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Abstract

A plex processing system 1s implemented within a set of environments whose

relationships are vital to the system's time/space efficiency:

Data Environment

Stack Structures

Data Structures

Subroutine Environment

Routine Linkage

Variable Binding

-—. Storage Management Rnvironment

Memory Organization for Allocation

Storage Control

This paper discusses these environments and their relationships in detail.

For each environment there 1s some discussion of alternative implementation

techniques, the dependence of the implementation on the hardware, and the

dependence of the environment on the language design. In particular, two

language features are shown to affect substantially the environment design:

variable length plexes and 'release' of active plexes. Storage management

1s complicated by the requirement for variable length plexes, but they can

substantially reduce memory requirements. If inactive plexes are released,

a garbage collector can be avoided; but considerable tedious programming

may be required to maintain the status of each plex.

Many plex processing systems store numbers in strange formats and

compile arithmetic operations as subroutine calls, thus handicapping the

computer on the only operations 1t does well. Careful coordination of the
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system environments can permit direct numeric computation, that is, a single

instruction for each arithmetic operation. This paper considers with each

environment, the requirements for direct numeric computation. >

To explore the techniques discussed, a collection of environments

called Swym was implemented. This system permits variable length plexes and

compact lists. The latter is a list representation requiring less space than

chained lists because pointers to the elements are stored in consecutive

words. In Swym, a list can be partly compact and partly chained. The gar-

bage collector converts chained lists into compact lists when possible.

Swym has careful provision for direct numeric computation, but no compiler

has been built. To illustrate Swym, an interpreter was implemented for a

small language similar to LISP 1.5. petails of Swym and the language are in

a series of appendices.
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PREFACE

Plex processing is an effective technique for attacking graphical

problems. The Stanford Graphics Project conducted project Swym to examine

current techniques and develop new techniques. An important result 1s that

plex processing cannot be viewed as simply another high-level language

facility. Instead, 1t must be viewed as having an impact on the most vital

components of a language implementation. Introduction of plex processing

into a language has far-reaching repercussions in the design of implementations

of that language.

Many graphics projects have based their implementations on plex pro-

cessing. An early effort was Sutherland's Sketchpad thesis reported in

[Suth 63] and [John 63]. More recent are [vDam 67] and the interactive dis-

play project at General Motors [Joye 67]. A review of several systems imple-

mentations useful for graphics is [Gray 67].

This paper can be considered as an outline for a course entitled 'Semantics

of Plex Processing Languages.' Knowledge of Fortran and assembly language would

be prerequisite and the course would cover six languages 1n detail: ALGOL

[R&R 64] - the arithmetic mother, LISP [MCar 62]- the plex father, and their

offspring - ALGPLW [BBG 68], GEDANKEN [Reyn 69], PL/I [IBM 68b], and

" Swym/STUTTER (this paper and appendices). As far as possible, the course

should ignore the syntax of the languages since there exists a superabundance

of literature on that field. Instead the course should cover the fundamental

semantics of data structures and program control.

The author would have preferred to continue making additions to Swym

rather than write 1t up. There came a point, however, where the goals of the

project had been met and further effort would not add useful information.

This paper, especially the appendices, represents a system in an arrested

state of development. This is not because there are conceptual difficulties in

1v
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making STUTITER a practical programming system, but rather because there do

not appear to be any such difficulties. Swym serves 1ts purpose: 1t 1s a

framework within which systems can be implemented.

The body of the paper 1s an abstract discussion of language implementation

and storage management. The appendices give complete details of the Swym

system, while the bibliography indicates previous work in implementing storage

management. Unfortunately, some of the papers referenced, especially

in section 111.2, describe programming languages with no description of the

implementation details being discussed in this paper. In such cases, the

implementation details have been ferreted out in private communication.

Bibliographic references are in the form,

[name yr]

where name 1s four reasonably mnemonic characters from the author's name

and yr is the year the work was published. If the information was a private

communication, the year 1s coded ‘pc’.

The author 1s indebted to all those who have taken their time to explain

and discuss the intricacies of various plex processing implementations, notably

the 'system didlers' at the Stanford Artificial Intelligence Laboratory and the

Computer Based Laboratory. Thanks are due to Dr. J. Reynolds, creator of

CAGENT, for discussion of that system and language implementation in general.

F.L. Morris acted as an invaluable sounding board for descriptions of the

evolving Swym system. A special debt is owed my adviser, Dr. William Miller,

for his advice and encouragement.





INTRODUCTION

The term "plex" may have been first proposed in [Ross 61]. D.T. Ross

invented the term to mean a structure composed of 'n-component elements’

just as a binary tree 1s composed of 2-component elements. It has become

more common, though, to use the term plex to mean 'n-component element’

and to call a structure of these a 'plex structure.' One main characteristic

of plex processing 1s the pointer - a data item that encodes the location

of some other data item. Most commonly, a pointer is the address of a plex

in memory. In short:

plex - one or more data fields of computer memory, usually
consecutive.

pointer data coding the location of other data (usually
a pointer 1s the address of a plex.)

plex structure - a group of plexes connected in the sense that starting
from one or more of the plexes, all other plexes can

be reached by means of pointers, either directly or

through a sequence of pointers.

plex process - a program using plexes to represent a substantial
amount of its data. (An almost equivalent and more
determinate definition 1s: any program that requires

storage management beyond a stack.)

A list 1s an important special case of a plex structure. Basically, it

1s an ordered set of plexes. Normally a list is realized with 2-plexes in

this way: the first component of each 2-plex points at an element of the

ordered set of plexes; the second component points at the next 2«plex in the

list. Usually, the second component of the last 2-plex points at some

standard list terminator. [Lists were treated mathematically by John McCarthy

[MCar 60] and implementedin the plex processing language LISP 1.5 [MCar 62].

[Knth 68] includes a complete discussion of plex data structure implementation.
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Other good reviews of the literature on plex implementations are in [Schr 67]

and [Lang 68]. The most promising work is reported in [Ross 67], [Hawk 67],

and [Styg 67]. The last two are part of the ambitious SDC LISP 2 for the 360,

described in the SDC TM ~ 3417 series. .

When plexes are created and destroyed during execution of the program,

some storage management technique must keep track of the occupied and un-

occupied memory. Some storage management schemes require a garbage collector.

This is a routine that processes all memory, 1dentifies the occupied and un-

occupied areas of memory, and makes the latter available for reallocation.

Although this 1s a time consuming process, Other storage management techniques

may involve extensive bookkeeping.

Satisfactory computer languages must also provide numerical computation.

In plex systems numbers must be distinguished from pointers. Often this means

that numerical operators must retrieve their arguments from plex structure;

and this sometimes requires several memory accesses and one or more shifts.

Since plex languages usually permit more than one type of number, the

operators must also test the types of the arguments. But lengthy access

sequences and type-testing can seriously slow down a numeric calculation.

. Solving this problem requires some form of compilation process and a

declaration structure in the language. The compiler can then determine

at compile time the types of operators and compile the appropriate machine

instructions. The problem of directly accessing numbers that is, direct

numeric computation - requires that the stack and memory be permitted to

contain arbitrary bit pattern numbers. This means, for example, that a

garbage collector cannot assume that all words on the stack are pointers;

nor can 1t distinguish pointers from other information on the basis of a

bit in the word. J

2



Swym and STUITER

To examine plex processing from the practical level, Swym - a general

plex processing memory management system = was implemented. As an illustra-

tion of the capabilities of this system, an interpreter for a small LISP-like

language called STUTTER was also implemented.

The central focus of the Swym project was a particular plex structure

called a compact list. This form of list can reduce memory requirements by

up to half; essentially compact lists do not always require the second pointer

in the 2-plex for lists. The details of compact lists are 1n the section on

Swym data structures (1.2) and in the Appendices.

The compact list was derived from and suited for the needs of LISP l.b.

Consequently, STUTTER 1s similar to that language and has the same basic

operations, (though new names, the LISP 1.5 names are in parenthesis):

fst (CAR) argument must be a list; fst returns the first element

of that list;

rst (CDR) argument must be a list; rst returns the rest of that

list after the first element; 1f the list has only one element,

rst returns an atom;

take (CONS) there must be two arguments, both pointers; tak2 takes

2 words from free storage andtacksthe 2 arguments together so

first 1s fst of result and second is the rst;

atom (ATOM) predicate - true if argument is an atom, false other-

wise;

eq (EQ) predicate - true if both arguments point at the same

plex; false otherwise;



rplf (RPLACA) there must be two arguments and the first must be a

list; the first pointer in that list is replaced with a pointer

at the second argument.

Unlike many LISP implementations, an interrupt results if fst or rst is taken

of an atom. Like LISP, the mnemonics _ffst, frst, rfrrst, etc., can be defined

(lending credibility to the name STUTTER). As indicated above, tak2 always

makes a 2-plexe STUTTER relies on the Swym garbage collector to make compact

lists where possible.

Super—-parentheses are an important feature of the STUTTER input syntax.

Represented by the characters '<' and >', a pair of super-parentheses can be

substituted for any pair of normal parentheses (of which there are many in

LISP and STUTTER input). When the input routine finds the right super-

parenthesis (>) matching a left super-parenthesis (<), the enclosed ordinary

parentheses are forced to balance, either by creating right parentheses or

by ignoring characters. If characters are added or deleted, an error message

1s printed.

Swym has been carefully designed to permit direct numeric computation.

. Special care was taken 1n several areas: the stack and free storage permit

thirty-two bit numbers, and the value of a STUTTER atom is directly

accessible, given the address of the atom. The subroutine linkage mechanism

and the storage management techniques also take into account the possible

presence of numbers.



Swym was programmed for an IBM 360 under 08/360. This was not only

because of the wide availability of the 360, but also because it was some-

thing of a challenge to adapt the 360 for efficient plex processing. The

Stanford 360 is a model 67 with 32 bit addressing and paging facilities.

Swym was designed to test these facilities on a plex processing system, but

the operating system did not support them and moreover, SwWwym was

moved to SLAC. Nonetheless, the lessons learned from Swym may have important

implications for machine design, as is discussed in the conclusion. Details

of Swym and STUTTER are in the Appendices.



Plex Processing Language Implementation

Several interesting languages have been designed primarily for plex

processing. The *best known examples are LISP [MCar 62], SN@BPL [Farb 6k],

10 [Know 66], and the earlier IPL-V [Newl 64] and COMIT [Yngv 62]. An

excellent review of such languages is in [Bobr 68]. The promise shown by

these languages has led to many attempts to define and implement plex

processing facilities for existing high-level languages, For instance:

SLIP [Weiz 63], records for Algol [Hoar 66, Wrth 66], and the 'based variable

feature in PL/1 [IBM 68b]. Unfortunately, adding a plex processing feature

1s very unlike adding a new function (say SINE) or even a whole new arithmetic

(say complex). Plex processing not only requires appropriate additions

to the compiler or interpreter, but can also require extensive revision of

the code compiled for all other features. The major problem is that plex

processing requires some form of storage management, either by the user,

or by the system. This paper surveys the problems encountered 1f a system

1s to manage storage. These problems are encountered in the very basic

areas of data representation, subroutine linkage, and storage management

itself.

In most computer installations, program compilation 1s a frequent

event. Like other non-numeric computation, compilers can make advantageous

use of plex processes. For this reason, the concepts and techniques discussed

in this paper apply not only to the code generated to implement the features

of a language, but also to the features required in the compiler itself.

This paper assumes that the language being implemented includes plex

processing and consequently requires storage management. It is also assumed

that the language permits definition of subroutines (procedures) and that

6



programs written in the language will make substantial use of subroutines

and modularity. For two reasons, Swym sheds some light upon the functions

required during the execution ofa plex processing program. First, Swym

1s an investigation of plex processing; second -- and less obvious --

Swym required construction of plex processes. The garbage collector,

input/output routines and the STUTTER interpreter are all examples of

KE plex processes.

A programming system will be used by many programs over an extended

) period of time. It is important in the design of such a system to avoid

decisions that will slow execution substantially, expecially when a practical

alternative 1s available. Usually many decisions must be based on the trade-

off between memory space and execution speed. Before multiprogramming and

timesharing the answer was to optimize by saving time at the expense of space

since the memory was there. In modern systems there 1s an expense not only

for execution time, but also for memory space. The ratio between these two

expenses 1s critical to the choice of an efficient set of alternatives for

a language implementation. One of the goals of this paper 1s to point out

the alternatives. A major effort was made to reduce the size of the data

) structures as far as possible and to reduce the time and space required

for the most basic system functions.

One approach to the definition of execution efficiency 1s that of the

I? systems [Know 66]. That language and system is designed for 'low-levelness'.

This has been defined [Mnch pc] as producing code that is no more than ten

percent slower than equivalent hand code. STUTTER was designed with a

slightly different criteria in mind: the principle of 'relative difficulty

of specification.' This principle declares that a language facility should

7
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take proportionately as much effort to specify as it does to execute. In

this way the programmer can have some feel for how much time the program

will take simply from the amount of code he writes.

Several problems contribute to slow running of high-level languages

with plex processing facilities. Most of these, however, are inherent,

not in the plex processing facilities, but in the implementations. Many

plex processing users see only the interpretive LISP or SN@BEL systems.

Compiled LISP, however, runs much faster than when interpreted. SN@BAL IV

- has plexes, and should run faster than SN@BPL III (because string

matching can now be avoided in plex operations). While interpreters have

their place, they are simply too slow to be used on any problem big enough

to justify the use of a computer. But there exist plex processing systems

that meet these problems adequately. The ALGOLW [BBG 68] system at Stanford

implements plexes, yet 1s so fast a total system that student programs can

be compiled and executed on a 360 in less than a second. In short, the

presence of storage management facilities need not automatically mean

slow execution.

Although written in terms of language implementation, this paper 1s

] really directed toward any program that can be more efficiently implemented

by first implementing some tools. These tools might be any one of,

a) write a few macros

b) write macros to interface with an existing memory management
system like Swym

c) design a special purpose language

d) design a full general purpose language

The author believes that the most useful approach 1s probably (b), and he

would probably design many more data-specific macros than might another

programmer. :

8



Environments of a System Implementation

A program 1s executed on a computer in a set of environments including

not only the hardware, but also service routines and conventions for data

representation and program linkage. The environments most directly affected by

the requirement for plex processing can be divided into:

Data Environment

Stack Structures

Data Structures

Subroutine Environment

Routine Linkages

Variable Binding

Storage Management Environment

Memory Organization for Allocation

Storage Control

All of these environments interact with the system storage management facility.

Not only must they be designed to make storage management possible, but many

require plexes for their own implementation.

The relations between the environments must be carefully worked out before

system construction 1s begun. A hasty decision on one environment can be

expensive 1n the implementation of some other. ALGOLW did not provide for

marking pointers on the stack. This eventually required that the garbage

collector be rewritten. [Baur pc]. Other decisions in ALGOLW require that a

2-plex occupy sixteen bytes. But if a set of environments is well coordinated,

more than one language can be implemented within that set of environments.

This provides for very efficient linkage between routines written in two or

more languages.
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Fach section below describes one environment of a language implementation.

The discussion will center around the effect of the storage management

scheme on that environment but will also cover alternative implementations

and the relationship of the environment both to the language being implemented

and to the machine being used. Each section concludes with a discussion of the

relevant features of Swym and STUTTER. This serves for comparison and to

illustrate one choice of solutions for the problems posed.

10



I. Data Environment

Data structures range 1n complexity from the single bit to organiza-

tions covering large quantities of direct access storage. To a certain

extent, the data structures in a system are dictated by the needs of the

higher level language. But the physical structure of the data may differ

from the logical structure manipulated by the higher language programmer.

In any case, the data requires storage space and this must be provided by some

form of memory management mechanism, either during compilation or during

execution. The discussion below separates stack data structures from other data

structures for two reasons. First, the stack is the simplest form of execution |

time memory management. Second, a stack 1s usually included in a system for

program control purposes. In most languages routines exit in the reverse

order of entry, so the stack 1s the natural analog of the progress of the

program.

I.1 The Stack

A stack (sometimes called a push down list) 1s a simple but important

system component. Among the advantages of a stack are that few instructions

© are required to allocate and release space and there 1s no possibility of frag-

mentation of space, because there is only one contiguous area of unused space.

A stack permits recursive procedures: by allocating temporary variables and

saving return addresses on the stack, a procedure can call 1tself directly or

indirectly. Each invocation refers to the correct variables and returns con-

trol correctly. Even 1f there 1s no recursion 1n an entire program, a stack

1s a flexible and efficient method of storage allocation.

There are three basic operations on a stack: addition, deletion, and

reference to items; all are-easily implemented. One pointer to the stack

11



1s maintained; additions and deletions move the pointer, while items are

referenced relative to it. Sometimes a test 1s made for the bottom of the

stack when items are deleted. Other systems assume that the program 1is

correct and that no more deletes will be-executed than additions. Several

methods have been implemented for ensuring that the stack does not grow beyond

its bounds. The most common 1s to simply test the stack pointer against a

pointer to the end of the stack. A possible hardware method is to check the

low order k bits of the stack pointer; if all are zero, the stack is exhausted.

This method means that stacks must end on certain boundaries; a restriction

that complicates memory allocation. With the PDP-6 hardware stack commands,

a stack pointer includes a count that is decremented when the stack increases

and incremented when items are deleted. If the count reaches zero, the stack

1s exhausted.

Stack exhaustion poses peculiar problems; one simple solution 1s to

terminate execution. In paging systems or systems with more than one stack,

it may be possible to continue. The difficulty 1s that the stack 1s changing

most rapidly near the top. If a new page 1s allocated for the stack, only

one or two words may be used before the stack goes back to the old page. If

. the new page is released, 1t may need to be reallocated again very shortly.

If the new page remains part of the stack, the stack may grow large during

one-portion of a program and eat up valuable space during later portions.

At the least, paging algorithms must recognize that the bottom of the stack

will not be accessed for a reasonably long time while the top of the stack

must never be paged out.

When a computer implements a stack in the hardware, it 1s common to

keep the top stack items in faster access memory. The B-5500 had two high

speed stac'k locations; the Atlas had sixteen. In these cases, special

12
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logic can be incorporated to minimize memory accesses due to fluctuation of

the stack pointer. When an item is deleted from the top of the stack, the

hardware must decide whether or not to initiate a memory fetch to load the next

item of the stack. The answer dependson the expected ordering and frequency

of additions and deletions.

In most Algol 1mplementations, a block of temporary storage on the

stack 1s allocated at procedure entry and deleted upon exit. The stack

fluctuates more rapidly for B-5500 and Euler-like [Wrth65] implementations:

the top elements of the stack are the implied operands for an operation and

the result replaces those operands on the stack. Swym permits an in-between

method; stack storage 1s allocated only when 1t 1s needed, not necessarily

for the duration of the routine.

In plex processing systems three classes of items can be stored on

the stack: pointers, return addresses, and non-relocatable data. These

must be distinguished because the garbage collector must find all structures

referenced by pointers on the stack. It is possible to associate type bits

with every word on the stack to identify those that are pointers. But if

those bits are in the word itself, it will not be possible to store arbitrary

words on the stack as 1s required for direct numeric computation. (A number

might have the pointer bit set wrong.) Numbers could be treated by creating

a plex containing the numeric value and storing a pointer to that plex on

the stack. But this seriously slows numeric computation by unnecessarily

invoking the storage management facilities. LISP 2 proposes that each routine

call include a 'stack map' of the storage allocated for the calling routine.

This map could be accessed relative to the return address, which would also

be on the stack.
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Swym Stack

The Swym stack is one 360 word wide and grows downward. That is,

additions are made at the lowest addressed end of the stack. In this way,

the latest entries to the stack can be addressed relative to the stack

pointer. Provision has been made for three varieties of entry on the stack:

pointers, return addresses, and stack plexes. The high and low order bits

of the word are used to distinguish between these varieties so that the

garbage collector can treat each correctly. Every plex has a one-word

plexhead specifying its length and type. Numbers and other arbitrary bit

pattern words may only be stored in plexes; but note that a compiler can take

the plexhead into account and generate code to directly reference numbers

stored on the stack.

1.2 Data Structures

Data structures that have been implemented include:

Class I. bits, words, arrays, strings, stacks, queues, and

connection matrices.

Class II. Lists, plexes, rings, and hash-coded associative struc-

tures.

Class III. Variants of the above for tapes, cards, direct access

devices, and transmission.

All classes are alike 1n that they require memory space to store information.

If this space 1s allocated during execution, there must be some form of

execution-time storage management.. Section III of this paper concentrates

primarily on management for Class II.
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The elements of Class I are simple in that they do not necessarily

involve pointers, although they may involve dynamic storage allocation.

The data structures 1n Class I are well covered by [Knth 67]. Stacks have

been discussed in Section 1.1. Queues are simply push-through(FIFf or

first-in-first-out) stacks. A connection matrix represents a graph by

having one bit for each possible connection between the nodes. If the bit

1s one, that connection exists. Ordinarily arrays are used to contain in-

formation concerning the nodes connected by the matrix.

. The data structures in Class II generally involve pointers. These

structures are described in [Schr 67] and [Gray 67].It is interesting to

compare LISP lists with connection matrices for describing networks. If

there are n nodes, the connection matrix requires ne bits. If there are p

connections and each list element requires b bits, then the list structure

requires pb bits. The density (number of connections/number possible

connections) of the graph for which the two representations take the same

number of bits is _p'/n° where p'b = i . For greater densities, the matrix

requires fewer bits than the list. The breakeven density is then 1/b.

For b = 64, the break even density is 1.5%. That 1s, 1f more than that

. percentage of the possible paths exist, then the connection matrix 1s a

smaller representation. Connected graphs under 66 nodes always exceed

1.5% density because there are at least n-1 paths. The trouble with matrices

1s that their allocation 1s very machine dependent. For example, an increase

from less than 32 nodes to more than 32 nodes might mean substantial re-

programming.

Two strange schemes have been proposed for LISP list structures, but

not implemented. In one, CPHNS would hash its arguments and store the dotted

palr 1n a hash bucket. If the pair was already in the bucket, a pointer
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to the existing pair would be returned. This scheme would make EQ and EQUAL

the same simple operation, but would prohibit the efficiencies possible with

RPLACA and RPLIACD. The major bar to implementation (the IBM4X was proposed)

seemed to be the lack of a suitable garbage collection algorithm. The

second scheme was the n-cube addressing scheme. Every word would have

associated with it 2-1 other words. These can then be addressed with just

n bits in the pointer field. (It was proposed that the addresses of the words

associated with word X be formed from the address of X by modifying each bit

in turn. Thus the associated words would be those connected to X along the

edges of the n dimensional hypercube.) In this scheme, though, any function

that will build a plex must tell its arguments where to put their result;

the consequences are staggering: 1n general, the computation must terminate

before any results are stored.

The CORAL system [Suth 66] is one example of a system based on rings.

Essentially, each ring 1s a list with an explicit ring head; the end of

the list points back to the head. In addition, alternate elements of

the list contain pointers to the ring head and the reverse pointers that

point back to the preceeding reverse pointer. A ring element is a plex,

called a block. The pointers constituting the ring are physically stored

in these plexes and the beginning of the plex 1s marked with a word with

a special bit pattern (all ones). CORAL is a set of macro statement for

the TX computers at Lincoln Laboratories.

Other ring systems are described in [Gray 67). [Perl 60] describes

'threaded 1lists'; these are similar to rings but derived from LISP lists.

The end of the list 1s marked by a special bit, and the pointer there points

back to the beginning of the list.
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An elegant notation for plex processing in higher level languages 1s

the 'record' feature described in [Hoar 66] and [Wrth 66]. Essentially, the

declaration of a 'record class' defines a possible type of plex. The class

name 1s implicitly declared as a procedure for generating members of the

class. Identifiers attached to the Fields of the plex are implicitly declared

as procedures to access the contents of records of the class. The arguments

to such procedures are records of the proper class. Other identifiers can

be declared to be pointers to members of one or more record classes.

Before direct access devices and on-line systems, Class III structures

were usually sequential files. But modern Class III structures have been

forced to include elaborate indexing and addressing structures. Indeed,

there 1s need for space management in most systems with Class III structures.

The most comprehensive existing system for managing file storage is 08/360.

Its great flexibility has prompted user grumbles about having to specify too

many parameters. For example, one of the facilities offered 1s a relocating

garbage collector for disk packs. This collector is not called automatically,

but must be invoked by a special procedure.

One goal in on-line systems 1s to build a filing system capable of

maintaining any file of data. An experimental unified file system was

reported in [Frnk 66]. This system encoded the value of each data item as a

pointer into a table of possible values for the item. Variable length

pointers appear to be necessary to make the scheme work; and even then it

seems to entail substantial I/0. Another, more analytic approach to file

design is discussed in [Benr 67].

Some systems have used Class III data structures for graphic applica-

tions. The MULTILANG file system is the basis for the PENCIL system

reported in [vDam 67]. Plexes are stored on a disk and contain keys and
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elements. A plex may be specified by specifying logical combinations of

keys. The LEAP system [Rovn 67b) stores 'triples' of associative information.

Each triple 1s stored three times on the disk; once for each of the components.

Thus triples can be retrieved based on any part of their contents.

Several factors must be taken into account when designing a data structure

for a language implementation. These include the host computer, the basic oper-

ations to be implemented, and the amount of data description that must be avail-

able to general purpose run-time routines.

- The host computer affects data structure design at the lowest levels.

For example, the size of pointer fields depends on the amount of free storage

to be addressed. _Also, most computers favor certain portions of words by

having instructions for manipulating those portions. A physical structure

design should take advantage of such natural access aids. The danger in such

designs 1s that a 'cleverness' in some portion of a representation will not

save as much space and/or time as is required to get the information into

the peculiar form required. In keeping with the principle of relative

difficulty of specification, the physical structure should bear some resem-

blance to the logical structure. For example, variable length plexes could

be represented physically as a list of fixed length plexes. But the

programmer may reference the last 1tem in the plex frequently, expecting it

to be found with address arithmetic, rather than list searching. Numbers

should be stored so as to be accessible for the hardware arithmetic operations;

i. e«, on the appropriate storage boundaries so shifting 1s avoided.

A large proportion of the time 1n a plex process 1s spent accessing the

correct piece of data. Since data access can mean descending through many

levels of (logical) data structure under control of the program, the best

measure of the efficiency of data access 1s the effort to descend one level
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in the data structure. In Swym, these 'descent' operations are rst and

fst; requiring five and one instruction executions, respectively. Access

to a fixed length element of a Swym plex requires one instruction. The 7090

implementation of Lisp required 8 instructions each for CAR and CDR, the only

avallable descent operations. Lisp implementations using temporary storage

[Bobr 67] [Cohn 67] typically must test page tables and perform address

arithmetic to descend one level in the data structure. Such processing 1s

time consuming and has led to the definition of hardware 'paging' systems

like that on the 360/67.

) There are several reasons why data structure designs often include

descriptive information along with the data. A primary reason is that the

garbage collector must determine certain properties of structures before it

can collect them. Other reasons might be that each operator checks its

argument to see that it 1s the correct type, or that the operators must know

the specifications of the data in order to completely specify the operation.

For example, a general print routine must know the type of the data and a

string move routine must know the length of the string. The garbage

collector needs the location and length of each active data item and the

position(s) of any relocatable information in the item.

) A data item can be described by its location, length, type, and zero

or more type dependent parameters. This information may be specified

explicitly or implicitly and may be located with the item, with the

reference, or remotely. Information stored with the item usually takes

the form of explicit fields referenced relative to the pointer at the item.

Storing descriptive information with a reference to an item means that

the item can be a part of some other item. The XPL string mechanism

[MKee pc] permits two strings to share memory. Remote storage of descrip-

tors has been proposed by D. McLaren [MCla pc]. Plex storage would be
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allocated from the bottom of a free storage area, while fixed length

descriptors were placed in the top. The descriptor corresponding to a

pointer could be found by a binary search on the descriptor area. Presum-

ably, the descriptor would be infrequently referenced in that system.

Implicit data description 1s information derived from other characteristics

of a data item. For example, the length may be implicit in the type, that

1s, all items of that type are the same length. The type may be implicit

in the fact that the item is within some area of memory. J. Reynolds

[Reyn pc] has proposed a minimal encoding scheme having type explicit

and implicit with the reference. If the compiler determines (from declarations

or by analysis) that a certain field can only point at a plex of one of

n types, then the type information can be coded with the reference and requires

only [log, 1] bits.

owvm Data Structures

Very complex plexes can be realized under Swym, but this section con-

siders only those implemented for the STUTTER interpreter: lists and atoms.

A list 1s a sequence of pointers. Each pointer is the address of an element

. of the list. An element, in turn, can be either a list or an atom. An

atom 1s a plex with arbitrary internal structure. Note that Swym lists are

special plex structures because the garbage collector can compact them.

The difference between conventional lists representations and com-

pact lists parallels the difference between the IBM 650 and most other

computers. 650 instructions had two address fields: one for the operand

and one for the next instruction. Most other computers save memory by

assuming that the instructions are sequential. When the instruction se-

quence is broken a 'branch' instruction continues execution elsewhere.
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Like the 650, many list representations use two pointers for each element Co
of a list: one to the element and one to the rest of the list. On the

other hand, list storage can be conserved by storing lists sequentially

in memory; then only the pointers at the elements are required. But if

that 1s the only way lists can be stored, certain list operations can be

time consuming. The Swym solution 1s to allow a 'list branch' pointer.

Lists are normally sequential, but when a list cannot be sequential, 1t 1is

continued with a 'list branch' pointer. Figure I.1 illustrates several

list structures in both the old and new representations. Note that a 'list

-- branch’ pointer is called arst pointer because it points to the rest of

the list.

An earlier system permitting compact lists intermixed with chained

lists has been reported by N. Wiseman [Wise 66]. This system provides

for creation of compact lists, but the garbage collector does not rearrange

storage to remove rstpointers. Unlike Swym, variables may point at rstpointers

and there may be more than one rst pointer between element pointers. But the

user must program extra checking to avoid treating rst pointers as list

pointers. Wiseman presents no data on the effectiveness of his system.

Swym list words have the format shown in Figure I.2a. If the rst bit

; 1s zero, the word points at an element of the list. If the rst bit is

one, this pointer 1s so-called 'list branch' pointer; it points not at an

element of the list, but at the continuation of the list. The atom bit is

on in a pointer at an atom; this 1s the distinguishing characteristic of an

atom in the Swym system. If both the atom and rst bits are zero, the pointer

points at a sublist of the given list. If both the atom and rst bits are one,

the end of the list has been reached. A list ending with a pointer at the

atom NIL 1s a normal list; otherwise, 1t 1s what LISP 1.5 sometimes calls a

general s-expression. The atom NIL is treated as a list with no elements.
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All Possible Mixed Representations of C:

|. A pointer at an atom is represented by a character string. (The ‘print name’ of the atom.)

2. A ‘list branch’ pointer is indicated by ® (for rst).

3. [® NiL]is written —] to indicate the end of a normal list.
4. Any otherrst pointer at an atom is the end of a ‘general s-expression’list.

FIGURE 1.1
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a. List Word

| Address Field Lo
0 | 29 30 31

Reserved for Atom bit

Garbage Collector (M1)
|

Ist bit

also used by

Garbage Collector (M2)

b. P lexhead

HB Tye Jif0
0 1 7 8 14 15 16 30 31

always 1 in an
atom head

Type of atom

Reserved for Reserved for

Garbage Collector (M1) Garbage Collector (M2)

FIGURE 1.2
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Associated with each atom is a plexhead - a word containing the type

of the atom and two marking bits for the garbage collector. The format of a

plexhead is shown in Figure I1.2b. The twenty-two unused bits may be used

for different purposes for different atom types. Depending on what 1s

desired, a plexhead may be located almost anywhere with respect to any

other words in the atom, but usually it is the first word in a plex.

Atoms are addressed by pointing six bytes in front of the first byte

of their plexhead. This means that they point at a half word boundary

which 1s not a full word boundary. A pointer at a list always points

at a full word boundary. Thus, Swym distinguishes a list from an atom

by the pointer pointing at the item (the atom bit 1s just part of the

address) . Because atoms are addressed six (not two) bytes in front, the rst

operator examines a bit in the middle of the plexhead. Since this particular

bit 1s always on, rst causes a specification error. fst also causes a speci-

fication error 1f applied to an atom. But the components of an atom can

easily be referred to with special Swym macros that assemble only one

instruction. From a paged memory standpoint, the atom bit has a small

advantage: whether or not an element 1s an atom can be decided without

accessing that element. The advantages of the atom bit suggest its use even

in a 24-bit address machine.

All atom types are alike 1n having a plexhead and in being addressed

in a strange manner. Only two atom types are defined in the basic Swytn

system: symbols and strings. But the user may define other types of atoms

simply by coding the primitives to create, manipulate, and garbage collect

the new atom types. Since the contents of a plex can be addressed directly

1f the address of the plex 1s known, operations on plexes are no more costly

than operations on statically allocated storage.
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The symbol atom corresponds to the normal Lisp atom. In Swym, such an

atom has three components: the plexhead, a value cell, and a property list.

The plexhead contains control bits describing the contents of the value cell

and the atom's definition as a function. The value cell contains the atom's

variable binding as discussed in Section 11.2. The property list is similar

to that for LISP 1.5, but the r. ..rst is a pointer to the print name (a

string atom).

} There are currently three sub-types to the string atoms. All are alike

in containing no relocatable information (addresses) and 1n being stored in

a consecutive block following the plexhead. The three sub-types are string,

fixed point number, and hexadecimal number. The major difference between

these subtypes 1s in how the print routine handles them; they are not dis-

tinguished by the garbage collector. The plexhead of a string atom contains

the subtype field and a length field. The string and hexadecimal number may

be any number of bytes up to 32767. A fixed point number currently always

has a length of four bytes.

Swym free storage 1s one contiguous block, and new plex structure 1s

created from one end of that block. This storage allocation scheme has

proven advantageous in the Cogent system [Reyn 65]. Lists can be created

in compact form 1f all their elements are known. Atoms of any size can

easily be created; for example, bit string atoms are always stored in con-

secutive bytes. Note that the garbage collector requires only two bits

in the plexhead; all other words in an atom structure may be full words.

Thirty-two bit addressing 1s supported by Swym. A pointer may occupy

the full word except for three bits: the two low order bits and the high
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order bit (bits 0, 30, 31). Because the 360 addresses bytes and all Swym

pointers point at words, the low order two bits of a pointer are not used

for addressing. The high order bit cannot be used either. Difficulties

will arise as soon as address arithmetic (especially BXLE and BXH) 1s

attempted on full thirty-two bit addresses; addresses in the upper half of

memory are negative and are thus algebraically smaller than zero. Swym uses the

three circumscribed bits to good advantage. The low order bit 1s the rst bit,

and it marks a rst pointer. The next to low order bit (bit 30) marks a

pointer at an atom. Both the high and low order bits are used for marking

by the garbage collector. These same bits have other meanings in control

words on the stack.
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II. Modular Programming and the Subroutine Environment

Plex processing implies a structured approach to data; the corresponding

] structured approach to programming 1s modularity. If a large program is

broken down into a series of smaller programs, the latter are easier to

write, debug, and modify. Moreover, if the program is carefully divided

along functional lines, the large program can often be redesigned simply

by rearranging the sub-programs. Modularity is evidenced at many levels.

There 1s always a set of basic operations available to the programmer,and

usually there 1s a mechanism for defining and invoking subroutines. Basic opera-

tors can range from machine instructions, to interpreter 'syllables', to sets

of macro instructions. Each specifies a set of operations considered by the

designer to be convenient and comprehensive for describing the steps of a

task. A subroutine mechanism permits the programmer to design his own set of

basic operations tailored to the task at hand. While implementing Swym, it was

necessary both to modularize the system itself and to provide efficient and con-

vient mechanisms for modularity in languages implemented under Swym.

The most basic example of modularity 1s the hardware instruction set

. of the computer. Each instruction 1s a modular description of a sequence

of gating registers onto buses and operating on those buses. On the 360,

-yet another level of basic operations called the micro-instructions 1s

introduced between the programmed instructions and the hardware manipulation.

W. McKeeman has pointed out [MKee 67] that computer designers must

consider the problems of language design in order to optimize computer

functions. His work, however, usually emphasizes the design of computers

for specific languages. The discussion in this paper attempts to isolate

basic operations common to all languages that provide plex facilities.
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Most LISP 1.5 implementations provide an interpreter to execute list

structure read by the same read routine that reads S-expression data.

This provides a simple way to begin building a LISP system. In fact, most

LISP compilers are written in LISP and compiled interpretively. The

avallability of an interpreter also permits treating programs as data and

then executing the processed program. The LISP interpreter can be described

in LISP itself, a feature that can lead to better understanding of the

language. But the most common reason for providing an interpreter 1s

really the design of special purpose computers. By coding an interpreter,

the programmer provides a set of operation suitable to implementing the

language. Interpreters often have syllabic operation structures like

B-5500 machine language. Such code structures provide high code density -

thus saving space = because the operands are implied to be the top of the

stack and thus need not be addressed explicitly. The only commercial

computer specifically designed for implementing languages by making highly

efficient interpreters is the B-8502, tantalizing details of which

are beginning to leak out. How well suited the B-8502is to variable

length plex processing remains to be seen.

: For Swym, a pseudo-machine was implemented by writing a set of macros

for the 360 assembler. The facilities offered by this pseudo-machine include

those desirable for plex process implementation =~ both data manipulation and

program control. Macros are suitable for designing pseudo-machines because

it 1s not necessary to design a whole machine. Just as much as 1s desired

can be formalized, while other processing 1s done 1n terms of hardware opera-

tions. In this sense, macros provide more freedom than the interpreted micro

operator approach to pseudo-machines.
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For a variety of reasons, plex processing programs tend to include many

subroutine calls.* Probably the primary reason 1s that programmers who think

in terms of structured data tend to think in terms of structured programs. At

the same time, the fact that the data may have similar structure at different

levels seems to lead not only to subroutines, but even to recursive subroutines.
For instance, 1n a graphical problem a routine to find all connected nodes

might easily be written by finding all nodes adjacent to a given node and

then applying the same subroutine to each of these adjacent nodes. Another

important reason for subroutines and modularity in plex processing programs

1s that such programs are usually experimental and subject to change

(because non-experimental programs usually cannot afford the overhead

currently implicit in many plex processing systems). Since subroutine-call

1s often the most frequent operation in plex processing programs, attention

must be paid to its optimization. This problem 1s considered at length

below.

There are several goals and advantages in modular programming. These

are synonymous, because meeting the goals successfully implies taking

full advantage of the potential saving 1n time and effort (in total time,

not just initial program writing time). Modularization offers:

(1) Ease of writing. It 1s very convenient to code an operation by

writing the name of a routine or macro that will perform that

operation. Not only 1s total writing reduced, but repetitive

writing 1s eliminated; both reduce the chance of clerical error.

*¥7090 LISP even compiled subroutine calls for CAR and CDR. Even now
most LISP implementation compile arithmetic operations as subroutine calls.
AIGOLW demonstrates that with a suitable declaration structure, such basic

operation can indeed by compiled in-line. Swym has provided the mechanisms

necessary for compiling such in-line code while maintaining communication
between compiled and interpreted functions.
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(2) Ease of modification. Since clearly defined modules perform specific

functions, changes 1n these functions can be made simply by changing

the appropriate module. Modules often provide good 'hooks' for adding

debugging output or statistics gathering routines. The modularity

built into the Swym system was of use on more than one occasion. The

subroutine calling conventions were changed several times. The code

in all routines was changed by modifying the macros and reassembling.

It was also simple to change register usage to communicate better with

0S and PL360. The flexibility demanded by the Swym programming standards

should prove invaluable in implementing other languages within Swym.

(3) Ease of debugging. Modules are easily tested independently, so

that errors can be isolated. LISP 1s especially amenable to modular

debugging for two reasons. First, all data 1s represented in S-expressions,

so the inputs and outputs of a routine can be represented without driving

routines. Second, LISP facilitates and even encourages subroutine

organization so that less thought 1s required to put the program into

modular form.

Some system design time should be specifically devoted to breaking the

'system into program modules. Likewise, some program design time should be

specifically devoted to breaking the program into appropriate subroutine mod-

ules-. Likewise, some subroutine design time should . . . .

Time so spent will be returned with interest in the coding and debugging

phases and will probably be returned many times over during modification of

the program. In designing Swym, subroutine modularization was not difficult

because several LISP implementations demonstrate not only a good system

modularization, but also the basic operation that should be provided to the

programmer. Nonetheless several guidelines were discovered.
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An important guideline for modularization 1s to restrict each module

to a single definable function. This function need not be very basic, but

its definition should be consistent with the single definable function of

all other modules. Consistency means that the set of modules implementing

a higher level module should have mutually exclusive functions, and those

functions should be directed toward accomplishing the function of the higher

! level module. Thus a data accessing module could be defined to also update

a counter or set a bit, but only if in the encompassing module the counter

or bit was always associated with that data access operation. On the other

hand, operations should be divorced if they only occur together accidentally.

If "accidental neighbors" are combined in a single module, sooner or later

they will be needed separately. It 1s better to err in the direction of

too much separation since change 1s such a common feature of programs.

One compromise 1s to introduce another modular level. A macro (for

instance) could be defined to call two accidental neighbors, leaving the

two as separate modules.

Another important guideline in the construction of modular systems,

1s to provide for transparency. A completely transparent subroutine can be

“called at any point in a routine with no resulting change in the output of

the routine. For example, the LISP PRINT routine prints its argument, but

does not modify any location in memory. Ordinarily, a routine will not

be completely transparent, but will affect one or more variables in the

calling routine, or will produce output (doing both might also satisfy the

well-definedness guideline); but the quantities modified bya routine should

be implicit in its well defined single function. One example of transparency

is the block structure limitation of the scope of variables in ALGOL 60.

51



| —

A pre-coded routine can be included in any program and will not create

conflicts with existing identifiers in that program (the same 1s not true

of most assemblers). A good example of the need for transparent code 1s 1n

the definition of debugging packages to be executed when required in the

program.

Since routines must preserve the state of the computer system in order

to be transparent, the system must make this a convenient operation. Some

systems facilitate state preservation by automatic stacking, or at least

provide other ready access to the system variables. Other systems do not

even provide the capability to determine parts of the current state of the

system. Satterthwaite has a discussion of coding transparent routines under

0s/360 [Satt pel. Swym attempts to provide the facilities necessary for

writing transparent routines; the stack can be used for storing arbitrary

information. Also, the 'internal variable' convention [Reyn 65] has been

adopted for accessing and controlling the state of system variables (for

example STIVQMP and STIVCCH control the READ routine, see Appendix C.).

Two system components are vital to modular programming: routine linkage

and variable binding. The efficiency of these operations dictate the level

" of modularity permissible. The PL/I macro facility is necessary not only for

compile time computation, but also to provide modularization that would not

be -practical using the cumbersome PL/I procedure Invocation mechanism

(involving two subroutine calls for storage management). Routine linkage

and variable binding are each discussed in detail below. There is a two

fold relation between these system components and the storage management

mechanism: (1) they require storage for control information; (2) 1f there

1s a garbage collector, they must identify pointers and distinguish them

from non-pointer information.
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II.1 Routine Linkage

The code required to call a subroutine and return 1s critical to system

efficiency. The speed of any individual routine is far less critical because

1t 1s executed less frequently than subroutine linkage; the latter 1s required

between all subroutines. Routine linkage includes several functions:

| save return address and status

E | locate and execute subroutine

| | restore status and continue at return address.

| The primary interaction between routine linkage and storage management is

control of the space for the status information. This information can

include control bits and register contents. It also includes current

variable bindings, but this is considered in the next section. The space

management must be coordinated with the storage management required for data

plex operations. In particular any pointers that are saved must be available

to the garbage collector.

Ordinarily, status information can be saved on a stack because routines

exit in exactly the reverse of the order in which they are entered. But some

languages like Gedanken [Reyn69] permit labels as values of variables. A

routine may store a local label 1n a global variable; after the routine exits,

it may be reentered in the middle by a branch to that global variable. Not

only must the routine be entered, but the status must be restored to the

status existing when the label was stored in the variable. Thus, for Gedanken,

status information (and variable binding) must be stored in plexes just as

data. Storage for both can be managed with the same plex mechanisms.

Labels can introduce problems even in Algol implementations. Algol

permits a routine to branch to a label in an outer block (this label may

even be specified as an argument to the current routine). If status infor-
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mation 1s stored on the stack and includes the stack pointer for the dynam-

ically enclosing block, then a goto to an outer block must interpretively

unwind the stack to find the correct status for the outer block, That is,

the goto must keep restoring the stack pointer until the storage for the

correct block 1s found. This problem can be solved for Algol with the

DISPLAY mechanism mentioned below. In EULER [Wrth65], though, all operators

take their operands from the stack and replace them with a value. This means

that the DISPLAY mechanism 1s much more cumbersome for the goto problem.

The implementation computer can influence routine linkage. The PDP-6

has a single instruction to store the return address on a stack and pass

control to a routine; The routine can branch to the return address and delete

it from the stack with a complimentary instruction. The 360, on the other

hand, has no stack instructions and requires provision for the addressability

of the calling and called routine.

Two common techniques should be avoided in designing routine linkages.

1) Routine linkage should be in-line rather than a call on a service routine.

The latter technique effectively doubles the number of routine linkages. Also,

service routines often waste time retrieving linkage parameters froma para-

-meter list, while parameters can be implicit in in-line code. 2) Not all

registers should be saved on entry to a routine. The time expenditure 1s small

but the storage expense 1s large. Although it 1s possible for the called rou-

tine to save and restore only those registers it destroys, the calling routine

usually has an even smaller number of active registers. Moreover, the calling

routine has the information needed to mark each register as pointer or not-

pointer.

It 1s not necessary for the called routine to return to the instruction

immediately following the call. In the 360, a call might be:
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L 15, Address of called routine

BAIR 1k, 15

CONTINUE DS O H

The called routine exits with BR 1h. But other information may be included

between the BAIR and CONTINUE with little extra cost. The called routine

would simply have to return with B n(llk), wheren depends on the amount

of included information. This information can be used for several purposes.

CHGENT conditional execution is based on the FAILURE mechanism. The failure

return point 1s an extra branch instruction in the calling sequence, executed

by the called routine if it fails. The calling sequence could also include

information to facilitate debugging. Pointers to the name of the routine and

the values of its variables could be referenced by information in the calling

routine. This 1s also the place for the pointer to the stack map discussed

in Section 1.1.

Swym —-- Routine Linkage

In Swym, three instructions are required to call a routine, three more

are used for routine entry, and three are used for routine exit.

These instructions provide for:

(1) establishing addressability for the called routine

= (2) branching to the new routine

(3) marking the return address so it won't be garbage collected

(4) storing the return address in the stack (two instructions)

(5) recovering the return address from the stack (two instructions)

(6) returning to the calling program

(7) re-establishing addressability for the calling routine
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One register (B) is designated as the base register for all routines.

Before branching to the routine, this register 1s loaded from a 'transfer

vector.' This area 1s always addressable (via register S) and contains the

entry point addresses for all routines. Thus establishing or re-establishing

addressability requires one load instruction. Space 1s saved because only one

address constant 1s required for the address of each routine.

Strict conventions govern saving and restoring the eight registers

avallable for general use. (Eight 1s enough 1f BXLE and BXH are avoided,)

If-an assembled routine wants a register saved 1t must save 1t itself or be

certain that the called routine preserves that register. In the latter case,

a comment 1n the called routine must describe the calling routines and registers

which must be left intact. Compiled functions must save the active registers

when calling another function.

Swym provides some debugging information with no extra storage in the

call. The return address 1s the stack makes it possible to find the BCD

name of the calling routine. The BCD name is assembled just before the entry

point to a routine. The entry point can be found because the instruction at

the return address refers to the location in the transfer vector table of the

entry point address.

A Gedanken interpreter was designed to run under Swym. The label

variables mean that an interpreter like the LISP EVAL cannot use a stack

because the status at any point might have to be restored. Consequently, the

designed interpreter used plexes to contain status information and return

addresses for the interpreter. A second type of plex contained status information

for routines being interpreted. The latter also contained variable bindings.
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11.2 Variable Binding

To refer to items of data, a routine has variables. Usually, each

variable 1s named with an identifier (a character string). But two 1dentifiers

may refer to the same variable (Fortran EQUIVALENCE) and one identifier may

refer to different variables in different routines, so an identifier 1s not

the same as a variable. The binding of a variable at a given time 1s the value

that variable would have 1f it were referenced and the information changed if

a value were assigned to the variable. Along with more complicated data struc-

tures and program control, higher-level languages have introduced more compli-

cated relations between variables and their values. Variable binding affects

the garbage collector both because most variable binding schemes require

memory and because the garbage collector must find all active structures that

are pointed at by variables. This section will cover three topics: types

of variables, types of bindings, and the special problems introduced with

LISP global variables.

Types of Variables:

The variables of a routine may be local, argument, or élobak.a r i ab le

1s local to a routine if it 1s declared in that routine. Space is allocated

on entry to the routine and the routine uses the local to hold a value. A

compiler can usually compile straightforward code to access a local variable.

An argument to a routine also establishes a local variable, but the value

and/or storage allocation may be supplied by the calling routine. Arguments

are passed to routines in at least four different ways: value, result,

reference, name. A value argument 1s treated exactly like a local variable

except that it 1s initialized to the value of the actual parameter. A result

argument 1s treated like an uninitialized local, except that when the routine

exits the final value 1s assigned back to the actual parameter, which must
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be a variable. Value and result variables are like locals 1n that storage

1s allocated for them during execution of the routine. Reference arguments

refer directly to the allocation of storage 1n the calling routine. If an

actual parameter for a reference argument 1s an expression, a temporary variable

1s created in the calling routine and the argument refers to that created

variable. Call by name arguments are evaluated each time the argument variable

F 1s referenced. Name arguments can slow execution substantially because a

complex expression may be repeatedly evaluated, and because each evaluation

requires reestablishment of the environment for evaluation of the name

argument.

A global variable 1s any variable that 1s referenced, but not declared in

a routine. It may have been either a local or an argument in the routine where

it was declared, In block structure languages like Algol,a global variable

must have been declared in a typographically enclosing block. The compiler

must compile a reference to the variable that will be created in that outer

block. Because it has no block structure, LISP global references (called

free variables in LISP) are references to the nearest dynamically enclosing

declaration of the same identifier. (A routine dynamically encloses all

routines called during its own execution.)

In a given implementation, global variable binding may be either static

or dynamic. The distinction is based on the treatment of variables during

execution of functions that have been passed as values. Static binding means

that variables always have their most recent binding. Dynamic global binding

means that variables have the binding they had at the time the functional

value was created. LISP is defined to require dynamic global variable

binding. Examples of the problems involved are given below.
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Types of Binding

There are four types of binding: register, static storage, stack, and

free storage.

Register variable binding is often used for system functions. The

arguments are placed in registers and the function is called. This technique

is used even for compiled functions in PDP-6 LISP and can be used for compiled

functions in other language implementations. Register binding 1s convenient

because the calling routine usually must compute the arguments and the result

is in a register. Moreover, the argument may stay in the register until a

subroutine is called. Problems arise when a subroutine 1s called: the

registers must be saved. If any sube...subroutine globally refers to a

quantity bound in a register, then the reference must be not to the register,

but to the location where the register is stored. Usually this 1s either

static storage or the stack. Furthermore, 1f the subroutine might invoke

a garbage collector, any variable that 1s a pointer must be stored in a

location accessible to the garbage collector and must be identified as a

pointer.

Register binding of variables 1s satisfactory for direct numeric computa-

tion (i.e. the value in the register might be a number). Suitable declarations

in the called routine enable the compiler to treat the number correctly. But

when the number 1s saved across a subroutine call, it must be identified so

that 1t cannot be mistaken for a pointer.

If a routine is not recursive and not reentrant, space for variables can be

allocated by the compiler. Such variables are statically bound, that 1s, their

binding never changes and all references are to the same location 1n memory.

Fortran variables are allocated in this manner. This binding technique can
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require excess space because storage 1s allocated for all variables even though

several sets of routines may never call each other. (They could use the same

variable storage space.) One problem with static binding 1s that the garbage

collector must find all plexes that are pointed at from static storage. This

can be handled either by allocating all pointers together or by building a

list of statically allocated pointers. A second problem 1s that a large

structure can be referenced by a single static variable and will remain active

even 1f it 1s no longer needed.

i To provide for recursive and reentrant code and to ensure that variables

are allocated only as long as they are needed, variables can be allocated on

a stack. In Algol, all variable storage (except the controversial dynamic

own arrays) can be allocated either statically or on a stack. When stack
storage 1s allocated onentry to a routine, care must be taken that any

variable marked as a pointer contains a valid pointer. Otherwise the gar-

bage collector may become confused and the program may have a bug that |

depends on the previous contents of memory. The garbage collector does not

need to determine which quantities on the stack are variables; all it needs

1s to determine which are pointers.

ATGPIW utilizes an elegant extension of the DISPLAY mechanism discussed

in [R&R 64]. The variables for each routine are allocated on the stack

when the routine 1s entered. One pointer to the stack is maintained (in

the general registers) for each typographically enclosing block. With this

technique, code can be compiled to reference any global variable directly.

Moreover, the environment for an argument called by name can be established

by simply loading the stack pointer registers.

Free storage must be used for binding the variables of complex

languages like LISP and Gedanken. The original reason for this in LISP was
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that the technique was easy to describe in the LISP formalism and easy to

implement for the interpreter. However, the discussion of the global

variable problem below will show that given the features of LISP, free

storage variable binding cannot be avoided. Several techniques have been

employed including the A-list, the APVAL, and the VALUE cell.

The A-list was used in the early LISP 1.5 implementation. It 1s

described implicitly in the description of EVAL in [MCar62). Basically,

each time a routine 1s entered a dotted pair 1s created for each variable;

the CAR 1s the variable name and the CDR 1s the value. These dotted pairs

are CONSed onto the front of the current A-list. When the interpreter must

find the value ofa variable, it scans the A-list looking for a pair whose

CAR 1s the variable name. Note that this handles global variables as a

straightforward extension. When a function is passed as an argument, both

the expression for the function and the A-list current at the time the

function was passed are passed. Thus, when that passed function 1s invoked,

the old A-list 1s used so that global variables have their correct values.

A major disadvantage of the A-list, besides search time, 1s the fact that it

1s continually allocating and releasing free storage and thus increases the

" frequency of garbage collection.

It 1s possible to improve on the structure of the A-list and still use

the A-list. As suggested by John Reynolds [Reyn pc], this method would create

a plex on the A-list for each function invocation. The method 1s best illustrated

with an example. Suppose a routine binds the variables A, B, andCe. The new

portion of the A-list would be (with compact lists):
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The new method would create this plex:

Hd @~|—» old A-list

HE
:

The searching procedure would be slightly more complex, but there would

be a saving of space.

In a block structured language, a function can only address variables

declared in itself or in statically enclosing blocks. The A-list can take

advantage of this structure by pointing not at the A-list formed for the

calling routine but at the A-list for the smallest statically enclosing block.

This 1s another extension of the DISPLAY mechanism. A Swym 1nterpreter for

~Gedanken [Reyn69] was designed to take advantage of the block structure of

that language.

In LISP 1.5 some frequently referenced atoms such as T and NIL are only

bound at the outermost level. This would mean searching the entire A-list

to get the appropriate value (*T* for T and NIL for NIL). To avoid this,

Lisp led permitted the APVAL property on property lists (usually a shorter

list than the A-list). If an atom had an APVAL, that was its permanent binding.

Thus evaluation of variables meant searching first the property list for an

APVAL and then searching the A-list.
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More recent Lisp systems have extended the APVAL concept by always

storing the value of an atom 1n a cell on the property list (under the

property VALUE in PDP-6 Lisp). As the atom 1s rebound, the old binding 1is

stored on a special push down list. Thus interpreted functions need only

search the property list for variables. Moreover, the location of the VALUE

cell never changes so the compiler can compile code refering to it directly.

By reducing the number of types of binding in LISP, the VALUE cell reduces

the complexity of the language. All variables are the same, whether they

-are declared in a PRPG or a LAMBDA or are undeclared but have been given a

value external to all routines. But as discussed below, there are valid

LISP programs that the VALUE cell cannot implement.

Global Variables in LISP

Global variables (LISP uses the term 'free variables') contribute both

the best and worst features of LISP. The global reference scheme defined

by the A-list mechanism 1s neat and simple, and yet very general. But the

A-list 1s time consuming; it requires list searching time and garbage

collection time. The worst features of LISP are the problems of compiling

functions to interface with interpreted routines and the contortions

necessary when attempting to replace the A-list.

Compiled LISP routines usually use the stack for variable binding

because that 1s the most efficient technique. But 1f a variable 1s to be

used globally in some other routine it must be accessible. LISP 1.5 pro-

vides two types of global bindings for compiled routines: SPECIAL and

COMMON. ASPECIAL variable 1s bound to a special cell on the property list

of the atom representing the variable. (PDP-6 LISP uses the VALUE cell.) This

special cell never moves so code 1s compiled to access it directly. But
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1f the variable must be referenced by both compiled and interpreted functions,

it must be bound on the A-list. Thisis precisely the treatment given to any

variable declared to be COMMON. But SPECIAL and COMMON are attributes of

variables and all references to the same variable are treated the same. Thus

1f X 1s declared COMMON, all routines referencing X must refer to it on the

A-list, even though only two or three routines use it as a global variable.

Primarily this problem 1s a fault of the LISP syntax because there 1s no

place for declarations in the S-expressions that are interpreted.

-~ The most difficult problems are introduced into LISP by the provisions

for allowing functions as arguments and values of routines. The difficulty

1s that a function is a pair consisting of a piece of code and an environment

for interpretation of that code. Consider these functions:

MAP[a3;x} = if null [x] then NIL

else cons [a[fst[x]]; map[a;rst(x]]]

ACONS[a;x] = MAP[function[rx.cons[x;al];x]

The call ACONS [NIL; (AB C)] should return ((A) (B) (C)). Note that the

a inside the function must refer to the first argument of ACONS. The A-list

treats this case properly because function returns a FUNARG. This 1s a list

withthree elements:

“(FUNARG {function S-expression] {A-list]).

When al[fst[x]] is interpreted, the A-list used is the A-list current when

function was executed. The binding for a on this A-list is indeed the first

argument to ACONS. The SPECIAL cell or VALUE cell would not work because

the most recent binding for a 1s the value returned by function.
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PDP-6 LISP avoids the problem in MAP by having function save both the

code and a pointer to the stack. When the function is invoked, the stack is

unwound down to that level; that 1s the old bindings are taken from the stack ha

and placed in the VALUE cells of the appropriate atoms. To remember the

current enviromments; however, as each binding is unwound the current binding

1s saved on the binding stack. Thus the mechanism for function is very

clumsy using the VALUE cell approach. This certainly violates the principle

of relative difficulty of specification.

The VALUE cell mechanism does not work at all if functions are permitted

to return functions as values. Consider this valid LISP function:

~. PLUSX(x) = function [Ay.xty]

The value of PLUSX 1s a function containing the global variable xX. This

global variable must be evaluated in the environment existing when the

function operator was applied. Subsequently the value of,

[plusx[3]][2]

should be five. In short, the variable X must retain its value after PLUSX

exits so that that value can be referenced by the function returned by PLUSX.

(The problem of global variables in functions that return functions 1s care-

fully explained in [Weiz 68]).

There 1s such a wide diversity of requirements for variable binding that

1t seems necessary to consider a comprehensive declaration structure like

PL/I. Variables can usually be bound on the stack efficiently, but other

techniques must be available to handle those cases that cannot be so simply

handled.
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Swym Variable Binding

Swym uses many of the variable binding techniques described above and can

support all them because it has variable length plexes. Arguments are passed

to system functions in the general registers and remain there unless it 1s

necessary to call a sub-routine. A few variables controlling input/output

are bound in statically allocated storage. Six general registers are used

for passing arguments to compiled functions; no compiled function may have more

than six arguments. Swym provides a comprehensive set of macros for storing

and accessing information on the stack. The standard Swym approach 1s to save

a word on the stack when it must be saved and remove it when 1t 1s no longer

needed. _

The STUTTER variable binding scheme is similar to that used for PDP-6

LISP. Every symbol atom has a value cell (the word following the plexhead in

memory). When the interpreter 1s asked to evaluate a single symbol atom, 1t

simply returns the contents of the atom's value cell. Before entering a routine

defined by an S-expression, the arguments supplied are appropriately evaluated

and the values are placed in the value cells of the formal argument atoms in the

LAMBDA expression. The old contents of the value cells are stored in a block

. on the stack. This block contains alternately the formal argument atoms and

their old values. When the routine terminates, the block 1s removed from the

stack and the old values are restored to the atom's value cells. Currently,

only static global variable binding 1s implemented. To communicate with inter-

preted code, compiled code would store the required value in the value cell of

the appropriate atom.

A compiler could compile code to access numeric operands directly, either

in the registers or in the value cells. The values in the register could be

stored on the stack in a stack-plex indicating the presence of one or more
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full words. A non-relocatable value can be stored in a value cell by re-

setting the relocatability bit in the plexhead for the atom. 1[n€ cost of

these features 1s a little additional bit testing in the interpreter and

the garbage collector. }
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III. Storage Management Environment

Fortran is a static language; all storage can be allocated at compile

time or loading time. More complex languages require more complex memory

allocation mechanisms. Algol 60 has dynamic array sizes, but still its

memory allocation can be handled with a stack mechanism. Plex processing

routines, however, create structures that can be referenced after the

routine exits. Moreover, plex processes create and delete plexes of

various sizes at random times throughout the computation. The bookkeeping

necessary to keep track of the allocation of memory to the different plexes

is called storage management. A plex remains active as long as it can be

referenced by theprogram either directly or via a series of pointers. The

memory not allocated to any plex 1s called free memory., free pool, free

storage or free plexes. An active plex cannot be deleted because that would

destroy the program's data. Under some systems and high-level languages the

programmer must write code to keep track of the active plexes and to free

those that are no longer active. In other systems, a routine called the

garbage collector traces through all active structures and returns to free

storage any inactive plex. Use ofa garbage collector demands disciplined

"use of pointers because it must be able to find all active structures and

must be able to distinguish a pointer from other data items.

+ Storage management schemes can be classified as relocating or non-

relocating. In a relocating system, a garbage collector moves all the

active plexes so they occupy a contiguous area of memory and leave a

contiguous free area. This process 1s time-consuming, but the process of

allocating a plex 1s simple: one end 1s allocated from the free area.

Non-relocating systems do not move the active plexes; they simply keep

track of the plexes that are-free and can be allocated. In such systems
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the process of allocating a plex can be time-consuming because 1t involves

a search of the free plexes to find one that is large enough. If a free

plex of the required size cannot be found, a larger plex 1s split; part

filling the request and part being returned to the free list.

Non-relocating systems risk encountering the fragmentation problem.

If a request 1s made for a plex larger than any free plex but smaller than

the total of all free plexes, then core is said to be fragmented. When this

occurs, a system may

(1) terminate execution

(2) relocate all active storage as an emergency procedure

(3) call-a user routine to free any little—needed plexes.

Since (3) is highly problem dependent, 1ts use can only be considered in

special situations. Some research seems to indicate that the probability of

fragmentation is low enough to justify solution (1). The argument 1s that

if fragmentation occurs, then all of storage will soon be exhausted anyway.

The compromise approach (2) above is often suggested, but this combines the

disadvantages of both relocating and non-relocating systems merely to guaran-

tee that the system will fill memory before terminating. The extensive

bookkeeping for the non-relocating system 1s required, as well as the

disciplined use of pointers for the relocating system. D. Knuth [Knth 67]

has collected numerous storage management techniques and analyzed many. His

emphasis 1s on non-relocating systems that terminate when fragmentation

occurs. The current paper concentrates on relocation schemes, both because

the non-relocating are covered by Knuth and because the Swym garbage collector

1s a relocator.
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Possibly, there are more storage control techniques than languages.

Language implementers often discard several techniques before selecting

the one that best suits their language. (On the other hand, system

implementers often discard several languages before selecting the one that

best suits thelr storage control technique.) But all systems have two

components, a memory organization suitable for storage allocation and a

mechanism for control of that allocatable storage. The memory allocator

1s the part of the memory management system that provides a plex on request.

This mechanism 1s vital to the efficiency of a system because, typically,

plexes are created frequently. The storage control mechanism has the respon-

sibility of structuring memory for allocation. In some systems, this 1s a

continuous bookkeeping problem. In other systems a garbage collector 1s

called when the allocatable space 1s exhausted.

III.1 Memory Organization for Allocation

There are three classes of memory organization for allocation: fixed-

size, variable-size, and hierarchical. The fixed-size organization is very

simple. Memory is structured into a list of free plexes, all of the same

. size. An allocation request is met by taking the first element from this

'free list'. Since all plexes are the same size, their relative position and

the ordering of the free list is unimportant. Consequently fixed-size systems

do not usually have relocation. Variable-size systems permit requests for

plexes of different sizes. Such systems have been built both with and without

relocation. The choice of fixed or variable for a system depends on the data

structures being implemented. Fixed organization is simpler, but data usually

comes 1n units of more than one size. Fixed techniques are important, though,

for the part they play in hierarchical organizations.
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The newest and most promising class of memory organizations for

allocation are the hierarchical schemes. In these, a large plex 1s allocated

for some purpose and smaller plexes are allocated from within the large one.

In advanced schemes, the smaller plexes are themselves suballocated. There

are several advantages to hierarchical allocation schemes. If a large plex

holds smaller plexes of only one size, then within the large plex the garbage

: collector can use simple fixed-size collection techniques. Hierarchical

allocation schemes can be useful for segregating the frequently changing from

the seldom changing. The garbage collector ought to ignore the latter as

much as possible. One possible approach 1s suggested by the lifetime block

concept which has been proposed but not yet implemented. If a language has

begin-end blocks like Algol and also has structure class declarations, all

structures of a class can be deleted when control exits from the block con-

taining the class declaration. Thus, the 'outer lifetime block' of an

element of a structure class 1s that block containing the class declaration.

Hierarchical structures might be used for life time blocks by simply releasing

the large plex. Structures have a second kind of lifetime block; those blocks

within which the structure will always exist. This might be, for example, an

. 1nner block making no operations on structures of a certain class. The gar-

bage collector can assume that any structure 1s active 1f control 1s within this

"inner lifetime block'. Constant list structure 1s a limiting case; 1t always

exists, so the entire program 1s its inner lifetime block.

There are not yet many hierarchical allocation systems. The 9 [Know 66]

allocation scheme, sometimes called the 'buddy system', is a cross between a

hierarchical and a variable-non-relocating system. Each plex 1s the size of

a power of two (up to 128 words on the 7090). Allocation may, if necessary,

divide a free plex into two plexes half the size; these two plexes are called

51



'buddies'. A separate free list 1s maintained for each plex size. When a

plex is freed, it is recombined with its buddy if possible. UNCLLL [Mnch 67]

is a version of 1° for the 360. Its allocation scheme distinguishes large

(>8) and small(<7) plex requests. Small requests are met by suballocating

fixed sized plexes from within a single large plex. The large plex size

chosen for a given small plex size 1s such that these large plexes are about

the same size. Both rf and UNCLLL maintain a bit table indicating free plexes.

This permits rapid recombination of plexes. ALGOLW allocates pages of 4096

bytes (the 360/67 page size, although paging is not otherwise particularly

facilitated). Each page 1s restricted to containing records (plexes) of only

one record class,--and thus, only one size. Within each page standard fixed

plex length garbage collection 1s employed. Two important hierarchical systems

are those defined for LISP 2 and AED; they are described in Section III.Z under

hierarchical garbage collectors.

Swym Memory Allocation

Swym employs a relocating variable-sized allocation organization. A

garbage collector relocates all active plexes to one end of free storage.

* Plexes are allocated by moving a pointer that points to the beginning of the

unallocated area. An additional advantage of this organization 1s demonstrated

by- the Swym input routines. Arbitrary length strings can be read; each

character 1s put into the next available location of free storage. (hen the

end of the string is reached, a plexhead is provided and the string is auto-

matically a character string atom. The same technique could be used when

computing multi-word integers.
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III.2 Storage Control

A language permitting dynamic storage allocation must have some form of

storage control. The type required can depend on other language features:

1s there a 'release storage' instruction?

are common sublists and common tails permitted?

are circular lists permitted?

are variable length plexes implied in the language?

Based on the answers to these questions, storage control techniques can be

divided into classes similar to the classes for Memory Organization for

Allocation:

fixed - release

fixed - no-release

variable - non-relocating

variable =~ relocating

hierarchical

where

'fixed' and 'variable' refer to the size of plex allocated,

'release' refers to the presence of a 'release allocated storage’

instruction in the language,

'relocating' refers to moving the plexes 1n storage.

Systems without 'release* usually depend on a garbage collector to find all

active storage. Variable-non-relocating systems usually have 'release',

because they are designed to have a minimum system. Variable-relocating systems

53



do not have 'release' because they must do a large amount of processing any-

way to relocate all of memory. Before the description of each class below,

there 1s a list of systems in that class and suitable references.

Fixed-Release

IPL-v [Newl 64]

SLIP [Weiz 63]

REFCP-III,SAC [Coll 60] [MBth 63] [Coll 67]

AL, LEAP [Feld 65] [Rovn 66, 67a, 67b]

TSA [Toll pc]

In all these systems, except AL and LEAP, a list is an entity with a

controlling list head; 1t 1s not possible to point at a part of a list without

a list head. A list 1s released by pointing at the list head and issuing the

release instruction. Storage 1s also released by deleting an element from a

list. Lists can be pointed at by other lists or by the program variables. If

a given list 1s pointed at by two or more pointers, the release operation 1s

111-defined: one routine may release a list that 1s still required by some

other routine.

. The systems solve this multiple-reference problem in different ways.

IPL-V, the earliest popular system, required that the programmer be sure that

a list was no longer required before releasing it. To aid in this task,

programmers assigned certain bits in IPL-V structures as 'responsibility bits.’

Routines could pass responsibility for lists by changing these bits. The

REFCP-III and SAC systems associated a *reference count' with each list head.

This count kept track of how many pointers were pointing at a given list.

The release process reduced a list's reference count by one. When the count

reached zero, the list was purged. Unfortunately, the reference counts
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require a substantial amount of memory. In TSA, no list 1s ever referenced

by more than one pointer. All operators destroy their arguments and make a

new copy of any information to be saved. This applies to procedures as well:

when a procedure 1s called, the arguments passed to the procedure are copies

of the actual arguments. When a procedure exits, the storage for its argu-

ments 1s released. TSA avoids garbage collection and bookkeeping at the

expense of frequent list copying. In fact, none of these systems has a

garbage collector, primarily because they are designed to be minimal and

conceived of the garbage collector as detrimental to efficiency. But each

of the above systems has a fault: programmer bookkeeping, memory consumption,

Or copying. -

SLIP introduced a form of rings, two way connected lists. The programmer

still must keep track of what list can be referenced and release any no

longer needed. But the task 1s somewhat easier because lists can be

traversed either forward or backward. SLIP discovered that it was not best

to immediately scan a released structure and reduce it to a linear list on

the free list. Instead it was more efficient to put the whole structure on

front of the free list. The allocation mechanism is then designed to handle

- a structured free list rather than a linear one.

AL and LEAP are unlike any other languages in this report although they

are intended for the same kinds of programs. They use plex processing inter-

nally but only to chain together the elements of hash buckets. Otherwise,

the language 1s phrased in terms of attribute-object-value triples. These

are stored in hash coded form on direct access storage. There 1s an operation

to destroy a triple, but this simply means deletion of the link from the hash

bucket. No garbage collector is required during execution, but if a file 1s

saved 1t can profitably be reorganized.
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Fixed-No-Release

LISP 1.5 [Mcar 60, 62]

WISP [Schr 67]

ATLGPLW [zec 081

LISP 2 [Styg 671

In these systems the language designer relied on a garbage collector

to find all inactive storage and create a new free list. Typically such

routines are two passes: a marking pass finds allactive storage, a scanning

pass finds all unmarked storage and structures it 1nto a new free list. The

marking pass may mark each active element with a bit either in the word

itself or in a bit table. If a bit table 1s used, extra computation 1s

required to relate bits in the table to addresses in free storage. But

marking words themselves complicates direct numeric computation. [Schr 67]

has an excellent review of scanning and marking techniques. It proposes a

technique that avoids using the stack for temporary storage.

The ALGOLW garbage collector 1s included in this section because it 1s

primarily a fixed-no-release system. Free storage is allocated in pages of

1024 words. Each page contains plexes of one fixed size, and there is a

separate free storage list for each page. Each plex contains a marking bit

for the garbage collector. The marking pass goes through all plex storage

tracing and marking the active storage. The scanning phase creates a new

free list on each page. If a page is empty, it is returned to the operating

system; on the other hand, if a plex must be put on a full page, a new page

1s created for the required structure class. One problem with this scheme

occurs when a class 1s nearly full and a process 1s creating and deleting

members of that class. The garbage collector may be called several times
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before a new page is created. But the garbage collector blindly rescans all

active storage even if only one class is changing. Insufficient experience has

been gained with ALGPIN plexes to propose a better garbage collection strategy.

Only one portion of the LISP 2 garbage collector fits in this section; the

rest is discussed in the section on hierarchical garbage colleetors. There is

a requirement in LISP 2 to relocate the fixed length list cells so they only

occupy the bottom of their free storage area, After the marking pass, the

lowest free word 1s swapped with the highest active word. The new address

of the active word replaces its old location. This process, called folding

compaction, continues until all active words are at the bottom, A final

pointer correction pass 1s required. Any pointer into the free area is

replaced with the new address stored in that location.

Variable-Non-Relocating Systems

rf [Know 663

ASP [Gray 67] [Lang 68]

APL [Dodd 66]

UNCLLL [Mnch 671

CORAL [Suth 66] [Kant 66]

@s/360 [18M 68a]

Knuth concentrates on systems in this class [Knth 67), so the discussion in

this section 1s brief. His analysis and simulations indicate that fragementa-

tion occurs with a tolerable low frequency, Given that assumption, the tech-

niques 1n this class are to be preferred for their low overhead. If the

language permits common sublists or circular lists and requires the programmer

to release inactive plexes, then he must write code to keep track of how many

pointers point at each plex. But some problems seldom require common sublists.
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For such problems the variable-non-relocating systems are attractive.

ASP and APL use the © buddy system for allocation, but, like CORAL,

they organize the data into rings. Nodes of a ring are plexes, and each may

have several ring connections and several data fields. Nodes can only be

accessed along the rings, so the only delete operation needed 1s to delete a

node from a ring. When a node 1s connected to no rings, 1t can be returned to

the free storage list. There 1s the problem that circular structures may

never be freed even though inaccessible.

When a requested plex 1s larger than the largest free area, the schemes

in this class must try combining adjacent free plexes into larger free

plexes. In some systems, recombination 1s attempted every time a plex 1s

freed. In an application with many plexes of about the same size, however,

the likelihood 1s that the recombined plex will soon be broken up again.

Recognition of neighboring free plexes 1s not always trivial. One tech-

nique 1s to sort the free list according to core location and then compute

adjacency from locations and lengths. CORAL has a plexhead marked by

containing one field of all ones. Checking for a free neighbor in the upwards

direction 1s easy (the next Lexheal follows the current plex); but finding a
‘ preceeding neighbor means searching back to find a plexhead. UNCLLL associates

a bit table with free storage. A bit 1s set for the first and last word of

each active plex.

Operating System/360 dynamically allocates variable length blocks (GET-

MAIN and FREEMAIN macros) and requires some form of storage management.

Relocation 1s impossible because programs manipulate absolute addresses and

the system cannot know where a problem program has stored an address. Free

storage 1s structured in blocks chained together 1n sequence by their size.

Allocation 1s accomplished by-finding an appropriately sized block or dividing
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a larger block. When a block of storage 1s returned to free storage, it 1s

placed on the chain according to its current size. When a sufficiently large

block 1s not available, OS tries to combine adjacent free blocks into larger

free blocks. This 1s accomplished by maintaining an additional chain pointing

to the blocks in sequence by core address. The garbage collector scans this

second chain trying to combine each block with the next higher block in memory.

If no sufficiently large block 1s built to satisfy the user request, he 1s either

terminated or given a return code indicating his request was not met.

Variable-Relocating

COGENT . [Reyn 65]
[Hadd 66]

EPL [MCla pc]

EULER [Wirth 651

MUTANT [MKee 663

XPL (strings) [MKee pc]

SWYM (this paper)

A variable-relocating garbage collector completely ignores the garbage.

" Instead, it builds a new structure isomorphic to the old with respect to

the permitted data access operations. The time for this process depends on

the size of the active structure and sometimes on the incidental arrangement

of the elements of that structure. Many systems relocate storage by coalescing

the active plexes; that 1s, moving them all toward one end of memory, without

rearranging them. Others, like SWIM, not only move all plexes, but also change

their order. In SWYM this process tends to move together lists and their

elements, an important property for paging systems, But there is a disadvan-

tage in rearranging memory. In non-relocating and simply coalescing systems,
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the address of a plex can be used as an arbitrary ordering function. Such

functions have utility when manipulating otherwise unordered sets. In

systems that rearrange storage, such pseudo-ordering functions are difficult

to define. }

Most variable-relocating garbage collectors have four phases in some

order or another. As identified in [Styg67] these are Find, Plan, Fix,

and Move. The Find phase 1s responsible for finding all active structures.

The new address of each structure 1s computed by the Plan phase. During the

-Fix phase all pointers are changed to point at the new locations of the

structures. Finally, the Move phase relocates all structures.

In the Find phase, a tracing algorithm goes down all chains of pointers

starting with the pointers on the stack and in the static variables. To

identify the active plexes and to avoid processing a plex more than once, a

visited plex 1s usually marked in some way. If bits are available in each

plex, the plexes can be marked within themselves. Otherwise, a bit table

can be used. In the latter case, extra computation 1s required to find the

relation between a word address and a bit in the table. If a plex contains

more than one pointer, the tracing algorithm must be applied to all of these.

. There must be some way to remember those pointers that have not yet been traced.

One simple solution 1s to put all the pointers from the plex on the stack.

The tracing routine always takes the top pointer off the stack. But this

system can use large amounts of stack space. Space requirements can be

reduced by stacking a pointer to the plex and a counter indicating how many

of the pointers in the plex have been collected. If room for this counter

can be foundin the plex itself, then the WISP technique [Schr 67] can be

used to eliminate the need for a stack.
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The other three phases must also be designed with cares During the

Plan phase, the new address of each plex must be saved for succeeding phases.

Some plex encodings leave room 1n each plex for the garbage collector to store

this new address. Others use the free-areas to store information to compute

the new addresses. In a system that merely collapses storage by moving 1it

all down, 1t 1s sufficient to compute the change between the old address and

the new address. Systems, like SWYM, that rearrange the plexes must be

prepared to associate an entire new address with each plex. The Fix phase,

like the Find phase, must locate all pointers. Processing a pointer twice,

however, 1s not only time consuming as 1t 1s in the Find phase, but 1s also

fatal as the second update might access erroneous data. Some systems create

a list of pointers during the Find phase for use by the Fix phase; ordinarily,

though, this 1s an exhorbitant waste of space. The most common solution 1s

some form of marking bit. During Move, care must be taken that no plex 1is

overwritten with a new plex before it itself has been moved. In push down

relocation, this 1s accomplished simply by moving plexes starting with the

lowest in memory. SWYM,on the other hand, relies on secondary storage to

hold the new contents of memory.

. The COGENT system uses a bit table for marking the active words of

storage. Each plex contains a type field, Depending on the type, the gar-

bage collector determines exactly which components in the plex are pointers.

The yet-to-be-traced pointers are remembered by stacking a pointer to the

plex and a count of the number of pointers that have been traced. The relo-

cation factor for each block of storage 1s stored in the first word of the

next free area. The Fix phase precedes the Move phase.

Haddon and Waite [Hadd 66] have described a push down garbage collector

that creates a table of relocation factors during the Move. This table is

61



then sorted on the 'old address' field. The Fix phase 1s last: each pointer

1s found 1n the table by binary search and the associated relocation factor

1s applied to correct the pointer.

Don McClaren [MCla pc] proposes to. use a modification of the preceeding

plan. Descriptors for each plex are stored not with the plex but in the

upper portion of free storage. (His system is PL/1-like and the assumption

1s that the descriptors are infrequently referenced.) The garbage collector

can find the descriptor for each plex by a binary search on the table. The

"descriptors contain room for the relocation address of each plex. The point

of this approach 1s that the garbage collection features have very low cost

1f they are not used. Indeed, the descriptors can be removed altogether

with little reprogramming (if the garbage collector 1s not used).

W. McKeeman has written several garbage collectors, including those for

EULER, MUTANT, and XPL (strings). These systems rely on descriptors and

store all lists (strings) as a plex of pointers (characters). A descriptor

contains the beginning location of the item and its length. In XPL, a por-

tion of a string can be 1dentified'as a separate string by simply specifying

a different beginning and length; this corresponds neatly to PI/1 SUBSTR

. expressions. The MUTANT and EULER garbage collectors are similar; each

beginning by scanning all active structure and abstracting all descriptors.

These descriptors are stored in a newly created array (using B-5500 Algol).

Note that this requires a substantial amount of temporary storage. This

descriptor array 1s then sorted by the location of the list. In the Move

phase, active blocks are moved down; the new address of each block is stored

in a field of the descriptor reserved for this purpose. The last step is to

scan through memory and update the address fields of all descriptors. The

XPL string garbage collector improves on this process by creating a list of
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pointers to the descriptors, rather than a list of the descriptors. Since

only the string area 1s being garbage collected, the descriptors will not

move. This list of pointers to descriptors 1s sorted based on the address

fields in the descriptors. Finally, in & single pass all active portions of

strings are moved downward and the new addresses are stored in the descriptors.

Hierarchical

LISP 2 [Styg 67] [Hawk 67]

LISP 1.5 [Barn 68]

AED [Ross 67]

Hierarchical storage control schemes are characterized by allocating

plexes within larger plexes, called super-plexes. In the more general

schemes, super-plexes are allocated within larger super-plexes. Hierarchical

schemes can use different garbage collection techniques for different super-

plexes. This approach permits each type of data to be collected by a routine

specifically written for that data type. Such specific routines can avoid

type testing and can thus reduce garbage collection time.

A major problem in a hierarchical system 1s deciding the size of the

space that should be allocated to each super-plex. One approach 1s that

used by ALGOIW and described above. But this system can call the garbage

collector frequently 1f pages are nearly full. One solution to this problem

1s to attempt to determine the rate of change in the storage requirements

for each class. Garwick has proposed and implemented such a scheme for the

array feature of GPL [Garw 68 and Knth 68]. In that system, array declarations

must specify an upper bound but the current upper bound dynamically depends

on how many of the cells are full. At garbage collection time, a new length
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1s calculated for each array as a function of its current length and its

length at the time of the preceeding garbage collection. A similar system

is used in the SDC LISP 1.5 for the 360 -[Barn 68]to assign to each storage

area an appropriate number of 256 word blocks.

One other serious problem can occur 1n an allocation scheme like that used

by ALGPIW: two large structures can be created simultaneously and occupy many

pages. If only one of these structures 1s required later in the program and

if. no other structure is created in the given storage class, then all pages

remain active for the storage class although they are only partially occupied.

The probability ofi.this problem occurring is program dependent, but the loss

of storage can be large. This can be avoided by relocation, or by splitting

the class into two classes. The problem is more complex when pages

are being swapped; the decision must be made as to whether the time to :

relocate memory 1s less than the time spent 1n swapping the inactive portions

of pages.

Memory 1s allocated hierachically in both LISP 2 and AED that is, plexes

are allocated from within other plexes. But the details differ; LISP 2 per-

- mits only a system defined hierarchy and garbage collects it very efficiently,

AED sacrifices some efficiency to permit complete user control of allocation.

. In the LISP 2 system, different types of program values are stored in

different areas of memory. Some areas contain only fixed length plexes,

others contain variable length plexes. The areas are paired; each pair 1s

assigned a super-plex and one member grows up from the bottom while the other

grows down from the top. Thus the folding compaction described above 1s
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necessary for the fixed length areas. Provision is also made for changes

in the size of the plex assigned to each pair. No indication is given of

the basis for these size changes.

The AED system defines an allocation scheme that 1s essentially non-

relocating. However, provision 1s made for the user to write routines to

be called when storage 1s exhausted in a super-plex. Thus the user can

define his own garbage collector. The system provides a plethora of primi-

tives to assist in writing this garbage collector. Adding to the confusion

in the field, the AED system defines a GARBCOLL mode. This mode can be set on

for a super-plex that controls sub-plexes with a wvariable-non-relocating

(with release) scheme. When GARBCOLL is in effect, a released plex is auto-

matically combined with any adjacent free plexes. When GARBCOLL 1s off, freed

plexes are merely kept on a list (which AED calls a string).

Basic Swym Garbage Collector Algorithm

Swym contains a variable-relocating garbage collector that creates a

set of structures isomorphic to all active structures with respect to rst

and fst. Most unnecessaryrst pointers are eliminated. This set of struc-

" tures is in a new core image, created sequentially and written to a temporary

storage device. After collection, the new core image 1s read into one end of

the plex storage area and the remainder of that area becomes the new free

storage area.

The 1dea of using external storage was suggested by Marvin Minsky 1n

an internal MIT memorandum [Mnsk 63]. But the algorithm reported there

would not work for even the simplest cases (for instance, the structure in

Figure III.2). The Swym garbage collector works not only for the simplest
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cases, but also for the most complex cases of mutual circularity. The

complete garbage collector 1s described 1n Appendix E; the current section

presents a minimal version of the garbage collector to illustrate the

central ideas. This minimal version 1s satisfactory only for structures

that never have more than one pointer at any given word of the structure.

COLLECT (x), the portion of the garbage collector presented here, has

as 1ts argument a pointer at a piece of list structure. It then writes that

list structure sequentially to the new core image. Other functions exist to

call COLLECT for each possible pointer at active structure, to collect atoms,

and to read in the new core image.

The contents of a list are address pointers to the elements of that list.

When a list 1s written to new core, the contents of that list must be the

new-core addresses of the elements of that list. Consequently, the elements

of a list must be COLLECTed before the list itself can be written to the new

core. COLLECT (x) proceeds in two recursively intertwined passes. The first

pass applies COLLECT to each element of the list x. The second pass writes

the new representation of the list Xx to the new core image. To remember

where a piece of list structure 1s 1n new core, its fst is replaced (rplf)

-with the address of that structure in the new core. The head of an atom is

used to store the address of that atom in new core.

Three operators must be defined 1n order to describe the garbage

collector:

ATCOL (x) x must be an atom. If Xx has not been garbage

collected, it 1s collected and written to the new core image. The

plexhead of Xx 1s replaced with the address of X in the new core.

ATCOL calls separate routines to garbage collect each type of atom.
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GCPUT (x) X 1s any full word. This word 1s written to the next

available location in the new core image. The value of GCPUT is the

address of that location. An internal variable 1s advanced to point

at the next available location in the new core image. GCPUT handles

© I/0 and writes buffers to the external device when necessary.

HD (x) X must be an atom. HD returns the plexhead of that atom;

after ATCOL, the plexhead contains a pointer to x in the new core.

If XxX 1s non-atomic, processing 1s interrupted.

The basic garbage collection algorithm 1s given in Figure 111.1 in a

notation similar to Algole The declarator list declares a variable which

may point at a piece of list structure. The declarator word declares a

variable whose value is one full word. Note that rstbit is initialized to

the value ls This corresponds to the value of a word with just the rst bit

on. rstbit 1s used to 'or' the rst bit into a word written to the new core

images The result of applying COLLECT to a simple structure is shown in

Figure IIT.Z2.

'Garbage collection' 1s truly a misnomer for this algorithm. COLLECT

~ examines only the active list structures, while the garbage is completely

ignored and has no effect on the processing. "Storage reclamation' describes

the process no better. Possibly better terms might be 'storage reorganiza-

tion' or 'garbage control'. But the term 'garbage collection' 1s so widely

used and so colorful as to preclude replacement.

Some limited experiments have beenconducted with the Swym garbage

collector. On one list structure, representing a program, there was a 2) per

cent saving of storage using compact lists instead of standard lists. This

corresponds to an average list length of only two elements. The correspondence
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Figure III.1

Simplified Swym Garbage Collection Algorithm

COLLECT (x) = begin list r, t; word rstbit := 1;

r := X;

chkloop: t := fst (r);

if atom (t) then ATCOL (t) else COLLECT (t);

t = rst (xr);

if atom (t) then ATCOL (t)

_ else begin r := t; goto chkloop end;

r := Xj

wrloop: t := fst (r);

rplf (r, if atom (t) then GCPUT (HD (t))

else GCPUT (fst (t)));

t = rst (r);

if atom (t) then GCPUT (HD (t) Vrstbit)

else begin r := t; goto wrloop end

end COLLECT

68



Figure III.2

Example of Swym Garbage Collection

Initial Structure:
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Figure III.Z2 (Cont)

Example of Swym Garbage Collection

At completion:
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is easy to compute: A normal list of length 2 requires 2n pointers. the+
corresponding compact list requires ntl pointers, for a saving of in ;
when n 1s 10, the saving is 45 per cent. Every symbol atom takes at least

four words of storage plus the length of the print name, so the number of

symbol atoms 1s also a factor.

For every active word of storage, roughly forty instructions were executed

| during garbage collection. This was computed by dividing execution time into

| amount of active storage. The experimental system did not use external

storage; instead, memory was shuttled between two alternate core areas. Thus

the time to write out memory 1s the maximum of the time to write out the active

structure and the time to execute forty instructions for each active word. The

time to read in memory 1s dependent solely on the number of active words. The

Swym garbage collector speed can be contrasted with the speed of that routine in

the Stanford LISP360 system. This is a standard LISP 1.5 implementation with a

fixed-no-release garbage collector. LISP cells are stored in double wards.

The garbage collector executes approximately fifteen instructions for each active

double word. In addition, the linear scan through free storage requires four

instructions for each of the double words in free storage. These rates were

computed based on execution of several large programs on a 360/75.

Several applications for the Swym garbage collector are conceivable,

even apart from compact list structure. The Swym garbage collector could be

valuable in a system with roll out and roll in. If the monitor set a signal

for the program to roll itself out, the program could garbage collect for

free the next time a cons was executed. Even without memory swapping, external

storage of structures has always been a problem for plex processing systems.

The Swym garbage collector provides analgorithm for scanning lists and storing

them in a compact form on an external device. Another application for this
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algorithm 1s in the transmission of list structures between two machines over

a slow channel. If the new storage 1s written starting at location zero, the

address fields can be small. Only as the size of the structure passes a power

of two would the length of each address “field have to increase.

The implemented garbage collector stores partially collected structures

on the stack, but uses a trick to avoid saving return addresses during

| recursion. It would be possible to use the WISP technique [Sehr 67] to

avold using the stack during collection. This was not done because it would

involve at least two more passes over the data. In a memory sharing en-

vironment, 1t 1s sometimes possible to acquire temporarily the needed extra

storage for a stack; otherwise, sufficient stack must be available to hold at

least twice the length of the longest fst chain.
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CONCLUSION

The best conclusion to this paper would be to pointto a specific set

of environments and say, "These are the best for implementing a plex processing

language." But this cannot be done because storage management 1s highly

problem dependent. A set of environments satisfactory for one language may

be very poor for some other language. For completeness, four storage manage-

ment schemes are necessary: fixed-release, fixed-no-release, variable-

relocating, and variable-non-relocating. The most universal approach is a

hierarchical system offering each of these types of storage control; current

work holds the promise of making this approach as efficient as the least

efficient of the facilities actually used. That is, it seems possible to
'charge' the user the 'cost' (time or memory) of only the storage management

technique he uses. Alternatively, large projects should consider implementing

a language and system suited to their own particular needs. Since all environ-

ments can be conveniently implemented with a combination of a stack and variable

length plexes, a general storage management system like Swym 1s a suitable basis

for the development of specialized languages.

The paper will close with (1) a summary of the SWYM solution to a

variable-relocating storage management system and (2) the implications

of plex processing languages for hardware design.
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Summary of Swym Environments

Stack: The Swym stack stores pointers, return addresses, and stack plexes.

The three are distinguished by the high and low order bits of the word.

For plexes these bits are in a plexhead and all other words in the plex

can be full 32-bit words. The stack grows toward lower addresses so

: routines may address local variables they store on the stack.

Data structures: To permit compact lists, Swym distinguishes between lists

and all other plex structures. The distinction is based on the pointer

at the item, plexes being addressed six bytes in front of their plexhead.

List operators will not work on plexes and vice versa. But this 1s advan-

tageous in debugging, and neither type of operation 1s slowed because this

checking 1s done by hardware. All plexes have a plexhead, which is

memory consuming 1f many small plexes are used.

Routine linkage: The stack 1s essential to routine linkage: return addresses

are stored on the stack, and the calling routine stores any active regis-

ters on the stack. The address of each routine 1s available from a

transfer vector table.

Variable binding: STUTTER variables are bound in a value cell associated

with the atom representing the variable. A bit in the plexhead indicates

whether the value 1s a pointer or a full word of information, so a

compller can compile direct numerical operations. When an atom is re-

bound, the current binding 1s saved on the stack and the new binding

placedin the cell. Dynamic free variables are not permitted.
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Memory allocation: Memory 1s allocated from one end of a single large free

area. This could be used like a stack, but this 1s rare in STUTTER.

Storage management: The Swym garbage collector creates a representation of

all active structures on secondary storage. This representation 1s then
read into one end of the free storage area. In this process lists are

compacted, and related structures are relocated near each other.

Implications for Hardware Design

Because storage management 1s very problem dependent, hardware design

should not favor one technique over others. But three features would

facilitate storage'management and language implementation: 1) extra bits in

every word, 2) stack operations, 3) subroutine operations. Other operations,

like data access and program control, seem to be adequately handled by the

360 hardware. Appendix K contains one proposal for instructions implementing

these proposals.

Extra bits 1n every word: Swym utilizes high and low order bits of

pointers in many ways. But careful control 1s necessary to avoid confusion

with numbers. Much bit testing and indirection could be avoided if each word

included two or more bits that did not participate 1n arithmetic operations.

This 1dea has been implemented in at least the B-5500 and other Burroughs

machines. But very careful design would be required to integrate extra bits

into the design of the 360, because so many different kinds of instructions

can access different portions of each word. One approach would be to associate

four bits with each word that could be set and tested with special storage

immediate instructions but would not otherwise participate in arithmetic opera-

tions. These bits could be considered as one per byte to mark the ends of
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strings, or could be considered as four per word with different configurations

marking pointers, integers, floating point numbers, or other data types. One

or two of the bits with a word could be used for marking by a garbage collector.

In a carefully worked out language implementation, the special bits would only

have to be set when memory was allocated.

Another possible approach to associating bits with every word would be to

provide an instruction that translates a word address into a bit address (and

possibly tests or alters that bit). With this approach the user would have no

expense if he did not use the facility. But 1f he did, memory allocation would

be required both for data and for any associated bit tables.

Stack operations: A stack can be invaluable in many programs and 1s

essential in implementation of plex processing languages. Moreover, the

required operations are relatively simple and non-controversial: add an item,

delete an item, and reference an item. With no provision for checking the

ends of the stack, the add and delete operations can be placed in micro-code,

and the reference operations can use ordinary base-displacement addressing.

End checking is a little more complex. One approach 1s to make the stack

pointer a pointer at a descriptor giving the ends and the current location

of the stack. But this prevents using the stack pointer to reference items

on the stack. An alternative 1s to use special settings of the special bits

to indicate the ends of the stack. The special bits would then be checked

by the micro-code.

Subroutine operations: Like stack operations, these are easy to

implement and are of general utility. The basic subroutine operations are

call and return, using the stack to store the return address. Storage of

registers and other status information 1s more language dependent and should

be controlled by the calling routine.
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Appendix A. Details of Swym Structures

There are many different information structures in Swym. Free

storage contains lists and plexes (also called atoms), while the stack

contains pointers, return addresses, and plexes. All currently implemented

varieties of these structures are described below.

A.l. Free Storage Structures

a. Lists

A list word has the structure

1 29 1 1

Lewes|]
GC ATOM <’ \>-RST

ADDRESS. May point at another list element, or at an atom.

GC. Is used by the garbage collector for marking (bit Ml).

RST. Is on to indicate that the continuation of the list 1s at

location ADDRESS. RST is also used by the garbage collector

(bit M2).

-ATOM. Is on to indicate that ADDRESS points at a plex (or atom).

ATOM 1s on automatically because a pointer at a plex points six

bytes in front of the plex.

In the following examples, the two low order bits of each pointer

are indicated explicitly. A pointer at an atom is indicated by the
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printname of the atom and the presence of the ATOM bit. The list

(A B C) may be represented by

° C PA ul 01 ERE ERE
or

EN EFENE

Note ‘that the rrrst of either structure 1s a pointer at the atom NIL.

That is,rst of is not

Led KR10 10

but is the pointer at NIL (contents of the second word). It 1s Important

to note that no valid pointer will point at a list element with the RST bit

on.

The Swym list structure can represent both circular lists - which

cannot be printed, and lists with common subelements - which are not

printed correctly.

Circular list: _
y 1 I EN

SE EY Erp KF RNy 10 01 1000

or

A.

EEE10 10 10

List with common subelements: The example below would print as

((a (((8) B) (B) B) ((B) B) (B) B) ((B) B) (B) B)

but note that B occurs exactly once in all representations of the structure.
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Th RRos EN
| RE FEF__10

| or
ER EN EN ENDS

EEF EN

Lists may use any mixture of adjacency and list continuation elements.

The last example might also be

DEAEEEN

SEF EN10 00 10

or even

00 3N N LN

EN EN EF EREe10

‘The garbage collector would rearrange this structure to occupy memory as:

TN yl

EEEENE EY RN RN EREN10

Rk| JS
Start

b., Plexes (or atoms)

Two types of plexes have been implemented: one similar to the LISP

1.5 atom, the other a variable length string. Other types may be
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implemented as required by an application. All plexes have a plexhead |

aligned on a full word boundary; a pointer at a plex points six bytes 1in

front of the first byte of this plexhead. This offset ensures that

the atom bit 1s on in a pointer at a plex and thus distinguishes between

pointers at lists and pointers at plexes.

The standard fields of a plexhead are

1 If 7 1 15 1

|weep]

GC. These two bits are reserved for the garbage collector.

1 in bit 15. This bit, in conjunction with the offset addressing of

plexes forces the RST routine to make a specification error 1f 1its

argument 1s a pointer at a plex.

TYPE. This field distinguishes between different plex types.

Currently types 0 and 1 are implemented.

The blank fields may be defined for individual plex types.

Plex Type 0 - Symbol (LISP atom)

This plex 1s a three part entity: plexhead, value cell, and

property list. The plexhead has the format

1 5 11 T 1 15 1

IERIE

VAL. If this bit 1s a one, the atom is bound to the value

currently in the value cell. If 0, the atom's function definition

1s 1n the value cell.
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REL. If this bit 1s a one, the contents of the value cell are

relocatable, that 1s, the garbage collector will treat them like

a pointer.

FCN. If the atom is not a function name this field is zero. Others

wise, this field encodes what type of function definition exists. The

coding 1s

1 SUBR

2 FSUBR

. , i

4 FEXFR |

The fifteen bit blank field can be used as required. It 1s proposed to

use these bits as marker bits indicating the presence or absence of

properties on the property list.

Thus routines could find out 1f the indicator were present without

searching the property list. Also the extra bits can be used to replace

the "flag" feature of Lisp 1.5

The atom's value cell 1s the next word after the plexhead. This cell

-holds the current binding of the atom, that 1s, the value that 1s to be

returned for EVAL of this atom. There 1s 8 unique string atom with the

printneme 'UNBPUND', that is only pointed at by value cells. If an atom

hasno function value and is not bound, the value cell points at 'UNBPUND'.

When EVAL finds an atom with this value an error 1s indicated and control

returns to the top level. If an atom has 'UNBJUND' in its value cell, VAL

and REL are both one, because the atom 1s bound to a relocatable value.

Note that given a pointer at the atom, the value cell can be addressed

directly. }
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This means that no searching must be done to find the value of a

routine's argument. Normally, when the STUITER interpreteris running,

the Value cell contains 8 relocatable value, a pointer at either 8 list

or another atom. Provision 1s made, however, for compiled functions to

store non-relocatable quantities in the value cell. This means that

compiled functions can, indeed, do direct numeric computation.

| If an atom 1s not currently bound, the value cell may instead contain

) the function definition of that atom. For FEXPR and EXPR, the REL bit 1s

. on and the value cell points to the list defining the function. For SUER

and FSUBR, the REL bit if off, and the value cell contains the entry

point of the subroutine. Since function names are not usually variable

names, the interpreter normally does very little searching to find function

definitions. Regardless of where the function definition 1s stored, bits

are set 1n the atomhead to indicate what kind of definition it 1s; that 1is

EXPR, FEXPR, SUBR, FSUBR. Thus when the definition 1s sought on the

property list only the correct indicator need be used.
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The property list of an atom 1s a standard Swym list, except that

ther...rst 1s not NIL, but a pointer to the printname of the atom (a

character string atom (type 1)).There is no PNAME indicator. The first word

of the property list 1s the word after the atom's value cell. If there is no

property list, the word following the value cell 1s a pointer to the print-

name with the RST bit on. By convention, the property list always consists

of indicator value pairs; there are no flags as there are in LISP 1.5.

GET, PUTPROP, REMPROP, and EVAL all obey the above conventions for

the value cell and the property list. BINDERY, however, will not bind

a value to an atom having a function definition. See the description

of BINDERY in Appendix D.3.

Plex Type 1 - Strings

This plex type 1llustrates Swym variable length plexes. The plex

format 1s

1 7 7 1 15 1 | |

© a

LENGTH. Number of bytes in string. String is right padded to occupy

, an integral number of full words.

SUBTYPE. This describes further the type of string. Currently, 1t

affects only the print routine. Three subtypes are defined:

0 character string

4 fixed point number

8 hexadecimal number |

Fixed point numbers are restricted to length four. :
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A.2. Stack Structures

The garbage collector must be able to scan the stack collecting

those structures which are currently active. Thus, 1t must be possible

to distinguish pointers from numbers and other random bit patterns. The

high and low order bits of each stack word are used for this purpose and

are 1nterpreted as:

00 pointer (collected)

ol return address (not collected)

10 stack plex (collected by special routine)

Any non-relocatable information which may have a zero low-order bit must

be stored on the stack in a stack plex. A plex head is stored after

the plex on the stack because the garbage collector scans the stack from

latest entry to earliest. The stack plexhead format is:

1 23 It 1

|I2 0
TYPE. Determines what type of plex this 1s. The garbage collector

invokes an appropriate type dependent routine. Two types of stack

plex are implemented: the non-relocatable plex and the binding plex.

Stack Plex Type 0 - non-relocatable

1 : 7 1

LENGTH. This many prior words in the stack are non-relocatable.

They are igngred by the garbage collector.

Stack Plex Type 1 - Binding

This type of plex 1s used by BINDERY to store the old bindings of atoms

9

|



before changing them. The plex must be removed from the stack by UNBIND

for proper stack synchronization. Bindings are stored in atom-value pairs,

thus the stack binding plex looks like-

FFFF }

ev| pair
Stack t -Growth at sal | pair 2

val pair 1

"Type 1 stack plexhead

0

The plexhead format 1s:

1 15 8 7 1

LENGTH number of pairs 1n plex.

RELOC BITS These define the relocatability of the value member of

each pair. Bit 15 corresponds to pair 1. If the bit 1s on,

the value 1s relocatable, that 1s, 1t must be collected. Up

to fifteen pairs with a relocatable value may be stored. The atom

pointers are always assumed to be relocatable.
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Appendix B. OSWYM Macros

An essential factor in the development of the Swym system was the

creation of a collection of macros. In effect, these macros create a

machine suitable for processing Swym data structures. The operands to

most macros are register names, therefore a knowledge of Appendix I,

"Swym Register Assignments", will be useful. For purposes of description,

the macros have been divided into eight classes. An index indicates the

. class to which an individual macro belongs. The classes are

1. LISP - The Basic LISP Operations.

FST, RST, NULL, ATOM, RPLF, EQ

2. Atom - Operations on Atom Fields.

CELL, RPLCEL, HEAD, TAIL, RPLHD

3. Freest - Free Storage Creation.

STRAT, MATOM, SUBR, FSUBR, CHAR, QCHAR, VALUE

4. Stack - Stack Manipulation.

PUSH, POP, POPN, TOP, TOPN, RPLTOP, RPLTOPN

5. Bit - Named-bit Operations.

BIT, SETBIT, RESETB, INVERTB, TESTB

6. Link - Subroutine Linkage.

SUB, RET, CAL, TVMAK, XB

| 7. Control - Flow of Control.

IF, THEN, ELSE, ENDIF, AND, ORX, NOT, BCMAC, GOTO

8. Misc ~- Miscellaneous

CHTBL, SWEAR, INST4, GCPUT, FIXUP

Also in the Swym macro library is a piece of code which must be COPY'ed

during a Swym assembly. Called SWYM, this code 1s described in Appendix M.
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Unless otherwise indicated, the label field of a macro 1s attached

to the first executable instruction.

MACRO INDEX

Number of Positional Keyword
Macro Class Operands Operands

AND Control-7 0

ATOM LISP-1 1 TGP, FGP

- BCMAC Control-7 0 TBR, FBR, TGP, FGO

BIT Bit-5 1

BITTBLMK  .Bit-5 0

CAL Link-6 y P,B,S

CEIL Atom-2 2 —

CHAR Freest-3 SYSLIST

CHTBL Mist-8 SYSLIST

ELSE Control-7 0

ENDIF Control-7 0

EQ LISP-1 9 TGP, FGP

EVCH Freest-3 1

FINDBIT Bit-5 1

FIXUP Misc-8 2

FST LISP1 2 4

FSUBR Freest-3 SYSLIST

GCPUT Misc-8 1

GETNAME Atom-2 1

GETNUM Atom-2 2 4

GTP Control-7 . 1
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Number of Positional Keyword

Macro Class Operands Operands

. HASH Freest-3 1 - |

HEAD Atom-2 2 4 -

IF Control-7 0 -

INSTA Mist-8 5

INVERTB Bit-5 2 ATHD

MAT@M Freest-3 3

N@T Control-7 0

NULL LISP1 1 TGP, FGP

PRX Control-7 0

pgp “Stack-4 1 p

P@PN Stack-4 2 P

PUSH Stack-4 1 P

QCHAR Freest-3 SYSLIST

RESETB Bit-5 2 ATHD

RET Link-6 1 R, E, P, B

RPLCEL Atom-2 2

RPLF LISE-1 2 « -

RPLHD Atom-2 2 «

RPLT#P Stack-4 1 P

: RPLTOPN Stack-4 2 P

RST LISP-1 2 = -

RSTMAK LISP-1 1

SETBIT Bit-5 2 ATHD

STRAT Freest-3 1

SUB Link-6 0 R,E,P,B
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Number of Positional Keyword

Macro Class Operands Operands

SUBR Freest-3 SYSLIST -

SWEAR Misc-8 1 -

TAIL Atom-2 2 -

TESTB Bit-5 2 TGP, FGP, ATHD

THEN Control-7 0 -

TPP Stack-4 1 P

~ TPPN Stack-4 2 P
TVMAK Link-6 SYSLIST =

VALUE Freest-3 2 -

XB Link-6 1 -

NOTES:

1. The number following class name 1s the section number of that class

in this appendix.

2. —-. Both arguments must be register names. If this macro has one

argument, 1t computes the function of that argument and assigns the

value back to that argument, If a second argument 1s supplied, the

value 1s assigned to this second argument and the first argument

1s unaffected.

3. «. Always has two arguments. Value of second 1s stored in location

referred to by first.

4, SYSLIST. The &SYSLIST(i) feature is used to reference up to 2%

arguments.
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B.1l. LISP - The Basic LISP Operations

FST, RST, ATM, NULL, EQ, RPLF, RSTMAK

FST a,b. (This is theLISP 1.5 CAR). a and b must be register

names. FST finds the first element of the list pointed at by a.

If b is present, the result 1s placed in register b, otherwise, the

result is placed back in register a. Assembles as either

L a,0(a) or IL Db,0(a).

RST a,b. (This 1s theLISP 1.5 CDR). a and b must be register

names. RST finds the list formed by deleting the first element

from the list pointed at by the register a. The result 1s placed

in b 1f present, otherwise in a. Assembles as either BAL L,RSTxx

where xx is a or LR b,a; BAL L,RSTxx where xx 1s b. The

routine RSTxx 1s created by the macro RSTMAK. In the current swym

system there exist RSTAl, RSTA2, RSTA3, RSTT, and RSTTT; these are

the only registers whose RST can be taken. Note that if b 1s

specified, it must be among Al, A2, A3, T, TT while a need not be.

If b is not specified, a must be among that restricted set.

ATOM a, TGP=tgo, FGP=fgo. This 1s a predicate macro; see section 7

of this Appendix, especially the description of BCMAC. a must be

a register name; 1ts contents are tested to see 1f they point at

a plex (or atom). The code generated 1is

LA TT,2

NR TT,a

BCMAC TBR=BM, FBR=BZ,TGf=tgo, FGf=fgo

Note that AT@M destroys the contents of register TT.
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NULL a, TGP=tgo, FGP=fgo. This 1s a predicate macro; see section 7 of

this Appendix, especlally the description of BCMAC. a must be a

register name; 1ts contents are tested to see 1f they point at the

atom NIL. The code generated 1s

CR &,N

BCMAC TBR=BE,FBR=BNE, TGf=tgo, FGf=fgo

EQ a,b,TGP=tgo,FGP=fgo. This is a predicate macro; see section 7 of

] this appendix, especially the description of BCMAC. a and b must

be register names. They are tested to see if they both point at

the same identical entity. The code generated is

CR a,b

BCMAC TBR=BE, FBR=BNE, TGf=tgo, FGO=fgo

RPLF a,b. (This 1s the LISP 1.5 RPLACA). a and b must be register

names. The list structure pointed at by a 1s modified so that

the first element of the list 1s the structure currently pointed

at by b. Neither a nor b is changed. The code is ST b,0(a).

RSTMAK a. This macro generates the routine needed by the RST macro.

Note that this routine must appear in an addressable section when

a RST calls it. The code generated 1s

RSTa ™  7(a) X '1! is there a RST bit?

Bp  RSTLDa yes, branch

BXH a,C4,0(L) n o, diner ptr and return

RSTLDa L a, h(a) load list cont ptr

BCTR a,L remove RST bit and return
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B.2. Atom- Operations on Atom Fields

HEAD, RPLHD, TAIL, CELL, RPLCELL; GETNAME, GETNUM

HEAD a,b. a and b must be register names. Accesses the plexhead

of the atom pointed at by a. If b 1s present result goes 1n b,

otherwise into a. Result 1s a bit pattern and 1s not relocatable.

a may be a pointer at any plex (not just type 0). Assembles as

L a,6(a2) or 1 b,6(a).

RPLHD a,b. a and b must be register names. a must point at a plex.

b should contain a bit pattern which 1s a valid plexhead. The

result 1s that the plexhead pointed at by a 1s replaced by the

contents of b. The contents of a and b are not changed. Assembles

as ST b,6(a).

TATL a,ba and b must be register names. a must point at a type

0 atom (not checked). The result is a pointer to the property

list of the atom. If b 1s specified the property list 1s put in b,

otherwise a. Assembles as LA a,10(a); RST a or LA b,10(a);

RST b. Note that the restriction to RST applies to the last argument

of TAIL.

CELL a,b. a and b must be register names. a must point at type 0

atom (not checked). The result 1s the contents of the value cell

of a (not a pointer to the value cell). If b 1s specified, the

value cell 1s placed in b, otherwise 1n a. Assembles as

IL a,10(a) or L b,10(b).
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RPLCEL a,b. a and b must be register names. a must point to a type

0 atom (not checked). The value cell of the atom 1s replaced by

the contents of b. Assembles as ST b,10(a).

GETNAME a,b. a and b must be register names. a must point at type 0

atom (not checked). The result 1s a pointer to the printname of

the atom. If b 1s specified, 1t receives the result, otherwise a

“receives the result. Assembles as

LA a,lo(a) or ILA b,l0(a)

RST a or RST b

ATPM a,FGO=%-10 or AT@M D,FGP=%-10

GETNUM a,b. a and bp must be register names. a must point at a

type 1 plex of subtype 4, that 1s, a string which 1s a fixed point

number. This 1s not checked. The result is the value of the fixed

point number. If b is specified the result replacesb, otherwise

a. Assembles as L a,10(a) or L b,10(a).

B.3. Freest =~ Free Storage Creation

VALUE, SUBR, FSUBR, CHAR, QCHAR; MATgM, STRAT, HASH, EVCH

There are three levels of free storage creation macros. The highest

level macros create atoms with properties required for the interpreter:

VALUE, SUBR, FSUBR, CHAR, and QCHAR. These macros call on MATPM to

actually create an atom. The third level macros are called by MATEM

as utilities: HASH, EVCH, and STRAT,

In addition to assembling the structure required for an individual

atom, these macros create the object list and the character objects list,
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These lists are the values of @BLIST and CHAR@BS, respectively, as described

in Appendix H.

The macro MATPM takes care of creating the @BLIST. Each time an atom

is created using MAT@M, the print name is hashed (using the HASH macro),

and a bucket link is created. Created labels are used to link the members

of a bucket together. These labels have the form

BUC xx L nn

| where xx 1s the hash number and nn is the number of the items in the

- bracket. Thus the oblist itself 1s

@BLIST DC  A(BUCLLO)

DC A(BUC2LO)

DC A( BUC64LO)

DC A(NIL+RBIT)

When an atom 1s created, two words are created to link the atom in the

porper bucket. They are

BUCxxIn DC A (atom)

DC A(BUCxxLmt+RBIT)

where xx 1s the bucket number, n 1s the number of items already in this

bucket, m 1s ntl, and A(atom) 1s a pointer at the atom. RBIT has the

value 1 and 1s used to put in the BRST bit where required.

The initial contents of free storage are discussed in Appendix H.

nm VALUE pname,val. The structure for one atom 1s created. The

label nm 1s given the value by which the atom should be addressed.

The printname is pname. The value cell 1s a pointer to_val. The

plexhead 1s marked to indicate that there 1s a quantity in the

99



value cell and that it 1s relocatable. The assembly is performed

by calling

nm MAT@M pname, RELB+VALB,A(val)

REIB and VALB are equated to the bits REL and VAL (see Appendix A.l.b).

SUBR pnamel, pname2,..., pnamen. An atom 1s created for each pname

in the list. The printname 1s pname and the value cell 1s the

B kN address of the SUBR with that name. The atom head 1s marked to

indicate that the atom has a function definition, 1t 1s a SUBR,

and the address of the routine is in the value cell. The pname

1s declared EXTRN to communicate with the assembly in which the

SUBR 1s defined. For each pnameon the list, the code assembled 1s:

EXTERN pname

MAT@M pname,SUBRB,A(pname)

SUBRB 1s equated to 1, the function definition code for SUBR's. |

Any label field on SUBR 1s ignored.

FSUBR pnamel, pname2,..., pnamen. Same as SUBR, but FSUBRB 1s used

instead of SUBRB.

| CHAR charl, char2,..., charn. An atom 1s created for each character

in the list of characters. The print name is just the character.

The value cell is set to point at the 'UNBJUND' error atom. The

plexhead bits are set to indicate that the value cell 1s relocatable

and has a value. In addition, the appropriate entry in CHARgBS is

set to point to the created character atom. Each atom 1s created by

MATA chari

If there 1s a label on the CHAR it will be equated to the atom for

the first character on the list.
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The following characters are valid arguments to CHAR:

A-Z, 0-9, blank, and these special characters

+ | $$. / % EE
note chee 3 prints as -, while.¢ il print as blank.

QCHAR. Same as CHAR, but expects arguments to be quoted: viz.

rr, Dt, and t,'.

nm MAT@M pnm, celbits, plist. Creates an atom with the print pmm.

The label nm 1s equated to the offset address of the atom's blockhead.

If celbits and plist are not specified, the atom head 1s marked to

indicate relocatable binding and the value cell 1s a pointer at the

special atom 'UNBPUND'. If celbits are specified, that quantity is

assembled (ALl (celbits)) as the first byte of the atom head. The

rest of the atom head is 010000; indicating a normal type 0 atom.

The members of plist-which may be a 360 assembler sublist - are

assembled following the atom head. Thus the first element of plist

1s the contents of the atom's cell. Other elements of plist must

be in indicator-value pairs for the property list. After the property

. list, a pointer to the printname and the printname itself are

assembled. The code assembled for missing celbits and plist is

BUCxxIn DC A(* + 8 - AT) put atom in bucket

DC A( BUCxxLm+RBIT) link to mxt bucket item

nm EQU  *-AT equate name to atom ptr

DC AL1(RELB+VAIB)X '010000" assemble atom head

DC A(UNB@UND) value cell

DC A(%+4-AT + RBIT) null prop list is ptr

STRAT ‘'pnm?'. print name
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where

XX 1s hash code of _pum,

n 1s number of prior entries 1n bucket xx,

m is ntl, :

AT is atom offset (6),

RBIT is rst bit (1),

RELB+VALB put 1n relocatable and variable-bound bits.

The code generated with celbits and plist 1s the same except the

atom head 1s

DC AL1(celbits),X"'010000"

and the elements of plist precede DC A(*+4-AT+RBIT).

nm STRAT 'string'. Creates a string atom (type 1). The atom head 1s

DC X'0003',AL2(2¥L'string)

which indicates character string atom. Following words are four

character at a time chunks of string. mm 1s equated to the offset

location of the string atom. That 1s, the first assembled instruction

would be mm EQU *-AT. String atoms are not placed on the @BLIST

or CHAROPS.

BASH string. HASH evaluates the hash function for the sfring:h e

result is left in an assembly time global variable (GBIA &HVAL)

whose value can be used by a calling macro. BASH calls on EVCH

three times to evaluate the three character values needed by the

hash function (first, third, and last).
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EVCH ch. Unbelievably with 360 assembler, there is no simple way to

determine from a character the number corresponding to that

character's EBCDIC code. EVCH performs this feat by a large test:

chval = if ch = 'A' then 193

else if ch = 'B' then 19%

else_if ch = 'C' then 195

else if ch = 'Z' then 233

else_if ch = '0' then 240

else

else error ('illegal character - evchr')

The value is left in a global variable (GBLA &CHVAL) whose value

can be used by a calling macro, for instance HASH. The following

characters are valid to EVCH: A-Z, 0-9, blank, comma, >, ), period,
oO

<, (, [s *5 . 5% 3, *y 55 Ty = 6 z, _5 1, i, #, 8, = ol
B.4. Stack - Stack Manipulation

PUSH, PPP, PPPN, TPP, T@PN, RPLT@P, RPLTEPN

The stack 1s allocated in units of one word. The basic macros are

PUSH and PPP. The former puts one word on the stack, the latter removes

a word from the stack. A routine must do exactly as many PUSH'es as

PPP's unless very special care is taken.

Swym stack macros use negative stack growth. That 1s, the first

stack location allocated 1s the highest address and successive words are

in successively lower locations. This means that since the stack pointer

10%



|

points at the last entry on the stack, all recent entries to the stack

can be addressed with simple displacement addressing. Thus a routine

may do three PUSH'es to allocate three words of temporary storage; then

1t can address all three locations. -

A Swym stack pointer must be in a register when the stack 1s referenced

by a stack macro. The standard Swym stack 1s always pointed at by register

P. All stack macros have a keyword parameter "P=". If P= is omitted,

P=P 1s assumed.

B Currently, no check is made for going off either end of a stack.

Several techniques are possible to ensure that other storage 1s not

destroyed or that too many PPP's are not executed. The simplest is to

generate code to check the stack pointer at each PUSH and PPP. This is

time consuming and inelegant. An elegant method would be to use a

PDP-6 which has hardware PUSH and PPP with built-in checking. (Unfortun-

ately, the 360 does not have PDP-6 mode). It is proposed for Swym that

the stack be first in the user partition. When the stack 1s exhausted, a

protection interrupt will terminate the computation.

All stack macros except PUSH have an 'N' form, indicated by N at the

end of their name. The first argument to the N-form 1s a number in the

range 1-1024. The action of the macro takes place but rather than

affecting the top of the stack, 1t affects the Nth element of the stack.

The latest entry on the stack is N=l. Thus xxxN 1l,y 1s equlvalent

to xxx vy although different code may be generated.

PUSH r,P=p. r may be the name of a register or a sublist of register

names. If the former, as in

PUSH Al
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then the stack pointer (P since none other is indicated by Pe) is

incremented and the contents of Al are stored on the new top of the

stack. If a sublist 1s coded

PUSH (Al, A2, Al, T, R4)

then the required number of locations are allocated on the stack

and the named registers are placed on the stack. The last named

register is at the top of the stack. The first named register 1s

the first placed in the stack. Note that in the example, Al 1s

placed in the stack twice. A PAP TT immediately following the example

will put the old contents of A into TT. The code generated for

each element of the sublist r 1s

SR p,Ch
ST r,0(p)

where C4 is a register whose contents are always kh.

PP r,P=p. Like PUSH, r may be simple or a sublist. If simple,

then the top element of the stack 1s placed in the named register

and the stack pointer is decremented. If a sublist,

PPP (Al, A2, Al, T, A),

’ then the registers are filled in the reverse order from PUSH. That

1s, the right thing happens and this example will exactly restore

the contents of the registers as stored by

PUSH (Al, A2, Al, T, A4)

The code generated for each element of the sublist r 1s

L 4,0(p)

AR p,Ch

where C4 is a register whose contents are always 4.
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PPN n,r,P=p. The nth element of the push down list p is popped into

register r. Also the stacked is popped so that the current (+1)?

element of the push down list 1s the new first element. The current

top of the stack is n=l. The code generated 1s:

L x,4%(n-1)(p)

LA p,4*n(p)

TPP r,P=p. The first element of push down list p 1s put 1n register

_ r. The code generated 1s

L r,0(p

TPPN n,r,P=p. The nth element of push down list p 1s put 1n register

r. The code generated 1s

L r,4*(n-1) (p)

RPLTYP r,P=p. The first element of push down list p 1s replaced by

the contents of register r. The code generated

ST r,0(p)

RPLT@PN n,r,P=p. The n°" element of push down list p 1s replaced by

: the contents of register r. The code generated 1s

ST r,4*(n-1)(p)
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B.5. Bit - Named-Bit Operations

BIT, SETBIT, RESETB, INVERTB, TESTB; BITTBLMK, FINDBIT

nm BIT Dbitno. Using this macro defines mm for all the other bit

macros. mm 1s defined as being the bitno'" bit of a word. Because
all the other functions use SI instructions both the bit within a

byte and the byte within a word must be stored for each BIT declared.

The former 1s stored by equating mm to

. BITTBL(bitno-bitno/8*8+1)

where BITTBL has the quantities

x'80!, x'ho', Xx'20', x'lO*, X'8*, X'4*, X'2', X'1' .

The byte within a word 1s stored 1n an assembly time array

(GBLA &BITS (64)). It is computed byAbitng/brresponding

array (GBLC &BITNAMS(64)) contains the name of the bit so table

lookup can be performed.

SETBIT r,bit,ATHD=T. This macro sets a bit in a word in memory. I

must be the name of a register. The register will be assumed to

point to the required word. bit must be the name of a bit declared

with the BIT macro. If the ATHD=T parameter 1s present, the pointer

in r is assumed to point at a plexhead and the pointer is suitably

. adjusted. The code generated is @I bl(z),bit or @I bl+AT(r),

bit. In either case, FINDBIT 1s used to find the value Dbl, the

byte-within-the-word for Dit.

RESETB r,bit, ATHD=T. Same as SEIBIT but turns the bit off by using

NI bl(r),X'FF'-bit or NI DbL+AT(r),X'FF'-bit.
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INVERTB r,bit,ATHD=T. Same as SEIBIT but complements the bit by .

using XI bl(r),bit or XI bl+AT(r),bit.

TESTB r,bit,ATHD=T,TGO=tgo,FGO=fgo. This 1s a predicate macro;

see section 7 and especially the BCMAC macro. The word pointed at

by register r is tested to see if bit HWif isioh. is control

goes to label ®g0, if nat contrdl goes tto label go. r TGP

. or FG or both may be specified. The omitted condition will simply

drop through. Between IF and THEN, both TG and FG may be omitted.

If ATHD=T 1s specified, r will be assumed to point at a plexhead

and the appropriate offset will be assembled. The code assembled

1s elther ~

TM bl(z),bit

BCMAC TBR=B@, FBR=BZ, TGf=tgo, FGf=fgo

or TM DblL+AT(r),bit

BCMAC TBR=B@, FBR=BZ,TGf=tgo, FGf=fgo

The macro FINDBIT 1s used to compute bl, the byte-within-the-word

for bit. \

BITTBLMJS. This macro 1s called exactly once at the beginning of an

assembly to create the array BITTBL used by the macro BIT. It

stores these character strings into the elements of BITTBL:

x'8o!', x'h4o', x'20', Xx'10',X'8, X'L4', X'2', and X'1' .

The name field and any arguments are ignored. No code 1s assembled.

(BITTBIMK is coded in the €8SW¥M control section. See Appendix M.)

FINDBIT bit. This macro finds the Dbyte-within-the-field for the

bit named bit by a BIT declaration. The result 1s left in a global
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variable (GBLA &BITL@C) for use by the calling macro (SETBIT,

RESETB, INVERTB, or TESTB). The name bit is looked up in the array

BITNAMS created by BIT. Corresponding to the entry for bit 1s an

entry in the array BITS giving the correct byte-within-the-field.

No code 1s assembled.

B.o. Link - Subroutine Linkage

SUB, RET, CAL, TVMAK, XB

Subroutine linkage occurs at three points: the calling point, the

entry point, and the exit point. Swym has a macro for each point. Note

that for a given routine the entry point and exit point occur within that

routine, but the calling point occurs wherever some routine calls that

given routine.

The basis of Swym subroutine linkage 1s a table of transfer vectors

which 1s always addressable via register S. This table contains the

address of each routine which can be called by any routine 1n another

module or by compiled functions. Entries in the table are created by the

TVMAK macro. TVMAK may also be used within a module to address routines

used only within that module.

Two conventions are assumed for subroutines. First, registers must

be saved by the calling program 1f 1t expects them to be saved. Second,

the entry point to a routine 1s the first byte of code and a base register

will contain that address during execution of the routine.

Three standard registers are vital to subroutine linkage:

. S Swym base, base for transfer vectors
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B base for all routines; must be loaded by calling routine

P push down list pointer.

nm SUB R=N@, E=Np, P=p, B=b. This macro assembles subroutine entry

code. The parameters supplied should be i1dentidal to the parameters

supplied for any corresponding RET macros. SUB must occur exactly

once and then only at the beginning of the subroutine it defines.

. The normal case has no parameters coded. If R=Np is coded, the

routine will not be recursive; that is, 1t will not push its return

address onto the stack. If Ef is coded, the subroutine name nm

will not be ENTRY'ed. In this case, no other module may refer to

the routine and a TVMAK for it must be included in its own module.

The P= parameter determines onto which push down list the return

address will be pushed. p must be a register name. If omitted,

the standard push down list pointed at by register P is used. b

must be a register name. It 1s the base register declared for

this routine. If omitted the standard base register B 1s assumed.

The standard case of no parameters generates:

USING nm,b

DC C'nm' supplied for debugging

ENTRY nm

nm BCTR L,0O make odd so GC ignores

PUSH L, P=p

If Rlp is coded, the last two lines are replaced by nm DS OH.

RET nm, R=N@,E=N@, P=p, B=b, This macro assembles subroutine exit code.

The mm parameter must be the name on the nearest preceding SUB.

The other parameters must be the same as for that SUB. IfRp is
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coded, the pushdown list 1s not popped and the return address 1is

assumed to be 1n register L. p 1s the register name of the push

down list pointer; if Pep 1s omitted, the standard push down pointer

register pointer P 1s assumed. b 1s assumed to be the name of the

base register of the current routine; 1f omitted, the standard base

register B 1s assumed. The standard case 1s with onlymm specified.

The code assembled 1is

POP Db,P=p

: B 1(b)

If Ref is coded, the code is

BRL

CAL nm, regs,P=p,B=b,S=YES. This macro assembles subroutine calling

code. nm 1s the name of the routine to be called. It is also

possible to specify registers to be saved before the call and

restored afterward. The operand regs may be any name or sublist

acceptable to the PUSH and POP macros. p 1s the push down pointer

for the register saving; normally P 1s assumed. b 1s the name of

the base register for the routine mm and for the current routine

(last SUB). If B=b 1s omitted, the standard base register B

1s assumed. If S=YES 1s coded, no base register 1s loaded after

“return, the assumption being that the current routine 1s addressable

via some preserved register. With 8= omitted, the code generated

is

PUSH regs,P=p 1f regs specified

L  Dyfmm

~~ BAIR IL,b
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L  by¥self

POP regs, Pep | 1f regs specified

fmm is the label of the address'of routine mm in the transfer

vector table, #self 1s the label of the address constant for the

current routine. The name self was the name on the most recent

SUB macro.

TVMAK mml, nm2, . . ., nm. This macro creates entries in the transfer

vector table. One entry 1s created for each element in the list.

. The label on the entry is created by concatenating a "#' on the

front of the first seven characters of nmi. If nmi 1s not defined

in the current assembly, it is EXTRN'ed. This decision is made

on the basis of the type attribute of nmi. Care must be taken

that nmi 1s not the label on EQU. (That pseudo-op gives its label

the type attribute 'U'). The code generated for each entry is

EXTRN name 1f required

$name DC A(name)

XB rtn,label. This macro 1s provided for jumping into the middle

of some other routine. Because this 1s considered evil, XB

| generates an MNOTE statement which goes into the error listing.

XB does mat modify the stack; this.must be accomplished by RET

in rtn. The second argument may be omitted and the code generated

1S:

L B, #rtn

B 8(B)

#rtn is the label of the transfer table entry for rtn.

Execution of rtn begins just after its SUB macro (which must not

specify R=N@). -
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If the second argument is specified, label must appear somewhere

in rtn and rtn must be assembled in the current module. Control is

transferred to label in rtn by the code:

L B, #rtn

B lebel-rtn(B)

B.7. Control « Flow of Control

IF, THEN, ELSE, ENDIF; AND, @RX, N@T; BCMAC, GfTg

There are three groups of control macros. IF, TEEN, ELSE, and

ENDIF must occur in that sequence; they avoid many user generated labels,

AND, @RX, and NPT may occur only between IF and THEN. BCMAC and GgTg

generate branch instruction; the former conditional, the latter

unconditional.

The macros in the first two groups ignore any arguments. Instead

they affect the flow of control to the code between them. The primary

purpose of these macros clarify what code 1s executed under what

conditions.

) The key to the flexibility of the IF-THEN-ELSE 1s BCMAC and the

concept of predicate macros. A predicate macro calls on BCMAC to

assemble a conditional branch to a label depending on the context.

Predicate macros need not supply branch labels 1f they occur

between IF and THEN because BCMAC uses labels generated by the preceding

IF. Currently, the predicate macros are AT#M, NULL, EQ, and TESTB.

IF, THEN, ELSE, ENDIF. There are two forms: IF-THEN-ENDIF and

IF-TEEN-EISE-ENDIF. The expression IF-THEN-ELSE will mean-both.
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The first form may be represented

IF

predicate-part

THEN

true-part

ENDIF

The code generated 1s

’ predicate-part

. THENx EQU * (if PRX occured in predicate-part)

true-part

ELSEy EQU *

where Xx and y are unique four digit numbers, The IF macro generates
the labels THENx and ELSEy and stores them on an assembly-time global

stack. Predicate macros in the predicate-part simply test for the

falsehood of the predicate and branchte the ELSEy on top of the stack.

fRX and NfTin the predicate-part modify the action of BCMAC so that

the desired result 1s accomplished (see the descriptions of those

macros).

. The second form may be represented

IF

predicate-part

THEN

true-part

ELSE

false-part

ENDIF
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The code generated 1s

predicate-part

THENx EQU * appears only if PRX is in predicatepart

true-part }

B DONE=

ELSEy EQU *

false-part

DONEz EQU *

where x, y, and z are unique four digit numbers. The label DONEz

1s created by the EISE macro and stored atop the label stack.

IF-THEN-EISE's are permitted to nest (up to 60 levels). That is,

they may appear in either the true-part or the false-part. But

IF-THEN-ELSE 1s not permitted in the predicate-part.

AND, @RX, N@T. The second group of flow of control macros may appear

only in a predicate-part. They control the code generation 1in

BCMAC.

N@T. This macro reverses the sense of any BCMAC occurring

. before the next AND, @RX, NET, or THEN. Two N@T's cancel eadh other.

While NIT is in force, BCMAC makes tests for true and branches to the

ELSEy on top of the label stack.

PRX (not PR because IBM used it). This macro makes tests parallel.

It assembles the code

B THENx

ELSEy EQU *
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Also it turns off any outstanding N@T, sets an indicator so that

THENx EQU * will appear, and creates an ELSEw (on the IF

label stack) for subsequent false tests to branch to.

AND. The only action by AND 1s to turn off any outstanding

NPT. But use of AND makes explicit the fact that all sequential

tests must be met before the true-part 1s executed.

BCMAC TBR=tbr,FBR=fbr,TGf=tgo, FGf=fgo. This macro assembles one

} branch conditional instruction. If either TGP or ie (or both)

1s specified, BCMAC assembles a branch to_tgo,fgo or both. The

operator for tgo is Bbr; the opewator for fgo.1s fbr. h fbr

and tbr are assumed to exist. The code generated 1s

tbr tgo 1f only tgo exists

fbr fgo 1f only fgo exists

tbr tgo 1f both tgo and fgo exist

a
If neithertgo nor fgo exists, the BCMAC must occur 1n the predicate-

part of an IF-THEN-ELSE. If NAT is not in force, the code generated

1s

If NfT is in force, the code generated is

tbr ELSEx

Grp label. This macro assembles into a branch to label:

B label
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B.8. Misc - Miscellaneous

CHTBL, SWEAR, INST4, GCPUT, FIXUP

CHTBL loc{,what,where} ... . ( . . . indicates that ', what, where

may be repeated up to 127 times). This macro 1s intended for

creating character tables for the translate instruction (TR) and

the translate and test instruction (TRT). As such, loc1s assumed

to be the address of a table. CHTBL then fRG's into that table

and puts values at the required places. For example, a TRT to

scan for blanks might be written

BLTBL DC 256X100"

#RG BLTBL + C''

DC Xtol!

This scheme is documentary in that the @RG tells exactly where

something goes, while the DC tells what that something 1s.

Using CHTBL, the example might be written

BLTBL DC 256X100"

CHTBL BLTBL,1,C*'

| The name field 1s 1gnored in call on CHIBL.

The loc field may be any expression. It will be assumed to be

the beginning of a table 25 bytes long. The last instruction

generated 1s an

PRG loct+256

That what field may be either a decimal number or an argument for

DC. In the first case, the macro generates DC FL1(what); in

the second case, DC what. The cases are distinguished because

a decimal number must be three or less characters and the general

DC argument must be four or more.
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The where field may be a (360 assembler) sub-list. Each element

of the sub-list may be either a single character or a non-relocatable

term. The latter must be more than one character. In the first

case the macro generates :

PRG ~~ loc+C'where'

While the non-relocatable term generates

#RG Jloctwhere

The following example illustrates all of the above

- HEXTBL DC 256X200!

CHTBL HEXTBL,4,(A,B),4x'4*,c, 10A11(8),C'0O!

wlll generate

HEXTBL DC 256X100"

RG  HEXTBIAC'A!

DC FL1'4!

PRG  HEXTBI+C'B!'

DC FL1'4?

§RG HEXTBLA4C'C!

DC Lxeyt

RG  HEXTBIAC'O'

DC 10AL1(8)

#RG  HEXTBL+256

Note that using a sub-list for where can lead to large object

module decks. (Each PRG forces a new output card image).

Note also that good documentation requires that each what - where

pair go on a separate continuation card.
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SWEAR error-code. This macro generates a call on the STUTTER internal

routine: SWERROR. The error-code must be two characters. These

characters will be supplied as a character string to the error

routine: ERROR. The code generated is

LH L,%*+8 load error-code in REG L

B SWERRZR go to system error routine

DC C'error-code'

Note that SWERRR is always addressable via register 8S.

INST4 op, r,rand. The purpose of this macro 1s to avoid the overly

cautious assembler's "ALIGNMENT ERROR" message. This is done

by assembling first the OP and Rl fields and then the Bl-D1 field.

The R2 field can not be used with this macro. Two forms are

possible: r present

°p Ir, ©

PRG *-2

DC S(rand)

r omitted

op O

PRG *-2

DC  S(rand)

GCPUT type. . This 1s a special purpose macro for writing the garbage

collector. It is called to place a word in new core. For further

discussion see the routine GCPUI in Appendix E. The code generated

depends on type.
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type omitted

BAL L,GCPUT

type S T

NR TT, NgTML

BALL L,GCPUTFUL

type =FULL

BAL. L,GCPUTFUL

If some other type 1s coded, GCPUT assumes 'type omitted', but generates an

error message.

FIXUP pt,new. This 1s a special purpose macro for the garbage

collector. It makes an entry in the fixup table. pt and new

must be register names. Register pt contains the address of a

word 1n old core which will eventually contain a correct new core

address. new contains a pointer to new core showing where to

put the eventual contents of pt. Register FIXPTR points at the

fixup table; so the code generated 1is:

ST pt, O( FIXPIR)

ST new, 4(FIXPIR)

IA  FIXPTR, 8(FIXPIR)
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Appendix C. READ Routines and Syntax

The READ routines convert a character string on an input medium into

an internal plex structure. The syntax is similar to the LISP l.5> syntax.

The major innovation 1s the super-parenthesis. The parser guarantees that

all reqular parentheses within a pair of super-parentheses will match.

. The syntax is described in section C.1l. A second section describes the

internal routines. (External routines are described in Appendix F.) Section

¢.3 details the variables in CSSWYM used by the READ routines. Flow charts

of the main READ routines are in the last section. All error codes are

collected in Appendix J.

c.l. The Syntax

Input expressions are punched free-form in the first 71 columns of the

input cards. Column 72 1s used for the continuation as described 1n the

paragraph on (string). Columns 73-80 are ignored. Column 1 of one card

immediately follows column 71 of the preceeding card. Comments may be

included; the characters'_/' are ignored and terminate scanning of a card.

* A card with under bar - slash-in the first two columns 1s printed, but

otherwise ignored. Allcharacters must be in the IBM 029 character code.

The BNF of the syntax appears in figure C.l1. The highest non-terminal 1s

the s-expression, abbreviated (sexpr). The following paragraphs specify

the semantics of selected syntactic types.

(super list). The less-than and greater-than characters bracket a

(super list). When a greater-than 1s reached before all subordinate

structures are terminated, parentheses are created as required to
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(sexpr) se= (list) (super list) | (atom)

(list) ::= ( ) | ( {(sexpr) (list tail)

(list tail) ::= (sexpr) ) |. (sexpr) )

(sexpr ) (list tail)

(super list) =< > | < (sexpr) (super list tail)

(super list tail) ::= (sexpr)> | . (sexpr) > |

(sexpr) (super list tail)

(atom) ::= (symbol) | (string)

(symbol) ::= (letter) | (symbol) (alpha-num) |

@ (char) | (symbol) @ (char)

(string) ::= (num string) | - {num string) |

Zz ' (char string) | x (hex string) '

W' (bit string)

(mm string) ::= (num) | (num string) (num)

(num) ::= oli|2|3|4]5]6]|718|9

(char string) ::= (char) |v] (char string) (char)

(char string) (char) "!

(hex string) ::= (hex digit) | (hex string) (hex digit)

(hex digit) ::= (blank) | (num) | (hex letter)

(hex letter) ::= A|B|c|D|E|F

(bit string) ::= ol1lo (bitstring) | 1 (bit string)

(blank) (bitstring} | (bitstring) (blank)
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(other letters) ::= G|H|I|J|k|z|M|w|o|P|a|r|s|T|UlviW]|x|Y|Z

(letter) ::= (hex letter) | (other letters)

(alpha-nun) ::= (hex digit) | (other letters)

| (char)= (alpha-mm) | . [| (|) [>| <]ef-|+]}| $];]
1/012 lAlel®8*]=1,]| (lan

& | _
. /
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close all structures When all internal structures are closed and

an extra right parentiesis 1s encountered -- where a greater-than 1s

expected -- characters are discarded until the matching greater-than

is found, As will be seen from the flow chart, whole structures are

discarded, so that the matching greater-than 1s found rather than

just the next greater-than, (For example, '<)A<AOX()>' is parsed as

© 'NIL').

(1ist tail). Note that a degenerate form of the {1ist) is the LISP 1.5

dotted pair, This syntax reflects the “general s-expression’ form as

supported by most LISP read routines,

(symbol) . This is parsed into a type 0 atom, If a type 0 atom with the

same string exists on the OBLIST, a pointer to that existing atom 1s

returned; otherwise, a new atom is created, Note that '@' preceding

any character causes that character to be treated as a letter, Only

one character, the seoond, is stored in the ereated print name, For

example, the (sexpr) @ returns a pointer to the symbol atom with the

one character print name '@'. This atom already exists.

(string). Arbitrary string atoms may be input,, Both (hex string)'s and

{bit string)'s are converted into hex string type string atoms intern-

ally, Numbers are currently always four bytes, but the other two

classes may be up to 212 bytes. Hex strings are filled with zeroes

from the right to make an integral number of' bytes. Floating point

numbers are not defined so there 1s no dot ambiguity problem; however,

this problem could be solved with Flee. ts
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Any string within quotation marks may be continued from one

card to the next. Column one of the second card immediately follows

column 71 of the preceding card. In this case, column 72 must contain

a dash ('-'). Otherwise, column 72 must be blank. This convention

was adopted from CfBL in order to attack the quote mismatch recovery

problem. This problem occurs 1f there 1s a missing or extra quote

mark. Thereafter, everything which looks like it should be in quotes 1s

outside and vice-versa. There 1s sufficient redundancy in the Stutter

syntax for recovery at some later point. Because there was insufficient

experience with thelanguage to have a feeling for reasonable recovery

heuristics, the mismatched quote problem was not attacked other than to

specify what should be an adequate syntax.

(blank) . The general rule 1s that blanks may appear where they do no

harm. They are only required to separate the strings representing

symbol atoms. Blanks may appear between any two elements of the (list),

(list tail), (super list), and (super list tail). More than one

blank will be treated as a single blank except inside a (char string).

Blanks may also appear within the quotes for (hex string) and (bit

string).

(char) .: In flow charts, two special characters are used: '\' represents

a single blank; 'yq' represents underbar.
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C.2. Internal Routines

The routines described in this section are service routines available

only within the read package. The routines available through the stutter

interpreter are described in Appendix F. The entire CSREAD control section

is reentrant. All temporary storage is in CSSWYM,

All read routines make use of three global bytes: RDSTAT, RDCHAR, and

RDCLASS . These are described in Section C.3.

The get-a-character routine, GETCH, puts a single character into

~ RDCHAR and puts the class of that character into RDCLASS. The class of a

character is a number chosen to simplify distinctions like "Is this

character possibly the first character of an atom?" The classes and their

members are in figure C.2. RDCHAR can be set and tested by a STUTTER

program with the functions STIVCCH and IVCCH. This can be important

because the general rule 1s that the read routines interpret the

character in RDCHAR and then read another character for the next routine

to interpret.

The RDSTAT byte 1s composed of eight status bits. They are used to

communicate between the various routines. One of these bits may be manip-

- ulated by a stutter program as an internal variable (STIVGMO, IVQMO). The

defined bits are described 1n figure C.37.

The symbol NOCARDS also bears explanation. It 1s the address branched

to when the input file is exhausted. The routine there provides for

orderly termination of the job.

The remainder of this section 1s a discussion of each of the internal

read routines:
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Figure C.2

class members _ comments

0 0,1 ’ | bit string
ho, 2,3,4,5,6,7 octal string

8 8,9 number

12 A,B,C,D,E,F hex string

16 GH ...1Z72,0 alphanumeric

20 h -1 atom start

24 (,< list start

28 blank

32 . dot

36 ) > list terminator

40 all other keypunch characters

All non-keypunch characters are in class 255. They cause an error and

are converted to blank before being processed.
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Figure C.J

seton setoff interpretation

QUOMON QUOMOFF on: GETCH passes each character in

turn. '-' must appear in column

72.

off: 1f last char was blank., GETCH scans

for non-blank. Column 72 must be

blank. '_/' in two columns means

1gnore those characters and the

rest of the card,

NEGNON ) NEGNOFF on: detected -{num string) construct

(used in RDAT)

GJFND GJNFND on: GETOBJ found the symbol atom

already on the OBLIST, RDAT

releases any new storage

allocated,

SKIPMON SKTPMOFF on: skipping to find right super-

paren. Used by RDSE when skipp-

ing to avoid recursive RO error

messages.

A bit 1s set on with the instruction

01 RDSTAT, seton

The same bit 1s set off with the instruction

NI RDSTAT, setoff
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error routines

RDERR, RDERRCNT

character fetching

GETCH )

string construction

| PBOPEN, PUTBYTE, PBCLOSE

recursive parser

’ RDSE, RDLIST, RDAT

RDERR. This routine prints a two byte error code. The code must be

in the right half of register Al on entry. RDERR also prints a pointer

indicating the last character scanned.

RDERRCNT. This routine prints a read error message by using RDERR.

RDERRCNT's second argument is a number in A2. This number is printed

at the far right of the RDERR message.

GETCH. This routine GEIs one character from the current input card

and puts it in RDCHAR; 1ts class is put in RDCLASS. GETCH reads a

new card when required and maintains two pointers - one to the current

character, the other to the end of the card. Initially, both pointers

| are zero to force the reading of the first card. GBICE converts

strings of blanks to a single blank by ignoring blanks 1f RDCHAR (the

last character read) is blank. Illegal characters (not on keypunch)

are converted to blanks. When quote mode (QUOMO) 1s on, all blanks

are sent to the calling routine. The '/' terminates scanning of a

card unless QUOMO is on, 1n which case both characters are passed to

successive GEICHes.
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ee.

PBOPEN, PUTBYTE, PBCIOSE. While RDAT 1s scanning a character string, no

TAK2's are performed. The character string for the atom name 1s

constructed directly on top of free storage. FPUIBYIE takes one

character from register Al and stores it in the next position in the

new string. PBOPEN initializes the process. Its argument 1s a full

work 1n Al which 1s stored at the beginning of the string as 1ts atom

head. PBCIDSE terminates the process and stores the length of the

string into the atom head. PBCIDSE returns a pointer to the new

string atom. PUIBYTE must provide for exhaustion of free storage.

When this occurs, the temporary string 1s converted to a bona fide

string atom and a pointer to it is put on the stack. The garbage

collector is called. On return, the temporary string 1s copiled to

the top of free-storage and PUTBYTE'ing continues. PBOPEN saves the

address of the atom head in PBHD, If a type 0 atom 1s being created

and GETOBJ finds an old instance of an atom with the given print

name, storage allocated for the new print name 1s recovered. The

free storage pointer is simply reset from PBHD.

RDSE. This routine has no arguments. It scans the input string for

] an s-expression and returns a pointer to that expression. RDCHAR is

assumed to contain a legal character for the start of an s-expression,

otherwise characters are skipped (and an error message 1s printed)

until a legal character is found. RDSE checks to see 1f the string 1s

an atom, a list, or a super list. In the first case it calls RDAT to

read the atom. In the other two cases, 1t calls RDLIST to read the

list. RDSE has the function of destroying structures 1f a right super

paren is not found. It also prints the error message indicating how

many parentheses were created. No parentheses are actually created;
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the number 1s simply a count incremented as RDLIST exits each level of

recursion for a missing right parenthesis. Normally, this count will

be 1. That is, RDLIST did not find one right parenthesis before a

right super=-paren. :

RDLIST. This routine has no arguments. It scans the input string and

takes one list off the front. On entry, RDCHAR must contain elther

"t(' or '<', RDLIST calls RDSE to read each element of the list.

RSLIST terminates when it finds either ) or >, The former it changes

to blank so no other routine reads it. The latter it leaves in RDCHAR

so the next higher level can process it. In the latter case, a count

1s 1ncremented' indicating that one parenthesis was created. While

creating the structure for a list, RDLIST maintains two pointers, one

to the beginning of the list, the other to the end of the list. After

each element 1s parsed, a dotted pair 1s created of that element and

NIL. Then a RST pointer to that new pair 1s stored in place of the

NIL at the current end of the list. In this limited context, the

operation RPLR (not a macro) works because a RST pointer always exists

to be replaced.

 RDAT. This routine scans the input string and takes the characters

for one atom off the front of the string. It returns a pointer to

+ that atom. The atom may be either a (symbol) or one of the (string)

types as indicated in the syntax. A numeric character or dash in

RDCHAR at the start of RDAT causes a branch to RANSCN. This routine

scans a number and creates a number atom. Currently, the number must

fit in eight digits because that 1s the size of the internal buffer

* used. An alphabetic character may be the start of either a symbol or
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some quoted string. The latter 1s distinguished by the quote following

the alphabetic character. Quoted strings are scanned by RABITS which

in turn passes control to RABX, RABW, or RABZ for hexadecimal, bit, and

character strings respectively. After a string atom 1s created for the

print name of a symbol atom, GETOBJis called. GETOBJ either finds the

old atom with the same print name, or makes a new symbol atom using

the new character stringatom asthe print name. In the former case,

storage for the new string atom 1s recovered.

C.3. CSSWYM Fields Used by READ Routines

RDCOL, RDEND, RDLNG. These fields control the scanning of the card by

GETCH. RDCOL contains the address of the last character read, the

character now in RDCHAR. RDEND points at the last character to be

read from the card. RDLNG contains the number of characters to be

read from a card. Normally, RDING is Tl because the continuation

character 1s 1n column 72,

RDCHAR, RDCLASS. These one byte fields contain respectively the most

recent input character and its class. The class of a character is

1llustrated in figure C.2.

RDSTAT. This byte contains bits representing the state of the read

routines. These bits are detailed 1n figure C.3.

RDERMS, RDERNO, RDERIOC, RDERCT. These fields form the line printed

for READ errors generated by RDERR and RDERRCNT. RDERMS 1s the

address of the string passed to PUTSTR. RDERNO 1s the error number

(the argument to RDERR). RDERIOC 1s the field beneath the card image

and is set up with a single pointer ('<') to the last character

scanned (character in RDCHAR). RDERCNT is used by RDERRCNT to store

the number of parentheses created for error R2.
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RDSUPCTR. This field accumulates the number of parentheses created

before a right super-parenthesis. It is incremented each time RDSE

exits due to finding a ™' instead of a ')' at the end of a list.

| When recursion returns to a level of RDSE looking for ™', RDSUPCIR

contains one more than the number of parenthesescreated. RDSUPCTR

1s zeroed both before and after reading a list bounded by super-

% parenthesis.

ATAMT. This half-word contains the stom offset. Atom pointers

point [the quantity in ATAMT | bytes in front of the atom they
reference.

PBHD. While PUTBYIE 1s being used to create a character string

atom on top of.free storage, register F points at the location to

store the next byte. PBHD contains the contents of F before PBOPEN

was called. PBHD - ATAMT will be the address of the created

character string atom.
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C.4. Flow Charts

Flow charts are included in this section as the most concise means of

describing the parsing algorithm in complete detail. The parser is similar

to the parsers compiled by Cogent. The syntax is designed so there 1s

never any ambiguity in the string. That 1s, from the current location in

. the program and the next incoming character, 1t 1s always possible to decide

the type of the forthcoming input construct. Then the appropriate routine

1s called to handle the indicated type.

| RDCHAR \__1°8 RDERRCNT

=I oo ( 'R2 }RDSUPCTR)
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RDLIST

Yes
RDCHAR RDERR

="! (*RC?)

no

a RDCHAR no PAN no Yes | add 1 to
= (< or atom — } > no. parens

start created

Yes

Come ~- RETURN NIL
current -list

value of
RDSE . NIL)

RDCHAR er (+)=v’
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= 1.1 atomstart as last element of wam— RDCHAR |t 1

current list Yes “wu

Yes no

RDCHAR Return

=) current lis
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—

| Yes add 1 to |RDCHAR no. parens
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) or > current list no
no

RDERR RDERR
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138



put digit
in buffer

- | pack
BUFFER

ki no -

| negative — put in
switch minus sign

| <9 Co >9 |
9 digits |

= 9 put in
| plus sign |

RDERR _ \

STAKN

“two words

convert buffer

to binary and
store 1n new

block

store atom

head for

number atom

RETURN ptr.
to atom
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AppendixD. EVAL and the Stutter Interpreter

To facilitate experimentation with Swym, an interpreter for the eval-

uation of functions was provided. These functions are written in a language

called Stutter, similar to LISP 1.5, but without PROG.

The interpreter is essentially the routine MAIN. When Swym 1s loaded

for a Stutter run, MAIN is given control. MAIN can be described by:

main ( ) = begin

A: print (eval (read( )));

terpri ( );

- gotoA

end

(But note that Stutter does not currently have goto or assignment state-

ments.) Thus, the interpreter repeatedly reads an expression, evaluates 1t,

and prints the value. MAIN as implemented in assembly language also prints

numbers between reading the expression and printing the value. The first 1s

the time to read the expression, the second 1s the time to evaluate that

expression. Both times are hundredths of a second. READ is described in

"Appendix C. PRINT and TERPRI are described 1n Appendix F. EVAL 1s described

below. The routine ERROR exits to the loop in MAIN, so that interpretation

can continue with the next expression. Succeeding sections of this appendix

describe Stutter function definition, Stutter variable binding, and the

individual internal interpreter routines.

D.1 Defining Functions to the Interpreter

There are four varieties of functions in Stutter, just as in LISP 1.5:

SUBR, FSUBR, EXFR, FEXPR. -SUBR's are machine language routines, executed
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by the machine. EXPR's are s-expressions executed interpretively by EVAL

The arguments for SUBR's and EXPR's are EVALuated before the function 1s

called. FSUBR's and FEXPR's are the same as SUBR's and EXPR's, except their

Arguments are not EVALuated. Instead, a list of the unevaluated arguments 1s

passed as the single argument to an FSUBR or an FEXPR.

Functions are stored on the property lists of symbol atoms. The indi

catorused is the type of function. The value 1s either a pointer to a

piece of code (SUBR's and FSUBR's) or a pointer at an s-expression (EXPR's

and FEXPR's). These values can be stored, referenced, or modified using

PUTPROP, GET, and REMPROP. To save property list searching time and storage

space, a function definition for a symbol atom 1s stored in that atom's value

cell. See the discussion of BINDERY in section D.3.

The format for an EXPR or FEXPR s-expression 1s different than that for

Lisp 1.5 The expression should be a list of the form,

where:

| vl is a list of variables. These are bound to the arguments of the

function as discussed in the next section.

exp 1S an expression

each €XP, is evaluated until the atom at at the end is reached.

Normally n 1s 1 and at isRNIL so that a function definition looks like

(v1 éxpirresponding to the LISP 1.5: (LAMBDA vi exp)]

at this is the atom at the end of the list of expressions. If at

1s NIL, the value of exp, 1s returned. Otherwise, the EVAL value of

at 1s returned. Lo
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mo problems with a common solution exist 1n Stutter and in many

implementations of LISP. First, a pointer at a piece of code -- the value

of a SUBR property -- is not distinguished from a pointer at an s-expression.

This leads to either errors or special handling 1n routines that accept

arbitrary list structure as input, ege PRINT. The second problem 1s the

impossibility of compiling a function stored under a special indicator.

. Suppose the atoms of some class have, as one property, the indicator PROCESS

whose value 1s a functions If the value 1s an s-expression, this code

applies the appropriate-function to one such atom,

——. ((ceT X (QUOTE PRGCESS))X)

This works because EVAL assumes that the FST will EVALuate to a function.

But the only way code can be executed 1s to be stored under the indicator

SUBR or FSUBR. The solution to both these problems 1s to create a third

atom type: the code atom. Such an atom would indicate the location of the

code and its length. It might contain garbage collection information such as

relocatability and a list of pointers referenced by the routine. The atom

might also contain information about whether the arguments should be evaluated.

~ D.2 Stutter Variable Binding

' Two kinds of variable binding are used in Stutter. SUBR's and FSUBR's

receive thelr arguments 1n registers Al, A2, . . . Ab. Thus no SUBR may have

more than six arguments. (FSUBR's always have exactly one argument.)

Assembled routines may generally use the registers and the stack as temp-

orary storage, as long as they obey the restrictions of Appendices I and A.2.

The value of a SUBR or FSUBR 1s returned in Al.
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EXFR's and FEXPR's are lists whose first element must be a list of symbol

atoms (called vl, variable list, above). There must be exactly as many

atoms 1n the list as arguments in the function call. The arguments of the

function are stored in the value cellsof the listed symbol atoms. The

previous contents of the value cells are stored in a stack-block type 1 as

described in Appendix A.2. When EVAL 1s called with a single symbol atom

as 1ts argument, the value returned 1s the value in that symbol's value cell.

| Thus, sub-expressions are EVAIuated using the appropriate values for symbol

atoms.

Using the value cell mechanism there 1s no simple method of establish-

1ng any particular environment that existed at some higher level (for example,

that existed'whenafunction was passed as an argument). That would be

dynamic variable binding. Stutter variable bindings are static; that 1s,

every variable has 1ts most recent binding time-wise, regardless of when a

function was passed as an argument. This affects free variables of passed

functions and their sub-functions.

D.3 Stutter Interpreter Internal Routines

) S1x routines are basic to the Stutter interpreter: MAIN, EVAL, EVLIS,

EVGET, BINDERY, UNBIND. They are all assembly language routines. With the

exception of EVAL, they are not available to the Stutter programmer.

This routine 1s the central loop of the interpreter. It was described

above.
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EVAL.

This routine has one argument, an s-expression. The expression 1s

evaluated in terms of the current environment (bindings of variables). A

complete description of the action of EVAL is in figure D.l. EVAL, like all

Stutter functions, returns its value in register Al. In D.1, symbolp(a)

is a predicate true when & is a symbol atom. The other functions are

described further on in this appendix. WNBND points at a special atom. It

1s the contents of the value cell of any unbound atom (1f there 1s no function

definition in the value cell.) EVAL signals an error when an unbound atom 1s

EVALuated. EVAL should also test for the value cell containing a function

definition and signal the same error. Currently, though, this latter test is

not made. EVAL handles correctly the evaluation of an atom whose value 1s non-

relocatable, i.e., a number. The value 1s converted into a numeric type 1 atom.

This makes possible communication between the interpreter and fast arithmetic

functions using the value cell simply to hold a number.

When the fst of EVAL's argument 1s non-atomic and evaluates to a non-

atomic expression, that expression 1s treated as though 1t were an FEXPR.

That is, its arguments are not evaluated. However, the variable list for that

expression must have as many atoms as EVAL's argument has rst's because of

the way the call on BINDERY is reached. This permits the expression to have

some control over the evaluation of its arguments. The most serious problem

1s the inconsistency of this feature with the rest of the language.

EVLIS,

This routine has one argument, a list of s-expressions. Its value is
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dl

a list of the EVAL values of those s-expressions. EVLIS simply applies EVAL

to each member of its argument list and creates a list of the values. The

length of the list 1s computed and a eempact list of that length 1s allocated.

Successive values are stored in that list.

It 1s now realized that using free storage to return the value of EVLIS

1s just as flagrantly wasteful of space as an a-list would have been. The

appropriate correction 1s to have EVLIS place values on the stack. They would

then be taken off the stack by BINDERY. Since BINDERY must put information

on the stack, the best solution 1s the combination of EVLIS and BINDERY into

a single function.~ This function would create a BINDERY type stack block and

store the newvalues of the atoms in it. When all arguments were EVALuated,

the values would be swapped between the stack and the value cells of the atoms.

Note that the call of EVLIS at the label EVSUBR in EVAL must be replaced with

code, probably in-line, that stores new values in the stack and then places

them in the registers.

EVGET.

- This function gets the function definition of a symbol atom from that

) atom's value cell or property list. This is a non-standard function in that

1ts-argument 1s passed on the stack. The value is returned in Al. EVGET also

stores the previous contents of Al on the stack to avoid repeating that store

in several places in EVAL. EVGET first checks the CELVAL bit in the atom head.

If that bit 1s off, the contents of the value cell are the function definition

for the atom. If CELVAL is on, EVGET finds out (by indexing VFPROPS with the

CELFNC bits) the type of function definition: SUBR, FSUBR, EXFR, or FEXFR.
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GET 1s called to find the function definition on the property list.

BINDERY.

This function has two arguments; a list of values, and a list of symbol

atoms. The result 1s to store each value in the value cell of the corres-

ponding atom. When EVAL subsequently evaluates one of these atoms, 1t

retrieves the new value. The old values of the atoms are stored in a plex

on the stack (stack plex type 1 -- ses Appendix A.2). This stack plex must

later be popped off the stack by a call on UNBIND.

Information 1s left on the stack after BINDERY exits. This leads to the

stringent requirement that BINDERY may not itself use temporary storage on

the stack, nor may the calling' routine. BINDERY does all its computation 1n

the general registers. When EVAL calls BINDERY, a pointer to EVAL's argu-

ment 1s 1n register A3. BINDERY must not affect this register.

Because BINDERY cannot call functions, 1t cannot bind a symbol atom having

a function definition in the value cell. The function definition would have to

be put on the property list, which would require storage allocation and

possibly garbage collection. Consequently, BINDERY causes error BI when a

value cell contains a function definition. The simplest solution to this

problem 1s to not store function definitions in the value cell. This would

increase property list searching time, but would save a great deal of messy

bit pushing. A second solution would be to always store function definitions

on the property list and to store them in the value cell until the atom 1s

bound to some value.

UNBIND.

This function pops off the stack a plex stored on the stack by BINDERY.
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Note that UNBIND must be called when the BINDERY plex 1s at the top of

the stack, or disaster will occur. UNBIND may not use any storage on the

stack, nor may 1t affect register Al.

Figure D.1

eval (a) = begin list x, yj;

1f symbolp (a) then

1f cell (a) = VUNBND then error (El)

else return (cell (a))

else return (a)

elseif - atom (fst (a)) then begin

x: = eval (fst (a));

if= atom (x) then begin

comment assume x is s-expression for an FEXPR w/ multiple arguments;

y: = rst (a); goto EVENBD;

end

end else x: = fst (a);

xis get (x, { SUBR, FSUBR, EXPR, or FEXPR depending on bits in atom head]);

goto {EVSUBR, EVFSUBR, EVEXPR, or EVFEXPR depending on bits in atom head];

EVSUBR: y : = evlis (rst (a));

{place elements of y into registers Al to A6};

return ({execute routine pointed at by x});

EVFSUBR: {put rst (a) into register Al};

return ([execute routine pointed at by x});

EVEXPR: y := evlis (rst (a));
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EVENND: bindery (y, fst (x); x := rst (x);

EVELP: if atom (x) then begin

x i= eval(x); unbind ( ); return (x)

end; I

y i= fst(x) ; x = rst (x);

1f null (x) then begin

* x t= eval (y); unbind( ); return (x)

| end;

eval(y);

got(0 EVELP;

EVFEXPR: bindery(list (rst (a)), fst (x));

x i= rst (x);

got(O EVELP

end eval
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Appendix E. Swym Garbage Collector

One of the important goals of Swym was the development of a list compact-

1ng garbage collector. This appendix explains that collector in great detail.

Section III.2 contains a simple version of the collector explaining the basic

concept. The first section of this Appendix describes the heart of the collector

in a higher level language. The second section describes the internal garbage

collector routines (1.e., those not available to the STUTTER program). The

last section describes those portions. of CSSWYM used by the garbage collector.
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E.1I. The Complete Garbage Collector Algorithm

The simple garbage collector in III.2 1s 1nadequate for nany common list

structures: circular lists, several lists with the same rst, a structure which

1s an element of more than one list, and-more pathological cases., The

implemented garbage collector handles all possible cases with marking bits and

a fixup table.

Two marking bits are associated with each list word, Each passsetsa

marking bit to indicate 1t has visited a given word. The first pass sets

bit ml, the second sets me. Special action must be taken when a marked word

1s encountered, because that word 1s already being processedat some other level

of recursion. A word with m2 set always contains the address of the corres-

ponding word in the new core image.

Several functions set and test the marking bits:

MARKL (w) The word pointed at by w is marked with ml.

. MARK12 (w) The word pointed at by w is marked with both

ml and m2.

UNMARKL (w) ml is turned off in the word pointed at by w.

ML (w) This predicate is true if ml is on in the word

pointed at by w.

M2 (w) This predicate is trueif m2 is on in the word

pointed at by w.

Conceptually, each of these functions tests 1ts argument to see 1f 1t points

at an atom and adjusts the addressing appropriately. In practice it 1s known

a priori whether the argument 1s an atom, and a bit macro (see B.5) is coded

instead of a function call.
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In circular structures, a word points at some structure already being

collected at some higher level of recursion(ml is set, but not m2). That

word cannot be written correctly to the new core image because 1ts contents

are not determined. In most reasonable applications, the number of such

circularities 1s well below one percent of the number of pointers. Nonethe-

less, some provision must be made to handle this case; in Swym, the garbage

collector uses a fixup table. When the correct new contents of a word cannot

be determined, a word of zeros 1s written to the new core and an entry 1s made

in the fixup table. Each entry 1s two pointers. The first points at the word

of zeros 1n the new core; the second points at the word in old core which will

eventually contain the correct address to substitute for the word of zeros.

After COLLECT 1s finished, the second pointer of each fixup entry 1s replaced

by the contents of the word it points at. Then, after the new core image has

been read in, the fixups are applied; 1.e., the second word of the entry is

'or'ed into the location indicated by the first word of the entry. (The 'or'ing

permits the word of zeros to have the rst bit on if required. The fixup procedure

thus works for both_fst and rst fixups.)

One additional function must be defined to describe the complete garbage

collector (others are defined in 111.2):

FIXUP (p, ¢) The word ¢ (either zero or rstbit) is GCPUT to the

new core. An entry 1s made in the fixup table consisting

of the address returned by GCPUT and the pointer p.
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The function ATCOL defined 1n section III.2 must be extended. When ATCOL

1s entered, the ml is set in the plexhead. After collecting the atom, both

marking bits are set. Since COLLECT may be called for some sub-structure of

an atom, provision 1s made for a pointer at an atom with ml and not m2 (a

fixup entry 1s generated).

The complete garbage collector is given in Figure E.l. The argument Xx

must be a pointer at list structure with neither marking bit on. COLLECT

has no value, but the new-core address of the list corresponding to Xx 1s

stored in place of the pointer to fst(x). A demonstration that this algorithm

creates a correct representation of its argument 1s given in Appendix Le The

UNMARKL(r) and the boolean variable m are related. The former indicates the

need for a fixup in the rstdirection; the latter detects this need in the
second pass. In Figure E.1l, the marking bits are assumed to be associated

with each word, but not part of the word. This association could be by extra

bits in the hardware or by a bit table in a separate area of memory. The

former requires hardware modification, while the latter requires six percent

more memory. In the implemented system, the marking bits are in the list words

themselves, as shown in Figure 2. Figure E.l must be modified for these bit

assignments by turning off the marking bits in the arguments to GCPUT and

replacing

t := rst(r)

with

if Mi(r+h) then t := r+ else t := rst(r).

Figure E.2 1llustrates effect of COLLECT on a complex structure.
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Figure E.l oo
Swym Garbage Collection Algorithm

COLLECT (x) = begin list r, t; Boolean m;

wotbit := x'0000000L";

r = X;

chkloop: comment loop to collect each fst;

t := fst (r); .MARKL (r);

if atom (t) then ATCOL (t) else ifMl (t) then COLLECT (t);

-comment test for end of list or reached marked word;

t i= rst (1);

if atom (t) then ATCOL (t)

else 1f M2 (t) then

else 1f M1 (t)_then UNMARKL (r)

else begin r := t; goto chkloop end;

r := X;

wrloop: comment loop to write out each new fst

m := Ml (r); t := fst (r);

rplf (r, if atom (t) then

| if M2 (t) then GCPUT (HD (t)) _else FIXUP (t, 0)

else if M2 (t) then GCPUT (fst (t)) else FIXUP (t, 0));

I MARK12 (r);

comment test for end of second pass;

t = rst (1);

Af atom (t) then

if ®@ (t) then GCPUT (HD (t) v rstbit)

else FIXUP (t, rstbit)

else if M2 (t) then GCPUT (fst (t) v rstbit)

else if m_then begin r := t; goto wrloop end
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Figure E.1 Continued

else FIXUP (t, rstbit)

eml lect
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Figure E.2
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Figure E.2 (Con't) peg

At exit from COLLECT:

Old Memory

X:

172194 @ Lye”
\

| { ~ —— a |
\ “\ |

Fixup Table >

|
|

/

SPARS| |

\ | | |

aT 7 TN K i ! |
I es lI Eb

New Memory | { |

A

Lo | lhe] 3p [ean

Final structure after-reading new core jmage and annlvine fiviine,

structure:——

TN)
A

ghey[0 [en

158



E.2 Garbage Collector Internal Routines 0

The interface between all other routines and the garbage collector

is the routine CC. It receives control when TAK2 or some other routine

detects insufficient memory, or 1t may be called explicitly from a

Stutter program. GC controls the garbage collection process and prints

statistics. CC, ATCOL, COLX, and COLLECT are called with the standard

CAL macro. CHOKE, GCABEND, and GCPUT are routines with special calling

sequences.

Routines written to garbage collect newly created atom types must

be made part of the routine ATCOL. The description of that routine

includes information on inserting new atom collection routines. But

all the information in section E.3 should be understood before coding

special atom collection routines.

Ge This 1s the executive portion of the garbage collector.

Its major functions are outlined in Figure E.3. Polnters at

OBLIST, CHAROBS, NIL, FPROPS, and *UNBOUND* are put on the

stack so the corresponding information will be garbage collected.

Since the OBLIST points at all symbol atoms, both they and their

) property lists will be collected.

The current implementation does not use temporary storage

. for garbage collection; instead, the data structures are moved

between two areas of memeory. The 'switch memories' action in

Figure E.3 1s merely the swapping of pointers so GCPUT will store

the new structures into the currently non-active free-storage area.

In an implementation using temporary storage, the temporary data

set would have to be initialized. Similarly, the step 'apply

fixups' would have to be preceded by 'read in new core image’.

159



Figure E.3 oo
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The following statistics are printed, all on a single line:

length of active pdl (stack)

number of bytes of active free storage

time at start of garbage collection (100 ths/sec)

time at end of garbage collection (100 ths/sec) (times are

since last starting the READ in the MAIN loop)

total time for garbage collection (100 ths/sec)

C@LLECT. This routine has been described in detail in section E.I.

"The argument (in Al) to CELLECT 1s a pointer at an unmarked list.

CPIIECT has no result, but the fst of the argument points at the

representationof that list in the new core.

ATC@L. This routine garbage collects one atom and writes a rep-

resentation of that atom to the new core image. The argument

(in Al) must be a pointer at an unmarked atom. The result 1s that

the head of the atom 1s replaced by the new-core address of that

atom. The main routine of ATC@L simply abstracts the type field

from the atom head and branches to the appropriate routine for that

atom type. Currently, there are routines for symbol atoms and

bit string atoms. Adding a new routine 1s done by putting the

address of the routine into the branch table (ATCBTBL). If more

. than eight atom types are implemented, the table can be extended

by increasing the number of bits masked from the type field. The

individual processing routines should branch to ATCXIT after completely

collecting the atom. The individual routines are responsible for

replacing the atom head with the new core address of the atom.
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ATCO. This is the part of ACYL for collecting symbol (type 0)

atoms. For such atoms, the atom head and the atom cell must

immediately precede the property list. To achieve this, the routine

processes the property list with a loop similar to the first loop

in collect. Thus all pointers in the property list are marked

with ml and all elements of the list are collected. Then ATCO

collects the contents of the atom cell (if they are relocatable).

Finally, ATCO writes the atom head and the new atom cell to the new

core; then it transfers to the WRL@P portion of CPLIECT to finish

writing out the property list.

CPIX. The-argument to CPLIECT must not be marked and must not

be an atom. The argument to CfIX may be marked or unmarked, atomic

or not, But 1f marked, the structure must have both bits on. If

its argument is unmarked, CPIX calls CPLLECT or ATCfL as required.

The result of CfIX is a pointer at the new core representation of

CfIX's argument. CPIX's can be used by atom collection routines

1f 1t 1s certain that its argument will never satisfy

(ml(A) A = m2(A))

CHPKE. If, following a garbage collection, insufficient free

storage 1s available, then this routine should be entered. It is

in the CSSWYM control section and can be entered simply with

B CHOKE

or

BC nn,CHOKE

CHOKE simply ABEND's with the user completion code 20.
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GCABEND. If the garbage collector detects an error in the data

structure construction, it ABEND's immediately to avoid propagating

errors. A call on GCABEND is

BAL LL, GCABEND

This routine constructs a completion code based on the displacement

of the BAL from the beginning of the current routine. The contents

of register 1 are stored in register L, and the ABEND 1s issued.

The current completion codes and their significance are listed in

Appendix J.

GCPUT. This routine is called by the GCPUT macro (section B.8).

It 1s called by that macro with either

BAL L,GCPUT

or

BAL L,GCPUTFUL.

This routine must be changed 1f SWIM 1s to use temporary storage

during garbage collection. (Note: The comments about #IM2 in the next

section).

ATCl. This portion of ATCAL collects bit string atoms. Since

such atoms contain no relocatable information, AICl simply writes

a new atom head and copies the string into the new core. The

subtypes of type 1 atoms are designed so that the garbage collector

' need not distinguish among them. The length field always indicates

a length in bytes and the garbage collector always transfers the

integral number of words necessary to transfer all the bytes.
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E.3 Information stored in CSSWYM

MEMUSE, MEMNXT. These two words contain the addresses of the two

memories used alternately as free storage. On entry to CC, the

two fields are swapped and the new contents of MEMUSE are the

initial destination for words stored by GCPUT.

MEMSIZ. This word contains the number to be added to MEMUSE to

compute the new FEND.

FEND. This word contains the address of the next to last word to

be stored into by TAK2. When this word or the succeeding word 1s stored,

TAK? calls GE. FEND is also used by PB@PEN, PUTBYTE, and STAKN to

check for the end of the free storage area.

GCTIME. GC saves the TTIME time on entry and uses 1t to compute

the total garbage collection time before exitting. This total 1s

printed in the garbage collector statistics line.

GCABAD. This word 1s used by GCABEND to create a completion code

for ABEND. Because the high order bit 1s on, ABEND calls for a

| dump.

FMIM2, This word is used by GCPUT to put the Ml and M2 bits on

"the address word it returns. $MM? must be in CSSWYM because B

may have different values when GCPUT 1s called.
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Appendix F. Stutter Functions

This appendix details all functions available to the Stutter

programmer. They are represented in initial free storage by atoms

with the property SUBR or FSUBR. For each routine there 1s a description

of the inputs, the value of the function, and the internal code involved.

: Three routines are described in more detail in separate appendices: GC,

| EVAL, and READ.

Internally, a Stutter function cannot be distinguished from a

Swym system function. Specifically, all Stutter functions can be called

internally with the standard CAL macro. The name of the function is

the same to the CAL macro as to the Stutter program. (Note that a few

functions - like RST and FST - are also available as macros. Although

they can be called with CAL, 1t 1s clearer and faster to use the macro

form.) Arguments to these functions are passed in registers Al, A2,... Ab.

The value is returned in register Al. Any excess arguments are ignored;

they may or may not remain after execution of the function.

The routines are organized in five groups: basic, input, output,

Stutter and utility. This index tells where to find each routine:

Routine Group Type f of Args. Control Section

ATOM basic SUBR 1 CSSUBS

BELL utility SUBR 1 CS2250

COND stutter FSUBR CSEVAL

EJECT output SUBR 0 CSPRINT

EQ basic SUBR 2 CSSUBS
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Routine Group Type § of Args. Control Section

ERROR utility SUBR 1 CSSUBS

EVAL stutter SUBR i CSEVAL

EXPLODE output SUBR 1 CSEVAL

FST basic SUBR 1 CSSUBS

GC utility SUBR 0 CSGC

GET Stutter SUBR 2 CSEVAL

GETOBJ input SUBR 1 CSREAD

~ IVCCH input SUBR 0 CSREAD

IVQMg input SUBR 0 CSREAD

LIST basic FSUBR CSEVAL

MAKSTRNG input SUBR 1 CSREAD

NULL basic SUBR 1 CSSUBS

PRINT output SUBR 1 CSPRINT

PRIN1 output SUBR 1 CSPRINT

PUTPROP Stutter SUBR 5 CSEVAL

QUOTE Stutter FSUBR CSEVAL

READ input SUBR 0 CSREAD

: READCH input SUBR 0 CSREAD

REMPROP stutter SUBR 2 CSEVAL

RST basic SUBR 1 CSSUBS

SASSOC stutter SUBR 2 CSEVAL

STIVCCH input SUBR 1 CSREAD

STIVQMY input SUBR 1 CSREAD

TAK? basic SUBR 2 CSSUBS

TERPRI output SUBR 0 CSPRINT
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F.1 Basic Routines

RST, FST, TAK2, ATYM, NULL, EQ, LIST

The routines 1n this group are the lowest level functions for the

manipulation of lists.

(RST x). Returns the Reg? of the list x, which must not be atomic.

Atomic x results in a specification interruptd

(FST x). Returns the FirST element of the list x, which must not

be atomic. Atomic x results in a specification interrupt.

(TAK? x, y). If y is a list, returns a list whose FST is x and whose

RST is y. If y 1s atomic (other than NIL), TAK2 returns a generalized

list, that is, a list whose R...RST is not NIL. In either case,

TAK? is well defined. This function takes two words from the free

storage block and thus incurs part of the expense of the next gar-

bage collection. Beware when CAL'ing TAK2 from an assembled

routine. Because the garbage collector might be called, all

] registers must be saved, and all pointers must be identifiable as

such.

(EQ x, vy). Predicate. If x and y are atomic, returns T 1f they are

the same atom, and NIL if they are not. If x or y 1s not atomic,

returns T if x and y both point at the same location. EQ 1s always

defined.

(ATM x). Predicate. Returns T 1f x 1s an atom and NIL otherwise.
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(NULL x). Predicate. Returns T if x 1s the atom NIL. If x 1s any other

atom or 1s non-atomic, NULL returns NIL.

coos KpsXp eo x) Returns a list whose elements are Xs Xpyeee Xo

Unlike other basic functions, LIST accepts any number of arguments.

Note in particular that (LIST) 1s valid and returns NIL. LIST

is implemented so that if given n (> 1) arguments it will use ntl

words from the free storage block. Thus list 1s more efficient than

~ successive TAK?'s.

F.2 Input Routines

READ, READCH, IVCCH, STIVCCH, IVQMp, STIVQMP, MAKSTRNG, GET@BJ

The Stutter input routines are well developed since they were a

necessary adjunct to testing the system. Two modes are provided: READ

reads an entire expression. It 1s also used by the main interpretative

loop, so an understanding of 1t 1s an understanding of the input syntax

for Stutter. A single character input mode 1s also provided to permit

the writing of more general input. The internal read routines are

described in Appendix C.

The read routines make use of a device, borrowed from C@GENT, called

an "internal variable". This is a variable whose value affects the system

and which can be set or reset by special subroutine calls. Each internal

variable 1s represented by a three character mnemonic; two routines are

associated with each internal variable. If the mnemonic is xxx, the

routines are (IVxxx) and (STIVxxxa). The first routine returns the

current value of the variable and the second assigns the value of'a
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to the variable. If the variable is a switch, 1t will have the value T or

NIL and can be set by STIVxxx. The argument NIL sets the switch off and any

other argument sets the switch on.

(READ). One expression is READ from a card or cards and returned

as the value of READ. This routine 1s described in detail in Appendix C.

(READCH). READs the next CHaracter from the input card and returns

a pointer to an atom with that character as its print name. All printable

characters and §¢, !, eases exist as objects in the system. Any other
character 1s translated by READCH into blank. EQ may be used to compare

characters because they are uniquely represented. Characters are read

using the same conventions of card layout, that 1s, columns 1 to either

71 or the first underbar-slash. Also, 1f the current character 1s a blank,

READCH will return the next non-blank character. These conventions may be

altered by turning on the quote mode with (IVQMP).

(IVCCH) (STIVCCH x). To store one character in the case that an expression

read by READ 1s an atom and the following character 1s a left parenthesis,

an internal variable called 'Current CHaracter' is defined. Its value

can be SeT to any character by STIVCCH. An error 1s signalled 1f the argu-

ment 1s not an atom with a one character printname. The 'current character’

can be accessed by evaluating (NCCH).

. The relationship between REAL, READCH, and IVCCH 1s most easily explained

in terms of a 'scan pointer' and a character variable called the 'current

character'. The scan pointer moves along the input text having due regard for

card boundaries and the ' /' convention. The character pointed at by the scan

pointer 1s called the scanned character. After READing an atom, the scan

pointer points at the character following the atom (usually blank) and the

current character contains the scanned character. After READing a list, the
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scan pointer points at the final right parenthesis and current character con-

tains a blank. IVCCH does not affect the scan pointer and returns the current

character. The first character read by READ 1s the current character.

Succeeding characters would be the values of successive READCH'es. READCH can

best be described as a call on GETCH, as flow charted in Appendix C.4. An

approximation to READCH can be given by:

Loop: move scan pointer to next character;

1f (current character 1s blank A

quote mode 1s off A

© scanned character is blank) then go to loop;

current character := scanned character;

return (scanned character).

(IVQM@) (STIVOMP x) . If Quote Mgde is on, then each character on each

card 1s passed in turn as the value of READCH. This provides a means of

avoiding the normal underbar-slash and de-blanking conventions. Unfortun-

ately, in this mode there must be a dash in column 72 (or quote mode must

be set off just before column 71 1s scanned). Calling READ always sets

quote mode off.

(MAKSTRNG x) . x must be a list whose elements are all symbol atoms with

one character print names. The characters are collected together and the

value of MAKSTRNG 1s a character STRING atom MAKed of the print names of

those atoms. [length (x)/W1 + 1 words are taken from the free storage block.
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(GET@BT x). x must be a character string atom such as 1s returned by

MAKSTRNG. The value returned by GETBJ is an atom with the indicated

print name. GETPBJ searches the OBLIST for an atom with the proper print

name. If such an atom 1s found, 1t 1s returned; otherwise an atom 1s

created. If an atom 1s created, three words are used from the free storage

block.

F.3 Output Routines

PRINT, PRIN1l, TERPRI, EJECT, EXPL@DE

The routines in this group provide for printing expressions and controlling

the printer. A routine 1s also provided to abstract from a symbol atom a list of

the characters in its printname. A print line 1s 132 characters; no access to

the carriage control character 1s provided other than that supplied by TERPRI

and EJECT.

(PRINT x). The expression x is PRINTed, and then the printer 1s spaced

to a new line. Lines will be as full as possible without printing

an atom name on two lines. This means that isolated left parentheses

will appear on the right. The value of (PRINT x) 1s x. Internally,

PRINT simply calls PRINI and TERPRI.

(PRIN1 x). Identical to PRINT except PRINL returns NIL and does not

space the line printer after printing. The first character of a

succeeding PRINT or PRINI will immediately follow the last character

of a given PRINI.
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(TERPRI) . TERminate the PRInt line. The line printer 1s advanced

the the next line. (TERPRI x) returns X.

(EJECT) The line printer 1s EJECTed to the next page. The next

PRINT or PRIN1 will put characters beginning at the upper lefthand corner

of the next page.

(EXPLODE x). x must be a type 0 atom (symbol). EXPL@DE returns a list

whose elements are the character atoms corresponding to the print name of

x. Thus (GETOBJ(MAKSTRNG(EXPLPDE x))) returns x if x was on the OBLIST,

otherwise a new atom with the same print name.

Fields in CSSWYM used by Output Routines:

PRPT. Pointer to location to store next character to be printed.

Intitialized by TERPRI and incremented by PUICH.

PRPEND. Address of character just beyond last character in print

line. PUTCH calls TERPRI 1f PRPT reaches PRPEND. Intitialized by TERPRI.

PRLNGe. This constant 1s the length of the print line. Normally

132, 1t can be changed for different buffer lengths or a wider right margin.

PRATBAD. Used by PRIN1 to print the message '?TYPx' for atoms with type

x € {2, 3, 4, 5, 6, T}. (That is, for atom types for which no print

routine has been defined).

r.4 STUTTER Routines

COND, EVAL, GET, PUTPRgP, REMPRUP, QUATE, SASSQ

(conD 2K Irs . eel) This FSUBR C@NDitionally evaluates an expression.

Each sublist must be a list-of two expressions. The first expression in
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each successive sublist 1s EVALuated until one 1s found that 1s not NIL.

The second expression of the selected sublist 1s EVALuated and returned as

the value of CPND. If all first expressions are NIL, error CN is signaled.

(EVAL x). EVALuates and returns the value of the s-expression x.

Complete details of EVAL are in Appendix D.

GET, PUTPR@P, REMPR@P. Symbol atoms have an associated list called a property

list. On this list the different 'properties' of the atom are stored, each

under different names, called 'indicators.' The indicators must be symbol

atoms. The properties may be any s-expression. In the initial free storage,

only the properties for SUBR and FSUBR indicators occur. Function defini-

tions can be stored under EXPR and FEXPR. Other properties and corresponding

indicators can be defined at the Stutter programmers'convenience. The only

restriction 1s that the above three functions are the only ones allowed to

access the property list. This is because PUTPRPP and REMPRPP replace

element pointers with rst pointers in some case.

(GET a 1). This SUBR has two arguments: an atom and an indicator. It

. searches the property list of the atom for the indicator and returns the

corresponding property value. If the indicator 1s not found, GET returns

"NIL.

(PUTPRPP a p i). This SUBR has three arguments: an atom, a value, and an

indicator. The value is stored under the indicator on the property list

of the atom. If the indicator existed on the property list, the pointer at

the old value 1s replaced with a pointer at the new value. Otherwise, the

indicator and value are placed at the front of the property list. Currently,

the value of PUIFRFP should not be used. It should be changed to return the

atom.

175



(REMPRPP a 1). The arguments of this SUBR are an atom and an indicator.

The indicator and the corresponding value are removed from the property

list of the atom. REMPRP returns the atoms Currently, REMPRPP ignores

(does not delete) function definitions stored in the value cell.

(QUPTE X)e This function 1s an FSUBRe Its arguments are passed as an

unEVALuated list to the quote routine. If the list has one element,

QUITE assumes that the normal LISP 1.5 QUITE was desired. If the list

has more than one element, QUITE simply returns the list. Both (QUSTE A B)

and (QUATE (A B )) return the value (A B).

(sAss@c x pl). _ This SUBR expects an expression (usually an atom) and a

list of dotted pairs as arguments, The list 1s searched for a pair whose

FST is EQ to the expression. The value of SASSfC is RST of the selected

pair. If the expression is not found, the value of SASSFC is the atom at

the end of the list of pairs, Usually, this atom 1s NIL, but this 1s up to

the creator of the list of dotted pairs.

F.> Utility Routines

BELL, ERR$R, CC

All these routines are SUBR's.

(BELL Xx). The argument must be a number. BELL rings the bell on the

2250 twice. The interval between the rings 1s specified by the argument,

in hundredths of seconds (200 represents delay of 2 seconds), To use this

routine, a DD card must be provided assigning SWYMSCOP to a 2250. The

value of BELL 1s NIL. (Until registers B and L are assigned other than 14

and 15, BELL causes an abnormal termination,)
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(ERROR x). This routine prints its argument and exits to the top level

of the 'Stutter interpreter. The stack 1s not unwound, so variables

retain the values they had at the time of the error.

(Ge). A call on GC causes a garbage collection. The value of

GC is NIL. It may be advantageous to call GC at times, because

garbage collection 1s much less expensive when the amount of active

‘storage is low. GC 1s described in detail in Appendix E.
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Appendix G. Miscellaneous Swym Routines

The routines in this section are available within Swym but not to

Stutter programs. Unless otherwise stated, a routine 1s called with

CAL, but most have non-standard calling sequences: either they pass numbers

rather than pointers or they are not called with CAL. Such non-standard

routines are justifiable in limited contexts to avoid using free storage

and to speed processing.

STIME, TTIME. These routines provide access to the @S task timer.

STIME Starts the TIMEr. It has no argument, but returns the

value of any argument supplied. (i.e., STIME does not modify Al.)

TTIME reports the elapsed Task TIME (in hundredths of a second)

since the last execution of STIME. The result of TTIME is left in

register Al. (Not a pointer to the result, the result itself.)

STAKN. This routine allocates a plex. The argument in Al is the

number of bytes to be allocated; 1t must be a multiple of four.

The value of STAKN is a pointer to the newly allocated plex. The

calling routine must store a valid plexhead in the newly allocated

plex. The name "STAKN" has nothing to do with the stack. It refers

to a System function to TAKe N bytes from free storage. Note that

STAKN can cause garbage collection: all pointers which are to be

garbage collected must be in the stack when STAKN 1s called.

There is currently a major bug in STAKN. When the garbage collector

is called, one of the pointers on the stack is to the new plex. But it

is not an atom pointer nor is there a plexhead in the plex. There 1s no
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indication to the garbage collector of the type and extent of the allocated

plex. The best correction 1s to have STAKN call the garbage collector

before allocating the storage. The argument to STAKN would be made

odd and saved on the stack. ;

NLENGTH. The single argument to this routine 1s a list (or atom) in

Al. The result of NLENGTH 1s the number of elements in the argument.

The number, rather than a pointer, 1s left in Al. The length of

an atom 1s zero.

" PUTSTR. PUTSTR PUTs a character STRing atom on the current output line.

If its argument is not a character string atom, PUTSTR calls ERR{R.

If the string 1s too long to fit on the current line and short enough

to fit on a full line, PUTSTR calls TERPRI to terminate the current

line. PUTSTR uses PUTCH (in CSSWYM) to transmit characters one at

a time to the print line.

INIT, FINISH. INIT 1s the INITialization routine. It 1s entered

from gs, saves the registers, and initializes the registers for

SWym. It also opens data sets, sets the memory control pointers

and calls STIME to start the timer. INIT exits to MAIN, the Stutter

interpreter loop. Control 1s returned to fs by FINISH. When the

. end of the input file 1s recognized, E@DAD in CARDRDR sends control

to NOCARDS, which transfers control to FINISH.

FINISH prints some information for debugging, and abnormally

terminates. When debugging is complete, FINISH will close all data sets

and terminate normally.
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SWERRCR. This routine prints ERRPR messages for SWYM routines. Its

argument 1s two characters in the low order two bytes of register L.

SWERRfR is called by a simple branch. It changes the two characters

to a character string atom, and calls ERRPR with that atom as its

argument. SWERR@R is designed so that changing it to ABEND rather

than call ERRIR will preserve all registers as they were at the time

of the error. It 1s also possible to get very useful results if

ERRAR prints all registers.

TRUE, FALSE. These two routines are called with a simple branch. They

set Al to T and NIL, respectively, and execute a return. These

routines save a little code in predicates like NULL and ATOM. These

can exit by branching to TRUE or FALSE, thus avoiding two load

instructions and the code for return (RET).

PUTCH. This routine PUTs one CHaracter into the current print line.

The character must be in the low order byte of register Akl. PUICH

1s called with the instruction

BAL  L,PUTCH

This avoids several instructions for each character output. If the

| current character fills the output line, PUTCH calls TERPRI to print

the line. PUTCH modifies only register TT.
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AppendixH. Swym - Stutter Initial Free Storage

| When Swym 1s loaded there are three classes of structure in the
free storage area: character objects;' function names, and special structures.

| Each of these 1s described 1n a separate section below. The cards
used to create the initial free storage are shown in Figure H.l.

| H.1 Character Objects
As indicated in Appendix C (Read Routines), there are 64 character

| objects in SWYM. Each input character 1s converted into one of these
| 64 objects. These objects include A-S, V-Z, 0-G, +, 1, $,—5/ 57,

ty 4, ", £, 1, 0-2-8, *¥, =, ,<,>,@, -, +5 35 +Jsis 1)v, and ','

These character objects are assembled with the macros CHAR and QCHAR. For

various reasons, other means are used to assemble the character objects

for T, blank, apostrophe, and ampersand.

| H.2 Subroutine Objects

) All subroutines available to Stutter programs must be represented

in initial free storage. There 1s one atom for each subroutine described

in Appendix F. Subroutine atoms are assembled with the SUBR and FSUBR

macros.

H.> Special Structures

NIL,T. These two atoms are used by Stutter to represent the Boolean

values false and true. Each has a predefined value equal to.

itself. Thus, (EVAL(QUOTE NIL)) is NIL; but one can also say

(EVAL NIL) and get NIL.
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@BLIST. The predefined value of this atom is a list of all symbol

atoms active at any given time. This list is a list of 64% sublists.

An atom is placed on a sublist chosen by hash coding the atom's

print name. This speeds up the read routine search to find an

existing instance of an input atom (in GET@BJ). The hashing function

1s

((length of pname) + 2%(last character) + 3*(first

character) + 13*(third character)) mod 64 ,

where the characters are represented in EBCDIC. If the third

character is absent, blank is used. This function seems to

distribute the atoms fairly well, although there 1s a slight

preference for bin 32.

The value of @BLIST is treated as though it were an array.

That is, the proper sublist is accessed by address arithmetic rather

than successive RST operations. There 1s the danger that the

garbage collector could convert this list into two or more lists

connected by RST pointers. To avoid this, no variable should ever

| point at a portion of the object list.

CHAR@BS . The predefine8 value of this atom is the list of all

character objects. This list has 256 elements, one for each possible

EBCDIC byte pattern. All illegal characters point at the character

object for blank. Like @BLIST, the character object list is referenced

(by READCH and IVCCH) as though it were an array. Agaln, no variable

may point at a portion of the character object list.
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SUBR, FSUBR, EXPR, FEXPR. These atoms represent properties which

can be PUTPR@P and which the system must know about. Specifically,

each represents some form of function definition. To use an atom

as a function, EVGET looks for one of these indicators on the .

property list and uses the corresponding value as the function

definition. See further description in Appendix D.2.

FPR@PS. This is a structure:

((SUBR. 1) (FSUBR . 2)

(EXPR. 3) (FEXPR . L))

EVAL uses this structure at various points to associate a bit

pattern with one of the indicators for a function definition.

If an atom has a function definition, the appropriate bit pattern

will be in the CELFNC field of the plexhead. This structure

cannot be accessed by Stutter programs.

*UNB@UND' . This 1s simply a character string atom. It 1s the value

of any atom that has not been assigned a value by one of

initial value

variable binding

| function definition.

If 'UNBPUND' is the value of an atom, EVAL signals error El and

terminates processingof the current s-expression.
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Figure H.1l

UNBOUND STRAT C 'UNBOUND'

BLANK QCHAR ror

NIL VALUE NIL,NIL

TRUTH VALUE T, TRUTH

OBLIST VALUE OBLIST,OLST

CHAROBS VALUE CHAROBS, COBS

SUBR MATOM SUBR

FSUBR MATOM FSUBR

EPR —- MATOM EXPR

FEXPR MATOM FEXPR

SUBR FST,RST,TAK2,GC

SUBR ATOM,EQ,NULL, PRINT ,PRIN1, TERPRI

SUBR READ

SUBR ERROR,STIVCCH,IVCCH,READCH, STIVQMO, IVQMO

SUBR GETOBJ ,MAKSTRNG,EJECT

SUBR EVAL,SASSOC,EXPLODE,GET, PUTPROP , REMPROP

FSUBR COND, QUOTE , LIST

SUBR BELL

CHAR AyBysCyDHEsFsGaHsT»3 5asudhdh fit Salus d ud vin YayY.y,

CHAR 0,1,2,3,4,5,6,7,8,9

CHAR +o | 58505 /5%, 0,4," 54, ,0-2-8,%,=, ,<,>,@,-, ,;

QCHAR oxoe moe se
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Appendix I. Swym Register Assignments

All the general registers are assigned names under Swym. About

half are available for general use, while the remainder have specific

uses. Although the register currently assigned to each name 1s listed,

these assignments must be changed to better cooperate with gs.

Register Name Use

. N Contains a pointer to the atom NIL.

16 Al-A6 Arguments to SUBR's; Stutter routines return
results in Al; otherwise available for

general use. Always six consecutive registers.

7 ch _ Must always contain F'k'.

9 S Permanent base register for addressing system
data, transfer vectors, and a few basic routines.

10, 11 T, TT An even-odd palr of temporary registers. TT 1s

used by ATPM and PUTCH.

12 F Free storage pointer - next word to be allocated.

15 P PUSH down list pointer - last word which was
allocated. See Appendix B.h.

14 B Base for all routines

15 L Linkage, holds return address on entry to
a routine.

The user may alter Al-A6,T and TIT with impunity. The following rules

must be observed:

1. No register contents are garbage collected. If something must

be collected, 1t must be in the stack. The garbage collector

destroys all temporary registers.

2. A calling routine is responsible for saving any registers which

might be destroyed by a called routine.
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Appendix J. Swym - Stutter Output and Error Messades

There are four classes of output:

1) Normal

2) Read Error

3) Computation Error

L) ABEND - Abnormal Terminations

~ Each of these will be discussed in turn.

J.1l Normal output

Normally, the Swym system running Stutter reads an s-expression,

evaluates it, and prints the value. All cards read are printed beginning

in column 24 of the print line. After reading, the time since the start

of processing this s—expression 1s printed (in 100ths/sec.). Next

appear any lines PRINTed during EVAL. After EVAL, the total time

since starting to read the s-expression is printed (in 100ths/sec.).

Finally, the value of the expression 1s printed, followed by a blank line.

At any time, the garbage collector may be called. It will produce a

line of output as described in appendix E.

5.2 Read Errors

While reading cards, certain syntax errors are indicated. In all

cases the read routine proceeds in some manner, usually by ignoring the

error. The read error message includes a pointer ('<') beneath the next

character to be scanned. Usually the character in error 1s immediately

to the left.
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Error Code Routine Error Action

RO RDSE missing right super-paren -'>'; start skipping s-expressions

Rl RDSE end of skipping chars for RO; reading continues

R2 READ and missing right parens ')'- right parens created; number
RDSE inside super-parens; 1s printed at the far right

R> RDLIST extra dot between list elements; ignored

R4 RDSE RO occurred while skipping for skips for inner RO then back
earlier RO; to skipping for outer RO

RS RDAT igl char in X'...', W'...', or invents quote before the error
B'..."'; character this may confuse the

scanner

. R6 RDAT C'...' but should use Z'...'; Z'..."' assumed

hd RT RDAT B'...' but should use W'...'; W'..o' assumed

R8 RDAT X' appears where quote ignored, atom with print

x § {W, X, Z, C, B}; name x is produced; beware, the
scanner may become confused.

R8 GETCH inside quotes but no '-' in 72; stays in quote mode

RA GETCH non-blank in 72 outside quotes ignored

RB RDAT too many digits (9) in integer; this and all after ignored

RC RDSE and igl char at start of s-expr; Y

RDLIST igl char after '<' or '('; } ignored
1gl char between list elements; |
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J.> Computation Errors ,

These errors terminate evaluation of the current s-expression. Variables

are not rebound; this means that global variables may not have their

correct value and also that list structure may be saved unnecessarily.

Swym continues after these errors by evaluating the next input s—-expression.

Error Code Routine Error

BI BINDERY trying to bind atom with function definition
in cell

CN C@ND no predicate was true

E x EXPLODE argument not symbol atom (type 0)

El EVAL arg was unbound atom
atom at front of s-expr was not symbol

(type 0)
atom at front of s-expr had no function

definition

atom at front of s-expr had illegal function

definition type (system error)

more than six arguments to a SUBR

more than one formal argument in FEXPR
definition

M1 MAKSTRNG argument was not a list of atoms each
having a one character print name

PP PUTPR@P first argument not a symbol atom (type 0)

Pl PUTSTR argument not character string atom (type 1)
(system error)

RI STIVCCH argument's print name not one character

RJ GET@BJ argument not a character string atom
(type 1)
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J.4 ABEND - Abnormal Terminations

These errors are always fatal and produce a dump if a / /SYSUDUMP DD

card has been included. Most are concerned with errors in the garbage

collector and indicate that the data structure was illegal. Further

computation on an erroneous data structure can produce nothing useful.

Completion Code Routine Error

System OC6 FST,RST Fst or rst taken of an atom

User 7. FINISH During debugging, normal
~ termination

20 PBPPEN , PUTBYTE Insufficient memory remaining
after garbage collection

20 COLLECT Argument already marked with ml

28 ATCPL Illegal atom type

2F CPLX Atom A =ml A m2

3E CPLX Atom A ml A —me

6E CPLX —atom A m2 A =—ml

TE CPLX —atom A —m2 A m|

TE GC stack pointed at an ml A~me
or —mlL A m2 word

118 CHLLECT in second pass, found atom
A —ml A —m2

122,126 Ge invalid stack block type

125A CALLECT in second pass, found =atom
A ml A —m2

1A8 C@LLECT in second pass, found rst: atom
A —ml A —m2
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Appendix Ke. Proposed Instructions for the TBM/360

The instructions proposed 1n this appendix are intended to give the

flavor of possible additions to the 360 instruction set. A completely

different machine design might be preferrable, but would mean reprogramming

on the scale accompanying introduction of the 360. Additions to the

instruction set would not obsolete any existing programs, except in that they

could be written more compactly in the proposed extended instruction set.

The instructions are proposed in terms of the 360 because to a large extent

they then also apply to most traditionally designed computers. Thus,

although these instructions might make radical changes in program design

(more modularity), the basic design of computers need change very little.

Four sets of proposals are included below:

Loads and Stores |

Associated-Bit Instructions

Stack Instruction

Subroutine Linkage

; The last two are interdependent, but otherwise these instruction sets

could be added individually.

Proposed Loads and Stores

These instructions are intended to remove some of the more annoying

limitations of the 360. They have been proposed many times, especially

in [Wrth 68].

THT, (RX) Load Halfword Logical

The halfword at Dg (XB) replaces the low order
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16 bits of register Ry The upper 16 bits of Ry
are unaffected.

STHA (RX) Store Halfword Arithmetic

If bits 1-16 of R, do not all match the sign bit, this

instruction causes a fixed point overflow. Otherwise,

the low order 16 bits are stored in the halfword addressed

by D(X, B))

LI (AI, SI) (RX) Load (Add, Subtract) Immediate

A thirty-two bit quantity 1s computed from D, plus the

contents of registers x and Bs treated as signed

numbers. The resulting quantity 1s loaded (added, sub-

tracted) to register Ry AT and SI may cause fixed point

overflow.

LIR (AIR, SIR) (RR) Load (Add,Subtract) Immediate Register Field

These instructions are similar to LI (AI, SI) except that

the quantity loaded, added, or substracted is the R, field

of the instruction (not the contents of that register).

LIN (STIN) (RX) Load (Store) Indirect

The D, (,B,) field refers to a word in memory. The con-
tents of this word are used as the address from which to

load or to which to store the contents of Ry

Proposed Associated-Bit Instructions

There are many uses 1n higher level languages for non-numeric bits

associated with the words of memory. This proposal describes one set of

instructions for manipulating these bits. It 1s assumed that one bit 1s
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associated with every byte of memory, but that the most common use will be

to use 8ll four bits for each word. Four bits are also associated with each

general register. Any instruction not specified below does not alter the

bits in memory or in a general register. This means that a floating point

field, for example, remains marked as such as .long as only floating operations

are used on that field.

MVB (SS) Move Bits

The bits associated with the L + 1 words starting at D,(B,)

are moved to the bits for the IL + 1 words starting at D, (8)
The operation proceeds from left to right by word. Both addresses

must be on word boundaries. 0 <_L <255.

MV SB (SS) Move Single Bits

The bits associated with the L + 1 bytes starting at D,(B,)

are moved to the bits for L + 1 bytes starting at D,(B,):

The operation proceeds from left to right. 0 < L < 255.

TMB, NIB, OIB, oo
XIB,MVIB (SI) These 1nstructions correspond to the normal instruction

without the 'B' suffix. The difference is that the four

low order bits of the mask correspond to the four bits

associated with the addressed word. The address must be on

a word boundary.
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GBR (RR) Get Bits from Register

The four low order bits of Rl are replaced by the bits

associated with R2. Bits 24-27of Rl are zeroed; other

bits are unchanged. B

PBR (RR) Put Bits from Register oo

The bits associated with Rl are replaced by the four low

i order bits of R2.

PIB (RR) Put Immediate Bits

The bits associated with Rl are replaced by the contents

of the R2 field.

LB (RX) Load Bits

The four low order bits of register Rl are replaced by the

bits associated with the word at D, (X;,B,). The next four
low order bits (24-27) are replaced by zero. The rest of

the register is unchanged. D, (X;,B;) must specify a word

boundary.

" STB (RX) Store Bits

The four low order bits of Ry replace the bits associated

with the word at Dj (X;5B;)- The latter must specify a word

boundary.

PB (SS) Pack Bits

The D, (;) field specifies the beginning of a field of L + 1
bytes. The low order four bits of each of these bytes 1s set

from the bits associated with the corresponding word in the
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D,(B,) field. The latter is L + 1 words long. The high

order four bits of each byte are zeroed. D,(B,) must be

on a word boundary. 0 < IL < 255.

UPB (SS) Unpack Bits

D,(B,) specifies the start of a field of L + 1 bytes. D, (By)
| specifies the start of a field of L + 1 words. UPB

reverses the process of PB by setting the bits associated

with the words from the low order four bits of the corres-

ponding byte. D, (B;) must specify a word boundary. 0 < L < 255.

TSB (RX) Test Single Bit

The low order bit of the condition code 1s set from the bit

associated with the byte at D, (By) The high order bit 1s
set from the bit associated with the other byte in the half-

word of which D, (B;) 1s part. If D, (B,) 1s even, the

high order bit is set from the bit associated with D, (3) + 1.

If odd, then Dy(B)- 1.

TRTB (SS) Translate and Test Bits

The four bits associated with the word at D,(B;) et sequens

are used to index into the table at D, (By) The table need

have only16 entries. Termination and condition code

setting are as for the instruction TRT.
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L (RX) Load

This instruction 1s identical to the normal load instruction, oo

except that the bits associated with the target register are

set from the bits associated with the word in memory.

IR, LNR, LPR,

LTR (RR) The bits of the target register are set from the bits

of the source register.

- LM, STM (RX) The bits of the target are set from the source.

Proposed Stack Instructions

The problem with using a stack on the 360 is that code must be generated

to test for the ends of the stack. These instructions manipulate the stack

and test for the beginning and end. In all cases, the Ry field indicates a

register containing a stack pointer. This register always points to the

latest word added to the stack. The register 1s decremented for each entry,

so all recent entries can be addressed relative to the stack pointer. The

D,(B;) field of the instructions is assumed to be the address of a two word
Stack Control Block. The first word of the block 1s the address of the first

entry 1n the stack, the second word is the address of the last allowable

entry in the stack. This control block 1s used to check for the ends of the

stack. Stack instructions can generate two new interruption types; stack

overflow and stack underflow.
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QR (RX) Queue Register on Stack

The contents of Ry are decremented by four and compared

against the contents of the.word addressed by D,(B,). If
less-than, then a stack overflow interrupt 1s generated.

Otherwise, the contents of the R, are stored at the location

: indicated by the revised contents of Ry

QMI (RX) Queue Multiple Immediate

The R, field 1s multiplied by four and subtracted from Ry

The result 1s compared against the contents of the word

addressed by D, (B,). If less-than, a stack overflow
interrupt 1s generated.

UQR (RX) Unqueue Word from Stack

The contents of Ry are compared against the contents of the

| word at Dy (By +h if greater-than or equal, then a stack under-

flow interrupt is generated. Otherwise, the contents of R,

| are replaced by the word addressed by BR, Finally, Ry 1s

. incremented by four.

UML (RX) Unqueue Multiple Immediate

The R, field 1s multiplied by four and added to Ry The result

1s compared against the contents of the word at D (By) + he

| | If greater-than, a stack underflow interrupt 1s generated.
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UQER (RX) Queue Double Floating Register

Queue Short Floating Register

Unqueue Double Floating Register

Unqueue Short Floating Register

These are analogous to QR and UQR except that they use the

floating registers. Also, QDR and UQDR modify the Ry

register by eight rather than four.

Proposed Subroutine Instructions

CAL (SS) Call a Subroutine

The R; and D(B;) fields refer to a stack. These fields

are used to QR the program counter. The R, register 1s

loaded with the word indicated by D,(B,)- The program

counter 1s loaded with the same word so that execution begins

at the address in R,),

RET (SS) Return from a Subroutine

The R, and D,(B;) fields refer to a stack. UQR is executed
from this stack and the top element 1s loaded into the

program counter and into Roe The displacement Dy and the

contents of B, are added to the program counter.
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Appendix L. Demonstration of the Correctness of the Swym Garbage Collection
Algorithm

The Swym garbage collector is reasonably complex since the central routine,

COLLECT, involves two loops and recursion. The potential user deserves some

reassurance that COLLECT will not mysteriously modify his data. The problems

of minor errors 1n garbage collectors are severe because the collector 1s

called when storage 1s exhausted, and this depends on the data in the problem

| at hand. This appendix attempts to demonstrate the correctness of the COLLECT

algorithm. But 1t 1s important to note that this demonstration proves nothing

about the actual Swym system garbage collector. There are three reasons:

1) This 1s a demonstration of an algorithm. The program itself may or

may not correspond to the algorithm. There 1s many a slip 'twixt

conception and core; errors can occur 1n coding, keypunching, assembly,

or during execution, when some other part of the system may modify

COLLECT.

2) It 1s necessary for this proof.to make numerous assumptions about

the effect of subsidiary functions. These are subject to the

problems mentioned in (1). They are also subject to that fact

) that they are specified only in English, a not always precise

language.

3) The proof itself is primarily in English. A gain in precision could

be achieved by translating the proof into the predicate calculus;

but even though more readers might be reassured, the number of

readers would decline drastically.

Despite all the above, the demonstration of the correctness of the COLLECT

algorithm 1s at least an interesting problem. Because of the involuteness
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and the fact that a given call depends on the correctness of higher level

invocations as well as lower level invocations, the major problem is avoiding

a circular proof.

Most of the functions used in COLLECT are defined elsewhere. The follow-

ing are assumed as primitives: fst, rst, atom, rplf, and HD. The five

operations on marking bits = ML, MZ, MARK1l, MARKIl2, and UNMARKI - gre all

assumed to use two bit tables to associate two bits with each word. This is

contrary to the implementation, but simplifies the demonstration somewhat.

(A final note will show how to remove this restriction.) The properties of four

functions must be presented in detail: ATCPL, GCPUT, FIXUP and COLLECT. The

properties of the first three will be assumed while the properties of COLLECT

are to be demonstrated. The relevant properties are listed in Figure L.4.

The CPLIECT algorithm in figure L.1 has extra labels for reference during

this appendix; otherwise, it is the same algorithm as given in appendix E. A

flow chart 1s in Figure L.2, for those who read flow charts. The labels in

L.1l and L.2 will be used to refer to the relevant statement without specific

reference to the figure. Several other types of references are made to items

identified with a capital letter followed by one or more digits. This table

summarizes the capital letters and the location of more information.

A ATCOL property

| C COLLECT property
See Figure L.4

F FIXUP propertyG GCPUT property |
L a figure in this appendix

M marking bit | See Appendix E
S statement label in Figure L.1
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The argument to CPLLECT is a list. CALLECT processes as much of that

list as can be represented in new core as a single sequence of consecutive words,

where only the last is a rst pointer. This Dart of a list is called a list

segment. Sometimes it is the entire list, -ending with a rst pointer at an

atom. But if some rst of the list is already collected, the list segment must

end with a rst pointer to the existing representation of that rst. For conven-

: ience, the pointers pointing at the elements of the list segment will be called

fst pointers.

" Each invocation of CPLLECT writes a list segmenton the temporary file.

After all structures are collected, this file is read in to replace list storage.

It represents the same list structures as the old contents, providing that

all pointers into list storage are modified to point to the new locations of

the structures. The old contents of list storage are referred to as old core.

The new contents, though stored temporarily on the file, are referred to as

new core. For every pointer into old core, there is an equivalent pointer into

new core. As COLLECT processes a list segment, say X, it replaces fst (x)

in old core with a pointer to the equivalent of X in new core. For example,

the fst of the list (A B C) 1s replaced with a pointer to the same list in

new core (not with a pointer to A in new core). This replacement is done with

the rplf in S34. Later the pointer to the new core equivalent is accessed with

the fst in S3422or S422. These three statements are not operations on list

structure in the sense normally understood by ‘fst! but they are implementation
independent in that they only require that fst return the value stored with

rplf.

COLLECT contains two loops: the first is all statements numbered Slx and

32x; the second is all statements S$3x and Sbx. 811 and 831 initialize the

loops by setting r to a rst of the list (the list itself being considered the
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oth rst). Then the Slx and S3x statements process an element of the list.

The S2x and Sbx statements check the next successive rst and either loop

back, or process the rst and terminate. Below, the first loop will be

referred to as pass one and the second loop as pass two. This 1s because

each makes one pass over the list segment.

Understanding CPLLECT requires knowledge of the state of the list segment,

X, at $51 There are three cases:

1. Each pointer in the list points at a word with at least Ml. Each pointer

- has its own Ml. bit on and M2 bit off. The end of the list 1s signalled

by a rst pointing at an atom.

2. Same as case_l, except that the final rst points at a word marked with

both M1 and Me.

De This case is like case 1, except that the final rst is a word that is

marked with M1 and not M2. In addition, the element pointer to the last

element has neither marking bit.

Pictorially these cases can be represented as in diagram Le3.

To illustrate the predicate calculus approach to this demonstration of

correctness, here 1s the predicate that a list segment satisfies:

(In) (LIAL2AL3)

where

n-1

11 = A (MRE) A M(R(1))) A = M2(R(n))
i=1

n

I2 = A M(fst(R(i))) _ {case
i=l

L3 = (M(R(n)) A (atom(R(n+1)) v M2(R(nt+1))))

v(-ML(R(n)) A ML(R(n+1)) A R(n+1) # R(n)) case 3)
v(R(n+l) = R(n) A -ML(R(n)))
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where

R(1) = rst(x)

rst (p) = 1f 1=0 then prelse rst et (P))

X = argument to COLLECT :

The demonstration of the correctness of CALLECT requires J steps. The

first step is to show that CPLLECT terminates. This can be shown with

minimal recourse to CPLLECT's properties. Secondly, assuming that CPLLECT

1s correct for all recursive invocations, COLLECT 1s shown to have properties

Cl-ClO. Finally, it 1s shown that the new core image 1s equivalent to the old

core, and thus that CPLLECT is correct.

The first two steps are sufficient to show that CPLIECT writes out a list

segment. For if CPLLECT terminated, at some level of recursion it did not

call itself and thus did not depend on its own properties. The fact that

CPLLECT also depends on the correctness of higher levels of recursion 1s

dealt with in the third step.

Certain of the properties in L.4 are assumptions about the arguments to

the relevant function. These are included for ease of reference, but they

must be demonstrated each time the function is called. There are a few global

assumptions:

1) At the time COLLECT is first called, for a given garbage collection,

there are no marking bits set; all words w satisfy -ML(w) 2 2(w).

2) ~~ When CPLLECT is called by the garbage collector or ATCHL, its argu-

ment satisfies CO.

3) No pointer 1n memory points at a word with the rst bit on.
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Lemma 1. CO 1s always satisfied.

By the second global assumption above, CO 1s satisfied when COLLECT

is called externally. When CPLIECT is called at S142, its argument is neither

an atom nor marked M1 because of the tests-in Slk. Thus to violate CO, % in

S142 must be —ML(t)AM2(t). But by the first global assumption above this

word was not so marked at the beginning of garbage collection. Consequently,

it must have been created by earlier or concurrent calls on CPLLECT. These

calls must have included execution of $35 to turn on the M2 bit and a subsequent

call on S223 to turn off the Ml bit that is also set at $35 (835 is the only

statement turning on M2 and S223 1s the only statement turning off Ml). But by

the test before 5222, S223 cannot be executed for a word with the M2 bit.

Consequently, a word satisfying -ML(t)AM2(t) cannot exist. Thus S142 cannot

violate CO, and the lemmas is proven.

Lemma 2. At S812, r is unmarked and non-atomic.

This is true on entry to CPLLECT, by Lemma 1. Thereafter, the lemma is

true by the tests in $22, which terminate pass one if the next r would be

atomic or marked.

Lemma 3. S223 unmarks the last word marked at S13; a word previously unmarked.

No statements modifying r occur between S223 and S13 (assuming the Algol

interpretation of variable binding). The second assertion follows from lemma

Le

Lemma 4 M2(w) © ML(w).

This 1s initially true since 1t 1s assumed that there are no M2 bits set.

Thereafter, it remains true since M2 can only be set by $35 and that statement

also sets Ml. The ML cannot be unmarked by S223 as shown in the proof of

lemma l.
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I. COLLECT Terminates

| Lemma De Each call on COLLECT sets at least one previously zero Ml bit.
By lemma 2, the argument to COLLECT, X, 1s not marked with Ml. It is so

marked by 815. If S223 is not the path chosen through $22, then X remains

marked with MI. If S223 is executed while r = X, then X is unmarked, but is

: marked again at 835. In either case, X remains marked with Ml by lemma3
| and A.5.

i Lemma 6. The recursion in S142 is always to a finite depth and therefore
_ terminates.

By lemma 2, a previously unmarked word is marked at S15. But there are

a finite number of words in memory (otherwise the garbage collector would

not be called and its correctness would not matter). By the test before S1lk2,

COLLECT does not recur if what would be its argument is already marked. Since

every time CPLLECT is called there are fewer words not marked with M1, CPLLECT

cannot recur indefinitely.

Thmma I[fe0p 1n pass one terminates.

At 82242 the loop returns to chkloop, that is, S12. But then S13 marks

a previously unmarked word (by lemma 2). Since at each execution of S13

there are fewer words unmarked with ML, the loop terminates. Note that 1f S223

unmarks a word, the loop is terminating since $2242 will not be executed.

Lemma 8. The loop in pass two terminates.

By lemma 1, x 1s not marked with M2 after S31. But that x is marked with

M2 after S35. The loop terminates at Sk22 if t 1s marked with M2, but r is

assigned the value of t in Sk231, just before looping back. Therefore S35

again marks a word previously unmarked with M2e Since there are a finite

number of words not marked with M2, the loop must terminate at Sk22, if not sooner.
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Theorem 1. COLLECT terminates.

Assuming that all subsidiary functions terminate, the theorem follows

from lemmas 6, 7 and 8.
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II. Collect has properties Cl1-ClO.

In this section the inductive assumption 1s made that all subsidiary

calls of CPLLECT satisfy CO-Cl0 if they terminate.

Lemma 9. Pass one has properties Cl-Ck.

The words constituting the list segment are those pointed at by

successive values of r« S13 sets the ML bit in that word, thus satisfying C2.

Cl is satisfied by Slk:

- If t (= fst(r)) is atomic then Al is satisfied for S14l and t is marked

M1 by property A2 or Ab.

If t is marked with Me, then it is also marked with M1 by lemma Lt.

If t 1s marked with Ml, there are two possible cases: t has been marked

by a higher level invocation of CLLECT, or t 1s a word in the list

segment. In either case, t 1s indeed marked with MI, satisfying Cl.

If t is unmarked, then it is marked with Ml since the lower level CALLECT

is assumed to satisfy CZ.

S22 tests for termination of the list segment. If S221 1s executed, then

the list segment 1s an instance of case 1 in L.3. If S222 1s executed, then

this 1s an instance of case 2. If S223 1s executed, then this 1s an instance

of case 3, and the Ml bit in e is indeed set off, satisfying Ch.If S22k is

executed, then at least one more element pointer 1s to be included in the list

segment. Each time through S224, all prior element pointers of the list

segment satisfy Cl and C2, as shown above. The first pass eventually does

terminate, by lemma 7, and can only terminate by one of the paths through S22

discussed above; thus C3 and C4 are satisfied.
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Lemma 10. Pass 2 satisfies C5-C8.

The proof is by induction on n, the length of the list segment isolated

in pass 1. Suppose n = 1. About half of the possibilities for this case are

illustrated in L.5. I

C>: one word is written for the one fst pointer in the list segment by

SpLR

C6: the address of the written word replaces the fst pointer in the list

segment (statement S34).

i Cf: the word in the old core list segment 1s marked with Ml and M2 by

S355.

C8: since n= 1, Sk2 writes a rst pointer in one of its branches, depend-

ing on which case of list segment has occured.

Case 1. The rstis an atom. In this case a pointer with the rst bit

is written in S4211 or skel2.

Case 2. The rst is marked with M2. A pointer with the rst bit is

written by shka2.

Case Je Note that m 1s false because there 1s no Ml bit with the last

fst.pointer (by Chk). Thus S424 is executed and a word is

written that will eventually contain a pointer and a rst bit.

Suppose n > 1. In this case, €5,C6, and C7 are satisfied for the first

fst pointer by the same argument used for n = ls By the structure of a list

segment, rst (r) is neither atomic, nor marked with M2. Furthermore, nm is

true, because the Ml bit is always on for all fst pointers in the list segment

other than the last. Consequently, S423 is executed and control returns to $32

with r pointing at the rstof the original list segment. But rst of a list

segment of length greater than 1 is a shorter list segment, so the induction 1s

satisfied. Thus the lemma is demonstrated.
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Lemma 11. (C9)

CYLLECT does not modify any word marked with Ml by any other routine or

other invocation of CPLLECT.

There are seven statements in CPIIECT.that modify marking bits or words

in old core: 813, S1kl, sik2, S221, $223,834, and S35. The lemma will be

demonstrated for each in turn.

S13 (MARKL. (Tr) ) By lemma 1, this word was previously unmarked.

S141 and s221 (ATCAL(t)) By the tests preceeding these statements, Al is

satisfied. Hence, ATCOL satisfies AS and A2, modifying no word

previously marked with MI.

S142 (CALLECT (t)) t is neither atomic nor marked by lemma 4 and the tests

in S14. Thus CO is satisfied and by assumption the lower level

invocation of CPLLECT is correct. Therefore S142 satisfies C9

because the lower level CPLILECT does.

S223 (UNMARKL(r)) By lemmas 2 and 3, this statement unmarks a word

that was unmarked prior to S13.

S34 (rplf (rs; . ..)) As shown in the demonstration of lemma 10, r is

part of the list segment and it was marked with M1 by pass one of

the current invocation of CPLLECT.

S35 (MARK12(r)) Similarly to S3k.

Lemma 12 (CLO)

Any word marked Ml either contains or will contain the address of the

equivalent word in new core.

When the equivalent address is placed in the word by S34, the word is

marked M1 (and M2) by 835. By C9 and Ad, this word is not thereafter modified

by any other routine. If M2 is off, then ML was set by S13. But by C5 and
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C6 the address of the new core equivalent will be placed in this word.

Theorem 2. COLLECT has properties (C1l=-Cl10.

Lemmas 9, 10, 11, and 12 were demonstrated with the assumption that all

lower level calls of CPLLECT were correct. But if the recursive call terminates,

then at some level CPLLECT did not call itself. Thus at this level correctness

can be demonstrated without reference to lower level calls of CPLLECT. Con-

sequently, this lowest level 1s correct. The correctness of the outermost level

can be proven by induction on the depth of recursion. But by Theorem 1, COLLECT

terminates. Consequently, by Lemmas 9,10,11, and 12, COLLECT has properties

’ Cl-Cl10. R
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III. The New Core Image 1s Isomorphic to the Old

The isomorphism to be demonstrated will be written x = y and defined by

X= y= (Af atom (x) then atom (y) A x =y

else fst (x) = fst(y)Arst(x) = rst (y))

where x = y 1s the isomorphism induced by ATC@L. If x 1s a word 1n old core

marked with ML and M2, then by C6 that word contains the address of the

—equivalent word in new core. This equivalent word is denoted by x's. It is

necessary to demonstrate that after garbage collection (but before reading the

new core) (Vx) (ML(x)) > (M2(x)Ax=x")e The proof will be by induction on

n the length of the list segment in new core. This length is the number of

words from x' (including X') to the next word in memory with'a rst bit.

Lemma 14% M2(x) D> if atom (x) then HD(x) = x' else fst(x) = x' and the value

of x is not modified, nor is the M2 removed, by CALLECT or any subsidiary

function.

By AL,C6, and C7, x' is written into Xx at the same time that X is

marked with M2. By lemma 4%, M2(x) > ML(x); but if ML(x) then X is not

modified as guaranteed by A5 and C9.

Lemma, 15 S342 has the effect of GCPUT (t'), where t = fst(r).

Note that by definition FIXUP executes GCPUT; so every branch of S342

executes GCPUT exactly once. By Al, S34211 does GCPUT (t') if t is an atom

marked M2. By C6 and C7, S3422 does GCPUT (t') 1f t 1s non-atomic and marked

with M2. 834212 does GCPUT. (0) but establishes a fixup so that the zero will

be replaced by the contents of t after CPLLECT. But by A3 and Ab, t will

contain t's. Similarly S3423 does GCPUT (0) and establishes a fixup. By Cl,
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t is marked with ML (and not M2 because of test before S3422)3 but by C10 that

word will contain the address of its new core equivalent. Thus in each branch

of S342 either t' is written or a fixup is generated so that the written word

will contain t'. )

Lemma 16. SU4211, sk212, sh22, and Sk2k have the effect of GCPUT (t' v rstbit)

where t = rst (x).

shoil: By Ab, HD(t) contains the address 1's

B shoo: By A3 and Ab, HD(t) will contain the address t's Since the

fixup processing routine or's the fixup into the word in new

core, rstbit remains in the word.

sho2: By C6, fst (kt) is t's

Shook. Since m is false, this must be a case 3 list segment. (The

only case having —-ML(R(i))) But in this case, by the test

before $223, the rst (r) is marked with Ml and by ClO will

contain t's Consequently, the fixup process will create a

correct rst pointer to t's

Theorem J.

After CPLLECT, any word, X, marked M2 is also merked M1 and contains a pointer

to the equivalent word, x', in new core satisfying x = x's

If x is an atom, then CPLIECT called ATCPL if it processed x. By Ab,

x' is atomic and x = x'« If x 1s not atomic, then by the properties of pass

two, X' is not atomic. The proof that Xx = x! is by induction on np, the- number

of pointers from x' (and counting x') to the next word with a rst bit. Note

that x' was marked by S35 and x' was written by S342 which never puts in a

rst bit.
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n= 1.

fst = fst(x'). By lemmal5, x' was effectively written with GCPUT(t')

where t' is the address of the equivalent of t and t =_fst(x).

rst(x) = rst(x'). Since n = 1, the word following x' has a rst bit and

thus contains the pointer at_rst(x'). But any word with a rst bit must have

been written with S%2. By lemma 16, any word written with Sl2 was effectively

; written with GCPUT((rst(r))' v rstbit). But r was not modified between $23 and

sk2 so r indicated the same X whose fst was written out in S342. Thus rst(x) =

rst(x') because the latter was created from the former.

nz 1.

fst = fst(x' ). By the same argument as the case above.
rst(x) = rst(x'). Since n> 1, the word following X' has no rst bit and

rst(x') 1s a pointer to that following word, that is, a pointer to the list

segment of length n-1 starting at that following word. After X' was written,

Ske? was executed (otherwise the following word would have a_rst bit). So

S32 et sequens were executed with r pointing to rst(x), creating a list

segment of length n-l. By the induction, the shorter list segment 1s equivalent

to rst(x). Consequently _rst(x) =_rst(x').

Thus in all cases, CPLIECT creates a correct representation of its argument.
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Note on the Implementation

The actual implementation of CPLLECT uses the ML and M2 bits in the word

itself as shown in figure I.2. The problem for the above demonstration is

that the M2 bit is the same as the rst bit. Two changes are made 1n the

algorithm: the arguments to all functions aremasked to remove possible

marking bits and t := rst(r) is changed to

t := if M(z+h) then r+h else rst(z).

This note will show that the proof can be modified to take these changes

into account and that the modifiedrst function is valid.

The proof of lemme1 depends on global assumption 1 that no marking bits

exist before the first entry to CYLLECT (for a given garbage collection). But

since there can be rst bits, global assumptionl does not hold. Instead, 1it

must be changed to:

At the time CPLLECT 1s first called for a given garbage collection,

there are no marking bits set in any fstpointers.

Thereafter, all discussion of marking bits must be qualified by reference to

fst pointers only. But we have:

Lemma 0. COLLECT never sets Ml in a word with the rst bit.

Global assumption 5 states that no pointer into list storage, no fst

pointer, and no rst pointer points at a word with the rst bit on. But the

variables x,r, andt only acquire values from these three sources. Thus

X, r, and t never point at a word with the rst bit on. But Ml is only set by

S15 and 835 where the argument is r. Consequently the lemma 1s true.
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Because of lemma 0, the modified global assumption 1 is valid. Further-

more, the extension to the rst operation is justified; 1f the word following

a given word has ML, it cannot be a rst pointer and the pointer to r+4 is what gst

would return anyway.
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Figure L.l oo

COLLECT (x) = begin list x,r,t; Boolean mj;

word rstbit : = x'00000001' ;

S11: r := X;

chkloop:

S12: t := fst (r);

sl3:  MARK1 (r);

sis: if atom (t) then

) sl4l:  ATCOL (t)

elseif IM1 (t) then

S142: --COLLECT (t);

S21: t := rst (r);

s22: if atom (t) then

s221:  ATCOL (t)

else if M2 (t) then

$222:

else if MI (t) then

S223:  UNMARK1 (r);

else

S224: begin

S2241: r = t;

$2242: gotk Loop

end;

S31: r := x;

S32: wrloop: m := M1 (r);

$33: t := fst (r);
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534: rplf (S341: r;

$342: if atom (t) then

$3421: if M2 (t) then

S34211:  GCPUT (HD (t))

else

534212: FIXUP (t; 0)

elseif M2 (t) then

53422:  GCPUT (fst (t))

else

$3423: FIXUP (t3 0));

535:  MARK12(r);

Sul: t := rst (r);

S42: if atom (t) then

S421: if M2 (t) then

54211: cepur (HD (t) VV rstbit)

else

54212: FIXUP (t; rstbit)

| else if ¥ (t) then

S422:  GCPUT (fst (t) V rstbit)

else 1f m then

S423: begin

S4231: r := t;

54232: gotol 0 Op

end

else

S424: FIXUP (t; rstbit)

end COLLECT
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Figure L. 2 (Cont) |

s 3 1

WRLOOP or

M = ML(R)

S33

T := FST(R)

- S34211

| TEMP :=

) y GCPUT
(HDCT)

N N 534212

| | TEMP :=
FIXUP

(T,0)

S3422

TEMP :=

GCPUT

(FST(T)

S3423

TEMP :=

FIXUP

1 (T,0) |

To RPLF

S35 Vv

MARK 12

(R)
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| 541

T=

RST(R)

| S4211

GCPUT

Y > M (HD(T)V
RSTBIT)

N N

_ S4212

| FIXUP
| (T,RSTBIT)

/ S422

y GCPUT(FST(T)V
=———————————"" RSTBIT)

‘
S424

N FIXUP |
(T,RSTBIT)

$4231

R.=T |

$4232
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FigureL. 3

Cases of 'List Segment’

Case 1: List segment ends with rst pointer at atom

o [11 2]o [Ly of® of —olerhen
€. €n

x

| Case 2: List segment ends with rst that has already been collected

| €; €n | €n1

Case Ju List segment ends with pst that is being collected

o [1f5 of \ °

Notation: @ indicates rst (either adjacent or rst pointer)

ey 1s a pointer at an element of a list segment
i>1

1 (2) indicates M1 (M2) set

1 (%) indicates M1 (M2) is zero

x indicates indeterminate M?
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Figure L. 4

Properties of ATCAL

Assumption:

Al. The argument must be a pointer at an atom.

Properties:

AZ. If the atomhead is already marked with M1, then ATCOL

returns; otherwise

A>. On entry, the atomhead 1s marked with Ml.

Ak. On exit, the atomhead is replaced with a pointer to the

equivalent atom in new core and the atomhead is marked with

Ml-and M2.

AS. No word marked Ml before entry to ATCOL 1s modified; marked,

or unmarked.

NOTE: ATCAL may call CPLLECT to collect a substructure of the

atom. If that substructure points back to the atom, C@LLECT

. will find an atom that 1s Ml but not M2. This case is

handled at 834212 and Sk2l2.
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Figure L. 4 (Cont) RR

Properties of GCPUT

Assumption:

Gl. The argument may be any word, with or without the rst bit.

Properties:

G2. GCPUT stores its argument 1n the next location in the new core.

G3. The value 1s the assigned new core address.

Properties of FIXUP

Assumptions:

Fl. First argument 1s a pointer at a word in old core.

F2. Second argument 1s either zero or zero with the rst bit.

Properties:

FS. The second argument 1s GCPUT.

Fh. An entry is made in the fixup table consisting of the first

argument and the value of GCPUT.

F>. After processing the fixup table, the GCPUT word will point

to the equivalent of the first argument.

Processing the fixup table takes two steps:

(1) After CPLLECT, the first argument (to FIXUP) will be Ml and

M2 by ClO;it is replaced in the fixup table by its contents,

which point to its new core equivalent (by lemma 1k).

(2) After loading the new core, the word pointed at by the second

item in each fixup is replaced by the first item.
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Figure L. 4 (Cont)

Properties of CPLLECT

Assumption:

co M(x) A (x) A —atom (x)

Pass 1 1solates a list segment.

Cl After pass 1, each successive fst 1s marked with at least MI.

C2 The Ml bit for each word constituting the list segment 1s

set on.

C3 Pass 1 terminates when 1t reaches a word that 1s an atom,

is M2, or is Ml.

ot Inthe last case of (C3, the Ml bit in the last word of the

list segment 1s set off.

Pass 2 writes it out and remembers its location(s).

CH Writes to new core one word for each word marked in Cl.

co Places in each word marked in Cl the address of the new

core equivalent word.

CY Marks each word marked in Cl with Ml and M2.

C8 Writes to new core a rst pointer to the rst of the list

| segment.

Miscellaneous:

C9 COLLECT does not modify any word marked with M1 by any other

routine or by any other invocation of CPLLECT.

Cl0 Any word marked Ml either contains or will contain the

address of the equivalent word 1n new core.
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Instances of Case | with n=1

After

Before: Old Core New Core

plex- plex- |p)|
op [Oef—oicao] [19 4 of —fireace | 9 [Oofefliess

so gm
0OE [1 ow0 0® 1head? 1 2 Ee 1head? ® head

— er —— a — —_— |
Ce CL

Offi 1 10ot defies] [1 [Ber—iiiole 1 [&

~~ — Ta 1 lec| |te] [OE] {yo0 oe lhead?2 19 Pe lhead?2 © head
| —_————

| ———

FigureL. 5

Collection of List Segments with n=1

Note:

A dashed line from old core to new core represents a pointer to the location

a word will occupy when it is read in.

A dashed line from new core to old core represents an entry in the fixup

table. The new core word will eventually point to the equivalent of
the old core word.
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Instances of Case | | with n=1

) After

Before: Old Core New Core

0 10® 1Oe
Lo

oo A
0%0l1° 2) 1 [®e

~. | |

0 1of@e—i%2 [11248 ERE

o— — — —— — — — w—

——— mma
~ TTTTT TT ITTT

ARN 1—

Figure.5

Collection of List Segments with n=1 (Cont)
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Instances of CaseI 11 with n=1 .

After

Before: Old Core New Core

Sm| LL_ _

BN
0 1of® 4 av 1

| 0 0 i 1®s
I —y

~ | Te

KE
a Si Sei oy

AAC) Ei

FigureL. 5

Collection of List Segments with n=1 (Cont)
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Appendix M. Description of Control Section CSSWYM

The control section CSSWYM 1s always addressable via register S. It's

contents serve a variety of needs: globalvariables for system routines,

transfer vectors for routine linkage, register definitions. CSSWYM 1s non=-

reentrant. ADSECT describing 1ts contents must be assembled with any

. Swym control section; the required code 1s described in Appendix N.

The following are included in CSSWYM:

1) Register Definitions. These names are equated to specific registers:

N, Al, A2, A3,A4, A5,A6,Ck, S, T, TT, F, Py, B, [;, See Appendix I.

2) AT EQU 6. Pointers at atoms point AT bytes in front of the

atom. References to atoms should use this identifier to emphasize

that the operand 1s an atom and in case the offset amount must be

changed. (Many routines presently ignore this rule.)

3) Bit Definitions. The macro BITTBIMK is called to set up a table

used by BIT (to find the bit mask for the bit-within-the-byte). Bits

defined in CSSWYM are;

M1, M2 The garbage collector marking bits. (These definitions

should be moved to CSGC.)

"CELREL This bit 1s on 1n an atom head to indicate that the

value cell contains a pointer at list structure. If

off, the cell contains a number.

CELVAL If on, the cell contains a value definition (possibly

the special value UNDEFINED). If off, the cell

contains a function definition.
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CELFNC This 1s a byte mask definition defining the function

definition bits in the atom head. If any of these bits

1s on, the atom has a function definition.

LY SWYM EQU * |

USING SWYM,S

This establishes addressability for the information in CSSWIM, Note

: that no program may modify the contents of register S. (The contents

are established by the routine CSINIT.)

5) Temporary Storage Areas.

SWYMSAVE _ Used as save area when calling OS routines.

SYSFOO Five word area to save registers 13, 14, 15, 0, 1 while

calling OS.

DUBWORK A double word work area.

TIME Used by STIME and TTIME to compute processing time.

NUMAT,
NUMATVAL A number can be printed by storing it in NUMATVAL,

then passing a pointer to NUMAT to PRINT or PRINI,

. 6) Pointers at List Structure.

These pointers point at list structure referenced by the system. The

values are updated by the garbage collector.

| VCHAROBS Points at CHAROBS, the list of all character objects;

i.e., atoms with one character print names.

VOBLIST Points at the OBLIST.

ST Points at the atomT.

VEFPROPS Points at FPROPS for EVGET.
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VUNBND Points at the special atom 'UNBOUND' for EVAL.

For further information on these structures, see Appendix H.

7) Work Areas for Specific Routines

See the indicated appendix for further information on these

variables:

. Memory control = Appendix E.4

MEMUSE, MEMNXT, MEMSIZ, FEND

Garbage Collector - Appendix E.4

GCTIME, GCABAD, #1M2

Print - Appendix F.?

PRPT, PRPEND, PRING, PRATBAD

Read - Appendix C

RDCOL, RDEND, RDING, PBHD, ATAMT, RDSUPCTR, RDERMS, RDERNg,

RDERLYC, RDERCT, RDCLASS, RDCHAR, RDSTAT

8) Data control blocks.

There are two DCB's, one for output =~ PRINTER, and one for input -

. CARDRDR. In the copied code, these are not assembled, but space 1is

reserved. They are assembled when CSSWYM 1s assembled by itself as

a CSECT.

9) Transfer vectors.

These contain the address constants used to address routines by the

CAL macro. The field labeled #xxx contains the address of the

routine xxx. The transfer vectors are created with the TVMAK macro.

One special transfer vector is included: #PO contains the address

of the stack. This is-used by ERROR to restore the stack pointer

(register P).
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10) Always eddressable routines. Sd

See the indicated appendix for a deseription of these routines.

Appendix Routine |
G FALSE, TRUE, PUTCH, SWERROR

E.% CHOKE

B.1 RSTAl, RSTA2, RSTA3, RSTT; RSTIT

228



___
rE

Appendix N. Adding Routines to SWYM-Stutter

Assembled routines, compiled routines, and interpreted routines can

be added to the SWYM System with a minimum of difficulty. This appendix

treats each of these types in turn.

N.l. Adding Assembled Routines

Routines designed to run under SWYM can be assembled in either an

existing SWYM control section or a new control section. In either case,

the assembly must include CSSWYM as a dummy control section so the routines

can communicate with SWYM., The following code must begin any SWYM

assembly:

TITLE 'title of control section’

CSSWYM  DSECT

PRINT OFF

"COPY SWYM

PRINT ON

* COPY SWYM

csectnm CSECT

The code for CSSWYM 1s copied from the SWYM macro library. Fach routine

must obey the linkage conventions indicated in Appendix K. It must begin

(physically and logically) with the SUB macro. It must end (logically) by

executing the RET macro. If the routine is to be referenced by routines

in other control sections, an entry must be made 1n the transfer vector

table 1n CSSWYM. To avoid reassembling all control sections, the entry

should be made at the end of the table and the card,
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DS nnA(O) (currently nn = 20)

should have nn reduced by l« In this way, the transfer vector table stays

the same length. If the routine 1s not referenced by routines outside

its control section, 1t 1s sufficient to include a TVMAK card for the

routine at the end of the control section. The TVMAK card must be

addressable when the routine itself 1s executed (register B points at the

SUB macro).

If a routine 1s to be referenced from Stutter interpreted functions,

there must be an atom for it 1n free storage. This atom can be created

by coding either

SUBR new routine name

or FSUBR new routine name.

Both generate an atom with the given indicator and a pointer at the new

routine. The new routine name must be the same as the label on the SUB

macro beginning the routine.

N.2. Compiling Functions for Swym

Although there 1s no STUTTER compiler, Swym has provision for

including compilers. Three major problems must be faced: storage for

the compiled code, linkage between routines, and variable binding.

There is no Swymbinary program space. The plan 1s that compilers will

store code in a new plex type. This 'code plex' will have a section for

reentrant address-independent code, a section for relocatable pointers,

and possibly a section for non-reentrant, address-independent data. The
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garbage collection routine for this plex type should move these plexes

to a semi-permanent area to avoid relocating them every time the garbage

collector 1s called.

The address of a routine may appear in two different places = the

transfer vector table and the property list of the name of the routine

(under either the SUBR or FSUBR indicator). To call another code routine,

. a compiled routine must load its address from the transfer vector table

using code such as 1s generated by the CAL macro. The compiler can find the

appropriate transfer vector entry because the contents are the same as the

address stored on the property list of the called routine's name. The

compiler must also store the address of a compiled routine in both the

transfer vector table and on the property list of the name of the routine.

This address must be the address of the code. If the code is stored in a

*code plex', the plexhead is presumably stored immediately in front of

the code. A special bit 1n the plexheadof the name of the routine must

tell the garbage collector that the value of the SUBR or FSUBR property

addresses a code plex. If thatplex 1s relocated, the address of the

code must be changed in both places where it 1s stored.

) The interpreter passes arguments to SUBR's and FSUBR's in registers

Al to A6. Compiled functions may not have more than six arguments and may

expect them in those registers. The result must be returned in register

Al. If a compiled routine needs more working space than Al-A6, T, and

TT, then 1t must store information on top of the stack with the equivalent

of PUSH and POP,
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N.3. Defining Routines To Be Interpreted

A routine to be interpreted must be stored as an s-expression with

the format given in Appendix D. This expression must be the value of the

indicator EXPR or FEXPR stored on the property list of the name of the

routine. The basic function PUTPROPmay be used for storing such expressions:

( PUTPROP

(QUOTE routine name)

(QUOTE s—expression)

(QUOTE EXPR)

A DEFINE function can be defined to simplify the process. The version

in figure N.l, accepts a list of function definitions of this form:

(name Vv1exp, . .. expm)

where name 1s the atom where the rest of the expression 1s to be stored

under the indicator EXFR.
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< PUTPROP

(QUOTE DEFINE)

(quote ((A) (DEF1 £)))

: (QUOTE FEXPR)
< PUTPROP

(QUOTE DEF2)

(QUOTE ( (A) < PUTPROP

(FST 2)

(RST a)

~ (QUOTE EXPR) >))

(QUOTE EXPR)

>

(DEF2 (QUOTE

(DEF1 (a) < COND

((NULL A) NIL)

(T (TAK2 (DEF2 (FST 2)) (DEF1 (RST 2))))

>)

))

Figure N.1
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Appendix 0. SWYM Control Sections

The assembly of SWYM-Stutter 1s divided into ten control sections or

CSECT's. When a routine in one CSECT 1i8 modified, it is only necessary to

reassemble that CSECT. Thus, total assembly time 1s reduced. All other

CSECT's use information in CSSWYM. For this reason, CSSWYM is assembled

as a DSECT along with each other control section. The assembly code to

do this 1s in Appendix N. This appendix lists the CSECTS and sketches the

contents of each.

The only non-reentrant control sections are CSSWYM, CSPDL, and

CSFREEST. There must be separate copies of these for each user of Swym.

The other control sections may be shared by all jobs in the 360 memory.

CSINIT Contains 1nititlization code for running any programs (not

just Stutter) under Swym. CSINIT establishes register contents,

opens the card and print data sets, and starts the timer. Even-

tually, initialization will include reading PARM information and

| setting up the stack and free storage areas according to parameters.

CSINIT 1s not needed after initialization.

CSSWYM Contains global information for Swym system routines.

Complete details are in Appendix M.

CSSUBS Basic subroutines for the Swym data structure; such as:

FST, RST, and TAK2Z.

CSGC Garbage collector. See Appendix E.

CSFREEST Free storage. See Appendix H. (CSSWYM 1s not assembled

with CSFREEST.)
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CSMAIN Main loop for Stutter. Calls READ, EVAL and PRINT in turn

as described in Appendix D. CSMAIN also contains FINISH which is

entered when the input is exhausted. By replacing CSMAIN, Swym can

be used as the basis for other interpreters.

CSREAD Read routines. See Appendix C.

CSPRINT Print routines, See Appendix F.3.

CSEVAL Stutter interpreter and functions useful to interpreted

functions. The routines in CSEVAL are among those described in

Appendix

cS2250 Experimental routine to interface to the 2250. Currently,

the only function is to ring the 2250's bell.
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MNEMONIC INDEX

All major Swym mnemonics are listedin this index. With each

mnemonic 1s listed its class and the location of its definitions in the

Appendices and the program code. A brief comment describes the function

of the mnemonic. Four differently sorted indices are included: mnemonic,

class, appendix, and control section. The last three are primarily for

review purposes.

There are five columns:

1) MNEMONIC = The indexed mnemonic.

2) CLASS = The ten classes are:

a) MACRO SWym macro

b) SUBR routines available to Stutter programs. These

c) FSUBR routines may also be entered with CAL.

d) caL routine callable only from assembled programs

e) CSECT control section

f) REG name equated to a register

g) SWIM name defined in CSSWYM

h) FIELD name equated to a bit or field definition

i} STRUCT a structure in initial free storage

J) MISC miscellaneous. Mostly routines with non-standard calling

sequences.

3) APP - Appendix containing definition of mnemonic.

4) CSECT = Control section in which the mnemonic is defined.

5) COMMENTS =- A brief description of the mnemonic.
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SWYM MNEMONICS SORTED ALPHABETICALLY PAGE 1

MNEMONIC CLASS APP CSECT COMMENTS

AND MACRO 6.7 MACLIB COMBINE TWO PREDS

AT MISC M CSSUYM EQUATED TO ATOM OFFSETI(6)

ATAMT SWYM C CSSWYM ATOM OFFSET (6)
ATCOL CAL E.3 CSGC COLLECTS AN ATOM

ATCO MISC E.3 GCSGC PART OF ATCOL FOR TYPE 3 ATOMS

ATC1 MISC E.3 CSGC PART OF ATCOL FOR TYPE 1 ATOMS

ATOM MACRO 8.1 MACL IB ? 1S ARG AN ATOM

ATOM SUBR F.1 C SSUBS STUTTER ROUTINE FOR-IS ARG ATOM?

Al REG I CSSWYM ARGUMENT REGISTER & RESULT REGISTER
A2 REG | CSSWYM ARGUMENT REGISTER
A3 REG I CSSWYM ARGUMENT REGISTER
Ad REG I CSSUYM ARGUMENT REGISTER

A5 REG I CSSUYM ARGUMENT REGISTER

AG REG I CSSWYM ARGUMENT REGISTER

_B REG | CSSUYM BASE REG FOR ALL ROUTNS
BCMAC MACRO B.7 MACL IB MAKE A BR CONDITION INSTRUCTION

BELL SUBR F.5 (£82250 RINGS BELL ON 2250

BINDERY CAL 0.3 GCSEVAL BIND ARG ATOMS TO THEIR VALUES

BIT MACRO B.S MACL IB IDENTIFY MNEMONIC WITH BIT IN WORD

BITTBLMK MACRO B.5 MACL IB MAKE A TABLE FOR '"BIT*MACRD

CAL MACRO Be® MACLIB SUBROUTINE CALL

C ARDRDR SWYM M CSSWYM DCB FOR READING CARDS
CELFNC FIELD M C SSUYM ATOM HEAD-FUNC DEF TYPE BITS

CELL MACRO B.2 MACLIS LOADS ATOM CELL INTO REG

CELREL FIELD M CSSUYM ATOM HEAD-CELL IS RELOCATABLE

C ELVAL FIELD M C SSUYM ATOM HEAD-CELL HAS VALUE (NOT FNC)
CHAR MACRO 8.3 YACLIB CREATES A CHAR OBJECT ATOM

CHAROBS STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL CHARS

CHOKE MISC E.3 ¢SGC BRANCH TO IF STORE EXHAUSTED, ABEND

CHYBL MACRO 8.8 MACLIR MAKE A CHARACTER TABLE (FOR TR)
COLLECT CAL E.3 GCSGC CREATES IMAGE OF ARG IN NEW CNDRE

coLXx CAL E.3 CC SGC CHECKS AND COLLECTS ONE POINTER
COND FSUBR F.4 CSEVAL CONDITIONAL EXPRESSION EVALUATED

C SEVAL CSECT D CSEVAL INTERPRETER ANO RELATED ROUTINES

CSFREEST CSECT H CSFREEST FREE STORAGE INCL INITIAL STRUCTS

CSGC CSECT E C SGC GARBAGE COLLECTOR

CSINIT CSECT 0 CSINIT INITIALIZATION

c SSWYM CSECT M C SSuUYM GLOBAL INFORMATION FOK SWYM RTNS
CSMA IN C SECT O CSYAIN MAIN STUTTER LOOP

CSPDL c SECT 0 CSPDL STACK

CSPRINT CSECT © CSPRINT PRINT ROUTINES

CSREAD CSECT C C SREAD READ ROUT I NES

CSSUBS CSECT © c SSUBS BASIC SUBROUTINES

CS2250 CSECT 0 CS2250 2250 EXPERIMANTAL INTERFACE

C4 REG | CSSWYM ODD REGISTER CONTAINING F' 4°

DUBWORK SWYM M CSSWYM DOUBLE WORD WORK AREA

EJECT SUBR F.3 CSPRINT MOVES PRINTER TO NEXT PAGE

ELSE MACRO B.7 HACLIB COND - END TRUE; START FALSE PART

END IF MACRO B.T7 MACLIB COND = END FALSE; END CONDITIONAL
EQ MACRO 8.1 MACL IB ? ARGl = ARG2{(TESTS TWO POINTERS)
EQ SUBR F.l CSSuBS STUTTER RTN FOR-ARGL = ARG2?
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SWYM MNEMONICS SORTED ALPHABETICALLY PAGE 2

MNEMONIC CLASS APP CSECT COMMENTS

ERROR SUBR F.5 CC SSUBS WRITES MESSAGE AND GOES TO TOP LVL

EVAL SUBR 0.3 CSEVAL STUTTER INTRPRTR EXPRSN EVALUATOR

EVCH MACRO 8.3 MACLIB GETS 4RITH VAL QF EBCDIC BITS

EVGET CAL 0.3 CC SEVAL GET FUNCTION DEFINITION OF ATOM
EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESS IONS

EXPLOOE SUBR F.3 CSEVAL CONVERTS ATOM TO LIST CHARS IN PNAM

EXPR STRUC 0.2 CC SFREEST INDICATOR FOR S-EXPR FUNCTIONS

F PEG CSSWYM FREE STORAGE POINTER
FALSE MISC G CSSWYM L AL+NILS RET; (BRANCH TO IT}
FEND SWYM E.4 CSSWYM POINTS AT END OF FREE SOTR

FEXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXP SPECIAL FNCTS
FINDBIT MACRO B.5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD

FINISH MISC G CSYAIN CLOSE FILES AND EXIT

FIXUP MACRO B.8 MACLIB GC-MAKE ENTRY IN FIXUP TABLE

FPROPS STRUC H C SFREEST STRUCTURE: ({SUBR .1) (FSUBR . . . .
FST MACRO B.| MACLIB FIRST ELEMENT OF LIST

FST SUBR F.l C SSUBS STUTTER RTN FOR =1ST ELEM OF LIST

FSUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH FSLJBR PROP

FSUBR STRUC 0.2 CSFREEST INOICATOR FOR ASSEMBLED SPECIAL FNC

GC SUBR E.3 CC SGC CONTROLS GARBAGE COLLECT ION

GCABAD SWYM E.4 CSSWYM GC ABENDS FOR BAD DATA STRUCTURE

GC ABEND MISC E.3 CSGC BALTO IF DATA STRUCTURE ERRy ABEND

GCPUT YACRO B.8 YACLIB GC-PUT WORD TO NEW CORE

GCPUT MISC E.3 CSGC BAL’ED TO BY GCPUT MACRO

GCTIME SHWYM E.4 CSSWYM GC COMPUTES ITS TIME
GET SUBR F.4 CC SEVAL FINDS PROPERTY OF AN ATOM

GETCH CAL C CSREAD GET A CHARACTER

GETNAME MACRO 8.2 MACL IB LOAOS PTR AT PNAME CHR STR ATM

GETNUM MACRO 8.2 MACLIB GET VALUE OF NUM CHAR STR ATOM

GETOBJ SUBR F.2 GCSREAD FINDS SYMBOL FOR CHAR STRING ARG

GOTO MACRO 8.7 YACLIB BRANCH

HASH MACRO 8.3 MACLIB HASH CODE AN IDENY FOR OBLIST

HEAO MACRO 8.2 MACLIB LOADS HEAD OF ATOM

IF MACRO 8.7 MACLIB COND~- START PREDICATE

INIT MTSC G CSINIT SET UP SWYM REGS AND OPEN FILES

INST4 MACRO 8.8 YACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR

INVERTB MACRO B.5 MACLIB CHANGE BIT
[VCCH SUBR F.2 C SRFAO RETURNS NEXT INPUT CHAR
I vamO SUBR F.2 GCSREAO RETURNS STATUS OF QUOTE MODE

L REG | CSSWYM LINKAGE REG /RETURN ADDRESS)
LIST FSUBR F.l CSEVAL MAKES A LIST Of THE ARG EXPRESSIONS

MAIN - MISC D.I CSMAIN MAIN LOOP OF STUTTER INTERPRETER

MAKSTRNG SUBR F.2 CSREAD MAKES CHR STR ATM FROM LIST OF CHRS
MATCM MACRO 8.3 MACLIB CREATES AN ATOM STRUC (IN CSFREEST)
MEMNXT SHYM E.4 CSSWYM ALTERNATE FREE STOR

MEMSIZ SWYM E.4 CSSWYM SIZE OF FREE STORAGE

MFMUSE SWYM E.4 CSSWYM FREE STOR IN USE

MI FIELO E.2 CSSWYM GARB COL MARKING BIT

M2 FIELD E.2 CSSWYM GARB COL MARKING BIT
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MNEHON IC CLASS APP C SECT COMMENTS

N REG I CSSUYM POINTS AT NIL

NIL STRUC H CSFREEST, ATOM WITH VALUE-NIL
NLENGTH CAL G C SEVAL GET LENGTH OF LIST

NOT MACRO 0.7 MACL IB NEGATE PREDICATE MACRO TEST

NULL MACRO 8.1 MACLIB ? ARG = NIL

NULL SUBR F.l CSSUBS STUTTER RTN FUR= 1S ARG= NIL?

NUMAT SWYM M CSSWYM WORK AREA FOR PRINTING NUMBERS
NUMATVAL SWYM M CSSWYM WORK AREA FOR PRINTING NUMBERS

OBLIST STRUC H C SFREEST ATOM WITH VALUE = LISTOF ALL ATOMS
ORX MACRO Be7 MACLIB COMBINE TWO PREDS

P REG I CSSWYM STACK POINTER
‘PBCLOSE CAL Cc CSREAD FINISH CHAR STRING ATOM
PBHD SWYM C CSSWYM HOLDS ADRS OF At-HD DURING PUTBYTE
PBOPEN CAL C CSREAD START MAKING CHAR STRING ATOM

POP MACRO 8.4 MACLIB GETS TOP OFF STACK-REDUCES STACK

POPN MACRO Be.4 MACLIB REDUCES STACK N TIMES

PRATBAD SWYM F.3 CSSWYM AREA FOR PRINGING *?TYPN!?
PRINT SUBR ~F«3 CSPRINT PRINTS ITS ARG AND GOES TO NFXT LIN

PRINTER SWYM M CSSWYM DCB FOR PRINTING
PRIN1 SUBR F.3 CSPRINT PRINTS ITS ARG

PRLNG SWYM F.3 CSSWYM LENGTH OF PRINT LINE

PRPEND SWYM f.3 CSSHYM WHERE TO PUT LAST PRINT CHAR
PRPT SWYM F.3 CSSWYM WHERE TO PUT NXT PRINT CHAR
PUSH MACRO 0.4 MACLIB PUTS ARG ATOP STACK

PUTBYTE CAL C CSREAD PUT RYTE INTO CHAR STRING

PUTCH MISC G CSSWYM PUT CHARACTER IN PRINT LINE
PUTPROP SUBR F.4 CSEVAL STORES PROPERTIES UN ATOMS PROP LST
PUTSTR CAL G CSPRINT PRINT A CHARACTER STRING ATOM

QCHAR MACRO 8.3 MACLISB CREATES A CHAR OBJ FOR 'Y{('v)te,?
QUOTE FSUBR F.4 CSEVAL RETURNS ITS ARG UNEVALUATED

RDAT CAL C C SREAD READ AN ATOM

RDCHAR SWYM C CSSWYM LAST CHAR READ
RDCLASS SWYM C CSSHYM CLASS OF LAST CHARACTER READ
RDCOL SWYM Cc CSSWYM LOC OF LAST WORD READ
RDEND SWYM C CSSWYM LOC OF LAST CHAR TO READ
RDERCNT SWYH Cc CSSWYM PRINT #PARENS CREATED BEFORE '>!

- RDERLOC SWYM C CSSWYM SYNTAX ERROR CARD COLUMN INDICATION
RDERMS SWYM C CSSWYM READ SYNTAX ERROR MESSAGE AREA
RNDERNO SWYM C CSSWYM SYNTAX ERROR NUMBER
RDERR CAL C CSREAD INDICATE INPUT SYNTA X ERROR
RDERRCNT CAL C CSREAD SYNTAX ERR-PARENS MADE BEFORE ">!

RDLIST CAL Lo CSREAD READ A LIST
RDLNG SWYM C CSSWYM NUMBER OF CHAR READ FROM EACH CARD
RDSE CAL C CSREAD READ AN S-EXPRESSION

RDSTAT SWYM C CSSWYM READ ROUTINES STATUS INFO BYTE
RD SUPCTR SWYM C CSSWYM COUNT #PARENS CREATED BEFORE *>!
READ SUBR F.2 C SREAD READS ONE EXPRESSION FROM CARD
READCH SUBR f.2 CSREAD READS ONE CHARACTER FROM CARD

REMPROP SUBR F.4 C SEVAL REMOVES PROPERTIES FROM P-LIST

RESETB MACRO 8.5 MACLIB TURN OFF BIT
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MNEMONIC CLASS APP  C SECT COMMENTS

RET MACRO 8.6 MACLIB SUBROUTINE RETURN

RPLCEL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLF MACRO 8.1 MACL I B REPLACES FIRST PTR OF LIST

RPLHD MACRO B.2 MACLIB REPLACES HEAD OF ATOM

RPLTOP MACRO a.4 MACLIB REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 0.4 MACLIB REPLACE NTH ITEM OF STACK

RST MACRO 8.1 MACLIB ALL BUT 1ST ELEMENT OF LIST

RST SUBR Fel C SSUBS STUTTER RTN FOR = REST OF LIST

RSTAl MISC a.l C SSWym RST{Al). BAL'*EDYO BY RST MACRO
RSTA2 HISC a.l CSSWYM RST(A2). BAL'EDTO BY RST MACRO

" R STAS MISC 8.1 CSSWYM RST{A3), BAL'EDTO BY RST MACRQ
RSTMAK MACRO a. l MACLIB MAKE ROUTINES FOR ‘RST’ TO BAL TO

RSTT MISC a.l CSSYYM RST(T). BAL'EDTO BY HST MACRO

RSTTT MISC 8.1 CSSUYM RST(TT). BAL'EDTO BY RST MACRO

Ss REG | CSSWYM BASE REG FOR CSSWYM
SASSOC SUBR F.4 CSEVAL FINDS ARC ON AN ASSOCIATION LIST

SETBITY MACRO B.5 MACLIB TURN ON BIT
ST SWYM M CSSUYM POINTER AT T

STAKN CAL G cssuas GET FREE STORAGE BLOCK

STIME CAL G _ cssuas START TIMER
STIVCCH SUBR F.2 CSREAD SETS CURRENT INPUT CHAR

STIVQMO SUBR F.2 CSREAD SETS QUOTE MODE

STRAT MACRO 8.3 MACLIB CREATES STRING ATOM STRUC (FREEST}

SUB MACRO B.6 MACLIB SUBROUTINE ENTRY

SUBR MACRO B.3 MACLIB CREATES AN ATOM WITH SUBR PROPERTY

SUBR STRUC 0.2 CSFREEST INDICATOR FOR ASSEMBLED FUNCTIONS

SWEAR MACRO B.8 HACLIB SYSTEM ERROR

SUERROR MISC G CSSHWYM SYSTEM ERROR
SHYM SUYM M CSSWYM FIRST LOC IN CSSUYM
SHYMSAVE SWYM M CSSWYM SAVE AREA FOR CALLING OS
SYSFOO SWYM M CSSWYM SAVE AREA FOR SAVING OS LIMK REGS

T STRUC H CSFREEST ATOM WITH VALUE-T

¥ REG I CSSWYM TEMP (EVEN, NEXT TO TT)
TAIL MACRO a.2 MACLIB LOADS PTR AT TAIL OF ATOM

TAK?2 SUBR F.1 CSSUBS MAKES LIST W/FSTARGL1 AND RST ARGZ
TERPRI SUBR F.3 CSPRINT MOVES PRINTER TO NEXT LINE
TEST6 MACRO 8.5 MACLIB TEST BIT

THEN MACRO B.7 MACLIa COND - END PRED: START TRUE PART

TIME SWYM M CSSWYM TIME SET'AT LAST STIME
TOP MACRO 0.4 MACLIB GETS TOP OF STACK-BUT LEAVES IT
TOPN MACRO a.4 MACLIB GETS NTH ITEM ON STACK

TRUE MISC G CSSWYM L Als V3 RET; (BRANCH TO IT)

TT REG I C SSWYM TEMP (ODD, NEXT TOT)
TTIME CAL G c SSUBS HOW LONG SINCE LAST STIME

TVEND SWYM M CSSWYM LABEL OF LAST ENTRY IN TV TABLE
TVMAK MACRO 6.6 MACLIB MAKE A TRANSFER VECTOR FOR CAL

TVSTART SWYM M CSSWYM LABEL OF START OF TRANS VECT TABLE

UNBIND CAL 0.3 CSEVAL RESTORE OLD BINDINGS OF ARG ATOMS

UNBOUND STRUC H C SFREEST RECOGNIZED BY EVAL AS ERROR VALUE

VALUE MACRO a.3 MACLIB CREATES AN ATOM WITH A VALUE

VCHAROBS SHYM M CSSWYM POINTER AT CHAR OBJECTS LIST
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MNEMONIC CLASSAPPCSECT COMYENTS

VF PROPS SUYM M CSSwWYM POINTER Al FPROPS STRUCTURE
VOBL | ST SWYM M CSSWYM POINTER AT ALL OBJECTS LIST
VUNBND SWYM M CSSWYM POINTER-AT SPECIAL ‘UNBOUND’

XB MACRO B.6 MACLISB TRANSFER INTO MIDDLEOF SURROUT INE

#M1M2 SUYM E.4 CSSWYM USED BY GC TO ‘OR IN Ml & M2 BITS

#PO SUYM M CSSWYM ADRS OF BEGINNING OF STACK
#XXXX SWYM M CSSWYM TRANSFEP VECTOR, ADKS OF RTN XXXX
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MNEMONIC CLASS APP CSECT COMMENTS

ATCOL CAL E.3 CSGC COLLECTS AN ATOM

BINDERY CAL 0.3 CSEVAL BIND ARG ATOMS TO THEIR VALUES
COLLECT CAL E.3 CSGC CREATES IMAGE OF ARG NN £ wCORE
coLX CAL E.3 CSGC CHECKS AND COLLECTS ONE POINTER

EVGET CAL 0.3 CSEVAL GET FUNCTION DEFINITION OF ATOM

| EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESS IONSGETCH CAL C CSREAD GET A CHARACTER

NLENGTH CAL G CSEVAL GET LENGTH OF LIST

PBCLOSE CAL C CSREAD FINISH CHAR STRING ATOM

: PBOPEN CAL Cc CSREAD START MAKING CHAR STRING ATOM
E PUTBYTE CAL C CSREAD PUT BYTE INTO CHAR STRING

PUTSTR CAL G CSPRINT PRINT A CHARACTER STRING ATOM

RDAT CAL C C SREAD READ AN ATOM

RDERR CAL Cc C SREAD INDICATE INPUT SYNTAX ERROR

| RDERRCNT CAL C CSREAD SYNTAX ERR-PARENS MADE BEFORE *>*RDLIST CAL C CSREAD READ A LIST

ROSE CAL C CSREAD READ AN S-EXPRESSION

STAKN CAL G C ssuas GET FREE STORAGE BLOCK

| STIME CAL G C ssuas START TIMERTTIME CAL G C SSUBS HOW LONG SINCE LAST STIME

LNB | ND CAL Da3 CSEVAL RESTORE OLD BINDINGS OF ARG ATOMS

C SEVAL CSECTD CSEVAL INTERPRETER AND RELATED ROUTINES

| C SFREEST CSECT H CSFREEST FREE STORAGE, INCL INITIAL STRUCTSCSGC CSECTE C SGC GARBAGE COLLECTOK

CSINIT CSECT 0 CSINIT {INITIALIZATION

CSMA IN CSECT 0 CSMAIN MAIN STUTTER LOOP

| C SPDL CSECT 0 CSPDL STACK

| CSPR INT CSECT 0 CSPRINT PRINT ROUTINES
CSREAD CSECTC CSREAD READ ROUTINES

c SSUBS CSECT CI CSSUBS BASIC SUBROUTINES

CSSWYM CSECTM CSSUYM GLOBAL INFORMATION FOR SUYM RTNS

| £S$2250 CSECT 0 CS2250 2250 EXPERIMANTAL INTERFACE
CELFNC FIELD M CSSWYM ATOMHEAD-FUNC DEF TYPE BITS
CELREL FIELDM CSSWYM ATOM HEAD-CELL IS RELOCATABLE
CELVAL FIELDM CSSWYM ATOM HEAD-CELL HAS VALUE(NOTFNG)
MI FIELD E.2 CSSWYM GARB COL MARKING BIT

M2 FIELD E.2 CSSUYM GARB COL MARKING BIT

COND FSUBR F.4 CSEVAL CONDITIONAL EXPRESSION EVALUATED

LIST FSUBR f.I| CSEVAL MAKES A LIST OF THE ARC EXPRESSIONS

QUOTE FSUBR F.4 C SEVAL RETURNS ITS ARG UNEVALUATED

AND MACRO B.7 MACLIB COMBINE TWO PREDS

ATOM MACRO a.1 MACLIB ?2 IS ARG AN ATOM

BCMAC MACRO a.7 MACLIB MAKE A BR CONDITION INSTRUCTION

BIT MACRO B.5 MACLIB IDENTIFY MNEMONIC WITH BIT TN WORD

BITTBLMK MACRO 5.5 MACL IB MAKE A TABLE FOR *8IT!'MACRD

CAL MACRO 8.6 MACLIB SUBROUTINE CALL

CELL MACRO 8.2 MACLIB LOADS ATOM CELL INTO REG

CHAR MACRO 6.3 MACLIB CREATES 4 CHAR OBJECT ATOM

CHTBL MACRO 5.8 MACLIB MAKE A CHARACTER TABLE {FORTR)

ELSE MACRO 8.7 MACLIB COND - END TRUE: START FALSE PART

END IF MACRO 8.7 MACLIB COND— END FALSE: END CONDITIONAL
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MNEMONIC CLASS APP CSECTY COMMENTS

EQ MACRO 5.1 MACLIB ? ARG1 = ARGZ2(TESTSTWD POINTERS)
EVCH MACRO 5.3 HACLIB GETS ARITH VAL OF EBCDIC BITS
FINDBIT MACRO B.5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD

F IXUP MACRO 8.8 MACL IB GC-MAKE ENTRY IN FIXUP TABLE

FST MACRO 8.1 MACLIB FIRST ELEMENT OF LIST

F SUBR MACRO 0.3 MACLIB CREATES AN ATOM WITH FSURR PROP

GCPUT MACRO 8.8 MACLIB GC-PUT WORD TO NEW CORE

GETNAME MACRO 8.2 MACLIB LOADS PTR AT PNAME CHR STR ATM

GETNUM MACRO 8.2 MACLIB GET VALUE OF NUM CHAR STR ATOM

GOTC MACRO 8.7 MACLIB BRANCH

HASH MACRO 8.3 MACLIB HASH CODE AN IDENT FOR OBLIST

HEAD MACRO 8.2 MACLIB LOADS HEAD OF ATOM

| F MACRO Be? MACLIB COND - START PREDICATE

INSTS MACRO 5.8 MACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR

.1I NVERTB MACRO 8.5 MACLIB CHANGE BIT

MATOM MACRO 5.3 MACLIB CREATES AN ATOM STRUC {INCSFREEST)

NOT MACRO 8.7 MACLIB NEGATE PREDICATE MACRO TEST

NULL MACRO 8.1 MACLIR ?7 ARG = NIL

ORX MACRO 8.7 MACLIB COMBINE TWD PREDS

POP MACRO 8.4 MACLIB GETS TQP OFF STACK-REDUCES STACK

POPN MACRO -8.4 MACL IB REDUCFS STACK N TIMES

PUSH MACRO 8.4 MACLIB PUTS ARG ATOP STACK

QCHAR MACRO 8.3 MACLIB CREATES A CHAR OBJ FOR '{(* ')? 1,1

RESETSHB MACRO 5.5 MACL IB TURN OFF BIT
RET MACRO 6.6 MACLIB SUBROUTINE RETURN

RPLCEL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLF MACRO 8.1 MACLIR REPLACES FIRST PTR OF LIST

R PLHD MACRO 8.2 MACLIB REPLACES HEAD OF ATOM

RPLTOP MACRO 8.4 MACLIB REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 8.4 MACLIB REPLACE NTH ITEM OF STACK

RST MACRO 8.1 MACLIB ALL BUT 1ST ELEMENT OF LIST

RSTMAK MACRO B. 1 MACLIB MAKE ROUTINES FUR ‘RST TO BAL TO

SETBIT MACRO 0.5 MACLISB TURN ON BIT

STRAT MACRO 8.3 MACLIB CREATES STRING ATOM STRUC (FREEST)
SUB MACRO 8.6 MACLIB SUBROUTINE ENTRY

SUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH SUBR PROPERTY

SWEAR MACRO 8.8 MACL IB SYSTEM ERROR

TAIL MACRO 5.2 MACLIB LOADS PTR AT TAIL OF ATOM

TESTB MACRO 5.5 MACLIB TEST BIT

THEN MACRO 8.7 MACLIB COND - END PRED: START TRUE PART
TOP MACRO 8.4 MACLIB GETS TOP OF STACK-BUT LEAVES IT

- TOPN MACRO 8.4 MACL |B GETS NTH ITEH ON SJACK

TYMAK MACRO 8.6 MACLIB MAKE A TRANSFER VECTOR FOR CAL

VALUE MACRO 8.3 MACLIB CREATES AN ATOM WITH A VALUE

X8 MACRO Be b MACL IB TRANSFER INTO MIDDLE OF SUBROUTINE

AT MISC M CSSWYM EQUATED TO ATOM QFFSET(6)
ATCO MISC E.3 CSGC PART OF ATCOL FOR TYPE OQ ATOMS

ATC MISC E.3 C SGC PART OF ATCOL FOR TYPE 1 ATOMS

CHOKE MISC E.3 CSGC RRANCH TO IF STORE EXHAUSTED, ABEND

FALSE MISC G CSSUYM LAY JNILS RET: (BRANCH TO {7)
FINISH MISC G CSMAIN CLOSE FILES AND EXIT

GCABEND MISC £.3 CSGC BAL TO IF DATA SJRUCJURE ERR, ABEND
GCPUT MISC E.3 C SGC BAL'ED TO BY GCPUT MACRO

INIT MISC G CSINIT SET UP SHYM REGS AND OPEN FILES
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MNEMONIC CLASS APP CSECT COMMENTS

MAIN MISC 0.1 CSMAIN MAIN LOOP Of STUTTER INTERPRETER

| PUTCH MISC G CSSWYM PUT CHARACTER IN PRINT LINERSTAlL MISC 6.1 CSSWYM RST{AYl}). BAL'EDTO BY RST MACRO
RSTA2 MISC 8.1 CSSUYM RST(A2). BAL'EDTO BY RST MACRO

R STA3 MISC R.1 CSSUYM RST(A3). BAL'EDTO BY RST MACRO

RSTT MISC Bel CSSWYM RST(T). BAL’EDTO BY RST MACRO

| RSTTT MISC Bel CSSUYM RST(TT). BAL’EDTO BY RST MACRO
SWERROR MISC G CSSUYM SYSTEM ERROR

TRUE MISC G CSSUYM L Al,T3 RET; (BRANCH TO IT)

i Al REG I CSSWYM ARGUMENT REGISTER & RESULT REGISTERA2 REG I CSSWYM ARGUMENT REGISTER
A3 REG CSSUYM ARGUMENT REGISTER

A4 REG I C SSUYM ARGUMENT REGISTER

| AS REG 1 CSSUYM ARGUMENT REGISTERAb REG I CSSUYM ARGUMENT REGISTER

B REG CSSUYM RASE REG FOR ALL ROUTNS

c4 REG CSSUYM ODD REGISTER CONTAINING Ft 4°"

F REG I CSSUYM FREE STORAGE POINTER

| L REG CSSUYM LINKAGE REG (RETURN ADDRESS}N REG I C SSUYM POINTS AT NIL
P REG I CSSUYM STACK POINTER

S REG I CSSUYM RASE REG FOR CSSUYM

T REG I CSSUYM TEMPILEVENy NEXT TOTT)

TT REG I C SSuUYM TEMP (ODD, NEXT TOT)

CHAROBS STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL CHARS

EXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXPR FUNCTIONS

FEXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXP SPECIAL FNCTS

FPROPS STRUC H C SFREEST STRUCTIJRE:t{SUBR .1)(FSUBR . .

FSUBR STRUC 0.2 C SFREEST INDICATOR FOR ASSEMBLED SPECIAL FNC

NIL STRUC H CSFREEST ATOM WITH VALUE-NIL

OBLI ST STRUC H CSFREEST ATOM UITH VALUE = LISTOFALL ATOMS

SUBR STQUC 0.2 CSFREEST INDICATOR FOR ASSEMBLED FUNCTIONS

T STRUC H CSFREEST ATOM WITH VALUE-T

UNROUND STRUC H CSFREEST RECOGNIZED BY EVAL AS ERROR VALUE

ATOM SURR f.1CSSUBS STUTTER ROUTINE FOR-IS ARG ATOM?

BELL SUBR F . 5C82250 RINGS BELL ON 2250

EJECT SUBR F.3 CSPRINT MOVES PRINTER TO NEXT PAGE

EQ SUBR F.I CSSUBS STUTTER RTN FOR-ARGLl=ARG2?

ERROR SUBR F.5 CSSUBS WRITES MESSAGE AND GOES TO TOP LVL

EVAL SUBR 0.3 CSEVAL STUTTER INTRPRTR EXPRSN EVALUATOR

EXPLODE SUBR F.3 CSEVAL CONVERTS ATOM TO LIST CHARS IN PNAM

FST SUBR f.1 CSSUBS STUTTER RTN FOR -1STELEM OF LIST

GC SUBR E.3 CSGC CONTROLS GARBAGE COLLECTION

GET SURR F.4 CSFVAL FINDS PROPERTY OF AN ATOM

GETOBJ SUBR f.2 CSREAD FINDS SYMBOL FOR CHAR STRING ARG

IVCCH SUBR F.2 CSREAD RETURNS NEXT INPUT CHAR
IvQMo SUBR F.2 CSQEAD RETURNS STATUS OF QUOTE MODE
MAKSTRNG SUBQ F.2 CSREAD MAKES CHR STR ATM FROM LIST OF CHRS

NULL SUBR F.I CSSUBS STUTTER RTN FOR- ISARG= NIL?

PRINT SUBR F.3 CSPRINT PRINTS ITS ARG AND GOES TO NEXT LIN

PRIN] SUBR F.3 CSPRINT PRINTS ITS ARG

PUTPROP SUBR F . 4 CSEVAL STORES PROPERTIES ON ATOMS PROP LST
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MNEMONIC CLASS APP CSECT COMMENTS

READ SUBR F.2 CSREAD READS ONE EXPRESSION FROM CARD

R EADCH SUBR F.2CSREAD READS ONE CHARACTER FROM CARD

REHPROP SUBR F.4 CSEVAL REMOVES PROPERTIES FROM P-LIST

RST SUBR F.1CSSUBS STUTTER RTN FOR = REST OF LIST

SASSOC SUBR F.4 CSEVAL FINDS ARG ON AN ASSOCIATION LIST

STIVCCH SUBR F.2CSREAD SETS CURRENT INPUT CHAR

STIVQMO SUBR F.2 CSREAD SETS OUOTE MODE

TAK?2 SUBR F«1 CSSUBS MAKES LISTW/ FST ARGL AND RST ARG?2
TERPRI SURR F.3 CSPRINT MOVES PRINTER TO NEXT LINE

ATAMT SWYM C CSSWYM ATOM OFFSET (6)

C ARDRDR SWYM M CSSWYM DCB FOR READING CARDS

DUBUORK SHYM M CSSUYM DOUBLE WORD WORK AREA

FEND SWYM E.4 CSSUYM POINTS AT END OF FREE SOTR

“GCABAD SWYM E . 4 CSSHYM CC ABENDS FOR BAD DATA STRUCTURE

GCTIME SWYM E.4 CSSUYM GC COMPUTES ITS TIME

MEMNXT SUYM E . 4 CSSWYM ALTERNATE FREE STOR

MEMSIZ SWYM E.4CSSUYM SIZE OF FREE STORAGE

MEMUSE SUYM E.4 CSSWYM FREE STOR IN USE

NUMAT SUYM M CSSHYM WORK AREA FOR PRINTING NUMBERS

NUMATVAL SUY M-M CSSWYM WORK AREA FOR PRINTING NUMBERS

PBHD SUYM C CSSWYM HOLDS ADRS Of AT-HO DURING PUTBYTE
PRATBAD SWYM F . 3CSSKYM AREA FOR PRINGING *?TYPN?

PRINTER SWYM M CSSWYM DCB FOR PRINTING

PRLNG SWYM F.3CSSUYM LENGTH OF PRINT LINE

PRPEND SUYM F.3CSSUYM WHERE TO PUT LAST PRINT CHAR

PRPT SWYM F.3 CSSUYM WHERE TO PUT NXT PRINT CHAR

RDCHAR SWYM C CSSWYM LAST CHAR READ

ROCLASS SUYM C CSSHYM CLASS OF LAST CHARACTER READ

RDCOL SWYM C CSSWYM LOC Of LAST WORD READ

RDEND SUYM C CSSUYM LOC OF LAST CHAR TO READ

RDERCNT SWYM C CSSWYM PRINT #PARENS CREATED BEFORE *>?!

RDERLOC SWYM C CSSHYM SYNTAX ERROR CARD COLUMN INDICATION

RDERHS SUYM C CSSUYM READ SYNTAX ERROR MESSAGE AREA

RDERNO SWYM C CSSWYM SYNTAX ERROR NUMBER

RDLNG SWYM C CSSWYM NUMBER OF CHAR READ FROM EACH CARD
RDSTAT SWYM C CSSUYM READ ROUTINES STATUS INFO BYTE

ROSUPCTR SWYM C CSSUYM COUNT #PARENS CREATED BEFORE *>?

ST SWYM M CSSHYM POINTER ATT

SHYM SUYM M CSSUYM FIRST LOC IN CSSUYM

SUYMSAVE SHYM ™ CSSWYM SAVE AREA FOR CALLING OS

: SYSFDO SWYM M CSSWYM SAVE AREA FOR SAVING OS LIMK REGS

TIME SUYM M CSSUYM TIME SET AT LAST STIME

TVEND SUYM M CSSWYM LABEL OF LAST ENTRY IN TV TABLE
TVSTART SWYM M CSSWYM LABEL OF START OF TRANS VECT TABLE
VCHAROBS SUYM M CSSUYM POINTER AT CHAR OBJECTS LIST

VFPROPS SWYM M CSSHYM POINTER AT FPROPS STRUCTURE
VOBLIST SWYM M C SSUYM POINTER AT ALL OBJECTS LIST

VUNBND SWYM M CSSHYM POINTER AT SPECIAL ‘UNBOUND’

#MIM2 SUYM Ee4 CSSUYM USED BY GC TO ‘OR IN Ml &M2BITS

#PO SWYM M CSSHYM ADRS OF BEGINNING OF STACK

#XXXX SUYM M CSSUYM TRANSFER VECTORs AORS Of RTN XXXX

2h5



SUYM MNEMONICS SORTED BY APPENDIX PAGE 10

MNEMONIC CLASS APP CSECT COMMENTS

ATOM MACRO 0.1 MACLIB ? IS ARG AN ATOM

EQ MACRO 0.1 MACLIB ? ARG1 =ARG2{TESTYS TWO POINTERS)
FST MACRO 6.1 MACLIB FIRST ELEMENT OF LIST

NULL MACRO B.l1 MACLIB ? ARG = NIL

RPLF MACRO 8.1 MACLIB REPLACES FIRST PTR OF LIST

RST MACRO B.l MACLIB ALL BUT 1ST ELEMENT OF LIST

RSTAL MISC 6.1 CSSUYM RST(Al). BAL'EDTO BY RST MACRO

RSTA2 MISC B.1 CSSWYM RST(A2). BAL'EDTO BY RST MACRO

RSTA3 MISC 8.1 CSSUYM RST(A3), BAL'EDTO BY RST MACRO

RSTMAK MACRO 6.1 MACLIB MAKE ROUTINES FOR ‘RST’ TO BAL TO

' RSTT MISC 0.1 CSSUYM RST(T). BAL'EDTO BY RST MACRO

RSTTT HISC Bel CSSHWYM RSTITT). BAL'EDTO BY RST MACRO

CELL MACRO 8.2 MACLIB LOADS ATOM CELL INTO REG

GETNAME MACRO 0.2 YACLIB LOADS PTR AT PNAME CHR STR ATM

GETNUM MACRO 0.2 MACLISB GET VALUE OF NUM CHAR STR ATOM

HEAD MACRO 5.2 MACLIB LOADS HEAD OF ATOM

RPLC EL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLHD MACRO 8.2 MACLIB REPLACES HEAD OF ATOM

TAIL MACRO 8.2 MACLIB LOADS PTR AT TAIL DF ATOM

CHAR MACRO 0.3 MACLIB CREATES A CHAR OBJECT ATOM

EVCH MACRO B43 MACLIB GETS ARITH VAL OF EBCDIC BITS
F SUBR MACRO 0.3 MACLIB CREATES AN ATOM WITH FSUBR PROP

HASH MACRO 0.3 MACL IB HASH CODE AN IOENT FOR OBLIST

YATOM MACRO 0.3 MACLIB CREATES AN ATOM STRUC (IN CSFREESY)
QC HAR MACRO 0.3 MACLIB CREATES A CHAR OBJ FOR (1) ?1,?

STRAT MACRO 8.3 MACLIB CREATES STRING ATOM STRUC (FREEST)
SUBR MACRO 8.3 MACLIRS CREATES AN ATOM WITH SUBR PROPERTY

VALUE MACRO 8.3 MACLIB CREATES AN ATOM WITH A VALUE

POP MACRO 0.4 MACLIB GETS TOP OFF STACK-REDUCES STACK

POPN MACRO 0.4 WM~ACLI1IB REDUCES STACK N TIMES

PUSH MACRO B.4 MACLIB PUTS ARG ATOP STACK

RPLTOP MACRO 0.4 MACLIB REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 8.4 MACLIB REPLACE NTH ITEM OF STACK

TOP MACRO 8.4 MACLI B GETS TOP OF STACK-BUT LEAVES IT

TOPN MACRO 8.4 MACLIB GETS NTH ITEM ON STACK

BIT MACRO 8.5 MACLIB IDENTIFY MNEMONIC WITH BIT IN WORD

B ITTBLHK MACRO 8.5 MACLIB MAKE A TABLE FOR ‘BIT’" MACRO

FINDRIT MACRO 8.5 MACLIB FIND BIT MNEMONIC FUR BYTE-IN-WORD

| NVFR TB MACRO 0.5 MACLIB CHANGE BIT

RESETS MACRO 8.5 MACLIB TURN OFF BIT

SETBIT MACRO B.5 MACLIB TURN ON BIT

. TESTS MACRO B.5 MACLIB TEST BIT

CAL MACRO B.6 MACLIB SUBROUTINE CALL ;

RET MACRO 8.4 MACLIB SUBROUTINE RETURN

SUB MACRO Be.6 MACLIB SUBROUTINE ENTRY

TVMAK MACRO B.6& MACLIB MAKE A TRANSFER VECTOR FOR CAL

XB MACRO 0.6 MACLIB TRANSFER INTO MIDDLE OF SUBROUTINE

AND MACRO 8.7 MACLIB COMBINE TWO PREOS

BCMAC MACRO B.7 MACLIB MAKE A BR CONDITION INSTRUCTION
ELSE MACRO 8.7 MACLIB COND - END TRUE; START FALSE PART

END IF MACRO 6.7 MACLIB COND - END FALSE; END CONDITIONAL
GOTQ MACRO Be.7 MACL IB BRANCH

| F MACRO 0.7 MACLIB COND - START PREDICATE

NOT MACRO 6.7 MACLI B NEGATE PREDICATE MACRO TEST

ORX MACRO 8.7 YACLIB COMBINE TWO PREDS
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THEN MACRO 0.7 MACLIB COND - END PRED; START TRUE PART
CHTBL MACRO 0.8 MACLIB MAKE A CHARACTER TABLE (FORTR)

FIXUP MACRO 0.8 MACLIB GC-MAKE ENTRY IN FIXUP TABLE

GCPUT MACRO Be.8 MACLIB GC-PUT WORD TO NEW CORE

I NST4 MACRO 0.8 MACLIB ASSEMBLE INSTRUCTION W0O/ ALIGN ERR

SWEAR MACRO 0.8 MACLIB SYSTEM ERROR

ATAMT SWYM C CSSWYM ATOM OFFSET (6)
CSREAD CSECT C CSREAD READ ROUTINES

GETCH CAL C CSREAD GET A CHARACTER

PBCLOSE CAL C CSREAD FINISH CHAR STRING ATOM

PBHD SUYM Cc CSSWYM HOLDS ADRS OF AT-HD DURING PUTBYTE
PBOPEN CAL C CSREAD START MAKING CHAR STRING ATOM

PUTBYTE CAL C CSREAOQO PUT BYTE INTO CHAR STRING
RDAY CAL C CSREAD READ AN ATOM

RDCHAR SWYM C CSSUYM LAST CHAR READ

RDCLASS SHYM C CSSUYM CLASS OF LAST CHARACTER READ

RDCOL SWYM C CSSUYM LOC OF LAST WORD READ

ROEND SWYM C CSSWYM LOC OF LAST CHAR TO READ
RDERCNT SWYM C CSSWYM PRINT #PARENS CREATED BEFORE >?
ROERLOC SHYM Gc. CSSHYM SYNTAX ERROR CARD COLUMN INOICATION
RDERMS SUYM C CSSUYM READ SYNTAX ERROR MESSAGE AREA

RDERNO SWYM C CSSUYM SYNTAX ERROR NUMBER

RDERR CAL C C SREAD TNDICA’TE INPUT SYNTAX ERROR

RDERRCNT CAL C CSREAD SYNTAX ERR-PARENS MADE BEFORE '>!

ROLIST CAL C CSREAD READ A LIST

RDLNG SWYM C CSSUYM NUMBER OF CHAR READ FROM EACH CARD

RDSE CAL C CSREAD READ AN S-EXPRESSION

RDSTAT SUYM C CSSUYM READ ROUTINES STATUS INFO BYTE

RD SUPCTR SUYM C CSSUYM COUNT #PARENS CREATED BEFORE *>?

CSEVAL CSECT D CSEVAL INTERPRETER AND RELATED ROUTINES

MAIN MISC 0.1 CSMAIN MAIN LOOP OF STUTTER INTERPRFTER

E XPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXPR FUNCTIONS

F EXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXP SPECIAL FNCTS

FSUBR STRUC 0.2 CSFREEST INDICATOR FOR ASSEMBLED SPECIAL FNC

SUBR STRUC 0.2 C SFREEST INDICATOR FOR ASSEMBLED FUNCTIONS

BINDERY CAL 0.3 CSEVAL BIND ARG ATOMS TO THEIR VALUFS

EVAL SUBR 0.3 CC SEVAL STUTTER INTRPRTR EXPRSN EVALUATOR

EVGET CAL. 0.3 CSEVAL GET FUNCTION DEFINITION OF ATOM
EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESS IONS

. UNBIND CAL 0.3 CSEVAL RESTORE OLD BINDINGS OF ARG ATOMS

CSGC CSECT E CSGC GARBAGE COLLECTOR

MI FIELD E.2 CSSUYM GARB COL MARKING BIT

M2 FIELD E.2 C SSUYM GARB COL MARKING BIT

ATCOL CAL E3 CSGC COLLECTS AN ATOM

AT-CO MISC E.3 CSGC PART OF ATCOL FOR TYPE 0 ATOMS

ATC] MISC E3 C SGC PART OF ATCOL FOR TYPE 1 ATOMS
CHOKE MISC E.3 CSGC BRANCH TO IF STORE EXHAUSTED, ABEND

COLLECT CAL E.3 CSGC CREATES IMAGE OF ARG IN NEW CORE

coLYX CAL E3 C SGC CHECKS AND COLLECTS ONE POINTER
GC SUBR E.3 CSGC CONTROLS GARBAGE COLLECT ION

GC ABEND MISC E.3 C SGC BAL TOIF DATA STRUCTURE ERRy ABEND

GCPUT MISC E . 3CSGC BAL'ED TO BY GCPUT MACRO
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F END SWYM E.4 CSSWYM POINTS AT END OF FREE SOTR
GCARAD SWYM E.4 CSSUYM GC ABENDS FOR BAD DATA STRUCTURE
GCTIME SUYM E.4 CSSUYM GC COMPUTES ITS TIME

MEMNXT SUYM E.4 CSSWYM ALTERNATE FREE STOR

MEHSIZ SUYM E.4 CSSHYM SIZE OF FREE STORAGE

MEMUSE SWYM E.4 CSSUYM FREE STOR IN USE
#M1IM2 SUYM E.4 CSSWYM USED BY GC TO ‘OR IN M &M2 BITS

ATOM SURR F.l1 CSSUBS STUTTER ROUTINE FOR-IS ARG ATOM?

EQ SUBR F.l CSSUBS STUTTER RTN FOR-ARGL = ARG2?
FST SUBR F.l CSSUBS STUTTER RTN FOR =1ST ELEM OF LIST

LIST FSUBR F.l1 CSEVAL MAKES A LIST OF THE ARG EXPRESSIONS

NULL SUBR F.1 C SSuUBS STUTTER RTN FOR -IS ARG= NIL?

QST SUBR Fel CSSIUBS STUTTER RTN FOR = REST OF LIST

TAK2 SUBR Fel CSSUBS YAKES LIST W/ FST ARG1 ANO RST ARG2
GETOBJ SUBR F.2 CSREAD FINDS SYMBOL FOR CHAR STRING ARG

IVCCH SUBR F.2 CSREAD RETURNS NEXT INPUT CHAR

| VQMO SUBR F.2 CSREAD RETURNS STATUS OF QUOTE MODE

MAKSTRNG SUBR F.2 GCSREAD MAKES CHR STR ATM FROM LIST OF CHRS

READ SUBR F.2 CC SREAD READS ONE EXPRESSION FROM CARD

QEADCH SUBR Fii C SREAD READS ONE CHARACTER FROM CARD
STIVCCH SUBR F.2 C SREAO SETS CURRENT INPUT CHAR

SYIVQMO SUBR F.2 CSREAD SETS QUOTE MODE

EJECT SUBR F.3 CSPRINT MOVES PRINTER TO NEXT PAGE

EXPLODE SUBR F.3 CSEVAL CONVERTS ATOM TO LIST CHARS IN PNAM

PRATBAD SUYM F.3 CSSUYM AREA FOR PRINGING *?TYPN!

PRINT SUBR F.3 CSPRINT PRINTS ITS ARG AND GOES TO NEXT LIN

PRIN] SUBR F.3 CSPRINT PRINTS ITS ARG

PRLNG SWYM F.3 CSSHWYM LENGTH OF PRINT LINE
PRPEND SWYM f.3 CSSUYM WHERE TO PUT LAST PRINT CHAR

PRPTY SWYM F.3 CSSUYM WHERE TO PUT NXT PRINT CHAR
TERPRI SUBR F.3 CSPRINT MOVES PRINTER TO NEXT LINE

COND FSUBR F.4 CSEVAL CONDITIONAL EXPRESSION EVALUATED

GET SUBR F.4 CSEVAL FINDS PROPERTY OF AN ATOM

PUTPROP SUBR F.4 CSEVAL STORES PROPERTIES ON ATOMS PROP LST

QUOTE FSUBR F.4 CSEVAL RETURNS ITS ARG UNEVALUATED

REMPROP SUBR F.4 C SEVAL REMOVES PROPERTIES FROM P-LIST

SASSOC SUBR F.4 CSEVAL FINDS ARG ON AN ASSOCIATION LIST

BELL SUBR F.5 (€S2250 RINGS BELL ON 2250

ERROR SUBR F«5 CSSURS WRITES MESSAGE AND GOES TO TOP LVL

FALSE MI SC G CSSUYM L AlyNILS RET; ( BRANCH TO IT)
FINISH MISC G CSMAIN CLOSE FILES AND EXIT

INIT MISC G CSINIT SET UP SWYM REGS AND OPEN FILES

NLENGTH CAL G CSEVAL GET LENGTH OF LIST

PUTCH MISC G CSSUYM PUT CHARACTER IN PRINT" LINE

PUTSTR CAL G CSPRINT PRINT A CHARACTER STRING ATOM

STAKN CAL G CSSuUBS GET FREE STORAGE BLOCK
STIHE CAL G C SSUBS START TIMER

SUFRROR MISC G CSSWYM SYSTEM ERROR
TRUE MISC G CSSHYM L Al,T3 RET; (BRANCH TOIT)
TTIME CAL G C SSUBS HOW LONG SINCE LAST STIME

CHAROBS STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL CHARS

CSFREEST CSECT H CSFREEST FREE STORAGE, INCL INITIAL STRUCTS
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FPROPS STRUC H C SFREEST STRUCTURE:({SUBR . 1) (FSUBR . |

NIL STRUCH C SFREEST ATOM WITH VALUE-NIL

OBLIST STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL ATOMS

T STRUCH C SFREEST ATOM WITH VALUE-T

UNBOUND STRUC H CSFREEST RECOGNIZED BY EVAL AS ERROR VALUE

Al REG I CSSUYM ARGUMENT REGISTER & RESULT REGISTER

A2 REG | CSSUYM ARGUMENT REGISTER

A3 REG I CSSWYM ARGUMENT REGISTER
A4 REG J C SSUYM ARGUMENT REGISTER

A5 REG I CSSUYM ARGUMENT REGISTER

A6 REG I C SSWYM ARGUMENT REGISTER
B REG I CSSUYM BASE REG FOR ALL ROUTNS

c4 REG I CSSUYM ODD REGISTER CONTAINING F'4!
F REG | CSSUYM FREE STORAGE POINTER

L REG CSSWYM LINKAGE REG (RETURN ADDRESS)
N REG I CSSUYM POINTS AT NIL

P REG | CSSUYM STACK PDINTER

S REG I CSSUYM BASE REG FOR CSSWYM

T REG I CSSWYM TEMP (EVEN, NEXT TO TT)
TT REG 1 C SSWYM TEMP (NDDy NEXT TOT)

AT MISC M CSSUYM EQUATED TO ATOM OFFSET {6}

C ARDRDR SWYM M CSSUYM DCB FOR READING CARDS

CELFNC FIELD M CSSUYM ATOM HEAD-FUNC DEF TYPE BITS

CELREL FIELDM CSSUYM ATOM HEAD-CELL IS RELOCATABLE

CELVAL FIELDM C SSWYM ATOM HEAD-CELL HAS VALUE (NOTFNC)
CSSUYM CSECTM CSSUYM GLOBAL INFORMATION FOR SWYM RTNS

DUBUORK SHWYM M CSSUYM DOUBLE WORD WORK AREA
NUMAT SUYM M CSSUYM WORK AREA FOR PRINTING NUMBERS

NUMATVAL SWYM M CSSUYM WORK AREA FOR PRINTING NUMBERS

PRINTER SWYM M CSSWYM OCB FOR PRINTING
ST SWYM M CSSUYM POINTER AT T
SYYM SHYM M CSSWYM FIRST LOC IN CSSUYM
SUYMSAVE SUYM M CSSUYM SAVE AREA FOR CALLING OS

SYSFOO SWYM M CSSWYM SAVE AREA FOR SAVING OS LIMK REGS
TIME SUYM M CSSUYM TIME SET AT LAST STIME

TVEND SWYM M CSSUYM LABEL OF LAST ENTRY IN TV TABLE
TVSTART SUYM M CSSUYM LABEL OF START OF TRANS VECT TABLE

VCHAROBS SWYM M CSSUYM POINTER AT CHAR OBJECTS LIST

VFPROPS SWYM M CSSWYM POINTER AT FPROPS STRUCTURE
* VOBLIST SUYM M CSSWYM POINTER AT ALL OBJECTS LIST

VUNBND SWYM M CSSUYM POINTER AT SPECIAL ‘UNBOUND’

#PO SUYM M CSSUYM AORS OF BEGINNING OF STACK

#XXXX SWYM M CSSWYM TRANSFER VECTOR’ ADRS OF RTN XXXX

CSINIT CSECT 0 CSINIT INITIALIZATION
CSMAIN CSECT O CSMAIN MAIN STUTTER LOOP
CSPDL CSECT 0 C SPDL STACK

CSPRINT CSECT 0 CSPRINT PRINT ROUTINES

CSSUBS CSECT 0 CSSUBS BASIC SUBROUTINES

£S2250 CSECT 0 €S2250 2250 EXPERIMANTAL INTERFACE
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BINDERY CAL 0.3 CSEVAL BIND ARG ATOMS TO THEIR VALUES

COND FSUBR F.4 CSEVAL CONDITIONAL EXPRESSION EVALUATED

C SEVAL CSECT D C SEVAL INTERPRETER AND RELATED ROUTINES

EVAL SUBR 0.3 CSEVAL STUTTER INTRPRTR EXPRSN EVALUATOR

EVGET CAL 0.3 CSEVAL GET FUNCTION DEFINITION Of ATOM

EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESSIONS

EXPLODE SUBR Fe 3 CSEVAL CONVERTS ATOM TO LIST CHARS IN PNAY

GET SUBR F.4 CSEVAL FINDS PROPERTY OF AN ATOM

LIST FSUBR F. 1 CSEVAL MAKES A LIST OF THE ARG EXPRESSIONS

NLENGTH CAL G C SEVAL GET LENGTH OF LIST

PUTPROP SUBR F.4 CSEVAL STORES PROPERTIES ON ATOMS PROP LST

QUOTE FSUBR F.4 CSEVAL RETURNS ITS ARC UNEVALUATED

REMPROP SUBR F.4 CSEVAL REMOVES PROPERTIES FROM P-LIST

SASSOC SUBR F.4 CSEVAL FINDS ARG ON AN ASSOCIATION LIST

UNBIND CAL 0.3 CSEVAL RESTORE OLD BINDINGS OF ARG ATOMS

CHARDOBS STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL CHARS
CSFREEST CSECT H CSFREEST FREE STORAGE, INCL INITIAL STRUCTS
EXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXPR FUNCTIONS

FEXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXP SPECIAL FENCTS

FPRQPS STRUC H. CSFREEST STRUCTURE: t{SUBR 1} (FSUBR . . . .
FSUBR STRUC 0.2 C SFREEST INDICATOR FOR ASSEMBLED SPECIAL FNC

NIL STRUC H C SFREEST ATOM WITH VALUE-NIL

OBLI ST STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL ATOMS

SUBR STRUC 0.2 CSFREEST INDICATOR FOR ASSEMBLED FUNCTIONS

T STRUC H CSFREEST ATOM WITH VALUE-T

UNBOUND STRUC H C SFREEST RECOGNIZED BY EVAL AS ERROR VALUE

ATCOL CAL E.3 CSGC COLLECTS AN ATOM

ATCO MISC E.3 CSGC PART OF ATCOL FOR TYPE 0 ATOMS

ATC1 MISC E.3 CSGC PART Of ATCOL FOR TYPE 1 ATOMS

CHOKE MISC E.3 CSGC BRANCH TO IF STORE EXHAUSTED, ABEND

COLLECT CAL E.3 CSGC CREATES IMAGE OF ARG IN NEW CORE

coLX CAL E.3 CSGC CHECKS AND COLLECTS ONE POINTER

CSGC CSECT E C SGC GARBAGE COLLECTOR

GC SUBR E.3 CSGC CONTROLS GARBAGE COLLECT ION

GCABEND MISC E.3 CSGC BAL TO IF DATA STRUCTURE ERR, ABEND
GCPUT MISC E.3 CSGC BAL’'ED TO BY GCPUT MACRO

CSINIT CSECT 0 CSINIT INITIALIZATION

INIT MISC G CSINIT SET UP SWYM REGS AND OPEN FILES

CSMAIN CSECT © CSMAIN MAIN STUTTER LOOP

F INISH MISC G CSMAIN CLOSE FILES AND EXIT

MAIN MI SC 0.1 CSMAIN PAIN LOOP OF STUTTER INTERPRETER

C SPDL CSECT © CSPDL STACK

CSPRINT CSECT O CSPRINT PRINT ROUTINES
EJECT SUBR F.3 CSPRINT MOVES PRINTER TO NEXT PAGE

PRINT SUBR f.3 CSPRINT PRINTS ITS ARG AND GOES TO NEXT LIN

PRIN SUBR F.3 CSPRINT PRINTS ITS ARG

PUTSTR CAL G CSPRINT PRINT A CHARACTER STRING ATOM

TERPRI SUBR F.3 CSPRINT MOVES PRINTER TO NEXT LINE
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CSREAO CSECT C CSREAD’ READ ROUTINES

GETCH CAL C C SREAD GET A CHARACTER

GETOBJ SUBR F.2 CSREAD FINDS SYMBOL FOR CHAR STRING ARG

IVCCH SUBR F.2 CSREAD RETURNS NEXT INPUT CHAR

1VQMO SUBR F.2 CSQEAD RETURNS STATUS OF QUOTE MODE

MAKSTRNG SUBR F.2 CSREAD MAKES CHR STR ATM FROM LIST OF CHRS

PBCLOSE CAL C C SREAD FINISH CHAR STRING ATOM

PROPFN CAL C CSREAD START MAKING CHAR STRING ATOM

PUTEYTE CAL C C SREAD PUT BYTE INTO CHAR STRING

RDAT CAL C CSREAD QEAO AN ATOM

RDERR CAL C CSREAD INDICATE INPUT SYNTAX ERROR

RDERRCNT CAL C CSREAD SYNTAX ERR-PARENS MADE BEFORE '>*

RDLIST CAL C C SREAD READ A LIST

RDSE CAL C CSREAD READ AN S-EXPRESSION

READ SUBR F.2 CSREAD READS ONE EXPRESSION FROM CARD

READCH SUBR F.2 C SREAD READS ONE CHARACTER FROM CARD

STIVCCH SUBR F.2 C SREAD SETS CURRENT INPUT CHAR

STIVQMD SUBR F.2 CSREAO SETS QUOTE MODE

ATOP SUBR Fel C SSUBS STUTTER ROUTINE FOR-IS ARG ATOM?

CSSUBS CSECT "0 c SSUBS BASIC SUBROUTINES

EQ SUBR F.I CSSussS STUTTER RTN FOR-ARG1 =ARG2?

ERROR SUBR F.5 c SSUBS WRITES MESSAGE AND GOES TO TOP LVL

FST SUBR F.l c¢ SSUBS STUTTER RTN FOR =)STELEM OF LIST
NULL SUBR f.1 C SSUBS STUTTERRTNFUR=1S ARG= NIL?

RST SUBR F.l cc SSUBS STUTTER RTN FOR = REST OF LIST

STAKN CAL G c SSUBS GET FREE STORAGE BLOCK

STIME CAL G CSSUBS START TIMER

TAK2 SUBR F.1 cSSURS MAKES LIST W/FSTARGL AND RST ARG2
TTIHE CAL G c SSURS HOW LONG SINCE LAST STIME

AT MISC M CSSWYM EQUATED TO ATOM OFFSET (6)
ATAMT SWYM C CSSWYH ATOM OFFSET (6)
Al REG | CSSWYM ARGUMENT REGISTER & RESULT REGISTER
A2 REG | C SSWYM ARGUMENT REGISTER
A3 REG | CSSWYM ARGUMENT REGISTER

A4 REG | CSSWYH ARG'JMENY REGISTER
A5 REG | CSSWYM ARGUMENT REGISTER
A6 REG | CSSWYM ARGUMENT REGISTER
B REG 1 CSSWYM BASE REG FOR ALL ROUTNS
CARORDR SWYM M CSSWYM DCB FOR READING CARDS
CELFNC FIELD M CSSWYM ATOM HEAD-FUNC DEF TYPE BITS
CELREL FIELD M C SSWYM ATOM HEAD-CELL 1S RELOCATABLE
C ELVAL FIELD M CSSWYM ATOM HEAD-CELL HAS VALUE{NOT FNC)
CSSWYM CSECT M c SSWYM GLOBAL INFORMATION FOR SWYM RTNS
c 4 REG 1 CSSUYM ODD REGISTER CONTAINING F’'4’

DUBWORK SWYM M CSSWYM DOUBLE WORD WORK AREA
F REG | CSSWYM FREE STORAGE POINTER
FALSE MISC G CSSWYM L A14NILs RET; (BRANCH TOIT)
FEND SWYM E.4 CSSWYM POINTS AT END OF FREE SOTR

GCABAD SWYM E.4 CSSHWYM GC ARENDS FOR BAD DATA STRUCTURE
GCTIME SWYM E.4 CSSWYM GC COMPUTES ITS TIME
L REG I C SSWYM LINKAGE REG (RETURN ADDRESS)
MEMNXT SWYM E.4 CSSWYM ALTERNATE FREE STOR
YEMSIZ SWYM E.4 CSSWYM SIZE OF FREE STORAGE
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MEMUSE SWYM E.4 CSSWYM FREE STOR IN USE
MI FIELD E.2 CSSWYM GARB COL MARKING BIT
M2 FIELD E.2 CSSWYM GARB COL MARKING BIT

N REG I CSSWYM POINTS AT NIL

NUMAT SWYM M CSSWYM WORK AREA FOR PRINTING NUMBERS
NUMATVAL SWYM M C SSWYM WORK AREA FOR PRINTING NUMBERS
P REG I CSSWYM STACK POINTER
PBHD SWYM C CSSUYM HOLDS ADRS OF AT-HD DURING PUTBYTE
PRATBAD SWYM F.3 CSSWYM ARE4 FOR PRINGING '"?2TYPN!?
PRINTER SHYM M CSSYYM DCB FOR PRINTING h

PRLNG SWYM F.3 CSSWYM LENGTH OF PRINT LINE
PRPEND SWYM F.3 CSSUYM WHERE TO PUT LAST PRINT CHAR
PRPT SWYM F.3 CSSWYM WHERE TO PUT NXT PRINT CHAR
PUTCH MISC G CSSWYM PUT CHARACTER IN PRINT LINE
RBCHAR SWYM C CSSWYY LAST CHAR READ
RDCLASS SWYM C CSSWYM CLASS OF LAST CHARACTER READ
RDCOL SWYM C CSSWYM LOC OF LAST WORD READ
RDEND SWYM C CSSUYM LOC OF LAST CHAR TO READ
QDERCNT SWYM C CSSWYM PRINT #PARENS CREATED BEFORE *>°
RDERLOC SWYM C CSSWYH SYNTAX ERROR CARD COLUMN INDICATIDN
RDERMS SWYM c-~  CSSWYM READ SYNTAX ERROR MESSAGE AREA

RDERNO SWYM C CSSWYM SYNTAX ERROR NUMBER
RDLNG SWYM C CSSWYM NUMBER OF CHAR READ FROM EACH CARD
RDSTAT SWYM C CSSUYM READ ROUTINES STATUS INFO BYTE
RDSUPCTR SWYM C CSSWYM COUNT #PARENS CREATED BEFORE >?
RSTA1 MISC 6.1 CSSWYM RST(Al). BAL'EDTO BY RST MACRO

RSTA2 MISC B. 1 CSSWYM RST(A2). BAL'EDTO BY RST MACRO

RSTA3 MISC B. 1 CSSWYM RST{A3). BAL'EDTO BY RST MACRO

RSTT MISC B.l CSSWYM RST(T). BAL'EOTO BY RST MACRO

R STITT MISC 6.1 CSSWYM RSTI(TT)., BAL'EDTO BY RST MACRO
S REG I CSSWYM BASE REG FOR CSSWYN
ST SWYM M CSSUYM POINTER AT T
SWERROR MISC G CSSWYM SYSTEM ERROR

SWYM SHYM M CSSWYY FIRST LOC IN CSSWYM
SWYMSAVE SWYM M CSSWYM SAVE ARE4 FOR CALLING OS
SYSFOO SWYM M CSSWYM SAVE AREA FOR SAVING OS LIMK REGS
T REG I CSSWYM TEMP (EVEN, NEXT TO TT)
TIME SWYM M CSSWYM TIME SET AT LAST STIME
TRUE MISC G CSSWYM L AlyTS RET; (BRANCH TO IT)
TT REG I C SS wym TEMP (GDDy NEXT TOT)
TVEND SWYM M CSSWYM LABEL OF LAST ENTRY IN TV TABLE
TVSTART SWYM M CSSWYH LABEL OF START OF TRANS VECT TABLE
VCHAROBS SWYM M CSSWYM POINTER AT CHAR OBJECTS LIST
VFPROPS SWYM M CSSWYM POINTER AT FPRDPS STRUCTURE
VOBLIST SWYM M  CSSWYM POINTER AT ALL OBJECTS LIST
VUNBND SWYM M CSSWYM PCINTER AT SPECIAL ‘UNBOUND’
#MIM2 SWYM E.4 CSSWYM USED BY GC TO ‘OR IN ML &M2 BITS

#PO SWYM M CSSWYM ADRS OF BEGINNING OF STACK
#XXXX SWYM M CSSWYM TRANSFER VECTOR, ADRS OF RTN XXXX

BELL SUBR F.5 CS2250 RINGS BELL ON 2250

CS2250 C SECT © €S2250 2250 EXPERIMANTAL INTERFACE

AND MACRO 6.7 MACLIB COMBINE TWO PREDS

A TOM MACRO 6.1 MACLIB ? IS ARG AN ATOM
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BCMAC MACRO 8.7 MACLIB MAKE A BR CONDITION INSTRUCTION

BIT MACRO 8.5 MACLIB IDENTIFY MNEMONIC WITH BIT IN WORD

BITTBLMK MACRO 9.5 MACL 18 MAKE A TABLE FOR ‘BIT" MACRO

CAL MACRO 6.6 MACLIB SUBROUTINE CALL

CELL MACRO 8.2 MACLIB LOADS ATOM CELL INTO REG

CHAR MACRO 6.3 MACLTB CREATES A CHAR OBJECT ATOM

CHTBL MACRO 8.8 MACLIB MAKE A CHARACTER TABLE (FOR TR}
ELSE MACRO 8.7 MACLIB COND - END TRUE: START FALSE PART

ENDIF MACRO 8.7 MACLIB COND - END FALSE: END CONDITIONAL

EQ MACRO 8.1 MACLIB ?7 ARG1 = ARG2{TESTS TWO POINTERS)
EVCH MACRO 6.3 MACLIB GETS ARITH VAL OF EBCDIC BITS

FINDBIT MACRO 8.5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD

F IXUP MACRO 6.8 MACLIB GC-MAKE ENTRY IN FIXUP TABLE

FST MACRO 8.1 PACLIB FIRST ELEMENT OF LIST
FSUBR MACRO 6.3 MACLIB CREATES AN ATOM WITH FSUBR PROP

GCPUT MACRO 8.8 YACL IB GC-PUT WORD TO NEW CORE

GETNAME MACRO B.2 MACL | B LOADS PTR AT PNAME CHR STR ATM

GETNUM MACRO 8.2 MACLIB GET VALUE OF NUM CHAR STR ATOM

GOTO MACRO 8.7 MACL 18 BRANCH

HASH MACRO B.3 MACL 18 HASH CODE AN IDENT FUR OBLIST

HEAD MACRO B.2 MACLISB LOADS HEAD OF ATOM
| F MACRO 8.7 MACLIB COND - START PREDICATE

INST4 MACRO 8.8 MACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR

| NVERTB MACRO 8.5 HACLI 8 CHANGE BIT

MATOM MACRO 8.3 PACLIB CREATES AN ATOM STRUC (IN CSFREESTI
NOT MACRO 6.7 MACLIB NEGATE PREDICATE MACRO TEST

NULL MACRO 6.1 MACLIB ? ARG = NIL

ORX MACRO 8.7 MACLIB COMBINE TWO PREDS

POP MACRO 6.4 MACLIB GETS TOP OFF STACK-HEDUCES STACK

POPN MACRO 8.4 MAC118 REDUCES STACK N TIMES

PUSH MACRO 8.4 CACLIB PUTS ARG ATOP STACK

QCHAR MACRGC? 8.3 MACLIB CREATES A CHAR OBJ FOR Y(t),
RESETS8 MACRO 6.5 MACLIB TURN OFF BIT
RET MACRO 8.6 MACLIB SUBROUTINE RETURN

RPLCEL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLF MACRO 8.1 MACLIB REPLACES FIRST PTR OF LIST

RPLHD MACRO B.2 PACLIB REPLACES HEAD OF ATOM

RPLTOP MACRO 8.4 MACLIS REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 6.4 MACLIB REPLACE NTY ITEM Of STACK

RST MACRO 8.1 MACLIB ALL BUT 1ST ELEMENT OF LIST

RSTMAK MACRO 6.1 CACLIB MAKE RQUT INES FOR ‘RST’ TO BAL TO

SETB IT MACRO 6.5 MACLIB TURN ON BIT

STRAT MACRO 6.3 MACLIB CREATES STRING ATOM STRUC (FREEST)
SUB MACRO 8.6 MACLIB SUBROUTINE ENTRY

SUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH SUBR PROPERTY

SWEAR MACRO 6.8 PACLIB SYSTEM ERROR
TAIL MACRO 8.2 MACLIB Loam©PpPTRAT TAIL oF ATOM

TESTB MACRO 8.5 MACLIB TEST BIT

THEN MACRO 6.7 MACLIB COND - END PRED; START TRUE PART
TOP MACRO 8.4 MACLIB GETS TOP OF STACK-BUT LEAVES IT

TOPN MACRO 8.4 MACLIB GETS NTH ITEM ON STACK

TVMAK MACRO 6.6 MACLIB MAKE A TRANSFER VECTOR FOR CAL

VALUE MACRO 8.3 MACLISB CREATES AN ATOM WITH A VALUE
XB MACRO 6.6 MACL IB TRANSFER INTO MIDDLE OF SUBROUTINE
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