

-t — —
U
N —

1
SfprPLwLWPODODDPODND-

|
|
o —

['
] [
W N =

-
oo e 3 B SV NV, RN

RO NNNDPDONDNNDND NN NN NN
1

Co
t)
A hA PN~

1
NN RN N DD e
1

'
NNN'\.)NNN
(SLBEC IS RV, I SN AN

[
|

wu‘uwwwwwwwwwwwwuw
1 1
U

02}
TABLEOFCONTENTS

INTRODUCTION
ABSTRACT
TABLE OF CONTENTS
MPL LANGUAGE CES IGNPHILOSOPHY
USEOF THE MANUAL

BASIC LANGUAGE STRUCTURE
ANORGANIZATION OvER vl Ew
THE MPL CHARACTER SET
SOME ELEMENTARY PHRASES

EXPRESSIONS
ATTRIBUTES OF EXPRESSIONS
CONSTANTS
NUMBERS
LOGICAL CONSTANTS
S ETCONSTANTS
CHARACTER CONSTANTS
VARIABLES
--. VARIARLE NAMES
SUBSCRIPTS
PROCEDURE CALLS
PROCEDURE NAMES
PARAMETER L ISTS
COMPUTATIONAL EXPRESSIONS

OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS
OPERATOR OEFINI TIONSAND PRECEOENCES

SEMANTICS

OTHER EXPRESSIONS
OOMA IN ITEM
CONCATENATOR
ARRAY CONSTRUCTOR
SUBSET SPECIFIER

PROGRAM CONSTRUCTION (PROCEDURES)
STATEMENT SEQUENCES
STATEMENTS

LABELS
ASSIGNMENT STATEMENTS
PROCEDURE CALL STATEMENTS
SIMPLE KEYWORD STATEMENTS
LET STATEMENT.
GO TOSTATEMENT
RETURN STATEMENT
DEFINE STATEMENT
RELEASE STATEMENT
COMPLEX KEYWORD STATEMENTS
CONDITIONED STATEMENT
ITERATED STATEMENT
BLOCK STATEMENT

9(3)

L c-2 TABLE OF CONTENTS (CONTINUED)

1 4 INPUT/OUTPUTY STATEMENTS

o
5 LIBRARY PROCEDURES
6 PROGRAM FORMAT1 ON MECHANICS
6-1 CARD FORMAT

‘ 6-2 USEOF BLANKS

| 6-3 . COMMENTS

-
7 RESUME OF DEFINITIONS

3

© 8 SAMPLE PROGRAM

L

} 0-3 .MPL LANGUAGE DESIGN PHILOSOPHY

L -~
THE PHILOSOPHY BEHIND THE DESIGN Of THE MATHEMATICAL PROGRAMMING

i LANGUAGE (HEREAFTER CALLEDMPL)Y IS TO PROVIDE A MAXIMUM OF

L READABILITYTOD THE UNINITIATED. THUSIT C A NHOPEFULLYB E
ASSUME3 THAT THE USER HASONLY A FAMILIARITY WITH THENOTATON

\ OF CURRENT MATHEMATICAL LITERATUREse AS A RESULT THE LANGUAGE

| DEFINITIONATTEMPTSTOAVOID ABBREVIATIONSWHICH MAY BE

— OBSCURE,TDKEEPTHE NUMBEROF SPECIAL SYMBOLSTOAMINIMUM,
AND TO PROVIDE THEMOSTFAMILIARNOTATION AND FORMATION.

-— AS YPL DEVELOPEDIT BECAME OBVIOUSTHAT MANY USEFUL STRUCTURES
WERE AVAILABLE IN EXISTING LANGUAGESe AS A RESULT THE READER
WHOIS FAMILIARWITHALGOL, FORTRANGPL/IZETC.9OWILLENCOUNTER

o FAMILIARFORMSAND PHILOSOPHIES. NOATTEMPT HASBEEN MADE
TOPARALLEL ‘ANY SINGLE SUCHLANGUAGE, BUT WHERE APPLICABLE
TODEVELIPTHEBESTTHATWAS AVAILABLE.

“

—

-~

-

L
L
L

—

r;-'-.,

r—c— r— r— r— r— r-

—

6(4)
0-4 USEOF THE MANUAL

THE FOLLOWING DISCUSSION IS ODRGANIZED SO THAT THE READER MAY
FOLLOW THE CONSTRUCTION OF MPLFROM THE MOST ELEMENTARY
UPTHRIUGH THE BROADESTCONCEPTSs THE FINAL SECTIONIS A RESUME
OF THE FORMAL DEFINITIONS SO THAT THIS PAPER MAYBE USEDBOTH

FORINSTRUCTIONAND AS A REFERENCE MANUAL. EXAMPLFS WILL BE

LIBERALLY SPRINKLED AMONG THE. DESCRIPTIONS.

THEDEF INITION OF YPL WHICH' APPEARS HEREIS AIDEDBY THE
USE OF A YETALINGUISTICORLENGUAGE-DESCRIBING LANGUAGE WHICH
HAS SEVERAL SPECIAL SYMBOLS.,.

< > A PAIR OF BROKEN BRACKETS DELIMITS A PHRASENAME.
¢ A PAIR OF PRIMES DELIMITS 4 CHARACTER STRING WHICH

APPEARSIN A PHRASE EXACTLY ASIT APPEARS WITHIN
THE PRIMES.

READTHISSYMBOL “IS DEFINED AS", IT SEPARATES THE

-PHRASE NAME ON THE LEFT FROM THE PHRASE DESCRIPTION

OK. THE RIGHT.

| KEAD THIS SYMBOL "OR™, IT SEPARA’'TES MUTUALLY EXCLUSIVE
DESCRIPTIONS.

EXAMPLE METALINGUISTIC STATEMENTS

<CHARACTER>$:=<LETTERD|CDIGIT>| <SPECIAL CHARACTER>

THIS METALINGUISTIC STATEMENT READS “A CHARACTERIS DEFINED AS
A LETTERORADIGIT OR A SPECIAL CHARACTER.”

<ITERATED STATEMENT>::=*IF*<EXPRESSIUOND®,*<STATEMENT>
THIS READS “ANITERATED STATEMENT IS DEFINED AS THECHARACTERS

‘TF* FOLLOWED BY AN EXPRESSTION FOLLOWED BY A COMMAFOLLOWED
BY 4STATEMENT,"

|
-

- - r— o T oo

o

1(1)
1-1 AN ORGANIZATIONAL OVERVIEW

THE MPL LANGUAGE IS DESIGNED TO FACILITATE THE COMMUNICATION
OFMATHEMATICALPROGRAMMI NG ACGORI THMSs THE COMPLETE STATEMENT

OF AN ALGORITHMINMPL IS A ‘PROGRAM'* A PROGRAMIS COMPOSED /%
NNE OR MORF ‘PROCEDURES’, EACH OF WHICHI S ASEQUENCE OF SEVERAL
'STATEMENTS's EACH STATEMENTISMADE UP OF'RESERVED..... AND

. @EXPRESSIONS’y THERASIC BUILDINGBLOCKS Of MPLe THESE, FINALLY .

ARE COMPOSED OF ‘CHARACTERS".

1-2 THE MPL CHARACTER SET
THE CURRENT VERSION OF MPL ISBASED UPON THECHARACTER SET OF
THEIBM 029 KEYPUNCH. FOR CONVENIENCE THESE cincrens ARE

GROUPEDINTO THECATEGORIESNOF LETTERS, DIGITS; ANDSPECIAL
CHARACTERS.

<CHARACTER>: :=<LETTERD|<KDIGIT>|<SPECIAL CHARACTER>
WHERE ..SPECIFIC CHARACTERSIN EACH CATEGORY ARE GIVEN BY:

<LETTER>::-‘:iA'I'B'I'C'I'D'I'E'"F'I'G'l'H'I'I'I‘J'I'K'l'L'
| eMefaNejege]epejeQulegejeSefaTejoyreyejogejexsjsyejueye

KDIGIT>zz='Qv |1]2 |34 5|6 [*7|*8"]*9"

KSPECTIAL CHARACTERDzz=t(*]0)0|rco]ed>e| o, vfrgtjrerjot]oxejeye
Jesoov ozt franje oo sjegrjegejagejegejspefjejojege

TWO OTHER CHARACTERS ARE AVAILABLE ON THE 029 KEYPUNCH, BUTARE
NOT INCLUDED IN THE ABOVE CATEGORIES DUETOTHEIR SPECIAL USAGE
| NMPL, THESE CHARACTERS ARE

'3 STATEMENT TERMINATOR
poe COMMENT DELIMITER
1-3 SOME ELEMENTARY PHRASES
<CHARACTER STRINGS::=" ((CHARACTER STRING><CHARACTER>

<DIGIT STRING>::=<DIGIT>|<KDIGIT STRING>CDIGIT>
KNULLPHRASED::=**) <KNULLPHRASE>"!

THESE PHRASES ARE USED IN SEVERAL PLACES THROUGHOUT THE MANUAL.
THE CHARACTER AND OIGIT STRINGS ARE JUST STRINGS OF CHARACTERS
OR DIGITS AS THEIR NAMES IMPLY. THENULL PHRASE INDICATES THAT
THFPHRASE WHICH IT DESCRIBES MAYBE OMITTED.

r—

- r— —

r—

2

2(1)

EXPRESS IONS

<EXPRESSION>::=Y('<EXPRESSION>?)?

| <KNUMBERD>

{*TRUEY | *FALSE?

| NULL’

| Y9 CCHARACTER STRINGD>T® ¢
{<VARIABLE>

| <PROCEDURE CALL>

| <COMPUTATIONAL EXPRESSION>
| <DOMAIN ITEM>

| SCONCATENATORD>

| <ARRAY CONSTRICTOR>

| <SUBSET SPECIFIER>

EXPRESSIONS 4RE ELEMENTS OF MPL WHICH HAVE ‘VALUE’.
DERIVE THEIR VALUES FROM MANIPULATIONS OF VALUES OF CONSTITUENT
PART S. THE MOSTBASIC EXPRESSIONS ARECONSTANTS WITH FIXED
VALUES AND VARIABLES WITH VALUES WHICH MAY CHANGE DURING PROGRAM

-OPERATION.

THEY USUALLY

EACH CONSTANT AND VARIABLE, AND CONSEQUENTLY EACH

EXPRESSION, HAS AN ASSOCIATED SET OF ATTRIBUTES WHICH DESCRIBE THE
PROPERTIES OF THE VALUE OF THE EXPRESSION.

2-1

' TYPE

CONSEQUENTLY THE POSSIBLE VALUES FOR THE TYPEATTRIBUTE ARE ARITHMETIC,

LOGICAL,
YADET

OF THE ARITHMETIC TYPE ON MPL USERS.

EXPRESSION ATTRIBUTES

MPL ALLOWS THE USER TO MANIPULATE VALUES WHICH ARE ARITHMETIC
QUANTITIES,LOGICAL OR BOOLEANQUANTITIESy SETS, OR CHARACTER STRINGS

SET, AND CHARACTER. INITIALLY NO ATTEMPT

IS BEING

IMPOSE THE ‘FLOATING POINT’ AND *INTEGER® SUB-CLASSIFICATIONS

INSTEAD IT IS HOPED, PERHAPS

INVAINs THAT THESE HARDWARE IMPOSED CONVENTIONS MAY BEBYPASSED,

* FORM’
QUANTI TV,

IF A VALUE HAS TYPE ARITHMETIC, THENIT YAYBEEITHER A SCALAR

A VECTOR QUANTITY, ORA MATRIX QUANTITY’

CONSEQUENTLY THE

POSSIBLE VALUESFORTHE FORM ATTRIBUTE ARE SCALAR, VECTORy ANDMATRIX,

‘SHAPE’

IF A VALUE HAS TYPE ARITHMETIC, ITSFORMUSUALLY HASA RELATED
SHAPEATTRIBUTE WHICH PROVIOFS ADDITIONAL INFORMATION ABOUTTHE VALUE’S

DRGANTZATION, A SCALAR FORM HAS NO SHAPE ATTRIBUTE,
BE EITHER AROWVECTOR ORA COLUMNVECTORSO ITS POSSIBLESHAPFS ARE

ROW A Y DCOLUMN,

A VECTOR YAY

MATRICES, NORMALLY RECTANGULAR, ARE GIVEN SHAPES TO

CONSERVE STORAGE SPACE BY STORING ONLY SUBSETS OF ELEMENTS. POSSIBLE
MATRIX SHAPES ARE RECTANGULAR, UPPER TRIANGULAR, LOWER TRIANGULAR,

DIAGONAL,

AND SPARSE.

L

-

2(2)
2-2 CONSTANTS

A CONSTANT ISANEXPRESSION WHICH HAS AFIXED VALUE DETERMINEO BY
THE NAME OF THE CONSTANT. THERE ARE CONSTANTS OF EACH TYPE.

t2-2-1 NUMBERS

<NUMBE R>::=<NUMBER BASE> |<NUMBER BASE>EXPONENT>

<NUMBER BASE>::=<DIGIT STRING>
|KDIGIT STRING> ‘.’
[% *<DIGIT STRING>
IKDIGIT STRING> ' *<DIGITS TR I NG >

<EXPONENT>::="E*<DIGIT STRING>
|*EY ' +9<¢DIGIT STRING>
| "E¢'__‘<DIGIT STRING>

ESSENTIALLY A NUMBERIS ADIGIT STRING(1=-3)y POSSIBLY CONTAINING A
SINGLEDEC IMALPQINYe IFTHENUMBERHAS A VERYLARGEOR AVERY SMALL
VALUE SO THATWRITING IT REQUIRES MANY ZEROS, IT BECOME S WORTHWHILE
TO USE THE ABBREVIATED ‘SCIENTIFIC NOTATION’ PROVIDED BY THE EXPONENT.
HERE'E*MEANS ‘TIMES TENTO THE POWER’. THE SYMBOL **INOICATES
THAT THESIGN FOLLOWING THE'E®* IS OPTIONAL.

EXAMPLE NUMBERS
2 1346 2454 16325 15.6E-03 2ES5 + 006

2-2-2 LOGI CAL CONSTANTS

LOGICAL, BOOLEANy OR TRUTH VALUEO EXPRESSIONS RESULTMOSTLYFROM TESTS
ON OTHER QUANTITIES WHICHYIELD THE VALUES TRUE OR FALSE. SINCE
THERE ARE ONLY TWO POSSIBLE VALUES FOR ANY LOGICAL EXPRESSION
THEREAREONLY TWO POSSIBLE LOGICAL CONSTANTS, ‘'TRUE’ ANO ‘FALSE’.

2=-2~3 SET CONSTANTS

SETSINMPL AREINTENDED PRIMARILY FOR INDEXING OVER ROWS ORCILUMNS OF
MATRICES, ITERATION. LOOPS, ETC. AS A RESULT, SET ELEMENTS HAVE WHOLE
NUMBER VALUES,, THERE ARENO OUPLICATE ELEMENT VALUESIN, SETS.
HOWEVER, SINCE SETSMAY, CONTAIN A VARIABL'E NUMBER OF ELEMENTSy THEY
HAVE AN ASSOCIATED SIZE OR NUMBER OF ELEMENTS. THE SINGLE MOST
IMPORTANT TESTON ASETIS THEREFORE WHETHERIT IS EMPTY. THUS THE
THE SETCONSTANT ‘NULL’ IS PROVIDED TO FACILITATE THESE TESTS AND
FOROTHER USES.

2(3)

L; 2-2-4 CHARACTER CONSTANTS
CHARACTER CONSTANTS HAVE THE FORM “'<CHARACTER STRING>' "%,

L CHARACTER CONSTANTS WERE ORIGINALLY PROVIDED IN MPCFOR CONVEYING FORMAT
INFORMATION TO THE INPUT AND OUTPUTROUTINESe HOWEVER, WITH ONLY SLIGHT
DEVELOPMENT A VERY POWERFULMANIPULATINGCAPABIL ITY APPEARED. 4

. CHARACTER CONSTANTIS ANYSTRING OF CHARACTERS DELINEATEOQ BY A

A~ PRIME (SINGLE QUOTEVONEACH ENO. A PRIMEWITHINACHARACTER
STRING MU S TBEREPRESENTED BY TWO AOJACENT PRIMES'I.E. " (A S
OPPOSEDTO A DOURLEQUOTE ‘O

-

EXAMPLE CHARACTER CONSTANTS
| t1H=y 25E1346"

i *HELP,HELP?

“THIS IS THE JONES” HOUSE?®

- 2-3 VARIABLES
<VARIABLEs>:: =<VARTABLENAME> | <VARTABLE>? (*<SUBSCRIPT LIST> ‘)’

e ~
VARIABLES REPRESENT VALUES. JUST AS A VARIABLE NAMEIS USFOTN
REPRESENT AN ENTIRE MATRIX OR VECTOR, VARIABLE NAMES WITH SUBSTRIPTS

., REPRESENTSPECIFIC ELEMENTS OR SETS OF ELEMENTS OF THESE FORMS,

MPLVARIABLES CAN REPRESENT VALUESINDIRECTLY FOR INSTANCE, IFA
REPRESENTS A MATRIX’ THEELEMENTS OF THE MATRIXCOULDBE NUMBERS,
L ORTHEYCOULD HE POINTERS TO OTHER MATRICES. INTHE LATTER MANNER
A(L,J)(KyL)WOULD PICK FROMA(I4yJ)THEPOINTER TOSOMEMATRIXFROM
WHICH THE{(KyL)TH ELEMENT WAS ACTUALLY DESIRED. THE POWER HERE
IS THAT THE ELEMENTS OF AN ARI THMETIC MATRIXOR VECTOR NOW MAY BE
OTHER ARITHMETIC QUANTITIES, LOGICAL QUANTITIES, SETS, OR CHARACTER
STRINGS.

H 2-3-1 VARIABLE NAMES

-<VARIABLE NAME>: :=<LFTTER>
- | <VARIABLE NAMEDXLETTERD
| <VARIABLE NAME>XDIGIT>
|<VARIABLE NAME>",’
] <VAIRABLE NAMED>t¢?

A VARIABLE NAME NAMES A ‘STORAGE STRUCTURE AND THEREBY HAS

ALL Of THE ASSOCIATED PROPERTIES OF THE STRUCTURE IF THE STRUCTURE
— HASTYPE ARITHMETIC ITS ELEMENTS MAY BE POINTERS TO OTHER STRUCTURES
HAVINGOTHER TYPES . A VARIABLE NAME ALWAYS BEGINSWITH A LETTFR
WHICH YAYBEFOLLOWED BY ANYNUMBEROF LETTERS’' DIGITS, UNDERSCORES,
ORPRI YES.

EXAMPLE VARIABLE NAMES
4 A’ ALPHA36 THIS_IS_A_VARIABLE_NAME OBJECTIVE_FUNCTICN

—

—

r— r— r— [

r ——

2(4)
2= 3-2 SUBSCRIPTS
SUBSCKIPTS ARE SUBSCRIPTLISTS ENCLOSED IN PARENTHESES.

<SUBSCRIPT LIST>::=<SUBSCRIPTELEMENT>
| <SUBSCRIPTLIST> 9*<SUBRSCR IPT ELEMENT>

‘<SUBSCRIPTELEMENT>z:=v%¢ | <EXPRESSION>

SUBSCRIPTS AREUSED TO ACCESS SUBSETS OF ELEMENTS OF ARITHMETIC
DATA STRUCTURES. THENUMBER(OF SUBSCRIPT ELEMENTSIN .SUBSCRIPT
LIST MUSTBE EQUALTO THFE NUMBER OF DIMENSIONS OF THE DATA STRUCTURE.
THE* USEDA SASUBSCRIPTELEMENT REFERENCES AN ENTIREROW O R
COLUMN OF AN ARRAY. THUS A(%®y%) - A AND B(*)= B WHERE A AND B
ARE AMATRIXAYO A VECTOR RESPECTIVELY. VALUES OF EXPRESS IONS

USED AS SUBSCRIPT ELEMENTS MUST HAVE EITHER ARITHMETIC OR SET

TYPEs IF THE EXPRESSIONIS ARITHMETICIT MUST BE EITHERA SCALAR
OR 4 VECTOR. A SCALAR ACCESSES ASINGLE ELEMENT WHILE A VECTOR
ACCESSES A SET Of ELEMENTS, ANYFRACTIONAL PART OF A VECTORDOR
SCALAR ELEMENT VALUESIS DROPPEDAND ANY’' VALUESOUTSIDE THE RANGE

O F THF SUBSCRIPTELEMENT ARE IGNORED.

EXAMPLE VARIABLES

A(3%A+3,C) Av{I,g B(I) A*(I,%) A(ROW_SET,COL_SET)

AS YENTIONEOIN (2-3) THE ELEMENTS OF AN ARITHMETIC DATA STRUCTURE
(VECTOR OR MATRIX! MAY ALSO POINT TDOTHER SUCHQUANTITIES. HENCE
"MATRIX_LISTI(K){(I+J)®* ACCESSES THE(ISsJ)THELEMENT INTHE MATRIX
INDICATEDBY THE(K)THELEMENTI N *MATRIX_LIST'e THIS PROCESS MAY
B ECONTINUED TO ANY LEVEL, RUT WITH CARE.

2-4 PROCEDURE CALLS

<PROCEDURE CALLY>::=<VARIARLE NAME>
|KVARTIABLE NAMED? (*<EXPRESSION LIST>*)¢

YEXPRESSION LIST>:: =<EXPRESSION> | <EXPRESSTIQON LIST>*,*<CEXPRESSIOND>

A PROCEDURE CALL CALLS A PROCEDURE FROM WITHIN AN EXPRESSION.IT
IS ASSUMED THATTHE CALLENDPROCEDURE RETURNS A VALUE WHICH CAN
BFUSEDTO EVALUATE THE EXPRESSIONINTHECALLING PROCEDURE.

WHEN A PKOCEOURE IS DEFINED(3) ANY VALUES WHICH WILL BE PASSED FROM
THE CALLING PROCEDURE AT THE TIMEOF THECALL ARE REPRESENTED BY
VARIABLE NAMES IN THE VARIABLE NAMELIST FOLLOWING THE PROCEDURE
NAMEIN THE DEFINITION. THESE VARIABLES TAKE THE VALUES OF THE
EXPRESSIONS IN THE PROCEOURE CALL EXPRESSIONLIST INTHE OROER IN
WHICH THEY OCCUR.

THEVALUE OF 4 PROCEDURE IS DETERMINED IN AN ASSIGNMENT STATEMENT
WITHIN THE PROCEDUQE IN WHICH THE NAME OF ‘THE PROCEDURE APPEARS
ONTHELEFTOF THE ASSIGNMENT SYMBOL (3=-2-21,

EXAMPLEPROCEDURE CALLS
PIVOT(A+A® ,B*,142,J4R~-3)
SuBs(8i

f
I

r

—

-

2(5)
2-5 COMPUTATIONAL EXPRESSIONS

<COMPUTATIONAL EXPRESSICN>::='+?<CEXPRESSION>
| =Y <EXPRESSIOND>
{"NOT @<EXPRESS I0ON>
| CEXPRESSIOND'+ *CEXPRESSIOND>
| <EXPRESSTIOND'-*<EXPRFSS{ON>
| <EXPRESSTIOND ' %¢ CEXPRESSLOND>
| CEXPRESSINN> !/ <EXPRESSIOND
I <FXPRESSTONDY %9 CEXPRESSIOND
) KEXPRESSIONDY # 1 <CEXPRESSTOND
| <EXPRESSION>’" AND ‘<EXPRESSION>
| <FXPRESSIOND! CR ‘<EXPRESSION>
| CEXPRESSTOND* IN ‘<EXPRESS ION>
I<EXPRESSION>' AND NOT ‘<EXPRESSION>
| CEXPRESSIOND>*=¢<EXPRESSION>
| <EXPRESSION>' ~=*<EXPRESSION>
| <EXPRESSIOND'>*<EXPRESSIOND
| CEXPRESSIOND? C*<EXPRESSION>
| CEXPRESSIOND' D=t <EXPRESSIOND>
. |KEXPRESSINND*<=*<EXPRESSION>

‘OPERATORS’ MODIFY ORCONNECT "OPERANDYEXPRESSINNSINCOMPUTATIONAL
EXPRESSIONS, ALL COMPUTATIONAL EXPRESSIONS HAVE ONE OF TWQ

GENERAL FORMS:

UNARY <OPERATOR>KR-0OPERAND>

BINARY KL-0OPERANDD>KOPERATOR>CR-IPERAND>

2-5-1 OPERATOR CLASSES AND ALLOWABLE CONFIGURATIONS
EACHOPERATOR HAS 4 UNIQUE CONTEXT IN YHICHIT MAYBE USED. THE
CONTEXT IS DETERMINEDBY THE TYPES OF THE ASSOCIATED OPERANDS.
AS A RESULT JPERATORS ARE CLASSED AS ‘ARITHMETIC’, ‘SET’,
CARTTHMETIC TEST'y " SETTEST*, A N D'LOGICAL 'Y

THEFOLLOWING TABLEDETERMINES THE TYPESQOF OPERANDS ALLOWABLE

MWITHEACHC L A S SOF DPERANDS,

L-JPERAND “OPERATOR R-OPERAND RESULT
TYPE CLASS TYPE TYPE

" ARITHMETIC ARITHMETIC ARI THM ET IC ARITHMETIC
SET SET S E T SET
ARITHMETIC ARITHMETIC TEST ARI THMETIC LOGICAL
SET SET TEST SET LOGICAL
LUSICAL LOGICAL LOGICAL LOGICAL

|
!
[-

—

-

-

2(6)
2-5-2 OPERATOR DEFINITIONSAND PRECEDENCES

THE OPERATORS WHICM FALL INTQ THESE CLASSES AND THEIR MEANINGS

ARE SHOWNINTHEFNOLLOWINGTABLEs SOTHAT THE ORDER OF COMPUTATION
IN ANY COMPLICATED EXPRESSION WILLBEUNAMBIGUOUS, EACHOPERATOR
HAS APRECEDENCE (INDICATED BY A PRECEDENCE NUMBER) AND OPERATIONS
WITHTHE HIGHESTPRECEDENCE (NUMBER) AREPERFORMEDFIRST,

OPERATORS WITH THE SAME PRECEDENCE NUMBER HAVE EQUAL PRECEDENCF
AND ARE PERFORMED FROM LEFT TO RIGHT.

OPERATARDEFINITION TABLE

OPERATOR PRECEDENCE USE INTERPRETATION
ARITHMETIC OPERATORS
L) 70 BINARY VERTICAL CONCATENATION
te? 65 UNARY NOEFFECT
-1 65 UNARY NEGATION
T 60 BINARY EXPONENTIATION
v 55 BINARY MULTIPLICAT ION
'/ 5¢ RINARY DIVISION
Y 45 BINARY SUM
-1 45 RINARY DIFFERENCE

SET OPERATORS

* AND * 40 BINARY S ETINTERSECTION
' OR ! 35 RINARY SET UNION
* AND NOT * 30 BINARY SET RELATIVE COMPLEMENT

ARITHMETIC TEST OPERATORS

t=t 25 BINARY IS EQUAL TO

VPt 25 BINARY IS NOT EQUAL TO

=1 25 BINARY IS GQEATER THAN OR EQUAL TO
<=0 25 81 NARY IS LESS THANOREQUAL TO
D 25 BINARY IS STRICTLY GREATER THAN
1< 25 RINARY IS STRICTLY LESS THAN

SET TEST OPFRATORS

*IN 2C - BINARY IS CONTAINEDIN (IS A SUBSET OF)
LOGICAL OPERATORS

*NOT 15 UNARY : LOGICAL NEGATION

* AYD 10 BI NARY LOGICAL INTERSECTION

¢ QR ¢ 5 B INARY LOGICAL UNION

L
L

—

o e

r— r—

— r— r— 1

—-

2(7)

SEMANTICS

EACH CIJIMPUTATIONAL EXPRESSIONHAS THE FORM
<L-0PERANDM<OPFRATOR><R~-OPERAND>

‘THIS SECTION DESCRIBES THE RESTRICTIONS PLACED UPON EACH

OPERAND AND SOME ADDITIONAL PROPFRTIES OF THE RESULTS,

ARITHMETIC OPERATORS

THE CURRENT VERSION OF MPL RESTRICTS ARITHMETIC DATA STRUCTURES

TOTWODIMENSIONS.

THISRESTRICTIONALLOWS CONSIDEQARLEIMPLICIT

COMPUTING POWERMWITHCUT BEING OVERLY RESTRICTIVE FOR MATHEMATIC AL
PROGRAMMING APPL ICATIONS. THUS ALL ARITHMETIC DATA STRUCTURES
(EVENT H ECONSTANT 15) CANBEVISUALIZED AS MATRICES.

(JPERATOR

'y

40

T

PART

L-OPERAND
R-NPERAND

RESULT

L-OPERAND
R-OPERAND
RESULT .

L-OPERAND

R-=OPERAND
RESULT

L-0OPERAND

R-OPERAND

RESULT

CHARACTERISTICS -

ANYARITHFMETIC QUANTITY.

AN ARITHMETIC QUANTITY WITH THE SAME NUMBER

OF COLUMNS A S THEL-OPERAND,

THE VERTICAL CONCATENATION OF THE TWO OPERANDS.
IT HAS THE SAMENUMBER Of COLUMNS ASEACH
OPERANDANDTHENJUMBEROFROWSEQUALTO THF
SUM OF THE NUMBERSOFROWSINEACHOPERAND-

NONE.
ANYARITHMETIC QUANTITY.
SAME AS R-0OPERAND,

NONE.
ANYARITHEMETIC QUANTITY.
THER-OPERANDWITHALL ELEMENT VALUE SIGNS
REVERSED.

ANY ARITHMETIC QUANTITY WITH THE SAME NUMBER OF
ROWS AND COLUMNS. THUS THE L-OPERAND MAY
BEEITHER-ASQUAREMATRIXORA ‘SCALAR’.

MUST BE ASCALAR (ONE ROW ANO ONE COLUMN)

WITH A NON-NEGATIVE VALUE»

THE L-OPERAND YILTIPLIED BY ITSELF THENUMBER
Of TIMES SPECIFIEDBY THER-OPERAND,

IF THE L-OPERAND HASMORETHANONEROW AND
COLUMN ANY FRACTIONAL PORTION OF THE R-OPERAND
WILL BEDROPPED. OTHERWISE THEL-OPERANDIS A
SCALAR AND ANY POSITIVE VALUESFORTHER-OPERAND
ARE ALLOWED.

{

rl; —

— "

—

- - — — ¢

o

2-5-3

OPERATOR

" %

¢/

140

2(3)

SEMANTICS (CONTINUED)

PART
L-0OPERANY
R—-{OPERAND

RESULT

L-CPERAND
R-0PFRAND
SE SULT

L-OPERAND
R-0PFRAND

RESULT

CHARACTERISTICS

ANY AR I THMET ICQUANTITY,

ANY ARITHEMETICQUANTITY WITH THE SAMENUMBER OF
ROWS ASTHEL-OPERAND YAS COLUMNS EXCEPT THAT
EITHFROPERANDMAYBE A SCALAR.

A NARITHMETICQUANTITYWITH THE SAME NUMBER
DFROWS -AS THE L-OPERAND AND THE SAME NUMBER .

O FCOLUMNS AS THE R-OPERAND, ELEMENT VALUFS ARE
THE RESULT OF CONVENTIONAL MATRIX MULTIPLICATION.
IFEITHEROPFRAND IS 4 SCALAR THE RESULTHAS

THE S AMENUMBERUOFROWSAND COLUMNS AS THE NOTHER
NDPERAND,

ANYARITHEMETICQUANTITY,

ANY SCALAR ARITHMETIC QUANTITY,

HAS ALL THE PROPERTIES OF THE L-OPERAND
EXCEPT THAT ALL ELEMFYT VALUES HAVE BEEN
DIVIDED BY THE R-OPERAND,

ANY A1?2 | TEMETICQUANTITY,
ANVYARITHMETICQUANTITYWITH T HE SAME NUMBER

OF ROWS AND COLUMNS AS THE L-OPERAND.

AN ARITHMETIC QUANTITY WITHTHE PROPERTIES

OF THEL-OPFRANDs, ALL POINTERS ARE SET TO ZERQe

SAMEASY'+'(BINARY)

SET NPERATORS

OPERATOR

¢ AND ¢

* OR ¢

PART

L-OPERAND
R=(PERAND
RF SULT

L-0OPERAND
R=0PERAND
RESULT

Y*AND NOT Y

L—-0OPERAND

R-0OPERAND

RESULT

CHARACTERISTICS

ANYSET,

ANYSFTa

A SET CONTAINING ONLY THOSE ELEMENTS WHICH
APPFAREDINBOTHTHEL-OPERAND AND THE R-OPERAND,

ANYSET,

ANYSFT,

A SETCONTAINING ALL ELEMENTS WHICH APPEARED

IN EITHER THE L-OPERAND, THE R-OPERAND ORBOTH,

ANY SET,

ANY SET,

A SET CONTAINING ALL ELEMENTS WHICH APPEARED
INTHE L-OPERAND BUT NOTINTHE R-OPERAND.

—

T T

2(9)

ARI THMETIC TEST OPERATORS

ARITHMETIC T E S T DPERATORSIMPOSETHREE OIFFERFNTREQUIREMENTS
(INT H EIRTWOOPERANDNS, TOSATISFY THESE REQUIREMENTS BOTHOPER ANDS
ARFTREATEDAS MATRICES. THESEREQUIREMENTS ARF:

1)
2)
3)

OPERATR

1=zt

1=

|>l

.(I

T Y FTWOUPERANDS H A V E THE SAME NUMBER OF RNWSe
THYFTWIOPERANDS HAVE THE SAMENUMBEROF COLUMNS.
THE SPECIFIED RELATINNSHIP HILDS WITHINEACHPAIROF

CORRESPONDING(L-0OPERAND,R-OPERAND) ELEMENTS.
PART CHARACTERISTICS

L-0PERAND ANY4RITHMETICQUANTITY,

R-OPERAND ANYARITHMETIC QUANTITY.

RESULT A LOGICALQUANTITY WHICH IS TRUE ONLY IF
REQUIREMENTS 1)42)y AND3)ARESATISFIEO
WITH THE EQUALITY RELATIONSHIP.

L-OPERAND A NVYARITHFMETICQUANTITY,

R=0DPERAND ANYARITHMETICQUANTITY,

RESULT a LOGICAL QUANTITY WHICH IS FALSE ONLY I F
REQUIRFMENTS 1)y 2)y AND3)ARE SATISFIED
USINGTHEEQUALITYRELATIONSHIP,

-

L-OPERAND ANYARITHFMETIC QUANTITYS8

R-0OPERAND ANYARITHFMETICQUANT ITY,

RESULT A LOGICAL QUANTITY WHICH IS TRUE ONLY IF
REQUIREMENTS 1), 2)y ANO3)ARE SATISFIED
USING THF GREATER THANOR EQUAL RELATIONSHIP.
A NERRORCONDITIONEXISTS IFFITHERO F
REQUIREMENTS1)A N 02)¥1 S N O TSATISFIED.

SAW as?®=' EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT
3)IS LESS THANOJR EQUAL.

SAME A$*>=* EXCEPT -THAT THE RELATIONSHIP FOR REQUIREMENT
3) IS STRICTLY GREATER THAN.

SAME AS *>=' EXCEPT THAT THE RELATIONSHIP FOR REQUIREMENT
3)1S STRICTLY LESS THAN,

§
C

-

—

— c— — — r— r— r—r

r—

—

2(19)

2=-5-3 SEMANTICS (CONTINUED)

SET TEST OPERATORS
OPERATOR PART

* IN ' L-0PERAND
R-0OPERAND
RESULT

LOGICAL OPERATORS
OPERATOR PART

‘NOT"* L-OPERAND
R-OPERAND
RESULT

"AND'*L-OPERAND
R-0PERAND
RESULT

' OK ' L-0OPERAND
R-OPERAND
RESULT

CHARACTERISTICS

ANYSET,

ANYSFT,.

A LOGICALQUANTITY WHICH IS TRUE ONLY IF ALL
ELEMENTS OF 7 v eL-OPERAND ARE ALSC ELEMENTSO F
THER-OPER AND,

CHARACTERISTICS

NONE

ANY LOGICAL QUANTITY.

A LOGICAL QUANTITY WHICHIS FALSE IF THE
R-OPERAND IS TRUE ANDIS TRUEIF: THER-OPERAND
IS FALSE.

ANY LOGICAL QUANTITY,.
ANYLOGICAL QUANTITY,
ALOGICAL QUANTITYWHICHIS TRUE ONLYIF BOTH
THE L-OPERAND AND THE H-OPERAND VALUES ARE TRUE.

ANY LOGICAL QUANTI TY.

ANYLOGICAL QUANTITY,

A LOGICAL QUANTITY WHICH IS FALSE ONLY IF

BOTH THE C-OPERAND AND THE R-OPEQAND VALUES ARE
FALSE.

r— r—

L

-

r—

2(11)
2-6 OTHER EXPRESSIONS

MPLCONTAINSCONSTRUCTIONS WHICH ARE NOT PROPERLY coceco s
COMPUTATIONAL EXPRESSIONS, BUT WHICH ARE USED TO COMBINE VARIABLES,
CONSTANTSy, DR MORE COMPLICATED EXPRESSIONSINTO tineen exrnessions

2—-6—1 DOMAIN ITEMS
<DOMAIN ITEM>2:=*(*<EXPRESSIOND>' yese + ' KEXPRESSION>*)?

DOMAIN ...HAVE VALUESWHICH ARE SETS. THE SETS ARE SPECIFIEO
BY SPECIFYING THE LOWEST AND HIGHEST VALUED ELEMENTS ANDASSUMING
THATALLINTERMEDIATE VALUED ELEMENTS ARE IN THE SET. ROTH
EXPRESSIONS SHOULD HAVE SCALAR ARITHMETIC VALUES AND ONLY THE
WHOL ENUMBERPARTSNFTHESEWILLBE USED. THE VALUE OF THE

FIRST EXPRESSIONSHOULDBELESS THAN THESECOND, IF THE EXPRESSION
VALUESAREEQUAL THE SET WILL CONTAIN ONE ELEMENT. IF THE FIRST
EXPRESSIONIS GREATERTHAN THE SECOND THE SET WILLBFEMPTY.

EXAMPLE DCMAINITEYS
(lraeerM)
(I+J-Kyenesl-1)
(HEREsos ey THERE)

2=-6-2 CONCATENATOR
<CONCATENATOR>:3=? (‘<EXPRESSION LIST>?)?

A CUNCATENATOR HAS AN ARITHMFTIC VALUE,, ITALLOWS THE CONSTRUCTION

O F ARITHMETIC DATA STRUCTURES BY ‘THEEXPLICIT HORI ZONTAL CONCATENATION
(ADJACENTPLACEMENT) OF SEVERAL SMALLFR STRUCTURES WITH THE SAME
NUMBER OF ROWS. THEINDICESOF THE RESULTINGSTRUCTUREBEGIN

A TONE, VEKTICAL CONCATFNATION IS ACCOMPLISHED USINGTH E

OPERATOR * #¢,

EXAMPLE CONCATENATORS
{19y34498,10)
(3%] 45%Ky2%J43,4144,13,69)
(AyB)

2(12)
L Z-6-3 ARRAY CONSTRUCTOR
CARRAYCONSTRUCTOR>:2=" (*<EXPRESSION>* ‘<FOR PHRASE>")’

AN ARRAV CONSTRUCTOR HAS AN ARITHMETIC VACUE. IT ALLOWS THE
CONSTRUCTIONO FARITHMETIC DA TA STRUCTURESBY THEIMPLICIT HORIZONTAL
CONCATENATION OF SEVERAL EXPRESSIONVALUESs THUS ALL EXPRESSIONS
‘BEING CONCATENATED MUST HAVE THE SAME NUMBER OF ROWS. THE
FOR-PHRASE(3-2-5-2)GOVERNS THE | TERATIV EPROCESSWHICHPROVIDES
VALUESTOB ECONCATENATED.

EXAMPLE ARRAY CONSTRUCTORS
(A{*, I)+BFOR | TN S)
(BII')FOR | IN(lyaneoN))

r—

r;;'_;,

(C(J) FOR J 1IN S|F(J) >= D)
2-6-4 SUBSET SPECIFIER
{
“ <SUBSET SPECIFIER>::="(*<VARIABLENAME>* IN ‘<EXPRESSION>

* | *<EXPRESSION>')?

SUBSET SPECI_‘FIERSPRODUCESETS. THEY FORM SETS FROM LARGER
SETS BY SELECTINGELEMENTS WITH A GIVEN PROPERTY. THE VARIABLE
NAME REPRESENTS ELEMENT SSELECTED F Ro MTHE*PARENTYSET SO THAT

r—

L THEY YAVBE TESTED FOR THE PROPERTY. THEFIRST EXPRESSION
DETERMINES THE PARENT SET AND MUSTBE SET VALUEDe THE SECOND
EXPRESSION TESTS THE PROPERTY AND MUST’ BE LOGICAL VALUED. ONLY
5‘ THOSEELEMENTSIN THE PARENT SET FOR WHICH THE LOGICAL EXPRESSION
I IS TRUE ARE INCLUDED IN THENEW SFTe
1 EXAMPLE SUBSET SPECIFIERS
1 (JI NSIA(JyK)I<=R)

{(J IN S {J>=D AND J~=Y)

r— r— I

SN

-
A}

o

L

r—

r—-

—

3(1)
3 PROGRAM CONSTRUCTION

<PROGRAM>:: =*PROCENDURE ‘<PROCEDURE IDENTIFIER>
<STATEMENT SEQUENCE>" FI NI’ *3¢
| <PROGRAM> * PROCEDURE *<PROCEDURE IDENTIFIER>
CSTATEMENT SEQUENCED*FINTY 5 °

(PROCEDUREIDENTIFIFR>: s =<VARTABLENAME>
[<VARIABLE NAME>? (*<VARIABLENAMELIST>")?®

<VARTABLENAMELIST>::=<VART'ABLENAME>
|<VARTIABLE NAME LIST>',*'<VARIABLE NAME>

A PROGRAMT NMPL I S A COMPLETE sTATEM ENT oFA NALGORITHMA Npo

I S MADE U POFONENDRMORE PROCEDURE DEFINITIONS. ITIS ASSUMED
THAT THE PROGRAM BEGINS WITH THE FIRST PROCEDURE SO DEFINED,

IN THE CURRENT VERSION OF THE LANGUAGE PROCEDURE DEFINITIONS
MAYNOT BE “JESTED (APPEAR WITHIN OTHER PROCEDURE DEFINITIONS)
ALTHOUGH PROCEDURE CALLS MAY BE NESTED TO ANY OEPTH (PROCEDURE A
CALLSPROCEDUREBWHICHCALLSPROCEDURE CyETC.)s

PROCEDJRE DEFINITIONS BEGINWITH THE KEYWORD ‘PROCEDURE’ AND
E N DWITHTHE_KEYWORD'FINI®, NOTE THAT PROCEDURE DEFINITIONS
HAVE THE SAME GENERAL FORMAS ACOMPLEXKEYWORD STATEMENT (3-2-5).

THEPROCEDURE IDENTIFIERPROVIDES NAMESFORTHEPROCEDUREAS WELL
ASFORTHE INFORMATION WHICH WILL BE PASSEDT O THE PRNOCEDUREB Y

A CALLING PROGRAM, WHEN THE PROCEDURE ISCALLED THE PARAMETER
EXPRESSIONS (SEE PROCEDURE CALLS (2-4))ARE EVALUATED AND THESE
VALUES ARE USED IN THE CALLEDPROCEDURE WHEREVER THEIR REPRESENTATIVE
NAMES 3JCCUR,

EXAMPLE PROGRAM COMPOSED OF TWO PROCEDURES

PROC EDURE PROG
209
SUBLJ,K)3
e MO
FINIS;
PROCEDURE SUB(EF)
RETURN;
*0 9

FINIS:

3-1 STATEMENT SEQUENCES
<STATE MENT SEQUENCE>: :=<STATEMENT> [<STATEMENT SEQUENCE><STATEMENT>
A STATZMENT SEQUENCE IS A SEQUENCE OF ONEOR YORE STATEMENTS.

THISCINCEPT IS USEFUL FORDEFINING PROGRAMS (3) AND COMPLEX
KEYWORD STATEMENTS (3-2-5),

— o o

r— r— r—

r—

r—

3(2)
3-2 STATEMENTS

<STATEMENT>: :=<LABEL>*: " <STATEMENT>
I CASSIGNMENT STATEMENT>
| <CPROCEDURE CALL STATEMENT>
| <KEYWORD STATEMENT>

‘STATEMENTS INMPL DETERMINE THE SEQUENCE OFOPERATIONS WHICH

MAKES 4 PROGRAM MEANINGFUL.,

3-7Z-1 LABELS
LABEL>::=<VARIABLENAMED>|*(*<KDIGIT STRINGY)*

LABELS ARE EITHER VARIABLE NAMES ORSTRINGS OF DIGITS ENCLOSED
I NPARENTHE SE Se SINCFMPLIS WRITTENINA FREE FORMAT, A LABEL
MUSTBESEPARATED FROM THEFOLLOWING STATEMENT BYACOLON?*z"?,
LASELSMAY ONLY B E REFERENCECBY'GOTO*STATEMENTS (3-2-4-2).

EXAMPLE LABELED STATEMENTS
LABEL: VARI=EXP;
LOCATION_B: VAR2:=EXP2;
(13): VAR3:=EXP3;

3-2-Z7 ASS | GNMENT STATEMENTS

<ASSIGNMENT STATEMENT>: 3 =<VARIABLE>*:="<EXPRESSICND>*;?
(<VARIABLE>’ :="<EXPRESSINN>®' *<FOR PHRASE>';!
I<VARTABLE>*:=*<FXPRFSSION>® ¢ IF *<EXPRESSION>";?
| <VARIABLE>' :=*<EXPRESSION>'W H E R E*<SYMBOL SUBSTITUTFR> ;"

ASSIGNMENT STATEMENTSALTFR THE VALUES OF VARIABLES. THE VARIARLE
ON THE LEFT OF THE ASSIGNMENTSYMBOL TAKESTHE VALUE OF THE
EXPRESSIONANTHERIGHT. THIS EXPRESSIONMUST HAVE THE SAME TYPE
AS THE VARIABLE.

EXAMPLE ASSIGNMENT STATEMENTS
A N_Ho=
MATR IX:=(A.B)#
(CyG)3
YES_OR_NQO:=MATRIX~=INVERSE(A)
SET1:=SET2ANDSET30 RSET4;

L

— r— = r— r— —

—

r—

—

3(3)
3-2-2 ASSIGNMENT STATFMENTS(CONTINUED)

THE ASSIGNMENTSTATEMENT HAS SEVERAL MODIFIED FORMS WHICH ARE
PROVIDED TO MAKEYPLA MORE 'NATURAL’ LANGUAGE.

THE ITERATED ASSIGNMENT STATEMENT

THEITERATEOQOASSIGNMENT STATEMENTPROVIDES AMETHOD FOR ITERATIVELY
PERFORMING 4N ASSIGNMENT,, THIS FORM IS EQUIVALENTTOTHE SHORT
FORM ITERATED STATEMENT (3~-2-5=2), FOR PHRASES ARE ALSO DISCUSSED
I N(3-2-5-21),

EXAMPLE ITERATED ASSIGNMENT STATEMENTS

A(P_ROWsJ) :=A(P_ROW,J)/A(P_ROW,P_COL) FORJ | NCOLDOM(A)3
AlT,%)2=A(T,*)-A(I,P_COLI%XA(P_ROW,*) FOR T | NROWDOM(A)|
I~=P_ROW;

CCNDITIONEDASSIGNMENT STATEMENT

THE CONDITIQONEDASSIGNMENT STATEMEYT ALLOWS THE SPECIFICATION 0F
ACONDITION UNDERWHICH ANASSIGNMENTWILLOCCUR, THISFORMIS
EQUIVALENT TOTHE SHORTFORMOF THE CONDITIONED STATEMENT (3-2-5-1)4

EXAMPLE CONDITIONED ASSIGNMENT STATEMENTS
B:=B-A(*,J) 1 FX(J)=1;
B(INz=R(I)I FARIII>=0;

THE ASSIGNMENT STATEMENT WITH SYMBOL SUBSTITUTION

THE ASSIGNMENT STATEMENT WITH SYMBOL SUBSTITUTION ALLOWS’ THE
USERTO REDUCE THE APPARENT COMPLEXITYOFEXPRESSIONSBYUSING

4 SINGLE SYMBOLTO REPRESENT A LARGEANDCOMPLEX STRING OF
CHARACTERS AS DEFINED BY THE SYMBOL SUBSTITUTOR FOLLOWING
THE*WHERE' (SEE(3-2-4-1) FORA DEFINITIONOFSYMBOLSURSTITUTORS),
ONLY A SINGLE SUBSTITUTIONIS ALLOWED SINCE THE'$"STATEMENT
TERMINATOR ALSO TERMINATES THE STRING TOBESUBSTITUTED. THIS

FORM IS SIMILARTO USING A ‘LET’ STATEYENT EXCEPTTHAT THE

(SYMBOL CHARACTER -STRING) EQUIVALENCE ONLY HOLDSWITHINTHE

ASSIGNAENTSTATEMENT DEFINING IT,,

EXAMPLE ASSIGNMENT STATEMENTS WITHSYMBOL SUBSTITUTION
t=P+Q WHEREP:=INVERSE((A,B)#{(C,0));

IMPLICIT DEFINE STATEMENT

IF A VARIABLE FIRST APPEARS AS LEFT MEMBER OF AN ASSIGNMENT STATEMENT WITHOUT ITS
TYPE STRUCTURE AND STORAGE REQUIREMENTS HAVING BEEN PREVIOUSLY DECLARED BY A DEFINE

STATEMENT (3-Z-4-4) THESE REQUIREMENTS ARE DETERMINED BY THE EXPRESSION THAT APPEARS

AS RIGHT MEMBER. THE IMPLICIT DEFINE CONCEPT IS UNDER DEVELOPMENT AND WILL NOT BE
DISCUSSED FURTHER.

— r— r— r~r—r— -

!
C

r— r—

—

r—

r—

3(4)

3-2-3. PROCEDURE CALL STATEMENT
<PROCEDURE CALL STATEMENT>: :=XPROCEOQURECALL>';"'

A PROCEDURE CALL STATEMENT CALLS A PROCEDURE WHICHDOES NOT RETURN
A VALUE(VSs THE PROCEDURE CALL WHICH CALLS A PROCEDURE FROM WITHIN
‘AN EXPRESSION }e SINCE THFPROCEDURE CALL STATEMENT APPEARS
ALONE{(NAT IN ANEXPRESS ION)y ANY VALUE RETURNEN BY THE PROCEDURE
IS LOST.

EXAYPLE PROCEDURE CALL STATEMENTS
PIVOT(AyP_ROW,P_COL)3
PROC1(A4ByCyD) 3
PROC2 (1 +J-3%KyJ=2 ¢y WHAT_NOW,{AyB,CH)3

3-2-4 KEYWORD STATEMENTS

<KEYWORD STATEMENT>:: =<LET STATEMENT>
1<GOTO STATEMENT >
{<CRETURN STATEMENT>
| KOEF INE STATEMENT>
|<RELEASE STATEMENT>
|<CONDITIONED STATEMENT>
| KCITERATED STATEMFNTD>
| <BLOCK STATEMENT>

EACHKEYWORD STATEMENT BEGINS WITH AN MPL KEYWORDa THESE
STATEMENTS ARE DIVIDED INTOSIMPLE AND COMPLEX STATEMENTS. COYPLEX
STATEMENTS HAVE SPECIAL BEGINNING AND ENDING SYMBOLS AND CONTAIN
OTHERSTATEYENTSWITHINTHEY. THISSECTIONDISCUSSESONLYTHE
SIMPLE KEYWORD STATEMENTS*

3-2-4-1 LET STATEMENT

SLET STATEMENT>: 3='LET *"<SYMBOL SUBSTITUTERD>® 3¢
| 'SAME LOCATION **(*<VARIABLE NAME>@ 9" <VARIABLE NAME>’)?*;?*

<SYMBULSURSTITUTER>::=<KVARTABLENAMED>':=*<CHARACTERSTRING >
(<KVARIABLE NAME>'(*<VARIABLE NAME LIST>*")*¢:=¢tJCHARACTER STRING>

LET STATEMENTSDIFFER FROM OTHER MPL STATEMENTS BY MODIFYING
THEPRIGRAM AT TRANSLATION TIME INSTEAD OF EXECUTION TIME. THEY
CANMAKE A PROGRAM EASIER TOWRITE AND/OR MORE READABLE BY
ALLOWING THF PROGRAMMEP TO REPRESENT CHARACTER STRINGS B8Y SYMBDLS.

THETWIPARTSOF ASYMBOLSUBSTITUTER ARE THE CHARACTERSTRING (1-3)TO THE -
RIGHT JF THE ASSIGNMENT SYMBOL AND THE IDENTIFIER TO THE LEFT,
THEIODENTIFIER PROVIDES A NAME FOR THE CHARACTER STRING AND,
OPTIONALLY, NAMES FOR PARAMETERS. IF THESTRING NAME IS DEFINED
WITHOUTPARAMETERS EVERY OCCURRENCEQOF THE NAME IN THE FOLLOWING
TEXT WILLBE REPLACED BY THE CHARACTER STRING. THE PARAMETERS

3(5)
3-2-4-1 LET STATEMENT (CONTINUED)

ALLOWADDIFICATION OF THE CHARACTER STRING AT THETIME OF REPLACEMENT
WHEN OCCURRENCES OF THF PARAMETER NAMES IN THE CHARACTER
STRING ARE REPLACED WITHTHE CHARACTER STRINGSPROVIDENDA S

— PARAMETERSWITHTHE STRING NAME. IF COMMAS MUST APPEAR WITHIN
THESEPARAMETER CHARACTER STRINGS, TWO MUST BE USED FOR EVERY
YINTENDED SINGLE OCCURRENCE. THUS(AyB)YA S APARAMETERCHARACTER

— STRING INALET STATEMENT MUST BE WRITTEN(Ay9yB)s WHICH ISTO AVOID
HAVING THECOMMA TREATED AS-A PARAMETER SEPARATOR. THESEMICOLON.
TERMINATES THE CHARACTFRSTRINGANDSD MAY NUT OCCUR WITHIN IT,

AS 4RATHEREXTREMEEXAMPLE, THE STATEMENT
LETA(C,IVY = BLINXC(J)3
FOLLOWEDB Y
— NIK):=A(R+F4N);
YIELDS
D(K) :=B(N)®R+F(J);
. WHILETHESTATEMENT
LETLOOP{VAR,START,INCySTOP):=FORVAR:2=START STEP INC UNTIL
STOP D03
FCLLOW=ED BY -
LOOP(I¢43%M+Ky15,NY A(I):=B(I)3;ENDFOR;
YIELDS
FOR I :=3%J4KSTEP 15UNTILN D OA(I}2=B(I)}sENDFOR;

CERTAINLY THESE ARE RATHER OBSCURE USESINA MATHEMATICAL
PROGRAAMING LANGUAGE,BUT THEYAREINCLUDED TOGIVETHE READER
INIDE4UFTHE POWER WHICH IS INHERENT I N THIS CONCEPT.

I NA MORECONVENTIONALUSAGE THESTATEMENT
LETB(T):=A(T,yx)%X3

FOLLOWED BY
IF 8(1)>0, GO TO(5)3:

YIELDS
- I FA(L,*)%X>C,G0T 0{5);

THE FORM USING THE KEYWORD *SAME LOCATION?® |NDICATES AN EQUIVALENCE
BETWEENTHETWO SYMBOLSWITHINTHE PARENTHESES.

A SHORT FORM OF LET STATEMENT USING INVERTED WORD ORDER WITH 'WHERE' INSTEAD OF
'LET', IS DISCUSSED UNDER (3-2-2).

— 3= 2'4 -2 GO TO STATEMENT
<GOTU STATEMENT): 2='GOTO ‘<LABEL>"3"*
GOTOSTATEMENTS 4LTER THE NORMALSEQUENTIAL FLOW OF PROGRAM
EXECUTIONBYTRANSFERRINGCONTROLTDTHE POINT IN THE PROGRAM
INDICATEDAY T H ELAREL(3-2-1),
EXAMPL=GODTO STATEMENTS

GOTOLOC3;
GO TO(23);

f
L

=

r r— r— r— r

r~—

3{06)
3-2-4-3 RETURN STATEMENT
<RETURN STATEMENT,: t=¢RETURNYI

THF RETURN STATEMENT RETURNS CANTROL FROM A CALLEDPRDCEDURE
TOITS CALLINGPROCEDURES

EXAMPLEUSEO FTHERETURNSTATEMENT. IN APROCEDURE

PROCEDURE EQUAL{A,B)

| FNDOM{A)~=DCM(B)THEN
EQUAL :=FALSF;
RETURN s

ENDIF;

FOR I | NDUMCA),

IF A(IV-=B(I)THEN
EQUAL:=FALSE;
RETURN 3

ENDIF;

EQUAL:=TRUE;
RETURN;
FINT3

3-2-4-4 OEF INE STATEMENT

<DEFINE STATEMENT>::='DEFINF “‘<VARIABLE NAME L | ST>XTYPE PHRASE>
<SHAPE PHRASEDSSIZE PHRASE>

<TYPEPHRASE>::="ARITHMETIC*{*LOGICAL’|*SET’]|*CHARACTER
|<NULL PHRASE>

<SHAPE PHRASE>: : =*RECTANGULAR*|'DIAGONAL*I'UPPERTRIANGULAR’
I*"LOWER TRIANGULAR'!'ROW*|* COLUMN'{' SPARSE WITH?
<EXPRESSION>" NONZEROSI<KNULL PHRASE>

<ST7EPHRASE>::=<EXPRESSIGN>*BY ‘<EXPRESSION>
| KEXPRESSION> | <KNULL PHRASE>

REFOREAVARIABRLE NAME MAY BEUSED IN A PROGRAM THE TYPE,

STRUCTUREy ANDSTORAGE REQUIREMENTS OF THE VALUES WHICHIT
REPKESENTS MUSTH EDECLAREDa THE ONLY EXCEPTIONS ARE THE VARTIABLES
USEDINITERATED STATEMENTS{3-2-5-2) ANDARRAYCONSTRUCTORS (?~-6-3),
AND SETELEMENT REPRESENTORS USED INSUBSET SPECIFIERS (2-6-4).

SEE IMPLICIT DEFINE ASSIGNMENT STATEMENT UNDER 3-2-2.

VARIABLENAMELISTSAREDEFINED UNDER PROGRAMS (3),

THE TYPE PHRASE DETERMINES WHETHER THE VALUE OF THE VARIABLE I S
TOBETREATED A SA NARITHMETIC,LOGICALySET, OR CHARACTER
QUANTI TV,, IF THIS PHRASE IS OMITTED THE VALUE IS ASSUMED TO BE
ARITHMETIC,

THE SHAPE HRASE MAY ‘ONLYBEUSED WHENDEFINING ARITHMETIC
QUANTITIES AND DETERMINES THE STRUCTURE OF SPACE REQUIRED FOR
STORINGTHEDATAA SWELLASITSORGANIZATION, IF THE SHAPE

r— ¢ r— r— r— -

-

3(7)
3-2-4-4% DEF INE STATEMENT (CONT | NUED)

PHRASE IS OMITTEDTHEDEFAULTASSUMPTIONS ARE:

DIMENS ION DEFAULT SHAPE
2 RFC TANGUL AR
1 COLUMN
0 NONE

THEMUJDIFIERS ‘RECTANGULAR’, ‘DIAGONAL’, "UPPERTRIANGULAR’, AND
TLOWER TRIANGULAR®' A R EONLYMEANINGFULWHEN DEFINING TWODIMENSTIONAL
QUANTITIES(MATRICES)IWHILETHE MODIFIERS'ROW*AND ‘COLUMN’

ARE MEANINGFUL ONLY WHENDEFININGONEDIMENSIONAL QUANTITIES
(VECTORS)y THEMODIFIER ‘SPARSE CANCONSERVE STORAGE WHEN
THEREIS 4 PREDOMINANCE OF ZERO ELEMENTS IN THE AR®AYe THE
EXPRESSIONINTHESPARSE MODIFIERMUSTBEA SCALAR VALUED

ARITHMETIC EXPRESSION IN THATITINDICATES THENUMBER OF ELEMENTS

(JF THE SPARSE ARRAY WHICH AREACTUALLY T OBEKEPT,

THE SI1ZE .PHRASESPECIFIESTHENUMBER OFDIMENSIONSOF THEVARTABLE
ASWELLAS THE RANGESOFTHE INDICESONEACH OF THESEDIMENSIONS,
THEEXPRESSIONSINTHESIZE PHRASE MUSTBE EITHER DOMAIN ITEMS
(2-6-1) OR SCALAR 4RI THMETICEXPRFSSIONSe DOMAINITEMSGIVE

BOTH THE UPPERANDLOWERB{OUND ON THE RANGE OF THE SUBSCRIPT WHILE
SCALARARITHMETICEXPRESSTOYSNETERMINEONLY THE UPPER BOUND

ON THE SUBSCRIPT RANGE AND A LOWERROUND OF ONEIS ASSUMED,
THETYPEPHRASEy SHAPE PHRASF, AND SIZE PHRASE MAY APPEAR IN

ANY ORDER IN 4 DEFINESTATEMENT,

EXAMPLE DEFINE STATEMENTS
DFFINE JyK ARITHMETIC;
DEFINFSET1,SET2,SET3S ET:
DEFINESTRINGLCHARACTER;
DEFINE A (lyesse sM) BY (lyaeesN)s3
DEFINEA M BY N;
DEFINE C N ROW;
DEFINESPARSE-AMBYN SPARSE WITHI®NNONZERQSS

3-2-e-5 RELEASE STATEMENT
<RELEASE STATEMENT>::='RELEASE ‘<VARIABLE NAME LIST>";’

THERELFASE STATEMENT EXPLICITLY RELEASES THE STORAGE ALLOCATED
BYO RAFTERT H ECORRESPUNDING D EF I NESTATEMENT(3=2=4-4),IT
ISIMPROPERTORELEASE AVARIABLEWHICH WASDEFINEDOUTSIDE

OF THE CURRENTBLNCK(3-2-5-3)s RELEASE STATEMENTS REFERENCEING
VARTABLENAYES WHICH HAVE NOT BEEN DEFINED OR HAVE ALREADY BEEN
RELEASSD A R EIGNURED. THE RELEASE STATEMENT ALSOIMPLICITLY
RELEAS=S 2LL STORAGE WHICHWAS DEFINED AFTER ANY VARIABLE IN
THENAMELIST (SEE(3-2-5-3) FOR AN EXAMPLE).

EXAMPLE RELEASE STATEMENTS
RELEASE A;
RELEASE AyByCyDyR, T3

i
.

r—

r_w

r—

r—

e

e

3(8)
3-2-5 COMPLEX KEYWDRDSTATEMENTS

THEFOLLOWING SECTIONDI SCUSSESCOMPLEXKEYWORD STATEMENTS.
THESESTATEMENTSA L LHAVFTHEF O R M

<INTRODUCT IOND>KSTATEMENT SEQUENCE>LKTERMINATION>

3-2-5-1 CONDITIONED STATEMENT

SCONDITIONED STATEMENT>: 2='|F ‘<EXPRESSION>‘, ‘<STATEMENT>
(*IF ‘<EXPRESSION>" THEN ‘<STATEMENT SEQUENCE>
<ORIF SEQUENCE><OTHERWISEPHRASED'ENDIF¢3?

<OR IF SEQUENCE>::=<NULL PHRASE>
IKOR IF SEQUENCE>'ORIFICEXPRESSIONDYTHEN?
<STATEMENT SEQUENCE>

COTHERWI SE PHRASE>:: ="OTHFERWISE ‘<STATEMENT SEQUENCE> | <NULL PHRASE>

A CONDITIONED STATEMENT ALLOWS THE USERTO SELECT CONDITIONS
UNDER WHICH STATEMENT(S)WILLBEEXECUTEDe TYEF SHORT FORM IS
USEDIONLYWHEN A CONDITION GOVERNS THE EXECUTIONOF A

SINGLE STATEMENT, THE LONGFORY ALLOWS THE TESTING OF SEVERAL
MUTUALLY EXCLUSIVE CONDITIONS, WHEN A CONDITION IS SATISFIED THE
STATEMENTS FOLLOWING THETESTAREEXECUTED AND CONTROL PASSES
TOTHE ENDOFTHE STATEMENT, THEEXPRESSIONS FOLLOWING THE
KEYWORD ‘IES AND THE KEYWORD ‘OR IFP 4RELOGICAL VALUED.
SPECIFICALLY THELOGICAL EXPRESSIONFOLLOWING THEIF" I S
EVALUATED AND IFTRUETHE FOLLOWING STATEMENT SEQUENCE IS EXECUTED
ANDCONTROL THEN PASSES TO THEYENDIF?®, IF THE EXPRESSION IS
FALSE THE EXPRESSION IN THENEXTFOLLOWING ‘ORIF* IS EVALUATED
WITHTHE SAME ACTIONS. IF AN ‘OTHERWISE’ IS ENCOUNTERED &LL
STATEMENTS IMMEDIATELYFOLLOWING THE ‘OTHERWISE' ARE EXECUTED.

EXAMPLE CONDITIONED STATEMENTS
IF 7I-~=0 ,G OT ONDN_ZERO;
| FA(%4J)=By A(*,J)3=A(%,K);
IF A=BTHFN
GOTO A-EQUAL-D:
ORIFA=CTHEN
GOT OA_NE_B_BUT_EQ_C3
NR IF J==KANDN>3%RTHEN
R2= N;
OTHERWISE
C:=A3
GOTO NO-GOOD;
ENDIF;

SEE ALSO CONDITIONED ASSIGNED STATEMENT UNDER (3-2-2) WHERE A SHORT-IF FORM IN
INVERTED ORDER IS DISCUSSED.

3(9)
3-2-5-2 ITERATED STATEMENT

<I TERATED STATEMENT>: :=<FORPHRASED>? “<STATEMENT>
I<FORPHRASE>' DO ' <STATEMENT SEQUENCE>'ENDFDR* 3¢

KFOR PHRASED>::='FOR'<VARIARLE NAME>' IN ‘<EXPRESSION>
| *FOR *<VARIABLE NAME>* [N ‘<EXPRESS ION>’ | ‘<EXPRESSION>
] " FOR‘<VARIABLENAMED® :=¢EXPRESSIOND*'STEP"
<EXPRESSION>® UNTIL *<EXPRESSION>

THE FOR PHRASE GOVERNS THE INDEXING OF AN ITERATION, ONE OF THE
TWO FORMSINDICATESANINDEXING OVER ELEMENTS OF A SET, NAMFSTHE
INDEX, SPECIFIES THE SET, ANDALLOWS ELEMENTS OF THE SETTORE
SELECTIVELY DISCARDED, ON EACH CYCLEOFTHEITFRATION T THE INDEX
TAKESONA NEW VALUE FROMTHE SET, THIS INDEX MAY BE USEDTD
AFFECT STATEMENTS WITHINTHE SCOPE Of THE ITERATION. SELECTIVE
DISCARDINGOFELEMENTS IS PERFORMED BYTHEUPTIONAL EXPRESSION
FALLOWING THE ‘SUCH THAT’ SYMBOL(*'{%), HENCE THE INDEX VARIABLE
AND FIRST EXPRESSION MUSTBRE SCALAR ARITHMETIC QUANTITIES, THE
SECOND EXPRESSIONMUSTBE SET VALUED, ANDTHEOPTIONALTHIRD
EXPRESSIONMUSTBELOGICAL VALUED.

THE SECOND FORMSPECIFIES THE INDEXING INA MORE CONVENTIONAL
MANNERIN WHICHTHE INDEXISGIVEN A STARTING VALUEFORTHEFIRST
CYCLEANDTHAT VALUE IS INCREMENTED BY THE STEP ON EACH SUCCESSIVE
CYCLE, THE TERMINAL CONDITION ISTESTED ON EVERY CYCLE BEFORE
ANYENCLOSED STATEMENTS ARE EXECUTED, EXECUTIONO FTHESESTATFMENTS
OCCURSAS LONG AS THE CONDITION IS NOT SATISFIED. THUS THE VAR TABLE
NAMEANDTHEFIRST TWOEXPRESSIONSMUSTBESCALAR ARITHMETIC
QUANTITIES WHILE THE TERMINAL CONDITION EXPRESSION MUST RE LOGICAL
VALUED, THIS SECONDFORMDDOESNOT PROVIDE AN ADDITIONAL TESTFOR
SCREENING INDICES.

EXAMPLE ITERATED STATEMENTS
FOR I IN (lyeesoM)y A(I)2=B(I,J)3
FORI IN SET1]|I=~=PyF O RJIN SET2, AlI,J)3=043;
FOR | IN SET2 ORSET3|B(I)>=0 DO
B(I):==B(I)3
R:=R+13
ENDFORS |
FOR Ke:=1 STEP 2 UNTILK>=N,A(K):=B(K);

SEE ALSO ITERATED AssIGNMENT staTeMeNt UNDER (3-2-2) WHERE THE ABOVE FIRST (SHORT)

FORM IS DISCUSSED IN INVERTED ORDER.

L
L

— r—

L

—

3(10)
3-L-5-3 BLOCK STATEMENT
<BLOCK STATEMENT>::='BLOCK ‘<STATEMENT SEQUENCED*ENNBLOCK®?;?

ALLOCATION AND HANDLING CF STORAGE IS 4 MAJORPROBLEM INMPLSINCE IT
WILL BE USED TO SOLVE PRUBL EMS INVOLVING LARGE AMOUNTS OF DATA.
THEBLICK STATEMENT ALLOWS THE PROGRAMMER TODIVIDEHTIS PROCEDURES
INTOBLOCKS WITHIN WHICH HE CAN ALLOCATE (DEFINE(3“2°4-4H
STORAGE, THIS SPACE IS AUTOMATICALLY RELEASFD WHEN CONTROL
LEAVES THEBLOCK. INADDITICNSTORAGEMAYBEEXPLICITLY
RELEASED { 3-2-~4~5) ELSEWHERE IN THE BLOCK INWHICH IT WAS
DEFINEDy,RUT INNOOTHERBLOCK, IN THIS CASE STORAGE IS RELEASED
IN ANDJRDEROQOPPOSITETHAT OF DEFINITION, THUS THE SEQUENCE

DEFINE A;

DEFINEB;

L] L] *

RELEASEA :
CAUSESBOTHB AND A TO BE RELEASEDIN THATORDERse NOTICE THAT
A PROCEDURE IS AN IMPLIED BLOCK STATEMENT.

EXAMPLE BLOCK STATEMENTS
BLOCK -
DEFINE MATRIXM+1B YN+13;
MATRIX:=(A,B) ¥
(Cy2)3
ENDBLOCK; “EVEN THOUGH IT IS ASSUMED THAT A, ByC,
ANDZAREDEFINED OUTSIDE THEBLOCKy THIS
STATEMENT PRODUCES NO USABLE RESULTS’

41 1)
4 INPUT/Z/OUTPUT
VERY LITTLEWORKHASYETBEEN DONE®BNTHIS SECTION. If IS

CURRENTLY THROUGHT THAT MANY IDEAS WILL BE ADOPTED FROM LANGUAGES
SUCH ASALGOLy FORTRAN,ORPL/I.

5(1)

5 L IRRARY PROCENURES

THIS SECTION DESCRIBESTHFE USE Of SEVERAL PROCEDURES WHICH ARE
PROVIDEDIN THEMPL LIBRARY. REFERENCES TO THESE PROCEDURESALL

HAVE THE FORM F(P) WHERE F REPRESENTS THENAME OF THE PROCEDURE
AND P REPRESENTS ALIST OF PARAMETERS. WHEREINDICATED THESE
PROCEDURES RETURN VALUES WITH TYPE, SHAPE, AND FORM AS DESCRIBED BELOW.

ARGMAX({ VECTOR)

VECTOR AN ARITHMETIC EXPRESSIONWITH A VECTOR VALUE.

VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRST OCCURRING MAXIMUM
VALUED ELEMENTO F*VECTOR’,

ARGMIN({VECTOR)
VECTOR ANY VECTOR VALUED AR ITHMET IC EXPRESSION,
VALUE THE SCALAR ARITHMETIC INDEX OF THE FIRSTOCCURRINGMINIMUM

VALUED ELEMENT OF ‘VECTOR’,

COLDIM(MATRIX)

MATR | X ANY ARITHMETIC EXPRESSION.

VALUE .THE SCALAR ARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OF
THESECOND SUBSCRIPT OF ‘“MATRIX’. THIS FUNCTIONIS
INTENDED FOR FINDING THE NUMBER OF COLUMNSIN A MATRIX,
S OIf *MATRIX' IS AVECTOROH SCALAREXPRESSION, V=1,

DIM(VECTOR)
VECTOR ANY ARITHMETIC EXPRESS ION.
VALUE THESCALARARITHMETIC NUMBER OF ELEMENTS IN THE RANGE OF

THE FIRSTORONLY SUBSCRIPTQOF*VECTOR?, IF *“VECTOR'I S
MATRIX VALUED THIS PROCEDURE IS EQUIVALENT TO ROWDIM,
| F*VECTOR®* IS SCALAR VALUED, Vi=1l.

IDENTITY{RANK)

RANK THE SCALAR ARITHMETIC RANK OF THE SQUARE IDENTITY MATRIX
WHICHIS THE VALUE OF THE PROCEDURE,

VALUE A NIDENTITY MATRIX WITH ‘RANK’ ROWS A ND COLUMNS,

INVERSE(MATRIX)

MATR | X A SQUARENON-SINGULARy MATRIX VALUED ARITHMETIC EXPRESSION.
VALUE THEINVERSE OF ‘“MATRIX".

MAX{ VECTOR)

VECTOR: © A VECTORVALUED ARITHMETIC EXPRESSION*

VALUE THE SCALARARITHMFTIC VALUE OF THE MAXIMUM VALUED ELEMENT
O F'VECTOR?',

MIN{ VECTOR)

VECTOR ANY VECTOR VALUED ARITHMETIC EXPRESSION.

VALUE THE SCALAR ARITHMETIC VALUE OF THE MINIMUM VALUED ELEMENT
O F'YMATRIX?', ALL POINTERS ARE IGNORED.

r— r— — r— —

5(2)

LIBRARY PROCEDURES (CONTINUED)

ONES(RUWS»COLUMNS)

ROWS

COLUMNS

VALUE

THE SCALAR ARITHMETIC NUMBER OF ROWS INVe
THESCALARARITHMFTIC NUMBERNOFCOLUMNSIN V.
A MARTIX OF ONESWITH *ROWS’ ROWS AND ‘COLUMNS’ COLUMNS.

ROWDIM{MATRIX)

MATRIX
VALUE

ANY ARITHMETIC EXPRESSION,

THE SCALAR ARITHMETIC NUMBER OF ELEMENTS INTHE RANGE

OF THE FIRST SUBSCRIPTOF ‘MATRIX". THIS PROCEDUREIS
INTENDED FOR FINDING THE NUMBER OF ROWS INAMATRIX,
BUT ISEQUIVALENT T ODIM(VECTOR)IF ‘MATRIX'ISACTUALLY

VECTOR VALUED, | F'MATRIX* IS SCALAR VALUED, V:=1,

SUM(VECTOR)

VECTOR

VALUE

A VECTOR VALUED ARITHMETIC EXPRESSION*
THE SCALAR ARITHMETIC SUM OF THE ELEMENTS OF ‘VECTOR’,

TRANSPOSE(MATRIX)

MATRI X

VALUE

A NYARITHMETICEXPRESSION.
THE TRANSPOSE OF ‘MATRIX’, IF *MATRIX*HAS*M'ROWS AND
N COLUYNS THEN V HAS ®N'ROWS AND'™M* COLUMNS.

UNIT(SIZE, INDEX)

SIZE THESCALAR ARITHMETIC NUMBER OF ELEMENTSIN VECTOR"'V',

INDEX THE SCALARARITHMETIC SUBSCRIPT OF THE SINGLE ONE VALUED
ELEMENT IN'V?, HERE1 <=INDEXK=SIZE.

VALUE AN 4RITHMETIC COLUMN VECTOR WITH SUBSCRIPT RANGE
(lyeeesSIZE) WHICH HAS ALL ZERO ELEMENTS EXCEPT FOR THE
SINGLEONEELEMENT IN THEINDEX*'THPOSITION.

ZEROS(ROWS ¢ COLUMNS)

ROWS THE SCALAR ARITHMETICNUMBEROF ROWSIN 'V,

COLUMNS THE INTEGER SCALARNUMBER OF COLUMNS IN'V?',

VALUE A YATRIXOf ZEROS WITH *ROWS* ROWS AND ‘COLUMNS' COLUMNS.

ALSO

SIZE...SCALAR ARITHMETIC VALUED PROCEDURE FOR FINDING THE
NUMBEROF ELEYENTS IN A SET.

SETeee SET VALUED PROCEDURE FOR CONVERTING ARITHMETIC
QUANTITIES TOSETS,

DOMe ee SET VALUED' PROCEDURE FOR INDEXING OVER VECTOR ELEMENTS,

ROWDOMeoe SETVALUEDPROCEDURE FORINDEXING OVERMATRIX ROWS.

COLDOMe s SETVALUED PROCEDURE FORINDEXING OVER MATRIX COLUMNS.

L

—

— o

r— ¢— r— r—

r—

6(1)

6 PROGRAM FORMAT | CN MECHANICS
6 -1 CARD FORMAT

YPLUSES A ‘FREE FORMAT’ STYLE WHICH MEANS THATSTATEMENTS MAY
BESTRUNG ONEIMMEDIATELY AFTER THE OTHER, ONLY SEPARATED BY THE

' * TERMINATORS,. THUS MUCHCFTHE RESPONSIBILITY FOR AN AESTHETIC
‘AND READABLE PROGRAM RESTS UN THE WRITER.

WHENCIOMMUNICATING THEPROGRAMTOTHE COMPUTERONPUNCH CARDS
THEPROGRAM ‘TEXT' MUST BE CONFINED TO COLUMNS 1 THROUGH 72
COLUMNS 73 THROUGHBC MAY BE USED FORIDENTIFICATIONSINCETHEY
YILLB EIGNORED, THIS IS ACOMMONPROGRAMMING CONVENTION.

6-2 USE OF BLANKS

BLANKS ARE USED ASDELIMITERS IN MPL AND ARE REQUIRED WHERE
SPECIFIEDINTHEVARIOUS DEFINITIONS. IN ADDITION THEY MAYB E
INSERTED BETWEEN ANY TWO SYMBOLS (ITEMS ENCLOSED IN PRIMES IN
THEMETALANGUAGE DEFINITION) BUT MAY NOTAPPEAR WITHIN VARIABLE
NAMES DR KEY WORDS EXCEPT WHERE SPECIFIED.

WHEREVER A BLANK IS ALLOWED OR REQUIRED ANY NUMBER OF MULTIPLE
BLANKS IS ALLOWED.

6-3 COMMENTS

COMYEYTS MAY BE PCACED ANYWHEREINANYPL PROGRAMSINCE THEY ARE
COMPLETELY IGNOREDBY THE COMPUTER. THEY ARE DELIMITED ON BOTH
ENDS BY AQUOTE(")(THISISNOTA DOUBLE PRIME('")), OBVIOUS
CAREMUSTBE TAKEN TO INSURE THAT THE TERMINAL QUOTE APPEARS
INITSPROPERPLACE,

{

.

r—

r

7(1)

7 RESUME OF DEFINITIONS

<ARRAY CONSTRUCTOR>::= (*<EXPRESSION>**<FOR PHRASE>"‘)’

Z-6-3

CASSIGNMENT STATEMENT>: :=<KVARIABLE>*:='<EXPRESSIOND> ;¢
| KVARTABLE>':=*'<EXPRESSION>' *'<FOR PHRASE>* ;"

| KVARTABLE>*:=¢<EXPRESSION>* “IF ‘<EXPRESSION>‘:’
IKVARIABLE>Y :=*<FXPRESSION> ' WHFRE *'<SYMBOL SUBSTITUTERD® ;¢

<BLOCK STATEMENT>: :='BLOCK ‘<STATEMENT SEQUENCE>'ENDBLOCK®**;?

3-2-7

3-Z-5-3

<CHARACTER>:: =<LETTER>|<KDIGIT>|{<SPECI AL CHARACTER>

1-2

<CHARACTER STRING>::=**| <CHARACTER STRING>XCHARACTER>

<COMPUTATIONAL EXPRESSIOND>::=*+*<EXPRESSIOND>
| *='<EXPRESSION>
| ‘NOT ‘<EXPRESSION>
| KEXPRESSIOND' +*<EXPRESSIOND
J<KEXPRESSIOND*—*<EXPRESSION>
| <CEXPRESSIOND>® % * <EXPRESSIOND
| CEXPRESSION>® /*<EXPRESSIODN>
| CEXPRESSIOND* %% CEXPRESSIOND>
I<EXPRESS ION>’ #'<EXPRESSION>
] <EXPRESSION>® AND ‘<EXPRESSION>
| <EXPRESSION>’ OR ‘<EXPRESSION>
I <EXPRESSION>®' N ‘<EXPRESS ION>
| <EXPRESSINN>* AND NOT ‘<EXPRESSION>
| <EXPRESSIOND>*=<EXPRESSION>
|<EXPRESSICON>'~="<EXPRESSION>
] KEXPRESSIOND*>*<CEXPRESSIOND>
[<EXPRESSIONDYC*<EXPRESS TOND>
| KEXPRESSIOND*>='<EXPRESSI ON>
| KEXPRESSIOND <= <EXPRESSIOND

SCUNCATENATOR>::=*(*<EXPRESSION LIST>*)?

-3

2-5

Z-6-2

<CONDITIONED STATEMENT>::="IF'<EXPRESSION>?,?*<STATEMENT>
| IF ‘<EXPRESSION>’ THEN ‘<STATEMENT SEQUENCE>
<CR | f SEQUENCE><OTHERWISE PHRASE>*ENDIFe v

<DEE INESTATEMENT>::='DEFINE ‘<VARIABLE NAME LI ST>XTYPE PHRASE>

<SHAPE PHRASED<SIZE PHRASE>’ 3?
<KDIGIT>::=%0*| 11812 |v30je40fs5efage|egejege]ege

<DIGIT STRING>::=<DIGITDIKDIGIT STRINGXDIGIT>

3-2-5-1

3.7-4-4

1-2

1-3

<DOMA TN T TEMD>::=7(* <EXPRESS ION>’ yeee “<EXPRESSION>)?

<EXPONENT>:: =<DIGIT STRING>
| *E**+'<DIGIT STRING>
| 1TE**_‘<DIGIT STRING>

2-6-1

%’

r—

rﬁ;

-

r— r—

r—

r—— r— r— r— r— -

7(2)
7 RESUME O FDEF INITIONS(CONTINUED)

<EXPRESSION>:: =% (Y <EXPRESSION>')"
| <NUMBER>
| ‘TRUE’ | *FLASE?
| “NULL’
| * 9" <CHARACTER STRINGY”
I <VARIABLE>
| <PROCEDURE CALL>
| <COMPUTATTIONALEXPRESSION>
| KDOMAIN ITEM>
| KCONCATENATORD
| CARRAY CONSTRUCTOR>
I<SUBSETSPECIFIER)
2
<EXPRESSION LIST>:: =<EXPRESSION>| <EXPRESSION LIST>*, *<EXPRESSION>
2-4
<EOR PHRASE>::='FOR '<VARIABLENAME>* IN ‘<EXPRESSION>
| “FOR ‘<VARIABLE NAME>' IN °*<EXPRESSIOND>'| ‘<EXPRESSION>
| ‘FOR ‘<VARIABLE NAME>' :='<EXPRESS ION>’ STEP?*
, <EXPRESSION>’ UNTIL *<EXPRESSION>
3-2-5-7
<GOTOSTATEMENT»::='G0 TO ‘<LABEL>; ¢
3-Z-4-2
<ITERATED STATEMENT>: :=<FORPHRASE>" , "<STATEMENT>
| <FOR PHRASE>’ DO ‘<STATEMENT SEQUENCED>*ENDFOR? ¢ 30

3-Z2-5-2
<KEYWORDSTATEMENTD>::=<LET STATEMENT>
I<GOT OSTAGEMENT>
| <RETURN STATEMENT>
J<DEF INE STATEMENT>
| <RELEASE STATEMENT>
(<CONDITIONED STATEMENT>
| <ITERATED STATEMENT >
|<BLNCK STATEMENT>
3-2-4
KLABEL>::=<VARIABLE NAMED>] * { *<DIGIT STRING>')
3-2-1
<LET STATEMENT>: : =« L E T'<SYMBOL SUBSTITUTERD>';*
| 'SAME LOCAT ION **(‘<VARIABLE NAME>' 9y *<VARIABLE NAME>')v¢3?
3-2-4-1

<LETTER>::= YA | B 'CYI D | E | F |G I H YT v yr|eKe]oLe
'IMQ|0Nl'.u!|0pl'!Q.'lR|'lSl‘ITI'IUI‘!V!‘I“I‘!XI'!YI'!Z!

1-2
<NULL PHRASE>: :=%'] <NULL PHRASE>'?
1-3
<NUMBER>:: =CNIJMBER BASE> |<NUMBERBASE>»<EXPONENT>
2-2-1
<NUMBER BASE>: :=<DIGIT STRING>
| <DIGIT STRING>.?
| *s '<NIGIT STRING>
IKDIGIT STRINGD> ' *<DIGIT STRING>
2-7-1

T(3)
L 7 RESUME O FDEFINITIONS (CONTINUED)

<ORIF SEQUENCE>: 2 =<NULL PHRASE>
|<ORIF SEQUENCED'ORI F* < Ex PR E S S o n> ' THEN®
<STATEMENT SEQUENCE>
- 3-2-5-1
<OTHERWISE PHRASE>::="(THERWISE ‘<STATEMENT SEQUENCE>
{ | <NULL PHRASE> .
i 3-2-5-1
' <PROCEDURE CALLD>::=<VARIABLE NAME>
|<VARIABLENAMED*({ <EXPRESSIONLIST>*)?

2-4
— <PROCEDURE CALL STATEMENT>::=<PROCFDURE CALL>*;’
3-2-3
; <PROCEDURE IDENTIFIER>D::=<VARIABLE NAME>
- | <KVARTABLE NAMED " (*<VARIABLE NaM ELISTD>t)¢
2-4
<PROGRAMD>::=" PROCEDURE '<PROCEDURE IDENT IFIER>
g STATEMENT SEQUENCE>*FIN[* 3
| <PROGRAM> *PROCEDURE ‘<PROCEDURE IDENTIFIER>
<KSTATEMENT SEQUENCED>*F INIt? ;¢
3
d <RELEASE STATEMENT>::='RELEASE'<VARIABLEN A M ELISTD>?;?
3-Z2-4-5
<RETURN STATEMENTD>::='RETURN ¢
3-7-4-3

<SHAPE PHRASE>:: =' RECTANGULAR’ |* DI AGONAL’ |}* UPPER TRIANGULAR?®
| LOWER TRIANGULAR' I "ROW'|*COLUMN*|*'SPARSEWITH?
<EXPRESSION>’ NONZEROS* {<NULL PHRASE>
3-Z-4-4
<SIZE PHRASE> ::=<EXPRESSION>'BY ‘<EXPRESSION>
| <KEXPRESSION> IKNULL PHRASE>
3-Z-4-4
CSPECTAL CHARACTERDzz=v(t]v)v]egr|oprjo s ejogu]jo_njoge|ose
]l:.llﬂtllli'l_ll""l#l'lal"gll'&"l?'l'sl

1-2
KSTATEMENTD> :s=<CLABEL>"' : ' <STATEMENT>
| CASSTIGNMENT STATEMENTY
|<PROCEDURE CALL STATEMENT>
J<KEYWORD STATEMENT>
3-2
<STATEMENT SEQUENCE>:: =<STATEMENTD |KSTATEMENT SEQUENCED<STATEMENT>
3-1
<SUBSCRIPT ELEMENT>::=t%%|<EXPRESSIOND>
Z-3-2

<SUBSCR IPT LIST>: :=<SUBSCR IPT ELEMENT)
| <SUBSCRIPTLIST>’ '<SUBSCRI PT ELEMENT>
2-3-Z7
<SUBSET SPECIFIER>: :=*({‘<VARIABLE NAME)’' IN'<EXPRESSION>
|<EXPRESSIOND>?)?
Z-6-4
<SYMBOL SUBSTITUTERD>::=<VARTABLE NAMED>':=*<CHARACTER STRING>
| <VARTARLE NAME>® (*<VARIABLEN A M ELIST>Y)*0:=v<CHARACTER STRING>

3-Z2-4-1
<TYPE PHRASE>::="ARITHMETIC'|"LOGICAL'|*SET*]* CHARACTER’
| <NULL PHRASE>
3-Z-4-4

— — — T

|

r—

r—

—

r—

r—

—

r D O A

r

7

KVAR | ABLE>: 3 =<VARTABLE NAME> |[<VARIABLE>* (9<SUBSCRIPT LIST>)

RESUME OF DEFINITIONS (CONTINUED)

<VARIABLE NAME>: :=<LETTER>

<VARIABLE NAME LIST>::=<VARIABLENAME>]
<VARIABLE NAMELIST>? ,*<KVARIABLE NAME>

THISSTATEMENTISN OT PARTO F THEFORMAL DEFINITION, BUTiS

INCLUDED

<KEYWORD>

I<VARTABL E NAMEDSLETTERD
I<VARIABLF NAMEDXDIGIT>

| <VARIABLE NAME>'_?
I<VARIABLE NAME>* !¢

FOR REFERENCE.

$2=* ARITHMETIC’
|‘BLOCK?

r By ¢

J* CHARACTER’
| * COLUMN?

| "DEFINE *
I*DIAGONAL’
'l no ¢

| "ENDBLOCK®

| *YENDIF?*

| * ENDFQR?

| ‘FALSE’

| 'FINI?
J'FOR ¢

) ‘<o TO !
'IIF]

l* IN ¢

V'LET 0

I* LoGgICcAL"
I LOWER TRIANGULAR’
| TNULL Y

| NONZEROS’

|'OR IF ¢

| OTHERWISE ?

| *PROCEDURF ¢

|* RECTANGULAR’

| *RELEASE '
I*trROW"’

| *SAMELOCATION?
I*'seT’

] * SPARSEWITH *

| * STEP ¢

|* THEN

| " TRUE’

J*UNTIL?®

I"UPPER TRIANGULAR’
|* WHERE ¢

8(1)

8 SAMPLE MPL PROGRAMS

PROCEDURE REVISED SIMPLEX{(MATRIXyCOSTSyRHSyBASIC_VARIABLES,
UNBOUNDED’'URJECTIVE-VALUE, ITERATIONS)

DEFINEI J;3 “THESE AREINDICES LATER ON”

— — r

UNBOUNDED: = FALSE; ITERATIONS t=C;

LETP 3= MATRIX;

LET C ¢=COSTS:

LETQ 2= RHS;

LETBV := BASTIC_VARIABLES;
1 LETM 2= ROWDIM(P);
L LET N 3=COLD1M(P)s

“WE ASSUME THAT BV CONSTITUTES A FEASIBLESET

g NF BASIC VARIABLES GIVEN BY THEIR INDICES.

WF WISH TO FINDXD>={0 SUCH THATP*X = Q
WHICHMINIMIZES C*X = OBJECTIVE-VALUE. FIRST
W E CALCULATE THE INVERSE OF THE BASES.",

— DEFINE INV_BMB Y M;

I NV-B:=INVERSE(P(*,RV));

- “THE CURRENT RIGHT HAND SIDE IS”
Q:=INV_B*Q;

L “THE CORRESPONDING COSTVECTORIS ”
DEFINECB MROW;
CB:=C(BV);

— SIS THEINDEX OF THEINCOMING COLUMN
RIS THEINDE X OF THE OUTGOING COLUMN.”
} DEFINE SyR3

PRICING:BLOCK
[ITERATIONS:=ITERATIONS+13

r—

“FIND THE SIMPLEX MULTIPLIERS *SM¥
DEFINE SMMROW;
| SM:=CR* INV_B;
C
“AND THE SMALLEST RELATIVE COST FACTOR”
ﬁ T=ARGMIN{(C-SM*P) 3
~ “TEST FOROPTIMACITY OF THE CURRENT BAS IS’”
IfCUSI>=SM*P(*,S) THEN
‘, “WE HAVE FOUND THEOPTIMAL BASIS”
— OBJECTIVE_VALUE:=CB*Q;
RETURN 3§
3 ENDIF;
L ENDBLOCK

“NOW COLUMN S IS INTRODUCED INTO THE BASIS,
, . PBIS THE REPRESENTATION OFP(%,S)IN TERMS OF
N THE CURRENT BASIS™
DEFINE PB M COLUMN:
$= INV_B*P(%,S5);

RGMIN(Q(IVN/P(I4SIF O R 11 NllysansM}|P(I,S)D>0)3

— — =— = —

r— — r— r— — r—

r— r—

8(2)
SAMPLE MPLPROGRAM (CONTINUED)

"IFALLP(IyS)I<=04,THEN WE STILL HAVER=0AND
A CLASSOF SOLUTIONS APPROACHING MINUSINFINITY
EXISTS*
IFR=0THEN
UNROUNDED 2=TRUE 3
RETURN
ENDIF;

“NOW UPDATE THE BASIC VARIABLELISTBV, THE COST
ASSOCIATED WITH THE BASIS L

VECTORC RASSOCIATEDWITH THE BASIS, THE VALUES
Q OF THE BASIC VARIABLES, AN9 THE INVERSE
INV_LBOF THEBASIS."

“UPDATE Q"
F O RJ | N(lysasgM)|J=RyQ(J):= O(J))-PBX(QIRI/P(RyS))3

QIR):=Q(RI/PB(R,S) 3

“NOW UPDATE THE BASISINVERSE"
PIVOT(INV_B,y PByR);

“NOW THE CYCLEIS COMPLETE AND WERETURN TO
CHECK THE OPTIMACITY OF THENEWBASIS+”

GO TO PRICING:

FINIS;

PROCEDURE PIVOT(MATRIX,PIVOT_COLsPIVOT,ROW)

LET M 2=MATRIX ;

LET P 2= pIVOT_COL;

LETR $=PIVOT-ROW:

FOR | | NROWDOMIM) I I~=Ry M{I,%):s=M{R,*)%(P(I)/P(R));
M{Ry*):=M{Ry%x)/P(R)}

RETURN:

FINIS;

