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ABSTRACT: The kinematics of manipulators is studied. A model is
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Six degree=-of=-freedom manipulators are studied. Several
solutions to the problem of finding the manipulator
configuration leading to a specified position and orien-
tation are presented. Numerical as well as explicit
solutions are given. The problem of positioning a multi-
link digital arm is also discussed.

Given the sclution to the position problem, a set of
heuristics is developed for moving a six degree-of-
freedom manipulator from an initial position to a
final position through a space containing obstacles.
This results in a computer program shown to be able
to direct a manipulator around obstacles.
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THE KINEMATICS OF MANIPUIATCRS UNDER COMPUTER CONTROL

ABSTRACT

This dissertation is concerned with the kinematic analysis of
computer controlled manipulators. Existing industrial and experimental
manipulators are cataloged according to a new model which allows for the
systematic description of both existing and new manipulators.

This work deals mainly with manipulators consisting of six degree-
of-freedom open chains of articulated links with either turning (revolute)
or sliding (prismatic) joints. The last link called the "hand" is the
free end of the manipulator and has additional motion capabilities which
make it possible to grasp objects.

The following problem is discussed: given the desired hand position
and orientation along with the various link parameters defining the
structure, what are the values of the manipulator variables that place
the hand at the desired position with the desired orientation? Solutions
to this problem are presented for any six degree-of=-freedom manipulator
with three revolute joints whose axes intersect at a point, provided the
remaining three joints are revolute or prismatic pairs. These results
can be expressed as a fourth degree polynomial in one unknown, and closed
form expressions for the remaining unknowms.

It is shown that this is equivalent to the kinematic analysis of all
single loop five-bar mechanisms with one spherical joint and four joints
which are revolute or prismatic pairs. The extension to the case where
only one pair of axes intersect is discussed. A similar solution for

any manipulator with three prismatic joints is also given.
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A numerical procedure based on velocity methods is developed to
analyze manipulators which cannot be "solved" explicitly., This pro-
cedure is found to be superior to the widely used Newton-Raphson
technique.

The problem of positioning a '"digital arm" (i.e., a multi-link
manipulator where each joint is only capable of several digital steps)
is discussed. A simple searching algorithm using a look-ahead scheme
is developed. A two-dimensional model and three-dimensional model are
studied.

Given the solution to the position problem, a set of heuristics is
developed for moving a six degree-of-freedom manipulator from an initial
position to a final position through a space containing obstacles. A
mathematical model of objects is developed so that possible conflict
between objects and any link of the manipulator can be detected and
avoided.

Some considerations in choosing a manipulator for use with a
computer are discussed. A set of computer programs - in FORTRAN IV -
are developed to perform the position analysis and trajectory generations

for any six degree-of-freedom manipulator with turning joints.
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CHAPTER I

INTRODUCTION

Remote manipulation involves having a machine perform tasks
requiring human dexterity. Originally, the purpose of a manipulator
wés to protect man from the hazards of performing the work himself..

With the advance of technology, the variety of tasks performed in hostile
environments has increased. In addition the scope of the tasks performed
by machines has broadened, so that it is desirable for machines to exténd
the capabilities of men and to replace men at tedious as well as dangerous
jobs. Although, today, many processes and machines are automatically
controlled, the problems of remote manipulation have yet to be fully
solved, |

One approach to this problem is to use a digital computer to control
a manipulator. Then with information obtained from visual as well as
other sensory feedback, the computer would hopefully be able to direct
the manipulator to perform tasks requiring some intelligence as well as
dexterity.

This dissertation is concerned with the kinematic problems that
arise when a manipulator is subjected to computer control. These include
the problems of position analysis and trajectory generation.

In Chapter II, we discuss the classification and the description of
manipulators, including a catalog of most of the existing commercial and

special purpose manipulators.



The position problem is discussed in Chapter ITII. There we present
methods to find values for the manipulator variables that will place the
terminal device at a given position.

In Chapter IV, we present numerical methods that may be used to
analyze manipulators too complex for analytic solution as described in
Chapter III.

The problems of positioning a digital manipulator are discussed in
Chapter V.

Trajectory generation - the problem of moving a manipulator from a
given initial position to a specified final position - is studied in
Chapter VI.

In Chapter VII we briefly discuss some considerations in choosing
a manipulator for control by computer.

Chapter VIII presents the conclusions and some suggestions for
future work.

In the next section we present a brief history of remote manipulation.
This is followed by a summary of related work on intelligent automata.
Since much of the research related to the position problem has occurred
outside these fields, we discuss that work in Chapter III. 1In the last
section of this chapter, the contribution of this dissertation to current

research is presented.

1.1 History of Remote Manipulation

The development of remote manipulators followed closely the
development of atomic energy. As the fadiation level of atomic energy
increased, so did the hazard to the operator. Thus, éhielded environ-
ments and equipment to handle the material were needed. Early
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experiments were carried out using tongs in shielded caves. TFor more
complex experiments it was deemed necessary to develop remote controlled
manipulators. It was felt that general purpose manipulators could be
used to replace much special purpose equipment. Thus in 1947, the
Argonne National Laboratory began research into remote manipulators and
related equipment. The first manipulators built at Argonne had six
degrees-of-freedom controlled by mechanical drives plus a hydraulically
operated grip. lLater versions were driven by electric motors. They
worked well for simple tasks. However, there was no force feedback,l
making it difficult to perform experiments where articles came into
contact with one another [1].*

In 1948 the people at Argonne decided to develop manipulators
having force feedback with motion capability analogous to that of the
human hand. This led to master-slave manipulators in which the motion
of the nmaster was mechanically coupled to the slave so that the forces
in the slave would be approximately reflected in the master. Several
versions of these were built at Argonne. One of these, the Model 8, has
been produced by several companies and is commercially available [1, 2,
3, 41

Although these mechanically coupled manipulators perform quite well,
they have several drawbacks. The main disadvantage is the mechanical
connection which requires the master and slave to be physically close

together. This also means that the shielding enclosure must be designed

*Numbers in brackets designate references in the Bibliography (P. ).



for the linkage. In addition the strength of the slave is limited by the
strength of the operator's hand. These disadvantages are offset in part
by the fact that the manipulators are fairly inexpensive and are able to
perform intricate operations [L, 2, 3, 4, 51

Externally powered master-slave manipulators using force reflecting
servos have been developed by both Argonne and the General Electric
Company. The Argonne machine is controlled with electromechanical servos
while General Electric's ("Handyman') is hydro-mechanically controlled.
These manipulators have proved as effective as the mechanically connected
master-slaves. They have the advantage that the only connection between
master and slave is an electrical cable. 1In addition, they have a
variable force feedback ratio. However, their use is not as widespread
as the mechanical type. Perhaps this is due to their high cost and the
complexity of the force reflecting servo system [1, 6 ]

Powered manipulators, not of the master-slave type have also been
successfully developed by General Mills, Inc., Programmed and Remote
Systems Corpecration, AMF, General Electric, Westinghouse Electric Company,
FMC, among others. They are often used in radiation experiments along
with the more precise master-slaves. They are also used in an under-
water environment on submarines [/, 8§ . Electric and hydraulic-powered
prosthetic arms have also been developed [, 10]. All these are generally
controlled by joy sticks, toggle switches, or similar devices.

All of the above mentioned manipulators require the presence of a
human operator. In their design much effort is made to have an inte-
grated man-machine system. This is reflected in the research of

Mosher [b, 11], Goertz [1Z], and Bradley [13] whose emphasis is directed
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towards developing systems in which the operator does not feel his
remoteness but is made to feel as if he were performing the task him-
self. This is accomplished with force reflecting servo-systems giving
kinesthetic feedback similar to what a human would feel. Such work will
have application in materials-handling, underwater work, and perhaps
earth~moving equipment. It also may be applicable to problems of remote
master-slave manipulators with time delay. Farrell [14] has indicated
the feasibility of such schemes.

There are some problems that the master-slave system does not
adequately solve. Since the master-slave system by definition requires
a master, it does not remove the tedium that is basic to most manipulative
tasks. In addition, for exploration of space, the time delay will become
excessive for anything further distant than the moon. Thus we have

motivation to develop manipulator systems with intelligence.

1.2 Intelligent Automata

Computer-manipulator systems such as AMF's Versatran and Unimation,
Inc.'s Unimate [l6] are presently in use in industrial materials-handling
situations. These machines are programmed to move through a pre-determined
series of positions. They are used on assembly lines to unload punch
presses, conveyor belts and similar fixed cycle type operatioms. Working
three shifts a day, they can economically compete with human operators [L5] .
However, they do mot have any decision making ability, so that, if the
parts are not in the right position or if the cycle time varies, these
machines will not operate successfully. In addition they must be re-
programmed for slight changes in the process. It is thus desirable for

such systems to incorporate decision making capabilities.
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Ernst [18 , using a manipulator equipped with sensory feedback,
developed a hand-computer system capable of stacking blécks. His system
was able to learn about its environment with information gained from
touch sensors. The work at MIT's Project MAC [19] has recently extended
the work of Ernst to include visual inputs and to develop a hand-eye
system capable of manipulating objects. The:aim of Project MAC is to
develop an autonomous system with vision capable of performing manipulative
tasks requiring increasing levels of decision making ability.

Rosen, Nilsson, Raphael, [20, 21, 22], and others at Stanford
Research Institute have developed a mobile vehicle under computer control
that performs tasks in a real environment. The primary goal is to develop
a system receiving visual and other sensory information from the vehicle,
and then use this information to direct the vehicle towards the completion
of tasks requiring the abilities to plan ahead and learn from previous
experience,

Other research in manipulator-computer systems has been in using
small digital computers to assist rather than replace operators in manipu-
lative tasks. Beckett [23] at Case Institute, has developed such a system
in which a typical use of the computer is to find minimum transit time
paths and direct the manipulator around predefined obstacles. 1In obstacle
avoidance his routines keep the hand outside of effectiverboundaries
placed around obstacles.

The Supervisory Controlled Manipulator, is again a system with
limited intelligence intended to assist rather than replace an operator.
For this system Whitney 24] developed a state-space model of manipulative

tasks. He shows that tasks, such as pushing blocks on a table, or
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deciding how many and in what order blocks should be moved orx pushed
aside in order to position a new block, may be expressed in terms of
discrete state spaces. A state is defined to be the configuration of
the task site.

The Hand-Eye Project, of the Stanford Artificial Intelligence
Project [25 , is oriented toward solution of computer supervised hand-
eye problems of increasing complexity. Current work is on basic problems
involving manipulation of simple objects and analysis of visual data.
Eventually it is hoped that the system will be developed to the point

of being able to assemble machines.

1.3 Contributions of this Dissertation

In Chapter II the description of manipulators is put on a systematic
basis. We present conditions leading to degeneracy in six degree-of-
freedom manipulator and conditions in which combinations of one degree-
of-freedom joints are kinematically equivalent to more complex joints.
Finally, a catalog of existing manipulators is presented.

The main analytical work is presented in Chapter III. Here solutions
to the position problem are discussed. Methods are given to solve any
six degree-of-freedom manipulator containing three revolute joints,
whose axes intersect at a point, provided the remaining three joints
are revolutes or sliders. The extension of the method to more difficult
arrangements is dealt with in the case where only one pair of revolute
axes intersect. A method of solution for a six degree-of-freedom
manipulator with three prismatic joints is also presented.

In Chapter IV a numerical procedure based on velocity methods is
developed to analyze manipulators whose solutions cannot be expressed

=7- .



as in Chapter II1I. This procedure, along with the more conventional
Newton-Raphson method are programmed for a digital computer and the
results compared.

In Chapter V methods are developed to place the end of a new type of
digital manipulator at a specified position. A simple searching
algorithm is made more powerful by the addition of look-ahead. The three
dimensional problem is attacked with insight gained from studying a
planar model.

The trajectory generation problem is discussed in Chapter VI. A
set of heuristics is given for moving the manipulator from an initial
position to a final position through a space containing obstacles.
Possible conflict between all links of the manipulator and nearby
obstacles is detected, and hopefully avoided.

In Chapter VII some considerations in choosing a manipulator for use
with a digital computer are discussed. The desirability‘of being able to
arbitrarily locate the hand throughout the workspace brings up the problem
of zones. Some insight into this problem is presented.

Much of the above has been programmed and tested on a digital
computer. In particular the‘numerical solutions and the heuristics for
trajectory generation have been programmed to result in a fairly general
kinematic package. With only smallimodification these routines could

be used with any six degree-of-freedom manipulator.



CHAPTER II

CIASSTIFICATION OF MANIPUIATORS

2.1 The Basic Model

In order to analyze and compare manipulator configurations, it is
desirable to develop a mathematical model that can be used to describe
all manipulators. A manipulator is considered to be a group of rigid
bodies or links. These links are connected and powered in such a way
that they are forced to move relative to one another in order to posi-
tion a hand or other type of terminal device. The first link is assumed
connected to ground by the first joint while the last link is free and
contains the hand. 1In addition, each link is connected to at most two
others so that closed loops are not formed. For the purpose of this
work, the assumption is made that the connection between links (the
joints) have only one degree-of-freedom. With this restriction, two
types of joints are practical — revolute and prismatic.* A revolute
joint only permits rotation about an axis, while the prismatic joint
allows sliding along an axis with no rotation. A schematic representa-
tion of these joints is shown in Fig. 2.1. If a manipulator is considered
to be a combination of links and joints, with the first link comnected
to ground and the last link containing the terminal device, it may
be classified by the type of joints and their ofder. For example, a

manipulator comprised of three revolute joints, a prismatic joint,

*Although others might wish to include screw joints, we feel that the
difficulties encountered in building screw joints make them impractical,



and two revolute joints, in that order, would be designated 3R-P-2R,
where R is used for a revolute and P for a prismatic joint.

Given a broad classification according to the joints, a sub=-grouping
is made by looking at the links. Now, each joint has an axis associated
with it, and two adjacent axes are connected by a link. Thus a link
description is just the description of the relation between two adjacent

axes, A link model, shown in Fig. 2.2, has the following parameters:

a;: The common normal between the axis of the ig—l joint and the
axis of the (i+1)ER joint.

s;: The distance between the lines ai and aj;_; measured along
the positive direction of the axis of the itk joint.

Gi: The rotation of the line a; relative to the line aj;_j about
the axis of the ith joint.

ai: The angle between the (i+1)£ﬂ axis and the ith axis. The

positive sense is determined according to the right-hand
screw rule with the screw taken along aj pointing from the
(i+1)£1r—1 to the 1EB axis.
If the joint 'i is a revolute, then aj, s; and a4 are constants
while 63 is the variable associated with that joint. 1If joint i is
a prismatic joint, then as, 0y and ei are constants while 84 is
the variable. The sub-classification is then made according to the
non-zero a; and 8y - For example, if all the a; and Sy of a
4R manipulator were non-zero, it would have the sub-classification
sj1a3Spagsiass,dy, or if aj = sy = Sy = 0 it would be of the type
s1apajs,a,. It may be noted that for the last link, i = 0, an,t and

s, are not well defined as axis n+l is non-existent. For this reason,

-10-



if the last joint is a revolute, the parameters of the last link will
not be included in the desctiption. If, however, the last joint is a
prismatic then s, will be included. For’the first link sy has an

arbitrary reference that will be considered zero so that 5y will be

included only if the joint is prismatic. An example of a 4R, sjapsy

is shown in Fig. 2.3.

2.2 Special Cases: Degeneracy and Kinematic Equivalence

The most general manipulator has all non-zero link parameters.
However, in practical manipulators there are many zero parameters which
lead to special cases of interest. The first is degeneracy. This
exists when the number of degrees-of-freedom of the last link is less
than the number of joints. A manipulator with more than six joints
would be classified in this category, as a rigid body can have a maximum
of six degrees-of-freedom. The existence of four or more prismatic
joints leads to degeneracy, since motion from one joint can in general
be obtained as a linear combination of the motion of the remaining
three. Also, if four or more revolute axes always intersect at a
point, then rotation about one axis can be expressed as a combination
of rotations about the other three. Special values of the parameter: g
can also lead to degeneracy. An example is given by those values of
for which four revolute axes are always parallel, and hence normal to
the same plane.

In addition to degeneracy, non-zero parameters may make combina-
tions of revolute and prismatic joints kinematically.equivalent to

more complex joints. Thus if three revolute axes intersect at a point
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axis of rotation axis of slide

‘L’,‘—LN—L(—’Z T LINK 2

W
LiNK ) LA
(@) | (b)
Figure 2.1, Schematic Representation of Joints.
(a) Revolute (b) Prismatic
axis axis L+ |
A

Figure 2.2. The Link Model.

Figure 2.3. Schematic of a 4R, spagsy manipulator.
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they are equivalent to a spherical joint which we denote by the symbol
S. Also, if the axes of a revolute and a prismatic joint coincide, they
are equivalent to a cylindrical joint denoted by the symbol C.

A 4R manipulator may be used to illustrate these special cases.
The most general case is shown schematically in Fig. 2.4a. A sufficient
condition for two axes to intersect is that their common normal be
zero. For example if an is zero, then axes 2 and 3 intersect
(Fig. 2.4b). TFor three axes to intersect at a point, the two common
normals, as well as the displacement along the intermediate axis must
be zero. For example, if a, = aj =‘S3 = 0, the result is equivalent
to a spherical joint and the 4R manipulator is kinematically equivalent
to an S-R manipulator (Fig. 2.4c). For four axes to intersect at a
point (resulting in degeneracy), three adjacent common normals, and the
displacements along the two intermediate axes must be zero (Fig. 2.4d).
Degeneracy also occurs if the equivalent of two spherical joints exist.
In this case, it is possible for the link connecting the two sphere
centers to rotate about itself.

A cylindric joint results when the common normal and the angle
between a revolute and adjacent prismatic joint are both zero. An
example of an R-P-R being equivalent to an R-C manipulator is shown

in Fig. 2.5.

2.3 A Catalog of Manipulators

With the above scheme we may classify most of the manipulators that
have been built in the last several years. Some manipulators since

they contain a very large number of links are omitted from the table.
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Figure 2.4,

(a)
(b)
(c)
(d)

S3

@

(d)

A general 4R,a.s_a,s.a. manipulator,

.12 2 ; . .
A aR,alszs3 Wl%h one pair of intersecting axes.
A 4R,als, "manipulator and spherical equivalent.

A degenerate 4R manipulator.
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(a)

(b)

Figure 2.5. (a) An R-P-R manipulator (b) The equivalent R-C.
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These generally have a snake-like structure, and even though these
manipulators may fit into the basic model they contain many joints
usually with limited freedom in each joint and similar link parameters
for all links. We call such manipulators "ORMS'"* and consider them

separately in Chapter 5.

Table 2.1 contains a catalog of some recently built manipulators.

*0ORM is the Norwegian word for snake.
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CHAPTER III

SOLUTTONS

3.1 Statement of the Problem

In remote manipulation it is desirable to place a rigid body (the
hand) at a specified position in space with a specified orientation.
Thus, a manipulator needs to have at least six degrees-of-freedom. More
joints than six lead to a problem that is not deterministic with the
specification of hand position and orientation. We therefore limit this
work to manipulators with six degrees=-of-~freedom.

The problem we wish to solve may be stated as follows: given the
desired hand position and orientation, along with the various link
parameters, find the values of the manipulator variables that place the
hand at the desired position with the desired orientation. This problem
is related to the displacement analysis problem in three dimensional
kinematics.

The result of the displacement analysis of a mechanism is the.
relationships between input and output. That is, if one link is driven
in a prescribed manner, we wish to find the resulting position of the
rest of the mechanism.

The most general one degree-of-freedom, single loop mechanism is the
so-called "seven-bar chain". This mechanism is composed of seven one
degree-of-freedom joints connected to ovne another in a general manner to
form a single closed loop. Mechanisms comprised of spherical and

cyclindric joints may be derived from this seven bar by an appropriate
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choice of link parameters leading to kinematic equivalence, as discussed
in Chapter II.

I1f one considers a seven bar mechanism where one link is considered
fixed, while an adjacent link is driven relative to it by motion in the
connecting joint, then the position and orientation of the driven link
are known. The problem of displacement analysis is to find the
resultant configuration of the mechanism, or equivalently the motion in
each of the remaining six joints. We then observe that the manipulator
problem resulting from specifying hand position and orientation is
analogous to the displacement analysis problem resulting from driving one

of the links.

3.2 Survey of Existing Solutions

Although displacement analysis of mechanisms has been of interest
to kinematicians for many years, no method has been developed that can
be applied to all cases. Dimentberg [40, 417 obtained solutions for
several four-link mechanisms using screw algebra and Dual numbers. He
also reduced the five-link RCRCR mechanism to the solution of a single
polynomial of degree eight. Yang 421 using dual number matrices, was
able io express the input;output relation of this mechanism as a single
polynomial of degree four. Others have used (2x%2) dual matrices, dual
quaternians, and vector methods to obtain solutions of four link
mechanisms 543, 44, 45%. The (4x4) matrix method developed by Denavit
and Hartenberg | 46] has also been used to analyze four-link mechanisms
(47, 48). TFor more than four links, this method has been applied using
iterative numerical techniques ol. Urquardt |50) showed that solutions
were possible where the mechanisms had three or more prismatic pairs.
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Earnest [51J has found geometric solutions to several special

manipulator configurations. We present his solution to the manipulator

shown: in Figure 3.1:

Referring to Figure 3.1, it can be seen that the
point Q lies on a line formed by the intersection
of a plane perpendicular to axis 1 containing line

‘£1 , and the plane perpendicular to axis 6 containing

A

o « In addition Q must lie on a sphere with P
as a diameter. The intersection of the line and the

sphere thus fix Q .

Sharpe [52] studies the problem of placing the end of a snake-like

chain (which could be used as a manipulator) at a specified target. An

"'n-link snake' i1s composed of n links connected with revolute joints

to form a planar chain. The joints in general have continuously variable

angles. However, he does discuss the case where angles may take on

only two values. He presents an adaptive approach using a simple searching

procedure to handle this case.

Q (X,y}z)

ALNANY

AXIS |

Figure 3.1. Example manipulator used to demonstrate geometric solution.
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3.3 Method of Solution

In this work, we use (4x4) matrices to attack the manipulator
problem. Solutions for manipulators containing three intersecting
revolute axes are presented. The most complex of these requires the
solution of a single polynomial of degree four. This is equivalent to
the solutions of all single loop five-bar mechanisms containing one
spherical joint and the rest either revolute or pfismatic. Solutions
for manipulators with any three joints prismatic are also presented. The
extension to more difficult problems is discussed witha 6R, a,a,

manipulator having adjacent axes orthogonal used as an example.

3.3.1 Notation

Throughout the text we use scalar, vector, and matrix quantities.
Matrices are denoted by capital letters and may have subscripts (e.g., Az).
Vectors are denoted by underlined letters and may have subscripts and one
or more superscripts in front of the lette:. Vectors are generally used
to locate points relative to a coordinate system. The subscripts are used
to differentiate between points, while the supersqript indicates the coor-
dinate system to which the point is referenced (e.g., i+1§p , would repre-
Ssent a vector from the origin of coordinate system i+l to a point n).

If no superscriﬁt appears it is assumed to be 1 , or else no origin is
implied. At times we wish to express a vector in a coordinate system which
differs from the one in which the vector is formed (the so-called ''refer-
ence system''). If the system used to express these coordinates is different
from the reference system, we enclose the vector in brackets and use an-
otl'~y . gupersceript to denote the svstem in which the cowpoients are expressed

—
ij i+l ‘ .
{e.g., l- _ X;] ). 1f the outer superscript is not used, it is assumed
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to be the same as the inner superscript. Scalar quantities are written
as lower case letters, with or without subscripts (e.g., a;sy ). If
they represent coordinates of points, then a superscript is sometimes
used to designate the coordinate system to which they refer. Where no
superscript is used, the number 1 is implied. Angles are denoted by
lower case Greek letters with or without subscripts (e.g., 51 oy,
Points are occasionally given a name (e.g., "the point X, ") and
referred to by name.

The trigonometric functions sin, cos, and tan are abbreviated
s, ¢, and t respectively (e.g., sin Hl is written 581 s cosdal

as cal , etc).

3.3.2 Mathematical Preliminaries

In order to analyze the kinematics of a manipulator, we first
establish the relation between two Cartesian coordinate systems as

shown in Figure 3.2. We define the following:

i .
a;: the length of the common normal between z-~axis
and 1+lz-axis .
i+l i .
& : the angle between z and ~z measured in the
1

. +

right-handed sense from 1z along a line from tz

i+l
to Z .
;1 distance from 0i to the common normal a, .
i
%: angle the common normal makes with *x-axis.

Then there exists the transformation [46] to express the coordinates of

a point in one system given its coordinates in the other. If we denote

.

the coordinates in system i by (*x, iy, iz) and in system i+l by

(1+lx, l+ly, 1+l;) , we define the vectors i§ and l+l§ such that:
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and

so that the transformation

where

[N
1>
il

i
X=a

is:

i+l

X

c Bi -5 HicOLi s Gisa.i

s 8; cg;ca, -c 8,50,

0 sQ, cQ,
i i

0 0 0

The inverse also exists and is defined by:

where

X

= A,

-s8.ca
i

s89. s, =-cB,sg. cot
i1 i al

-1 .
x
; X

cei Sei 0

ch,s0, 8O,
1 1 1 i

0 0 0

24

-a
-85C04

-Sicai

C(3.1)

(3.2)



For ntl coordinate systems there are n transformations between
neighboring systems., These may be multiplied, in the following order,
to give the coordinates in the 1 system of any point fixed in the
n+l system:

=8, A ntly
Now to appropriately fix these coordinate systems in a manipulator, we
make Iz correspond to axis i , 1x to common normal a;_1 and
define iy in a right-handed sense. This is shown applied to a sample
manipulator in Figure 3.3. For a six degree-of-freedom manipulator we
write;

Ix = AqA,A58,80A, X (3.3)
where ¥§ is a vector to any point, expressed in the ground system

7 . . . . .
and ‘X 1is a vector to the same point expressed in a system fixed in

the terminal device. We define

Aeq = Ay .- A6 . (3.4)
With this definition (3.3) becomes:

IK = Aeq 7§ (3.5)
and the inverse yields:

‘% = neq! Ix (3.6)

Now, if we let P be a vector from the origin of system 1 to the
origin of system 7, and fg', m, and n , be three unit vectors

, , 7 7 7 ,
aligned with the X, 'y, 2 axes respectively, then when _£ , m , n ,

and P are expressed in system 1, they may be used with equation

(3.5) to find Aeq . That is, using (3.5) we may write
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S |
s U

O

(8

Figure 3.2. Relation between two coordinate systems.

X

Figure 3.3, The relationship between coordinate systems fixed
in the manipulator.
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.!1 1 my 0 ng 0 p1 Oj
_22 0 m, 1 n, 0 Py 0]
,£3 = Aeq| O m, ) = Aeq{ 0 n3! = Aeq} 1 P3| = Aeq OJ
0 of, |o ol, 1o of, |1 1]

from which we may solve for the elements of Aeq to obtain:

:gl ol gl
Aeq = lg m% n§ pg (3.7)
0 o> o0 1

It is thus seen that position and orientation of the terminal device
can easily be found, knowing the manipulator variables, Qi or
si,‘i=1,.., 6 , by the matrix product equation (3.4).

However, for computer control of manipulators, the problem is to
find the manipulator variables, given the terminal position and
orientation (Aeq) .

We shall first consider a six-revolute arm and the problem of
finding 6. ,..., O¢ given ABq. Equation (3.4) represents twelve

scalar equations, nine dealing with orientation and three with position.

However, only three of the orientation equations are independent so that

there are six equations in 91,..., 96 . These equations have terms of
the form:
cpy cez c93 cf, c95 cbe (3.8)
591 e, c83 364 395 s8g 5 +en

These terms contain both sines and cosines, which we may define in terms

of the tangent of the half-angle.

1-t 2'P—i 72t f,.i
2 2
ch, = N s, = ____ T .
’ 1478 & 1+t28; o
2 2
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Then if we substitute (3.9) into the six equations, the typical term,
as shown in (3.8) becomes (letting t, = tan {%i , i=1,..., 6 , and

removing the denominators which are common):

2 2 2 2 2 2
tl t2 3 t4 t5 t6 + e

Thus we see that these equations are quadratic in each of the unknowns
and the degree of the highest degree term is 12.

However, not all the equations contain all of the unknowns and by
judiciously choosing the three orientation equations, the unknowns 61
and 96 can be eliminated from some of the equations. We use the

six equations;

‘ Fi (Eppeees t5) =0 (3.10)
Fy (Eyseees t) =0 (3.11)
Fy (tg5005 t5) =0 (3.12)
F (Epseees tg) =0 (3.13)
Fg (Egseeey tg) = 0 (3.14)
Fp (Egseess tg) =0 (3.15)

which are obtained respectively from the '14', '24', '13', '33', '34',
and '32', elements of the matrix of (3.4). We note that (3.10) - (3.14)

do not contain tg s and (3.13) -~ (3.15) do not contain t Of the

1
five equations in which the variables t;;..-, t5 appear at most
quadratically, three equations are of degree 10, while, two are of
degree eight. If we eliminate t1 between (3.10), (3.11), and (3.12),
the result is two equations of at most degree eight in the unknowns

tgyeees tg whose total degree is 32, These together with (3.14) and

(3.15) give us four equations for t,,..., tg . Proceeding in this

-28-



manner eliminating one variable at a time, we would finally obtain a
single polynomial of degree 524,288. Even though this method of
elimination introduces extraneous roots, we would still expect, according
to Bezouts' theorem¥, (10)3 X (8)2 or 64,000 common roots, a number much
too large to cope with. The general problem, attacked in this manner,
is insoluble. At this point we shall define a '"soluble case" to be one
in which the degree of the final eliminant is low enough to find all
roots. In practice all the roots of an eighth degree polynomial can be
found within a few seconds using a digital computer and the roots of a
fourth degree within one-half second. A solution is said to be
"closed-form'" if the unknowns can be solved for symbolically.

Even though the general problem is beyond reach, many practical
manipulator configurations are soluble. The existence of three revolute
axes intersecting at a point leads to a soluble class. 1In the next

sections we explore the possible combinations of three intersecting axes.

3.3.3. Last Three Axes Intersecting

If the last three joints are revolutes and their axes intersect
as in Figure 3.4, then their point of intersection, as designated by the
vector P3 is only a function of motion in the first three joints and
the constant link parameters. 23 is known by specifying the hand

position and orientation. We want to solve the three scalar equations

represented by:

P, = AAA 0 (3.16)

*Bezouts' theorem gives an upper bound to the number of common solutions
for a set of equations. The upper bound is the product of the total
degrees of all the equationms.
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Figure 3.4. The most general mani

lpulator having the 1agst three revolute
axes intersecting.



for the variables associated with the first three joints. We now derive
an important result used in the solution of this problem. We define

the wector Ej 0

0
Ej = A]. DR Aj Sj_lLl (3-17)

1

where Ai (L=1,..., j) 1is defined in equation (3.1l). It is seen
that Agj is a vector specifying the position of a point (0, O, sj+1)

which is fixed in coordinate system j+1 .

We may write (3.17) as 0
' 0
__P_,j = (AIAZ) A3 L) Aj Sj+1
1 -
fl(e_'}: » QJ)
£,(0,,. ]
= AJA, 293005 Bp) (3.18)
. A
—— 1 —
where
f1 ' 0
f2 0
= a3 ... 8, (3.19)
f3 S,
i+l
1 Lt
Then using (3.1) for Aj; and A, (3.18) becomes
celg1 + selg2
| sﬁlgl - cﬁlgz
Ej = salfsez(az + fl) - c@z(-dlzfz + sa2f3)] (3.20)
+ cal(sazfz + d32f3 + 8,) + 8
L 1 —




where

8 082(a2+fv + 592(-ca2f2 + sa2f3)'+ aj

-sBZCal(a2+f1) + cezcal(-cazfz + 80, f5)

&2
+ erl(sa’zfz + Ca2f3 + 52)

Denoting the components of Ej by Xy 5 Y55 25, We define

= %2 2 Z..g )2
Rj x5 + Y3 + ( § sl) N

With (3.20) for the components of (Ej) » (3.23) becomes
+ 289 (s0yfy + ca,fy) + Zal[C52(32+f1)

We note from (3.20) and (3.24), that we may write:

R.

Zj = (Flse2 - Fz(‘.gz)sal -+ Flg.

where,
Fi = ap + £
F, =-copfy, + sGpf,
Fq = f12 + f22 + f32 + al2 + 322 + 2a,f, + ag

a
+ ZSZ(S 2f2 + cq2f3)
F4 = cal(squz + 0q2f3+82)
Equations (3.25) and (3.26) prove to be very useful as 91 has

been eliminated, and @& appears in a very simple form.

Returning to the manipulator problem, the above equations

apply with j = 3. 1In which case by using (3.1) for Ay (3.19)

becomes:

~32+

(3.

. (3.

(3.

(3.

(3.

(3.

(3.

3.
3.

J21)

22)

23)

24)

25)

26)

27)

28)

29)
30)



=
fl SASQ3SQ3+33CQ3

£, = —s4c93sa3+a3s93 (3.31)

f3 54a13+s3

so that with (3.21), (3.22), and (3.31) equation (3.20) represents
three equations in three unknowns. If the first three joints

are prismatic, then (3.20) represents three linear equations and
is easily solved. The other possibilities are somewhat more

difficult, but may be solved as follows:

3 _Revolute - 87, 69, 685 all variable

Substituting (3.31) in (3.27) - (3.30) yields respectively

F{ = a2+54593sa3ﬁa3093 (3.32)

Foy =_q12(-54c93sa3+a3393) + saz(s3+s4oa3) (3.33)
- a2, 2,2, 2,2 2

F3 = ay"+s,%+a, +s3 +a3 +s4 +Zszs3a12+2szs4a12q13

+ 233s4cu3+c93(23233-252545q25q3) + 593(233525&2
+ 2a2s45@3) (3.34)
F4 = cmlLa3se3sa2+530a2+sz+s4(-c93sqzsa3+om20m3)] (3.35)
Now we note that the left hand side of (3.25) and (3.26) are
known and that if a; =0, (3.25) reduces to
R3 = F, (3.36)
When (3.34) is used in (3.36) it is simply a function of 63 .

Then making the additional substitution

) tan2 93
cly = Z (3.37)
1+ tan? 05

p
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2 tan 93

393 = ______2___
1 + tan 93

2

into (3.36), yields a quadratic in tan 85 . Similar simplifi-
Z

cation results if spy=0 , as (3.26) reduces to a quadratic. If

however sy and a,; are non-zero, we eliminate s6, and c92

from (3.25) and (3.26) to obtain the polynomial

2 2
Rq - F (z..]_?) ) ‘
(R3 3) + 4 - Fl2 + F22

2a1 501

(3.38)

(3.39)

Upon making the tan.g3 substitution and using (3.27) - (3.30) equation

(3.39) is of degree four in tan 83 . After getting 93 , ©7
Z
may be obtained from (3.25) or (3.26) and 87 from (3.20).

815_89, 83 _variable

Here we take the x and 'y components of Py as defined

in (3.20)

X chgl + sngz

y = s8g; - c91g2

Solving for g; and g, we find

8] xcO; + yse1

g2 = -ycby + st1
so that g; and gp can be computed from (3.42) and (3.43).
Then examining (3.21) and (3.22) using (3.31) we note

g1 = c@2h1(8,) + s8h,(83) + ay

]

g2 qxl[c92h2(93) - 592h1(93)] + ﬂ11h3(93>

-3~

(3.40)

(3.41)

(3.42)

(3.43)

(3.44)

(3.45)



where

h1 = 34593sa3+a3c93
h, = 34(c93ca2sa3+sa2sa3) - a3s93ca2+s3sa2
hy = 34(-c93sa2sa3+ca2ca3) + a3se3sa2

+ S3Cly + 8o
If cap = 0 then (3.45) is easily solved for 65 . If
coq # 0 we eliminate 8, from (3.44) and (3.45) to get the

polynomial 2
g2-sajhy
2 2 2 -
h 4+ hy" - (gyma)” || T 0
Cﬁ,l

Expressing s65 and c93 in terms of tan €3 leads to a
Z

polynomial of degree four. Upon obtaining the four roots of

(3.49) we substitute into (3.44) and (3.45) to get 65 and

finally (3.20) for sy -

81, s», B3 _variable

Solve (3.26) for s3 , using this in (3.25) results in a

fourth degree polynomial in tan 33 . Then proceed as in all

revolute case.

91, 85, sy _variable

Similar to ©,6,85 variable with the exception of Sg

being the variable in the final polynomial which is of degree

four.

818983 variable

(3.46)

(3.47)

(3.48)

(3.49)

The left-hand side of (3.44) may be computed from (3.42), then

(3.44) which is quadratic may be solved for 85.. Finally

may be found from (3.20).
-35-
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5192§3 variable

It is possible to eliminate 6, as in the case of 510584

variable, resulting in a'quadratii:.injs3 .

81838, _variable
Equation (3.25) is solved for s; and used in (3.26) resulting

in a quadratic in sg , 87 is found as in the all revolute case,

Methods have been presented to find the first three variables,
At this time we leave the problem of finding the last three angles to

be dealt with later in this work (see Section 3.3.6).

3.3.4 First Three Axes Intersecting

Next consider the three intersecting axes to be the first
three, as in Figure 3.5. The solution of these is analogous to
the previous example. We define a wvector ?g from the hand to
the point of intersection of the three axes, as shown in Figure 3.5.
We note that when ?g is expressed in a coordinate system fixed

in the hand, that it is just a function of the last three joints.

That is: 0
y -1 -1 0
1
Using (3.,2) for A3-1 and forming Aj 1, we get
7 -1, -1, -1{ 723
P = A6 A5 Ay -83s03 (3.51)
~S3%03
1

-

If we use (3.2) to express Ae-l » Ag , and A4-1 then the

right-hand side of.(3.51) just contains the three variables associated
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with the last three joints. In addition, we compute the components

of 72 from

7P = Aeq "1

= OO0

where Aeq is the known matrix (3.7). We note that the rotation
-1
portion of Aeq is just the transpose of the rotation portion

of Aeq . In fact, if
- ]
811 212 213 8y,
a a a a

21 922
Aeq = 23 24 (3.52)
431 832 833 434
0 0 0 1

then
a a a a, "1
11 21 31 14
-1
a a a a
a -1

The elements denoted as ai4 ; a24-1 ; a34-1 are determined by
simply applying
Aeq'1 Aeq = 1
thus
a3, = -(aiag, + ayag, + a3as,) (3.54)
i=1,2,3
From this point on the method of solution follows the same steps given

in Section 3.3.3 for the case of the last three axes intersecting.
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3.3.5 Three Intermediate Axes Intersecting

Another possibility is for the three intersecting axes to be
located as in Figure 3.6, where there are two other joints toward
the base end and one on the hand end, We denote the position of
the point of intersection by Xy with the coordinate (xy, Yo 29) s
and define the vector Xp from the base of the arm to X5 and the
vector ?Zz from the origin of system 7 to X, as in Figure 3.6,

Consider the case where all joints are revolutes, then in
system 7, the hand system, the point Xy has a fixed z co-
ordinate, and is a constant radius from the origin. We write
the coordinates of X, in system 7, using equation (3.5) and

-1
Aeq as defined in (3.53)
7 -1

Xz = allxz + 321}72 + 33122 + 314 (3-55)
7 -

yy = a12¥9 + agyyy + azgz, + ag, 1 (3.56)
7 ' -1

Fy = a13yp + az3yy + azszy +ag, (3.57)

Since 7z2 is a constant, say Cy , (3.57) may be written

-1
Cy = ajzx, + ay3y, *+ 8332y + ag, (3.58)
We define the constant, Cp, to be the square of the radius
7. 2 2 2
¢y = (Fx)™ + (% + (T2 (3.59)
Then using (3.55), (3.56), and (3.57) for ’x, 7y, and ’z

(3.59) becomes

2
Cy = x5 + y% + z% - 2x2a14 - 2y2324 - 2z2a34
+ a%4+ 3%4 + a%a (3.60)
where (3.54) has been used for ai4—l i=1,2,3



Figure 3.6. Manipulator with three intermediate revolute axes inter-
secting ( i.e. a3=sa=a4=0 ).
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With j =2 (3.20 becomes

[az(cglcez-sﬁlsequl) + szsglsa1+alc91 + 93(c913923a2 +
[a2(391092+c91392aa1) - 5,00 50 + ays8;

P, = (3.61)
+ S3(sleezsaz-CQlcezcalsaz-celsalcaz)]

[azsezaml + spcg + 8]+ s3(-c925alsa2+oa1ca2)]

1

and (3.27) - (3.30) become

Fp = a, (3.62)

F2 = 53807 (3.63)

Fy = a%+s%+a%+s§+25 8400, (3.64)

F4 = s3ca1ca,2+s2 (3.65)
So that using (3.62) - (3.65) and (3.23), equation (3.39) becomes

(x2+ 2+22 2_ 2 2 2 -2s 9830 ) NG Z9=57C01C0Lo S 2 2 2 2
2TV 7857897837898y | | B2793C0 1002782 = aytsjsn;  (3.66)
231 sQp

Then (3.58), (3.60) and (3.66) are three equations for the unknowns
(%29y9z9). Ordinarily the system would result in an eighth degree eliminant

but since (3.60) and (8.66) may be combined to form

2 2 2
(Cpt2x,a,,+2y,3),+22,8,, -2 14 24 U a 25 s _—1
2a1 r
———t
Z,=S,C0CO 2
- -s
2 2
2 3 1 2 2| - al+s3sa3 (3.67)
say

b1



The equations (3.58) (3.60) and (3.67) may be combined to yield
a single fourth degrée polynomial 'in one variable, 'say z -
After the values of =z are determined it is possible to back
substitute and obtain corresponding values for x and y .
Once the coordinates (x5, ¥, %) of the point X, are

found, 92 and 91 may readily be found from equation (3.61).

8g '1is easily evolved by noting:

_.7 - i —
Xp -a5 B
"y 7 -1 “85%25
= 'Y, =A (3.68)
72 2 6 -s
1 1
Using (3.2) for A6-1 s with a, = sg = 0, (3.68) becomes:
——-35c96 - 35396 ]
7
% = a5396ax6 + 55(—c96sa5ca6-ca5sa6) (3.69)

~a5s96ax6 + ss(c963a5sa6-casca6)

1

Since Xny ¥y and zy are known (3.55))(3.56) and (3.57) may be
used to calculate ?XZ* Then (3.69) may be solved for 8y . The
problem of solving for 84 6, 85 will again be deferred (see
Section 3.3.6). |

The preceding solution was for all revolute joints. We now

consider the cases in which joints 1, 2, and 6 may be prismatic.

519,8, _variable
Eliminating s8y9 and c8, between the x- and y- components
of (3.61) results in a quadratic in X, .and" yy . Then this equation along
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with (3-58) and (3.60) can be reduced to a single fourth degree poly-

nomial in either Xy O Y5 .

El§296 variable
Forming (3.25) and (3,26) with j = 2 and then eliminating s,
between them, a fourth degree equation results in a mapner similar

to the all revolute case.

51898 _variable

First s, may be eliminated between the x- and y- components
of (3.61). The resultant is a linear equation which along with (3.58)
and (3.60) can be combined to form a single quadratic.

If sg 1is variable instead of 96 s equations (3.58) and (3.60)
no longer apply. However, the point Xp must lie on a known line.
This line, in the direction of axis 5 may easily be found, and may be

written in terms of two known constant vectors ¢ and b and the

parameter t as:

Yo =c+bt, (3.70)

where b 1is a unit vector parallel to this line and ¢ is any fixed
point on the line. Eliminating t , yields two equations between
X3 5 ¥9 , and zp . Then with these in place of (3.58) and (3.60),
the procedure is the same as previously indicated.

The second possibility for three intermediate axes to intersect
is as shown in Figure 3.7. This is just an inversion of the case
treated in this section and may be solved in a similar manmner.
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3.3.6 Completing the Solution

It can be seen from the foregoing that if three adjacent revolute

axes intersect at a point, then the solution to the problem can be

reduced to a single equation of degree four. If, in addition, two of

the remaining three joints are prismatic, the problem reduces to a

quadratic.

Simplification will also result, if special geometry exist in

addition to the three intersecting revolute axes. Consider the all

revolute case, with only a; , ap , and $; ~TNON-Zero and

ay = 90°, 0y =0, a3z = 90°, o = 90°, ag = 90°, as shown in

Figure 3.8, This is the configuration used for the hydraulic arm at

the Stanford Artificial Intelligence Project. With the above values,

equation (3.17) becomes

i;icel + a5c8;c8, + 34(ce1c92393+<:91392c63)w-W
By = a1s91_+'a2591c92 + 54(591c9 593+59 s c93)
agsBy + 34(59239 -c8 c93)

| 1
and (3.27), (3.28), (3.29), and (3.30) become

F1 = a2+s4593

Ep = s4c84

Fq = 2azs4se3 + 342 + a22 + al2
F, =0

So that equation (3.25) becomes:

Ry = 542 + a22 + al2 + 23254533 + 2alazc92‘+ 2a134(092593

+88,c65)

bl

(3.71)

(3.72)
(3.73)
(3.74)

(3.75)

(3.76)



Figure 3.7. Second possibility for the case of the three intermediate
revolute axes, shown intersecting at the point X,.

Figure 3.8. Schematic of the 6R, a.a 54 manipulator used at the o
Stanford Artificial In%e%llgence Project, with O(1=90 s

o} (o} o
of = ™ =9 & =9 e =9
2 0, 3 90 ’ 0 3 5 0.
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and (3.39) becomes: 2-
2 _ 2 2 .2
+ z= = (a2+s4se3) + S, cG3 (3.77)

R3" (23254593+S42+322+312)

Zal

2 s replaced by 1-s0 2 .

3
After finding 65 we compute 6, from (3.71) and (3.76) and 91

which is quadratic in 393 when c93

from (3.71).

Since the above arm is used in the Stanford Artificial Intelligence
Project, we shall use it to illustrate the method of finding the angles
associated with the three intersecting axes, Designating the direction
of the iﬁﬂ axis by the unit vector g; , we write

0

- 0

o

Using (3.1) for Aqj,..., A4 and the above values of @ the
result is

[ 01c6,50, + cO158,c0, |
wy = |801c8,803 + 50756,c04 (3.79)

592393 - CQZCQB

0
so that w, may be computed from (3.79) as we have solved for 81 »
92 ; and 63 . W is known since the hand orientation is specified.

In addition,

Wy - Wg = COSo4 (3.80)
w5 .« W = COSlg \ (3.81)
ws - w5 =1 (3.82)
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where ay, and @q_ are link parameters of the arm. In fact

5
Qg = -90° and g = 90° . We can find the components of s by

simultaneously solving (3.80), (3.81l) and (3.82). We observe

0
-1, =1 0
Tlws] = A4 A 1 (3.83)
0
-1 -1
using (3.53) for A, and Ag with o, = a5 = 90° and o = 0
(3.83) becomes:
#59;
7 c96
EQSJ = (3.84)
0
| 0
and
=1
"Tus) = dea g (3.85)

where Aeq is the known matrix specifying hand position and
orientation equation (3.7). Its inverse is found as in Section 3.3.4.
So that we easily derive 96 by equating the right-hand sides (3.8%)

and (3.85). We also write

o — I
0 595096
' 0 -5B:s8
7 =1 -1, -1 _ 5°%6 :
lws ] =A, A5 A, = (3.86)
1 'CQS
R B O
and
Tw,] = 484 w, (3.87)
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which yield 0 To obtain 6, we proceed similarly

5 ° 4
o1 s94c95c66 - c94s96‘
» ' 0 -88,c8 s - cB,chb
7[_w33 —a Tl 7t T 7t = 4756 4776 (3.88)
6 5 4 3 1 894595
0 0 -
- J L _
and

"lwy] = Aeq™! g, | (3.89)

which yields 94.

We have indicated a procedure to find the rotation about three inter-
secting revolute axes when these are located at the hand. The method
is applicable when any three axes intersect. However, the equations
must then be rewritten in terms of the yw; and ©; associated with

these axes.

3.3.7 Solution for Any Three Joints Prismatic

A six degree~of-freedom manipulator with any combination of three
revolute and three prismatic joints is soluble, This arises from the
fact that, the orientation of the hand is independent of the displacement
in the prismatic joints, and is only a function of rotation in the three
revolute joints, 1In addition the orientation is independent of the
position in space of the revolute axés. Consider the manipulator shown
.schematically in Figure 3.9, The direction of the first revolute axis
is always fixed., With the ﬁand orientétion specified, the direction of
the third revolute axis becomes fixed. 1In additidn we know the angles
which the axis of the second makes with the axes of the first and third

revolutes. If we designate the direction of these revolute axes by the
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unit vectors, w, , w3 , and O then we may write

Wy + W3 = cosfy (3.90)
w3 » Wg = cosfy (3.91)
w3 - Wy =1 (3.92)

where 81 and BZ are the known angles. The equations (3.90)
(3.91), (3.92) are then solved for the components of w3 . The
joint angles may be found in a manner analogous to that used in
the previous example, as the now known direction g » can be
expressed only as a function of 6, which leads to a simple
equation for 6, . W, can also be written in terms of 95 alone,
yielding 95 . Once 92 and 95 are known, 93 is easily found
by rewriting (3.4) as

-1, -1 -1, -1, -1
Ay = Ay A; AeqAg A A,

Using the values we found for 6, and 95 plus the constant angles,

2
we compute the rotation portion of the right-hand side.of the above
equation. Then writing A3 as in (3.1), we may solve for c93 and
393 , thus finding 93 . The displacements in the prismatic joints may
be found from (3.4). Since all the angles are now known and the s's

only appear linearly, the displacement portion of (3.4) easily yield

these three unknowns sy , S, » and s, .
1

3.3.8 More Difficult Arrangements

In the previous exémples, the existence of three intersecting
revolute axes enabled us to separate the problem into two parts -
one dealing with position and the other with orientation. The two

problems were then solved separately. That is we solved a three
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degree-of-freedom position problem and then a three degree-of-freedom
orientation problem. A more difficult problem is one in which position
and orientation do not separate. An example is the case where just two
revolute axes intersect. Consider the 6R, 8189a,838,8, 8585 mani-
pulator shown in Figure 3,10, Here axes 3 and 4 intersect, The vectors

?2 » Q, and R are as shown in Figure 3.10. We make the following

observations:
- 0
Q-4A, | O (3.93)
Q o)
L.l
e m
-1 -1 ~S380,
B =agla, 23 (3.94)
-SBma
1
o ]
_ 0
w, = AA, 0 ‘ (3.95)
o0
1 -1 0
7 -1, -1, -1| o
= A . .
[wy] = A, A, . 1 | (3.96)
.0 _
7p1 =9 -R (3.97)
1r7p] . 7p1=@*+R%- 20 . R (3.98)

Then using (3.1) for the A's (3.93) - (3.96) become (taking

Sl=96=a6=0):
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Figure 3.9.

Figure 3.10.

i

A general P-2R-P-R-P manipulator,

A 6R,a,s.a,s.s,a,s.a

3 and 4 intersect. >3

-5]=

manipulator.

Axes of joints



o

7D£4]

53(c913923a2+591c82ca sa2+seisalca2)

1

+a2(c91c92—391592ca1) + szselsal + alcel

53(39189230,2-c91c9203 180, - Qels(llcflz)

+az(391c92+c91392q11) -'Szcelsa1 + alse1
s3(—cezsxlsa2+ca1ca2) + azsezsxl + spcny

[

aa(-c95c96+se5se6ca5) - a5c96 - 555965a5

+s4(-sesce6su4 - 095s96sa40a5-596ca4sa5)

34(C95396+895C96Q15) + a5s66 - 55c963a5

+s4(595396314~095c96sm4ca5 - c96ca4sa5)

_a4se5sm5 + 34(c955a45q5-ca4ca5) - §5C0q

o

cGlsezsqz + sQlcezcalsaz + selsalcaz
SQ]_SQZSG,Z - Celcezcals(lz - CGlSG.ICCLZ
~c923alsa2 + qxlaaz

0

— —

SO5C96SQ4 -+ 0953Q65044C(15 + SG6CJA4SFX,5
-595596504 + c85c963a4ca5 + C96c045a5

-c955a4sa5 + cay, el

0
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In addition (3.99) and (3.100) respectively yield

Q? = 532 + 322'+ 522—+ alz + 2ajancl, + 2a1s3s080) + 2sps5c0, (3.103)

22? = a42 + 552 + a52 + 542 + 2a4a5c95 + 234a55955a4 + 25455q14 (3.104)
Our approach to this problem is to solve for the coordinates (x, y, z) of
the point of intersection of axes 3 and 4. With this in mind we

eliminate 6, between (3.99) and (3.103) which yields the polynomial:

2
g? - (532+a22+s22+§1 +Zsysqqu2) 2
281

—2
Z - 8pC07 - S3Q1lcﬂ.2

2
+ = ay? + 85780, (3.105)

Sa,l

where we have defined Q in terms of its components

p.4
Q= y (3.106)
Z
and
Q% = x2 + y? + z? (3.107)

Similarly eliminating 65 between the z-component of (3.99) and

(3:.103) leads to

72 - (a4z+552+352+542+254350&4)
235
7 2
Z+8,C0/,C0 e +S €O,
+ AATSTSTTS -5 25, % +a,2 (3.108)
4 T4 4
315

We note -1[22] -1[?2] = ?2 . ?E and using (3.98) for 1[?2]2 ,
we form

7p2 = @2 +R% - 29 . R (3.109)
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also

‘7X X

7

y ) | y ,

. = Aeq (3.110)
Z Z

where Aeq-1 is defined as in equation (3.53). Thus using (3.100)

for 7z s (3.109) for 72? ,» (3.108) becomes

2 2 _ _ 2,.2,. 2,2
Q° + R 20 « R (a4 '*-s5 -l-.a5 +s, +23455ca4

2a5

TR -1 y
L | 21s* +aggy *agsz tay, Tt osucqcogtsscns

= g,%sq,% + a (3.111)
S5 4 4 4

We next want to express 3 and g, in terms of x , y , and z
and use the relation

Wy« W, = cosa (3.112)

5 s 395 R CQG’,‘SQ6' explicitly

expressed in terms of x , y , z . We note cG2 and sez are

For this we need c67 , 391 5 c92 R 992 s c8

simply obtained from the z~components of (3.99), and from (3.103)

and are

2 2 2 2 2
as [_Q (s374ay "+, 1y +25233C0t2§| - s3sr7,2|__z -(szca,1+s3calca2):|
231 Sa.l

ng =

ap? + 5,%a0,2

(3.113)
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a2|:Z “(52%14'53c‘x1cazﬂ + s_gi{lgl IEZ._’Z -=(532-1-322+522+312+25253¢@2;‘
sl 23 -

322 + 8328(1,22
(3.114)

¢B7 and s@l from (3.99) are, after simplification

- x(53392312+32092+al) -y [Sg(cequlsm2+axlq12) - azsgqul + S2Sm1]

(3.115)

y(535825a2+32092+31)+ X{}3(092Ga15a2+5m1ﬂx2) = apsbycyy + szsmlj

56, = <
x2 + y'2
(3.116)
Where we may use (3.113) and (3.114) for c@z and 392 + When (3.113)
(3.114); (3.115) and (3.116) are used in (3.101) to express wz 1in
terms of x , v , and z , the result is a third degree expression in
X ¥ ,and z . If we do similar things with 865 and 6g for
then (3.112) becomes a polynomial of degree six in x , vy , 2z » This
along with (3.103) and (3.,111) are three equations for x , y , and
z . However, they are of such large degree that finding all the rocots
is not feasible. Though there are some special cases of interest.
For a 6R, aja;, manipulator, with ny = a3y <o = 909 and
Gy S04 = ~90° the equations feduce to a degree which is workable.
This configuratiov is shown im Figure 3.1l. Equation (3.105) reduces
to
x2 +y2 + 22 = a2 (3.117)
and (3.111) reduces to
%2 + yz + z2 + X42 + y42 + z42 = 2%y = 2yy, = 2z42 = a42 (3.118)
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Figure 3,11. A 6R,a2a manipulator with adjacent axes orthogonal.
Xz(x,y,z§ is the point of intersection of axes 3 and 4.

-56-



where R in (3.111) has been replaced by its components, Xy 5 Yy 0 2y o
and the indicated dot product performed.

(3.99), (3.100), (3.101), (3.102) reduce to

[a,c81c0y |
a,sB.co
Q- 212 (3.119)
asz2
1 _
—_~a4c95c95—
a,cb_s8
Tp = 4775776 (3.120)
*a4595
 —— 1 o]
-celsgz
~s58.58
2
c92 '
W 0 —
~565c96
s6.s56
5
Tlw,] = ¢ (3.122)
co
5
0
from (3.119) we obtain
chy = X (3.123)
azcez
s8y = Y__ (3.124)
azcez
592 = z (3.125)
az
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using (3.123), (3.124), (3.125) in (3.121)

- 1
n = :
 apPed
: 2 - 0.2 ,
replacing ¢Bp° by 1 - 86,° and using

becomes

from (3.120) we obtain

- X
cO, =
6 34095
7
58, = —X
34Q95
-7
895 = —E
a
4

-xy

-yz

2 2
a, c92

0

s92

—

(3.126)

from (3.125), (3.126)

(3.127)

(3.128)

(3.129)

(3.130)

substituting (3.128), (3.129), and (3.130) in (3.122) and simplifying

gives us _ __
-7 7
y z
7 1 7.7
= — y'z
7] | T
- 0

-58~
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We now rotate 7{m4] to express it in terms of system 1 by

w, = Aeq’[y,] (3.132)
with Aeq as in (3.53) and 7[m4] as in (3.131) we get
— .
-a117x7z - 3127y7z - a13722 + 313342
1 7 - 7.7 _ 7.2 2
Wy, = —7 AR Au) ay1’xz - agy’y'z - ay3"2" +agza, (3.133)
a 1 -1z ]
7 7 7,2
4 [ zz] ‘a317x z - a327Y zZ - a33 4 + 833342

0

To eliminate ’x s 7y ’ ’x  from (3.133) we use (3.110) with Aeq from

(3.53) which after simplification yield:

- I

-(a13x+az3y+a33z+a34-1)(x-x4) + a13a42

1 -(a

N 2

%” 11

ag2[1 - 142 |% o )
2,2 | | (eisxtRasytagaztass”) (2oay) * agza,
0

Then using (3.127) for w3 and (3.134) for y, the equation
w3 + Wy = 0 results in the polynomial:

1)(x2+y2+22-xxﬁ-yya-zz4-a22-a42)
- -1 2 2
+aag, et + 23, (ryaygytagatay, ) +aya, gy = 0

z (ajaxtagqytan.z+taay,
13#7a2337d3327a34 (3.135)

We note that linear combinations of the equations (3.117), (3.118) and
(3.135) can be formed to reduce the degree of the equations.

Equation (3.117) we leave as is. Combining (3.117) with (3.118)

leads to

2 2
2x4x + 2y, +2%242 +-a42 -a?2 - (x42+y4 +z4 Yy =20 (3.136)

2

and using (3.136) and (3.117) in (3.135) yields
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2 2 2 2 2.
0 =.xz[al36?%— X by, tEm ety
2 2
2 2 2 2 2
_ 29 Xy + v + Z,° a,
+ yz[a23( 2 - 2 - 2 )J
2 2 2 2 2
a x4 ty,4 +z a
+ 22[333( 3 - = lZL 4 - 2 ):I
2
+ x (a13z4a2 ) (3.137)
+y (a2324a22)
2 2 2 2 2
- _ 8 X4, + Yy, + zy, ay,
2 [(agazgag®) +agy 2" tag, 5 - > thral)

2 -1 2.2
+ z 8, ag, + ap 34 834

The equations (3.117), (3.136) and (3.137) are three equations for
X,y ,and z . The linear equation (3.117) can be used to eliminate
one variable easily. Another variable can be eliminated between (3.136)
and (3.137) leading to a polynomial of degree four. This procedure

has been carried out and programmed on the PDP-6. An analysis program
was used to generate inputs with known angles to check the results.

A typical example was generated by the arbitrary input angles

6, = 34° , 8, =21° , 0

3 4

link parameters aj = a, = 15" , which gave:

-0.322 ~0.481 0.816 12.066
0.555 0.641 0.577 18.035
Aeq =
-0.801 0.598 0.037 -5.609
0 0 : 0 1




For the above, the four sets of common roots were real and lead to

four sets of angles for each root.

They are shown in Table 3.1l.

If al#O then the solution may first be expressed as three

quadratic equations in three unknowns (x , y , and

and finally

as an eighth degree polynomial. With a;#0 , a,#0 , a4#0 , and g's

as before, and with x , y , z defined as before, (3.105) becomes

(x2 +3y2 4+ 322 - a12 - 322)2 + 4a12 (z2 - a22) =0

(3.138)

and equation (3.111) reduces to (3.118) as préviously noted. To

form g we use c®) and s8. from (3.115) and (3.116). Next

1

we use c92 and 592 from (3.113) and (3.114) and substituting

these quantities into (3.101l), we obtain after simplification:

m3_

Ly

1 - 2xz
- - 2yz
1 2,0, 90 2 2

2a2[(a1+§31(x tystze=a,“~a; )]

« 222 + (x24y2422-2,2) + 2a,° -

0
(3.139)

is as before and given in (3.134). By using (3.139) and (3.138)

in (3.112), by replacing (x2+y2+22) with its equivalent from (3.118),

and

0 =

by simplifying, (3.112) becomes:

x2(2a13z4x4)
+ y2 (2393249 4)
+ 22[a (-R.z-a 2+a 2., 2) + 2a.,.2 2]
Bqq 75 4 1 2 33%4
+ xy[2313z4y4 + 2a2324x4]

2 2, 2
+ yz[2a2324 + a23('52°“a4 +al -a22) + 2a33z4y4]
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‘ . 2 2 2
+ zx[2a33z4x4 + 2a13z42 + a13(‘.372-‘a4 ta) -a; )]
2 -
+ x[a13z4(-ﬁ52+a42-a12+a2 ) + 2a33a42x4 + 2a34 1z4x4]
2 2 -
+ y[a2324(-;& +a,, ~a12+azz) + 2a33a42y4 + 2a34 124y4]
2

+ z[a33z4(-'5_2+a4 -alz'fazz) + 2a3334224 + a34"1(ZZ42—i§_2 + a42

+ a12 - azz)]
+ lagy ley (- R, 2rarP4,0) + a0, (- RPe, e P, D))
(3.140)
When (3.118) is used for x2 + y2 +z2 in (3.138), that equation becomes
quadratic. This together with (3.118), and (3.140) are the three

quadratics for x , y , and z . Eliminating two variables produces

a single polynomial of degree eight. The preceding was programmed on
the PDP-6 to yield a final polynomial in =z . For the link parameters
a1=l3 s a2=15 s a4=15 s, several examples were run. Examples were found
in which eight sets of values did indeed satisfy the three quadratics.

One of these, generated in the input angles 61=9° s 92=175° N 93=188°,

8,=173°, 95=174°, 96=169°, led to the following set of elbow positions:

X y z
1 -25.342 11.820 1.048
2 =24.457 -13.53% 1.200
3 -1.914 -0.569 0.294
4 -1.919 -0.304 1.307
5 -1.960 0.399 -0.019
6 -1.979 -0.168 -0.641
7 ~-12.297 0.735 14.985
8 -18.119 1.073 -14.088

Now, in order to extend the above problem to include aS#O s We

must define a new variable

W= X2 + y2 + z2
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We then replace the terms (x2+y>+2) with W in (3.105) (3.111),
and (3.112) and appropriately.rewrite .mz, . Equétions (3.105), (3.111),
(3.112), and (3.141)7 becomé quaaratic in w ‘, X,y s and z . The
details of this may be found in Appendix V. According to Bezout's
theorem this system has at most 16 sets of common roots. :Howevef, no
method is known by which three of the variables may‘be eliﬁinated to
attain one polynomial of only degree 16. |
To summarize the gbove we have found that:
1. A bR, a234 may have as many as four different
configurations leading to the same hand position
and orientation.
2. A 6R,‘a1a2a4 may have as many és eight different.
elbow positions (the elbow is considered to be the
point of intersection of axes 3 and 4) leading to
the same hand position and orientation.
3. A 6R, aja,8a; will have at most 16 different
positions that the elbow can assume for each fixed

hand position and orientation.
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CHAPTER IV

NUMERICAL SOLUTIONS

Our solutions so far have been made possible by the existence of
special geometry. To analyze more general cases, iterative procedures
must be used,, Two procedures are presented to handle these cases,

The first employs the well-known Newton-Raphson technique* and the

second applies velocity methods.

4.1 Newton-Raphson

The Newton=~Raphson method assumes the existence of an approximate
solution, Then the equations are linearized and an increment to this
approximation is computed hopefully leading to a more accurate approxi-

mation. We write

8, =0, + 3% i=1,...,6 4.1

where is the first approximation, and ©6A; 1is the increment, and

9io

Ui is the more accurate approximation. We may then write (3.4) as

(0, 456 -s. 56 yeai 50 yeo o +60 ) ]
c(f; 40 i) s(Gi0+ i)caz s(@io+ i)sUi aic( io+ 91)
Ai = s(9i0+-aai) c(eio+ 5ei)cgi -crei0+ 5Gi)sai ais(eio+ 591)
0 sai cai si
0 0 0 1 N
- (4.2)

*This method was applied to seven link mechanisms with revolute pairs
by Uicker, Denavit, and Hartenberg (9], The approach presented here
is similar to theirs. They assumed the motion of one link to be
prescribed as an input and found the displacement of the rest of the
mechanism as they incremented the input.
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Then expanding c(@io + 88,) and s(O + 80 ) , using trigonometric
1 io i
identities for the sum of two angles and letting c(59i)=1,:s(69-)= 58
1

i
(4.2) becomes

cb, -s8 cO, sB si ach -s6  -c® ca, c8, st -a s@
10 io 1 io 1 i 1o io io i io i i io
s ch co, -ch sq. a sb 86, |cB 8 ca s6 s ajcl;
A; = eio io i io i i do|+ 1{° io ° ioc i *%i0° i - 1
0 s, ca, s 0 0 0 0
i 1 i
0 0 0 1 0 0 0 1 ]
| . — S (4.3)
which we write as
A, =A + 589 B (4.4)
i io i do

where Aio and B are defined from (4.3). Using (4.4) in the basic
io

eqn. (3.4) and retaining only terms of degree one or less in 59. we
i

have

89) (B1oA 2080840850460
5%, (A10B20730"4050460
+ 853 (A0850B308 40850860 .5
88, (AgpAr0830B40850860) |
885 (A1082083040B504 60)

+ 596 (A1 0A

=+~

204308404508 600 AS4"A1gA0A 308,08 50460
The matrix equation (4.5) contains six independent linear equations
that may be used to compute §¢ ,(i=1l,...,6) . It is noted that the
i

preceding was developed for revolute joints, but the method is also
applicable to manipulators with prismatic joints provided appropriate
changes are made in the B‘0 .

This method lendé itself t6 computation on a digital computer. A

program has been written implementing this scheme. The inputs to the
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program are the joint angles of the manipulator in its initial state,
and the desired final hand position and orientation, The output is a
set of angles leading to the final state. TIf the final state is a great
deal different from the initial state, then solutions of (4.5) will not
vield "small" corrections and the method will not converge, In order
that (4.5) be valid it is necessary to generate intermediate

targets, The right~hand side of (4.5) represents a translation and a
rotation. Intermediate goals are specified by taking a fraction of
the teotal rotation and translation. The program begins with the initial
angles as the first approximation, Then it computes the next approxi-
mation based on an intermediate goal, A new intermediate goal is computed
and the process continpes until a satisfactory set of angles is found or
the method fails to converge after a fixed number of iterations., See

Appendix I for details,

4,2 Tterative Velocity Method

The iterative velocity method is based on the fact that a change in
position and orientation of a rigid bedy (in this case the hand) can be
expressed as a screw = a rotation about and a translation along a single
fixed axis, 1In addition, for small motion, it can be shown that the
screw is related to the angular velocity,

We write W and V as approximations respectively to the angular

velocity of the hand and the linear velocity of a point in the hand at

*0n the right-hand side of (4.5), Aeq represents the desired position and
the product of the six matrices represents the present positiocn. Hence,
the difference gives the displacement which may be represented as a
rotation and a translation.
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the origin:

W=L9 n | (4.6)
At
V=hipn-nxrae (4.7)

At At
where quantities on the left-hand side of the above are found from the
screw; A® is the amount of rotation, n is a unit vector parallel
to the screw axis, ! is the pitch of the screw, and r is a vector
from the origin to the screw axis. The details are shown in Appendix II.
In addition we may express the angular and linear velocity as functions

of the rotations in the arm joints. That is

6

E=Zlg (4.8)
i=1
(3}

Vo=-> Wox £ (4.9)
i=1

where W 1is the angular velecity of the hand due to the rotation about
i

axis 1 and r, is a vector from the origin of system 1 to axis 1,
~i

We make the approximaticn

Hy =gt on, (51,...,8) (4.10)

where 1n; is a unit vector parailel to axis i and we assume that the
motion of the hand from initial to final position is small, so that

(4.8) and (4.9) way be written using (4,10) as

6 Al
W= Y (4.11)
i=1 At 1
6
8. AB;
Vo= = Yoaloxox, (4.12)
=y hy TR |
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Then equating the right hand sides of (4,11) and (4,12) to the right-—
hand sides of (4.6) and (4.7), and we obtain two vector equations repre-
senting six scalar linear equations in Aei , i=1,...,6. Equating and

dividing by At yields:

6,
> (A8, n,)) = A%n (4.13)
i=1 17t N
6‘1
->. (8 n xr)=HAM n-nxIr v (4.14)

The right-hand sides of (4.1) and (4.14) are computed from the known
changes in position and orientation of the hand., Since the initial
configuration of the manipulator is known, we have values for the

Ei and Ei . As long as the changes in position and orientation,

as represented by the screw, are small, then the solution of this set
of equations gives small changes in the joint angles., Thus the I;
and the n, do not change very much and we are justified in using
their values in the initial state. To apply this method we must insure
that the right-hand sides of these equations are small. Therefore,
for large motions, we take only a portion of the screw to compute

the incremental change in the angles, We also limit the change that
is made at each iteration,

If any of the revolutes are replaced by prismatic joints, this
method may still be applied with appropriate changes in (4,11) and
(4.12) |

A computer program has been written utilizing the above scheme,

details of which can be found in Appendix II.
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4.3 Comparison of the Methods

It was desirable to test and compare these methods to determine
their practicability in finding solutions for complex manipulators, In
addition it was hoped that the velocity method would be faster as it does
not require the matrix multiplication that the more conventional
Newton-Raphson method does. A 6R,.spapsja;, manipulator was used as a
trial for the two methods. For the‘purpose of testing, the target hand
positions were generated by sets of known angles, Programs were written
in FORTRAN IV for the PDP-6. With this machine, an iteration using
Newton-Raphson took 0,140 seconds while the velocity method took 0,097
seconds., A typical example is:

With the parameters of the arm fixed at

@, = Q. =0 = g9°
1 3 o5 90
: o
a2=a4=-90
azr— 0.375
s3 = 12,2
ag = 0.375
s = 9,5
5
and arbitrarily
a6 = 5.9
(].=0 ,
6

the target was generated by the angles

§ = 100°, 5, = 100°, 93 =30° 8 =130°, 6 =50°, 6 =90 .

4 5 6
This leads to the hand position specified by position vector
27,915
B, = ~0.869
0.314
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and the orientation (specified by two unit vectors fixed in the hand,
L, pointing in the direction of the hand and §2 in the direction of

the sixth revolute axis);

-0.869 0.314
L, =| 0.492 , N, o 0.486
-0.042 -0.816
The initial configuration of the arm was
v ) o . - o . == 0 e = 9 = o e = o
A = 70°, B, = 80", 93 40°%, 8, =0, 8 =60, O =30
with
14,229 -0,979| -0.105
Py = |20.295 L, =| 0.196 N, = -0.220
14,1411 0,061 -0,970

The wvelocity method resulted in:

e = 9 = e = B = e = =
1 100,00, ) 100,00, 3 30.00, ¥, = 30,00, 8. = 50.00, 96 0.00
27.914 -0,870 0.313
P_=[21,001} , L_=| 0.492 N_ =| 0.486
2 124,863 2 | -0.042 2 1.0.816

Number of iterations 10

Run time 0.97 seconds

The Newton-Raphson method resulted in:

0. = 100.00 O, =100.00 8 =30.02 & =30.00 O =149.98 8 = -0.01
1 2 3 4 5 6
27.914 -0.870 0.314
P =[21.002 L =| 0.492 N_=| 0.486
2 24,862 2 1.0.042 2 |-0.816

13

Number of iterations

Run time 1.82 seconds
From the results of many tests similar to the above the following

was observed;
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1. TFor small motions (rotations of about 10° in each joint) both
methods converged to solutions but the velocity method generally
had fewer iteratioms,

2, TFor larger motions (rotations of 10° - 90° in each joint),
Newton-Raphson did not always converge within the upper limit
of 400 iterations., The velocity method did in all cases tested.

3. TFor even larger wmotions, the velocity method did not always
converge within 400 iterations but did converge in all examples
when allowed more than 400 iterations. However, such was not
the case with Newton-Raphson. In some examples even after
4000 iterations, it still did not converge,

Both methods become very time consuming whenever the course of the
solution takes the arm to the equivalent of a "stretched out'" position.
That is whenever the hand is in a position from which it cannot move

in an arbitrary direction and rotate about an arbitréry axis, “the

system of equations formed in both the above methods degenerates.
Generally, thesemethods work their way out of such predicaments by
taking very small steps, and by benefiting from round-off error inherent
in the computations. The further the distance between initial and

final states, the more degeneracies that are likely to-be'enqountered
“eprecute to'the.final state.

Even though convergence is occasionally slow, the velocity method
reached a solution in all cases tested, thereby proving it to be useful
for complex manipulators. In particular for a short range of motion it
was very efficient. Thus it might be used most effectively to find
the finaljset of angles, when a first approximation has been obtained
usiﬁg a‘fathéf giiplified wodel of the manipulator.
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CHAPTER V

A DIGITAL MANTIPULATOR

5.1 Description of the Manipulator

One type of manipulator whose solution does not fall into the
class previously discussed is one containing more than six degrees-of-
freedom but having a limited motion in each joint., An articulated
arm of this type having many degrees-of-freedom was described by Anderson
and Horn | 371, They found that such a design was practical for use in
an underwater laboratory. In fact, they claim that this design opti-
mized many desirable criteria such as slenderness, cost, microdexterity
and range of operatiom.

1f, in addition to restricting the range of freedom at each joint,
we allow only a finite number of states to exist at each joint, then the
arm becomes digital in nature. This makes it easy to be interfaced with
a digital computer. The concept of such an arm was suggested by
L. Leifer who together with V. Scheinman developed working models for
the Stanford Artificial Intelligence Project (see Figure 5.1), Since
the arm is spake-iink in form, they named it the "ORM" (the Norwegian
word for snake).

We shall examine the problem of finding a solution for a digital
arm, 1t can be seen that knowledge of the state of each joint together
with knowledge of the link gé€ometry is sufficient to specify the position
of the hand., The orientation freedom of this device is limited. In

practice it would need to have a wrist capable of putting the hand in
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Figure 5.1. Working model of the ORM developed at Stanford.



the proper orientation. We, therefore, examine the problem: given the
desired position of a point in the hand, to find the state of each joint
leading to this position.

The problem is divided in two parts, The first is to consider
a two-dimensional arm and develop a technique to solve it., The second
is to develop a method for three dimensions with insight gained from

looking at the two-dimensional problem.

5.2 Two-Dimensional Model

The two-dimensional or planar arm to be considered is binary in
nature, In other words, there are only two states for each joint, TIf
the arm is made up of n links, there are 2 possible configurations.
A model of this arm is shown in Figure 5.2, where the angle between two

adjacent links can be either +8;, or -8_ where 90 is a constant.

o

Figure 5,2, Binary Arm,

th

If we number the joints 1,,...n, and denote the rotation in the i—
joint by ei , 1i=1,....n, our problem is to find the Si such
that the end of the final link is ‘“close' .tb the desired target.
Since there are exactly o possible configurations, there are

at most 2% points ‘that the end of the arm (the hand) can
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reach. Thus, in general, the hand cannot be placed at an arbitrary point,
Hopefully, however, with sufficient links the hand could be placed close
to any arbitrary point within its workspace,

There exists a well~defined transformation (see Appendix III)
to find the position of the hand, given the Qi . However, the inverse
problem (i.e., given the hand position, find the associated si) has
yet to be solved. Theoretically, we could exhaﬁstively examine the
2™ possibilities construct a table and then choose the one that places
the hand closes8t to the target, but in practice this woﬁld be too time
consuming. We therefore need a systematic method to help in dealing with
Ssuch a large solutidn space. If we define the error as the Euclidian
distance of the hand from the target, the scheme Outlined in Figure 5.3

suggests. itself.

START  WIiTH ARM 1N

SOME ARBITRARY

L=l CONFIGURATION
P = o
NO 1'
1=
\ CHooseE 8; ToO
MINIMIZE ERROR
YES
'S
L ERROR TOO
I=T+) -
YES LARGE

FINISH

Figure 5.3, Sequential Search Procedure.
In this method the arm is put initially into some arbitrary con-

figuration and the position of the hand computed. Starting at the
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origin each joint is examined sequentially to see if the other state
at that joint would reduce the error, If it does reduce the error,
the change is made., That is, the rotation at that joint is considered
to be reversed and the position of the hand computed while the rest
of the arm remains rigid. The state of that joint is then changed
if necessary to reduce the error. However, the existence of local
minima prevent convergence of this method in many cases. It is
possible to get improvement by using look-ahead, Instead of considering
changing each joint singly, the results of changing that joint along
with changes in the next k jointsvare considered. This may be
called k-stage look-ahead, and would involve computing the hand position
2k+1 times for each joint., There are now many strategies possible using
combinations of 0,1,2,,.. - stage look-ahead, There is, of course,
a trade-off between the amount of look-ahead and computation time.

For instance, one strategy was to use no look=-ahead until the error
could not be reduced, then try l-stage until no improvement resulted
then 2-stage etc. The process was halted if the error was sufficiently
small or the look-ahead became too large (usually 3-stage was as much
as was allowed).

For purposes of trying these strategies, an arm with twenty-four
1 inch links, with possible rotations of =+15° in each joint was
modeled in the computer. Tests were started with the arm extended
along the x-axis as shown in Figure 5.4. The results are presented in

Table 5.1, Computation times are shown in Table 5.2.
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Figure 5.4, The arbitrarily chosen initial starting
configuration for the arm.

It can be seen that no strategy tried was best in all cases. These
methods had the additional disadvantage that the shape of the arm itself
was not predictable, It was hoped that improvement would result if the
searching was started after the hand was put at a point near the target
by some simple procedure.

In order to place the hand néar the target, a curve connecting
the origin and the target was generated, whose arc length was equal to
the length of the arm, and whose curvature did not exceed that which
the arm could assume, Curves made up of segments of four circles having
the above properties were used (details of the derivation of these
circles are presented in Appendix III), and a rought attempt was made
to match the arm to this curve. After the rough curve match, the
previously described searching technique with l-stage look-ahead was
used, Various curve matching algorithms and different radius circles
Were used. Some of the resulte are shown in Figures 5.5 through 5.9.

Figure 5.5 shows the configuration resulting after four loops with
no look~ahead, then two loops of l-stage look-ahead., The procedure was
started with the arm aligned along the x-axis as in Figure 5.4.

Figure 5,6 is the result of first matching the arm to a curve composed
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of segments of four circles, and then using two loops of l-stage look-
ahead.

Since the arm can tilt *15° at each joint and the joints are a
fixed distance apart the arm bends in a circle if all the tilts are in
the same direction. The radius of this circle is the minimum that the
arm can assume, In Figure 5.6, the radii of the circles used to generate
the circle segment curve have this minimum radius. To match the arm
to the curve, the state of joint i was chosen so that joint i+l
on the arm was as close as possible to point i+l on the circle-segment
curve. As can be seen, this procedure definitely influenced the shape
of the final result. It may be noted from Figure 5.6, that in the
attempt to match the arm to the circle-segment curve the arm lagged the
curve. One attempt to remedy this, was touse larger radii circles to
generate the curve., It can be seen from Figure 5.7 that this improved
the match.

To reduce the lag even further, the state at joint: i’ was chosen
so that joint i+l was as close as possible to point i+2 on the curve.
This appeared successful as can be seen in Figure 5.8. An attempt to
match the arm to the curve in both slope and position was made.

Figure 5.9 shows the results of this scheme.. The arm somewhat took
on the shape of the curve, but not as much as in the other schemes.

The results presented were for the target (10,10), However, they
are similar to those obtained for other targets, The best results
Weré obtained when the radii of the circle segments were larger than

the minimum. For radii of too great a magnitude, no curve existed that
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-

10 -

Target (10,10)-—-//’0

Figure 5.5. Result of arm after 4 loops of 0 look-ahead and two loops
of l-stage look-ahead. The starting configuration was
along the x-axis, as in Fig. 5.4.
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12
lo— Target (10,10)»g
+
v
8-
0 0 Points on curve made up of four
circles
¥4 Arm after simple attempt to match ¢
curve 0
o6 +—+ ©Position of arm after two loops of
sequential l-stage look-ahead search 0
0
+4"\ °
+
0
2—1
o .
o 0
0
. | 0 ° X
| | D
o 0
4 6 8 0 2 (4
2
+
Figure 5.6. Result of trying to match arm to curve made up of segments

of four circles, and the improvement after two loops of
1-stage look-ahead. Radii of circles is equal to minimum
radius that the arm can assume. The curve matching tech-
nique was to choose ©; so that point i+l on the arm was
as close as possible to point i+l on the curve.
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Ay

12
Target (10,101;:;7
10—
8
9] O Points on curve made up of four
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Figure 5.7. Similar strategy to that in Fig. 5.6. In this case the
radii of the circles is 1.2 times the minimum radius that

the arm could assume.
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Figure 5.8. Result of trying to match arm to curve made up of segments
of four circles, and improvement after two loops of l-stage
look-ahead. Radii of circles is 1.2 times minimum that
arm can assume. The curve matching technique used was to
sequentially choose &, so that point i+l on the arm was as
close as possible to point i+2 on the curve,.
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Figure 5.9. Result of trying to match arm to curve made up of segments
of four circles, and improvement after two loops of l-stage
look-ahead., Radii of circles is equal to minimum radius
arm can assume. The matchlng technlque was to sequentially
choose & so that (x,, - xu,)+(yl+, G+ s i) (ﬁ:—:—_—%ﬁ] was
a minimum, where (x_,y;) is the coordlnate of Jo1nt i on
the arm and.(x Y) is the coordinate of point i on the
curve. This matching criteria puts a weight on the slope as
well as the position of the links.
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could connect the origin and the target point, A value of 1.2 times
the minimum seems to be about optimum. It was found that this allows
for a measure of control over the final shape of the arm as well as

generally reducing the position error,

5.3 Three-Dimensional Model

This arm is similar to its 2-dimensional counterpart. The differ-
ence is that two axes of rotation exist at each joint. The axes inter-
sect and are 90° apart. (See Figure 5.10.) We assume our model to be

constructed so that eight states are‘allowed-at each

AX1IS 1

AXIs 2

Figure 5.10, Typical joint in 3~dimensional digital arm.

joint. These are: either a rotation of j@o about axis 1 with none
about axis 2, or a rotation of -teo about axis 2 with none about
axis 1, or rotations about each such that the net result is a rotation
tHO about axes midway between axes 1 and 2, Thus, two links can be
tilted with respect to one another 190 about & different axes that are
45° apart. If we denote the rotation about axis 1 as P and the rota-

tion about axis 2 as 9 , then the possible states are:
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State g P
1 +8 0
)
2 -8 0
[6]
3 0 : +0
o
4 0 -8
-1.1 . =1, 1 .
5 +tan (= tanb sin™*(=sinb
T o) ﬁJﬁ o
-1 1 1
6 +tan (== . =1 .
Efﬁtaneo) -sin QTESlneo)
-1,1 3 -1.1 .
7 ~tan R -sin . 6
afétaneo) €J251n )
-1.1 RS P
8 -tan (==tanB )l+sin" " (=-sinf )
NP V2o

where the values of © and @ in states 5-8 are the actual rotations
about axes 1 and 2, leading to equivalent tilts about axes at 45°
to 1 and 2 (see Appendix TIT). An n-link arm would then have 8"
possible configurations. Again there is a well-defined transformation
to find the position of the hand given the angles (See Appendix III)
but no such transformation exists to find the angles given the hand
position,

The procedure presented in Figure 5.3 is still applicable except
8 states exist at each joint. Then each joint would be examined
Sequentially and the state at that joint is chosen which minimizes
the Euclidian distance of the hand from the target. With k-stage
look-ahead variations in the joint under consideration plus all
possible combinations of the next k are considered. Then only the
joint under consideration is moved. The position of the hand must thus

k+1

be computed 8 times for each joint and the time involved in these

computations will limit the amount of possible look»ahead.
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An arm with 24 l-inch links and possible tilt of *15° between each
link, was modeled in the computer. The arm was placed initially in
the configuration of Figure 5.3 and strategies involving combinations
of no look~ahead and 1-stage look-ahead were tried. Results are presented
in Table 5.3. Computation time for one loop of sequential search is
shown in Table 5.4. Details of the algorithms used are in Appendix ITI.
In general, the results are encouraging., It seems that this
approach works better in three-dimension than in two as the errors
are lower. The reason for the improved behavior can be attributed to
the additional possible states at each joint. Computation time is
longer in three dimensions, limiting look-ahead to one stage if real

time problems are to be undertaken by the arm,

5.4 Discussion

Many variations of the aforementioned strategies are possible,
For example, one may start sequential searching and making moves at
the hand then work toward the origin, It is also possible to find
the joint at which a change would reduce the error by the largest
amount, make this change, and then continue the process of changing
the joint that makes maximum reduction in error.

A reason for starting at the origin and working toward the hand
is that in general a fixed rotation near the origin will cause the
greatest deflection of the hand. Thus, in many cases making a change
near the origin turns out to be the change that makes the maximum
reduction in error.

Another approach is to take two joints at random and consider

the result of simultaneous changes in each. The two-dimensional
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curve matching scheme could be extended to three-dimensions to give the
arm a better starting configuration. It might be possible to break the
spatial problems down into pianar problems. Another idea is to divide
space up into several regions, store a configuration that places the
hand in each and then initially start the hand in the region closest

to the target.

Many strategies are possible, none clearly better than others.
Perhaps further study would show that certain ones work better in certain
areas of space. It then might be possible for the computer to learn
which was.best for a ﬁarticular region.

Differeﬁt error criteria might be better. Cartesian coordinates,
with the base of the arm aligned along the x-axis were used. This might
mean that erfor in the x~direction should be Weighted differently than
error in thé y- or z-direction. Perhaps the arm can better reduce angu-~
lar error than radial error and this should be taken into account. Again
learning might be applicable in selecting one error criteria for a given
region or for optimizing weights placed on different quantities in an
error fuﬁction which is to be minimized.

In order that this arm be useful, the points in the reachable space
must be élose together, With a 24 link arm, there are 824 (approximately
1021) possible configurations, There will be fewer reachable points than
' configurations, but reducing 824 by a factor of 10 or 100 or 1000
still leaves a large number of points. WNear the boundary of reachable
space, the points will be further apart, but in the interior, the
density whould be very high. Assuming that a 24 link arm has a working

volume of .5x104 cubic inches and 1018 reachable points exist, then
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the average density is 2x1013 points per cubic inch, or if the points
were equally spaced, they could be 0.00004 inches apart. This leads
one to believe reachable points should be close enough to any arbitrary
point in the space. The problem, of course, is to find the configura-
tion that leads to a position near a desired point.

The results indicate that it is possible to find a solution for
this digital manipulator. The solutions obtained are far from optimal
but close enough to be useful.. The dimensionality of the problem is
staggering at times, but it is in fact the large number of solutions
that give hope for any sub-optimal technique.

Further improvement is possible. By streamlining the subroutines
used for basic computations, computer time could be reduced. The
incorporation of different strategies for different zones would be
uscful.

Although the problem of finding a set of angles to place the hand
at a given target appears soluble, the arm itself has serious limitations.
The primary drawback is the inability to control its motion. Since
there are discrete states at each joint, a wild motion is likely as
each change is made. That is, the position is undefined when motion
Occurs. In addition, positions close in space may be very different in
arm configuration. In conclusion, the arm is interesting but in its

Present state has no immediate usefulness.
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CHAPTER VI
TRAJECTORY GENERATION

6.1 Problem Statement

In remote manipulation a typical problem is to move from an initial
configuration to some new position and then to grasp an object. In
order to carry out this task, the position problem must be solved. This
results in a set of values specifying how much to rotate each joint in
order to move the manipulator from its current or initial configuration
to the desired final state. However, in such a case no explicit infor-
mation exists describing the intermediate states between the initial and
final position. It should be noted that the initial and the final
configurations may be physically far apart, and the space through which
the manipulator must move to attain the final state will in general
contain obstacles., It is therefore necessary to find a '"path'" along
which the manipulator can move and not collide with any of the obstacles.
This problem will be referred to as trajectory generation. We attempt
to solve this by defining sets of intermediate values for the joint
angles which lead the manipulator to the final state in a manner which
avoids collisions.

A person performing manipulative tasks avoids obstacles very simply.
His eyes observe a possible conflict and he knows intuitively to raise
his elbow or change his direction slightly. He sees "the world" in
which he is working. He knows immediately which objects he is likely to

encounter and which he will not come near. For a computer controlled
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manipulator the problem is not so simple. The problems of "world"
modeling, conflict detection, and collision avoidance must all be faced
in order to generate a trajectory between initial and final manipulator
configurations.

As a first step in dealing with this very difficult problem, a set
of routines have been developed that provide a mathematical description
of the world. Other routines simulate proposed trajectories through
the space and sequentially examine points along the trajectory for
obstacle conflict. If conflict is detected these routines suitably
modify the trajectory. Several basic strategies to get from the initial
to the final position are programmed so that if one fails, another can
be explored. A block diagram of this s&stem is shown in Figure 6.1.

In the development of these routines, an attempt has been made to
be as general as possible in order that the programs be applicable to
any manipulator, performing a wide variety of tasks. In the next

sections, we present a description of these routines.

6.2 World Model, Obstacle Description, and Conflict Detection

For this system a simple model of the "world" is used. The basic
elements of the world are assumed to be: planes, spheres and cylindérs.
It is assumed that all objects of interest can be modeled with these
elements.

The boundaries of the workspace, usually formed by table tops or
walls, are modeled as infinite planes. These planes are represented by
a unit vector, b, and by scalar t. Vector b is normal to the plane and
points inward toward the workspace. Scalar t, the distance of the plane
from the origin, is measured in the b - direction.
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Simple, somewhat regular objects which are not planar or cylindrical

in shape are modeléd ” as the smallest sphere. that circumscribes the
object. A typical object modeled ' in this manner might be a cube, a
pencil sharpener or a coffee cup. The assumption is made that all such
objects are supported by an infinite plane. Thus we represent a sphere
by a, a vector describing the location of its center, b, a unit vector
from the direction of support, and t, the radius of the sphere.
Cylinders are used to model objects containing a predominant axis

such as a tower. 1In addition, cy&inders are building blocks for more
complex objects. For example, a manipulator is modeled as a group of
cylinders each of which corresponds to one of the manipulator's
structural members. The assumption is made that all cylinders are
supported from an infinite plane or from another cylinder. We then
represent a cylinder by a line segment corresponding to its axis and by
the maximum distance of points in the object from this line, d. We have
then:

b: a unit vector parallel to the axis pointing away

from the direciion of support
a: a vector describing the position of the base of
the axis

t: the length of the axis

d: the radius of the cylinder
With this representation it is convenient to consider the cylinders to
have a hemisphere capped on each end thereby assuring that all points on
the surface have the same minimum distance, d from the line segment

representing the axis.
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Each obstacle, then, has a list of properties which include its
type (plane, sphere, or cylinder), the composite object to which it
belongs, and the aforementioned parameters which are required for its
quantitative representation. The interpretation of a, b, t and d is
varied according to the type of the object. Such models of all objects
considered to>be obstacles to the manipulator are stored in the computer.

The process of conflict detection consists of determining if the
manipulator and the objects in its workspace will be brought to the same
place at the same time. This is accomplished by computing the distance
between the elements of the manipulator and the elements of the work-
space at various positions along the proposed trajectory. A conflict
is then predicted if this distance becomes too small.

It is undesirable to compute the distance between the manipulator
and all of the objects in the workspace. To consider all the objects at
each position along the trajectory would be time consuming. In addition,
much of this computation would be wasted as for an arbitrary position,
the manipulator would be so far from a large number of objects that a
collision with these would be very unlikely, We would thus like to
consider only objects near the manipulator. For this reason we divide
the reachable space of the manipulator into small regions. In all the
work to date, sixty-four subdivisions have been used. The workspace is
considered to be a rectangular parallelapiped with edges parallel to
the axes of a fixed Cartesian coordinate system. The small regions are
defined as the volumes between three sets of equally spaced planes parallel
to each of three mutually orthogonal faces of the workspace. Then a list

of objects completely or partially inside each region is associated with
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that region. For conflict detection, only the objects occupying the same
region or regions as the manipulator are considered.

As a result of dividing the space into regions, we have the problem
of finding in which region(s) various obstacles are located. In addition
we will have to identify the region(s) the manipulator occupies at various
positions along its trajectory. We wish to keep this analysis simple in
order that the time saved in not having to deal with all obstacles in
the workspace is not lost in trying to loeate the manipulator in various
regions., Since the faces of our subdivisions are made perpendicular to
the coordinate axes, we can easily eliminate many regions by comparing
the minimum and maximum coordinates (%, y, z) of an obstacle, with the
coordinate boundaries of the regioms. To find in which of the remaining
regions an obstacle lies we compute the distance from the center of each
of the regions to the obstacle (a fairly simple process in view of the
simple world model). We then c ompare this distance with the radius of
a sphere totally enclosing the region to determine if the object is in
the sphere. If the object is in the sphere, we assume it to be in the
region. This procedure may cause an object to be considered inside a
region when in reality it is outside. However, this process is con-
siderably simpler than trying to find whether an object cuts any part
of the actual region.

Routines were developed which divide space into regions and
appropriately enter or remove objects from lists associated with the
regions. These routines also store the properties of each obstacle.

The conflict detection routine starts with the first link of the

manipulator and finds which regions this link is in. It then finds the
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distances between all the objects in these regions and the link. A
collision is predicted if the distance between any object and the link
is small enough so that, with the link continuing along its present
course, a conflict would occur. If a collision is predicted, a flag is
set and the routine specifiés the obstacle and the link closest to the
obstacle. If no collision is detected the procedure is carried out for
the remaining links in the manipulator. A block diagram of this program
is presented in Figure 6.2.

The method for determining distance between a manipulator link and
an object depends upon the type of object. For spherical objects, the
distance between the sphere center and the cylinder-axis of the link is
computed. The actual distance is then found by decreasing this by the
sum of the radii of the sphere.and the cylinder (representing the link).
For planes, the distance between the plane and the cylinder-axis of the
link is computed. This distance is decreased by the radius of the
cylinder to form the actual distance., For objects modeled as cylinders,
we find the distance between the object axis and link axis, and decrease
this by the combined radii of the cylinders. Details of these calculations

are found in Appendix 1IV.

6.3 Trajectory Generation and Obstacle Avoidance

We have the problem of finding a series of closely spaced inter-
mediate positions connecting initial and final states. These represent
a trajectory that the manipulator can follow while avoiding all obstacles
in the workspace. The approach used is to start by choosing a plausible

trajectory, simulate the motion along the trajectory and then if conflict
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Figure 6.2. Block diagram for conflict detection routine.
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occurs, to modify the trajectory. This modification is made on the basis
of local geometric conditions in the area of conflict, (A program,
called AVOID, accomplishing this will be discussed in more detail later
in this section.)

Often if more than one ebstacle is present, a move that appears
good to avoid:one obstacle is bad to avoid another. This may lead the
manipulator to oscillate between objects. It is also possible for some
joints to be at their physical limits so that the avoidance routine does
not find a good move. Finally, the avoidance routine itself may come up
with a non-productive move. It is therefore necessary to contiqually
ascertain whether or not progress is being made toward the goal, If no
progress is being made, it is then mnecessary to decide whether a slight
change in strategy is sufficient or whether a whole new strategy is in
order.

A program based on the above approach called TRLTRJ, has been
written. The inputs to the program are two sets of joint angles, one
set specifying the initial position and the other specifying the final
position. 1In addition the desired increment between intermediate
positions is speecified. The output from the program is an array of
angles specifying the intermediate positions.

Four basic strategies are built into the program. The first, and
least complex, just increments each angle towards the final goal. The
second strategy ecomputes two intermediate positions to move the manipu-
lator up and then over a concentration of obstacles. The third and
fourth strategies both try to fold the manipulator to shorten it and then

move it in fromt of any obstacles. These last two differ in that one
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shortens the manipulator by moving joints in one direction toward the
physical stops while the other folds the manipulator by moving the joints
toward the stops in the other direction (in the program, we call these
directions positive and negative, respectively).
The program starts by trying the first strategy. If any obstacle
is encountered, this strategy is abandoned for the time being and the
second strategy started. If while pursuing this second basic strategy,
a conflict is predicted, an attempt is made to modify the trajectory
using the program AVOID. If this strategy fails after using AVOID the program
continues and tries the third and finally, if necessary, the four strategy
in a similar manner. If the fourth strateg?:fgils,:the program returns to
the first strategy and tries it using AVOID. If it does not produce a
trajectory, it is assumed that all obstacle avoidance strategies have
failed and the :program halts.
If any of the following occur, the program considers that no progress
is being made and hence a strategy has failed:
1. The avoidance routine (AVOID) is not able to generate a
move due to joints being at their physical stops.
2. A collision is predicted with the manipulator at the same
point on the trajectory where a conflict had previously
been predicted with that same obstacle (hence it is
assumed the program is in a loop).
3. A conflict is predicted with a plane for the second
time, while trying to avoid the same obstacle.

(Assumedly we cannot get around the obstacle.)
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4. The manipulator oscillates between two obstacles, and no
net progress toward a goal is being made.

5. More than 200 intermediate sets of angles have been
selected without the manipulator reaching a goal.

6. More than 350 intermediate sets of angles have been
explored.

The following conditions cause a slight change in strategy but do

not cause the strategy to be abandoned.

1. A plane of infinite extent is encountered while trying
to avoid an obstacle. At this point we assume that
the manipulator is moving in the wrong direction to go
around this obstacle. The strategy is to go back to the
first point we encountered this obstacle and try to go
around it by going in the opposite direction. (This
notdon of direction will become more clear with the
description of AVOID.)

2. An oscillation of the manipulator between two obstacles
is detected. The action that the program takes is to
go back to the point where the second of the obstacles
was encountered and try to go around it in the opposite
direction. If this happens twice at the same position
on the trajectory, it is assumed that no progress is
being made and the strategy has failed.

A block diagram of TRLTRJ is presented in Figure 6.3.

The subroutine AVOID is used to generate small perterbations in a

trajectory when conflict is predicted. The program attempts to define
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a "good" direction and a "bad" direction. It then tries to move the

link for which a collision has been predicted as much as possible in the
good direction while not moving in the bad direction. This is accomplished
by defining small changes in the joint angles of all the links between the
base and the '"colliding” link. Tdeally these angle changes are chosen so
that the link will have a large velocity component in the good direction
and zero component in the bad direction. If the link does not have enough
freedom (i.e., there are too few joints preceding the link or the joints
are at their physical stops) to make a move in this manner, an attempt

is made to move in the negative bad-direction. If this too is:not
possible then no move is made and a flag is set indicating that the
strategy has failed.

The underlying idea used in choosing a good directicn is that all
obstacles are supported by either an infinite plane or another obstacle.
Then if an obstacle lies between the manipulator and the target, one
could eventually get around the obstacle by moving away from the direction
of support. 1In addition an attempt is.made to move in the general
direction of the target. This target will normally be the final position
but may be an intermediate goal generated in a strategy of TRLIRJ. If
the predicteddconflict has occurred in the process of avoiding a different
obstacle, the target becomes the position generated by AVOID when the
manipulator encountered the first obstacle. The good direction is :chosen
taking into account the type of obstacle and the relatidn between link,
obstacle and target as follows:

If the obstacle is a plane or a sphere, the good direction is

specified by a vector from the point of conflict on the link to the same
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point on the link with the manipulator at the target position. (The
assumption here is that the sphere is relatively small and lies on the
plane of support.)

If the obstacle is a cylinder, then the process is a bit more
complicated. Recall that a cylinder may be part of a more complex
obstacle (for example the towers in Figure 6.4). If no other part of
the possibly complex obstacle, of which the cylindrical obstacle is a
member has been recently encountered, then the good direction is:

1. The direction of the axis of cylinder, if the

obstacle appears* to be between the manipulator and
the target.

2. The vector sum of unit vectors in the axis direction
and the direction the link must move to get to the
‘target, if the link is above the cylinder.

3. The direction the link must move to get to the
target, if obstacle is not between the manipulator
and the target.

When the cylindrical obstacle is part of a more complex obstacle
and when an element of this complex obstacle has been previously en-
countered, then the good direction issimilar to the above with the
following exception: the positive axis direction is replaced by the
negative axis direction whenever the point of confliet on the obstacle

is nearer the far end of the obstacle (i.e., away from the point of

*We.say "appears' because a cylindrical object may not itself be between
the manipulator and the goal, but the complex obstacle which it belongs
to, may indeed be between the manipulator and the goal.
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O O

(a) simple tower ‘ (b) Y-shaped tower

S
. S

Figure 6.4, Towers used as obstacles. (a) mcdel is a single cylinder.
(b) and (c) are each modeled with three cylinders.
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support). In this way we are able to follow the contour of a complex
obstacle.
Once a good direction has been established for an obstacle it
remains the same until:
1. The manipulator is clear of the obstacles, or
2. An oscillation has been detectedLby TRLTRJ, in
which case wherever the positive axis direction
was to be used, it is to be replaced by the negative
axis direction and vice-versa.
The bad direction is always specified by a vector from the link to
the obstacle, along the line defining the minimum distance between them.

A block diagram of AVOID is presented in Figure 6.5.

6.4 A Test of the Program

The trajectory generating routines were tested by incorporating
them into the block stacking program developed at the::Stanford
Artificial Intelligence Project |[25]. The block stacking program
represents current research work in hand-eye systems. An electric
motor driven manipulator of type 6R, S3 84 S5 &g (see Figure 6.6) and
a vidicon T.V., interfaced with the PDP-6 computer form the basic system.
Programs written by Singer and Pingle [25] enable the manipulator to pick
up blocks from a table and build block towers. The blocks are originally
placed at random on the table but within view of the vidicon. A block
is then located on the table by appropriate analysis of the T.V. picture.
Next, the manipulator moves to grasp the block and then places it to

build:a tower. A new block is found and the process continues.
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Figure 6.6. Electric Arm at Stanford Artificial Intelligence Project.
A prothestic arm originally built at Rancho Los Amigos
Hospital, this arm has been modified for use in hand-eye
research.
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The trajectory generating routine is used to find trajectories when-
ever the arm is moved except im the last stages of actually picking up
or setting down a block. At these times, the manipulaitor control is
transferred to a special routine whose function is to lower or raise the
hand along a specified path with a specified orientation.

Objects cousidered to be obstacles are the table top, the support
structure for the arm, and any block towers that have been built. In
addition, to make life difficult for the program, several other cbstacles
(see Figure 6.4) were added. Since the range of vision of the T.V.
camera is small, and its recognition powers to date is limited to cubes,
a sub-program was written so that the external obstacles could be added
to the data structure by commands from the teletype.

After allowing the program to run, with the different obstacles in
varying loeations, the trajectory generation program was seen to perform
fairly well (see Figure 6.7;. Where possible, it was generally able to
go over or in front of the obstacles. However, the procedure cecasionally
failed when the manipulator was started im a configuration in which joints
were near their physical stops. In these cases a successful maneuver
might have been to move those joints well away from the stops and try
again (a procedure not built into the program). In addition, if the
objects were so placed that the aim could cmly get through by going
between twc objects, failure gemerally occurred.

Whenever more than one or two strategies were tried, the computation
might run upwards of 20 seconds. Heowever, most manipulative scenes are
fairly static, so that once a trajectory had been found through a given

set of obstacles, it could be used repeatedly. This process would save
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Figure 6.7. Example of trajectory enabling manipulator to go over
obstacles.
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having to re-analyze the trajectory for every move, thus conserving
computer time. In addition we could move backward on the same trajectory
to get back through the space again.

With this program we have attacked the problem of moving a multi-
link manipulator through a space composed of three-dimensional objects.
Had we been concerned with having just the hand avoid obstacles on a
plane, the problem would have been much less complex, as the hand could
be made to follow an arbitrary curve. Such is not the case, when
considering a conflict with all links of a manipulator. We cannot inde-
pendently specify the position of each link of a six degree-of-freedom
manipulator. There are just not enough freedoms. However, the programs
developed above do enable us to deal with the problem of conflict for a
general multi-link manipulator. These programs perform the basic
function of allowing a manipulator to perform tasks in the presence of

obstacles.
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CHAPTER VII

CRITERIA IN THE DESIGN
OF A MANTPULATOR FOR COMPUTER CONTROL

7.1 Kinematic Criteria

As mentioned earlier, a manipulator needs to have six degrees-of-
freedom to grasp a rigid body with a specified orientation at a specified
position in space. 1In addition, the kinematic solution must be easily
programmed and solved. This indicates the desirability of a closed-form
solution rather than iterative techniques., The closed-form solutions
are faster and find. all configurations leading to the desired terminal
position and orientation while iterative techniques find only one.=*

In fact, the iterative schemes may not find a solution even though
several may exist. The question of the existence of a solution is
important, as this existence indicates whether a given position and
orientation is physically attainable. It is desirable to have solutions
exist throughout the workspace or at least know where they do not exist.
Thus a factor in the design of a manipulator is the zones in which the
terminal device can be placed in an arbitrary manner.

The problem of zones is closely allied to that of solutions. The
existence of a solution for a given position and orientation automatically
guarantees that that point is within the zone of reachable points. One

method of investigating zones would be to solve the position problem for

*The iterative technique may however be used to good advantage when the
distance between positions is very small. Then the iterations converge
quickly, and there is only one solution being sought.
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many points and many manipulator configurations. This however is very
lengthy and not at all general. Alternatively, we attempt to give a few
general remarks about zones.

When on the boundary of the zone of reachable space, the hand
cannot be moved in an arbitrary direction or rotated about an arbitrary
axis. Another way of saying this is that the hand cannot move along an
arbitrary screw. Mathematically this happens:whenever the determinant
formed from the left-hand sides of equations (4.13) and (4.14) vanishes.
The existence of a solution would enable us to express the Ei and L
appearing in (4.13) and (4.14), in terms of the hand position and
orientation. Then forming the determinant we would have a‘polynomial in
terms of the hand position and orientation whose vanishing would correspond
to the boundary of reachable space. We would then have a surface in
six=-space which bounds reachable space.

As this representation is highly non-linear, as well as dependent
upon the existence of a solution, it is often more fruitful to examine
the problem from a geometrical viewpoint. For example, consider the
6R,8438 5 manipulator with all adjacent pairs of axes perpendicular, as
is shown in Figure 7.1. We note that the wrist point, W , defined by
the vector P , can lie anywhere within a sphere of radius r about the
shoulder point, 0 , where:

(s3-35)25 r? < (83-!-55)2 (7.1)
Furthermore, if the wrist position is fixed, then the direction the
hand points, defined by ag in Figure 7.1, is arbitrary. Through
appropriate rotations in joints 5 and 6, ag can be made to point in

any direction. However, the total orientation of the hand cannot be
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arbitrarily specified for a fixed wrist poiﬁt as the direction defined
by We in Figure 7.1 is limited in range. We note that wp must
always be perpendicular to ws . 'Hence, .wg may lie anywhere in a
plane perpendicular to w5 . Now the specificdtion of the wrist

point does not fix the elbow point, A, and in fact the triangle OAW may
be rotated about P . We obsexrve, then, that W, must lie on a cone

whose axis is P , with apex at W and whose cone angle is fixed by

triangle OAW. Then W  will lie in planmes through W , perpendicular

6
to the elements of this cone. This defines a second cone, inside which
86 can never point. These cones are shown in Figure 7.2. Referring to
Figure 7.2, the elements of cone 1 form the locus of (gs while ‘&6 will
always lie outside cone 2.

If it is desirable for the hand to have a full range of orientation
freedom, then a manipulator whose. last three joints are revolute and
whose axes intersect is appropriate. Consider such:ra configuration,
shown in Figure 3.8. Here the last three axes intersect and provide
maximum orientation freedom for the hand. 1In addition this configuration
has a wide range of positions that the wrist point, defined by Py,
can assume. Referring to Figure 3.8 we note that the wrist point can be
placed anywhere inside a circle normal to axis 2, about Py , whose radius
r obeys the constraint:

(a2 & P < (a2+s4)2 (7.2)
Rotation of the first joint then rotates this circular anulus to generate
a torus which is the locus of points the wrist can reach.

It is possible to examine many manipulator configurations in this
manner., Table 7.1 presents the results of such examination of 6R manipu-
lators with two and threg non-zero link parameters. Whether or not a

solution exists is also included in Table 7.1.
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Figure 7.1. A 6R,3355 manipulator

Figure 7.2. Cones showing possible loci for @Wg and 0X
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TABIE 7.1

Solubility and Orientation Restrictions in 6R Manipulators

MANTPULATOR REMARK MANIPULATOR REMARK MANTPULATOR _ REMARK
1 as, D 16. apsj D 31. s,a, D
2. ajap D 17. ayaq 5 G 32, ss5 3]
3. a133 D 18. agsy S G 33. 8,35 D
4. ajag S G 19. aja, N R 34, aysq D
5. a8, S G 20. apsg SR 35. a,as D
6. aja, S G 2l. ajag S R 36, sgag D
7. apsg D 22. sj3ag D 37. ajysjap D
8. ajag D 23. sgs, 5 G 38. 218,84 D
9. spap D 24.  s33y S G 39. a18ya4 S G
0. 8,54 D 25. s3ssy SR 40, ajgsys, S ¢
1l. s,aq S G 26. si3ag SR 4l. agsja, S G
12. s,s, S G 27. aszsy D 42, 21858 D
13. s,a, S G 28. asay S G 43, a;8,a; D
14. 585 D 29. agsg SR 44, a)8984 D
15. Soag D '30. asas SR 45. aja,aq S G
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Table 7.1 (continued)

MANTPULATOR REMARK MANTPULATOR REMARK MANIPULATOR REMARK

6. aja’s, 5 G 63. aja,a; S R 80. sys.a, S G
47. ajaja, N R 64. ajsszag D 81. sgsysg S G
48. ajapsg SR 65. 898781 S G 82. $,8,3¢ S R
49. ajajas S G 66. soajaq S G 83. $92,8¢ S G
50.  a;sjas S G 67. sya,s, S G 84, spazas SR
51.  a;sgs, S G 68. sjajzay N R 85. S,8,35 D
52. ajs3ay N G 69. $,3,8¢ SR 86. aySqaq S G
53. ajsiss SR 70.  sjajag S R 87. a,sss, e
54. ajssag SR 71. 858334 e 88. ajsga, N G
55. ajass, S G 72. sys3s, S G 89. apsgsg SR
56. ajasa, N R 73. sgs3ay N R 90. ajszag S R
57. ajassg N R 7h.  8,84S¢ SR 91. ajaszsy S G
58. ajasas N R 75. sysjag S R 92. ajasay N R
59. a;s,a, S G 76. 8,345, S G 93. ajagss N R
60 . a;8,5; S R 77. sjpazay N R 94. ajajas N R
61. a;s,a; S R 78. sjpaj3sg N R 95. ays,a, N R
2. a1a,8¢ S R 79. sjazag N R 96. ags,sg N R
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Table 7.1 (continued)

MANTPULATOR REMARK MANIPULATOR REMARK MANIPULATOR REMARK
97. a,s,a, N R 105. s3szay e 113, agzssasg S R
98. ay8,8¢ N R 106. s3sysg SR 114, aya, 85 SR
P9. ajaa; N R 107. s3ssas SR 115. azazag SR
100. asssac SR 108. sjayss SR 116. ajsgag SR
101, sqazs, SG 109. sja,as SR 117. s,a,s5 D
102. CPEREN S G 110. sgssag SR 118. 84,8435 D
103. sjagysg S R 111. aqs,ag S G 119, S4ssa5. D
104. sjajag SR 112. aqs;sg SR 120. 8,88, D

¥ey to Remarks:

D - degenerate

S - Soluble
N = Insoluble

R - Restricted orientation for
reachable wrist positions

G - No orientation restriction
for reachahle wrist positions
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7.2 Additional Considerations

Aside from kinematic considerations, there are many less objective
criteria in choosing a manipulator for use with a computer system. For
the sake of completeness we mention some of these additional considerationms,
and give a few remarks about several of the more important ones.

1. Ease of Interface with a Digital Computer.

The actuators of a manipulator must be such that their
control may be easily assumed by a digital computer.
In addition position feedback must be available.

This will generally be from potentiometer or shaft:
encoders.

2. Power Source.

Manipulators are in general electrically, hydraulically, or
pneumatically powered. Electricity is universally available
and inexpensive. Hydraulic power provides the means for
converting a large amount of energy to motion with a
minimum of weight, thus an advantage where speed is
required. Pneumatically powered manipulators, working

off of air, are cleaner than hydraulic systems. However,
for safety reasons, they must operate at a much lower
pressure and therefore will have poorer dynamic response.

3. Structural Rigidity.

The structural members must have a minimum deformation
under load so' that the position of the hand may be

accurately computed from the rotations in the joints.
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In addition the joints must contain a minimum of play

for the same reason.

Range of Freedom

It is desirable that each joint of a manipulator possess
a large range. Even though a position might be reachable
from a kinematic point of view, the physical limits on
actuators will greatly reduce the range of these. In
fact, many of the problems encountered while using the
obstacle avoidance programs were due to the very
restricted range of motion on the electric arm

(Figure 6.6).

The OQutline of the Manipulator.

We would like the manipulator to have a slim outline
so that it could work in tight places. In addition
a smooth profile might be desirable so that it would
be easily recognizable in a T.V. image.

Other Factors.

Additional factors to be considered are: precision,
speed, cost controllability (i.e., the ability to

follow a prescribed path), and safety.

When choosing a manipulator we cannot hope to maximize all of these

accuracy.

considerations. Many of these are influenced by the type of task per-
formed by the manipulator. For example, if a goal for the hand-eye system
is to assemble a machine containing small electronic components, the

manipulator must be capable of very delicate movement and position

For tasks involving throwing or catching objects, the arm
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must be able to move rapidly, and be accurately controlled. Thus some
applications require obvious tradeoffs (e.g., precision and speed),
and in others certain considerations predominate.

From experience with the two manipulators used at the Stanford
Artificial Tntelligence Project we may make some comment on specific
arms. The project presently has two arms. One is a modified electric
prosthetic arm (Figure 6.6). The other is hydraulically powered
(Figure 7.3).

The d.c. electric motor driven arm has proven acceptable for
stacking blocks, After some experimentation, a rate modulated pulse
dc system seems to be an-excellent way to control the arm. With position
feedback via potentiometers, and am external power supply, it is
satisfactorily interfaced with the computer. However, it is somewhat
lacking in the range of freedom and structural integrity - problems that
could be overcome with a second generation arm of this type. It is not
particularly fast nor particularly precise. The precision problem stems
partly from the poor structure, and partly from the comntrol problem
caused by the inherent inertia in the motors. It is expected that with
refinement of the control scheme, the precision and controllability could
be considerably improved.

Although experience with the hydraulic arm is limited at this time,
it shows promise of great speed. 1t also appears structurally sound,
and has a wide range of freedom in its joints. It is somewhat massive
due to its high speed and torque capabilities. At this time, the control
problem using two-stage servo-valves appears soluble. The physical danger

to personnel and equipment is obvious and this arm is housed in a room
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Figure 7.3. Hydraulic Arm at Stanford Artificial Intelligence Project.
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isolated from the computer. This makes the interface with the computer
T.V. system difficult, though soluble. 1In addition the forces involved
require that the arm be firmly anchotred to the floor.

At present these manipulators are used for fairly simple tasks.
As the hand-eye program becomes more advanced the tasks will become
more involved. At some future time, then, one might expect to be able
to say more about choosing a manipulator for computer control in a more

complex environment.
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CHAPTER VIII

CONCLUSIONS AND SUGGESTIONS FOR FUTURE WORK

In this dissertation, the kinematic problems associated with
manipulators have been explored. It is hoped that the classification
scheme and catalog cf manipulators, presented in Chapter I1I, will lead
to manipulators being compared on a scientific basis. Manipulators whose
exteriors seem much different, are often kinematically equivalent. Thus
solutions for one manipulator are applicable to another.

It is seen that the problem of positioning a manipulator is directly
related to the displacement analysis of mechanisms. The solutions
presented for cases with three revolute axes intersecting at a point
seem to be previously unknown. These results therefore represent a
contribution to spatial linkage analysis.

It is felt that these sclutions, along with the extension to the
special cases with only pairs of axes intersecting, give insight into
the kinematic analysis problem for the most general six degree-of-
freedom manipulator. That is, for the special case of three intersecting
pairs of axes, four different configurations were found leading to the
same hand position and orientation. TFor two pairs of intersecting axes,
eight configurations were found, and for only one pair of axes inter-
secting, sixteen configurations were shown to be possible. 1In all of
these special cases, adjacent axes were orthogonal, and the adjacent
common normals intersected one another. Since no axes nor adjacent

common normals intersect in the most general problem, it is almost
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certain that the general problem has even more possible configuratioms
leading to the same hand position and orientatiom.

The possibility of a very large number of configurations indicates
that, even if a solution to the general problem could be expressed as a
single polynomial in one unknown, this polynomial would be of such a high
degree that it would be impossible to find all the roots. We conclude,
then, that the complete solution to the most general problem is not at
this time technically feasible: perhaps, someone, someday will solve the
problem., Kinematicians have been trying for over 50 years.

The iterative technique, based on velocity, was found to be superior
to the Newton-Raphson method both in the amount of time taken per iteration,
and in the range of distance between positions where convergence occurred.
The iterative technique may be used to good advantage when the distance
between positions is small. Thus an approximate model having a closed
form solution could be used to find starting points from which the
numerical procedure could be used to find actual solutions.

The problem of placing the end of a digital manipulator at a target
appears soluble. The results have shown that the hand can be placed
close to an arbitrary point. Different strategies could be developed
that might save computer time and improve performance. Matching the
arm to a curve, as was done in the planar model, would undoubtably help
shape the arm. However, if this manipulator is to be used, its in-
herent drawbacks must be remedied. That is, the motion between states
must be made controllable.

The trajectory generation and obstacle avoidance routines were

found to perform a basic function: they allow a manipulator to work
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within a space composed of large obstacles. Previous attempts at
obstacle avoidance dealt only with keeping the hand away from obstacles.
In this work, possible conflict between obstacles and all links of the
manipulator is considered. Future work should attempt to remedy the
following shortcomings:
1. The description of obstacles needs to be improved. K In
this work, obstacle properties were defined using a data
structure within the confines of FORTRAN. Many useful
properties, such as the relation between obstacles were
not stored. With the development of a more sophisticated
world model, using a higher level programming language,
the manipulator and obstacles could be modeled more
precisely. This would lead to more accurate conflict
detection and better information about which direction
to move to get away from an obstacle.
2, The problem of moving between two closely spaced obstacles
has not been adequately solved.
3. The computer time to generate trajectories may be
excessive. This is in part due to the attempt to make
the routines applicable to a variety of manipulators.
For example, the analysis program used to compute hand
position and orientation is applicable to the most
general arm. Fast machine language subroutines to perform

dot products would decrease machine time.
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4., At present the routines do not benefit from past
experience. Improvement might result if previously
generated trajectories were stored and parts of them
were used oﬁer again when similar situations arose.

The problem of zones has not been fully explored. Although a
mathematical interpretation of zones is presented, it is not totally
satisfactory as it depends upon the existence of a solution. Geometrical
methods give insight into special cases, however they have the dis-
advantage of not being generally applicable.

In this work six degree-of-freedom manipulators were studied
because it is necessary to have six degrees-of-freedom to grasp an
object at an arbitrary position with an arbitrary orientation. However,
since manipulators with more than six freedoms have not been studied,
future work might involve investigating the use of additional freedoms.
For example, extra degrees-of-freedom would be useful in avoiding
obstacles.

It is felt that the theoretical results of this investigation, and
the computer programs developed from them, yield a "universal" kinematic
analysis and trajectory generator procedure. It is expected that the
package of computer programs (which will be further documented in a
project memo) can be applied to any six degree-of-freedom manipulator

with turning joints.
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APPENDIX I

DETAILS OF SOLUTION BY NEWION-RAPHSON METHOD

The inputs to the program are:

NBM:
THM:

XBM:

L LN N,

P, and 22:

Theta:

In addition the

the maximum number of iterations
the maximum allowable correction in radians

the maximum allowable change in target

Two vectors fixed in the hand in their initial and
final positions. L 1is the direction the hand points
(the direction of '%-axis) and .N is the directdon

1 refers

of the sixth revolute axis. The subscript

to initial, 2 to the final position .
Vectors specifying the initial and final position
respectively of a point in the hand.

A 1x6 vector giving the initial joint angles (i.e.,

8, . i=(1,...,6)

program uses the following subprograms:

ARMCON: Specifies the parameters of the arm
HANDPO: Analysis program that computes the position and
orientation of all the links in the arm, using
the present values of the joint angles.
MATINV: Routine to invert matrices and solves the linear
equation Ax=Db .
The program basically solves the matrix equation (4.5). The Ay, are
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found from the analysis program and the coefficients of the ©&A are
i

generated by successive matrix multiplication, The matrix Aeq 1is

obtained from the inputs., It is of the form

211812813914 |

Aeq = (Lz) M) (N,) (EQ) _1%21%22%23%24 (A1-1)
0 0 0 1] lagajaqqa,,
(00 0 1

Since the rotation portion of the matrix is composed of nine elements
and only three are independent, we select the equations formed from
elements aj;y, a3, and aj, which together with aqy,, ag,, agz,

give us six independent equations.

Specification of Intermediate Goal

If the changes in position and orientation represented by the
right~hand side of equation (4.5) is too large, (4.5) is not valid

and an intermediate goal is necessary. The unit vector L and N

respectively rotate through angles defined by the arccosines of LI'LQ

and HilEZ" about axes defined by leLZ and N;xN For intermediate

5

goals, L. and N. are rotated through fractions of their total

1 1

rotation. 1In addition, the same fraction of P,-P; 1is added to 31 .

A block diagram of this is presented.

-130-
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Figure Al.l1. Block diagram of SOL2--solution using Newton-Raphson.
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APPENDIX TII

DETAIIS OF ITERATIVE VELOCITY METHOD

We first present a method for finding the screw given:

Ll and M,: Two vectors fixed in the hand in its initial state.

Ly and MQ: The same two vectors after a change in position and
orientation,

31 and 22: Vectors from the origin of the 1 system to the same

point in the hand before and after the change in

position and orientation.

The direction of the screw axis n and the magnitude of the rotation

© can be found from the following statement of Euler's theorem:

n tan %-: (LGél) - (E2-51\
- . (A2~-1)
(22 L1) (ngﬁl)

if we define

g k) ® Ry (A2-2)

(Lp-Ly) - (EpHly)
then
¥
n = - <A2'3)
|w]
© = 2 arctan |W| . (A2-4)

The normal from the origin to the screw axis, r , is computed from

_1 ) .
L =5| B4Ry + W x (B,=B)) | W-(Bp+R) W (A2-5)
—_— W w .
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The magnitude of the translation, S, is
W (22 - Py)
| W L (A2-6)

S =

lastly, defining the pitch of the screw H as

S
= A2--7
H m ( )
_¥ (B - By) | -
¢ = 7 W[ arctan (|¥]) 7 (A2-8)

we have all the necessary parameters of the screw,
We next show that for infinitesimal motion, W is related to the

angular velocity. We write

2
dL d-L 2
L, = L, + =L At + =L At” + ... (A2-9)
=2 -1 dt atz
{2
Ny =8y + e I % s (A2-10)
o e
do %o 2
Cp = 1 + E—— At + .d_t_z At + LRI (Az‘].].)
t

using the above in (A2-2)

1
dL” a7 x 1 Ar 4 ...
T T

JdE d = (A2-12)
- d.Tsl AT * 2N + oeee
dc -1

and in its equivalent from (A2-1)

W=tan (FAt+...)n (A2-13)

Then equating the right-hand sides of (A2-13) and (A2-12) and taking

the limit as At - 0 we get

on=JT I (A2-14)
d
which are equivalent expressions for the angular velocity of the hand.
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If we define the approximate angular velocity, w to be

w =3 n (a2-15)

and the rotation is small so that from (A2-3) we find n and from (A2-4)
Ao= 2 arctan |H| (A2-16)

Now the approximate velocity of a point in the hand at the origin is:

V=Hy »-wxr (A2-17)
= - L0 x (42-18)
At t

where H, Av, n, ~and r are the screw parameters formed from the

change in hand position and orientation.

Inputs to the program

This program has the same inputs as the Newton-Raphson program.
In addition to the same subprograms, it requires:
SCREW which computes the screw defined by 21 BpLq LN N,

using equations (A2-1) -~ (A2-7).
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SOLI 2 (X1, M1, M1, X2, M2, N2, THH, DEL, THM, NBM)

+6TAIT
[NORMALIZE DIRECTION VECTORS |

i

COMPUTE THE GCREW FROM
POSITWVON | I0 2

DEFINE POSITION 2 |
TO BE INTERMEDIATE

V

[FlNO MAXIMUM OF ROTATION qu

SPEC\EY INTER Mg -
YES | DAATE GOAL BY
RATIO OF EL

X
NO
[ compuTE CHANGES IN ANGLES
| ) , v
[FIND MAX CRANGE , Tx™M | [Nent]

REDUCK EACH

ICHANGE BY THM
TXM

COMPUTE MNEW POSITION | A
BASED ON THESE ANGLE CHANGES

POSITION 2¢ FINAL ROSITION
OF HAND
POSITION e PRESENT POSITION

EXIT

Figure A2.1. Block diagram of SOL1 2 - the iterative velocity method.
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APPENDIX III

MATHEMATICAL DETAILS FOR THE DIGITAL MANIPULATOR

A3.1 Transformation to find hand position given the angles (Planar
Case)

We use the basic link model described in Chapters II and IIT.
For the planer case, the z-coordinates and the angles between adjacent
links are all zero. 1In addition, we assume that all the common normals

are the same length, d , so that we may rewrite (3.1) as

Cei -Sei chl
i~ s9; cBy dsg;

0 0 1

(A3-1)

L

and similiarly from (3.17) we may describe the position of the hand

(x5y) by:
rx] ibl )
VI= A, evss AIO A3~
R @

where mn 1is the number of links in the arm.

A3.2 Transformation to Find Hand Position Given the Angles (3-Dimen-
sional Case)

Consider the link element shown in Figure A3.1. The link model

(Chapter 1I) and transformations (Chapter III) are applicable to
JLTG& =t Z;i i , '
\, » z L+

—1 ¥ ——1]I
XL | / Xigy
A -

I 4 el

“igure A3.1. The Basic Element for a Three-Dimensicnal Digital Avm.
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this manipulator,

actually contains two degrees of freedom.

We note that each of the "joints" of Figure A3.1

Using (3.1) we may write

the transformation due to a rotation about each axis,; so that the

transformation between adjacent elements may be written

ﬁce Co -
i%i
Sei cwi
SCPi

0

and the coordinates, of the end point of the last link,

- Bl LN ) Bn

=N~ M

where n

To find rotations about axes zi

lead to a tilt of 90

we note that this is equivalent to rotating zy

Xg and then rotating

-sei
cei
0

0

O OO

-sh; SOy
e,

0

and

d c; <y
d $0; c@i
d sy

1

is the number of elements in the arm.

(A3-3)

.
(x,¥,2) are

(A3-4)

z; (Figure A3.1) which

about an axis midway between

X

i41

through 8,

about the new z

and z£ s

through 45° about

axis.

Then using equation (3.1) to express these rotations, the resulting

transformation matrix is

(-ceo ‘396
86, c8,
T = J2 J2
Se Ce :
-0 -0
J2 J2
0 0

Then the direction of the

posed of the '11', '21', and '31' elements of (A3-5).

0 dce0
-1 ds 8,
N2 N2

1 dseo
J2 J2

0 1

Xit+l
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(A3-5)

axis is represented by a vector com-

These elements



must be equal to the corresponding elements of (A3-3) which lead to:

SCP = Sleo

J2
and £0
[o]

t8 = "'Jé

A3.3 Derivation of Curve Composed of Segments of Four Circles

We want to find a curve made up of segments of four circles
connected in such a way that adjacent circles are tangent to one
another., Thus a smooth transition between the elements of the curve
exists, In addition we require that the total arc length be specified.
We also specify the slope of the curve at each end and the radii of
the circles., Consider such a curve shown in Figure A3.2. Given the
radii of the circles and the position of the base of the arm, we

easily locate center A.

TARGET -k
>/ C’ Xy ‘
\-\ )j_g___j?l
. / Bq ®
/9{1 By
Y ST ©

Q

rdé
K
AN
~| P

77 e

Figure A3.2, Curve composed of segments of four circles.

-138~



The known angle that the tangent to the curve at the base makes with
the horizontal g? is one-half the allowable joint rotation. The
end point on tbe curve is specified by its coordinates (x,y), and the
end slope by the angle $1 « This then fixes center D , from which
the line segment ZAD ; and the angles ¢® and o are defined, Next
we must locate the centexs B and C , and find the angles 8y, f9,
83 and 94 whicﬁ define each segment of the curve., For the purpose

of derivation, we introduce the angle 91 between line AD and AB .

1f we denote the radii of the circles by r , then:

TA =r
_— (A3-6)
AE =BC =TD = 2r
and define R such that
R =4 . (A3-7)
Then from Figure A3~2 we observe
9 = + 4 -
el+.29 o 61 (A3-8)
and 7
(p=el+799+(ﬂ-ez)-(n~o3)+a-94)
or
(0, + 89 - (+8) =¢-J-x (A3-9)
Next impose the constraint that the total arc length is L :
t(By + 6, + @3 +§,) =L
or
L
(gp + 83) + (B2 + 8) =7 | (A3-10)
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Combining (A3-9) and (A3-10) by subtraction and addition yields
9o

. L
(81 +63) =3 G+ o~ 72 -7) (A3-11)
-1 L -

(G2 +6,) =5 G -0 +.§9 +1) . (A3-12)
Writing the law of cosines for ABCD vyields

52 = 8r>(1 - cosBy) . (A3-13)
Then writing the law of cosines for ABAD yields

-2 2 2 -

BD~ = 4r" + R -4IR cosg] (A3-14)

and we may easily eliminate 'B_Dz from (A3-13) and (A3-14) to obtain

/ r .1 T
cos B, =-=+= + -
1 R r ZE cos 63 . (A3-15)
‘g
Now we combine (A3=8) and (A3-11) to get
9 + 63 = B (43-16)
where L g
B=2( - n+0 - 2 +7°) (A3-17)

We next eliminate 6y between (A3-15) and (A3-16), which after

simplification results in

2 4 — -
k1 cos 91 + k2 cos Bi +ky =0 (A3-18)
where
ax cos B + 41:2
kl =1-73 B —Z'R (A3-19)
or 1
- - 2L r _
1 2
- x L. .2 r - 2 -
k3 = (R 4 'E) - 4—ZR (1 - cos™ B) (A3-21)

from which e’l may be obtained. Knowing ei we compute 9.1 from

(A3-8) which locates center B . Once B is known, center C is

found by considering the intersection of two circles of radius 2r ,
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one with center at B , the other at A . Once the circle centers

are located, the angles 62 s 63-9 84 can be easily found.

A3.4 Description of Programs - 2-Dimensional Model

First the arm is put into an initial configuration either in an
arbitrary manner or with the subroutine INITIAL that matches the arm to
the curve composed of circle segments. |

Recalling that the coordinate transformation exists:

1 ' n+1

X =A .« by X

the multiplication of the transformation is broken into 3 parts

(Al oo Aindex ,.1) (Aindex "”Aindex + 100k) (A ...An)

index + look + 1
where "index' is the number of the joint under consideration and "look"
is an integer giving the number of stages of look-ahead. Then the
first and third term are generated by a subroutine that transforms
coordinates. These are temporarily stored. Then the middle term is
generated for all possible 91 , I = index , oc. , index + look . The

matrix multiplication is performed for each, and O is chosen

index

that leads to minimum error. 1Index is then incremented by 1 and the

process repeated.

Description of INITJAL:

This subroutine generates a curve composed of segments of four
circles, and then generates points on this curve corresponding to
joints of the arm. The arm is then made to follow the curve by various

techniques.
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Techniques for cﬁrve matching,

1) Qi is moved so as to put position of joint i+l as close
as possible to point i+l on the curve.

2) position of joint i+l and slope of link i are made as
close as possible to curve at corresponding point on curve.

3) A procedure named 'match-ahead" tries to match (i+1ﬂ31
joint with (i+1+A)Eh point on curve (A 1is the number of
Joints of match-ahead) by moving ei .

The radius of the four circles can be made greater than or equal to

the smallest radius that the arm can turn.

A3.5 Description of Programs - Three-Dimensional Model

This program is similiar to the two-dimensional case with the
exception of changes to make it more efficient.

After the starting configuration and amount of lock-ahead are
specified, three matrices are generated. They are

1) the identity matrix

2) (B1 son Bl+1ook)
3 (Boyipok = ro- Bn)

where "look" is the amount of look-ahead and Bi is defined as in

Equation A3=3, cCall these Mi 2M2 , and MB’

Then (Ml)(MZ)(MB) is the total transformation matrix. This
look+1

product is evaluated for the 8 different M. matrices and the

2

state at joint 1 chosen which minimizes the error.
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Then Mys My, and M3 are re-defined
Ml = Ml X B1
M, = Bo1 M
3 T B24100k X M3
M =

2 (BZX’ e ’XB2+look)

and 8y is chosen in a manner similiar to that of §; . The process

continues.,
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APPENDIX IV

DETAILS OF CONFLICT DETECTION

The methods presented here result directly from classical vector

geometry.

a4, 1 Objects as Spheres

Note that the physical links of the manipulator dre modeled as
cylinders. We compute the distance from the line segment that is the
axis of this cylinder to the center of the sphere. The problem is then
to find the distance between a point and a line segment. Consider the
line

T = g'+ bt (A4-1)

and the point P, described by the vector P as shown in Figure A4.1.

line

0

(©-p)

g~

=

'l

1o

X

Figure A4.,l. Distance Between Point and Line,

If a 1s a vector to the end of the line segment, b a unit vector

parallel to the line, t1 the length of the line segment and

<t <t
0< £ <ty

then r is the locus of points on the line segment. A vector, d , from
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the point to the line, normal to the line is given by

d=bx [(a-p) xb] (Al-2)

(a=p)-b-(a-p)b

To see if this normal cuts the segment of interest, we note from
Figure A%4.1 and equation (A4-1)

r=a+btx=p+d (A4-3)
where t* is the value of t where the normal intersects the line,
then from (A4-3)

t =b-[d - (a-p)] (A4~4)
Then if

0 < t* < tl ,

the normal intersects the segment. If this is not the case, we find

the distance between P and the end points of the line segment and

choose the minimum. A routine called PTLINE performs these calculations..

A4 .2. Objects as Infinite Planes

Here we find the distancesbetween the end points of a line segment
and a plane, Consider the plane described by b , a unit vector normal
to the plane and p , the distance of the plane from the origin measured
in the b = direction., If r describes a point, then a vector from
the plane to the point, normal to the plane is given by, d

d= (b - plb (44-5)

A routine PLLINE performs the computations.

A4.3 - Objects as Cylinders

The problem is to find the shortest distance between two line

segments, which are the axes of the cylinders., Consider line 1 and
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line 2 given by:

r; =3a; + bty (A4-6)
ry = a, + b, t, (AL-7)
as shown in Figure A4, 2,

If respectively: 2y » &y are vectors to the end of the line
segments, by , b, unit vectors parallel to the limes, tjg , tag
the length of the line sepments and

0 t

1A
(3

LIAN

10

0 <t t

7N

2 20

then ry » r, are the loci of points on the line segments. A vector,

d , from line 2 to line 1,

Figure A4.2. Distance Between Two Lines.

rormal to both is given by

€7 @120 /7By (o) (44-8)
1-(b3-by*

Now to find where the normal cuts the lines we find where line 2
pPierces the plane confaining line 1 and d . The locus of points, r ,
in this plane may be written

(x. - ap) -+ [Byx(byxby)] =0 (A4-9)
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This is of the form:
r-n-p=20, (A4-10)
where n and p may be found from (A4-~9). Then line 2 pierces this

plane at the point Py » defined by the vector By ¢

b, = a, + 22(P2 " D)
b, ' o

(A4-11)

where n and p are as in (A4-10). Now the corresponding point on
line 1 is found from:

p; =pp+4d . (A4-12)
We next determine if p, and B, lie on the segments of interest
in a manner similar to that used in A4.1. If this is not the case
then we check the distance between endpoints of one line segment to
the other line segment and vice versa with the methods of A4.1, A

routine LNLINE performs these computations. It uses PTLINE if necessary.
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APPENDIX V

SOLUTION OF A 6R,31323435 MANIPUIATOR AS FOUR QUADRATICS

In section 3.3.8 we showed how the solution of a 6R,ajasa,
manipulator could be reduced to a single polynomial of degree eight.

We now present the details of how a 6R9a1a2a4a5 manipulator (with

adjacent axes orthogonal) can be expressed as four quadratic equatioms
in four unknowns. As in section 3.3.8, we write equations for the
coordinate (x, vy, z) of the point of intersection of axes 3 and 4

(see Figure 3.10).

To include a. # 0 , we use equation (3.100) with a, 0, a. #0

= - o = 0 = = = = in:
@4 = -90" | as 90~ ., 5, Sy 84 SS 0 , to obtain:
7p = 8, ©05 88 T2595 (A5-1)
-8y, se5
1

.

Similarly (3.104), and (3.111) become respectively:

2 2
7P2= a, +a_ + 2a, a

y t 25+ 28, a5 cog (A5-2)

and

2 52 2, 212 , 2 _ “l, 22
&é +R - 2Q » R -(a4 + asﬂ +4a5 [alBX + az3y + a__z + aléJ —4a435

33
7 (A5-3)
Then from the components of P in (A5-1) we find:

7

cgg = ~—= (A5-4)

7a4ce5 +ag
$fg = L— (A5-5)
sg. ==—= -

85 a, (A5-6)

+
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and from (3.104):

7
c65 =

Then equation (3.122) may be written with

from (A5-4) - (A5

2 2 2

"&4"&5

2a4a5

-7) which results in:

7
[gh] - 2a4(aice5+a5)

i n
o 1,7
-2 xR z
-2 %7 é
72 7.2 2 2
-2 + P+ a, - ag
N 0

ces, s@s5, 566 , and

To express Wy

in system 1 we use (3.132) and (A5-8) to obtain:

(A5-7)

066

(A5-8)

(A5-9)

7 7 7 752, .2 2
2 'z (a | *tag, vta, z)+a13( P +a, )
1
@, = -2 z (a 7 7y+a z)+a (7P2+a2 az)
' oaaglacegtag) | 217 - 123 3
-2z (a31 x-+a32 y-+a33 z)+a 3( P +a4 5)
0
7.2 7 7 7
Making use of (3.109) for P and (3.110) for ‘x, 'y , and z ,

(A5-9) becomes aft

_ 1
2a4(a4c8 +a5)

12
o~

er simplification:
-2(x-x4)(a13x+a23y+a332+a

3(W-|-R2-=2xx4-=2yy4 ZZz4+a4 5)

2224+a4 5

-2(y-~- ya)(a13x+az3y+a33z+a34) }

2
+a23(Wf5 -2xx4-2yy4

;2~a+++
(z~z )( 3x az yta_ =z

L
where the dot product in (3.109) has been evaluated,

sed in terms of its components

3(W+R --2:‘(15‘:4«2}7}74°-2224 4 5))

0

(xll, 3 y4 H] 24)
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, and (xz + y

(A5-10)

R has been expres-

+ zz) has



been replaced by the new variable W (equation (3.141). We now may

form (3.112) with &, = 90°. We use (3.129) for w, and (A5-10) for

3

w, and obtain after dividing by common factors and simplifying:

-1 2 2 2 2 2
0 = 2z(ajgxtajsy+agyztay,) |-R -agtas-asta;
2 2 2 2.2
+(W+a2~a1) ajs (W+R -ZXX4-ZYY4-ZZZ4+34-3.5)
-1 (A5-11)
+224(al3x+a23y+a33z+a34)

-1 2 2 2
+226.34 (W+R “2XX4“2Y}74'2.ZZ4+3.4~&5)
Then writing (A5-3) with Q and R expressed in terms of their compon-

ents (%, y, 2z) and (%4 » Yy o zq) respectively, along with the

definition (3.141), yields:

2 2 212
E}+E_~(2xx4+2yy4+2zz4)-(a4+asi]

2 -1 2 2 (A5-12)
+435 Eé13x+a23y+a33z+al4) ~a4]= 0
Similarly (3.138) becomes after introducing W from (3.141):
2 2 2
(w-al-a2)2+4a1(z2-a§) =0 . (A5-13)

The equations (A5-11), (A5-12), (A~13), and (3.141) are the four

quadratics in the unknowns x, y, z, and W .
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