CS 113

THE IMPACT OF STORAGE MANAGEMENT
ON PLEX PROCESSING LANGUAGE IMPLEMENTATION

BY
WILFRED J. HANSEN

TECHNICAL REPORT NO. CS 113
JULY 1969

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

THE IMPACT OF STORAGE MANAGEMENT
ON PLEX PROCESSING LANGUAGE IMPLEMENTATION

Wilfred J. Hansen*

STANFORD GRAPHICS PROJECT
Professor William F. Miller,
Principal Investigator

July 1969

Computer Science Department
Stanford University

““Present address: Applied Mathematics Division, Argonne National Laboratory

This work was supported in part by National Science Foundation Grant GP-7615.

Abstract

A plex processing system is implemented within a set of environments whose

relationships are vital to the system's time/space efficiency:

Data Environment
Stack Structures
Data Structures

Subroutine Environment
Routine Linkage
Variable Binding

--. Storage Management Rnvironment

Memory Organization for Allocation

Storage Control

This paper discusses these environments and their relationships in detail.
For each environment there is some discussion of alternative implementation
techniques, the dependence of the implementation on the hardware, and the
dependence of the environment on the language design. In particular, two
language features are shown to affect substantially the environment design:
variable length plexes and 'release' of active plexes. Storage management
is complicated by the requirement for variable length plexes, but they can
substantially reduce memory requirements. If inactive plexes are released,
a garbage collector can be avoided; but considerable tedious programming
may be required to maintain the status of each plex.

Many plex processing systems store numbers in strange formats and
compile arithmetic operations as subroutine calls, thus handicapping the

computer on the only operations it does well. Careful coordination of the

system environments can permit direct numeric computation, that is, a single
instruction for each arithmetic operation. This paper considers with each
environment, the requirements for direct numeric computation.

To explore the techniques discussgd, a collection of environments
called Swym was implemented. This system permits variable length plexes and
compact lists. The latter is a list representation requiring less space than
chained lists because pointers to the elements are stored in consecutive
words. In Swym, a list can be partly compact and partly chained. The gar-
bage collector converts chained lists into compact lists when possible.

Swym has careful provision for direct numeric computation, but no compiler
has been built. To illustrate Swym, an interpreter was implemented for a
small language similar to LISP 1.5. petails of Swym and the language are in

a series of appendices.

TABLE OF CONTENTS

Page

PREFACE . . . v v v v v v v v e e e e e e e e e e e e e e e iv
INTRODUCTION e 1
Sywm and STUTTER « « ¢ v ¢ v« v o v o o o o & 3

Plex Processing Language Implementation 6
Environments of a System Implementation 9

1. Data Environment o + ¢ 4t 4 e e e e e e e e e e e e e 11
I.1 The Stack . . . v v v i 0L L i il L i s e e e e e e 11

I.2 Data SErUCtUreS. « ¢ v & & v v v v v v v v o o s o o o 14

II* Modular Prog;amming and the Subroutine Environment e o o o o o 27
II.1 Routine Linkage 33
I1.2 Variable Binding ¢« ¢ v v v v . e e s s o s 37
III. Storage Management « « + « ¢ ¢ ¢ o o o« = o o o o o o o o 48
ITI.1 Memory Organization for Allocation o o o o o o @ 50
ITI.2 Storage Control. ¢ e e o s s o 53
Fixed-Release ¢ « v v o v o o o o ¢ o o 54

Fixed-No-Release e e e e e e e e e e e e e e 56
Variable-Non-Relocating « « « « . . . 57
Variable-Relocating . . . « « o o o . .. 59

Hierarchical « . .« o ., .. 63

Basic Swym Garbage Collector Algorithm 65

CONCLUSION. . v v v v v v v v v e e e e e e e e e e e e e e e e e e 73
Summary of Swym Environments ., 74

Implications for Hardware Design 75
BIBLIOGRAPHY « v v v v v e e e e e e e e e e e e e e e e e e e 77

APPENDICES

A.

Details of Swym Structures

Al Free Storage Structures

A.2 Stack Structures

Swym Macros

B.1 LISP . The Basic LISP Operations
B.2 Atom . Operations on Atom Fields
B.3 Freest . Free Storage Creation
B.4 Stack . Stack Manipulation

B.5 Bit . Named-Bit Operations

B.6 Link . Subroutine Linkage

B.7 Control . Flow of Control « @ « @ @ @ @ @ @ @« « o =«

B.8 Misc . Miscellaneous

READ Routines and Syntax.

c.1 The Syntax

c.2 Internal Routines

C.3 CSSWYM Fields used by READ Routines
c.4 Flow Charts

EVAL and the STUTTER Interpreter

D.1 Defining Functions to the Interpreter
D.2 STUTTER Variable Binding

D.3 STUTTER Interpreter Internal Routines
Swym Garbage Collector

E.1 The Complete Garbage Collector Algorithm
E.2 Garbage Collector Internal Routines

E.2 Information Stored in CSSWYM

=
fete

82

82

89

o1

95

917

98
103
107
109
113
117
121
121
126
132
134
12
12
144
145
151
152
159
164

F.

J.

0.

STUTTER Functions

F.1 Basic Routines

F.2 Input Routines

F.3 Output Routines « « « « « v v v o © =« = =
F.4 STUTTER coesxan: @ @ © @ @ @ © @ @ @ @ @ «
F.5 Utility Routines

Miscellaneous Swym Routines

swym - STUTTER Initial Free Storage

H.1l Character Objects

H.2 Subroutine Objects

i3-. Special Structures

Swym Register Assignments

Swym - STUTTER Output and Error Messages

J.1 Normal Output.

J.2 Read Errors .

Je3 Computation Errors

Jekt ABEND - Abnormal Terminations

Proposed Instructions for the IBM/360

Demonstration of the Correctness of the Swym Garbage ..

Collection Algorithm

Description of Control Section CSSWYM .
Adding Routines to Swym - STUTTER .

N.1 Adding Assembled Routines

N.2 Compiling Functions for Swym

N.3 Defining Routines to be Interpreted .

S W — Control Sections « « « « « « « « « « « « «

MNEMONIC INDEX « « @ « @ « @ « @ @ @ o @ @ © o © @ © o « o = =

iii

165
167
168
171
172
174
176
179
179
179
179

183
184

184
18k
186
187
188

196

225
229
229
230
232
23k
236

PREFACE

Plex processing is an effective technique for attacking graphical
problems. The Stanford Graphics Project conducted project Swym to examine
current techniques and develop new techniques. An important result is that
plex processing cannot be viewed as simply another high-level language
facility. Instead, it must be viewed as having an impact on the most vital
components of a language implementation. Introduction of plex processing
into a language has far-reaching repercussions in the design of implementations
of that language.

Many graphics projects have based their implementations on plex pro-
cessing. An early effort was Sutherland's Sketchpad thesis reported in
[Suth 63] and [John 63]. More recent are [vDam 67] and the interactive dis-
play project at General Motors [Joye 67]. A review of several systems imple-
mentations useful for graphics is [Gray 67].

This paper can be considered as an outline for a course entitled 'Semantics
of Plex Processing Languages.' Knowledge of Fortran and assembly language would
be prerequisite and the course would cover six languages in detail: ALGOL
[R&R 64] - the arithmetic mother, LISP [MCar 62] - the plex father, and their
offspring - ALGSIW [BBG 68], GEDANKEN [Reyn 69], PL/I [IBM 68b], and

'Swym/STUTTER (this paper and appendices). As far as possible, the course
should ignore the syntax of the languages since there exists a superabundance
of literature on that field. Instead the course should cover the fundamental
semantics of data structures and program control.

The author would have preferred to continue making additions to Swym
rather than write it up. There came a point, however, where the goals of the
project had been met and further effort would not add useful information.

This paper, especially the appendices, represents a system in an arrested
state of development. This is not because there are conceptual difficulties in

iv

making STUTITER a practical programming system, but rather because there do
not appear to be any such difficulties. Swym serves its purpose: it is a
framework within which systems can be implemented.

The body of the paper is an abstract discussion of language implementation
and storage management. The appendices give complete details of the Swym
system, while the bibliography indicates previous work in implementing storage
management. Unfortunately, some of the papers referenced, especially
in section 111.2, describe programming languages with no description of the
'implementation details being discussed in this paper. 1In such cases, the
implementation details have been ferreted out in private communication.

Bibliographic references are in the form,
[name yrl

where name is four reasonably mnemonic characters from the author's name
and yr is the year the work was published. If the information was a private
communication, the year is coded 'pc'.

The author is indebted to all those who have taken their time to explain
and discuss the intricacies of various plex processing implementations, notably
* the 'system didlers' at the Stanford Artificial Intelligence Laboratory and the
Computer Based Laboratory. Thanks are due to Dr. J. Reynolds, creator of
C¢GENT, for discussion of that system and language implementation in general.
F.L. Morris acted as an invaluable sounding board for descriptions of the
evolving Swym system. A special debt is owed my adviser, Dr. William Miller,

for his advice and encouragement.

INTRODUCTION

The term "plex" may have been first proposed in [Ross 61]. D.T. Ross
invented the term to mean a structure composed of 'n-component elements'
just as a binary tree is composed of 2-component elements. It has become
more common, though, to use the term plex to mean 'n-component element'
and to call a structure of these a 'plex structure.' One main characteristic
of plex processing is the pointer - a data item that encodes the location
of some other data item. Most commonly, a pointer is the address of a plex
in memory. In short:

plex - one ormore data fields of computer memory, usually

consecutive.

pointer data coding the location of other data (usually
a pointer is the address of a plex.)

plex structure - a group of plexes connected in the sense that starting
from one or more of the plexes, all other plexes can
be reached by means of pointers, either directly or
through a sequence of pointers.

plex process -~ a program using plexes to represent a substantial
amount of its data. (An almost equivalent and more
determinate definition is: any program that requires
storage management beyond a stack.)

A list is an important special case of a plex structure. Basically, it
is an ordered set of plexes. Normally a list is realized with 2-plexes in
this way: the first component of each 2-plex points at an element of the
ordered set of plexes; the second component points at the next 2-plex in the
list. Usually, the second component of the last 2-plex points at some
standard list terminator. Lists were treated mathematically by John McCarthy
[Mcar 60] and implemented in the plex processing language LISP 1.5 [MCar 62].

[Knth 68] includes a complete discussion of plex data structure implementation.

Other good reviews of the literature on plex implementations are in [Schr 67]
and [Lang 68]. The most promising work is reported in [Ross 671, [Hawk 671,
and [Styg 67]. The last two are part of the ambitious SDC LISP 2 for the 360,
described in the SDC TM - 3417 series.

When plexes are created and destroyed during execution of the program,

some storage management technique must keep track of the occupied and un-

occupied memory. Some storage management schemes require a garbage collector.
This is a routine that processes all memory, identifies the occupied and un-
occupied areas of memory, and makes the latter available for reallocation.
Although this is a time consuming process, other storage management techniques
may involve extensive bookkeeping.

Satisfactory computer languages must also provide numerical computation.
In plex systems numbers must be distinguished from pointers. Often this means
that numerical operators must retrieve their arguments from plex structure;
and this sometimes requires several memory accesses and one or more shifts.
Since plex languages usually permit more than one type of number, the
operators must also test the types of the arguments. But lengthy access
sequences and type-testing can seriously slow down a numeric calculation.
Solving this problem requires some form of compilation process and a
declaration structure in the language. The compiler can then determine
at compile time the types of operators and compile the appropriate machine
instructions. The problem of directly accessing numbers that is, direct

numeric computation - requires that the stack and memory be permitted to

contain arbitrary bit pattern numbers. This means, for example, that a
garbage collector cannot assume that all words on the stack are pointers;
nor can it distinguish pointers from other information on the basis of a

bit in the word.

Swym and STUITER

To examine plex processing from the practical level, Swym - a general
plex processing memory management system - was implemented. As an illustra-
tion of the capabilities of this system; an interpreter for a small LISP-like
language called STUTTER was also implemented.
The central focus of the Swym project was a particular plex structure
called a compact list. This form of list can reduce memory requirements by
up to half; essentially compact lists do not always require the second pointer
in the 2-plex for lists. The details of compact lists are in the section on
Swym data structures (1.2) and in the Appendices.
The compact Iist was derived from and suited for the needs of LISP l.5.
Consequently, STUTTER is similar to that language and has the same basic
operations, (though new names, the LISP 1.5 names are in parenthesis):
st (CAR) arqument must be a list; fst returns the first element
of that list;

rst (CDR) argument must be a list; rst returns the rest of that
list after the first element; if the list has only one element,
Ist returns an atom;

tak2 (CONS) there must be two arguments, both pointers; tak2 takes
2 words from free storage and tacks the 2 arguments together so

first is fst of result and second is the rst;

atom (ATOM) predicate - true if argument is an atom, false other-
wise;
eq (EQ) predicate - true if both arguments point at the same

plex; false otherwise;

rplf (RPLACA) there must be two arguments and the first must be a
list; the first pointer in that list is replaced with a pointer

at the second argument.

Unlike many LISP implementations, an interrupt results if fst or rst is taken
of an atom. Like LISP, the mnemonics_iigp,_j!gg, rfrrst, eteey, can be defined
(lending credibility to the name STUTTER). As indicated above, tak2 always
makes a 2-plex. STUTTER relies on the Swym garbage collector to make compact
lists where possible.

Super-parentheses are an important feature of the STUTTER input syntax.
Represented by the characters '<' and ™', a pair of super-parentheses can be
substituted for any pair of normal parentheses (of which there are many in
LISP and STUTTER input). When the input routine finds the right super-
parenthesis (>) matching a left super-parenthesis (<), the enclosed ordinary
parentheses are forced to balance, either by creating right parentheses or
by ignoring characters. If characters are added or deleted, an error message
is printed.

Swym has been carefully designed to permit direct numeric computation.
Special care was taken in several areas: the stack and free storage permit
thirty-two bit numbers, and the value of a STUTTER atom is directly
accessible, given the address of the atom. The subroutine linkage mechanism

and the storage management techniques also take into account the possible

presence of numbers.

Swym was programmed for an IBM360 under 0S/360. This was not only
because of the wide availability of the 360, but also because it was some-
thing of a challenge to adapt the 360 fér efficient plex processing. The
Stanford 360 is a model 67 with 32 bit addressing and paging facilities.

Swym was designed to test these facilities on a plex processing system, but
the operating system did not support them and moreover, Swym was

moved to SLAC. Nonetheless, the lessons learned from Swym may have important
implications for machine design, as is discussed in the conclusion. Details

of Swym and STUTTER are in the Appendices.

Plex Processing Lanquage Implementation

Several interesting languages have been designed primarily for plex
processing. The *best known examples are LISP [MCar 62], SNPBPL [Farb 6k4],
L6 [Know 66], and the earlier IPL—V’[ﬁ;wl 64] and COMIT [Yngv 62]. An
excellent review of such languages is in [Bobr 68]. The promise shown by
these languages has led to many attempts to define and implement plex
processing facilities for existing high-level languages, For instance:
_ SLIP [Weiz 63], records for Algol [Hoar 66, Wrth 66], and the 'based variable'
feature in PL/1 [IBM 68b]. Unfortunately, adding a plex processing feature
is very unlike adding a new function (say SINE) or even a whole new arithmetic
(say complex). Elex processing not only requires appropriate additions
to the compiler or interpreter, but can also require extensive revision of
the code compiled for all other features. The major problem is that plex
processing requires some form of storage management, either by the user,
or by the system. This paper surveys the problems encountered if a system
is to manage storage. These problems are encountered in the very basic
areas of data representation, subroutine linkage, and storage management
itself.

In most computer installations, program compilation is a frequent
event. Like other non-numeric computation, compilers can make advantageous
use of plex processes. For this reason, the concepts and techniques discussed
in this paper apply not only to the code generated to implement the features
of a language, but also to the features required in the compiler itself.
This paper assumes that the language being implemented includes plex
processing and consequently requires storage management. It is also assumed

that the language permits definition of subroutines (procedures) and that

programs written in the language will make substantial use of subroutines
and modularity. For two reasons, Swym sheds some light upon the functions
required during the execution of a plex processing program. First, Swym
is an investigation of plex processing; second -- and less obvious --

Swym required construction of plex processes. The garbage collector,
input/output routines and the STUTTER interpreter are all examples of
plex processes.

A programming system will be used by many programs over an extended
period of time. It is important in the design of such a system to avoid
decisions that will slow execution substantially, expecially when a practical
alternative is available. Usually many decisions must be based on the trade-
off between memory space and execution speed. Before multiprogramming and
timesharing the answer was to optimize by saving time at the expense of space
since the memory was there. In modern systems there is an expense not only
for execution time, but also for memory space. The ratio between these two
expenses 1is critical to the choice of an efficient set of alternatives for
a language implementation. One of the goals of this paper is to point out
the alternatives. A major effort was made to reduce the size of the data
structures as far as possible and to reduce the time and space required
for the most basic system functions.

One approach to the definition of execution efficiency is that of the
I; systems [Know 66]. That language and system is designed for 'low-levelness'.
This has been defined [Mnch pc] as producing code that is no more than ten
percent slower than equivalent hand code. STUTTER was designed with a
slightly different criteria in mind: the principle of 'relative difficulty

of specification.' This principle declares that a language facility should

take proportionately as much effort to specify as it does to execute. In
this way the programmer can have some feel for how much time the program
will take simply from the amount of code he writes.

Several problems contribute to slow running of high-level languages
with plex processing facilities. Most of these, however, are inherent,
not in the plex processing facilities, but in the implementations. Many
plex processing users see only the interpretive LISP or SN¢B¢L systems.
Compiled LISP, however, runs much faster than when interpreted. SN@BAL IV

- has plexes, and should run faster than SNPBPL III (because string
matching can now be avoided in plex operations). While interpreters have
their place, they are simply too slow to be used on any problem big enough
to justify the use of a computer. But there exist plex processing systems
that meet these problems adequately. The ALGOLW [BBG 68] system at Stanford
implements plexes, yet is so fast a total system that student programs can
be compiled and executed on a 360 in less than a second. In short, the
presence of storage management facilities need not automatically mean
slow execution.

Although written in terms of language implementation, this paper is
really directed toward any program that can be more efficiently implemented
by first implementing some tools. These tools might be any one of,

a) write a few macros

b) write macros to interface with an existing memory management
system like Swym

c) design a special purpose language

d) design a full general purpose language
The author believes that the most useful approach is probably (b), and he
would probably design many more data-specific macros than might another

programmer.

Environments of a System Implementation

A program is executed on a computer in a set of environments including
not only the hardware, but also service routines and conventions for data
representation and program linkage. The environments most directly affected by
the requirement for plex processing can be divided into:

Data Environment
Stack Structures
Data Structures
Subroutine Environment
Routine Linkages
Variable Binding
Storage Management Environment
Memory Organization for Allocation
Storage Control
All of these environments interact with the system storage management facility.
Not only must they be designed to make storage management possible, but many
require plexes for their own implementation.

The relations between the environments must be carefully worked out before
system construction is begun. A hasty decision on one environment can be
expensive in the implementation of some other. ALGOLW did not provide for
marking pointers on the stack. This eventually required that the garbage
collector be rewritten. [Baur pel. Other decisions in ALGOLW require that a
2-plex occupy sixteen bytes. But if a set of environments is well coordinated,
more than one language can be implemented within that set of environments.

This provides for very efficient linkage between routines written in two or

more languages.

Each section below describes one environment of a language implementation.

The discussion will center around the effect of the storage management

scheme on that environment but will also cover alternative implementations

and the relationship of the environment”both to the language being implemented
and to the machine being used. Each section concludes with a discussion of the
relevant features of Swym and STUTTER. This serves for comparison and to

illustrate one choice of solutions for the problems posed.

10

I. Data Environment

Data structures range in complexity from the single bit to organiza-
tions covering large quantities of direct access storage. To a certain
extent, the data structures in a system are dictated by the needs of the
higher level language. But the physical structure of the data may differ
from the logical structure manipulated by the higher language programmer.
In any case, the data requires storage space and this must be provided by some
form of memory management mechanism, either during compilation or during
execution. The discussion below separates stack data structures from other data
structures for two reasons. First, the stack is the simplest form of execution
time memory management. Second, a stack is usually included in a system for
program control purposes. In most languages routines exit in the reverse
order of entry, so the stack is the natural analog of the progress of the

program.

I.1 The Stack

A stack (sometimes called a push down list) is a simple but important
system component. Among the advantages of a stack are that few instructions
are required to allocate and release space and there is no possibility of frag-
mentation of space, because there is only one contiguous area of unused space.
A stack permits recursive procedures: by allocating temporary variables and
saving return addresses on the stack, a procedure can call itself directly or
indirectly. Each invocation refers to the correct variables and returns con-
trol correctly. Even if there is no recursion in an entire program, a stack
is a flexible and efficient method of storage allocation.

There are three basic operations on a stack: addition, deletion, and

reference to items; all are-easily implemented. One pointer to the stack

11

is maintained; additions and deletions move the pointer, while items are
referenced relative to it. Sometimes a test is made for the bottom of the
stack when items are deleted. Other systems assume that the program is
correct and that no more deletes will be-executed than additions. Several
methods have been implemented for ensuring that the stack does not grow beyond
its bounds. The most common is to simply test the stack pointer against a
pointer to the end of the stack. A possible hardware method is to check the
low order k bits of the stack pointer; if all are zero, the stack is exhausted.
This method means that stacks must end on certain boundaries; a restriction
that complicates memory allocation. With the PDP-6 hardware stack commands,

a stack pointer includes a count that is decremented when the stack increases
and incremented when items are deleted. If the count reaches zero, the stack
is exhausted.

Stack exhaustion poses peculiar problems; one simple solution is to
terminate execution. In paging systems or systems with more than one stack,
it may be possible to continue. The difficulty is that the stack is changing
most rapidly near the top. If a new page is allocated for the stack, only
one or two words may be used before the stack goes back to the old page. If

. the new page is released, it may need to be reallocated again very shortly.
If the new page remains part of the stack, the stack may grow large during
one-portion of a program and eat up valuable space during later portions.
At the least, paging algorithms must recognize that the bottom of the stack
will not be accessed for a reasonably long time while the top of the stack
must never be paged out.

When a computer implements a stack in the hardware, it is common to
keep the top stack items in faster access memory. The B-5500 had two high

speed stac'k locations; the Atlas had sixteen. In these cases, special

12

logic can be incorporated to minimize memory accesses due to fluctuation of
the stack pointer. When an item is deleted from the top of the stack, the
hardware must decide whether or not to initiate a memory fetch to load the next
item of the stack. The answer dependson the expected ordering and frequency
of additions and deletions.

In most Algol implementations, a block of temporary storage on the
stack is allocated at procedure entry and deleted upon exit. The stack
fluctuates more rapidly for B-5500 and Euler-like [Wrth65] implementations:
the top elements of the stack are the implied operands for an operation and
the result replaces those operands on the stack. Swym permits an in-between
method; stack storage is allocated only when it is needed, not necessarily
for the duration of the routine.

In plex processing systems three classes of items can be stored on
the stack: pointers, return addresses, and non-relocatable data. These
must be distinguished because the garbage collector must find all structures
referenced by pointers on the stack. It is possible to associate type bits
with every word on the stack to identify those that are pointers. But if
those bits are in the word itself, it will not be possible to store arbitrary
words on the stack as is required for direct numeric computation. (A number
might have the pointer bit set wrong.) Numbers could be treated by creating
a plex containing the numeric value and storing a pointer to that plex on
the stack. But this seriously slows numeric computation by unnecessarily
invoking the storage management facilities. LISP 2 proposes that each routine
call include a 'stack map' of the storage allocated for the calling routine.

This map could be accessed relative to the return address, which would also

be on the stack.

13

Swym Stack

The Swym stack is one 360 word wide and grows downward. That is,
additions are made at the lowest addressed end of the stack. 1In this way,
the latest entries to the stack can be addressed relative to the stack
pointer. Provision has been made for three varieties of entry on the stack:
pointers, return addresses, and stack plexes. The high and low order bits
of the word are used to distinguish between these varieties so that the
garbage collector can treat each correctly. Every plex has a one-word
plexhead specifying its length and type. Numbers and other arbitrary bit
pattern words may only be stored in plexes; but note that a compiler can take
the plexhead into account and generate code to directly reference numbers

stored on the stack.

I.2 Data Structures

Data structures that have been implemented include:
Class I. bits, words, arrays, strings, stacks, queues, and

connection matrices.

Class II. Lists, plexes, rings, and hash-coded associative struc-
tures.
Class III. Variants of the above for tapes, cards, direct access

devices, and transmission.

All classes are alike in that they require memory space to store information.
If this space is allocated during execution, there must be some form of
execution-time storage management.. Section III of this paper concentrates

primarily on management for Class II.

14

t

The elements of Class I are simple in that they do not necessarily
involve pointers, although they may involve dynamic storage allocation.

The data structures in Class I are well covered by [Knth 67]. Stacks have
been discussed in Section 1.1. Queues are simply push-through (FIFf or
first-in-first-out) stacks. A connection matrix represents a graph by
having one bit for each possible connection between the nodes. If the bit
is one, that connection exists. Ordinarily arrays are used to contain in-
formation concerning the nodes connected by the matrix.

The data structures in Class II generally involve pointers. These
structures are described in [Schr 67] and [Gray 67]. It is interesting to
compare LISP lists with connection matrices for describing networks. If
there are n nodes, the connection matrix requires n? bits. If there are p
connections and each list element requires b bits, then the list structure
requires pb bits. The density (number of connections/number possible
connections) of the graph for which the two representations take the same
number of bits is_gi[g? where p'b ='£ . For greater densities, the matrix
requires fewer bits than the list. The breakeven density is then l/g.

For b = 64, the break even density is 15%. That is, if more than that
percentage of the possible paths exist, then the connection matrix is a
smaller representation. Connected graphs under 66 nodes always exceed

1.5% density because there are at least n-1 paths. The trouble with matrices
is that their allocation is very machine dependent. For example, an increase
from less than 32 nodes to more than 32 nodes might mean substantial re-
programming.

Two strange schemes have been proposed for LISP list structures, but
not implemented. 1In one, C¢NS would hash its arguments and store the dotted

pair in a hash bucket. If the pair was already in the bucket, a pointer

15

to the existing pair would be returned. This scheme would make EQ and EQUAL
the same simple operation, but would prohibit the efficiencies possible with
RPLACA and RPLACD. The major bar to implementation (the IBM 44X was proposed)
seemed to be the lack of a suitable garbage collection algorithm. The
second scheme was the n-cube addressing scheme. Every word would have
associated with it 2°-1 other words. These can then be addressed with just
n bits in the pointer field. (It was proposed that the addresses of the words
associated with word x be formed from the address of x by modifying each bit
in turn. Thus the associated words would be those connected to X along the
edges of the n dimensional hypercube.) In this scheme, though, any function
that will build a-plex must tell its arguments where to put their result;
the consequences are staggering: in general, the computation must terminate
before any results are stored.

The CORAL system [Suth 66] is one example of a system based on rings.
Essentially, each ring is a list with an explicit ring head; the end of
the list points back to the head. 1In addition, alternate elements of
the list contain pointers to the ring head and the reverse pointers that
point back to the preceeding reverse pointer. A ring element is a plex,
called a block. The pointers constituting the ring are physically stored
in these plexes and the beginning of the plex is marked with a word with
a special bit pattern (all ones). CORAL is a set of macro statement for
the TX computers at Lincoln Laboratories.

Other ring systems are described in [Gray 67]. [Perl 60] describes
'threaded lists'; these are similar to rings but derived from LISP lists.
The end of the list is marked by a special bit, and the pointer there points

back to the beginning of the list.

16

An elegant notation for plex processing in higher level languages is
the 'record' feature described in [Hoar 66] and [Wrth 66]. Essentially, the
declaration of a 'record class' defines a possible type of plex. The class
name is implicitly declared as a procedure for generating members of the
class. Identifiers attached to the fields of the plex are implicitly declared
as procedures to access the contents of records of the class. The arguments
to such procedures are records of the proper class. Other identifiers can
be declared to be pointers to members of one or more record classes.

Before direct access devices and on-line systems, Class III structures
were usually sequential files. But modern Class III structures have been
forced to include elaborate indexing and addressing structures. Indeed,
there is need fgf space management in most systems with Class III structures.
The most comprehensive existing system for managing file storage is OS/560.
Its great flexibility has prompted user grumbles about having to specify too
many parameters. For example, one of the facilities offered is a relocating
garbage collector for disk packs. This collector is not called automatically,
but must be invoked by a special procedure.

One goal in on-line systems is to build a filing system capable of
maintaining any file of data. An experimental unified file system was
reported in [Frnk 66]. This system encoded the value of each data item as a
pointer into a table of possible values for the item. Variable length
pointers appear to be necessary to make the scheme work; and even then it
seems to entail substantial I/O. Another, more analytic approach to file
design is discussed in [Benr 67].

Some systems have used Class III data structures for graphic applica-
tions. The MULTILANG file system is the basis for the PENCIL system

reported in [vDam 67]. Plexes are stored on a disk and contain keys and

17

elements. A plex may be specified by specifying logical combinations of

keys. The LEAP system [Rovn 67b] stores 'triples' of associative information.
Each triple is stored three times on the disk; once for each of the components.
Thus triples can be retrieved based on any part of their contents.

Several factors must be taken into account when designing a data structure
for a language implementation. These include the host computer, the basic oper-
ations to be implemented, and the amount of data description that must be avail-
able to general purpose run-time routines.

The host computer affects data structure design at the lowest levels.

For example, the size of pointer fields depends on the amount of free storage
to be addressed. _Also, most computers favor certain portions of words by
having instructions for manipulating those portions. A physical structure
design should take advantage of such natural access aids. The danger in such
designs is that a 'cleverness' in some portion of a representation will not
save as much space and/or time as is required to get the information into

the peculiar form required. In keeping with the principle of relative
difficulty of specification, the physical structure should bear some resem-
blance to the logical structure. For example, variable length plexes could
be represented physically as a list of fixed length plexes. But the
programmer may reference the last item in the plex frequently, expecting it
to be found with address arithmetic, rather than list searching. Numbers
should be stored so as to be accessible for the hardware arithmetic operations;
i. es, on the appropriate storage boundaries so shifting is avoided.

A large proportion of the time in a plex process is spent accessing the
correct piece of data. Since data access can mean descending through many
levels of (logical) data structure under control of the program, the best

measure of the efficiency of data access is the effort to descend one level

18

in the data structure. 1In Swym, these 'descent' operations are rst and
fst; requiring five and one instruction executions, respectively. Access
to a fixed length element of a Swym plex requires one instruction. The 7090
implementation of Lisp required 8 instructions each for CAR and CDR, the only
available descent operations. Lisp implementations using temporary storage
[Bobr 67] [Cohn 67) typically must test page tables and perform address
arithmetic to descend one level in the data structure. Such processing is
time consuming and has led to the definition of hardware 'paging' systems
like that on the 360/67.

) There are several reasons why data structure designs often include
descriptive information along with the data. A primary reason is that the
garbage collector must determine certain properties of structures before it
can collect them. Other reasons might be that each operator checks its
argument to see that it is the correct type, or that the operators must know
the specifications of the data in order to completely specify the operation.
For example, a general print routine must know the type of the data and a
string move routine must know the length of the string. The garbage
collector needs the location and length of each active data item and the
position(s) of any relocatable information in the item.

A data item can be described by its location, length, type, and zero
or more type dependent parameters. This information may be specified

explicitly or implicitly and may be located with the item, with the

reference, or remotely. Information stored with the item usually takes

the form of explicit fields referenced relative to the pointer at the item.
Storing descriptive information with a reference to an item means that

the item can be a part of some other item. The XPL string mechanism

[MKee pc] permits two strings to share memory. Remote storage of descrip-

tors has been proposed by D. McLaren [MCla pc]. Plex storage would be

19

allocated from the bottom of a free storage area, while fixed length
descriptors were placed in the top. The descriptor corresponding to a

pointer could be found by a binary search on the descriptor area. Presum-
ably, the descriptor would be infrequently referenced in that system.

Implicit data description is information derived from other characteristics

of a data item. For example, the length may be implicit in the type, that

is, all items of that type are the same length. The type may be implicit

in the fact that the item is within some area of memory. J. Reynolds

[Reyn pc] has proposed a minimal encoding scheme having type explicit

and implicit with the reference. If the compiler determines (from declarations
or by analysis) that a certain field can only point at a plex of one of

n types, then the type information can be coded with the reference and requires

only flogzgj bits.

Swwym Data Structures

Very complex plexes can be realized under Swym, but this section con-
siders only those implemented for the STUTTER interpreter: lists and atoms.
A list is a sequence of pointers. Each pointer is the address of an element
of the list. An element, in turn, can be either a list or an atom. An
atom is a plex with arbitrary internal structure. Note that Swym lists are
special plex structures because the garbage collector can compact them.

The difference between conventional lists representations and com-
pact lists parallels the difference between the IBM 650 and most other
computers. 650 instructions had two address fields: one for the operand
and one for the next instruction. Most other computers save memory by
assuming that the instructions are sequential. When the instruction se-

quence 1is broken a 'branch'. instruction continues execution elsewhere.

20

Like the 650, many list representations use two pointers for each element
of a list: one to the element and one to the rest of the list. On the
other hand, list storage can be conserved by storing lists sequentially
in memory; then only the pointers at the elements are required. But if
that is the only way lists can be stored, certain list operations can be
time consuming. The Swym solution is to allow a 'list branch' pointer.
Lists are normally sequential, but when a list cannot be sequential, it is
continued with a 'list branch' pointer. Figure I.l1 illustrates several
list structures in both the old and new representations. Note that a 'list
-- branch' pointer is called a_rst pointer because it points to the rest of

the list.

An earlier system permitting compact lists intermixed with chained
lists has been reported by N. Wiseman [Wise 66]. This system provides
for creation of compact lists, but the garbage collector does not rearrange
storage to remove rst pointers. Unlike Swym, variables may point at rst pointers
and there may be more than one rst pointer between element pointers. But the
user must program extra checking to avoid treating rst pointers as list
pointers. Wiseman presents no data on the effectiveness of his system.

Swym list words have the format shown in Figure I.2a. If the rst bit
is zero, the word points at an element of the list. If the rst bit is
one, this pointer is so-called 'list branch' pointer; it points not at an
element of the list, but at the continuation of the list. The atom bit is
on in a pointer at an atom; this is the distinguishing characteristic of an
atom in the Swym system. If both the atom and rst bits are zero, the pointer
points at a sublist of the given list. If both the atom and rst bits are one,
the end of the list has been reached. A list ending with a pointer at the
atom NIL is a normal list; otherwise, it is what LISP 1.5 sometimes calls a

general s-expression. The atom NIL is treated as a list with no elements.

21

2 [AJ® o= & [® c

o. LA |® B

o. | AR er—»{ B R e— C[]
o [9@t c[®ef— 9 []

’
Y Y
AR e—>] D |]

los]

[

All Possible Mixed Representations of C:

A [B [®C|
| A ®8
LAlB] C[]
Le [C| & |]
LAl Bl]

)
Y
A

[A[®ef—{ B] c [] LA]

B I® o+—»f{ C [_—]

I. A pointer at an atom is represented by a character string. (The ‘print name’ of the atom.)

2. A ‘list branch’ pointer is indicated by ® (for rst).

3. is written IZ to indicate the end of a normal list.

4 . Any other rst pointer at an atom is the end of a ‘general s-expression’list.

FIGURE 1.1

22

a. List Word

|] Address Field o

0o | 29 30 31
Reserved for Atom bit

Garbage Collector (M1)
|
_Ist bit

also used by
Garbage Collector (M2)

b. P lexhead
|| [Twe 1] ||
01 7 8 14 15 16 30 31
A
always 1 in an
atom head
Type of atom
Reserved for Reserved for
Garbage Collector (M1) Garbage Collector (M2)

FIGURE 1.2

23

Associated with each atom is a plexhead - a word containing the type
of the atom and two marking bits for the garbage collector. The format of a
plexhead is shown in Figure I.2b. The twenty-two unused bits may be used
for different purposes for different atom types. Depending on what is
desired, a plexhead may be located almogt anywhere with respect to any
other words in the atom, but usually it is the first word in a plex.

Atoms are addressed by pointing six bytes in front of the first byte
of their plexhead. This means that they point at a half word boundary
which is not a full word boundary. A pointer at a list always points
at a full word boundary. Thus, Swym distinguishes a list from an atom
by the pointer pointing at the item (the atom bit is just part of the
address) . Becauséwatoms are addressed six (not two) bytes in front, the rst
operator examines a bit in the middle of the plexhead. Since this particular
bit is always on, rst causes a specification error. fst also causes a speci-
fication error if applied to an atom. But the components of an atom can
easily be referred to with special Swym macros that assemble only one
instruction. From a paged memory standpoint, the atom bit has a small
advantage: whether or not an element is an atom can be decided without
accessing that element. The advantages of the atom bit suggest its use even
in a 24-bit address machine.

All atom types are alike in having a plexhead and in being addressed
in a strange manner. Only two atom types are defined in the basic Swytn
system: symbols and strings. But the user may define other types of atoms
simply by coding the primitives to create, manipulate, and garbage collect
the new atom types. Since the contents of a plex can be addressed directly
if the address of the plex is known, operations on plexes are no more costly

than operations on statically allocated storage.

oL

The symbol atom corresponds to the normal Lisp atom. In Swym, such an
atom has three components: the plexhead, a value cell, and a property list.
The plexhead contains control bits describing the contents of the value cell
and the atom's definition as a function. The value cell contains the atom's
variable binding as discussed in Section 11.2. The property list is similar
to that for LISP 1.5, but the r. ..rst is a pointer to the print name (a
string atom).

There are currently three sub-types to the string atoms. All are alike

in containing no relocatable information (addresses) and in being stored in
a consecutive block following the plexhead. The three sub-types are string,
fixed point numbe;, and hexadecimal number. The major difference between
these subtypes is in how the print routine handles them; they are not dis-
tinguished by the garbage collector. The plexhead of a string atom contains
the subtype field and a length field. The string and hexadecimal number may
be any number of bytes up to 32767. A fixed point number currently always
has a length of four bytes.

Swym free storage is one contiguous block, and new plex structure is
created from one end of that block. This storage allocation scheme has
proven advantageous in the Cogent system [Reyn 65]. Lists can be created
in compact form if all their elements are known. Atoms of any size can
easily be created; for example, bit string atoms are always stored in con-
secutive bytes. Note that the garbage collector requires only two bits
in the plexhead; all other words in an atom structure may be full words.

Thirty-two bit addressing is supported by Swyme A pointer may occupy

the full word except for three bits: the two low order bits and the high

25

order bit (bits 0, 30, 31). Because the 360 addresses bytes and all Swym
pointers point at words, the low order two bits of a pointer are not used

for addressing. The high order bit cannot be used either. Difficulties

will arise as soon as address arithmetic (especially BXLE and BXH) is

attempted on full thirty-two bit addresses; addresses in the upper half of
memory are negative and are thus algebraically smaller than zero. Swym uses the
three circumscribed bits to good advantage. The low order bit is the Eiz_bit,
and it marks a rst pointer. The next to low order bit (bit 30) marks a

pointer at an atom. Both the high and low order bits are used for marking

by the garbage collector. These same bits have other meanings in control

words on the stack.

26

II. Modular Programming and the Subroutine Environment

Plex processing implies a structured approach to data; the corresponding
structured approach to programming is modularity. If a large program is
broken down into a series of smaller programs, the latter are easier to
write, debug, and modify. Moreover, if the program is carefully divided
along functional lines, the large program can often be redesigned simply
by rearranging the sub-programs. Modularity is evidenced at many levels.

There is always a set of basic operations available to the programmer, and
usually there is a mechanism for defining and invoking subroutines. Basic opera-
tors can rangelfrom machine instructions, to interpreter 'syllables', to sets
of macro instructions. Each specifies a set of operations considered by the
designer to be convenient and comprehensive for describing the steps of a
task. A subroutine mechanism permits the programmer to design his own set of
basic operations tailored to the task at hand. While implementing Swym, it was
necessary both to modularize the system itself and to provide efficient and con-
vient mechanisms for modularity in languages implemented under Swym.

The most basic example of modularity is the hardware instruction set
of the computer. Each instruction is a modular description of a sequence
of gating registers onto buses and operating on those buses. On the 360,
-yet another level of basic operations called the micro-instructions is
introduced between the programmed instructions and the hardware manipulation.
W. McKeeman has pointed out [MKee 67] that computer designers must
consider the problems of language design in order to optimize computer
functions. His work, however, usually emphasizes the design of computers
for specific lanquages. The discussion in this paper attempts to isolate

basic operations common to all languages that provide plex facilities.

27

Most LISP 1.5 implementations provide an interpreter to execute list
structure read by the same read routine that reads S-expression data.

This provides a simple way to begin building a LISP system. In fact, most
LISP compilers are written in LISP and compiled interpretively. The
availability of an interpreter also permits treating programs as data and
then executing the processed program. The LISP interpreter can be described
" in LISP itself, a feature that can lead to better understanding of the
language. But the most common reason for providing an interpreter is
really the design of special purpose computers. By coding an interpreter,
the programmer provides a set of operation suitable to implementing the
language. Interpreters often have syllabic operation structures like
B-5500 machine language. Such code structures provide high code density -
thus saving space =~ because the operands are implied to be the top of the
stack and thus need not be addressed explicitly. The only commercial
computer specifically designed for implementing languages by making highly
efficient interpreters is the B-8502, tantalizing details of which

are beginning to leak out. How well suited the B-8502 is to variable
length plex processing remains to be seen.

For Swym, a pseudo-machine was implemented by writing a set of macros
for the 360 assembler. The facilities offered by this pseudo-machine include
those desirable for plex process implementation - both data manipulation and
program control. Macros are suitable for designing pseudo-machines because
it is not necessary to design a whole machine. Just as much as 1is desired
can be formalized, while other processing is done in terms of hardware opera-
tions. In this sense, macros provide more freedom than the interpreted micro

operator approach to pseudo-machines.

28

For a variety of reasons, plex processing programs tend to include many
subroutine calls.* Probably the primary reason is that programmers who think
in terms of structured data tend to think in terms of structured programs. At
the same time, the fact that the data may have similar structure at different
levels seems to lead not only to subroufines, but even to recursive subroutines.
For instance, in a graphical problem a routine to find all connected nodes
might easily be written by finding all nodes adjacent to a given node and
then applying the same subroutine to each of these adjacent nodes. Another
important reason for subroutines and modularity in plex processing programs
is that such programs are usually experimental and subject to change
(because non-experimental programs usually cannot afford the overhead
currently implicit\in many plex processing systems). Since subroutine-call
is often the most frequent operation in plex processing programs, attention
must be paid to its optimization. This problem is considered at length
below.

There are several goals and advantages in modular programming. These
are synonymous, because meeting the goals successfully implies taking
full advantage of the potential saving in time and effort (in total time,

not just initial program writing time). Modularization offers:

(1) Ease of writing. It is very convenient to code an operation by
writing the name of a routine or macro that will perform that
operation. Not only is total writing reduced, but repetitive

writing is eliminated; both reduce the chance of clerical error.

*¥7090 LISP even compiled subroutine calls for CAR and CDR. Even now
most LISP implementation compile arithmetic operations as subroutine calls.
ALGOLW demonstrates that with a suitable declaration structure, such basic
operation can indeed by compiled in-line. Swym has provided the mechanisms
necessary for compiling such in-line code while maintaining communication
between compiled and interpreted functions.

29

(2) Ease of modification. Since clearly defined modules perform specific
functions, changes in these functions can be made simply by changing
the appropriate module. Modules often provide good 'hooks' for adding
debugging output or statistics gathering routines. The modularity
built into the Swym system was of use on more than one occasion. The
subroutine calling conventions were changed several times. The code
in all routines was changed by modifying the macros and reassembling.
It was also simple to change register usage to communicate better with
0S and PL360. The flexibility demanded by the Swym programming standards

should prove invaluable in implementing other languages within Swym.

(3) Ease of debugging. Modules are easily tested independently, so
that errors ca;'be isolated. LISP is especially amenable to modular
debugging for two reasons. First, all data is represented in S-expressions,
so the inputs and outputs of a routine can be represented without driving
routines. Second, LISP facilitates and even encourages subroutine

organization so that less thought is required to put the program into

modular form.

Some system design time should be specifically devoted to breaking the
'system into program modules. Likewise, some program design time should be
specifically devoted to breaking the program into appropriate subroutine mod-
ules-. Likewise, some subroutine design time should .

Time so spent will be returned with interest in the coding and debugging
phases and will probably be returned many times over during modification of
the program. In designing Swym, subroutine modularization was not difficult
because several LISP implementations demonstrate not only a good system
modularization, but also the basic operation that should be provided to the

programmer. Nonetheless several guidelines were discovered.

30

An important guideline for modularization is to restrict each module
to a single definable function. This function need not be very basic, but
its definition should be consistent with the single definable function of
all other modules. Consistency means that the set of modules implementing
a higher level module should have mutually exclusive functions, and those
functions should be directed toward accomplishing the function of the higher
level module. Thus a data accessing module could be defined to also update
a counter or set a bit, but only if in the encompassing module the counter
or bit was always associated with that data access operation. On the other
hand, operations should be divorced if they only occur together accidentally.
If "accidental neighbors" are combined in a single module, sooner or later
they will be needed separately. It is better to err in the direction of
too much separation since change is such a common feature of programs.
One compromise is to introduce another modular level. A macro (for
instance) could be defined to call two accidental neighbors, leaving the
two as separate modules.

Another important guideline in the construction of modular systems,

is to provide for transparency. A completely transparent subroutine can be

“called at any point in a routine with no resulting change in the output of
the routine. For example, the LISP PRINT routine prints its argument, but
does not modify any location in memory. Ordinarily, a routine will not

be completely transparent, but will affect one or more variables in the
calling routine, or will produce output (doing both might also satisfy the
well-definedness guideline); but the quantities modified by a routine should
be implicit in its well defined single function. One example of transparency

is the block structure limitation of the scope of variables in ALGOL 60.

31

A pre-coded routine can be included in any program and will not create
conflicts with existing identifiers in that program (the same is not true
of most assemblers). A good example of the need for transparent code is in
the definition of debugging packages to be executed when required in the
program.

Since routines must preserve the state of the computer system in order
to be transparent, the system must make this a convenient operation. Some
systems facilitate state preservation by automatic stacking, or at least
provide other ready access to the system variables. Other systems do not
even provide the capability to determine parts of the current state of the
system. Satterthwaite has a discussion of coding transparent routines under
08/560 [Satt pcl. Swym attempts to provide the facilities necessary for
writing transparent routines; the stack can be used for storing arbitrary
information. Also, the 'internal variable' convention [Reyn65] has been
adopted for accessing and controlling the state of system variables (for
example STIVQM¢ and STIVCCH control the READ routine, see Appendix C.).

Two system components are vital to modular programming: routine linkage
and variable binding. The efficiency of these operations dictate the level
" of modularity permissible. The PL/I macro facility is necessary not only for
compile time computation, but also to provide modularization that would not
be -practical using the cumbersome PL/I procedure Invocation mechanism
(involving two subroutine calls for storage management). Routine linkage
and variable binding are each discussed in detail below. There is a two
fold relation between these system components and the storage management
mechanism: (1) they require storage for control information; (2) if there
is a garbage collector, they must identify pointers and distinguish them

from non-pointer information.

32

IT.1 Routine Linkage

The code required to call a subroutine and return is critical to system
efficiency. The speed of any individual routine is far less critical because
it is executed less frequently than subroutine linkage; the latter is required
between all subroutines. Routine linkage includes several functions:

save return address and status
locate and execute subroutine

restore status and continue at return address.

Thé primary interaction between routine linkage and storage management is
control of the space for the status information. This information can
include control bitsTand register contents. It also includes current
variable bindings, but this is considered in the next section. The space

management must be coordinated with the storage management required for data

plex operations. In particular any pointers that are saved must be available
to the garbage collector.

Ordinarily, status information can be saved on a stack because routines
exit in exactly the reverse of the order in which they are entered. But some
languages like Gedanken [Reyn69] permit labels as values of variables. A
routine may store a local label in a global variable; after the routine exits,
it may be reentered in the middle by a branch to that global variable. Not
only must the routine be entered, but the status must be restored to the
status existing when the label was stored in the variable. Thus, for Gedanken,
status information (and variable binding) must be stored in plexes just as
data. Storage for both can be managed with the same plex mechanisms.

Labels can introduce problems even in Algol implementations. Algol
permits a routine to branch to a label in an outer block (this label may

even be specified as an argument to the current routine). If status infor-

33

mation is stored on the stack and includes the stack pointer for the dynam-

ically enclosing block, then a goto to an outer block must interpretively
unwind the stack to find the correct status for the outer block, That is,
the goto must keep restoring the stack pointer until the storage for the
correct block is found. This problem can be solved for Algol with the
DISPLAY mechanism mentioned below. In EULER [Wrth65], though, all operators
take their operands from the stack and replace them with a value. This means
that the DISPLAY mechanism is much more cumbersome for the §ggiproblem.

The implementation computer can influence routine linkage. The PDP-6
has a single instruction to store the return address on a stack and pass
control to a routine; The routine can branch to the return address and delete
it from the stack with a complimentary instruction. The 360, on the other
hand, has no stack instructions and requires provision for the addressability
of the calling and called routine.

Two common techniques should be avoided in designing routine linkages.
1) Routine linkage should be in-line rather than a call on a service routine.
The latter technique effectively doubles the number of routine linkages. Also,
service routines often waste time retrieving linkage parameters from a para-
-meter list, while parameters can be implicit in in-line code. 2) Not all
registers should be saved on entry to a routine. The time expenditure is small
but the storage expense is large. Although it is possible for the called rou-
tine to save and restore only those registers it destroys, the calling routine
usually has an even smaller number of active registers. Moreover, the calling
routine has the information needed to mark each register as pointer or not-
pointer.

It is not necessary for the called routine to return to the instruction

immediately following the call. 1In the 360, a call might be:

34

L 15, Address of called routine
BATR 14, 15

CYNTINUE DS O H

The called routine exits with BR 1lh. éut other information may be included
between the BAIR and CONTINUE with little extra cost. The called routine
would simply have to return with B n(14), where n depends on the amount

of included information. This information can be used for several purposes.
CPGENT conditional execution is based on the FAILURE mechanism. The failure
return point is an extra branch instruction in the calling sequence, executed
by the called routine if it fails. The calling sequence could also include
information to facilitate debugging. Pointers to the name of the routine and
the values of its variables could be referenced by information in the calling
routine. This is also the place for the pointer to the stack map discussed

in Section 1.1.

Swym -- Routine Linkage

In Swym, three instructions are required to call a routine, three more
are used for routine entry, and three are used for routine exit.

These instructions provide for:

(1) establishing addressability for the called routine
(2) branching to the new routine
(3) marking the return address so it won't be garbage collected
(%) storing the return address in the stack (two instructions)
(5) recovering the return address from the stack (two instructions)
(6) returning to the calling program
(7) re-establishing addressability for the calling routine

35

One register (B) is designated as the base register for all routines.

Before branching to the routine, this register is loaded from a 'transfer
vector.' This area is always addressable (via register S) and contains the
entry point addresses for all routines. Thus establishing or re-establishing
addressability requires one load instruction. Space is saved because only one
address constant is required for the address of each routine.

Strict conventions govern saving and restoring the eight registers
available for general use. (Eight is enough if BXLE and BXH are avoided,)
If-an assembled routine wants a register saved it must save it itself or be
certain that the called routine preserves that register. In the latter case,
a comment in the called routine must describe the calling routines and registers
which must be left intact. Compiled functions must save the active registers
when calling another function.

Swym provides some debugging information with no extra storage in the
call. The return address is the stack makes it possible to find the BCD
name of the calling routine. The BCD name is assembled just before the entry
point to a routine. The entry point can be found because the instruction at
the return address refers to the location in the transfer vector table of the
entry point address.

A Gedanken interpreter was designed to run under Swym. The label
variables mean that an interpreter like the LISP EVAL cannot use a stack
because the status at any point might have to be restored. Consequently, the
designed interpreter used plexes to contain status information and return
addresses for the interpreter. A second type of plex contained status information

for routines being interpreted. The latter also contained variable bindings.

36

IT.2 Variable Binding

To refer to items of data, a routine has variables. Usually, each
variable is named with an identifier (a character string). But two identifiers
may refer to the same variable (FortrankEQUIVALENCE) and one identifier may
refer to different variables in different routines, so an identifier is not
the same as a variable. The binding of a variable at a given time is the value
that variable would have if it were referenced and the information changed if
a value were assigned to the variable. Along with more complicated data struc-
tures and program control, higher-level languages have introduced more compli-
cated relations between variables and their values. Variable binding affects
the garbage collector both because most variable binding schemes require
memory and because the garbage collector must find all active structures that
are pointed at by variables. This section will cover three topics: types
of variables, types of bindings, and the special problems introduced with
LISP global variables.

Types of Variables:

The variables of a routine may be local, arqgument, or @&lobat.ar iable

is local to a routine if it is declared in that routine. Space is allocated
on entry to the routine and the routine uses the local to hold a value. A
compiler can usually compile straightforward code to access a local variable.
An argument to a routine also establishes a local variable, but the value
and/or storage allocation may be supplied by the calling routine. Arguments

are passed to routines in at least four different ways: value, result,

reference, name. A value argument is treated exactly like a local variable
except that it is initialized to the value of the actual parameter. A result
argument is treated like an uninitialized local, except that when the routine

exits the final value is assigned back to the actual parameter, which must

37

be a variable. Value and result variables are like locals in that storage

is allocated for them during execution of the routine. Reference arguments
refer directly to the allocation of storage in the calling routine. If an
actual parameter for a reference argument is an expression, a temporary variable
is created in the calling routine and the argument refers to that created
variable. Call by name arguments are evaluated each time the argument variable
is referenced. Name arguments can slow execution substantially because a
complex expression may be repeatedly evaluated, and because each evaluation
requires reestablishment of the environment for evaluation of the name

argument.

A global variable is any variable that is referenced, but not declared in
a routine. It may have been either a local or an argument in the routine where
it was declared, 1In block structure languages like Algol, a global variable
must have been declared in a typographically enclosing block. The compiler
must compile a reference to the variable that will be created in that outer
block. Because it has no block structure, LISP global references (called
free variables in LISP) are references to the nearest dynamically enclosing
declaration of the same identifier. (A routine dynamically encloses all
routines called during its own execution.)

In a given implementation, global variable binding may be either static
or dynamic. The distinction is based on the treatment of variables during
execution of functions that have been passed as values. Static binding means
that variables always have their most recent binding. Dynamic global binding
means that variables have the binding they had at the time the functional
value was created. LISP is defined to require dynamic global variable

binding. Examples of the problems involved are given below.

38

Types of Binding

There are four types of binding: register, static storage, stack, and

free storage.

Register variable binding is oftenMused for system functions. The
arguments are placed in registers and the function is called. This technique
is used even for compiled functions in PDP-6 LISP and can be used for compiled
functions in other language implementations. Register binding is convenient
because the calling routine usually must compute the arguments and the result
is in a register. Moreover, the argument may stay in the register until a
subroutine is called. Problems arise when a subroutine is called: the
registers must be ;aved. If any sube..subroutine globally refers to a
quantity bound in a register, then the reference must be not to the register,
but to the location where the register is stored. Usually this is either
static storage or the stack. Furthermore, if the subroutine might invoke
a garbage collector, any variable that is a pointer must be stored in a
location accessible to the garbage collector and must be identified as a
pointer.

Register binding of variables is satisfactory for direct numeric computa-
tion (i.e. the value in the register might be a number). Suitable declarations
in the called routine enable the compiler to treat the number correctly. But
when the number is saved across a subroutine call, it must be identified so
that it cannot be mistaken for a pointer.

If a routine is not recursive and not reentrant, space for variables can be
allocated by the compiler. Such variables are statically bound, that is, their
binding never changes and all references are to the same location in memory.

Fortran variables are allocated in this manner. This binding technique can

39

require excess space because storage is allocated for all variables even though
several sets of routines may never call each other. (They could use the same
variable storage space.) One problem with static binding is that the garbage
collector must find all plexes that are pointed at from static storage. This
can be handled either by allocating all pointers together or by building a

list of statically allocated pointers. A second problem is that a large
structure can be referenced by a single static variable and will remain active
even if it is no longer needed.

To provide for recursive and reentrant code and to ensure that variables
are allocated only as long as they are needed, variables can be allocated on
a stack. In Algol, all variable storage (except the controversial dynamic
own arrays) can bemallocated either statically or on a stack. When stack
storage is allocated onentry to a routine, care must be taken that any
variable marked as a pointer contains a valid pointer. Otherwise the gar-
bage collector may become confused and the program may have a bug that
depends on the previous contents of memory. The garbage collector does not
need to determine which quantities on the stack are variables; all it needs
is to determine which are pointers.

ATGHIW utilizes an elegant extension of the DISPLAY mechanism discussed
in [R&R64]. The variables for each routine are allocated on the stack
when the routine is entered. One pointer to the stack is maintained (in
the general registers) for each typographically enclosing block. With this
technique, code can be compiled to reference any global variable directly.
Moreover, the environment for an argument called by name can be established
by simply loading the stack pointer registers.

Free storage must be used for binding the variables of complex

languages like LISP and Gedanken. The original reason for this in LISP was

ko

that the technique was easy to describe in the LISP formalism and easy to
implement for the interpreter. However, the discussion of the global
variable problem below will show that given the features of LISP, free
storage variable binding cannot be avoided. Several techniques have been
employed including the A-list, the APVAL, and the VALUE cell.

The A-list was used in the early LISP 1.5 implementation. It is
described implicitly in the description of EVAL in [MCar 62]. Basically,
each time a routine is entered a dotted pair is created for each variable;
the CAR is the variable name and the CDR is the value. These dotted pairs
are CONSed onto the front of the current A-list. When the interpreter must
find the value of-a variable, it scans the A-list looking for a pair whose
CAR is the variable name. Note that this handles global variables as a
straightforward extension. When a function is passed as an argument, both

the expression for the function and the A-list current at the time the

function was passed are passed. Thus, when that passed function is invoked,

the old A-list is used so that global variables have their correct values.
A major disadvantage of the A-list, besides search time, is the fact that it
is continually allocating and releasing free storage and thus increases the
" frequency of garbage collection.
It is possible to improve on the structure of the A-list and still use
the A-list. As suggested by John Reynolds [Reyn pc], this method would create
a plex on the A-list for each function invocation. The method is best illustrated
with an example. Suppose a routine binds the variables A, B, and C. The new

portion of the A-list would be (with compact lists):

41

0@————> old A-list

A\I@ cvich
Bv@]

The new method would create this plex:

Hd o » old A-list
A VA
B VB
C VC

The searching procedure would be slightly more complex, but there would
be a saving of space.

In a block structured language, a function can only address variables
declared in itself or in statically enclosing blocks. The A-list can take
advantage of this structure by pointing not at the A-list formed for the
calling routine but at the A-list for the smallest statically enclosing block.
This is another extension of the DISPLAY mechanism. A Swym interpreter for

-Gedanken [Reyn 69] was designed to take advantage of the block structure of
that language.

- In LISP 1.5 some frequently referenced atoms such as T and NIL are only
bound at the outermost level. This would mean searching the entire A-list
to get the appropriate value (*T* for T and NIL for NIL). To avoid this,
Lisp 1.5 permitted the APVAL property on property lists (usually a shorter
list than the A-list). If an atom had an APVAL, that was its permanent binding.
Thus evaluation of variables meant searching first the property list for an
APVAL and then searching the A-list.

4o

More recent Lisp systems have extended the APVAL concept by always
storing the value of an atom in a cell on the property list (under the
property VALUE in PDP-6 Lisp). As the atom is rebound, the old binding is
stored on a special push down list. Thus interpreted functions need only
search the property list for variables. Moreover, the location of the VALUE
cell never changes so the compiler can compile code refering to it directly.
By reducing the number of types of binding in LISP, the VALUE cell reduces
the complexity of the language. All variables are the same, whether they
-are declared in a PRPG or a LAMBDA or are undeclared but have been given a
value external to all routines. But as discussed below, there are valid

LISP programs that the VALUE cell cannot implement.

Global Variables in LISP

Global variables (LISP uses the term 'free variables') contribute both
the best and worst features of LISP. The global reference scheme defined
by the A-list mechanism is neat and simple, and yet very general. But the
A-list is time consuming; it requires list searching time and garbage
collection time. The worst features of LISP are the problems of compiling
functions to interface with interpreted routines and the contortions
necessary when attempting to replace the A-list.

Compiled LISP routines usually use the stack for variable binding
because that is the most efficient technique. But if a variable is to be
used globally in some other routine it must be accessible. LISP 1.5 pro-
vides two types of global bindings for compiled routines: SPECIAL and
COMMON. A SPECIAL variable is bound to a special cell on the property list
of the atom representing the variable. (PDP-6 LISP uses the VALUE cell.) This

special cell never moves so code is compiled to access it directly. But

43

if the variable must be referenced by both compiled and interpreted functions,
it must be bound on the A-list. Thisls precisely the treatment given to any
variable declared to be COMMON. But SPECIAL and COMMON are attributes of
variables and all references to the same vgriable are treated the same. Thus
if X is declared COMMON, all routines referencing X must refer to it on the
A-list, even though only two or three routines use it as a global variable.
Primarily this problem is a fault of the LISP syntax because there is no
place for declarations in the S-expressions that are interpreted.

- The most difficult problems are introduced into LISP by the provisions
for allowing functions as arguments and values of routines. The difficulty
is that a function i§ a pair consisting of a piece of code and an environment

for interpretation of that code. Consider these functions:

MAP[a3;x] = if null [x] then NIL
else cons [a[fst[x]]; map[a;rst[x]]]

ACONS[a3;x] = MAP[function[\x.cons[x;al];x]

The call ACONS [NIL; (A B C)] should return ((a) (B) (C)). Note that the
2 inside the function must refer to the first argument of ACONS. The A-list
treats this case properly because function returns a FUNARG. This is a list
withthree elements:

"(FUNARG {function S-expression] {A-list]).
When a[fst[x]] is interpreted, the A-list used is the A-list current when
function was executed. The binding for a on this A-list is indeed the first
argument to ACONS. The SPECIAL cell or VALUE cell would not work because

the most recent binding for a is the value returned by function.

44

PDP-6 LISP avoids the problem in MAP by having function save both the
code and a pointer to the stack. When the function is invoked, the stack is
unwound down to that level; that is the old bindings are taken from the stack
and placed in the VALUE cells of the appropriate atoms. To remember the
current enviromment; however, as each binding is unwound the current binding
is saved on the binding stack. Thus the mechanism for function is very
clumsy using the VALUE cell approach. This certainly violates the principle
of relative difficulty of specification.

The VALUE cell mechanism does not work at all if functions are permitted

to return functions as values. Consider this valid LISP function:
~ PLUSX(x) = function [Ay.x+y]

The value of PLUSX is a function containing the global variable xX. This
global variable must be evaluated in the environment existing when the

function operator was applied. Subsequently the value of,

[plusx[3]][2]

should be five. 1In short, the variable X must retain its value after PLUSX
exits so that that value can be referenced by the function returned by PLUSX.
(The problem of global variables in functions that return functions is care-
fully explained in [Weiz 68]).

There 1is such a wide diversity of requirements for variable binding that
it seems necessary to consider a comprehensive declaration structure like
PL/I. Variables can usually be bound on the stack efficiently, but other
techniques must be available to handle those cases that cannot be so simply

handled.

45

Swym Variable Binding

Swym uses many of the variable binding techniques described above and can
support all them because it has variable length plexes. Arguments are passed
to system functions in the general registers and remain there unless it is
necessary to call a sub-routine. A few variables controlling input/output
are bound in statically allocated storage. Six general registers are used
for passing arguments to compiled functions; no compiled function may have more
than six arguments. Swym provides a comprehensive set of macros for storing
and accessing information on the stack. The standard Swym approach is to save
a word on the stack when it must be saved and remove it when it is no longer
needed. -

The STUTTER variable binding scheme is similar to that used for PDP-6
LISP. Every symbol atom has a value cell (the word following the plexhead in
memory). When the interpreter is asked to evaluate a single symbol atom, it
simply returns the contents of the atom's value cell. Before entering a routine
defined by an S-expression, the arguments supplied are appropriately evaluated
and the values are placed in the value cells of the formal argument atoms in the
LAMBDA expression. The old contents of the value cells are stored in a block
on the stack. This block contains alternately the formal argument atoms and
their old values. When the routine terminates, the block is removed from the
stack and the old values are restored to the atom's value cells. Currently,
only static global variable binding is implemented. To communicate with inter-
preted code, compiled code would store the required value in the value cell of
the appropriate atom.

A compiler could compile code to access numeric operands directly, either
in the registers or in the value cells. The values in the register could be

stored on the stack in a stack-plex indicating the presence of one or more

46

full words. A non-relocatable value can be stored in a value cell by re-
setting the relocatability bit in the plexhead for the atom. Ibe cost of
these features is a little additional bit testing in the interpreter and

the garbage collector.

b7

IIT. Storage Management Environment

Fortran is a static language; all storage can be allocated at compile
time or loading time. More complex languages require more complex memory
allocation mechanisms. Algol 60 has dyramic array sizes, but still its
memory allocation can be handled with a stack mechanism. Plex processing
routines, however, create structures that can be referenced after the
routine exits. Moreover, plex processes create and delete plexes of
various sizes at random times throughout the computation. The bookkeeping
ﬁecessary to keep track of the allocation of memory to the different plexes

is called storage management. A plex remains active as long as it can be

referenced by theprogram either directly or via a series of pointers. The
memory not allocated to any plex is called free memory., free pool, free
storage or free plexes. An active plex cannot be deleted because that would
destroy the program's data. Under some systems and high-level languages the
programmer must write code to keep track of the active plexes and to free
those that are no longer active. In other systems, a routine called the

garbage collector traces through all active structures and returns to free

storage any inactive plex. Use of a garbage collector demands disciplined
" use of pointers because it must be able to find all active structures and
must be able to distinguish a pointer from other data items.

Storage management schemes can be classified as relocating or non-
relocating. In a relocating system, a garbage collector moves all the
active plexes so they occupy a contiguous area of memory and leave a
contiguous free area. This process 1s time-consuming, but the process of
allocating a plex is simple: one end is allocated from the free area.

Non-relocating systems do not move the active plexes; they simply keep

track of the plexes that are-free and can be allocated. In such systems

48

the process of allocating a plex can be time-consuming because it involves
a search of the free plexes to find one that is large enough. If a free
plex of the required size cannot be found, a larger plex is split; part
filling the request and part being returned to the free list.

Non-relocating systems risk encountering the fragmentation problem.
If a request is made for a plex larger than any free plex but smaller than
the total of all free plexes, then core is said to be fragmented. When this

occurs, a system may

(1) terminate execution
(2) relocate all active storage as an emergency procedure
(3) call-a user routine to free any little-needed plexes.

Since (3) is highly problem dependent, its use can only be considered in
special situations. Some research seems to indicate that the probability of
fragmentation is low enough to justify solution (1). The argument is that

if fragmentation occurs, then all of storage will soon be exhausted anyway.
The compromise approach (2) above is often suggested, but this combines the
disadvantages of both relocating and non-relocating systems merely to guaran-
tee that the system will fill memory before terminating. The extensive
bookkeeping for the non-relocating system is required, as well as the
disciplined use of pointers for the relocating system. D. Knuth [Knth 67]
has collected numerous storage management techniques and analyzed many. His
emphasis is on non-relocating systems that terminate when fragmentation
occurse The current paper concentrates on relocation schemes, both because
the non-relocating are covered by Knuth and because the Swym garbage collector

is a relocator.

49

ST TRme————————

Possibly, there are more storage control techniques than languages.
Language implementers often discard several techniques before selecting
the one that best suits their language. (On the other hand, system
implementers often discard several languages before selecting the one that
best suits their storage control technique.) But all systems have two
components, a memory organization suitable for storage allocation and a
mechanism for control of that allocatable storage. The memory allocator
is the part of the memory management system that provides a plex on request.
This mechanism is vital to the efficiency of a system because, typically,
plexes are created frequently. The storage control mechanism has the respon-
sibility of structuring memory for allocation. In some systems, this is a
continuous bookkeeping problem. In other systems a garbage collector is

called when the allocatable space is exhausted.

III.1 Memory Organization for Allocation

There are three classes of memory organization for allocation: fixed-

size, variable-size, and hierarchical. The fixed-size organization is very

simple. Memory is structured into a list of free plexes, all of the same

size. An allocation request is met by taking the first element from this

'free list'. Since all plexes are the same size, their relative position and
the ordering of the free list is unimportant. Consequently fixed-size systems
do not usually have relocation. Variable-size systems permit requests for
plexes of different sizes. Such systems have been built both with and without
relocation. The choice of fixed or variable for a system depends on the data
structures being implemented. Fixed organization is simpler, but data usually
comes in units of more than one size. Fixed techniques are important, though,

for the part they play in hierarchical organizations.

50

The newest and most promising class of memory organizations for
allocation are the hierarchical schemes. In these, a large plex 1is allocated
for some purpose and smaller plexes are allocated from within the large one.
In advanced schemes, the smaller plexes are themselves suballocated. There
are several advantages to hierarchical allocation schemes. If a large plex
holds smaller plexes of only one size, then within the large plex the garbage
collector can use simple fixed-size collection techniques. Hierarchical
allocation schemes can be useful for segregating the frequently changing from
the seldom changing. The garbage collector ought to ignore the latter as
much as possible. One possible approach is suggested by the lifetime block
concept which has been proposed but not yet implemented. If a language has
begin-end blocks like Algol and also has structure class declarations, all
structures of a class can be deleted when control exits from the block con-
taining the class declaration. Thus, the 'outer lifetime block' of an
element of a structure class is that block containing the class declaration.
Hierarchical structures might be used for life time blocks by simply releasing
the large plex. Structures have a second kind of lifetime block; those blocks
within which the structure will always exist. This might be, for example, an
inner block making no operations on structures of a certain class. The gar-
bage collector can assume that any structure is active if control is within this
'"inner lifetime block'. Constant list structure is a limiting case; it always
exists, so the entire program is its inner lifetime block.

There are not yet many hierarchical allocation systems. The L6 [Know 66]
allocation scheme, sometimes called the 'buddy system', is a cross between a
hierarchical and a variable-non-relocating system. Each plex is the size of
a power of two (up to 128 words on the 7090). Allocation may, if necessary,

divide a free plex into two plexes half the size; these two plexes are called

51

'buddies'. A separate free list is maintained for each plex size. When a

plex is freed, it is recombined with its buddy if possible. UNCLLL [Mnch 67]
is a version of L6 for the 360. Its allocation scheme distinguishes large

(>8) and small (<7) plex requests. Small requests are met by suballocating
fixed sized plexes from within a single large plex. The large plex size

chosen for a given small plex size is such that these large plexes are about
the same size. Both L6 and UNCLLL maintain a bit table indicating free plexes.
This permits rapid recombination of plexes. ALGOLW allocates pages of 4096
bytes (the 360/67 page size, although paging is not otherwise particularly .
facilitated). Each page is restricted to containing records (plexes) of only
one record class,--and thus, only one size. Within each page standard fixed
plex length garbage collection is employed. Two important hierarchical systems
are those defined for LISP 2 and AED; they are described in Section III.2 under

hierarchical garbage collectors.

Swym Memory Allocation

Swym employs a relocating variable-sized allocation organization. A
garbage collector relocates all active plexes to one end of free storage.

* Plexes are allocated by moving a pointer that points to the beginning of the
unallocated area. An additional advantage of this organization is demonstrated
by- the Swym input routines. Arbitrary length strings can be read; each
character is put into the next available location of free storage. When the
end of the string is reached, a plexhead is provided and the string is auto-
matically a character string atom. The same technique could be used when

computing multi-word integers.

52

III.2 Storage Control

A language permitting dynamic storage allocation must have some form of

storage control. The type required can depend on other language features:

is there a 'release storage' instruction?
are common sublists and common tails permitted?
are circular lists permitted?

are variable length plexes implied in the language?

Based on the answers to these questions, storage control techniques can be

divided into classes similar to the classes for Memory Organization for

Allocation:
fixed - release
fixed - no-release
variable - non-relocating
variable =~ relocating
hierarchical

where

'fixed' and 'variable' refer to the size of plex allocated,
'release' refers to the presence of a 'release allocated storage'
instruction in the language,

'relocating' refers to moving the plexes in storage.

Systems without 'release* usually depend on a garbage collector to find all
active storage. Variable-non-relocating systems usually have 'release',

because they are designed to have a minimum system. Variable-relocating systems

53

do not have 'release' because they must do a large amount of processing any-
way to relocate all of memory. Before the description of each class below,

there is a list of systems in that class and suitable references.

Fixed-Release

IPL-v [Newl 64]
SLIP [Weiz 63]
REFC@-III,SAC [coll 60] [MBth 63] [Coll 67]
AL, LEAP [Feld 65] [Rovn 66, 67a, 67b]

TSA [Toll pc]

In all these systems, except AL and LEAP, a list is an entity with a
controlling list head; it is not possible to point at a part of a list without
a list head. A list is released by pointing at the list head and issuing the
release instruction. Storage is also released by deleting an element from a
list. Lists can be pointed at by other lists or by the program variables. If
a given list is pointed at by two or more pointers, the release operation is
ill-defined: one routine may release a list that is still required by some
other routine.

The systems solve this multiple-reference problem in different ways.
IPL-V, the earliest popular system, required that the programmer be sure that
a list was no longer required before releasing it. To aid in this task,
programmers assigned certain bits in IPL-V structures as 'responsibility bits.'
Routines could pass responsibility for lists by changing these bits. The
REFCP-III and SAC systems associated a *reference count' with each list head.
This count kept track of how many pointers were pointing at a given list.

The release process reduced a list's reference count by one. When the count

reached zero, the list was purged. Unfortunately, the reference counts

54

require a substantial amount of memory. In TSA, no list is ever referenced
by more than one pointer. All operators destroy their arguments and make a
new copy of any information to be saved. This applies to procedures as well:
when a procedure is called, the arguments passed to the procedure are copies
of the actual arguments. When a procedure exits, the storage for its argu-
ments is released. TSA avoids garbage collection and bookkeeping at the
expense of frequent list copying. In fact, none of these systems has a
garbage collector, primarily because they are designed to be minimal and
conceived of the garbage collector as detrimental to efficiency. But each
of the above systems has a fault: programmer bookkeeping, memory consumption,
or copying. -

SLIP introduced a form of rings, two way connected lists. The programmer
still must keep track of what list can be referenced and release any no
longer needed. But the task is somewhat easier because lists can be
traversed either forward or backward. SLIP discovered that it was not best
to immediately scan a released structure and reduce it to a linear list on
the free list. 1Instead it was more efficient to put the whole structure on
front of the free list. The allocation mechanism is then designed to handle
a structured free list rather than a linear one.

AL and LEAP are unlike any other languages in this report although they
are intended for the same kinds of programs. They use plex processing inter-
nally but only to chain together the elements of hash buckets. Otherwise,
the language is phrased in terms of attribute-object-value triples. These
are stored in hash coded form on direct access storage. There is an operation
to destroy a triple, but this simply means deletion of the link from the hash
bucket. No garbage collector is required during execution, but if a file is

saved it can profitably be reorganized.

55

Fixed-No-Release

LISP 1.5 [Mcar 60, 62]
WISP [Schr 67]
ATGPIW [ec 681
LISP 2 [styg 671

In these systems the language designer relied on a garbage collector
to find all inactive storage and create a new free list. Typically such
routines are two passes: a marking pass finds allactive storage, a scanning
pass finds all unmarked storage and structures it into a new free list. The
marking pass may mark each active element with a bit either in the word
itself or in a bit £able. If a bit table is used, extra computation is
required to relate bits in the table to addresses in free storage. But
marking words themselves complicates direct numeric computation. [Schr 67]
has an excellent review of scanning and marking techniques. It proposes a
technique that avoids using the stack for temporary storage.

The ALG¢LW garbage collector is included in this section because it is
primarily a fixed-no-release system. Free storage is allocated in pages of
1024 words. Each page contains plexes of one fixed size, and there is a
separate free storage list for each page. Each plex contains a marking bit
for the garbage collector. The marking pass goes through all plex storage
tracing and marking the active storage. The scanning phase creates a new
free list on each page. If a page is empty, it is returned to the operating
system; on the other hand, if a plex must be put on a full page, a new page
is created for the required structure class. One problem with this scheme

occurs when a class is nearly full and a process is creating and deleting

members of that class. The garbage collector may be called several times

56

before a new page is created. But the garbage collector blindly rescans all
active storage even if only one class is changing. Insufficient experience has
been gained with KHWHW plexes to propose a better garbage collection strategy.
Only one portion of the LISP 2 garbage collector fits in this section; the
rest is discussed in the section on hierarchical garbage ecollectors. There is
a requirement in LISP 2 to relocate the fixed length list cells so they only
occupy the bottom of their free storage area, After the marking pass, the
lowest free word is swapped with the highest active word. The new address
of the active word replaces its old location. This process, called folding
compaction, continues until all active words are at the bottom, A final
pointer correction pass is required. Any pointer into the free area is

replaced with the new address stored in that location.

Variable-Non-Relocating Systems

1 [Know 663
ASP [Gray 67] [Lang 68]
APL [Dodd 66]
UNCLLL [Mnch 671
CARAL [Suth 66] [Kant 66]
#s/360 (1M 68a]

Knuth concentrates on systems in this class [Knth67], so the discussion in
this section is brief. His analysis and simulations indicate that fragementa-
tion occurs with a tolerable low frequency, Given that assumption, the tech-
niques in this class are to be preferred for their low overhead. If the
language permits common sublists or circular lists and requires the programmer
to release inactive plexes, then he must write code to keep track of how many

pointers point at each plexe But some problems seldom require common sublists.

57

For such problems the variable-non-relocating systems are attractive.

ASP and APL use the L6 buddy system for allocation, but, like CORAL,
they organize the data into rings. Nodes of a ring are plexes, and each may
have several ring connections and several data fields. Nodes can only be
accessed along the rings, so the only delete operation needed is to delete a
node from a ring. When a node is connected to no rings, it can be returned to
the free storage list. There is the problem that circular structures may
never be freed even though inaccessible.

When a requested plex is larger than the largest free area, the schemes
in this class must try combining adjacent free plexes into larger free
plexes. In some systems, recombination is attempted every time a plex is
freed. In an application with many plexes of about the same size, however,
the likelihood is that the recombined plex will soon be broken up again.
Recognition of neighboring free plexes is not always trivial. One tech-
nique is to sort the free list according to core location and then compute
adjacency from locations and lengths. CORAL has a plexhead marked by
containing one field of all ones. Checking for a free neighbor in the upwards
direction is easy (the next plexheag follows the current plex); but finding a
* preceeding neighbor means searching back to find a plexhead. UNCLLL associates
a bit table with free storage. A bit is set for the first and last word of
each active plex.

Operating System/360 dynamically allocates variable length blocks (GET-
MAIN and FREEMAIN macros) and requires some form of storage management.
Relocation is impossible because programs manipulate absolute addresses and
the system cannot know where a problem program has stored an address. Free
storage is structured in blocks chained together in sequence by their size.

Allocation is accomplished by-finding an appropriately sized block or dividing

58

a larger block. When a block of storage is returned to free storage, it is
placed on the chain according to its current size. When a sufficiently large
block is not available, 0OS tries to combine adjacent free blocks into larger

free blocks. This is accomplished by maintaining an additional chain pointing
to the blocks in sequence by core address. The garbage collector scans this
second chain trying to combine each block with the next higher block in memory.
If no sufficiently large block is built to satisfy the user request, he is either

terminated or given a return code indicating his request was not met.

Variable-Relocating

COGENT i [Reyn 65]
[Hadd 66]
EPL [MCla pcl
EULER [Wrth 651
MUTANT [MKee 663
XPL (strings) [MKee pcl
SWYM (this paper)

A variable-relocating garbage collector completely ignores the garbage.

" Instead, it builds a new structure isomorphic to the old with respect to

the permitted data access operations. The time for this process depends on

the size of the active structure and sometimes on the incidental arrangement

of the elements of that structure. Many systems relocate storage by coalescing
the active plexes; that is, moving them all toward one end of memory, without
rearranging them. Others, like SWYM, not only move all plexes, but &lso change
their order. In SWYM this process tends to move together lists and their
elements, an important property for paging systems, But there is a disadvan-

tage in rearranging memory. In non-relocating and simply coalescing systems,

59

the address of a plex can be used as an arbitrary ordering function. Such
functions have utility when manipulating otherwise unordered sets. In
systems that rearrange storage, such pseudo-ordering functions are difficult
to define.

Most variable-relocating garbage collectors have four phases in some

order or another. As identified in [Styg 67] these are Find, Plan, Fix,

and Move. The Find phase is responsible for finding all active structures.
The new address of each structure is computed by the Plan phase. During the
-Fix phase all pointers are changed to point at the new locations of the
structures. Finally, the Move phase relocates all structures.

In the Find phase, a tracing algorithm goes down all chains of pointers
starting with the pointers on the stack and in the static variables. To
identify the active plexes and to avoid processing a plex more than once, a
visited plex is usually marked in some way. If bits are available in each
plex, the plexes can be marked within themselves. Otherwise, a bit table
can be used. In the latter case, extra computation is required to find the
relation between a word address and a bit in the table. 1If a plex contains
more than one pointer, the tracing algorithm must be applied to all of these.
There must be some way to remember those pointers that have not yet been traced.
One simple solution is to put all the pointers from the plex on the stack.
The tracing routine always takes the top pointer off the stack. But this
system can use large amounts of stack space. Space requirements can be
reduced by stacking a pointer to the plex and a counter indicating how many
of the pointers in the plex have been collected. If room for this counter
can be found in the plex itself, then the WISP technique [Schr67] can be

used to eliminate the need for a stack.

60

The other three phases must also be designed with care. During the
Plan phase, the new address of each plex must be saved for succeeding phases.
Some plex encodings leave room in each plex for the garbage collector to store
this new address. Others use the free-areas to store information to compute
the new addresses. In a system that merely collapses storage by moving it
all down, it is sufficient to compute the change between the old address and
the new address. Systems, like SWYM, that rearrange the plexes must be
prepared to associate an entire new address with each plex. The Fix phase,
like the Find phase, must locate all pointers. Processing a pointer twice,
however, is not only time consuming as it is in the Find phase, but is also
fatal as the second update might access erroneous data. Some systems create
a list of pointers during the Find phase for use by the Fix phase; ordinarily,
though, this is an exhorbitant waste of space. The most common solution is
some form of marking bit. During Move, care must be taken that no plex is
overwritten with a new plex before it itself has been moved. In push down
relocation, this is accomplished simply by moving plexes starting with the
lowest in memory. SWYM, on the other hand, relies on secondary storage to
hold the new contents of memory.

The COGENT system uses a bit table for marking the active words of
storage. Each plex contains a type field, Depending on the type, the gar-
bage collector determines exactly which components in the plex are pointers.
The yet-to-be-traced pointers are remembered by stacking a pointer to the
plex and a count of the number of pointers that have been traced. The relo-
cation factor for each block of storage is stored in the first word of the
next free area. The Fix phase precedes the Move phase.

Haddon and Waite [Hadd 66] have described a push down garbage collector

that creates a table of relocation factors during the Move. This table is

61

then sorted on the 'old address' field. The Fix phase is last: each pointer
is found in the table by binary search and the associated relocation factor
is applied to correct the pointer.

Don McClaren [MClas pc] proposes to.use a modification of the preceeding
plan. Descriptors for each plex are stored not with the plex but in the
upper portion of free storage. (His system is PL/l-like and the assumption
is that the descriptors are infrequently referenced.) The garbage collector
can find the descriptor for each plex by a binary search on the table. The
'descriptors contain room for the relocation address of each plex. The point
of this approach is that the garbage collection features have very low cost
if they are not used. Indeed, the descriptors can be removed altogether
with little reprogramming (if the garbage collector is not used).

W. McKeeman has written several garbage collectors, including those for
EULER, MUTANT, and XPL (strings). These systems rely on descriptors and
store all lists (strings) as a plex of pointers (characters). A descriptor
contains the beginning location of the item and its length. 1In XPL, a por-
tion of a string can be identified'as a separate string by simply specifying
a different beginning and length; this corresponds neatly to PL/l SUBSTR
expressions. The MUTANT and EULER garbage collectors are similar; each
beginning by scanning all active structure and abstracting all descriptors.
These descriptors are stored in a newly created array (using B-5500 Algol).
Note that this requires a substantial amount of temporary storage. This
descriptor array is then sorted by the location of the list. In the Move
phase, active blocks are moved down; the new address of each block 1is stored
in a field of the descriptor reserved for this purpose. The last step is to
scan through memory and update the address fields of all descriptors. The

XPL string garbage collector improves on this process by creating a list of

62

pointers to the descriptors, rather than a list of the descriptors. Since
only the string area is being garbage collected, the descriptors will not
move. This list of pointers to descriptors is sorted based on the address
fields in the descriptors. Finally, in a single pass all active portions of

strings are moved downward and the new addresses are stored in the descriptors.

Hierarchical
LISP 2 [styg 671 [Hawk 67]
LISP 1.5 [Barn 68]
AED [rRosS 67]

Hierarchical storage control schemes are characterized by allocating
plexes within larger plexes, called super-plexes. In the more general
schemes, super-plexes are allocated within larger super-plexes. Hierarchical
schemes can use different garbage collection techniques for different super-
plexes. This approach permits each type of data to be collected by a routine
specifically written for that data type. Such specific routines can avoid
type testing and can thus reduce garbage collection time.

A major problem in a hierarchical system is deciding the size of the
space that should be allocated to each super-plex. One approach is that
used by ALGOIW and described above. But this system can call the garbage
collector frequently if pages are nearly full. One solution to this problem
is to attempt to determine the rate of change in the storage requirements
for each class. Garwick has proposed and implemented such a scheme for the
array feature of GPL [Garw 68 and Knth 68]. 1In that system, array declarations
must specify an upper bound but the current upper bound dynamically depends

on how many of the cells are full. At garbage collection time, a new length

63

is calculated for each array as a function of its current length and its
length at the time of the preceeding garbage collection. A similar system
is used in the SDC LISP 1.5 for the 360 -[Barn 68] to assign to each storage
area an appropriate number of 256 word blocks.

One other serious problem can occur in an allocation scheme like that used
by ALG¢LW: two large structures can be created simultaneously and occupy many
pages. If only one of these structures is required later in the program and
if. no other structure is created in the given storage class, then all pages
remain active for the storage class although they are only partially occupied.
The probability ofithis problem occurring is program dependent, but the loss
of storage can be large. This can be avoided by relocation, or by splitting
the class into two classes. The problem is more complex when pages
are being swapped; the decision must be made as to whether the time to
relocate memory is less than the time spent in swapping the inactive portions
of pages.

Memory is allocated hierachically in both LISP 2 and AED that is, plexes
are allocated from within other plexes. But the details differ; LISP 2 per-
mits only a system defined hierarchy and garbage collects it very efficiently,
AFD sacrifices some efficiency to permit complete user control of allocation.

. In the LISP 2 system, different types of program values are stored in
different areas of memory. Some areas contain only fixed length plexes,
others contain variable length plexes. The areas are paired; each pair is
assigned a super-plex and one member grows up from the bottom while the other

grows down from the top. Thus the folding compaction described above is

64

necessary for the fixed length areas. Provision is also made for changes
in the size of the plex assigned to each pair. No indication is given of
the basis for these size changes.

The AED system defines an allocation scheme that is essentially non-
relocating. However, provision is made for the user to write routines to
be called when storage is exhausted in a super-plex. Thus the user can
define his own garbage collector. The system provides a plethora of primi-
tives to assist in writing this garbage collector. Adding to the confusion
in the field, the AED system defines a GARBCOLL mode. This mode can be set on
for a super-plex that controls sub-plexes with a variable-non-relocating
(with release) scheme. When GARBCOLL is in effect, a released plex is auto-
matically combined with any adjacent free plexes. When GARBCOLL is off, freed

plexes are merely kept on a list (which AED calls a string).

Basic Swym Garbage Collector Algorithm

Swym contains a variable-relocating garbage collector that creates a
set of structures isomorphic to all active structures with respect to rst
and fst. Most unnecessary rst pointers are eliminated. This set of struc-
tures is in a new core image, created sequentially and written to a temporary
storage device. After collection, the new core image is read into one end of
the plex storage area and the remainder of that area becomes the new free
storage area.

The idea of using external storage was suggested by Marvin Minsky in
an internal MIT memorandum [Mnsk 63]. But the algorithm reported there
would not work for even the simplest cases (for instance, the structure in

Figure III.2). The Swym garbage collector works not only for the simplest

65

cases, but also for the most complex cases of mutual circularity. The
complete garbage collector is described in Appendix E; the current section
presents a minimal version of the garbage collector to illustrate the
central ideas. This minimal version is satisfactory only for structures
that never have more than one pointer at any given word of the structure.
COLLECT (5), the portion of the garbage collector presented here, has
as 1ts argument a pointer at a piece of list structure. It then writes that
list structure sequentially to the new core image. Other functions exist to
call COLLECT for each possible pointer at active structure, to collect atoms,
and to read in the new core image.
The contents of a list are address pointers to the elements of that list.
When a list is written to new core, the contents of that list must be the
new-core addresses of the elements of that list. Consequently, the elements
of a list must be COLLECTed before the list itself can be written to the new
core. COLLECT (5) proceeds in two recursively intertwined passes. The first
pass applies COLLECT to each element of the list x. The second pass writes
the new representation of the list x to the new core image. To remember
where a piece of list structure is in new core, its fst is replaced (rplf)
-with the address of that structure in the new core. The head of an atom is
used to store the address of that atom in new core.
Three operators must be defined in order to describe the garbage
collector:
ATCOL QQ x must be an atom. If X has not been garbage
collected, it is collected and written to the new core image. The
plexhead of x is replaced with the address of x in the new core.

ATCOL calls separate routines to garbage collect each type of atom.

66

GCPUT (_15) X is any full word. This word is written to the next
available location in the new core image. The value of GCPUT is the
address of that location. An internal variable is advanced to point
at the next available location in the new core image. GCPUT handles

I/0 and writes buffers to the external device when necessary.

iﬂ)(z) X must be an atom. HD returns the plexhead of that atom;
after ATCOL, the plexhead contains a pointer to x in the new core.

If x is non-atomic, processing is interrupted.

The basic garbage collection algorithm is given in Figure 111.1 in a
notation similar ;9 Algol. The declarator list declares a variable which
may point at a piece of list structure. The declarator word declares a
variable whose value is one full word. Note that rstbit is initialized to
the value 1l This corresponds to the value of a word with just the rst bit
on. rstbit is used to 'or' the rst bit into a word written to the new core
image, The result of applying COLLECT to a simple structure is shown in
Figure III.2.

'Garbage collection' is truly a misnomer for this algorithm. COLLECT
~ examines only the active list structures, while the garbage is completely
ignored and has no effect on the processing. 'Storage reclamation' describes
the process no better. Possibly better terms might be 'storage reorganiza-
tion' or 'garbage control'. But the term 'garbage collection' is so widely
used and so colorful as to preclude replacement.

Some limited experiments have beenconducted with the Swym garbage
collector. On one list structure, representing a program, there was a 25 per
cent saving of storage using compact lists instead of standard lists. This

corresponds to an average list length of only two elements. The correspondence

67

Figure III.1

Simplified Swym Garbage Collection Algorithm

COLLECT (x) = begin list r, t; word rstbit := 1;

r = X3

chkloop: t := fst (r);
if atom (t) then ATCOL (t) else COLLECT (t);
t = rst (r);
if atom (t) then ATCOL (t)

_ else begin r := t; goto chkloop end;

T o= X3
wrloop: t := fst (r);
rplf (r, if atom (t) then GCPUT (HD (t))

else GCPUT (fst (t)));
t

rst (r);
if atom (t) then GCPUT (HD (t) Vrstbit)

else begin r := t; goto wrloop end

end COLLECT

68

Initial Structure:

Figure III.2

Example of Swym Garbage Collection

/ g - /’
2 c el ®
A |B
At wrloop on the highest level:
Old Memory
—» D
2 ® 2
o o
L ® ’ NG
\ \ /
N \ /
T o e e i o ~ _7
\ N -
B \ 4
L ® \ \ [P
‘\ \ I] [
N | f [
| | |
\\ | | i
New Memory 1 'l H | L *
new | *new new g new Fnew
R ’ new | ew

69

Example of Swym Garbage Collection

Figure III.2

(Cont)

At completion:

Old Memory

«—7] & 1% '
N ~o \,
s_\\ ———\ \~\
. \ \ \
e) | , [I
Pl ® - ! | ® |
N 1 i | J |
™ | ,—// rm——t— |
I / ,.+ _______________ —

B | { | 7 |
1@ [N
\\ I l ! ’ ! \\, !
N iy i : .
-~ | I [|
New \ : j——-——-l-——-r———-\\ ! |
Memory I | | i \ | l
. | Cl Vo 'S B |

A"eW ne@ ’ new IEnew |:new ‘W 1 I:)new 1 ow
N /

NoOt e : ssoe— New pointer

pointer unchanged from preceding diagram

pointer at location a word will occupy after the new core image has

been read in.

70

is easy to compute: A normal list of length B requires 2n pointers. The
nt+l

corresponding compact list requires nt+l pointers, for a saving of 1 - el

when n is 10, the saving is L5 per cent. Every symbol atom takes at least
four words of storage plus the length of the“print name, so the number of
symbol atoms is also a factor.

For every active word of storage, roughly forty instructions were executed
during garbage collection. This was computed by dividing execution time into
amount of active storage. The experimental system did not use external
storage; instead, memory was shuttled between two alternate core areas. Thus
the time to write out memory is the maximum of the time to write out the active
structure and the time to execute forty instructions for each active word. The
time to read in memory is dependent solely on the number of active words. The
Swym garbage collector speed can be contrasted with the speed of that routine in
the Stanford LISP360 system. This is a standard LISP 1.5 implementation with a
fixed-no-release garbage collector. LISP cells are stored in double wards.

The garbage collector executes approximately fifteen instructions for each active
double word. In addition, the linear scan through free storage requires four
instructions for each of the double words in free storage. These rates were
computed based on execution of several large programs on a 560/75.

Several applications for the Swym garbage collector are conceivable,
even apart from compact list structure. The Swym garbage collector could be
valuable in a system with roll out and roll in. If the monitor set a signal
for the program to roll itself out, the program could garbage collect for
free the next time a cons was executed. Even without memory swapping, external
storage of structures has always been a problem for plex processing systems.

The Swym garbage collector provides analgorithm for scanning lists and storing

them in a compact form on an external device. Another application for this

71

algorithm is in the transmission of list structures between two machines over
a slow channel. If the new storage is written starting at location zero, the
address fields can be small. Only as the size of the structure passes a power
of two would the length of each address “field have to increase.

The implemented garbage collector stores partially collected structures
on the stack, but uses a trick to avoid saving return addresses during
recursion. It would be possible to use the WISP technique [Schr67] to
avoid using the stack during collection. This was not done because it would
involve at least two more passes over the data. In a memory sharing en-
vironment, it is sometimes possible to acquire temporarily the needed extra
storage for a stack; otherwise, sufficient stack must be available to hold at

least twice the length of the longest fst chain.

T2

CONCLUSION

The best conclusion to this paper would be to point to a specific set
of environments and say, "These are the best for implementing a plex processing
language." But this cannot be done because storage management is highly
problem dependent. A set of environments satisfactory for one language may
be very poor for some other language. For completeness, four storage manage-
ment schemes are necessary: fixed-release, fixed-no-release, variable-
relocating, and variable-non-relocating. The most universal approach is a
hierarchical system offering each of these types of storage control; current
work holds the promise of making this approach as efficient as the least
efficient of the fgcilities actually used. That is, it seems possible to
'charge' the user the 'cost' (time or memory) of only the storage management
technique he uses. Alternatively, large projects should consider implementing
a language and system suited to their own particular needs. Since all environ-
ments can be conveniently implemented with a combination of a stack and variable
length plexes, a general storage management system like Swym is a suitable basis
for the development of specialized languages.

The paper will close with (1) a summary of the SWYM solution to a
variable-relocating storage management system and (2) the implications

of plex processing languages for hardware design.

3

Summary of Swym Environments

Stack:

The Swym stack stores pointers, return addresses, and stack plexes.
The three are distinguished by the high and low order bits of the word.
For plexes these bits are in a plexhead and all other words in the plex
can be full 32-bit words. The stack grows toward lower addresses so

routines may address local variables they store on the stack.

Data structures: To permit compact lists, Swym distinguishes between lists

and all other plex structures. The distinction is based on the pointer

at the item, plexes being addressed six bytes in front of their plexhead.
List operators will not work on plexes and vice versa. But this is advan-
tageous in debugging, and neither type of operation is slowed because this
checking is done by hardware. All plexes have a plexhead, which is

memory consuming if many small plexes are used.

Routine linkage: The stack is essential to routine linkage: return addresses

are stored on the stack, and the calling routine stores any active regis-
ters on the stack. The address of each routine is available from a

transfer vector table.

Variable binding: STUTTER variables are bound in a value cell associated

with the atom representing the variable. A bit in the plexhead indicates
whether the value is a pointer or a full word of information, so a
compiler can compile direct numerical operations. When an atom is re-
bound, the current binding is saved on the stack and the new binding

placed in the cell. Dynamic free variables are not permitted.

Th

Memory allocation: Memory is allocated from one end of a single large free

area. This could be used like a stack, but this is rare in STUTTER.

Storage management: The Swym garbage collector creates a representation of
all active structures on secondary storage. This representation is then
read into one end of the free storage area. In this process lists are

compacted, and related structures are relocated near each other.

Implications for Hardware Design

Because storage management is very problem dependent, hardware design
should not favor one technique over others. But three features would
facilitate storage'management and language implementation: 1) extra bits in
every word, 2) stack operations, 3) subroutine operations. Other operations,
like data access and program control, seem to be adequately handled by the
360 hardware. Appendix K contains one proposal for instructions implementing
these proposals.

Extra bits in every word: Swym utilizes high and low order bits of
pointers in many ways. But careful control 1is necessary to avoid confusion
with numbers. Much bit testing and indirection could be avoided if each word
included two or more bits that did not participate in arithmetic operations.
This idea has been implemented in at least the B-5500 and other Burroughs
machines. But very careful design would be required to integrate extra bits
into the design of the 360, because so many different kinds of instructions
can access different portions of each word. One approach would be to associate
four bits with each word that could be set and tested with special storage
immediate instructions but would not otherwise participate in arithmetic opera-

tions. These bits could be considered as one per byte to mark the ends of

™

strings, or could be considered as four per word with different configurations
marking pointers, integers, floating point numbers, or other data types. One
or two of the bits with a word could be used for marking by a garbage collector.
In a carefully worked out language implementation, the special bits would only
have to be set when memory was allocated.

Another possible approach to associating bits with every word would be to
provide an instruction that translates a word address into a bit address (and
possibly tests or alters that bit). With this approach the user would have no
expense if he did not use the facility. But if he did, memory allocation would

be required both for data and for any associated bit tables.

Stack operations: A stack can be invaluable in many programs and is
essential in implementation of plex processing languages. Moreover, the
required operations are relatively simple and non-controversial: add an item,
delete an item, and reference an item. With no provision for checking the
ends of the stack, the add and delete operations can be placed in micro-code,
and the reference operations can use ordinary base-displacement addressing.
End checking is a little more complex. One approach is to make the stack
pointer a pointer at a descriptor giving the ends and the current location
of Lhe stack. But this prevents using the stack pointer to reference items
on the stack. An alternative is to use special settings of the special bits
to indicate the ends of the stack. The special bits would then be checked
by the micro-code.

Subroutine operations: Like stack operations, these are easy to
implement and are of general utility. The basic subroutine operations are
call and return, using the stack to store the return address. Storage of
registers and other status information is more language dependent and should

be controlled by the calling routine.

76

[Barn 68]

[BBG 681

[Baur pc]

[Benr 67]

[Bobr 67]

[Bobr 68]

[Cohn 67]

[Coll 60]

[coll 67]

[Comf 64]

" [Dodd 663

[Farb 64]

[Feld 65]

[Frok 66]

BIBLIOGRAPHY

Barnett, J.A. and Long, R.E. The SDC LISP 1.5 System for IBM

260 Computers. System Development Corporation Document SP-
3043, (Jan, 1968).

Bauer, H.R., Becker, Se. and Graham, S.L. ALGOL W Language
Description, Computer Science Department, Stanford University,
(Jan, 1968).

Baver, H. Stanford University, Stanford, California.

Benner, F.He On designing generalized file records for manage-
ment information systems. AFIPS V. 31, 1967 FJCC. Thompson Books,
Washington, DeCe, pp. 291-303.

Bobrow, D.Ge and Murphy, D.L. Structure of a LISP System Using
Two-Level Storage. Comme. ACM 10, 3 (Mar, 1967) pp. 155-159.

Bobrows D.Ge (Ed.) Symbol Manipulation Languages and Techniques.
North-Holland Publishing Co., Amsterdam, Netherlands, 1968.

Cohen, J. A use of fast and slow memories in list processing
languages. Comm. acu 10, 2 (Feb, 1967) pp. 82-86.

Collins, GeE. A method for overlapping and erasure of lists.
Comm. ACM 3, 12 (Dec, 1960) pp. 655.

Collins, G.E. The SAC-1 list processing system. Computer
Science Department and Computing Center, University of Wis-

consin, (July, 1967).

Comfort, W.T. Multiword list items. Comme ACM 7, 6 (June 1964),

PP. 357,

Dodd, G.G. APL, a language for associative data handling in
PL/1. AFIPS Conf. P. V. 29, FJCC, Spartan Books (Wash, 1966)
pp. 677-689.

Farber, DeJ., Griswold, R.E., and Polonsky, I«P. SNOBOL, A string
manipulation language. J. ACM ii, 1964, pp.21-30.

Feldman, J.A. Aspects of associative processing. TN 1965-13
Lincoln Lab MIT 1965.

Franks, E.Ws A data management system for time-shared file
processing using a cross-index file and self-defining entries.
AFIPS Conf. r. v. 28 1966 SJCC pp. T79-86.

17

[Garw 68]

[Gerl 60]

[Gray 67]

[Gris 67]

[Hadd 663
[Hawk 671
[Hoar 66]
[1em 68al
[1BM 68b]
[I1if 62]
[John 631

[Joyc 671

[Kant 661

[Know 663

[Kknth 683

[Lang 68]

Garwick, J.V. GPL, a truly General Purpose Language. Comm
ACM 11, 9 (Sept,1968), pp. 634-638. —

Gerlernter, He, Et Al. A FORTRAN-compiled list-processing
language. J. ACM 7, 1960, p. 87.

Gray, J«Ce Compound data structure for computer aided design;
a survey. Proce ACM 22nd Nat. Conf. 1967, Thompson Books,
Washington, D.C., pps 335-365.

Griswold, R.E.,Poage, J.F., and Polonsky, I.P. Preliminary
Report on the SNOBOL 4 Programming Language II, Bell Telephone
Laboratories, Holmdel, New Jersey (Nov, 1967).

Haddon, B.K. and Waite, W.M. A compaction procedure for variable-
length storage elements. Computer J. 10, 8 (Aug, 1966).

Hawkinson, L. Lisp 2 Internal Storage Conventions. Systems
Development Corp. IM-3417/550/00 (Apr, 1967).

-~

Hoare, C.A.R. Record handling. IFIP working conference, Pisa

(Sept, 1966).

International Business Machine&IBM System/360 Operating System
MVT Supervisor, Form Y28-6659-2 Kingston, New York, (Jan, 1968).

International Business Machines. IBM System 360 PL/I Reference
Manual. Form (28-8201-1, Kingston, New York, (March, 1968).

Iliffe, J«K. and Jodeit, J«G. A dynamic storage allocation
scheme. Comput. J. 5, 10 (Oct, 1962) p. 200,

Johnson, T.E. Sketchpad III 3-D graphical communication with a
computer. ESL-TM-173 M.I.T., Cambridge, Mass., 1963.

Joyce, John D. and Cianciolo, Marilyn, J. Reactive displays:
Improving man-machine graphical communication. AFIPS Conf.
P. V. 31, FJCC (Sept, 1967) pp. T13-72l.

Kantrowitz, We CORAL = A Questionnaire for language consultants.
ACM Special Interest Committee on Symbolic and Algebraic Mani-
pulation, Comparison of Languages Subcommittee (May, 1966).

6
Knowlton, Ke.Ce A programmer's description of L . Comm. ACM No. 8

9 (Aug,1966).

Knuth, D.E. The Art of Computer Programming, Vol. I, Addison-
Wesley, Menlo Park, California, 1968.

Lang, CsA., and Gray, J.C. ASP - A ring implemented associative
structure package. Comm. ACM 11, 8 (Aug, 1968) pp. 550-555.

78

[MBth 63]

[MCar 60]

[Mcar 62]
[MCla pc]
[MKee 66]

[ﬁKee 671

[MKee pcl
[Mnch 67]
[Mnch pecl
[Mnsk 63]
[Newl 64]
[Perl 60]
[ReR 64]

[Reyn 65]

[Reyn 69]

[Reyn pcl

McBeth, J«M. On the reference counter method. Comm. ACM 6, 9
(Sept, 1963) e 575.

McCarthy, Je. Recursive functions of symbolic expressions and
their computation by machine, part I Comm. ACM 3, 4 (April, 1960)
p. 18k,

McCarthy, J., et. al. LISP l.5 Programmer's Manual. The MIT
Press, Cambridge, Mass., 1962.
McClaren, M.D., Argonne National Laboratory, Argonne, Illinois.

McKeeman, W.M. An Approach to Computer Lanquage Design.
Technical Report CS4%, Computer Science Department, Stanford
University, (Aug, 1966).

McKeeman, W.M. Language directed computer design. AFIPS
Confe P. V. 31 FJCC 1967, Thompson Books, Washington, D.C.
pp. 413-417.

McKeemsn, W. University of California at Santa Crugz,
California.

Santa Cruz,

Manacher, G.K. and Dewar, R.B.K. The UNCLLL List-Processing
Language: A Preliminary Description. University of Chicago, 1967.
Manacher, G.K. University of Chicago, Chicago, Illinois.

Minsky, M.L. A LISP garbage collector using serial secondary
storage. MIT Artificial Intelligence Memo. No. 58, Cambridge
Mass., (Oct, 1963).

Newell, A. (Ed.) Information Processing Language-V Manual,
2nd ed. Prentice Hall, Englewood, N.J., 1964.

Perlis, A.Je. and Thornton, D. Symbol Manipulation by Threaded
Lists. Comm. ACM 3, 4 (Apr, 1960), pp. 195-20k.

Randell, B« and Russell, L.J. Algol 60 Implementation. Academic
Press, London, 1964. ’

Reynolds, J.C. Cogent Programming Manual. Argonne National Lab.
report no. ANL-7022. Argonne, Illinois, (Mar, 1965).

Reynolds, J.C. GEDANKEN - A Simple Typeless Language which permits
Functional Data Structures and Coroutines. Argonne National Lab-
oratory, (May, 1969).

Reynolds, J.C. Argonne National Laboratory, Argonne, Illinois.

79

[Ross 61]

[Ross 67]

[Rovn 663

Ross, D.T. A Generalized Technique for Symbol Manipulation and
Numerical Calculation. Comm. ACM 4, 3 (Mar, 1961) pp. 147-150.

Ross, D.T. The AED free storage package. Comm. ACM 10, 8
(Aug, 1967) pp. 481-L92.

Rovner, P.D. Investigation into paging a software simulated
associative memory system. Document No. 40 10 90, University
of California, 1966.

[Rovn 67a] Rovner, P.D. and Feldman, J.A. An Associative Processing System

for Conventional Computers. Lincoln Laboratories, TN 1967-19.

[Rown 67b] Rovner, P.D. and Feldman, J.A. The Leap Language and Data

[satt pc]

[Schr 671

[Styg 671

[Suth 633
[Suth 663

[Toll pc]

[vDam 67)

[Weiz 63]

[Weiz 68]

Structure. Lincoln Laboratories, November 197.
Satterthwaite, E. Computer Science Department, Stanford University.
Schorr, H. and Waite, W.M. An efficient machine - independent

procedure for garbage collection in various list structures.
Comm. ACM 10,8 (Aug, 1967) pp. 501-506.

Stygar, P. LISP 2 garbage collector specifications. systems
Deve%opment Corp. TM~3417/500/00, Santa Monica, Calif., (April,
1967).

Sutherland, I.E. Sketchpad: a man-machine graphical communication
system T 296, Lincoln Lab., M.I.T., Lexington, Mass., 1963.

Sutherland, William R. The Coral Language and Data Structure
(Appendix C) from Lincoln Laboratory, TR No. 405, May 1966.

Tolliver, B.L. Computer Based Laboratory, Stanford University,
Stanford, California.

Van Dam, A. and Evans D. A compact data structure for storing,

retrieving and manipulating line drawings. AFIPS P. v. 30
SJCC 1967, pp. 601-610.

Weizenbaum, J. Symmetric list processor. Comm. ACM 6, 9 (Sept,
1963) Pe 524.

Weizenbaum, J. The Funarg Problem Explained. MIT, Cambridge,
Masse ’ (Mar, 1%8)0

[Wilk 64a] Wilkes, M.V. An experiment with a self-compiling compiler for a

simple list-processing language. Annual Review in Automatic
Programming, Vol. 4. Pergamon Press, N.Y., 1964, pp. 1-48.

[Wilk 64b] Wilkes, M.V. Lists and why they are useful. .Proc. ACM 19th Nat.

[Wise 66]

Conf., (Aug, 1964).

Wiseman, N.E. A simple list processing package for the PDPT.
Second European Seminar of DECUS, (Oct,1966).

80

[Wrth 65]

[Wrth 66]

[wrth 68]

[Yngv 62]

Wirth, N. and Weber, H. Euler:. A deneralization of Algol and its
Formal Definition. Technical Report (820, Computer Science Depart-
ment, Stanford University, (April, 1965).

Wirth, N. and Hoare, C.A.R. A contribution to the development
of ALGOL, Comm. ACM 9, 6 (June, 1966), pp. 413-431.

Wirth, N. PL360, A programming language for the 360 computers,
ACM 15, 1968, pp. 37-Tk.

Yngve, V.H. et. al. COMT Programmer's Reference Manual, the
MIT Press, C-bridge, Mass., 1962.

81

Appendix A. Details of

Swym Structures

There are many different information structures in Swym. Free

storage contains lists and plexes (also called atoms), while the stack

contains pointers, retu

rn addresses, and plexes. All currently implemented

varieties of these structures are described below.

A.l. Free Storage Structures

a. Lists

A list word has the structure

29 1 1

Address

Nece

AT¢M</ \>-RST

ADDRESS. May point at another list element, or at an atom.
GC. Is used by the garbage collector for marking (bit Ml1).
RST. Is on to indicate that the continuation of the list is at

location ADDRESS.

(bit M2).

-ATOM. Is on to 1

RST is also used by the garbage collector

ndicate that ADDRESS points at a plex (or atom).

ATOM is on automatically because a pointer at a plex points six

bytes in front of the plex.

In the following examples, the two low order bits of each pointer

are indicated explicitly.

A pointer at an atom is indicated by the

82

printname of the atom and the presence of the ATOM bit. The list

(A B C) may be represented by

o—1—=» B s > C
¢ A B0 0 10 or 10 7

or

10 10 10 11

Note ‘that the rrrst of either structure is a pointer at the atom NIL.

\ is not —\

c 10 1 ¢ 10 1

That is,rst of

-

but is the pointef at NIL (contents of the second word). It 1s important
to note that no valid pointer will point at a list element with the RST bit
on.

The Swym list structure can represent both circular lists - which
cannot be printed, and lists with common subelements - which are not
printed correctly.

Circular list:

g —— N
l_‘i; [> B o > C)
10

01 10 01 10 []]

or

r N\

Al B | c| ¢
10 10 10 o1

List with common subelements: The example below would print as

((a (((B) B) (B) B) ((B) B) (B) B) ((B) B) (B) B)

but note that B occurs exactly once in all representations of the structure.

83

10

01

10

01

or

Lists may use any mixture of adjacency and list continuation elements.

01

? 00 ‘?IT B 10 "
\
A 10 ° 00 | 1 01

-

The last example might also be

"The garbage collector would rearrange this structure to occupy memory as:

or even

1/[_\

10

1

11

N\ yaun N

’ { . > 1 B

00 00 01 00 10
v \
A | e | ¢

10 00 10
® o

00 01

] NY/N

A ‘ 1 B
- 10 00 00 00 10 1

r_ N L \l
B 10 1 ¢ 00 lm». 00 /T 01 A‘i ° 00 01 /7 00 01
L ,
Start . /
b. Plexes (or atoms)

Two types of plexes have been implemented:

1.5 atom, the other a variable length string.

84

one similar to the LISP

Other types may be

implemented as required by an application. All plexes have a plexhead

aligned on a full word boundary; a pointer at a plex points six bytes in
front of the first byte of this plexhead. This offset ensures that

the atom bit is on in a pointer at a plex and thus distinguishes between
pointers at lists and pointers at plexes.

The standard fields of a plexhead are

Type |1

o/ a0

GC. These two bits are reserved for the garbage collector.

1 in bit 15. This bit, in conjunction with the offset addressing of
plexes forces the RST routine to make a specification error if its

argument is a pointer at a plex.

TYPE. This field distinguishes between different plex types.

Currently types 0 and 1 are implemented.
The blank fields may be defined for individual plex types.

Plex Type 0 - Symbol (LISP atom)

This plex 1s a three part entity: plexhead, value cell, and

property list. The plexhead has the format

1 5 11 7 1 15 1
FCN 0 1
GC’, VAL —” \\~REL \\~4}C
VAL. If this bit is a one, the atom 1s bound to the value

currently in the value cell. If 0, the atom's function definition

is in the value cell.
85

REL. If this bit is a one, the contents of the value cell are

relocatable, that is, the garbage collector will treat them like

a pointer.

FCN. If the atom is not a function name this field is zero. Other-

wise, this field encodes what type of function definition exists. The

coding is
1 SUBR
2 FSUBR
3 EXFR
4 FEXPR

The fifteen bit blank field can be used as required. It 1is proposed to
use these bits as marker bits indicating the presence or absence of

properties on the property list.

Thus routines could find out if the indicator were present without
searching the property list. Also the extra bits can be used to replace
the "flag" feature of Lisp 1.5

The atom's value cell is the next word after the plexhead. This cell
-holds the current binding of the atom, that is, the value that is to be
returned for EVAL of this atom. There is 8 unique string atom with the
printname 'UNBPUND', that is only pointed at by value cells. If an atom
has no function value and is not bound, the value cell points at 'mﬁmmm'.
When EVAL finds an atom with this value an'error is indicated and control
returns to the top level. 1If an atom has wmmmmm' in its value cell, VAL
and REL are both one, because the atom is bound to a relocatable value.
Note that given a pointer at the atom, the value cell can be addressed

directly.

86

This means that no searching must be done to find the value of a
routine's argument. Normally, when the STUITER interpreter is running,
the Value cell contains 8 relocatable value, a pointer at either 8 list
or another atom. Provision is made, hpwever, for compiled functions to
store non-relocatable quantities in the value cell. This means that
compiled functions can, indeed, do direct numeric computation.

If an atom is not currently bound, the value cell may instead contain
the function definition of that atom. For FEXPR and EXPR, the REL bit is
. on and the value cell points to the list defining the function. For SUﬁﬁ
and FSUBR, the REL bit if off, and the value cell contains the entry
point of the subroutine. Since function names are not usually variable
names, the interpreter normally does very little searching to find function
definitions. Regardless of where the function definition is stored, bits
are set in the atomhead to indicate what kind of definition it is; that is
EXPR, FEXPR, SUBR, FSUBR. Thus when the definition is sought on the

property list only the correct indicator need be used.

87

The property list of an atom is a standard Swym list, except that
ther...rst is not NIL, but a pointer to the printname of the atom (a
character string atom (type 1)).There ié no PNAME indicator. The first word
of the property list is the word after the atom's value cell. If there is no
property list, the word following the value cell is a pointer to the print-
name with the RST bit on. By convention, the property list always consists
of indicator value pairs; there are no flags as there are in LISP 1.5.

GET, PUTPROP, REMPROP, and EVAL all obey the above conventions for
the value cell and the property list. BINDERY, however, will not bind
a value to an atom having a function definition. See the description

of BINDERY in Appendix D.3.

Plex Type 1 - Strings

This plex type illustrates Swym variable length plexes. The plex

format is
1 T T 1 15 1
Subtype 1 1 Length
c R
LENGTH. Number of bytes in string. String is right padded to occupy

an integral number of full words.

SUBTYPE. This describes further the type of string. Currently, it

affects only the print routine. Three subtypes are defined:

0 character string
4 fixed point number
8 hexadecimal number

Fixed point numbers are restricted to length four.

88

A.2. Stack Structures

The garbage collector must be able to scan the stack collecting
those structures which are currently active. Thus, it must be possible
to distinguish pointers from numbers and other random bit patterns. The

high and low order bits of each stack word are used for this purpose and

are interpreted as:

00 pointer (collected)

01

11 return address (not collected)

10 stack plex (collected by special routine)

Any non-relocatable information which may have a zero low-order bit must

be stored on the stack in a stack plex. A plex head is stored after

the plex on the stack because the garbage collector scans the stack from

latest entry to earliest. The stack plexhead format is:

1 23 7 1
1 Type 0
TYPE. Determines what type of plex this is. The garbage collector

invokes an appropriate type dependent routine. Two types of stack

plex are implemented: the non-relocatable plex and the binding plex.

Stack Plex Type 0 - non-relocatable

1 15 8 71
1 Length 0 0
LENGTH. This many prior words in the stack are non-relocatable.

They are igngred by the garbage collector.

Stack Plex Type 1 - Binding

This type of plex is used by BINDERY to store the old bindings of atoms

89

before changing them. The plex must be removed from the stack by UNBIND
for proper stack synchronization. Bindings are stored in atom-value pairs,

thus the stack binding plex looks like-

FFFF
Stack at I i o
-Growth ¢ val pair
et o1 } pair 1
oo
'Type 1 stack plexhead
0

The plexhead format is:

1 15 8 7 1
1 reloc bits length 1 0
LENGTH number of pairs in plex.

RELOC BITS These define the relocatability of the value member of
each pair. Bit 15 corresponds to pair 1. If the bit is on,
the value is relocatable, that is, it must be collected. Up
to fifteen pairs with a relocatable value may be stored. The atom

pointers are always assumed to be relocatable.

90

Apvendix B. SWYM Macros

An essential factor in the development of the Swym system was the
creation of a collection of macros. In effect, these macros create a
machine suitable for processing Swym data structures. The operands to
most macros are register names, therefore a knowledge of Appendix I,
"Swym Register Assignments", will be useful. For purposes of description,
the macros have been divided into eight classes. An index indicates the
. class to which an individual macro belongs. The classes are
1. LISP - The Basic LISP Qperations.

FST, RST, NULL, ATOM, RPLF, EQ
2. Atom - Operations on Atom Fields.
CELL, RPLCEL, HEAD, TAIL, RPLHD
3. Freest - Free Storage Creation.
STRAT, MATOM, SUBR, FSUBR, CHAR, QCHAR, VALUE
4. Stack - Stack Manipulation.
PUSH, POP, POPN, TOP, TOPN, RPLTOP, RPLTOPN
5. Bit - Named-bit Operations.
BIT, SETBIT, RESETB, INVERTB, TESTB
6. Link - Subroutine Linkage.
SUB, RET, CAL, TVMAK, XB
7. Control - Flow of Control.
IF, THEN, ELSE, ENDIF, AND, ORX, NOT, BCMAC, GOTO0
8. Misc - Miscellaneous
CHTBL, SWEAR, INST4, GCPUT, FIXUP
Also in the swym macro library is a piece of code which must be COPY'ed

during a Swym assembly. Called SWiM, this code is described in Appendix M.

91

Unless otherwise indicated, the label field of a macro is attached

to the first executable instruction.

MACRO INDEX

Number of Positional Keyword
Macro Class Operands Operands
AND Control-7 0
ATOM LISP-1 L 6@, FGP
BCMAC Control-7 0 TBR, FBR, TGP, FGP
BIT Bit-5 1
BITTBLMK .Bit-5 0
CAL Link-6) P,B,S
CEIL Atom-2 2 -
CHAR Freest-3 SYSLIST
CHTBL Mist-8 SYSLIST
ELSE Control-7 0
ENDIF Control-7 0
EQ LISP-1 2 TGP, FGP
EVCH Freest-3 1
FINDBIT Bit-5 1
FIXUP Misc-8 2
FST LISP1 2 4
FSUBR Freest-3 SYSLIST
GCPUT Misc-8 1
GETNAME Atom-2 1
GETNUM Atom-2 2 4
GgTd Control-7 . 1

92

Number of Positional Keyword

Macro Class Operands Operands
. HASH Freest-3 1 -

HEAD Atom-2 2 4 -

IF Control-7 0 I‘ -

INST4 Mist-8 3

INVERTB Bit-5 2 ATHD

MAT@M Freest-3 3

N@T Control-7 0

NULL LISP1 1 TGP, FGp

PRX Control-7 0

P@P “Stack-4 1 P

PPN Stack-4 2 P

PUSH Stack-4 1 P

QCHAR Freest-3 SYSLIST

RESETB Bit-5 2 ATHD

RET Link-6 1 Ry E, P, B

RPLCEL Atom-2 2 «

RPLF LISR-1 2 « N

RPLHD Atom-2 2 «

RPLT#P Stack-4 1 p

RPLTOPN Stack-4 2 P

RST LISP-1 2 - -

RSTMAK LISP-1 1

SETBIT Bit-5 2 ATHD

STRAT Freest-3 1

SUB Link-6 0 R,E,P,B

93

Number of Positional Keyword

Macro Class Operands Operands
SUBR Freest-3 SYSLIST -

SWEAR Misc-8 1 -

TAIL Atom-2 2o -

TESTB Bit-5 2 TGP, FGP, ATHD
THEN Control-7 0 -

TPP Stack-4 1 P

T@PN Stack-4 2 P

TVMAK Link-6 SYSLIST -

VALUE Freest-3 2 -

XB Link-6 1 -

NOTES:

1. The number following class name is the section number of that class
in this appendix.

2. - . Both arguments must be register names. If this macro has one
argument, it computes the function of that argument and assigns the
value back to that argument, If a second argument is supplied, the
value is assigned to this second argument and the first argument
is unaffected.

3; < . Always has two arguments. Value of second is stored in location
referred to by first.

4, SYSLIST. The &SYSLIST(i) feature is used to reference up to 256

arguments.

ok

LISP - The Basic LISP Operations

FST, RST, ATgM, NULL, EQ, RPLF, RSTMAK

FST a,b. (This is theLISP 1.5 CAR). a and b must be register

RST

AT@M

names. FST finds the first element of the list pointed at by a.
If b is present, the result is placed in register b, otherwise, the
result is placed back in register a. Assembles as either

L a,0(a) or L b,0(a).

a,b. (This is theLISP 1.5 CDR). & and b must be register

names. BRST finds the list formed by deleting the first element

from the list pointed at by the register a. The result is placed
in p if present, otherwise in a. Assembles as either BAL L,RSTxx
where xx is a or LR b,a; BAL L,RSTxx where xx is b. The
routine RSTxx 1s created by the macro RSTMAK. In the current swym
system there exist RSTAl, RSTA2, RSTA3, RSTT, and RSTTT; these are
the only registers whose RST can be taken. Note that if b is
specified, it must be among Al, A2, A3, T, TT while a need not be.

If b is not specified, a must be among that restricted set.

a,TGP=tgo, FGP=~£go. This 1s a predicate macro; see section 7
of this Appendix, especially the description of BCMAC. a must be
a register name; 1its contents are tested to see if they point at
a plex (or atom). The code generated 1is

LA TT,2

NR TT,a

BCMAC TBR=BM, FBR=BZ, TGff=tgo, FGf=fgo

Note that ATgM destroys the contents of register TT.

95

NULL a,TGf=tgo,FGP=fgo.

this Appendix,

register name;

This is a predicate macro; see section T of
especially the description of BCMAC. a must be a

its contents are tested to see if they point at the

atom NIL. The code generated is
CR a,N

BCMAC TBR=BE, FBR=BNE, TGf=tgo, FGf=fgo

EQ a,b,TGP=tgo,FGf=fgo. This is a predicate macro; see section 7 of

this appendix, especially the description of BCMAC. a and b must
be register names. They are tested to see if they both point at
the same identical entity. The code generated is
CR 8,b

BCMAC TBR=BE, FBR=BNE, TGf=tgo, FGO=fgo

RPLF a,b. (This is the LISP 1.5 RPLACA). a and b must be register

names. The list structure pointed at by a is modified so that
the first element of the list is the structure currently pointed
at by b.

Neither a nor b is changed. The code is ST b,0(a).

RSTMAK a. This macro generates the routine needed by the RST macro.
Note that this routine must appear in an addressable section when

a RST calls it. The code generated is

RSTa ™ 7(a) X '1' is there a RST bit?

B§ RSTLDa yes, branch

BXH a,C4,0(L) n o, iner ptr and return
RSTIDa L a,li(a) load list cont ptr

BCTR a,L remove RST bit and return

96

B.2. Atom - Operations on Atom Fields

HEAD, RPLHD, TAIL, CELL, RPLCELL; GETNAME, GETNUM

HEAD a,b. a and b must be register names. Accesses the plexhead
of the atom pointed at by a. If b is present result goes in b,
otherwise into a. Result is a bit pattern and is not relocatable.
a may be a pointer at any plex (not just type 0). Assembles as

L a,6(&) or 1 b,6(a).

RPLHD a,b. a and b must be register names. a must point at a plex.
b should contain a bit pattern which is a valid plexhead. The
result is that the plexhead pointed at by a is replaced by the

contents of b. The contents of a and b are not changed. Assembles

as ST b,6(a).

TAIL a,ba and b must be register names. & must point at a type
0 atom (not checked). The result is a pointer to the property
list of the atom. If b is specified the property list is put in b,
otherwise a. Assembles as LA a,10(a); RST a or LA b,10(a) ;

RST b. Note that the restriction to RST applies to the last argument

of TAIL.
CELL a,b. a and b must be register names. a must point at type 0
atom (not checked). The result is the contents of the value cell

of a (not a pointer to the value cell). If b is specified, the
value cell is placed in b, otherwise in a. Assembles as

L a,10(a) or L b,10(b).

97

RPLCEL a,b. a and b must be register names. a must point to a type
0 atom (not checked). The value cell of the atom is replaced by

the contents of b. Assembles as ST b,10(a).

GETNAME a,b. a and b must be register names. a must point at type 0

atom (not checked). The result is a pointer to the printname of
the atom. If b is specified, it receives the result, otherwise a
- receives the result. Assembles as
LA a,10(a) or LA b,10(a)
RST a or RST b

ATPM a,FGO=%¥-10 or ATPM D,FGf=%-10

GETNUM a,b. a and b must be register names. & must point at a
type 1 plex of subtype 4, that is, a string which is a fixed point
number. This is not checked. The result is the value of the fixed
point number. If b is specified the result replaces b, otherwise

a. Assembles as L a,10(a) or L b,10(a).

B.3. Freest - Free Storage Creation

VALUE, SUBR, FSUBR, CHAR, QCHAR; MATPM, STRAT, HASH, EVCH

There are three levels of free storage creation macros. The highest
level macros create atoms with properties required for the interpreter:
VALUE, SUBR, FSUBR, CHAR, and QCHAR. These macros call on MATEM to
actually create an atom. The third level macros are called by MAT@M
as utilities: HASH, EVCH, and STRAT,

In addition to assembling the structure required for an individual

atom, these macros create the object list and the character objects list,

98

These lists are the values of @BLIST and CHAR@BS, respectively, as described
in Appendix H.

The macro MATPM takes care of creating the #BLIST. Each time an atom
is created using MAT@M, the print name is hashed (using the HASH macro),
and a bucket link is created. Created labels are used to link the members
of a bucket together. These labels have the form

BUC xx L nn
where xx 1s the hash number and nn is the number of the items in the
bracket. Thus the oblist itself is

@BLIST DC A(BUCLLO)

_DC A(BUC2LO)

DC A(BUC6LLO)

DC A(NII+RBIT)
When an atom is created, two words are created to link the atom in the
porper bucket. They are

BUCxxIn DC A(atom)

DC A(BUCxxLmt+RBIT)
where xx 1s the bucket number, n is the number of items already in this
bucket, m is ntl, and A(atom) is a pointer at the atom. RBIT has the
value 1 and is used to put in the RST bit where required.

The initial contents of free storage are discussed in Appendix H.

nm VALUE pname,val. The structure for one atom is created. The
label nm is given the value by which the atom should be addressed.
The printname is pname. The value cell is a pointer to_val. The

plexhead 1is marked to indicate that there is a quantity in the

99

value cell and that it is relocatable. The assembly is performed
by calling
nm MAT@M pname, RELB+VALB, A(val)

RELB and VAIB are equated to the bits REL and VAL (see Appendix A.l.b).

SUBR pnamel, pname2, ..., pnamen, An atom is created for each pname

in the list. The printname is pname and the value cell is the
. address of the SUBR with that name. The atom head is marked to

indicate that the atom has a function definition, it is a SUBR,

and the address of the routine is in the value cell. The pname

is declared EXTRN to communicate with the assembly in which the

SUBR is defined. For each pname on the list, the code assembled is:
EXTRN pname
MAT#M pname,SUBRB, A(pname)

SUBRB is equated to 1, the function definition code for SUBR's. '

Any label field on SUBR is ignored.

FSUBR pnamel, pname2,..., pnamen. Same as SUBR, but FSUBRB is used

instead of SUBRB.

CHAR charl, char?,..., charn. An atom is created for each character

in the list of characters. The print name is just the character.

The value cell is set to point at the 'UNBJUND' error atom. The

plexhead bits are set to indicate that the value cell is relocatable

and has a value. 1In addition, the appropriate entry in CHAR@BS is

set to point to the created character atom. Each atom is created by
MAT@M chari

If there is a label on the CHAR it will be equated to the atom for

the first character on the list.

100

The following characters are valid arquments to CHAR:

A-Z, 0-9, blank, and these special characters

sl S /& kgt re (e - .
note that[g] prints as -, while.¢ ang. ! print as blank.

QCHAR. Same as CHAR, but expects arguments to be quoted: viz.

:(t,)tt’ and l’l.

nm MAT@M pnm, celbits, plist. Creates an atom with the print pnm.

The label nm is equated to the offset address of the atom's blockhead.

If celbits and plist are not specified, the atom head is marked to

indicate relocatable binding and the value cell is a pointer at the
special atom 'UNBFUND'. If celbits are specified, that quantity is
assembled (ALl (celbits)) as the first byte of the atom head. The
rest of the atom head is 010000; indicating a normal type 0 atom.

The members of plist-which may be a 360 assembler sublist - are
assembled following the atom head. Thus the first element of plist

is the contents of the atom's cell. Other elements of plist must

be in indicator-value pairs for the property list. After the property
list, a pointer to the printname and the printname itself are

assembled. The code assembled for missing celbits and plist is

BUCxxIn DC A(* + 8 - AT) put atom in bucket
DC A(BUCxxILim+RBIT) link to nxt bucket item
nm EQU *-AT equate name to atom ptr
DC AL1(RELB+VALB) X '010000" assemble atom head
DC A(UNB@UND) value cell
DC A(%+4-AT + RBIT) null prop list is ptr
STRAT ‘pnm'. print name

101

where

XX is hash code of _pmm,

n is number of prior entries in bucket xx,

m is ntl,

AT is atom offset (6),

RBIT is rst bit (1),

RELB+VALB put in relocatable and variable-bound bits.

The code generated with celbits and plist is the same except the

atom head is

DC AL1(celbits),X'010000"

and the elements of plist precede DC A(*+4-ATHRBIT),

nm STRAT 'string'. Creates a string atom (type 1). The atom head is

BASH

DC X '0003',AL2(2¥L'string)
which indicates character string atom. Following words are four
character at a time chunks of string. mm is equated to the offset
location of the string atom. That is, the first assembled instruction

would be mm EQU *-AT. String atoms are not placed on the fBLIST

or CHAROPES.
string. HASH evaluates the hash function for the sfring:h e

result is left in an assembly time global variable (GBLA &HVAL)
whose value can be used by a calling macro. BASH calls on EVCH

three times to evaluate the three character values needed by the

hash function (first, third, and last).

102

EVCH ch. Unbelievably with 360 assembler, there is no simple way to

B.4.

determine from a character the number corresponding to that
character's EBCDIC code. EVCH performs this feat by a large test:

chval = 1f ch = 'A' then 193

else if ch = 'B' then 194
else_if ch = 'C' then 195
else if ch = 'Z' then 233

else_if ch = '0' then 240

else error ('illegal character - evchr')
The value is left in a global variable (GBLA &CHVAL) whose value
can be used by a calling macro, for instance HASH. The following
characters are valid to EVCH: A-Z, 0-9, blank, comma, >,), pgriod,
S G/t s S8, %,y ¢, % %1, #,8, =",

42|,
8

Stack - Stack Manipulation

PUSH, PgP, PPPN, T¢P, T@PN, RPLTPP, RPLTEPN

The stack is allocated in units of one word. The basic macros are

PUSH and P¢P. The former puts one word on the stack, the latter removes

a word from the stack. A routine must do exactly as many PUSH'es as

PfP's unless very special care is taken.

Swym stack macros use negative stack growth. That is, the first

stack location allocated is the highest address and successive words are

in successively lower locations. This means that since the stack pointer

103

points at the last entry on the stack, all recent entries to the stack
can be addressed with simple displacement addressing. Thus a routine
may do three PUSH'es to allocate three words of temporary storage; then
it can address all three locations. -

A Swym stack pointer must be in a register when the stack is referenced
by a stack macro. The standard Swym stack is always pointed at by register
P. All stack macros have a keyword parameter "P=". If P= is omitted,
P=P 1is assumed.

Currently, no check is made for going off either end of a stack.
Several techniques are possible to ensure that other storage is not
destroyed or that too many PfP's are not executed. The simplest is to
generate code to check the stack pointer at each PUSH and P#P. This is
time consuming and inelegant. An elegant method would be to use a
PDP-6 which has hardware PUSH and PP with built-in checking. (Unfortun-
ately, the 360 does not have PDP-6 mode). It is proposed for Swym that
the stack be first in the user partition. When the stack is exhausted, a
protection interrupt will terminate the computation.

All stack macros except PUSH have an 'N' form, indicated by N at the
end of their name. The first argument to the N-form is a number in the
range 1-1024. The action of the macro takes place but rather than
affecting the top of the stack, it affects the Nth element of the stack.
The latest entry on the stack is Nel. Thus xxxN 1,y 1is equivalent

to xxx y although different code may be generated.

PUSH r,P=p. r may be the name of a register or a sublist of register
names. If the former, as in

PUSH Al

104

PP

then the stack pointer (P since none other is indicated by Pe) is
incremented and the contents of Al are stored on the new top of the
stack. If a sublist is coded

PUSH (Al, A2, Al, T, A4)
then the required number of locations are allocated on the stack
and the named registers are placed on the stack. The last named
register is at the top of the stack. The first named register is
the first placed in the stack. Note that in the example, Al is
placed in the stack twice. A PP TT immediately following the example
will put the old contents of A% into TT. The code generated for
each element of the sublist r is

SR \jg,ch

ST r,0(p)

where Ck is a register whose contents are always k.

ryP=p. Like PUSH, r may be simple or a sublist. If simple,
then the top element of the stack is placed in the named register
and the stack pointer is decremented. If a sublist,

PPP (Al, A2, A1, T, Ak4),
then the registers are filled in the reverse order from PUSH. That
is, the right thing happens and this example will exactly restore
the contents of the registers as stored by

PUSH (Al, A2, Al, T, A4)
The code generated for each element of the sublist r is

L 4,0(p)

AR p,Ch

where Ck is a register whose contents are always 4.

105

P@PN n,r,P=p. The nth element of the push down list p is popped into
register r. Also the stacked is popped so that the current (n+l)st
element of the push down list is the new first element. The current
top of the stack is n=l. The code generated is:

L r,4%(n-1)(p)
LA p,%¥n(p)

T0P r,P=p. The first element of push down list p is put in register

r. The code generated is
L r,0(p)

th

TPPN n,r,P=p. The n element of push down list p is put in register

r. The code generated is

L r,4*(n-1) (p)

RPLT$P r,P=p. The first element of push down list p is replaced by
the contents of register r. The code generated

ST r,0(p)

RPLT@PN n,r,P=p. The ot element of push down list p is replaced by
the contents of register r. The code generated is

ST r,4%(n-1)(p)

106

B.5. Bit - Named-Bit Operations

BIT, SETBIT, RESETB, INVERTB, TESTB; BITTBLMK, FINDBIT

nm BIT bitno. Using this macro defines mm for all the other bit

macros. mm 1s defined as being the bitnoth

bit of a word. Because
all the other functions use SI instructions both the bit within a
byte and the byte within a word must be stored for each BIT declared.
The former is stored by equating mm to
BITTBL(bitno-bitno/8%8+1)

where BITTBL has the quantities

x'80', x'k0', x'20', Xx'l0', X'8',X'4', X'2', X'1'
The byte within a word is stored in an assembly time array
(GBLA &BITS (64)). It is computed byAbitng/Sirresponding
array (GBLC &BITNAMS(64)) contains the name of the bit so table

lookup can be performed.

SETBIT r,bit,ATHD=T. This macro sets a bit in a word in memory. I
must be the name of a register. The register will be assumed to
point to the required word. bit must be the name of a bit declared
with the BIT macro. If the ATHD=T parameter is present, the pointer
in r is assumed to point at a plexhead and the pointer is suitably
adjusted. The code generated is @I bl(r),bit or @I bI+AN(x),
bit. In either case, FINDBIT is used to find the value bl, the

byte-within-the-word for bit.

RESETB r,bit, ATHD=T. Same as SETBIT but turns the bit off by using

NI bl(zr),X'FF'-bit or NI bL+AT(r),X'FF'-bit.

107

INVERTB r,bit,ATHD=T. Same as SEIBIT but complements the bit by .

using XI bl(r),bit or XI bL+AT(r),bit.

TESTB r,bit, ATHD=T,TGO=tgo,FGO=fgo. This is a predicate macro;

see section 7 and especially the BCMAC macro. The word pointed at
by register r is tested to see if bit Hif isich. is control
goes to label B&, if ndt contrdl goes tho label dgo. r Tap
. or FGp or both may be specified. The omitted condition will simply
drop through. Between IF and THEN, both TG and FGp may be omitted.
If ATHD=T is specified, r will be assumed to point at a plexhead
and the appropriate offset will be assembled. The code assembled
is either ~

™™ bl(z),bit

BCMAC TBR=Bf, FBR=BZ, TGf=tgo, FGf=fgo
or TM Db1+AT(x),bit

BCMAC TBR=B@, FBR=BZ, TGff=tgo, FGP=Lgo
The macro FINDBIT is used to compute bl, the byte-within-the-word

for bit. y

BITTBLMJS. This macro is called exactly once at the beginning of an

assembly to create the array BITTBL used by the macro BIT. It

stores these character strings into the elements of BITTBL:
x'8o', x'so', x'20', x'10',Xx'8',X'4', X'2', and x'1'

The name field and any arguments are ignored. No code is assembled.

(BITTBIMK is coded in the €8SWEM control section. See Appendix M.)

FINDBIT bit. This macro finds the byte-within-the-field for the

bit named bit by a BIT declaration. The result is left in a global

108

variable (GBLA &BITLEC) for use by the calling macro (SETBIT,
RESETB, INVERTB, or TESTB). The name bit is looked up in the array
BITNAMS created by BIT. Corresponding to the entry for bit is an
entry in the array BITS giving the correct byte-within-the-field.

No code 1is assembled.

B.6. Link - Subroutine Linkage

SUB, RET, CAL, TVMAK, XB

Subroutine linkage occurs at three points: the calling point, the
entry point, and the exit point. Swym has a macro for each point. Note
that for a given routine the entry point and exit point occur within that

routine, but the calling point occurs wherever some routine calls that

 given routine.

The basis of Swym subroutine linkage is a table of transfer vectors
which is always addressable via register S. This table contains the
address of each routine which can be called by any routine in another
module or by compiled functions. Entries in the table are created by the
TVMAK macro. TVMAK may also be used within a module to address routines
.used only within that module.

Two conventions are assumed for subroutines. First, registers must
be saved by the calling program if it expects them to be saved. Second,
the entry point to a routine is the first byte of code and a base register
will contain that address during execution of the routine.

Three standard registers are vital to subroutine linkage:

S Swym base, base for transfer vectors

109

B base for all routines; must be loaded by calling routine

P push down list pointer.

nm SUB R=N¢,E=ﬂ¢,P=233g9. This macro assembles subroutine entry

code. The parameters supplied should be identidal to the parameters
supplied for any corresponding RET macros. SUB must occur exactly

once and then only at the beginning of the subroutine it defines.

. The normal case has no parameters coded. If RNp is coded, the

RET

routine will not be recursive; that is, it will not push its return
address onto the stack. If ENf is coded, the subroutine name nm
will not be ENTRY'ed. In this case, no other module may refer to
the routine and a TVMAK for it must be included in its own module.
The P= parameter determines onto which push down list the return
address will be pushed. p must be a register name. If omitted,
the standard push down list pointed at by register P is used. b
must be a register name. It is the base register declared for

this routine. If omitted the standard base register B is assumed.

The standard case of no parameters generates:

USING mm,b
DC C'nm' supplied for debugging
ENTRY nm

nm BCTR L,0 make odd so GC ignores
PUSH L, P=p

If Relip is coded, the last two lines are replaced by nm DS OH.

lEhR=N¢,E=N¢,P=p,BgE. This macro assembles subroutine exit code.
The m parameter must be the name on the nearest preceding SUB.

The other parameters must be the same as for that SUB. If ReNf is

110

coded, the pushdown list is not popped and the return address is
assumed to be in register L. p is the register name of the push
down list pointer; if Pep is omitted, the standard push down pointer
register pointer P is assumed. b} is assumed to be the name of the
base register of the current routine; if omitted, the standard base
register B is assumed. The standard case is with only mm specified.
The code assembled is

POP p,P=p

B 1(b)
If ReMp is coded, the code is

BR L

CAL nm,regs,P=p,B=b,S=YES. This macro assembles subroutine calling
code. mm is the name of the routine to be called. It is also
possible to specify registers to be saved before the call and
restored afterward. The operand _regs may be any name or sublist
acceptable to the PUSH and POP macros. p is the push down pointer
for the register saving; normally P is assumed. b is the name of
the base register for the routine mm and for the current routine
(last SUB). If B=b is omitted, the standard base register B
is assumed. If S=YES is coded, no base register is loaded after

" return, the assumption being that the current routine is addressable

via some preserved register. With 8= omitted, the code generated

is
PUSH regs,P=p if regs specified
L D, #nm
BAIR I,b

L b,#self

POP regs, Pep if regs specified
fam is the label of the address'of routine mm in the transfer
vector table, #self is the label of the address constant for the

current routine. The name self was the name on the most recent

SUB macro.
TVMAK mml, nm2, . . ., nmn. This macro creates entries in the transfer

vector table. One entry is created for each element in the list.
The label on the entry is created by concatenating a "#' on the
front of the first seven characters of nmi. If nmi is not defined
in the current assembly, it is EXTRN'ed. This decision is made
on the basis of the type attribute of nmi. Care must be taken
that nmi is not the label on EQU. (That pseudo-op gives its label
the type attribute '0'). The code generated for each entry is
EXTRN pame if required

#name DC A(name)

XB rtn,label. This macro is provided for jumping into the middle
of some other routine. Because this is considered evil, XB
generates an MNOTE statement which goes into the error listing.

XB does mat modify the stack; this.must be accomplished by RET
in rtn. The second argument may be omitted and the code generated
is:
L B, #rtn
B 8(B)
#rtn is the label of the transfer table entry for rtn.
Execution of rtn begins just after its SUB macro (which must not

specify R=N@). -
112

If the second argument is specified, label must appear somewhere
in rtn and rtn must be assembled in the current module. Control is
transferred to label in rtn by the code:

L B, #rtn

B label-rtn(B)

B.7. Control = Flow of Control

IF, THEN, ELSE, ENDIF; AND, @RX, NgT; BCMAC, GfTd

There are three groups of control macros. IF, TEEN, ELSE, and
ENDIF must occur %p that sequence; they avoid many user generated labels,
AND, §RX, and NfT may occur only between IF and THEN. BCMAC and GUT¢
generate branch instruction; the former conditional, the latter
unconditional.

The macros in the first two groups ignore any arguments. Instead
they affect the flow of control to the code between them. The primary
purpose of these macros clarify what code is executed under what
conditions.

The key to the flexibility of the IF-THEN-ELSE is BCMAC and the
concept of predicate macros. A predicate macro calls on BCMAC to
assemble a conditional branch to a label depending on the context.

Predicate macros need not supply branch labels if they occur

between IF and THEN because BCMAC uses labels generated by the preceding

IF. Currently, the predicate macros are AT#M, NULL, EQ, and TESTB.

IF, THEN, ELSE, ENDIF. There are two forms: IF-THEN-ENDIF and

IF-TEEN-EISE-ENDIF. The expression IF-THEN-ELSE will mean-both.

113

The first form may be represented

IF

predicate-part
THEN

true-part
ENDIF

The code generated is

predicate-part
THENx EQU * (if PRX occured in predicate-part)

true-part
ELSEy EQU *
where x andmy are unique four digit numbers, The IF macro generates
the labels THENx and ELSEy and stores them on an assembly-time global
stack. Predicate macros in the predicate-part simply test for the
falsehood of the predicate and branch te the EISEy on top of the stack.
fRX and NfT in the predicate-part modify the action of BCMAC so that
the desired result is accomplished (see the descriptions of those

macros) .

The second form may be represented

IF

predicate-part
THEN

true-part
EISE

false-part
ENDIF

114

The code generated 1is

predicate-part
THENx EQU * appears only if PRX is in predicatepart

true-part

B DONEz

ELSEy EQU *

false-part
DONEz EQU *
where x, y, and z are unique four digit numbers. The label DONEz
is created by the EISE macro and stored atop the label stack.
IF-THEN-ELSE's are permitted to nest (up to 60 levels). That is,
they may appear in either the true-part or the false-part. But

IF-THEN-EISE is not permitted in the predicate-part.

#RX, N@T. The second group of flow of control macros may appear
only in a predicate-part. They control the code generation in

BCMAC.

This macro reverses the sense of any BCMAC occurring
before the next AND, @RX, NOT, or THEN. Two NPT's cancel eadh other.
While Mﬁ is in force, BCMAC makes tests for true and branches to the

ELSEy on top of the label stack.

¢RX (not ¢R because IBM used it). This macro makes tests parallel.

It assembles the code
B THENx

ELSEy EQU *

115

Also it turns off any outstanding N@T, sets an indicator so that
THENx EQU * will appear, and creates an ELSEw (on the IF

label stack) for subsequent false tests to branch to.

AND. The only action by AND is to turn off any outstanding
N#T. But use of AND makes explicit the fact that all sequential
tests must be met before the true-part is executed.
BCMAC TBR=tbr, FBR=fbr, TGf=tgo, FGf=fgo. This macro assembles one
branch conditional instruction. If either T6f or FGf (or both)
is specified, BCMAC assembles a branch to_tgo, fgo or both. The
operator for tgo is Bbr; the opewator for fgo is fbr. h fbr
and tbr are assumed to exist. The code generated 1is
tbr tgo if only tgo exists
fbr fgo if only fgo exists
thr tgo if both tgo and fgo exist
B feo
If neither tgo nor fgo exists, the BCMAC must occur in the predicate-
part of an IF-THEN-ELSE. If N¢T is not in force, the code generated
is
fbr ELSEx
If Nfr is in force, the code generated is
tbr ELSEx
GfTd label. This macro assembles into a branch to label:
B label

116

B.8. Misc - Miscellaneous
CHTBL, SWEAR, INST’-L, GCPUT, FIXUP
CHTBL E{,Ehat,Wherg} Coe (. . . indicates that ', what, where'

may be repeated up to 127 times). This macro is intended for
creating character tables for the translate instruction (TR) and
the translate and test instruction (TRT). As such, loc is assumed
to be the address of a table. CHTBL then fRG's into that table
and puts values at the required places. For example, a TRT to
scan for blanks might be written
BLTBL DC 256X'00°*

§rRG BLTBL + C''

DC Xtolt
This scheme is documentary in that the §RG tells exactly where
something goes, while the DC tells what that something is.
Using CHTBL, the example might be written
BLTBL DC 256X'00°*

CHTBL BLTBL,1,C* '

The name field is ignored in call on CHTEBL.

The loc field may be any expression. It will be assumed to be
the beginning of a table 256 bytes long. The last instruction
generated is an
fRG loct256

That what field may be either a decimal number or an argument for
DC. In the first case, the macro generates DC FL1(what); in
the second case, DC what. The cases are distinguished because
a decimal number must be three or less characters and the general

DC argument must be four or more.

117

The where field may be a (360 assembler) sub-list. Each element

of the sub-list may be either a single character or a non-relocatable

term. The latter must be more than one character. In the first

case the macro generates

PRG loc+C'where'
While the non-relocatable term generates

g#RG loctwhere
The following example illustrates all of the above
HEXTBL DC 256X%00"

CHTBL HEXTBL,4,(A,B),4x*4t,c, 10A11(8),C'0’
will generate
HEXTBL DC 256X'00"

$RG HEXTBI+C'A®

DC FL1'L!

PRG HEXTBIA+C'B'

DC FL1'4?

PRG HEXTBL+C'C!

DC Lhxtht

fRG HEXTBIAC'O'

DC 10AL1(8)

$RG HEXTBL+256

Note that using a sub-list for where can lead to large object

module decks. (Fach f#RG forces a new output card image).

Note also that good documentation requires that each what - where

palr go on a separate continuation card.

118

SWEAR error-code. This macro generates a call on the STUITER internal
routine: SWERROR. The error-code must be two characters. These
characters will be supplied as a character string to the error

routine: ERROR. The code generated is

LH L,*+8 load error-code in REG L
B SWERR@R go to system error routine
DC C'error-code’

Note that SWERRfR is always addressable via register S.

INST4+ op,r,rand. The purpose of this macro is to avoid the overly
cautious assembler's "ALIGNMENT ERROR" message. This is done
by assembling first the OP and Rl fields and then the Bl-p1 field.
The R2 field can not be used with this macro. Two forms are

possible: r present

2 O

PRG *-2

DC S(rand
r omitted

op O

PRG *-2

DC S(rand)

GCPUT type. . This is a special purpose macro for writing the garbage
collector. It is called to place a word in new core. For further

discussion see the routine GCPUT in Appendix E. The code generated

depends on type.

119

type omitted

BAL L,GCPUT

type S T

NR TT, NgTML
BAL, L,GCPUTFUL

type =FULL

BAL. L, GCPUTFUL
If some other type is coded, GCPUT assumes 'type omitted', but generates an

error message.
FIXUP pt,new. This is a special purpose macro for the garbage

collector. It makes an entry in the fixup table. pt and new
must be registér names. Register pt contains the address of a
word in old core which will eventually contain a correct new core
address. new contains a pointer to new core showing where to
put the eventual contents of pt. Register FIXPTR points at the
fixup table; so the code generated is:

ST pt, O(FIXPIR)

ST new,4(FIXPTR)

LA FIXPTR, 8(FIXPTR)

120

Appendix C. READ Routines and Syntax

The READ routines convert a character string on an input medium into
an internel plex structure. The syntax is similar to the ISP 1.5 syntax.
The major innovation is the super-parenthesis. The parser guarantees that
all regular parentheses within a pair of super-parentheses will match.

The syntax is described in section C.1l. A second section describes the

internal routines. (External routines are described in Appendix F.) Section

.3 details the variables in CSSWIM used by the READ routines. Flow charts
of the main READ routines are in the last section. All error codes are

collected in Appendix J.

c.l. The Syntax

Input expressions are punched free-form in the first 71 columns of the
input cards. Column 72 is used for the continuation as described in the
paragraph on (string). Columns 73-80 are ignored. Column 1 of one card
immediately follows column 71 of the preceeding card. Comments may be
included; the characters'_ /' are ignored and terminate scanning of a card.
* A card with under bar - slash-in the first two columns is printed, but
otherwise ignored. Allcharacters must be in the IBM 029 character code.
The BNF of the syntax appears in figure C.1. The highest non-terminal 1is
the s-expression, abbreviated (sexpr). The following paragraphs specify

the semantics of selected syntactic types.

(super list). The less-than and greater-than characters bracket a
(super list). When a greater-than is reached before all subordinate

structures are terminated, parentheses are created as required to

121

Figure qu

(sexpr) ::= (list) | (super list) | {atom}
(list) ::= () | ({sexpr) (list tail)
(list tail) ::= {sexpr)) \.(sexpr)) |

(sexpr) (list tail)

(super list) :t= < > | < (sexpr) (super list tail)
(super list tail) ::= (sexpr)> | . (sexpr) > |

(sexpr) (super list tail)
(atom) ::= (symbol) | (string)

(symbol) ::= (1etter)| (symbol) (alpha-num)l

@ {char) | (symbol) @ {char)

(string) ::= {(num string) | - {num string) |
Z ' (char string) ' | X' (hex string) '

W' (bit string)'

(mm string) ::= {num) | foum string) (num)

(mum) ::= o|1]2|3]4|5]|6]7|8|9

(char string) ::= (char) |"| (char string) (char)|

(char string) (char) "

(hex string) ::= (hex digit) | (hex string) (hex digit)
(hex digit) ::= (blank) | {mum) | (hex letter)

(hex letter) ::= A|B|c|D|E|F

(bit string) ::= 0|10 (bitstring) | 1 (bit string)
(blank) f{bitstring) | (bitstring) (blank)

122

(other letters) ::= G|H|I|J|k|z|M|v|o|P|Q|R|S|T|U|VIW|X|Y|2Z
(letter) ::= (hex letter) | (other letters)

(alpha-nun) ::= (hex digit) | (other letters)

(char) ::= A(alpha—mm)|.|(|)|>‘<|@|-|+‘l\$|;|
N AR N I b B O I R [SPe
& | _

123

close all structures. When all internal structures are closed and
an extra right parentiesis is encountered -- where a greater-than is
expected -- characters are discarded until the matching greater-than
is found, As will be seen from the flow chart, whole structures are
discarded, so that the matching greater-than is found rather than
just the next greater-than, (For example, '<)A<ACO>()>' is parsed as

'NIL').

(1ist tail). Note that a degenerate form of the {1ist) is the LIsP 1.5

dotted pair, This syntax reflects the "general s-expression" form as

supported by most LISP read routines,

(aymbol) . This is parsed into a type 0 atom, If a type 0 atom with the

same string exists on the OBLIST, a pointer to that existing atom is
returned; otherwise, a new atom is created, Note that '8' preceding
any character causes that character to be treated as a letter, Only
one character, the seoond, is stored in the ereated print name, For
example, the (sexpr) @ returns a pointer to the symbol atom with the

one character print name '@'., This atom already exists,

{string). Arbitrary string atoms may be input,, Both (hex string)'s and

{bit string)'s are converted into hex string type string atems intern-
ally, Numbers are currently always four bytes, but the other twe
classes may be up to 21591 bytes. Hex strings are filled with zeroces
from the right to make an integral number of' bytes. Floating point
numbers are not defined so there is no dot ambiguity problem; however,

this problem could be solved with F'ees 'u

124

Any string within quotation marks may be continued from one
card to the next. Column one of the second card immediately follows
column 71 of the preceding card. In this case, column 72 must contain
a dash ('-'). Otherwise, column 72 must be blank. This convention
was adopted from CBSL in order to attack the quote mismatch recovery
problem. This problem occurs if there is a missing or extra quote
mark. Thereafter, everything which looks like it should be in quotes 1is
outside and vice-versa. There is sufficient redundancy in the Stutter
syntax for recovery at some later point. Because there was insufficient
experience with thelanguage to have a feeling for reasonable recovery
heuristics, the mismatched quote problem was not attacked other than to

specify what should be an adequate syntax.

(blank) . The general rule is that blanks may appear where they do no
harm. They are only required to separate the strings representing
symbol atoms. Blanks may appear between any two elements of the (list),
(list tail), (super list), and (super list tail). More than one
blank will be treated as a single blank except inside a (char string).
Blanks may also appear within the quotes for (hex string) and (bit
string) .

(char).: In flow charts, two special characters are used: '' represents

a single blank; 'm' represents underbar.

125

C.2. Internal Routines

The routines described in this section are service routines available
only within the read package. The routines available through the stutter
interpreter are described in Appendix F., The entire CSREAD control section
is reentrant. All temporary storage is in CSSWYM.

All read routines make use of three global bytes: RDSTAT, RDCHAR, and
RDCLASS . These are described in Section C.3.

The get-a-character routine, GETCH, puts a single character into
" RDCHAR and puts the class of that character into RDCLASS. The class of a
character is a number chosen to simplify distinctions like "Is this
character possibly the first character of an atom?" The classes and their
members are in figure C.2. RDCHAR can be set and tested by a STUTTER
program with the functions STIVCCH and IVCCH. This can be important
because the general rule is that the read routines interpret the
character in RDCHAR and then read another character for the next routine
to interpret.

The RDSTAT byte is composed of eight status bits. They are used to
communicate between the various routines. One of these bits may be manip-
ulated by a stutter program as an internal variable (STIVQMO, IVQM0). The
defined bits are described in figure C.3.

The symbol NOCARDS also bears explanation. It is the address branched
to when the input file is exhausted. The routine there provides for
orderly termination of the job.

The remainder of this section is a discussion of each of the internal

read routines:

126

class

12
16
20
24
28
32
36
Lo

members

0,1
2,3,4,5,6,7
8,9

A,B,C,D,E,F

),>

all other keypunch characters

Figqure C.2

dot

comments

TP

—Jalphanumeric

atom start

list start

list terminator

1 bit string

octal string

number

—J hex string

All non-keypunch characters are in class 255. They cause an error and

are converted to blank before being processed.

127

Figqure C.3

seton setoff

QUOMON QUOMOFF on:
off:

NEGNON NEGNOFF on:

GJFND GJINFND on:

SKIPMON SKIPMOFF on:

interpretation
GETCH passes each character in
turn. '-' must appear in column
T2.
if last char was blank., GETCH scans
for non-blank. Column 72 must be
blank. '_ /' in two columns means
ignore those characters and the
rest of the card,
detected ={mm string) construct
(used in RDAT)
GETOBJ found the symbol atom
already on the OBLIST, RDAT
releases any new storage
allocated,
skipping to find right super-
paren., Used by RDSE when skipp-
ing to avoid recursive RO error

messages.

A bit is set on with the instruction

01 RDSTAT, seton

The same bit is set off with the instruction

NI RDSTAT,setoff

128

error routines

RDERR, RDERRCNT
character fetching

GETCH
string construction

PBOPEN, PUTBYTE, PBCLOSE
recursive parser

RDSE, RDLIST, RDAT

RDERR. This routine prints a two byte error code. The code must be

in the right half of register Al on entry. RDERR also prints a pointer

indicating the last character scanned.

RDERRCNT. This routine prints a read error message by using RDERR.

RDERRCNT's second argument is a number in A2. This number is printed

at the far right of the RDERR message.

GETCH. This routine GETs one character from the current input card

and puts it in RDCHAR; its class is put in RDCLASS. GETCH reads a
new card when required and maintains two pointers - one to the current
character, the other to the end of the card. Initially, both pointers
are zero to force the reading of the first card. GEICH converts
strings of blanks to a single blank by ignoring blanks if RDCHAR (the
last character read) is blank. Illegal characters (not on keypunch)
are converted to blanks. When quote mode (QUOMO) is on, all blanks
are sent to the calling routine. The '_/' terminates scanning of a
card unless QUOMO is on, 1in which case both characters are passed to

successive GETCHes.

129

PBOPEN, PUTBYTE, PBCIOSE. While RDAT is scanning a character string, no

RDSE.

TAK2's are performed. The character string for the atom name is
constructed directly on top of free storage. PUIBYIE takes one
character from register Al and stores it in the next position in the
new string. PBOPEN initializes the process. Its argument is a full
work in Al which is stored at the beginning of the string as its atom
head. PBCIDSE terminates the process and stores the length of the
string into the atom head. PBCIDSE returns a pointer to the new
string atom. PUTBYTE must provide for exhaustion of free storage.
When this occurs, the temporary string is converted to a bona fide
string atom and a pointer to it is put on the stack. The garbage
collector is called. On return, the temporary string is copied to
the top of free-storage and PUIBYIE'ing continues. PBOPEN saves the
address of the atom head in PBHD, If a type 0 atom is being created
and GETOBJ finds an old instance of an atom with the given print

name, storage allocated for the new print name is recovered. The

free storage pointer is simply reset from PBHD.

This routine has no arguments. It scans the input string for
an s-expression and returns a pointer to that expression. RDCHAR is
assumed to contain a legal character for the start of an s-expression,
otherwise characters are skipped (and an error message 1s printed)
until a legal character is found. RDSE checks to see if the string is
an atom, a list, or a super list. In the first case it calls RDAT to
read the atom. In the other two cases, it calls RDLIST to read the
list. RDSE has the function of destroying structures if a right super
paren is not found. It also prints the error message indicating how

many parentheses were created. No parentheses are actually created;

130

the number is simply a count incremented as RDLIST exits each level of
recursion for a missing right parenthesis. Normally, this count will
be 1. That is, RDLIST did not find one right parenthesis before a
right super-paren.
RDLIST. This routine has no arguments. It scans the input string and

takes one list off the front. On entry, RDCHAR must contain either

" 1(* or '<'., RDLIST calls RDSE to read each element of the list.

RSLIST terminates when it finds either) or > The former it changes
to blank so no other routine reads it. The latter it leaves in RDCHAR
so the next higher level can process it. In the latter case, a count
is incremented' indicating that one parenthesis was created. While
creating the structure for a list, RDLIST maintains two pointers, one
to the beginning of the list, the other to the end of the list. After
each element is parsed, a dotted pair is created of that element and

NIL. Then a RST pointer to that new pair is stored in place of the

NIL at the current end of the list. In this limited context, the
operation RPLR (not a macro) works because a RST pointer always exists
to be replaced.

RDAT. This routine scans the input string and takes the characters
for one atom off the front of the string. It returns a pointer to

- that atom. The atom may be either a (symbol) or one of the (string)

types as indicated in the syntax. A numeric character or dash in
RDCHAR at the start of RDAT causes a branch to RANSCN. This routine
scans a number and creates a number atom. Currently, the number must
fit in eight digits because that is the size of the internal buffer

used. An alphabetic character may be the start of either a symbol or

151

some quoted string. The latter is distinguished by the quote following
the alphabetic character. Quoted strings are scanned by RABITS which
in turn passes control to RABX, RABW, or RABZ for hexadecimal, bit, and
character strings respectively. After a string atom is created for the
print name of a symbol atom, GETOBJ is called. GETOBJ either finds the
old atom with the same print name, or makes a new symbol atom using

the new character string atomasthe print name. In the former case,

storage for the new string atom is recovered.

Ce3. CSSWYM Fields Used by READ Routines

RDCOL, RDEND, RDLNG. These fields control the scanning of the card by
GETCH. RDCOL contains the address of the last character read, the
character now in RDCHAR. RDEND points at the last character to be
read from the card. RDLNG contains the number of characters to be
read from a card. Normally, RDING is 71 because the continuation
character is in column 72.

RDCHAR, RDCLASS. These one byte fields contain respectively the most
recent input character and its class. The class of a character is
illustrated in figure C.2.

_RDSTAT. This byte contains bits representing the state of the read
routines. These bits are detailed in figure C.3.

RDERMS, RDERNO, RDERILOC, RDERCT. These fields form the line printed
for READ errors generated by RDERR and RDERRCNT. RDERMS is the
address of the string passed to PUTSTR. RDERNO is the error number
(the argument to RDERR). RDERIOC is the field beneath the card image
and is set up with a single pointer ('<') to the last character
scanned (character in RDCHAR). RDERCNT is used by RDERRCNT to store

the number of parentheses created for error R2.

132

RDSUPCTR. This field accumulates the number of parentheses created

%

before a right super-parenthesis. It is incremented each time RDSE
exits due to finding a ™' instead of a ')' at the end of a list.
When recursion returns to a level of RDSE looking for '™', RDSUPCTR
contains one more than the number of parenthesescreated. RDSUPCTR
is zeroed both before and after reading a list bounded by super-

parenthesis.

ATAMT. This half-word contains the atom offset. Atom pointers

PBHD.

point [the quantity in Aﬂmmﬁbwms in front of the atom they
reference.

While PUTBYTE is being used to create a character string
atom on top of.free storage, register F points at the location to
store the next byte. PBHD contains the contents of F before PBOPEN

was called. PBHD - ATAMT will be the address of the created

character string atom.

133

Vs

C.4, Flow Charts

Flow charts are included in this section as the most concise means of
describing the parsing algorithm in complete detail. The parser is similar
to the parsers compiled by Cogent. The syntax is designed so there is
never any ambiguity in the string. That is, from the current location in
the program and the next incoming character, it 1s always possible to decide
the type of the forthcoming input construct. Then the appropriate routine

is called to handle the indicated type.

RDERRCNT
('R2}RDSUPCTR)

RETURN

134

Yes

no

Yes

end
of card

incr char

ptr.

followed
by slash

find class
of mnext

char
1

set up ptrs
to card

make char
blank

RDCHAR <« next

print card

155

created « O

save Vi

to return

U
alue i

parens
created

>l

-~ .t

v

parens

created « 0

{return value\

of RDLISTJ

RDERR
(*Rct)

no /,////i\\\\\\ no Yes] add 1 to
-) .

RDCHAR
= (< or atom no. parens
created
-t

RETURN NIL

current-list
~(value of

place value of RDS
as last element of
current list

E

Yes

Yes

RPOHR « ' |

store value of RDSE
as final RST of
current list

is next
non-blank

) or >

157

no

RDCHAR
= >

Yes

[S
add 1 to
no. parens

created

set negative
switch

138

GETOBJ

.

Yes

return
allocated
storage

RETURN atom

put digit
in buffer

pack
BUFFER

put in
minus sign

negative
switch

put in
lus sign

g

RDERR _ \ ,

=y

convert buffer

to binary and

store in new
block

store atom
head for
number atom

RETURN ptr.
to atom

139

RESET
PUTBYTE
TOHAR

pointer

Yes Yes
ALY no

convert to
hex digit

convert to
hex digit

in 0..49)
A...F

« RDERR
(*r8")
make one g
character PUTBYTE

Yes put into
atom byte

‘from type

blank out RABAPOT Yes gzz:
quote

[
&=

=

140

]

!
)

Purayy

RABDUN

AN

RDCHAR
= quot

G=
=D
G

RDCHAR

(_" s !

CLOSE
PUTBYTE

Return new
atom.

(30

141

Appendix D. EVAL and the Stutter Interpreter

To facilitate experimentation with Swym, an interpreter for the eval-
uation of functions was provided. These functions are written in a language
called Stutter, similar to LISP 1.5, but without PROG.

The interpreter is essentially the routine MAIN. When Swym is loaded

for a Stutter run, MAIN is given control. MAIN can be described by:

main () = begin
A: print (eval (read()));
terpri ();
- goto A

end
(But note that Stutter does not currently have_goto or assignment state-
ments.) Thus, the interpreter repeatedly reads an expression, evaluates it,
and prints the value. MAIN as implemented in assembly language also prints
numbers between reading the expression and printing the value. The first is
the time to read the expression, the second is the time to evaluate that
expression. Both times are hundredths of a second. READ is described in
Appendix C. PRINT and TERPRI are described in Appendix F. EVAL is described
below. The routine ERROR exits to the loop in MAIN, so that interpretation
can continue with the next expression. Succeeding sections of this appendix
describe Stutter function definition, Stutter variable binding, and the

individual internal interpreter routines.

D.1 Defining Functions to the Interpreter

There are four varieties of functions in Stutter, just as in LISP 1.5:

SUBR, FSUBR, EXPR, FEXPR. -SUBR's are machine language routines, executed

142

by the machine. EXPR's are s-expressions executed interpretively by EVAL.
The arguments for SUBR's and EXFR's are EVALuated before the function is
called. FSURR's and FEXPR's are the same as SUBR's and EXPR's, except their
argﬁments are not EVALuated. Instead, “a list of the unevaluated arguments 1is
passed as the single argument to an FSUBR or an FEXPR.

Functions are stored on the property lists of symbol atoms. The indi-
catorused is the type of function. The value is either a pointer to a
piece of code (SUBR's and FSUBR's) or a pointer at an s-expression (EXPR's
and FEXPR's). These values can be stored, referenced, or modified using
PUTPROP, GET, and REMPROP. To save property list searching time and storage
space, a function definition for a symbol atom is stored in that atom's value
cell. See the discussion of BINDERY in section D.3.

The format for an EXPR or FEXPR s-expression is different than that for
Lisp 1.5 The expression should be a list of the form,

(1 exp; exp, exps ceseeXp .\‘at)

—

where:
vl is a list of yvariables. These are bound to the arguments of the
function as discussed in the next section.

exp . is an expression

each exP; is evaluated until the atom at at the end is reached.
Normally n is 1 and at isNIL so that a function definition looks like
(vl éxpirresponding to the LISP 1.5: (LAMBDA vi exp)l

at this is the atom at the end of the list of expressions. If at

is NIL, the value of exp, is returned. Otherwise, the EVAL value of

at is returned.

143

mo problems with a common solution exist in Stutter and in many
implementations of LISP. First, a pointer at a piece of code -- the value
of a SUBR property -- is not distinguished from a pointer at an s-expression.
This leads to either errors or special handling in routines that accept
arbitrary list structure as input, eg. PRINT. The second problem is the
impossibility of compiling a function stored under a special indicator.
Suppose the atoms of some class have, as one property, the indicator PROCESS
whose value is a functions If the value is an s-expression, this code

applies the appropriate-function to one such atom,

——. ((cer X (QUOTE PRGCESS)) X)

This works because EVAL assumes that the FST will EVALuate to a function.

But the only way code can be executed is to be stored under the indicator
SUBR or FSUBR. The solution to both these problems is to create a third
atom type: the code atom. Such an atom would indicate the location of the
code and its length. It might contain garbage collection information such as
relocatability and a list of pointers referenced by the routine. The atom

might also contain information about whether the arguments should be evaluated.

" D.2 Stutter Variable Binding

" Two kinds of variable binding are used in Stutter. SUBR's and FSUBR's
receive their arguments in registers Al, A2, . . . A6. Thus no SUBR may have
more than six arguments. (FSUBR's always have exactly one argument.)
Assembled routines may generally use the registers and the stack as temp-
orary storage, as long as they obey the restrictions of Appendices I and A.2.

The value of a SUBR or FSUERR is returned in Al.

14

EXFR's and FEXPR's are lists whose first element must be a list of symbol
atoms (called yl, variable list, above). There must be exactly as many
atoms in the list as arguments in the function call. The arguments of the
function are stored in the value cells of the listed symbol atoms. The
previous contents of the value cells are stored in a stack-block type 1 as
described in Appendix A.2. When EVAL is called with a single symbol atom

as its argument, the value returned is the value in that symbol's value cell.
Thus, sub-expressions are EVALuated using the appropriate values for symbol
atoms.

Using the value cell mechanism there is no simple method of establish-
ing any particula{menvironment that existed at some higher level (for example,
that existed'whenafunction was passed as an argument). That would be
dynamic variable binding. Stutter variable bindings are static; that is,
every variable has its most recent binding time-wise, regardless of when a
function was passed as an arqument. This affects free variables of passed

functions and their sub-functions.

Six routines are basic to the Stutter interpreter: MAIN, EVAL, EVLIS,
EVGET, BINDERY, UNBIND. They are all assembly language routines. With the

exception of EVAL, they are not available to the Stutter programmer.

MAIN<

This routine is the central loop of the interpreter. It was described

above.

145

EVAL.

This routine has one argument, an s-expression. The expression is
evaluated in terms of the current environment (bindings of variables). A

complete description of the action of EVAL is in figure D.1. EVAL, like all

Stutter functions, returns its value in register Al. In D.1, synbolp(a)

is a predicate true when & is a symbol atom. The other functions are

described further on in this appendix. WNBND points at a special atom. It

is the contents of the value cell of any unbound atom (if there is no function
definition in the value cell.) EVAL signals an error when an unbound atom 1is
EVALuated. EVAL shou}‘d also test for the value cell containing a function
definition and signal the same error. Currently, though, this latter test is
not made. EVAL handles correctly the evaluation of an atom whose value is non-
relocatable, i.e., a number. The value is converted into a numeric type 1 atom.
This makes possible communication between the interpreter and fast arithmetic

functions using the value cell simply to hold a number.

When the fst of EVAL's argument is non-atomic and evaluates to a non-
a_tomic expression, that expression is treated as though it were an FEXPR.
That is, its arguments are not evaluated. However, the variable list for that
expression must have as many atoms as EVAL's argument has rst's because of
the way the call on BINDERY is reached. This permits the expression to have
some control over the evaluation of its arguments. The most serious problem

is the inconsistency of this feature with the rest of the language.
EVLIS.

This routine has one argument, a list of s-expressions. Its value is

146

a list of the EVAL values of those s-expressions. EVLIS simply applies EVAL
to each member of its argument list and creates a list of the values. The
length of the list is computed and a eampact list of tpet length is allocated.

Successive values are stored in that list.

It is now realized that using free storage to return the value of EVLIS
is just as flagrantly wasteful of space as an a-list would have been. The
appropriate correction is to have EVLIS place values on the stack. They would
then be taken off the stack by BINDERY. Since BINDERY must put information
on the stack, the best solution is the combination of EVLIS and BINDERY into
a single function.-This function would create a BINDERY type stack block and

store the new values of the atoms in it. When all arguments were EVAluated,

the values would be swapped between the stack and the value cells of the atoms.

Note that the call of EVLIS at the label EVSUBR in EVAL must be replaced with
code, probably in-line, that stores new values in the stack and then places

them in the registers.

EVGET.

This function gets the function definition of a symbol atom from that
atom's value cell or property list. This is a non-standard function in that
its-argument is passed on the stack. The value is returned in Al. EVGET also

stores the previous contents of Al on the stack to avoid repeating that store

in several places in EVAL. EVGET first checks the CELVAL bit in the atom head.

If that bit is off, the contents of the value cell are the function definition

for the atom. If CELVAL is on, EVGET finds out (by indexing VFPROPS with the

CELFNC bits) the type of function definition: SUBR, FSUBR, EXPR, or FEXFR.

147

TS

GET is called to find the function definition on the property list.
BINDERY.

This function has two arguments; a list of values, and a list of symbol
atoms. The result is to store each value in the value cell of the corres-
ponding atom. When EVAL subsequently evaluates one of these atoms, it
retrieves the new value. The old values of the atoms are stored in a plex
on the stack (stack plex type 1 -- ses Appendix A.2). This stack plex must
later be popped off the stack by a call on UNBIND.

Information is left on the stack after BINDERY exits. This leads to the
stringent requirement that BINDERY may not itself use temporary storage on
the stack, nor may the calling' routine. BINDERY does all its computation in
the general registers. When EVAL calls BINDERY, a pointer to EVAL's argu-
ment 1s in register A3. BINDERY must not affect this register.

Because BINDERY cannot call functions, it cannot bind a symbol atom having
a function definition in the value cell. The function definition would have to
be put on the property list, which would require storage allocation and
possibly garbage collection. Consequently, BINDERY causes error BI when a
yalue cell contains a function definition. The simplest solution to this
problem is to not store function definitions in the value cell. This would
increase property list searching time, but would save a great deal of messy
bit pushing. A second solution would be to always store function definitions
on the property list and to store them in the value cell until the atom is

bound to some value.
UNBIND.

This function pops off the stack a plex stored on the stack by BINDERY.

148

Note that UNBIND must be called when the BINDERY plex is at the top of
the stack, or disaster will occur. UNBIND may not use any storage on the

stack, nor may it affect register Al.

Figure D.1

eval (a) = begin list x, y;

Af atom (a) then
if symbolp (a) then
if cell (a) = VUNBND then error (El)
else return (cell (a))
else retq;n (a)
else if - atom (fst (a)) then begin
x: = eval (fst (a));

if - atom (x) then begin

comment assume x is s-expression for an FEXPR w/ multiple arguments;
y: = rst (a); goto EVENBD;
end

end else x: = fst (a);
x := get (x, { SUBR, FSUBR, EXPR, or FEXPR depending on bits in atom head]);

goto {EVSUBR, EVFSUBR, EVEXPR, or EVFEXPR depending on bits in atom head];

EVSUBR: y : = evlis (rst (a));
{place elements of y into registers Al to A6};
return ({execute routine pointed at by x});
EVFSUER: {put rst (a) into register Al};
return ([execute routine pointed at by x});

EVEXPR: y := evlis (rst (a));

149

EVENND: bindery (y, fst (x)); x := rst (x);

EVELP: if atom (x) then begin

% = eval(x); unbind (); return (x)

end;

fst (x) ; x := rst (x);

Y :=
if null (x) then begin

X = eval (y); unbind(); return (x)
end;
eval(y);
got(O EVELP;
EVFEXFR: bindery(list (rst (a)), fst (x));
x 1= rst (x);
got(0 EVELP

end eval

150

Appendix E. Swym Garbage Collector

One of the important goals of Swym was the development of a list compact-
ing garbage collector. This appendix explains that collector in great detail.
Section III.2 contains a simple version of the collector explaining the basic
concept. The first section of this Appendix describes the heart of the collector
in a higher level language. The second section describes the internal garbage
collector routines (i.e., those not available to the STUTTER program). The

last section describes those portions. of CSSWYM used by the garbage collector.

151

E.1. The Complete Garbage Collector Algorithm

The simple garbage collector in III.2 is inadequate for mu& comon list
structures: circular lists, several lists with the same rst, a structure which
is an element of more than one list, and-more pathological cases., The
implemented garbage collector handles all possible cases with marking bits and
a fixup table.

Two marking bits are associated with each list word, Eachpasssetsa
marking bit to indicate it has visited a given word. The first pass sets
bit ml, the second sets me. Special action must be taken when a marked word
is encountered, because that word is already being processed at some other level
of recursion. A word with m2 set always contains the address of the corres-
ponding word in the new core image.

Several functions set and test the marking bits:

MARK1 (w) The word pointed at by ¥ is marked with ml.
+ MARKI2 (w) The word pointed at by w is marked with both
ml and m2.

UNMARKL (w) ml is turned off in the word pointed at by w.

ML (w) This predicate is true if ml is on in the word
pointed at by w.

M2 (3) This predicate is true if m2 is on in the word

pointed at by w.

Conceptually, each of these functions tests its argument to see if it points
at an atom and adjusts the addressing appropriately. 1In practice it is known
a priori whether the argument is an atom, and a bit macro (see B.5) is coded

instead of a function call.

152

In circular structures, a word points at some structure already being
collected at some higher level of recursion (ml is set, but not m). That
word cannot be written correctly to the new core image because its contents
are not determined. In most reasonable applications, the number of such
circularities is well below one percent of the number of pointers. Nonethe-
less, some provision must be made to handle this case; in Swym, the garbage
collector uses a fixup table. When the correct new contents of a word cannot
be determined, a word of zeros is written to the new core and an entry is made
in the fixup table. Each entry is two pointers. The first points at the word
of zeros in the new core; the second points at the word in old core which will
eventually contain the correct address to substitute for the word of zeros.
After COLLECT is finished, the second pointer of each fixup entry is replaced
by the contents of the word it points at. Then, after the new core image has
been read in, the fixups are applied; i.e., the second word of the entry is
'or'ed into the location indicated by the first word of the entry. (The 'or'ing
permits the word of zeros to have the rst bit on if required. The fixwp procedure
thus works for both_fst and rst fixups.)

One additional function must be defined to describe the complete garbage

collector (others are defined in 111.2):

FIXUP (p, ¢) The word ¢ (either zero or_rstbit) is GCPUT to the
new core. An entry is made in the fixup table consisting

of the address returned by GCPUT and the pointer p.

153

The function ATCOL defined in section III.2 must be extended. When ATCOL
is entered, the ml is set in the plexhead. After collecting the atom, both
marking bits are set. Since COLLECT may be called for some sub-structure of
an atom, provision is made for a pointer at an atom with ml and not m2 (a
fixup entry is generated).

The complete garbage collector is given in Figure E.l. The argument x
must be a pointer at list structure with neither marking bit on. COLLECT
has no value, but the new-core address of the list corresponding to x is
stored in place of the pointer to fst(x). A demonstration that this algorithm
creates a correct representation of its argument is given in Appendix L. The

UNMARKL(r) and the boolean variable m are related. The former indicates the

need for a fixup in fhe rst direction; the latter detects this need in the
second pass. In Figure E.l, .the marking bits are assumed to be associated
with each word, but not part of the word. This association could be by extra
bits in the hardware or by a bit table in a separate area of memory. The
former requires hardware modification, while the latter requires six percent
more memory. In the implemented system, the marking bits are in the list words
themselves, as shown in Figure 2. Figure E.l must be modified for these bit
assignments by turning off the marking bits in the arguments to GCPUT and
replacing

t := rst(r)
with

if Mi(r+h) then t := r+k else t := rst(r).

Figure E.2 illustrates effect of COLLECT on a complex structure.

154

Figure E.l
Swym Garbage Collection Algorithm

COLLECT (x) = begin list r, t; Boolean m;

rstbit := x'00000001';

r =

>

5
chkloop: comment loop to collect each fst;

t := fs

o

(r); .MARKL (r);

if atom (t) then ATCOL (t) else if-Ml (t) then COLLECT (t);
-comment test for end of list or reached marked word;

t = st (r);

if atom (t) then ATCOL (t)

else 1f M2 (t) then

else if Ml (t)_then UNMARKL (r)

else begin r := t; goto chkloop end;

r := Xj
wrloop: comment loop to write out each new fsf;

m =Ml (r); t := fst (r);

rplf (r, if atom (t) then

if M2 (t) then GCPUT (HD (t)) _else FIXUP (t, 0)
else if M2 (t) then GCPUT (fst (t)) else FIXUP (t, 0));
I MARK12 (r);

comment test for end of second pass;

t o= 1xst (r);

:1;f' atom (t) then

if ¥ (t) then GCPUT (HD (t) v rstbit)

else FIXUP (t, rstbit)

(t) v rstbit)

else if M2 (t) then GCPUT (fst
H

else if m_then begin r := t; goto wrloop end

PAGE 155

Figure E.1 Continued

else FIXUP (t, rstbit)

emll lect

156

At wrloop on the highest level:

0ld Memory

Figure E.2

Fixup Table

New Memory

‘el

£\ .
[4
Ay
-9
./
‘\ //
7
\,\ _\ //
-~ -
/
®

157

1}2|\‘®

At exit from COLLECT:

Figure E.2 (Con't)

Old _Memory
X:
— 1?2172 ® 192
{ \ 51T
| N e o |
\ “\ |
Fixup Table -Q R : : 195
l | b
| |
{
_+-e o—] I '
(CL)
. ® (]
I * | i" |
' \ | |
\ Ne——— i : : |
0T Ty N i | I
I s _—l'——T_I—‘l—/
New Memory | [/ ! | ‘ l
'R ¥ ¢ }
A
o
k o@ U ? ew
Final structure after-reading new core jmaqe and annlvina fivune.
structure: —
N \
e | ¢ |
@ new , | ? ew

{
_

158

E.2 Garbage Collector Internal Routines

The interface between all other routines and the garbage collector
is the routine CC. It receives control when TAK2 or some other routine
detects insufficient memory, or it may be called explicitly from a
Stutter program. GC controls the garbage collection process and prints
statistics. CC, ATCOL, COLX, and COLLECT are called with the standard
CAL macro. CHOKE, GCABEND, and GCPUT are routines with special calling
sequences.

Routines written to garbage collect newly created atom types must
be made part of the routine ATCOL. The description of that routine
includes information on inserting new atom collection routines. But

all the information in section E.3 should be understood before coding

special atom collection routines.

Ge This is the executive portion of the garbage collector.
Its major functions are outlined in F}gure E.3. Pointers at
OBLIST, CHAROBS, NIL, FPROPS, and *UNBOUND* are put on the
stack so the corresponding information will be garbage collected.
Since the OBLIST points at all symbol atoms, both they and their
property lists will be collected.

The current implementation does not use temporary storage
- for garbage collection; instead, the data structures are moved
between two areas of memeory. The 'switch memories' action in
Figure E.3 1is merely the swapping of pointers so GCPUT will store
the new structures into the currently non-active free-storage area.
In an implementation using temporary storage, the temporary data
set would have to be initialized. Similarly, the step 'apply
fixups' would have to be preceded by 'read in new core image'.

159

Figure E.3

Note
Time

Etack FPROPS,
BLIST, NIL,
CHAR@BS,
'UNBpUND '

4 Switch
!I ‘e

Call
CALLECT
for each
pointer
on stack

Apply
Fixups

\

Unstack
FPRPPS, PBLIST,
CHAR$BS, NIL,
'UNB}DUND t

v

Print
Statistics

|
‘ Return)

160

The following statistics are printed, all on a single line:
length of active pdl (stack)
number of bytes of active free storage
time at start of garbage collection (100 ths/sec)
time at end of garbage collection (100 ths/sec) (times are
since last starting the READ in the MAIN loop)

total time for garbage collection (100 ths/sec)

C@LLECT. This routine has been described in detail in section E.Ll.
The argument (in Al) to CPLLECT is a pointer at an unmarked list.
CPLLECT has no result, but the fst of the argument points at the

representation of that list in the new core.

ATC@L. This routine garbage collects one atom and writes a rep-
resentation of that atom to the new core image. The argument
(in Al) must be a pointer at an unmarked atom. The result is that
the head of the atom is replaced by the new-core address of that
atom. The main routine of AICfL simply abstracts the type field
from the atom head and branches to the appropriate routine for that
atom type. Currently, there are routines for symbol atoms and
bit string atoms. Adding a new routine is done by putting the
address of the routine into the branch table (ATCBTBL). If more
- than eight atom types are implemented, the table can be extended
by increasing the number of bits masked from the type field. The
individual processing routines should branch to ATCXIT after completely
collecting the atom. The individual routines are responsible for

replacing the atom head with the new core address of the atom.

161

ATCO. This is the part of ATCSL for collecting symbol (type 0)
atoms. For such atoms, the atom head and the atom cell must
immediately precede the property list. To achieve this, the routine
processes the property list with a loop similar to the first loop
in collect. Thus all pointers in the property list are marked
with ml and all elements of the list are collected. Then ATCO
collects the contents of the atom cell (if they are relocatable).
Finally, ATCO writes the atom head and the new atom cell to the new
core; then it transfers to the WRL@SP portion of CPLLECT to finish

writing out the property list.

CPIX. The-argument to CPLIECT must not be marked and must not
be an atom. The argument to CfIX may be marked or unmarked, atomic
or not, But if marked, the structure must have both bits on. If
its argument is unmarked, CPIX calls CPLLECT or ATCfL as required.
The result of CfIX is a pointer at the new core representation of
CfIX's argument. CfIX's can be used by atom collection routines
if it is certain that its arqument will never satisfy

(m1(A) A = m2(8)) .

CHPKE . If, following a garbage collection, insufficient free
storage is available, then this routine should be entered. It is
in the CSSWYM control section and can be entered simply with

B CHOKE
or
BC nn,CHOKE

CHOKE simply ABEND's with the user completion code 20.

162

GCABEND. If the garbage collector detects an error in the data
structure construction, it ABEND's immediately to avoid propagating
errors. A call on GCABEND is

BAL L, GCABEND
This routine constructs a completion code based on the displacement
of the BAL from the beginning of the current routine. The contents
of register 1 are stored in register L, and the ABEND is issued.
The current completion codes and their significance are listed in

Appendix J.

GCPUT. This routine is called by the GCPUT macro (section B.8).
It is called by that macro with either
BAL L,GCPUT
or
BAL L,GCPUTFUL.
This routine must be changed if SWYM is to use temporary storage

during garbage collection.(Note: The comments about M2 in the next
section).

ATC1. This portion of ATCAL collects bit string atoms. Since
such atoms contain no relocatable information, AICl simply writes
a new atom head and copies the string into the new core. The
subtypes of type 1 atoms are designed so that the garbage collector
" need not distinguish among them. The length field always indicates
a length in bytes and the garbage collector always transfers the

integral number of words necessary to transfer all the bytes.

163

E.3 Information stored in CSSWYM

MEMUSE, MEMNXT. These two words contain the addresses of the two

memories used alternately as free storage. On entry to CC, the
two fields are swapped and the new contents of MEMUSE are the

initial destination for words stored by GCPUT.

MEMSIZ. This word contains the number to be added to MEMUSE to

compute the new FEND.

FEND. This word contains the address of the next to last word to
be stored into by TAK2. TWhen this word or the succeeding word is stored,
TAK2 calls GE. FEND is also used by PB@PEN, PUTBYTE, and STAKN to

check for the end of the free storage areea.

GCTIME. GC saves the TTIME time on entry and uses it to compute
the total garbage collection time before exitting. This total is

printed in the garbage collector statistics line.

GCABAD. This word is used by GCABEND to create a completion code
for ABEND. Because the high order bit is on, ABEND calls for a

dump.

aome, This word is used by GCPUT to put the M1 and M2 bits on
the address word it returns. #MM2 must be in CSSWYM because B

may have different values when GCPUT is called.

164

Appendix F. Stutter Functions

This appendix details all functions available to the Stutter
programmer. They are represented in initial free storage by atoms
with the property SUBR or FSUBR. For each routine there is a description
of the inputs, the value of the function, and the internal code involved.
Three routines are described in more detail in separate appendices: GC,
EVAL, and READ.

Internally, a Stutter function cannot be distinguished from a
Swym system function. Specifically, all Stutter functions can be called
internally with the standard CAL macro. The name of the function is
the same to the CAL macro as to the Stutter program. (Note that a few
functions - like RST and FST - are also available as macros. Although

they can be called with CAL, it is clearer and faster to use the macro

form.) Arguments to these functions are passed in registers Al, A2, ... A6.

The value is returned in register Al. Any excess arguments are ignored;
they may or may not remain after execution of the function.
The routines are organized in five groups: basic, input, output,

Stutter and utility. This index tells where to find each routine:

Routine Group Type # of Args. Control Section
ATOM basic SUBR 1 CSSUBS

BELL utility SUBR 1 Cs2250

COND Stutter FSUBR CSEVAL

EJECT output SUBR 0 CSPRINT

EQ basic _SUBR 2 CSSUBS

165

Routine Group Type $ of Args. Control Section
ERROR utility SUBR 1 CSSUBS
EVAL Stutter SUBR 1 CSEVAL
EXPLODE obutput SUBR 1 CSEVAL
FST basic SUBR 1 CSSUBS
GC utility SUBR 0 CSGC
GET Stutter SUBR 2 CSEVAL
GETOBJ input SUBR 1 CSREAD
IVCCH input SUBR 0 CSREAD
IVQMg input SUBR 0 CSREAD
LIST basic FSUBR CSEVAL
MAKSTRNG input SUBR 1 CSREAD
NULL basic SUBR 1 CSSUBS
PRINT output SUBR 1 CSPRINT
PRIN1 output SUBR 1 CSPRINT
PUTPROP Stutter SUBR 3 CSEVAL
QUOTE Stutter FSUBR CSEVAL
READ input SUBR 0 CSREAD
READCH input SUBR 0 CSREAD
REMPROP Stutter SUBR 2 CSEVAL
.RST basic SUBR 1 CSSUBS
SASSOC Stutter SUBR 2 CSEVAL
STIVCCH input SUBR 1 CSREAD
STIVQMP input SUBR 1 CSREAD
TAK2 basic SUBR 2 CSSUBS
TERPRI output SUBR 0 CSPRINT

166

F.1 Basic Routines

RST, FST, TAK2, ATYM, NULL, EQ, LIST

The routines in this group are the lowest level functions for the

manipulation of lists.

(RST x). Returns the ResT of the list x, which must not be atomic.

Atomic x results in a specification interrupt4

(FST x). Returns the FirS? element of the list x, which must not

be atomic. Atomic x results in a specification interrupt.

(TAK2 x, y). If y is a list, returns a list whose FST is x and whose

RST is y. If y is atomic (other than NIL), TAK2 returns a generalized

list, that is, a list whose R...RST is not NIL. In either case,
TAK2 is well defined. This function takes two words from the free
storage block and thus incurs part of the expense of the next gar-
bage collection. Beware when CAL'ing TAK2 from an assembled
routine. Because the garbage collector might be called, all

registers must be saved, and all pointers must be identifiable as

such.

(EQ x, y). Predicate. If x and y are atomic, returns T if they are
the same atom, and NIL if they are not. If x or y is not atomic,

returns T if x and y both point at the same location. EQ is always

defined.

(ATgM x). Predicate. Returns T if x is an atom and NIL otherwise.

167

25

(NULL x). Predicate. Returns T if x is the atom NIL. If x is any other

atom or is non-atomic, NULL returns NIL.

s XpoXp e o xn). Returns a listuwhose elements are Xpy Xgyeee X o
Unlike other basic functions, LIST accepts any number of arguments.
Note in particular that (LIST) is valid and returns NIL. LIST
is implemented so that if given n (> 1) arguments it will use ntl
words from the free storage block. Thus list 1s more efficient than

successive TAK2's.

F.2 Input Routines

READ, READCH, IVCCH, STIVCCH, IVQM§, STIVQMP, MAKSTRNG, GET@BJI

The Stutter input routines are well developed since they were a
necessary adjunct to testing the system. Two modes are provided: READ
reads an entire expression. It is also used by the main interpretative
loop, so an understanding of it is an understanding of the input syntax
for Stutter. A single character input mode is also provided to permit

_the writing of more general input. The internal read routines are
described in Appendix C.

The read routines make use of a device, borrowed from c¢mﬂw, called
an "internal variable". This is a variable whose value affects the system
and which can be set or reset by special subroutine calls. Each internal
variable 1is represented by a three character mnemonic; two routines are
associated with each internal variable. If the mnemonic 1s xxx, the
routines are (IVxxx) and (STIVxxx a). The first routine returns the

current value of the variable and the second assigns the value of:i

168

to the variable. If the variable is a switch, it will have the value T or
NIL and can be set by STIVxxx. The argument NIL sets the switch off and any

other argument sets the switch on.

(READ). One expression is READ from a card or cards and returned
as the value of READ. This routine is described in detail in Appendix C.
(READCH). READs the next CHaracter from the input card and returns

a pointer to an atom with that character as its print name. All printable

characters and ¢, !, Eﬂalready exist as objects in the system. Any other

character is translated by READCH into blank. EQ may be used to compare
characters because they are uniquely represented. Characters are read
using the same conventions of card layout, that is, columns 1 to either

71 or the first underbar-slash. Also, if the current character is a blank,

READCH will return the next non-blank character. These conventions may be

altered by turning on the quote mode with (IVQM@).

(IvccH) (STIVCCH x) . To store one character in the case that an expression
read by READ is an atom and the following character is a left parenthesis,
an internal variable called 'Current CHaracter' is defined. Its value
can be SeT to any character by STIVCCH. An error is signalled if the argu-
ment is not an atom with a one character printname. The 'current character'
can be accessed by evaluating (NCCH).

The relationship between REAL, READCH, and IVCCH is most easily explained
in terms of a 'scan pointer' and a character variable called the 'current
character'. The scan pointer moves along the input text having due regard for
card boundaries and the '_/' convention. The character pointed at by the scan
pointer is called the scanned character. After READing an atom, the scan
pointer points at the character following the atom (usually blank) and the
current character contains the scanned character. After READing a list, the

169

scan pointer points at the final right parenthesis and current character con-
tains a blank. IVCCH does not affect the scan pointer and returns the current
character. The first character read by READ is the current character.
Succeeding characters would be the values of successive READCH'es. READCH can
best be described as a call on GETCH, as flow charted in Appendix C.4. An

approximation to READCH can be given by:

Loop: move scan pointer to next character;
if (current character is blank A
quote mode is off A
" scanned character is blank) then go to loop;

current character := scanned character;

return (scanned character).

(IvaMg) (STIVQMS x) . If Quote Mgde is on, then each character on each
card is passed in turn as the value of READCH. This provides a means of
avoiding the normal underbar-slash and de-blanking conventions. Unfortun-
ately, in this mode there must be a dash in column 72 (or quote mode must
be set off just before column 71 is scanned). Calling READ always sets

quote mode off.

(MAKSTRNG x) . x must be a list whose elements are all symbol atoms with
one character print names. The characters are collected together and the
value of MAKSTRNG 1is a character STRING atom MAKed of the print names of

those atoms. [length (x)/u1 + 1 words are taken from the free storage block.

170

(GET#BI). x must be a character string atom such as is returned by
MAKSTRNG. The value returned by GEIfBJ is an atom with the indicated
print name. GETPBJ searches the OBLIST for an atom with the proper print
name. If such an atom is found, it is returned; otherwise an atom is

created. If an atom is created, three words are used from the free storage

block.

F.3 Output Routines

PRINT, PRIN1, TERPRI, EJECT, EXPLEDE

The routines in this group provide for printing expressions and controlling
the printer. A routine is also provided to abstract from a symbol atom a list of
the characters in its printname. A print line is 132 characters; no access to

the carriage control character is provided other than that supplied by TERPRI
and EJECT.

(PRINT x). The expression x is PRINTed, and then the printer is spaced
to a new line. Lines will be as full as possible without printing
an atom name on two lines. This means that isolated left parentheses
will appear on the right. The value of (PRINT x) is x. Internally,

PRINT simply calls PRIN1 and TERPRI.

(PRIN1 x). Identical to PRINT except PRINI returns NIL and does not
space the line printer after printing. The first character of a

succeeding PRINT or PRIN1 will immediately follow the last character

of a given PRINI.

171

(TERPRI) . TERminate the PRInt line. The line printer is advanced

the the next line. (TERPRI x) returns X

(rgeCT) . The line printer is EJECTed to the next page. The next
PRINT or PRIN1 will put characters beginning at the upper lefthand corner

of the next page.

(EXPLIDE x) . x must be a type 0 atom (symbol). EXPLPDE returns a list
whose elements are the character atoms corresponding to the print name of
X. Thus (GETOBJ(MAKSTRNG(EXPLEDE x))) returns x if x was on the OBLIST,

otherwise a new atomwith the same print name.

Fields in CSSWYM used by Output Routines:

PRPT. Pointer to location to store next character to be printed.

Intitialized by TERPRI and incremented by PUTCH.

PRPEND. Address of character just beyond last character in print

line. PUTCH calls TERPRI if PRPT reaches PRPEND. Intitialized by TERPRI.

PRLNG. This constant is the length of the print line. Normally

132, it can be changed for different buffer lengths or a wider right margin.

PRATBAD. Used by PRINI to print the message '?TyPx' for atoms with type
x € {2, 3, 4, 5, 6, T}+ (That is, for atom types for which no print

routine has been defined).

F.4 STUTTER Routines

COND, EVAL, GET, PUTPR@P, REMPR@P, QUATE, SASS@

(COND R ..zn). This FSUBR C@NDitionally evaluates an expression.
Each sublist must be a list-of two expressions. The first expression in

172

each successive sublist is EVALuated until one is found that is not NIL.
The second expression of the selected sublist is EVAIuated and returned as

the value of CPND. If all first expressions are NIL, error CN is signaled.

(EVAL x). EVALuates and returns the value of the s-expression x.

Complete details of EVAL are in Appendix D.

GET, PUTPRgP, REMPR@P. Symbol atoms have an associated list called a property
list. On this list the different 'properties' of the atom are stored, each
under different names, called 'indicators.' The indicators must be symbol
atoms. The properties may be any s-expression. In the initial free storage,
only the prquﬁes for SUBR and FSUBR indicators occur. Function defini-
tions can be stored under EXPR and FEXPR. Other properties and corresponding
indicators can be defined at the Stutter programmers'convenience. The only
restriction is that the above three functions are the only ones allowed to
access the property list. This is because PUTPRFP and REMPRFP replace

element pointers with rst pointers in some case.

(GET a 1). This SUBR has two arguments: an atom and an indicator. It
searches the property list of the atom for the indicator and returns the
corresponding property value. If the indicator is not found, GET returns

" NIL.

(PUTPR¢P a p i). This SUBR has three arguments: an atom, a value, and an
indicator. The value is stored under the indicator on the property list
of the atom. If the indicator existed on the property list, the pointer at
the old value is replaced with a pointer at the new value. Otherwise, the
indicator and value are placed at the front of the property list. Currently,

the value of PUIPRFP should not be used. It should be changed to return the

atom.
173

(REM.E’R¢P a i) The arguments of this SUBR are an atom and an indicator.
The indicator and the corresponding value are removed from the property
list of the atom. REMPRPP returns the atoms Currently, REMPREP ignores

(does not delete) function definitions stored in the value cell.

(QUATE x). This function is an FSUBR. Its arguments are passed as an
unEVALuated list to the quote routine. If the list has one element,

QUITE assumes that the normal LISP 1.5 QUME was desired. If the list

has more than one element, QU¢'1'E simply returns the list. Both (QU;M‘E A B)
and (QUATE (A B)) return the value (A B).

(sassgc x pl). _ This SUBR expects an expression (usually an atom) and a
list of dotted pairs as arguments, The list is searched for a pair whose
FST is EQ to the expression. The value of SASSPC is RST of the selected
pair. If the expression is not found, the value of SASSPC is the atom at
the end of the list of pairs, Usually, this atom is NIL, but this is up to

the creator of the list of dotted pairs.

F.5 Utility Routines

BELL, ERR$R, CC

All these routines are SUBR's.

(BELL x). The argument must be a number. BELL rings the bell on the
2250 twice. The interval between the rings is specified by the argument,
in hundredths of seconds (200 represents delay of 2 seconds)s To use this
routine, a DD card must be provided assigning SWYMSCOP to a 2250. The
value of BELL is NIL. (Until registers B and L are assigned other than 14

and 15, BELL causes an abnormal termination,)

174

(ERRPR x). This routine prints its argument and exits to the top level
of the 'Stutter interpreter. The stack is not unwound, so variables

retain the values they had at the time of the error.

(ac). A call on GC causes a garbage collection. The value of
GC 1s NIL. It may be advantageous to call GC at times, because
garbage collection is much less expensive when the amount of active

‘storage is low. GC is described in detail in Appendix E.

175

Appendix G. Miscellaneous Swym Routines

The routines in this section are available within Swym but not to

Stutter programs. Unless otherwise stated, a routine is called with

P

CAL, but most have noH—sEandard calling sequences: either they pass numbers

rather than pointers or they are not called with CAL. Such non-standard

routines are justifiable in limited contexts to avoid using free storage

and to speed processing.

STIME, TTIME. These routines provide access to the @S task timer.
STIME Starts the TIMEr. It has no argument, but returns the

value of any argument supplied. (i.e., STIME does not modify Al.)

TTIME reports the elapsed Task TIME (in hundredths of a second)

since the last execution of STIME. The result ot TTIME is left in

register Al. (Not a pointer to the result, the result itself.)

STAKN. This routine allocates a plex. The argument in Al is the

number of bytes to be allocated; it must be a multiple of four.

The value of STAKN is a pointer to the newly allocated plex. The

calling routine must store a valid plexhead in the newly allocated

plex. The name "STAKN" has nothing to do with the stack. It refers

to a System function to TAKe N bytes from free storage. Note that

STAKN can cause garbage collection: all pointers which are to be

garbage collected must be in the stack when STAKN is called.

There is currently a major bug in STAKN. When the garbage collector

is called, one of the pointers on the stack is to the new plex. But it

is not an atom pointer nor is there a plexhead in the plex. There is no

176

indication to the garbage collector of the type and extent of the allocated
plex. The best correction is to have STAKN call the garbage collector

before allocating the storage. The argument to STAKN would be made

odd and saved on the stack.

NLENGTH. The single argument to this routine is a list (or atom) in
Al. The result of NLENGTH is the number of elements in the argument.
The number, rather than a pointer, is left in Al. The length of

an atom is zero.

" PUTSTR. PUTSTR PUTs a character STRing atom on the current output line.
If its argument is not a character string atom, PUTSTR calls ERR¢R.

If the string is too long to fit on the current line and short enough
to fit on a full line, PUTSTR calls TERPRI to terminate the current
line. PUTSTR uses PUTICH (in CSSWYM) to transmit characters one at

a time to the print line.

INIT, FINISH. INIT 1s the INITialization routine. It is entered
from ¢S, saves the registers, and initializes the registers for
swym. It also opens data sets, sets the memory control pointers
and calls STIME to start the timer. INIT exits to MAIN, the Stutter
interpreter loop. Control is returned to ¢S by FINISH. When the
end of the input file is recognized, E¢DAD in CARDRDR sends control

to NOCARDS, which transfers control to FINISH.

FINISH prints some information for debugging, and abnormally
terminates. When debugging is complete, FINISH will close all data sets

and terminate normally.

77

SWERROR. This routine prints ERRfR messages for SWYM routines. Its

argument is two characters in the low order two bytes of register L.
mﬁmR¢R is called by a simple branch. It changes the two characters
to a character string atom, and calls ERR¢R with that atom as its

argument. SWERRPR is designed so that changing it to ABEND rather

than call ERRAR will preserve all registers as they were at the time
of the error. It is also possible to get very useful results if

ERRﬁR prints all registers.

TRUE, FALSE. These two routines are called with a simple branch. They

set Al to T and NIL, respectively, and execute a return. These
routines save a little code in predicates like NULL and ATOM. These
can exit by branching to TRUE or FALSE, thus avoiding two load

instructions and the code for return (RET).

PUTCH. This routine PUTs one CHaracter into the current print line.

The character must be in the low order byte of register A4. PUTCH

1s called with the instruction

BAL L,PUICH

This avoids several instructions for each character output. If the
current character fills the output line, PUTCH calls TERPRI to print

the line. PUTCH modifies only register TT.

178

Appendix H. Swym - Stutter Initial Free Storage

When Swym is loaded there are three classes of structure in the

free storage area: character objects;' function names, and special structures.

Each of these is described in a separate section below. The cards

used to create the initial free storage are shown in Figure H.1.

H.1 Character Objects

As indicated in Appendix C (Read Routines), there are 64 character
objects in SWYM. Each input character is converted into one of these
64 objects. These objects include A-S, V-Z, 0-G, +, 1, $,-,/,?,
ty 4, ", £, 1, 0-2-8, %, =, , <, >, @ =, s 35 1)es 1)y, and ',"
These character objects are assembled with the macros CHAR and QCHAR. For
various reasons, other means are used to assemble the character objects

for T, blank, apostrophe, and ampersand.

H.2 Subroutine Obijects

All subroutines available to Stutter programs must be represented
in initial free storage. There is one atom for each subroutine described
in Appendix F. Subroutine atoms are assembled with the SUBR and FSUBR

macros.

H.)> Special Structures

NIL,T. These two atoms are used by Stutter to represent the Boolean

values false and true. Each has a predefined value equal to.

itself. Thus, (EVAL(QUOTE NIL)) is NIL; but one can also say

(EVAL NIL) and get NIL.
179

$BLIST. The predefined value of this atom is a list of all symbol

atoms active at any given time. This list is a list of 64 sublists.
An atom is placed on a sublist chosen by hash coding the atom's

print name. This speeds up the read routine search to find an
existing instance of an input atom (in GET@BJ). The hashing function

is

((length of pname) + 2%(last character) + 3*¥(first

character) + 13%(third character)) mod 64

where the characters are represented in EBCDIC. If the third
character is absent, blank is used. This function seems to
distribute the atoms fairly well, although there is a slight
preference for bin 32.

The value of @BLIST is treated as though it were an array.
That is, the proper sublist is accessed by address arithmetic rather
than successive RST operations. There is the danger that the
garbage collector could convert this list into two or more lists
connected by RST pointers. To avoid this, no variable should ever

point at a portion of the object list.

CHAR@BS . The predefine8 value of this atom is the list of all

character objects. This list has 256 elements, one for each possible
EBCDIC byte pattern. All illegal characters point at the character
object for blank. Like ¢BLIST,'the character object list is referenced
(by READCH and IVCCH) as though it were an array. Again, no variable

may point at a portion of the character object list.

180

SUBR, FSUBR, EXPR, FEXPR. These atoms represent properties which

can be PUTPR¢P and which the system must know about. Specifically,
each represents some form of function definition. To use an atom
as a function, EVGET looks for one of these indicators on the
property list and uses the corresponding value as the function

definition. See further description in Appendix D.2.

FPR@PS. This is a structure:

((SUBR . 1) (FSUBR . 2)

(EXPR . 3) (FEXPR . L4))

EVAL uses this structure at various points to associate a bit
pattern with one of the indicators for a function definition.

If an atom has a function definition, the appropriate bit pattern
will be in the CELFNC field of the plexhead. This structure

cannot be accessed by Stutter programs.

‘UNB¢UND'- This is simply a character string atom. It is the value

of any atom that has not been assigned a value by one of

initial value
variable binding

function definition.

If 'UNBJUND' is the value of an atom, EVAL signals error El and

terminates processing of the current s-expression.

181

UNBOUND

BLANK

NIL

TRUTH

OBLIST

CHAROBS

SUBR

STRAT
QCHAR
VALUE
VALUE
VALUE
VALUE
MATOM
MATOM
MATOM
MATOM
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
FSUBR

SUBR

CHAR
CHAR

QCHAR

Figure H.1l

C 'UNBOUND'

NIL,NIL

T, TRUTH
OBLIST,OLST
CHAROBS, COBS
SUBR

FSUBR

EXFR

FEXPR

FST,RST,TAK2,GC

ATOM,EQ,NULL, PRINT , PRIN1, TERPRI

READ

ERROR, STIVCCH, IVCCH, READCH, STIVQMO, IVQMO
GETOBJ ,MAKSTRNG ,EJECT
EVAL, SASSOC,EXPLODE,GET , PUTPROP , REMPROP

COND, QUOTE, LIST

BELL

AyByCHDyEsFyGoH T 5 a,ufbuf iUk Sinsod Uy v myYaY.Ly
011;2;3:h)5;6:7:8)9

+x‘:$rﬂ:/:%:3:#;")¢:::0‘2'8:*;=)_:<)>:@%':.)5

182

Appendix I. Swym Register Assignments

All the general registers are assigned names under Swym. About

half are available for general use, while the remainder have specific

uses. Although the register currently assigned to each name is listed,

these assignments must be changed to better cooperate with ¢S-

Register Name
N

1«6 Al-A6

7 ch

9 S

10, 11 T, IT

12 F

13 p

1k B

15 L

Use

Contains a pointer to the atom NIL.

Arguments to SUBR's; Stutter routines return
results in Al; otherwise available for

general use. Always six consecutive registers.

Must always contain F'k'.

Permanent base register for addressing system
data, transfer vectors, and a few basic routines.

An even-odd pair of temporary registers. TT is
used by ATgM and PUTCH.

Free storage pointer - next word to be allocated.

PUSH down list pointer - last word which was
allocated. See Appendix B.lL.

Base for all routines

Linkage, holds return address on entry to
a routine.

The user may alter Al-A6, T and TT with impunity. The following rules

must be observed:

1. No register contents are garbage collected. If something must

be collected,

it must be in the stack. The garbage collector

destroys all temporary registers.

2. A calling routine is responsible for saving any registers which

might be destroyed by a called routine.

183

Appendix J. Swym - Stutter Output and Error Messages

There are four classes of output:
1) Normal
2) Read Error
3) Computation Error

4) ABEND - Abnormal Terminations

" Each of these will be discussed in turn.

J.l Normal output

Normally, the Swym system running Stutter reads an s-expression,
evaluates it, and prints the value. All cards read are printed beginning
in column 24 of the print line. After reading, the time since the start
of processing this s-expression is printed (in 100ths/sec.) . Next
appear any lines PRINTed during EVAL. After EVAL, the total time
since starting to read the s-expression is printed (in 100ths/sec.).
Finally, the value of the expression is printed, followed by a blank line.
At any time, the garbage collector may be called. It will produce a

line of output as described in appendix E.

5.2 Read Errors

While reading cards, certain syntax errors are indicated. 1In all
cases the read routine proceeds in some manner, usually by ignoring the
error. The read error message includes a pointer ('<') beneath the next
character to be scanned. TUsually the character in error is immediately

to the left.
184

agT

Error Code

RO

Rl

R

R4

RS

R6

RT7

R8

R8

RB

RC

Routine

RDSE
RDSE

READ and
RDSE

RDLIST

RDSE

RDAT

RDAT

GETCH

GETCH

RDSE and
RDLIST

Error '

missing right super-paren -'>';
end of skipping chars for RO;

missing right parens ')'-
inside super-parens;

extra dot between list elements;

RO occurred while skipping for
earlier RO;

igl char in X'...', W'...'y or
B'..."';
C'...' but should use Z'...';
B'...' but should use W'...';
X' appears where

x § {W, X, 2, C, B);
inside quotes but no '-' in 72;
non-blank in 72 outside quotes
too many digits (9) in integer;

igl char after '<' or '(';

igl char at start of s-expr;)
igl char between list elements;

READ ERRORS

Action

start skipping s-expressions
reading continues

right parens created; number
is printed at the far right

ignored

skips for inner RO then back
to skipping for outer RO

invents quote before the error
character this may confuse the
scanner

Z'..."' assumed

W'...' assumed

quote ignored, atom with print
name X is produced; beware, the
scanner may become confused.
stays in quote mode

ignored

this and all after ignored

ignored

J.3 Computation Errors ,

These errors terminate evaluation of the current s-expression. Variables

are not rebound; this means that global variables may not have their

correct value and also that list structure may be saved unnecessarily.

Swym continues after these errors by evaluating the next input s-expression.

Error Code

BI

Ex

El

M1

PP

Pl

RI

RJ

Routine

BINDERY

CfND
EXPLébE

EVAL

MAKSTRNG

PUTPR@P

PUTSTR

STIVCCH

GET@BJ

Error

trying to bind atom with function definition
in cell

no predicate was true
argument not symbol atom (type 0)

arg was unbound atom

atom at front of s-expr was not symbol
(type 0)

atom at front of s-expr had no function
definition

atom at front of s-expr had illegal function
definition type (system error)

more than six arguments to a SUBR

more than one formal argument in FEXPR
definition

argument was not a list of atoms each
having a one character print name

first argument not a symbol atom (type 0)

argument not character string atom (type 1)
(system error)

argument's print name not one character

argument not a character string atom
(type 1)

186

J.4 ABEND - Abnormal Terminations

card has been included.

These errors are always fatal and produce a dump if a //SYSUDUMP DD

Most are concerned with errors in the garbage

collector and indicate that the data structure was illegal. Further

computation on an erroneous data structure can produce nothing useful.

Completion Code

System 0C6

User

T.

20

20
28
2F
3E
6E
TE
TE

118

122,126

15A

1A8

Routine

FST,RST

FINISH
PBPPEN , PUTBYTE

CPLLECT
ATCHL
cprx
cALx
CPLX
CPLX

GC
C@LLECT

Ge

CPLLECT

CPLLECT

187

Error

Fst or rst taken of an atom

During debugging, normal
termination

Insufficient memory remaining
after garbage collection

Argument already marked with ml
Illegal atom type

Atom A =-ml A m2

Atom A ml A —m2

—atom A m2 A =ml

—atom A —m2 A m|

stack pointed at an ml A™m2
or —ml A m2 word

in second pass, found atom
A —ml A —m2

invalid stack block type

in second pass, found —atom
A —ml A —m2

in second pass, found rst: atom
A —ml A -m2

Appendix K. Proposed Instructions for the IBM/360

The instructions proposed in this appendix are intended to give the
flavor of possible additions to the 360 instruction set. A completely
different machine design might be preferrable, but would mean reprogramming

on the scale accompanying introduction of the 360. Additions to the

instruction set would not obsolete any existing programs, except in that they

could be written more compactly in the proposed extended instruction set.
The instructions are proposed in terms of the 360 because to a large extent
they then also apply to most traditionally designed computers. Thus,
although these instructions might make radical changes in program design
(more modularity), the basic design of computers need change very little.
Four sets of proposals are included below:

Loads and Stores

Associated-Bit Instructions

Stack Instruction

Subroutine Linkage

The last two are interdependent, but otherwise these instruction sets

could be added individually.

Proposed Loads and Stores

These instructions are intended to remove some of the more annoying
limitations of the 360. They have been proposed many times, especially
in [Wrth 68].

ILHL (RX) Load Halfword Logical

The halfword at D O%fBl) replaces the low order

188

The upper 16 bits of R

16 bits of register R

1’ 1

are unaffected.

STHA (RX) Store Halfword Arithmetic
If bits 1-16 of R, do not all match the sign bit, this
instruction causes a fixed point overflow. Otherwise,

the low order 16 bits are stored in the halfword addressed

by Dl(Xl, Bl)'

LI (AI, SI) (RX) Load (Add, Subtract) Immediate
A thirty-two bit quantity is computed from Dl plus the
contents of registers Xl and Bl’ treated as signed
numbers. The resulting quantity is loaded (added, sub-
tracted) to register Rl. AI and SI may cause fixed point

overflow.

LIR (AIR, SIR) (RR) Load (Add,Subtract) Immediate Register Field
These instructions are similar to LI (AI, SI) except that
the quantity loaded, added, or substracted is the R2 field
of the instruction (not the contents of that register).
LIN (STIN) (RX) Load (Store) Indirect
The Dlongl) field refers to a word in memory. The con-
tents of this word are used as the address from which to

load or to which to store the contents of Rl'

Proposed Associated-Bit Instructions

There are many uses in higher level languages for non-numeric bits
associated with the words of memory. This proposal describes one set of
instructions for manipulating these bits. It is assumed that one bit is

189

associated with every byte of memory, but that the most common use will be

to use all four bits for each word. Four bits are also associated with each

general register. Any instruction not specified below does not alter the

bits in memory or in a general register. This means that a floating point

field, for example, remains marked as such as long as only floating operations

are used on that field.

MVSB

TMB, NIB, OIB,
XIB,MVIB

(SS) Move Bits

The bits associated with the L + 1 words starting at D2(BE)

are moved to the bits for the I + 1 words starting at Dl(Bl%

The operation proceeds from left to right by word. Both addresses

must be on word boundaries. 0 <_ L <255.

(SS) Move Single Bits
The bits associated with the L + 1 bytes starting at D2(Bg)
are moved to the bits for L + 1 bytes starting at DE(BQL

The operation proceeds from left to right. 0 < L < 255

(SI) These instructions correspond to the normal instruction
without the 'B' suffix. The difference is that the four

low order bits of the mask correspond to the four bits
associated with the addressed word. The address must be on

a word boundary.

190

GBR (RR) Get Bits from Register
The four low order bits of Rl are replaced by the bits
associated with R2. Bits 24-270of Rl are zeroed; other

bits are unchanged.

PBR (RR) Put Bits from Register
The bits associated with Rl are replaced by the four low

order bits of R2.

PIB (RR) Put Immediate Bits
The bits associated with Rl are replaced by the contents

of the R2 field.

LB (RX) Load Bits
The four low order bits of register Rl are replaced by the
bits associated with the word at I&(Xl,Bl)-'The next four
low order bits (24-27) are replaced by zero. The rest of
the register is unchanged. Dl(Xl,Bl) must specify a word

boundary.

© STB (RX) Store Bits
The four low order bits of Rl replace the bits associated
with the word at Dl(Xl,Bl). The latter must specify a word

boundary.

PB (SS) Pack Bits

The Dl(Bl)

bytes. The low order four bits of each of these bytes is set

field specifies the beginning of a field of L + 1

from the bits associated with the corresponding word in the

191

TSB

TRTB

D2(B2) field. The latter is L + 1 words long. The high

order four bits of each byte are zeroed. DQ(B2) must Dbe

on a word boundary. 0 < L < 255.

(SS) Unpack Bits

De(Be) specifies the start of a field of L + 1 bytes. Dl(Bl)
specifies the start of a field of L + 1 words. UPB

reverses the process of PB by setting the bits associated
with the words from the low order four bits of the corres-

ponding byte. Dl(Bl) must specify a word boundary. 0 < L < 255.

(RX) Test Single Bit

The low order bit of the condition code is set from the bit
associated with the byte at Dl(Bl)- The high order bit is
set from the bit associated with the other byte in the half-
word of which Dl(Bl) is part. If Dl(Bl) is even, the

high order bit is set from the bit associated with Dl(Bl) + 1.

If odd, then Dl(Bl) - 1.

(SS) Translate and Test Bits

The four bits associated with the word at Dl(Bl) et sequens
are used to index into the table at D2(B2)- The table need
have only 16 entries. Termination and condition code

setting are as for the instruction TRT.

192

L (RX) Load

This instruction is identical to the normal load instruction,
except that the bits associated with the target register are

set from the bits associated with the word in memory.

IR, LNR, LPR,

LTR (RR) The bits of the target register are set from the bits
of the source register.

LM, STM (RX) The bits of the target are set from the source.

Proposed Stack Instructions

The problmﬁiﬁih using a stack on the 360 is that code must be generated
to test for the ends of the stack. These instructions manipulate the stack
and test for the beginning and end. In all cases, the Rl field indicates a
register containing a stack pointer. This register always points to the
latest word added to the stack. The register is decremented for each entry,
so all recent entries can be addressed relative to the stack pointer. The
Dl(Bl) field of the instructions is assumed to be the address of a two word
Stack Control Block. The first word of the block is the address of the first
entry in the stack, the second word is the address of the last allowable

entry in the stack. This control block is used to check for the ends of the

stack. Stack instructions can generate two new interruption types; stack

overflow and stack underflow.

193

UGR

UeMIL

(RX) Queue Register on Stack

The contents of Rl are decremented by four and compared
against the contents of the word addressed by Dl(Bl)' If
less-than, then a stack overflow interrupt is generated.
Otherwise, the contents of the R2 are stored at the location

indicated by the revised contents of Rl'

(RXY Queue Multiple Immediate
The R2 field is multiplied by four and subtracted from Rl.
The result is compared against the contents of the word

addre;éed by Dl(Bl). If less-than, a stack overflow

interrupt 1is generated.

(RX) Unqueue Word from Stack

The contents of Rl are compared against the contents of the
word at Dl(Bl)+h if greater-than or equal, then a stack under-
flow interrupt is generated. Otherwise, the contents of R2
are replaced by the word addressed by Rl' Finally, Rl is

incremented by four.

(RX) Unqueue Multiple Immediate
The R2 field is multiplied by four and added to Rl' The result
is compared against the contents of the word at Dl(Bl) + 4,

If greater-than, a stack underflow interrupt is generated.

194

QDR,QER, UQDR,
UQER

(RX) Queue Double Floating Register
Queue Short Floating Register
Unqueue Double Floating Register

Unqueue Short Floating Register

These are analogous to QR and UQR except that they use the

floating registers. Also, QDR and UQDR modify the R1

register by eight rather than four.

Proposed Subroutine Instructions

CAL

RET

(SS) Call a Subroutine

Th.é'Rl and Dl(Bl) fields refer to a stack. These fields

are used to QR the program counter. The R2 register is
loaded with the word indicated by D2(B2). The program
counter is loaded with the same word so that execution begins

at the address in R2,

(SS) Return from a Subroutine
The R1 and Dl(Bl) fields refer to a stack. UQR is executed
from this stack and the top element is loaded into the

program counter and into R2' The displacement D2 and the

contents of 32 are added to the program counter.

195

Appendix L. Demonstration of the Correctness of the Swym Garbage Collection

Algorithm

The Swym garbage collector is reasonably complex since the central routine,
COLLECT, involves two loops and recursion.“The potential user deserves some
reassurance that COLLECT will not mysteriously modify his data. The problems
of minor errors in garbage collectors are severe because the collector is
called when storage is exhausted, and this depends on the data in the problem
at hand. This appendix attempts to demonstrate the correctness of the COLLECT
algorithm. But it is important to note that this demonstration proves nothing
about the actual Swym system garbage collector. There are three reasons:

1) This is a demonstration of an algorithm. The program itself may or
may not correspond to the algorithm. There is many a slip 'twixt
conception and core; errors can occur in coding, keypunching, assembly,
or during execution, when some other part of the system may modify
COLLECT.

2) It is necessary for this proof.to make numerous assumptions about
the effect of subsidiary functions. These are subject to the
problems mentioned in (1). They are also subject to that fact
that they are speciffed only in English, a not always precise
language.

3) The proof itself is primarily in English. A gain in precision could
be achieved by translating the proof into the predicate calculus;
but even though more readers might be reassured, the number of

readers would decline drastically.

Despite all the above, the demonstration of the correctness of the COLLECT

algorithm is at least an interesting problem. Because of the involuteness

196

and the fact that a given call depends on the correctness of higher level

invocations as well as lower level invocations, the major problem is avoiding
a circular proof.
Most of the functions used in COLLECT are defined elsewhere. The follow-

ing are assumed as primitives: fst, rst, atom, rplf, and HD. The five

operations on marking bits - ML, M2, MARK1, MARKI2, and UNMARKL - are all
assumed to use two bit tables to associate two bits with each word. This is
contrary to the implementation, but simplifies the demonstration somewhat.
(A final note will show how to remove this restriction.) The properties of four
functions must be presented in detail: ATC@L, GCPUT, FIXUP and CPLLECT. The
properties of the first three will be assumed while the properties of CﬁUECT
are to be demonstrated. The relevant properties are listed in Figure L.4.

The C¢LLECT algorithm in figure L.1 has extra labels for reference during
this appendix; otherwise, it is the same algorithm as given in appendix E. A
flow chart is in Figure L.2, for those who read flow charts. The labels in
L.l and L.2 will be used to refer to the relevant statement without specific
reference to the figure. Several other types of references are made to items
identified with a capital letter followed by one or more digits. This table

summarizes the capital letters and the location of more information.

A ATCOL property
C COLLECT property
See Figure L.k
F FIXUP property
G GCPUT property
L a figure in this appendix
M marking bit See Appendix E
S statement label in Figure L.l

197

The argument to CPLLECT is a list. CPLLECT processes as much of that
list as can be represented in new core as a single sequence of consecutive words,
where only the last is a rst .pointer. This Dart of a list is called a list
segment. Sometimes it is the entire list, -ending with a rst pointer at an
atom. But if some rst of the list is already collected, the list segment must
end with a rst pointer to the existing representation of that rst. For conven-
ience, the pointers pointing at the elements of the list segment will be called
fst pointers.

" Each invocation of CPLLECT writes a list segment on the temporary file.
After all structures are collected, this file is read in to replace list storage.
It represents the same list structures as the old contents, providing that
all pointers into list storage are modified to point to the new locations of
the structures. The old contents of list storage are referred to as old core.
The new contents, though stored temporarily on the file, are referred to as
new core. For every pointer into old core, there is an equivalent pointer into
new core. As C¢LLECT processes a list segment, say X, it replaces fst (5)
in old core with a pointer to the equivalent of X in new core. For example,
the fst of the list (A B C) is replaced with a pointer to the same list in
new core (not with a pointer to A in new core). This replacement is done with
the rplf in S34. Later the pointer to the new core equivalent is accessed with
the fst in 83422 or SU22. These three statements are not operations on list
strueture in the sense normally understood by 'fst', but they are implementation
independent in that they only require that fst return the value stored with
rplf.

CALLECT contains two loops: the first is all statements numbered S$lx and
S2x; the second is all statements $%x and Skx. 811 and 831 initialize the

loops by setting r to a rst of the list (the list itself being considered the

198

Oth rst). Then the Slx and S3x statements process an element of the list.

The S2x and Shx statements check the next successive rst and either loop

back, or process the rst and terminate. Below, the first loop will be

referred to as pass one and the second loop as pass two. This is because

each makes one pass over the list segment.

Understanding CﬁmECT requires knowledge of the state of the list segment,

X, at S31. There are three cases:

1. Each pointer in the list points at a word with at least Ml. Each pointer

- has its own Ml. bit on and M2 bit off. The end of the list is signalled

by a rst pointing at an atom.

2. Same as case_l, except that the final rst points at a word marked with
both M1 and M2.

3. This case is like case 1, except that the final rst is a word that is
marked with M1 and not M2« 1In addition, the element pointer to the last
element has neither marking bit.

Pictorially these cases can be representéd as in diagram L.3.

To illustrate the predicate calculus approach to this demonstration of

correctness, here is the predicate that a list segment satisfies:

(n) (LIAL2AL3)
where
n-1
1= A (@(R()) A ML(R(1))) A = M2(R(n))
i=1
n
2= A M(£st(R(1))) {case

=1 l'
: {case a:
I SES— B

(ML(R(n)) A (atom(R(n+l)) v M2(R(n+1))))
v(=M(R(n)) A ML(R(n+1)) A R(n+l) # R(n))}

L3

v(R(n+1) = R(n) A —ML(R(n))) [eaze 3}

199

where
R(1) = rst (x)
ﬂl(p) = if i=0 tthen prelse mst t (P))

x = argument to CPLLECT

The demonstration of the correctness of C¢LLECT requires 3 steps. The
first step is to show that CPLLECT terminates. This can be shown with
minimal recourse to C¢LLECT'S properties. Secondly, assuming that C¢LLECT
is correct for all recursive invocations, C¢LLECT is shown to have properties
Cl1-Cl0. Finally, it is shown that the new core image is equivalent to the old
core, and thus that CPLLECT is correct.

The first two sﬁéps are sufficient to show that CPLLECT writes out a list
segment. For if CPLLECT terminated, at some level of recursion it did not
call itself and thus did not depend on its own properties. The fact that
C¢LLECT also depends on the correctness of higher levels of recursion is
dealt with in the third step.

Certain of the properties in L.4 are assumptions about the arguments to
the relevant function. These are included for ease of reference, but they
must be demonstrated each time the function is called. There are a few global
aésumptions:

1) At the time CPLLECT is first called, for a given garbage collection,

there are no marking bits set; all words w satisfy -ML(w) & —M2(w).

2) When C¢LLECT is called by the garbage collector or ATC¢L, its arqgu-

ment satisfies CO.

3) No pointer in memory points at a word with the rst bit on.

200

lemma 1. CO is always satisfied.

By the second global assumption above, CO is satisfied when C¢LLECT
is called externally. When CPLLECT is called at S1k2, its argument is neither
an atom nor marked Ml because of the tests-in Slk. Thus to violate CO, t in
S1k2 must be —ML(t)AM2(t). But by the first global assumption above this
word was not so marked at the beginning of garbage collection. Consequently,
it must have been created by earlier or concurrent calls on CPLLECT. These
calls must have included execution of 835 to turn on the M2 bit and a subsequent
call on S223 to turn off the Ml bit that is also set at $35. (835 is the only
statement turning on M2 and S$223 is the only statement turning off M1). But by
the test before §222, S223 cannot be executed for a word with the M2 bit.
Consequently, a word satisfying —ML(t)AM2(t) cannot exist. Thus S1k2 cannot

violate CO, and the lemms is proven.

Lemma 2. At §12, r is unmarked and non-atomic.
This is true on entry to CPLLECT, by Lemma 1. Thereafter, the lemma 1is
true by the tests in 822, which terminate pass one if the next r would be

atomic or marked.

Lemma 3. 5223 unmarks the last word marked at S13; a word previously unmarked.
No statements modifying r occur between 5223 and S13 (assuming the Algol
interpretation of variable binding). The second assertion follows from lemma

2.

Lemma 4 M2(w) o ML(w).

This is initially true since it is assumed that there are no M2 bits set.
Thereafter, it remains true since M2 can only be set by 835 and that statement
also sets Ml. The ML cannot be unmarked by 5223 as shown in the proof of

lemma L.
201

I. C¢LLECT Terminates

Lemma 5 Each call on C¢LLECT sets at least one previously zero Ml bit.

By lemma 2, the argument to C¢LLECT, X, is not marked with M1l. It is so
marked by $13. If S223 is not the path chosen through $22, then x remains
marked with MI. If 8223 is executed while r = X, then X is unmarked, but is

marked again at $35 In either case, X remains marked with M1 by lemma3
and A.5.

Lemma 6. The recursion in S142 is always to a finite depth and therefore
terminates.
By lemma 2, a previously unmarked word is marked at S13. But there are
a finite number of words in memory (otherwise the garbage collector would
not be called and ifg correctness would not matter). By the test before S1k2,
C¢LLECT does not recur if what would be its argument is already marked. Since

every time CPLLECT is called there are fewer words not marked with M1, CPLLECT

cannot recur indefinitely.

Thema I7.op 1in pass one terminates.
At 822k2 the loop returns to chkloop, that is, S12. But then 813 marks
a previously unmarked word (by lemma 2). Since at each execution of S13
there are fewer words unmarked with ML, the loop terminates. Note that if S223

unmarks a word, the loop is terminating since §2242 will not be executed.

Lemma 8. The loop in pass two terminates.

By lemma 1, x is not marked with M2 after §31. But that x is marked with
M2 after $35. The loop terminates at Sk22 if t is marked with M2, but r is
assigned the value of t in Sk231, just before looping back. Therefore S35
again marks a word previously unmarked with M2e Since there are a finite

number of words not marked with M2, the loop must terminate at 8422, if not sooner.

202

Theorem 1. COLLECT terminates.
Assuming that all subsidiary functions terminate, the theorem follows

from lemmas 6, 7 and 8.

203

II. Collect has properties Cl-ClO.

In this section the inductive assumption is made that all subsidiary

calls of CPLLECT satisfy CO-Cl0 if they terminate.

Lemma 9. Pass one has properties Cl-Clk.

The words constituting the list segment are those pointed at by
successive values of r« S13 sets the ML bit in that word, thus satisfying C2.
Cl is satisfied by Slk:

- If t (=_f§t(;)) is atomic then Al is satisfied for S14l and 1 is marked
Ml by property A2 or Abk.

If t is markeq\with M2, then it is also marked with Ml by lemma 4.

If t is marked with ML, there are two possible cases: %t has been marked
by a higher level invocation of CPLLECT, or t is a word in the list
segment. In either case, t is indeed marked with M1, satisfying Cl.

If t is unmarked, then it is marked with Ml since the lower level CPLLECT

is assumed to satisfy C2.

S22 tests for termination of the list segment. If S221 is executed, then
the list segment is an instance of case 1 in L.3. If S222 is executed, then
this is an instance of case 2. If S223 is executed, then this is an instance
of case 3, and the Ml bit in e is indeed set off, satisfying Ch. 1f S22k is
executed, then at least one more element pointer is to be included in the list
segment. Each time through $224, all prior element pointers of the list
segment satisfy Cl and C2, as shown above. The first pass eventually does
terminate, by lemma 7, and can only terminate by one of the paths through S22

discussed above; thus C3 and C4 are satisfied.

204

Lemma 10. Pass 2 satisfies C5-C8.

The proof is by induction on n, the length of the list segment isolated
in pass 1. Suppose n = 1. About half of the possibilities for this case are
illustrated in L.5.

C>: one word is written for the one fst pointer in the list segment by

S3k2.

C6: the address of the written word replaces the fst pointer in the list

segment (statement S34).

C7: the word in the old core list segment is marked with M1 and M2 by

S35.
C8: since n.= 1, gh2 writes a rst pointer in one of its branches, depend-

ing on which case of list segment has occured.

Case 1. The rst is an atom. In this case a pointer with the rst bit
is written in 8k211 or skeloe.

Case 2. The rst is marked with M2. A pointer with the rst bit is
written by Sk22.

Case 3 Note that m is false because there is no Ml bit with the last
fst.pointer (by Ch). Thus sh2k is executed and a word is

written that will eventually contain a pointer and a rst bit.

Suppose n > 1. In this case, C5,06, and C7 are satisfied for the first
fitpointer by the same argument used for n = 1. By the structure of a list
segment, rst (r) is neither atomic, nor marked with M2, Furthermore, mis
true, because the Ml bit is always on for all fst pointers in the list segment
other than the last. Consequently, 8423 is executed and control returns to $32
with r pointing at the rst of the original list segment. But rst of a list
segment of length greater than 1 is a shorter list segment, so the induction is

satisfied. Thus the lemma is demonstrated.

205

Lemma 11. (C9)

C¢LLECT does not modify any word marked with M1 by any other routine or
other invocation of CPLLECT.

There are seven statements in CﬂUImT“that modify marking bits or words
in old core: 813, S1kl, s1k2, s221, 5223,834, and S35. The lemma will be

demonstrated for each in turn.

Sl3 (Mﬂml(;)) By lemma 1, this word was previously unmarked.

8141 and s221 (ATC¢L(§)) By the tests preceeding these statements, Al is
satisfied. Hence, ATC¢L satisfies A5 and A2, modifying no word
previously marked with MI1.

Sik2 (C¢LEECT(£5) t is neither atomic nor marked by lemma 4 and the tests
in 81k Thus CO is satisfied and by assumption the lower level
invocation of CPLLECT is correct. Therefore S1k2 satisfies (9
because the lower level C¢LLECT does.

8223 (UNMARKL(r)) By lemmas 2 and 3, this statement unmarks a word
that was unmarked prior to S§13.

s34 (rplf (r; . ..)) As shown in the demonstration of lemma 10, r is
part of the list segment and it was marked with M1 by pass one of
the current invocation of CPLLECT.

S35 (MARK12(r)) Similarly to S3k.

Lemma 12 (C10)

Any word marked M1 either contains or will contain the address of the
equivalent word in new core.

When the equivalent address is placed in the word by 834, the word is
marked M1 (and M2) by 835 By C9 and AY, this word is not thereafter modified

by any other routine. If M2 is off, then ML was set by S13. But by C5 and
206

C6 the address of the new core equivalent will be placed in this word.

Theorem 2. COLLECT has properties C1-ClO.

Lemmas 9, 10, 11, and 12 were demonstrated with the assumption that all
lower level calls of CPLLECT were correct. But if the recursive call terminates,
then at some level CPLLECT did not call itself. Thus at this level correctness
can be demonstrated without reference to lower level calls of CPLLECT. Con-
sequently, this lowest level is correct. The correctness of the outermost level
can be proven by induction on the depth of recursion. But by Theorem 1, C@LLECT
terminates. Consequently, by Lemmas 9,10,11, and 12, C¢LLECT has properties

Cl-C10.

207

II11. The New Core Image is Isomorphic to the 0ld

~

The isomorphism to be demonstrated will be written x = y and defined by

~

X =y = (Qf atom (x) then atom (y) A x =y

else fst (x) ¥ fst(y)Arst_(x) = rst (y))

where x = y is the isomorphism induced by ATC¢L. If x is a word in old core
marked with ML and M2, then by C6 that word contains the address of the
-equivalent word in new core. This equivalent word is denoted by x's It is
necessary to demonstrate that after garbage collection (but before reading the
new core) (¥x) (ML(x)) > (M2(x)Ax=x")s The proof will be by induction on
n the length of the list segment in new core. This length is the number of

words from x' (including x') to the next word in memory with'a rst bit.

Lemma 14 M2(x) D if atom (x) then HD(x) = x' else fst(x) = x' and the value
of x is not modified, nor is the M2 removed, by C¢IIECT or any subsidiary
function.

By Ak,C6, and (7, x' is written into X at the same time that X is
marked with M2. By lemma 4, M2(x) o ML(x); but if ML(x) then X is not

modified as guaranteed by A5 and C9.

Lemma, 15 $342 has the effect of GCPUT (t'), where t = fst(zr).

Note that by definition FIXUP executes GCPUT; so every branch of s3ke
executes GCPUT exactly once. By Ak, $34211 does GCPUT (') if t is an atom
marked M2. By C6 and C7, $3422 does GCPUT (t') if t is non-atomic and marked
with M2. 8S34212 does GCPUT. (0) but establishes a fixup so that the zero will
be replaced by the contents of t after C¢LLECT. But by A3 and Al, t will

contain t'e Similarly S3423 does GCPUT (0) and establishes a fixup. By Cl,

208

t is marked with ML (and not M2 because of test before §3422)3 but by ClO0 that
word will contain the address of its new core equivalent. Thus in each branch

of 8342 either E' is written or a fixup is generated so that the written word

will contain t'.

Lemma 16. 84211, sk212, sh22, and Sk24 have the effect of GCPUT (t' v rstbit)

where t = rst (z).

skaiil: By Ak, HD(t) contains the address 1'.

sk212: By A3 and A4, HD(t) will contain the address t'. Since the
fixup processing routine or's the fixup into the word in new
core, rstbit remains in the word.

Shoo: By C6, f£st () is t'.

Skok: Since m is false, this must be a case 3 list segment. (The
only case having -ML(R(1)).) But in this case, by the test
before §223, the rst (r) is marked with Ml and by Cl0 will
contain t'e. Consequently, the fixup process will create a

correct rst pointer to E'.

Theorem 3.
After CPLLECT, any word, X, marked M2 is also merked M1 and contains a pointer
to the equivalent word, x', in new core satisfying x = x',
If x is an atom, then CPLLECT called ATCPL if it processed x. By Ak,
x' is atomic and x = x'. If x is not atomic, then by the properties of pass
two, X' is not atomic. The proof that x ggg' is by induction on B, the- number
of pointers from x' (and counting _Jg') to the next word with a pst bit. Note

that x' was marked by S35 and x' was written by $34k2 which never puts in a

rst bit.

209

Est = fst(x'). By lemmal5, x' was effectively written with GCPUT(t')

where t' is the address of the equivalent of % and t =_fst(x).

rst(x) = rst(x'). Since n = 1, the word following x' has a rst bit and

thus contains the pointer at_rst(x'). But any word with a rst bit must have

been written with Sh2. By lemma 16, any word written with S42 was effectively
written with GCPUT((rst(r))' v rstbit). But r was not modified between $23 and
sk2 so r indicated the same X whose fst was written out in S342. Thus rst(x) =

rs (5_') because the latter was created from the former.

nz2 1.
Est

rst(x) T rst(x'). Since n> 1, the word following x' has no rst bit and

~.

fst(x')s By the same argument as the case above.

h}

M) is a pointer to that following word, that is, a pointer to the list
segment of length n-1 starting at that following word. After 5’ was written,
sk23 was executed (otherwise the following word would have a_rst bit). So
$32 et sequens were executed with r pointing to rst(x), creating a list

segment of length n-l. By the induction, the shorter list segment is equivalent

to rst(x). Consequently_rst(x) = _rst(x').

Thus in all cases, C¢LLECT creates a correct representation of its argument.

210

Note on the Implementation

The actual implementation of CPLLECT uses the ML and M2 bits in the word
itself as shown in figure I.2. The problem for the above demonstration is
that the M2 bit is the same as the rst bit. Two changes are made in the
algorithm: the arguments to all functions aremasked to remove possible

marking bits and t := rst(r) is changed to
t := if ML(x+4) then r+k else rst(zr).

This note will show that the proof can be modified to take these changes
into account and that the modified rst function is valid.

The proof of TIemma 1 depends on global assumption 1 that no marking bits
exist before the first entry to C¢LLECT (for a given garbage collection). But
since there can be rst bits, global assumptionl does not hold. Instead, it
must be changed to:

At the time C¢LLECT is first called for a given garbage collection,
there are no marking bits set in any fst pointers.
Thereafter, all discussion of marking bits must be qualified by reference to

fst pointers only. But we have:

Lemma 0. COLLECT never sets Ml in a word with the rst bit.

Global assumption 3 states that no pointer into list storage, no fst
pointer, and no rst pointer points at a word with the rst bit on. But the
variables X, r, and t only acquire values from these three sources. Thus
X, I and i never point at a word with the rst bit on. But Ml is only set by

S13 and 835 where the argument is r. Consequently the lemma is true.

211

Because of lemma 0, the modified global assumption 1 is wvalid. Further-
more, the extension to the rst operation is justified; if the word following
a given word has ML, it cannot be a rst pointer and the pointer to r+4 is what rst

would return anyway.

212

Figure L.l

COLLECT (x) = begin list x,r,t; Boolean m;

word rstbit : = x'00000001' ;

Sll: r := Xx;
chkloop:
S12: t := fst (r);

s13: MARK1 (r);

si4: if atom (t) then
s141: ATCOL (t)
elseif-IM1 (t) then

§142: --COLLECT (t);

S21: t := rst (r);

s22: if atom (t) then

s221: ATCOL (t)

else if M2 (t) then

§222:

else if M1 (t) then

§223: UNMARK1 (r);

else

S224: begin
S2241: r := t;
§2242: gotk loop
end;
S31: r := x;
832: wrloop: m := M1 (r);

$33: t := fst (r);

213

s34

s35:

Si4l: t

S42:

rplf (S3ul: rj
$342: if atom (t) then
$3421: if M2 (t) then
S3u211: GCPUT (HD (t))

else

§34212: FIXUP (t; 0)
else if M2 (t) then
$3422: GCPUT (fst (t))
else
$3423: FIXUP (t; 0));

MARK12(r);

:= rst (r);
if atom (t) then
s421: if M2 (t) then
S4211: ccpur (HD (t) \/ rstbit)
else

S4212: FIXUP (t; rstbit)

else if W2 (t) then
Su22: GCPUT (fst (t) V rstbit)
else if m then
S423: begin
S4231: r := t;
§4232: gotol o O p
end
else

S424: FIXUP (t; rstbit)

end COLLECT

21k

R=X 521 v

CHKLOOP ‘ T:=
RST(R)

T:=
FST(R)

S223

UNMARK1
(R) »

ATCOL(T)

$2242

COLLECT(T

Figure L.2
clow Chart of COLLECT

215

WRLOOP

S32

M = M1(R)

533 l

T :=FST(R)

M2(T)

S34211

Figure L. 2 (Cont)

TEMP :=
GCPUT
(HD(TY

$34212

TEMP :=

| FIXUP
(T,0)

S3422

TEMP :=
GCPUT
» (FST(T))

S3423

TEMP :=
FIXUP

216

> (T,0

37—y

RPLF

(R, TEMP)

s35 ‘

(R)

MARK12

RST(R)

ATOM(T)

M2(T)

$4231

Figure L. 2 (Cont)

S4211

GCPUT
(HD(T) V
RSTBIT)

S4212

FIXUP
| (T,RSTBIT)

S422

GCPUT
(FST(TMV
RSTBIT)

S424

S4232

X
M
—

217

>

FIXUP

(T,RSTBIT)—p

Figure L. 3
Cases of 'List Segment'

Case 1: List segment ends with rst pointer at atom

1 9 ¢

|1 x|

°

12? 2|0 |1 Y 2® plexhead
yn

1 X

Case 2: List segment ends with rst that has already been collected

1 :

i

Case 2: List- segment ends with st that is being collected

1 9 2
&

Notation: @

€y
i>a
1 (2)

pN¢)

X

0

'Y

145 ple [1 9 oot 9>
e

n ‘ €n+1
1 X 1 X

159 3] e 19 dolzy ey

€n-1 n n+

1 X 1 X 1 X

indicates rst (either adjacent or rst pointer)

is a pointer at an element of a list segment
indicates M1 (M) set

indicates M1 (M2) is zero

indicates indeterminate M2

218

Figure L. 4

Properties of ATCPL

Assumption:
Al.
Properties:

A2.

A3.

A)'l' .

A5.

NOTE:

The argument must be a pointer at an atom.

If the atomhead is already marked with M1, then ATCOL
returns; otherwise

On entry, the atomhead is marked with MIL.

On exit, the atomhead is replaced with a pointer to the
equivalent atom in new core and the atomhead is marked with
Ml-and M2.

No word marked Ml before entry to ATCOL is modified; marked,

or unmarked.

ATCPL may call CPLLECT to collect a substructure of the
atom. If that substructure points back to the atom, CﬂMﬂwT
will find an atom that is Ml but not M2. This case 1is

handled at 834212 and Skolo.

219

Figure L. 4 (Cont)

Properties of GCPUT

Assumption:
Gl. The argument may be any word, with or without the rst bit.
Properties:
G2. GCPUT stores its argument in the next location in the new core.
G3. The value is the assigned new core address.

Properties of FIXUP

Assumptions:

Fl. First argument is a pointer at a word in old core.

F2. Second argument is either zero or zero with the rst bit.
Properties:

F3. The second argument is GCPUT.

Fl. An entry is made in the fixup table consisting of the first

argument and the value of GCPUT.
F5. After processing the fixup table, the GCPUT word will point

to the equivalent of the first argument.

Processing the fixup table takes two steps:

- (1) After C¢LLECT, the first argument (to FIXUP) will be M1 and
M2 by Cl0; it is replaced in the fixup table by its contents,
which point to its new core equivalent (by lemma 1k).

(2) After loading the new core, the word pointed at by the second

item in each fixup is replaced by the first item.

220

Proverties of

Figure L. 4 (Cont)

COLLECT

Assumption:

co

—ML(x) A —2(x) A —atom (x)

Pass 1 isolates a list segment.

Cl

ca

C3

Ch

Pass 2 writes
C5
c6

cr
c8

Miscellaneous:

c9

C10

After pass 1, each successive fst is marked with at least MI.
The M1 bit for each word constituting the list segment is
set on.

Pass 1 terminates when it reaches a word that is an atom,
is M2, or is Ml.

In-the last case of C3, the Ml bit in the last word of the
list segment is set off.

it out and remembers its location(s).

Writes to new core one word for each word marked in Cl.
Places in each word marked in Cl the address of the new
core equivalent word.

Marks each word marked in Cl with M1 and M2.

Writes to new core a rst pointer to the rst of the list

segment.

C¢LLECT does not modify any word marked with M1 by any other
routine or by any other invocation of C@LLECT.
Any word marked Ml either contains or will contain the

address of the equivalent word in new core.

221

Instances of Case | with n=1

i After
Before: Old Core New Core

-0 p O

plex- lex- ‘ plex-
®0——D0head0 1% 2 .—-—"Z)lhead_Z_J-' ? (Rt head

plex-
head

| -
0? 0®‘__‘p7_fhead2

=
P
N
°
N
T2
o o
o X
o1
N
— |-
®
A

N y 1
lex- lex-
01 dOF—fiin] [g [Oor—ltizsalt 9 [
C
1 &~ r———— " —"———— ———— -1 2
P lex- D). | [plex- lex-
lz)ﬂo® Thead2 | |19 2®‘=I=Wad‘2—”’) (e " head
, e I
________ —]
Figure L. 5
Collection of List Segments with n=1
Note:

A dashed line from old core to new core represents & pointer to the location
a word will occupy when it is read in.

A dashed line from new core to old core represents an entry in the fixup
table. The new core word will eventually point to the equivalent of
the old core word.

222

Instances of Case | | with n=1

Before: Old Core New Core

[_ __—_T—___‘ ______ 3
0 0® '1‘2 1T2® '1*2J" ® oe+—
L
v
0 0 i ™
| . 3
0T01‘2 1T21‘2 ["T ® o] —
. _ —I'
1 0 1 o¢Y—™————————
; I’ ——————————— B T3
0 0@. *1 2 1?2®. -llz-l—ﬂ * ®t >
L
1“2“*—’“1 1._2*—-_1::::::1 2
o f______:‘_":'_—_:::_f: ______ — —
0 ol1 2 17 21°%2 J‘“ ? | e >

— e — — s et e —r—— c—

FigureL. 5
Collection of List Segments with n=1 (Cont)

223

Instances of Case | 11 with n=1

Before: Old Core New Core

I e -f_ |
i __+J
o] o Y ~
o-Tol1 o 1T21 0 '®;
| Lt
B—
- 1 oY —————— —
o 1 ® . /\I
0 0 R 1 2® ‘|" *®
L e
1 2T T T T 1T T T T —3
{}]
0 o®’_—’1 0 1T2|®‘
===t
0! of® | 1Tzl®
A .
Figure L. 5

Collection of List Segments with n=1 (Cont)

22k

Appendix M. Description of Control Section CSSWYM

The control section CSSWYM is always addressable via register S. It's

contents serve a variety of needs: globalvariables for system routines,

transfer vectors for routine linkage, register definitions. CSSWYM is non-

reentrant. A DSECT describing its contents must be assembled with any

Swym control section; the required code is described in Appendix N.

1)

2)

3)

The following are included in CSSWYM:

Register Definitions. These names are equated to specific registers:

N, Al, A2, A3,A4, A5,A6,CL, S, T, TT, F, P, B, I, See Appendix I.

AT EQU 6. Pointers at atoms point AT bytes in front of the
atom. References to atoms should use this identifier to emphasize
that the operand is an atom and in case the offset amount must be

changed. (Many routines presently ignore this rule.)

Bit Definitions. The macro BITTBIMK is called to set up a table
used by BIT (to find the bit mask for the bit-within-the-byte). Bits
defined in CSSWYM are;

M1, M2 The garbage collector marking bits. (These definitions

should be moved to CSGC.)

:CEIREL This bit is on in an atom head to indicate that the

value cell contains a pointer at list structure. If
off, the cell contains a number.

CELVAL If on, the cell contains a value definition (possibly
the special value UNDEFINED). If off, the cell

contains a function definition.

225

k)

5)

CELFNC This is a byte mask definition defining the function
definition bits in the atom head. If any of these bits

is on, the atom has a function definition.

SWYM EQU *

USING SWYM, S
This establishes addressability for the information in CSSWIM. Note
that no program may modify the contents of register S. (The contents

are established by the routine CSINIT.)

Temporary Storage Areas.

SWYMSAVE _ Used as save area when calling OS routines.

SYSFQOO Five word area to save registers 13, 14, 15, 0, 1 while
calling OS.

DUBWORK A double word work area.

TIME Used by STIME and TTIME to compute processing time.

NUMAT,

NUMATVAL A number can be printed by storing it in NUMATVAL,

then passing a pointer to NUMAT to PRINT or PRINI.

6) Pointers at List Structure.

These pointers point at list structure referenced by the system. The
values are updated by the garbage collector.
VCHAROBS Points at CHAROBS, the list of all character objects;

i.e., atoms with one character print names.

VOBLIST Points at the OBLIST.
ST Points at the atomT.
VFPROPS Points at FPROPS for EVGET.

226

7)

VUNBND Points at the special atom 'UNBOUND' for EVAL.

For further information on these structures, see Appendix H.

Work Areas for Specific Routines ‘
See the indicated appendix for further information on these

variables:

. Memory control - Appendix E.4

MEMUSE, MEMNXT, MEMSIZ, FEND
Garbage Collector - Appendix E.4
GCTIME, GCABAD, M2
Print - Appendix F.3
PRPT, PRPEND, PRLNG, PRATBAD
Read - Appendix C
RDCOL, RDEND, RDLNG, PBHD, ATAMT, RDSUPCTR, RDERMS, RDERNg,

RDERL¢C, RDERCT, RDCLASS, RDCHAR, RDSTAT

8) Data control blocks.

9)

There are two DCB's, one for output = PRINTER, and one for input -
CARDRDR. In the copied code, these are not assembled, but space is
reserved. They are assembled when CSSWYM is assembled by itself as

a CSECT.

Transfer vectors.

These contain the address constants used to address routines by the
CAL macro. The field labeled #xxx contains the address of the
routine xxx. The transfer vectors are created with the TVMAK macro.
One special transfer vector is included: #PO contains the address
of the stack. This is-used by ERROR to restore the stack pointer

(register P).
227

10) Always addressable routines.

See the indicated appendix for a deseription of these routines.

Appendix Routine

G FALSE, TRUE, PUTCH, SWERROR

E.3 CHOKE

B.1 RSTAl, RSTA2, RSTA3, RSTT, RSTTT

228

Appendix N. Adding Routines to SWYM-Stutter

Assembled routines, compiled routines, and interpreted routines can
be added to the SWYM System with a minimum of difficulty. This appendix

treats each of these types in turn.

N.l. Adding Assembled Routines

Routines designed to run under SWYM can be assembled in either an
existing SWYM control section or a new control section. In either case,
the assembly must include CSSWYM as a dummy control section so the routines
can communicate with SWYM., The following code must begin any SWYM

assembly:

TITLE 'title of control section'
CSSWYM DSECT

PRINT OFF

'COPY SWYM

PRINT ON
* COPY SWYM

csectnm CSECT

The code for CSSWYM is copied from the SWYM macro library. Each routine
must obey the linkage conventions indicated in Appendix K. It must begin
(physically and logically) with the SUB macro. It must end (logically) by
executing the RET macro. If the routine is to be referenced by routines
in other control sections, an entry must be made in the transfer vector
table in CSSWYM. To avoid reassembling all control sections, the entry

should be made at the end of the table and the card,

229

DS mnA(0) (currently nn = 20)

should have nn reduced by l« In this way, the transfer vector table stays
the same length. If the routine is not referenced by routines outside

its control section, it is sufficient to include a TVMAK card for the
routine at the end of the control section. The TVMAK card must be
addressable when the routine itself is executed (register B points at the

SUB macro) .

If a routine is to be referenced from Stutter interpreted functions,
there must be an atom for it in free storage. This atom can be created

by coding either

SUBR new routine name

or FSUBR new routine name.
Both generate an atom with the given indicator and a pointer at the new
routine. The new routine name must be the same as the label on the SUB

macro beginning the routine.

N.2. Compiling Functions for Swym

Although there is no STUTTER compiler, Swym has provision for
including compilers. Three major problems must be faced: storage for

the compiled code, linkage between routines, and variable binding.

There is no Swymbinary program space. The plan is that compilers will
store code in a new plex type. This 'code plex' will have a section for
reentrant address-independent code, a section for relocatable pointers,

and possibly a section for non-reentrant, address-independent data. The

230

garbage collection routine for this plex type should move these plexes
to a semi-permanent area to avoid relocating them every time the garbage
collector is called.

The address of a routine may appear in two different places - the
transfer vector table and the property list of the name of the routine
(under either the SUBR or FSUBR indicator). To call another code routine,

a compiled routine must load its address from the transfer vector table
using code such as is generated by the CAL macro. The compiler can find the
appropriate transfer vector entry because the contents are the same as the
address stored on the property list of the called routine's name. The
compiler must also store the address of a compiled routine in both the
transfer vector table and on the property list of the name of the routine.
This address must be the address of the code. If the code is stored in a
*code Plex', the plexhead is presumably stored immediately in front of

the code. A special bit in the plexheadof the name of the routine must
tell the garbage collector that the value of the SUBR or FSUBR property
addresses a code Plex. If thatplex 1is relocated, the address of the

code must be changed in both places where it is stored.

- The interpreter passes arguments to SUBR's and FSUBR's in registers
Al to A6. Compiled functions may not have more than six arguments and may
expect them in those registers. The result must be returned in register
Al. If a compiled routine needs more working space than Al-A6, T, and

TT, then it must store information on top of the stack with the equivalent

of PUSH and POP,

231

N.3. Defining Routines To Be Interpreted

A routine to be interpreted must be stored as an s-expression with

the format given in Appendix D. This expression must be the value of the
indicator EXPR or FEXPR stored on the property list of the name of the

routine. The basic function PUTPROP may be used for storing such expressions:

(PUTPROP
(QUOTE routine name)
(QUOTE s-expression)

(QUOTE EXPR)

A DEFINE function can be defined to simplify the process. The version

in figure N,1l. accepts a list of function definitions of this form:
(name Vv1eXp, . . expm)

where name is the atom where the rest of the expression is to be stored

under the indicator EXFR.

232

< PUTFROP
(QUOTE DEFINE)
(QuoTE ((A) (DEF1 £)))
N (QUOTE FEXPR)
< PUTPROP
(QUOTE DEF2)
(QUOTE ((A) < PUTPROP
(FST n)
(RST a)
= (QUOTE EXFR) >))
(QUOTE EXPR)
>
(DEF2 (QUOTE
(DEFL (a) < COND
((NULL A) NIL)

(T (TAK2 (DEF2 (FST A)) (DEF1 (RST 2))))

))

Figure N.1

233

Avpendix 0. SWYM Control ééctions

The assembly of SWYM-Stutter is divided into ten control sections or
CSECT's. When a routine in one CSECT is modified, it is only necessary to
reassemble that CSECT. Thus, total assembly time is reduced. All other
CSECT's use information in CSSWYM. For this reason, CSSWYM is assembled
as a DSECT along with each other control section. The assembly code to

do this is in Appendix N. This appendix lists the CSECTS and sketches the

contents of each.
The only non-reentrant control sections are CSSWYM, CSPDL, and
CSFREEST. There must be separate copies of these for each user of Swym,

The other control sections may be shared by all jobs in the 360 memory.

CSINIT Contains inititlization code for running any programs (not
just Stutter) under Swym. CSINIT establishes register contents,
opens the card and print data sets, and starts the timer. Even-
tually, initialization will include reading PARM information and
setting up the stack and free storage areas according to parameters.
CSINIT is not needed after initialization.

CSSWYM Contains global information for Swym system routines.
Complete details are in Appendix M.

CSSUBS Basic subroutines for the Swym data structure; such as:
FST, RST, and TAK2.

CSGC Garbage collector. See Appendix E.

CSFREEST Free storage. See Appendix H. (CSSWYM is not assembled

with CSFREEST.)

234

CSMAIN Main loop for Stutter. Calls READ, EVAL and PRINT in turn
as described in Appendix D. CSMAIN also contains FINISH which is
entered when the input is exhausted. By replacing CSMAIN, Swym can

be used as the basis for other interpreters.

CSREAD Read routines. See Appendix C.

CSPRINT Print routines, See Appendix F.3.

CSEVAL Stutter interpreter and functions useful to interpreted
functions. The routines in CSEVAL are among those described in

Appendix P
CsS2250 Experimental routine to interface to the 2250. Currently,

the only function is to ring the 2250's bell.

235

MNEMONIC INDEX

All major Swym mnemonics are listed in this index. With each
mnemonic is listed its class and the location of its definitions in the
Appendices and the program code. A brief comment describes the function
of the mnemonic. Four differently sorted indices are included: mnemonic,
class, appendix, and control section. The last three are primarily for
review purposes.

There are five columns:
1) MNEMONIC = The indexed mnemonic.
2) CLASS = The ten classes are:

a) MACRO Swym macro

b) SUBR routines available to Stutter programs. These
c) FSUBR routines may also be entered with CAL.

d) caAL routine callable only from assembled programs
e) CSECT control section

f) REG name equated to a register

g) SWM name defined in CSSWYM

h) FIELD name equated to a bit or field definition
i) STRUCT a structure in initial free storage
j) MISC miscellaneous. Mostly routines with non-standard calling
sequences.
3) APP - Appendix containing definition of mnemonic.
4) CSECT =~ Control section in which the mnemonic is defined.
5) COMMENTS - A brief description of the mnemonic.

236

SWYM MNEMONICS SORTED ALPHABEVICALLY PAGE 1

MNEMONIC CLASS APP CSECT COMMENTS

AND MACRO 6.7 MACLIB COMBINE TWO PREDS

AT MISC M CSSUYM EQUATED TO ATOM OFFSET(6)

ATAMT SWYM C CSSWYM ATOM OFFSET (6)

ATCOL CAL E.3 CSGC COLLECTS AN ATOM

ATCO MISC E.3 CSGC PART OF ATCOL FOR TYPE 3 ATOMS
ATC1 MISC E.3 CSGC PART OF ATCOL FOR TYPE 1 ATOMS
ATOM MACRO 8.1 MACL 1B ? 1S ARG AN ATOM

ATOM SUBR F.1 C SSuBS STUTTER ROUTINE FOR-1S ARG ATOM?
Al REG I CSSWYM ARGUMENT REGISTER & RESULT REGISTER
A2 REG I CSSWYM ARGUMENT REGISTER

A3 REG I CSSWYM ARGUMENT REGISTER

A4 REG I CSSUYM ARGUMENT REGISTER

A5 REG I CSSUYM ARGUMENT REGISTER

A6 REG I CSSWYM ARGUMENT REGISTER

B REG I CSSUYM BASE REG FOR ALL ROUTNS

BCMAC MACRO B.7 MACL IB MAKE A BR CONDITION INSTRUCTION
BELL SUBR F.5 (€82250 RINGS BELL ON 2250

BINDERY CAL 0.3 CSEVAL BIND ARG ATOMS TO THEIR VALUES
BIT MACRO B.5 MACL IB IDENTIFY MNEMONIC WITH BIT IN WORD
BITTBLMK MACRO B.5 MACL IB MAKE A TABLE FOR 'BIT!MACRO

CAL MACRO Be6 MACLIB SUBROUTINE CALL

C ARDRDR SWYM M CSSWYM DCB FOR READING CARDS

CELFNC FIELD M C SSUYM ATOM HEAD-FUNC DEF TYPE BITS

CELL MACRO B.2 MACLISB LOADS ATOM CELL INTO REG

CELREL FIELD M CSSUYM ATOM HEAD-CELL IS RELOCATABLE

C ELVAL FIELD M C SSUYM ATOM HEAD-CELL HAS VALUE (NOT FNC)
CHAR MACRO 8.3 YACLIB CREATES A CHAR OBJECT ATOM
CHAROBS STRUC H CSFREEST ATOM WITH VALUE = LIST OF ALL CHARS
CHOKE MISC E.3 ¢SGC BRANCH TO IF STORE EXHAUSTED, ABEND
CHTBL MACRO 8.8 MACLIR MAKE A CHARACTER TABLE (FOR TR)
COLLECT CAL E.3 CSGC CREATES IMAGE OF ARG IN NEW CDRE
coLx CAL E.3 CSGC CHECKS AND COLLECTS ONE POINTER
COND FSUBR F.4 CSEVAL CONDITIONAL EXPRESSION EVALUATED
C SEVAL CSECT D CSEVAL INTERPRETER ANO RELATED ROUTINES
C SFREEST CSECT H CSFREEST FREE STORAGEs INCL INITIAL STRUCTS
CSGC CSECT E C SGC GARBAGE COLLECTOR

CSINIT CSECT 0 CSINIT INITIALIZATION

c SSWYM CSECT M C SSUYM GLOBAL INFORMATION FOK SWYM RTNS
CSMA IN CSECT 0 CSYAIN MAIN STUTTER LOOP

CSPDL ¢ SECT O© CSPDL STACK

CSPRINT CSECT O CSPRINT PRINT ROUTINES

CSREAD CSECT C C SREAD READ ROUT I NES

CSSUBS CSECT 0 ¢ SSUBS BASIC SUBROUTINES

€S$2250 CSECT 0 CS2250 2250 EXPERIMANTAL INTERFACE

C4 REG I CSSWYM ODD REGISTER CONTAINING F'4’
DUBWORK SWYM M CSSWYM DOUBLE WORD WORK AREA

EJECT SUBR F.3 CSPRINT MOVES PRINTER TO NEXT PAGE

ELSE MACRO B.7 HACLIB COND - END TRUE; START FALSE PART
END IF MACRO B.T7 MACLIB COND = END FALSE; END CONDITIONAL
EQ MACRO 8.1 MACL 1B ? ARGl = ARG2{(TESTS TWO POINTERS)
EQ SUBR F.1 cssuBs STUTTER RTN FOR-ARGL = ARG2?

237

SWYM MNEMONICS SORTED ALPHABETICALLY PAGE 2

MNEMONIC CLASS APP CSECT COMMENTS

ERROR SUBR F.5 C SSUBS WRITES MESSAGE AND GOES TO TOP LVL
EVAL SUBR 0.3 CSEVAL STUTTER INTRPRTR EXPRSN EVALUATOR
EVCH MACRO 8.3 MACLIB GETS 4RITH VAL OF EBCDIC BITS

EVGET CAL 0.3 C SEVAL GET FUNCTION DEFINITION OF ATOM
EVLIS CAL 0.3 CSEVAL EVALUATE LIST OF EXPRESS IONS
EXPLOOE SUBR F.3 CSEVAL CONVERTS ATOM TO LIST CHARS IN PNAM
EXPR STRUC 0.2 C SFREEST INDICATOR FOR S-EXPR FUNCTIONS

F PEG | CSSWYM FREE STORAGE POINTER

FALSE MISC G CSSWYM L AL4NILS RET; (BRANCH TO IT)

FEND SwWYM E.4 CSSWYM POINTS AT END OF FREE SOTR

FEXPR STRUC 0.2 CSFREEST INDICATOR FOR S-EXP SPECIAL FNCTS
FINDBIT MACRO B.5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD
FINISH MISC G CSYAIN CLOSE FILES AND EXIT

FIXUP MACRO B.8 MACLIB GC-MAKE ENTRY IN FIXUP TABLE

FPROPS STRUC H C SFREEST STRUCTURE: ({SUBR .1) (FSUBR
FST MACRO B.l MACLIB FIRST ELEMENT OF LIST

FST SUBR F.l C SSuUBS STUTTERRTNFOR -1ST ELEM OF LIST
FSUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH FSLJBR PROP
FSUBR STRUC 0.2 CSFREEST INOICATOR FOR ASSEMBLED SPECIAL FNC
GC SUBR E.3 CSGC CONTROLS GARBAGE COLLECT ION

GCABAD SWYM E.4 CSSWYM G C ABENDS FOR BAD DATA STRUCTURE

GC ABEND MISC E.3 CSGC BALTD IF DATA STRUCTURE ERR, ABEND
GCPUT YACRO B.8 VYACLIB GC-PUT WORD TO NEW CORE

GCPUT MISC E.3 CSGC BAL'ED TO BY GCPUT MACRO

GCTIME SWYM E.4 CSSWYM GC COMPUTES ITS TIME

GET SUBR F.4 C SEVAL FINDS PROPERTY OF AN ATOM

GETCH CAL C CSREAD GET A CHARACTER

GETNAME MACRO 8.2 MACLIB LOAOS PTR AT PNAME CHR STR ATM
GETNUM MACRO 8.2 MACLIB GET VALUE OF NUM CHAR STR ATOM
GETOBJ SUBR F.2 CSREAD FINDS SYMBOL FOR CHAR STRING ARG
GOTO MACRO 8.7 YACLIB BRANCH

HASH MACRO 8.3 MACLIB HASH CODE AN IDENY FOR OBLIST

HEAO MACRO 8.2 MACLIB LOADS HEAD OF ATOM

IF MACRO 8.7 MACLIB COND -~ START PREDICATE

INIT M1sC G CSINIT SET UP SWYM REGS AND OPEN FILES
INST4 MACRO 8.8 YACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR
INVERTB MACRO B.5 MACLIB CHANGE BIT

[VCCH SUBR F.2 C SRFAO RETURNS NEXT INPUT CHAR

I vamo SUBR F.2 CSREAO RETURNS STATUS OF QUOTE MODE

L REG I CSSWYM LINKAGE REG /RETURN ADDRESS)

LIST FSUBR F.l CSEVAL MAKES A LIST Of THE ARG EXPRESSIONS
MAIN - MISC D.l CSMAIN MAIN LOOP OF STUTTER INTERPRETER
MAKSTRNG SUBR F.2 CSREAD MAKES CHR STR ATM FROM LIST OF CHRS
MATCM MACRO 8.3 MACLIB CREATES AN ATOM STRUC (IN CSFREEST)
MEMNXT SWYM E.4 CSSWYM ALTERNATE FREE STOR

MEMSIZ SWYM E.4 CSSWYM SIZE OF FREE STORAGE

MFMUSE SWYM E.4 CSSWYM FREE STOR IN USE

Ml FIELO E.2 CSSWYM GARB COL MARKING BIT

M2 FIELD E.2 CSSWYM GARB COL MARKING BIT

238

MNEHON IC

N

NIL
NLENGTH
NOT

NULL
NULL
NUMAT
NUMATVAL

OBLIST
ORX

P
"PBCLOSE
PBHD
PBOPEN
POP
POPN
PRATBAD
PRINT
PRINTER
PRINL
PRLNG
PRPEND
PRPT
PUSH
PUTBYTE
PUTCH
PUTPROP
PUTSTR

QCHAR
QUOTE

RDAT
RDCHAR
RDCLASS
RDCOL
RDEND
RDERCNT
RDERLOC
RDERMS
RDERNO
RDERR
RDERRCNT
RDLIST
RDLNG
RDSE
RDSTAT
RD SUPCTR
READ
READCH
REMPROP
RESETB

SWYM MNEMONICS SORTED ALPHABETICALLY

CLASS

REG
STRUC
CAL
MACRO
MACRO
SUBR
SWYM
SWYM

STRUC
MACRO

REG
CAL
SWYM
CAL
MACRO
MACRO
SWYM
SUBR
SHYM
SUBR
SWYM
SWYM
SWYM
MACRO
CAL
MISC
SUBR
CAL

MACRO
F SUBR

CAL
SHYM
SWYM
SWYM
SWYM
SWYH
SWYM
SWYM
SWYM
CAL
CAL
CAL
SWYM
CAL
SWYM
SWYM
SUBR
SUBR
SUBR
MACRO

APP

ETEXTT®Oo O I ~
. * -
—

<]
.
~

.
Ww

eTMOOoT~TTNETHAT @0 OO O~
AW WWW

M oo
IS

(B Bl N ¥eNaNsloNesNelaNaNaNalaNe Nale N

oA~ NN

C SECT

CSSUYM
CSFREEST
C SEVAL
MACL 18
MACLIB
CSSUBS
CSSWYM
CSSWYM

C SFREEST
MACLIB

CSSWYM
CSREAD
CSSWYM
CSREAD
MACLIB
MACLIB
CSSWYM
CSPRINT
CSSWYM
CSPRINT
CSSWYM
CSSWYM
CSSWYM
MACLIB
CSREAD
CSSWYM
CSEVAL
CSPRINT

MACLIB
CSEVAL

C SREAD
CSSWYM
CSSHYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSREAD
CSREAD
CSREAD
CSSWYM
CSREAD
CSSWYM
CSSWYM
C SREAD
CSREAD
C SEVAL
MACLIB

COMMENTS

POINTS AT NIL

ATOM WITH VALUE-NIL

GET LENGTH OF LIST

NEGATE PREDICATE MACRO TEST

? ARG = NI

STUTTER RTN FUR - IS ARG = NIL?
WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS

ATOM WITH VALUE - LISTOF ALL ATOMS
COMBINE TWO PREDS

STACK POINTER

FINISH CHAR STRING ATOM

HOLDS ADRS OF At-HD DURING PUTBYTE
START MAKING CHAR STRING ATOM

GETS TOP OFF STACK-REDUCES STACK
REDUCES STACK N TIMES

AREA FOR PRINGING *?TYPN*

PRINTS ITS ARG AND GOES TO NFXT LIN
DCB FOR PRINTING

PRINTS ITS ARG

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR

WHERE TO PUT NXT PRINT CHAR

PUTS ARG ATOP STACK

PUT RYTE INTO CHAR STRING

PUT CHARACTER IN PRINT LINE

STORES PROPERTIES UN ATOMS PROP LST
PRINT A CHARACTER STRING ATOM

CREATES A CHAR OBJ FOR'{('?)**,?
RETURNS ITS ARG UNEVALUATED

READ AN ATOM

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC OF LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE '>!
SYNTAX ERROR CARD COLUMN INDICATION
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

INDICATE INPUT SYNTA X ERROR
SYNTAX ERR-PARENS MADE BEFORE ">!
READ A LIST

NUMBER OF CHAR READ FROM EACH CARD
READ AN S-EXPRESSION

READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE *>*
READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD
REMOVES PROPERTIES FROM P=LIST
TURN OFF BIT

239

PAGE

MNEMONIC

RET
RPLCEL
RPLF
RPLHD
RPLTOP
RPLTOPN
RST
RST
RSTAl
RSTA2
R STA3
RSTMAK
RSTT
RSTTT

s
SASSOC
SETBIT
ST
STAKN
STIME
STIVCCH
STIVQMO
STRAT
SuB
SUBR
SUBR
SWEAR
SUERROR
SWYM
SHYMSAVE
SYSFOO

T
T

TAIL
TAK2
TERPRI
TEST6
THEN
TIME
T0P
TOPN
TRUE

TT
TTIME
TVEND
TVMAK
TVSTART

UNBIND
UNBOUND

VALUE
VCHAROBS

SWYM

CLASS

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
SUBR
MISC
HISC
MISC
MACRO
MISC
MISC

REG
SUBR
MACRO
SWYM
CAL
CAL
SUBR
SUBR
MACRO
MACRO
MACRO
STRUC
MACRO
MISC
SUYM
SWYM
SWYM

STRUC
REG
MACRO
SUBR
SUBR
MACRO
MACRO
SWYM
MACRO
MACRO
MISC
REG
CAL
SWYM
MACRO
SWYM

CAL
STRUC

MACRO
SHYM

MNEMONICS SORTED ALPHABETICALLY

APP

O Moo ® MoO® MWw o ™
— R e e A A A N2 DO

TEXEXTODOWPOT TIOOOE®T —
. . L . . .
PN W WM N

. . .
~Now— N

FNINN

ZOZO—~ONY OXBO MM — T
o

C SECT

MACLIB
MACLIB
MACL I B
MACLIB
MACLIB
MACLIB
MACLIB
C SsuBS
C SSwym
CSSWYM
CSSWYM
MACLIB
CSSYYM
CSSUYM

CSSWYM
GCSEVAL
MAGCLIB
CSSUYM
cssuas

_cssuas

CSREAD
CSREAD
MACLIB
MACLIB
MACLIB
CSFREEST
HACL | B
CSSWYM
CSSWYM
CSSWYM
CSSWYM

CSFREEST
CSSWYM
MACLIB
cssuss
CSPRINT
MACLIB
MACL I a
CSSWYM
MACL I B
MACLIB
CSSWYM
C SSWYM
¢ SSuBS
CSSWYM
MACLIB
CSSWYM

CSEVAL
C SFREEST

MACLTIB
CSSWYM

COMMENTS

SUBROUTINE RETURN

REPLACES ATOM CELL

REPLACES FIRST PTR OF LIST
REPLACES HEAD OF ATOM

REPLACE TOP ITEM ON STACK
REPLACE NTH ITEM OF STACK

ALL BUT 1ST ELEMENT OF LIST
STUTTER RTN FOR = REST OF LIST
RST{ALD). BAL'EDYO BY RST MACRO
RST{A2). BAL'EDTO BY RST MACRO
RST(A3), BAL'EDTO BY RST MACRQ
MAKE ROUTINES FOR ‘RST’ TO BAL TO
RST(T). BAL'EDTO BY HST MACRO
RST(TT). BAL'EDTO BY RST MACRO

BASE REG FOR CSSWYM

FINDS ARC ON AN ASSOCIATION LIST
TURN ON BIT

POINTER AT T

GET FREE STORAGE BLOCK

START TIMER

SETS CURRENT INPUT CHAR

SETS QUOTE MODE

CREATES STRING ATOM STRUC (FREEST)
SUBROUTINE ENTRY

CREATES AN ATOM WITH SUBR PROPERTY
INDICATOR FOR ASSEMBLED FUNCTIONS
SYSTEM ERROR

SYSTEM ERROR

FIRST LOC IN CSSUYM

SAVE AREA FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS

ATOM WITH VALUE-T

TEMP (EVEN, NEXT TOTT)

LOADS PTR AT TAIL OF ATOM

MAKES LIST W/FSTARGL AND RST ARGZ
MOVES PRINTER TO NEXT LINE

TEST BIT

COND - END PRED: START TRUE PART
TIME SET'AT LAST STIME

GETS TOP OF STACK-BUT LEAVES IT
GETS NTH ITEM ON STACK

L Al,T3 RET; (BRANCH TO IT)
TEMP (ODD, NEXT TOT)

HOW LONG SINCE LAST STIME

LABEL OF LAST ENTRY IN TV TABLE
MAKE A TRANSFER VECTOR FOR CAL
LABEL OF START OF TRANS VECT TABLE

RESTORE OLD BINDINGS OF ARG ATOMS
RECOGNIZED BY EVAL AS ERROR VALUE

CREATES AN ATOM WITH A VALUE
POINTER AT CHAR OBJECTS LIST

240

MNEMONIC

VF PROP S
VOBL | ST
VUNBND

XB
#M1M2

#PO
HEXXXX

SUYM MNEMONICS SORTED ALPHABETICALLY

CLASSAPP CSECT

SUYM M CSSHWYM
SWYM M CSSWYM
SWYM M CSSWYM

MACRO B.6 MACLIB

SUYM E.4 CSSWYM
SUYM M CSSWYM
SWYM M CSSWYM

COMYENTS

POINTER Al FPROPS STRUCTURE
POINTER AT ALL OBJECTSLIST
POINTER-AT SPECIAL ‘UNBOUND’
TRANSFER INTO MIDDLE OF SUBROUT INE
USED BY GC TO ‘OR IN Ml & M2 BITS

ADRS OF BEGINNING OF STACK
TRANSFEP VECTOR, ADKS OF RTN XXXX

2kl

PAGE

5

MNEMONIC

ATCOL
BINDERY
COLLECT
coLx
EVGET
EVLIS
GETCH
NLENGTH
PBCLOSE
PBOPEN
PUTBYTE
PUTSTR
RDAT
RDERR
RDERRCNT
RDLIST
ROSE
STAKN
STIME
TTIME
UNB | ND

C SEVAL
C SFREEST
CSGC
CSINIT
CSMA IN
C SPDL
CSPR INT
CSREAD
¢ SSUBS
CSSWYM
€S2250

CELFNC
CELREL
CELVAL
MI

M2

COND
LIST
QUOTE

AND
ATOM
BCMAC
BIT
BITTBLMK
CAL
CELL
CHAR
CHTBL
ELSE
END IF

SWYM MNEMONICS SORTED BY CLASS

CLASS APP CSECT

CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL

PG)G)O OO0 Docommoem

CSECTD
CSECT H
CSECTE
CSECT
CSECT
CSECT
CSECT
CSECTC
CSECT ClI
CSECTM
CSECT 0

[eNeNeNe}

FIELD M
FIELDM
FIELDM

WWewwwaw

CSGC
CSEVAL
CSGC
CSGC
CSEVAL
CSEVAL
CSREAD
CSEVAL
CSREAD
CSREAD
CSREAD
CSPRINT
C SREAD
C SREAD
CSREAD
CSREAD
CSREAD
C ssuas
C ssuas
C SSuBS

3 CSEVAL

CSEVAL
CSFREEST
CsGe
CSINIT
CSMAIN
CSPOL
CSPRINT
CSREAD
CSsuBS
CSSUYM
€S2250

CSSWYM
CSSWYM
CSSWYM

FIELD E.2 CSSWYM
FIELD E.2 CSSUYM

FSUBR
F SUBR
FSUBR

m ™ m

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

WO OO @Y VW

NN®WNOO o~ =N

.4
.I
.4

CSEVAL
CSEVAL
C SEVAL

MACLIB
MACLIB
MACLIB
MACLIB
MACL IB
MACLIB
MACLISB
MACLIB
MACLIB
MACLIB
MACLIB

COMMENTS

COLLECTS AN ATOM

BIND ARG ATOMS TUO THEIR VALUES
CREATES IMAGE OF ARG1 NN E wCORE
CHECKS AND COLLECTS ONE POINTER
GET FUNCTION DEFINITION OF ATOM
EVALUATE LIST OF EXPRESS IONS
GET A CHARACTER

GET LENGTH OF LIST

FINISH CHAR STRING ATOM

START MAKING CHAR STRING ATOM
PUT BYTE INTO CHAR STRING

PRINT A CHARACTER STRING ATOM
READ AN ATOM

INDICATE INPUT SYNTAX ERROR
SYNTAX ERR-PARENS MADE BEFORE *>!*
READ A LIST

READ AN S-EXPRESSION

GET FREE STORAGE BLOCK

START TIMER

HOW LONG SINCE LAST STIME
RESTORE OLD BINDINGS OF ARG ATOMS

INTERPRETER AND RELATED ROUTINES
FREE STORAGE, INCL INITIAL STRUCTS
GARBAGE COLLECTOK

INITIALIZATION

MAIN STUTTER LOOP

STACK

PRINT ROUTINES

READ ROUTINES

BASIC SUBROUTINES

GLOBAL INFORMATION FOR SUYM RTNS
2250 EXPERIMANTAL INTERFACE

ATOMHEAD-FUNC DEF TYPE BITS
ATOM HEAD-CELL IS RELOCATABLE
ATOM HEAD-CELL HAS VALUE(NOTFNC)
GARB COL MARKING BIT

GARB COL MARKING BIT

CONDITIONAL EXPRESSION EVALUATED
MAKES A LIST OF THE ARC EXPRESSIONS
RETURNS ITS ARG UNEVALUATED

COMBINE TWO PREDS

? IS ARG AN ATOM

MAKE A BR CONDITION INSTRUCTION
IDENTIFY MNEMONIC WITH BIT TN WORD
MAKE A TABLE FOR *BIT'MACRD
SUBROUTINE CALL

LOADS ATOM CELL INTO REG

CREATES 4 CHAR OBJECT ATOM

MAKE A CHARACTER TABLE {FORTR)
COND - END TRUE; START FALSE PART
COND — END FALSE; END CONDITIONAL

PAGE 6

SWYM MNEMONICS SORTED BY CLASS PAGE 7

MNEMONIC CLASS APP CSECT COMMENTS

EQ MACRO 5.1 MACLIB ? ARGl = ARG2(TESTSTWO POINTERS)
EVCH MACRO 5.3 HACLIB GETS ARITH VAL OF EBCDIC BITS
FINDBIT MACRO B. S5 MAGCLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD
F IXUP MACRO 8.8 MACL1B GC-MAKE ENTRY IN FIXUP TABLE

FST MACRO 8.1 MACLIB FIRST ELEMENT OF LIST

F SUBR MACRO 0.3 MACLIB CREATES AN ATOM WITH FSUBR PROP
GCPUT MACRO 8.8 MACLIB GC-PUT WORD TO NEW CORE

GETNAME MACRO 8.2 MACLIB LOADS PTR AT PNAME CHR STR ATM
GETNUM MACRO 8.2 MACLIB GET VALUE OF NUM CHAR STR ATOM
GOTC MACRO 8.7 MACLIB BRANCH

HASH MACRO 8.3 MACLIB HASH CODE AN IDENT FOR OBLIST

HEAD MACRO 8.2 MACLIB LOADS HEAD OF ATOM

I'F MACRO B.7 MACLIB COND - START PREDICATE

INST4 MACRO 5.8 MACLIB ASSEMBLE INSTRUCTION WO/ ALIGN ERR
.1 NVERTB MACRO 8.5 MACLIB CHANGE BIT

MATOM MACRO 5.3 MACLIB CREATES AN ATOM STRUC (INCSFREEST)
NOT MACRO 8.7 MACLIB NEGATE PREDICATE MACRO TEST

NULL MACRO 8.1 MACLIR ? ARG = NILL

ORX MACRO 8.7 MACLIB COMBINE TWO PREDS

POP MACRO 8.4 MACLIB GETS TQP OFF STACK-REDUCES STACK
POPN MACRO -8.4 MACL IB REDUCFS STACK N TIMES

PUSH MACRO 8.4 MACLIB PUTS ARG ATOP STACK

QCHAR MACRO 8.3 MACLIB CREATES A CHAR OBJ FOR '(* ') 1,!
RESETB MACRO 5.5 MACLIB TURN OFF BIT

RET MACRO 6.6 MACLIB SUBROUTINE RETURN

RPLCEL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLF MACRO 8.1 MACLIB REPLACES FIRST PTR OF LIST

R PLHD MACRO B.2 MACLIB REPLACES HEAD OF ATOM

RPLTOP MACRO 8.4 MACLIB REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 8.4 MACLIB REPLACE NTH ITEM OF STACK

RST MACRO 8.1 MACLIB ALL BUT 1ST ELEMENT OF LIST

RSTMAK MACRO B.1 MACLIB MAKE ROUTINES FUR ‘RST' TO BAL TO
SETBIT MACRO 0.5 MACLIB TURN ON BIT

STRAT MACRO 8.3 MACLIB CREATES STRING ATOM STRUC (FREEST)
SuB MACRO 8.6 MACLIB SUBROUTINE ENTRY

SUBR MACRO 8.3 MACLIB CREATES AN ATOM WITH SUBR PROPERTY
SWEAR MACRO 8.8 MACLIB SYSTEM ERROR

TAIL MACRO 5.2 MACLIB LOADS PTR AT TAIL OF ATOM

TESTB MACRO 5.5 MACLIB TEST BIT

THEN MACRO 8.7 MACLIB COND - END PRED; START TRUE PART
TOP MACRO 8.4 MACLIB GETS TOP OF STACK-BUT LEAVES IT
TOPN MACRO 8.4 MACL IB GETS NTH ITEH ON SJACK

TYMAK MACRO 8.6 MACLIB MAKE A TRANSFER VECTOR FOR CAL
VALUE MACRO 8.3 MACLIB CREATES AN ATOM WITH A VALUE

X8 MACRO B.6 MACL B TRANSFER INTO MIDDLE OF SUBROUTINE
AT MISC M CSSWYM EQUATED TO ATOM OFFSET(6)

ATCO MISC E.3 CSGC PART OF ATCOL FOR TYPE O ATOMS
ATC1 MISsC E.3 CSGC PART OF ATCOL FOR TYPE 1 ATOMS
CHOKE MISC E.3 CSGC RRANCH TO IF STORE EXHAUSTED, ABEND
FALSE MISC G CSSUYM LALGNILSRET: (BRANCH TO IT)
FINISH MISC G CSMAIN CLOSE FILES AND EXIT

GCABEND MISC E.3 CSGC BAL TO IF DATA SJRUCJURE ERR, ABEND
GCPUT MISC E.3 CSGC BAL'ED TO BY GCPUT MACRO

INIT MISC G CSINIT SET UP SWYM REGS AND OPEN FILES

2h3

MNEMONIC

MAIN
PUTCH
RSTAL
RSTA2

R STA3
RSTT
RSTTT
SWERROR
TRUE

Al
A2
A3
A4
AS
Ab
B

c4

—»rmeo=Z2Mrm

17

CHAROB S
EXPR
FEXPR
FPROPS
FSUBR
NIL

OBLI ST
SUBR

T
UNROUND

ATOM
BELL
EJECT
EQ
ERROR
EVAL
EXPLODE
FST

GC

GET
GETOBJ
IVCCH
1vQMo
MAKSTRNG
NULL
PRINT
PRIN1
PUTPROP

SWYM MNEMONICS SORTED BY CLASS

CLASS

MISC
MISC
MISC
MISC
MISC
MISC
MISC
MISC
MISC

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG

STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STQUC
STRUC
STRUC

SURR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SURR
SUBR
SUBR
SUBR
SUBQ
SUBR
SUBR
SUBR
SUBR

APP CSECT

.1 CSMAIN
CSSWYM

CSSUYM

CSSWYM
CSSWYM
CSSUYM
C SSUYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
C SSUwM
CSSUYM
CSSUYM
CSSUYM
C SSuYM

Pl et bt o e bl = b B o e

TIOIITOITOOIT

.lcssuBs
5 CS$2250
.3 CSPRINT
.l CSSUBS
.5 CSSUBS
.3 CSEVAL
.3 CSEVAL
.1 CSSUBS
CSGC

CSFVAL
CSREAD
CSREAD
CSQEAD
CSREAD
CSSUBS
CSPRINT
CSPRINT
. 4 CSEVAL

MM AN T Mo MM MM
Ww =P N A

CSFREEST
.2 CSFREEST
.2 CSFREEST
C SFREEST
.2 C SFREEST
CSFREEST
CSFREEST
.2 CSFREEST
CSFREEST
CSFREEST

COMMENTS

MAIN LOOP Of STUTTER INTERPRETER
PUT CHARACTER IN PRINT L INE
RST(Al). BAL'EDTO BY RST MACRO

RST(A2). BAL'EDTO BY RST MACRO
RST(A3). BAL'EDTO BY RST MACRO
RST(T). BAL'EDTO BY RST MACRO
RST(TT}). BAL'EDTO BY RST MACRO

SYSTEM ERROR
L Al,T3 RET; (BRANCH TO IT)
ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

RASE REG FOR ALL ROUTNS

ODD REGISTER CONTAINING F'4!*

FREE SYTORAGE POINTER

LINKAGE REG (RETURN ADDRESS)
POINTS AT NIL

STACK POINTER

RASE REG FOR CSSUYM

TEMP(EVENy NEXT TOTT)

TEMP (ODD, NEXT TO T)

ATOM WITH VALUE = LIST OF ALL CHARS
INDICATOR FOR S-EXPR FUNCTIONS
INDICATOR FOR S-EXP SPECIAL FNCTS
STRUCTIJRE: {{SUBR .1)(FSUBR . . .
INDICATOR FOR ASSEMBLED SPECIAL FNC
ATOM WITH VALUE-NIL

ATOM UITH VALUE = LISTOFALL ATOMS
INDICATOR FOR ASSEMBLED FUNCTIONS
ATOM WITH VALUE-T

RECOGNIZED BY EVAL AS ERROR VALUE

STUTTER ROUTINE FOR-IS ARG ATOM?
RINGS BELL ON 2250

MOVES PRINTER TO NEXT PAGE

STUTTER RTN FOR-ARGLl=ARG2?

WRITES MESSAGE AND GOES TO TOP LVL
STUTTER INTRPRTR EXPRSN EVALUATOR
CONVERTS ATOM TO LIST CHARS IN PNAM
STUTTER RTN FOR -1STELEM OF LIST
CONTROLS GARBAGE COLLECTION

FINDS PROPERTY OF AN ATOM

FINDS SYMBOL FOR CHAR STRING ARG
RETURNS NEXT INPUT CHAR

RETURNS STATUS OF QUOTE MODE

MAKES CHR STR ATM FROM LIST OF CHRS
STUTTER RTN FOR - IS ARG = NIL?
PRINTS ITS ARG AND GOES TO NEXT LIN
PRINTS ITS ARG

STORES PROPERTIES ON ATOMS PROP LST

2lly

PAGE 8

MNEMONIC

READ

R EADCH
REHPROP
RST
SASSOC
STIVCCH
STIVQMO
TAK2
TERPRI

ATAMT
CARDRDR
DUBUORK
FEND

“GCABAD
GCTIME
MEMNXT
MEMSIZ
MEMUSE
NUMAT
NUMATVAL
PBHD
PRATBAD
PRINTER
PRLNG
PRPEND
PRPT
RDCHAR
ROCLASS
RDCOL
RDEND
RDERCNT
RDERLOC
RDERHS
RDERNO
RDLNG
RDSTAT
ROSUPCTR
ST
SHYM
SUYMSAVE
SYSFDO
TIME
TVEND
TVSTART
VCHAROBS
VFPROPS
VOBLIST
VUNBND
#M1M2
#PO
#XXXX

SUYM MNEMONICS SORTED BY CLASS

CLASS

SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SURR

SHYM
SWYM
SHYM
SWYM
SWYM
SWHYM
SUYM
SWYM
SUYM
SUYM
SUYM
SUYM
SWYM
SWYM
SHYM
SUYM
SWYM
SWYM
SUYM
SWYM
SUYM
SWYM
SWYM
SUYM
SWYM
SWYM
SWYM
SWYM
SWYM
SUYM
SWYM
SWYM
SUYM
SUYM
SWYM
SUYM
SWYM
SWYM
SWYM
SUYM
SWYM
SUYM

APP CSECT

CSsSuUBS
CSPRINT

CSShWYM
CSSWYM
CSSUYM
.4 CSSUYM
. 4 CSSHYM
.4CSSUYM
. 4 CSSWYM
.4CSSUYM
.4 CSSWYM
CSSHYM
CSSWYM
CSSWYM
. 3 CSSHYM
CSSWYM
.3CSSUYM
.3CSSUYM
.3 CSSUYM
CSSWYM
CSSHYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSHYM
C SSUYM
CSSWYM
Ese4 CSSUYM
M CSSHWYM
M CSSUYM

222222222222 00000c0% MmO fxmmmmmmTEo

COMMENTS

READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD
REMOVES PROPERTIES FROM P-LIST
STUTTER RTN FOR = REST OF LIST
FINDS ARG ON AN ASSOCIATION LIST
SETS CURRENT INPUT CHAR

SETS OUOTE MODE

MAKES LIST W/ FST ARGL AND RST ARG2
MOVES PRINTER TO NEXT LINE

ATOM OFFSET {6}

DCB FOR READING CARDS

DOUBLE WORD WORK AREA

POINTS AT END OF FREE SOTR

CC ABENDS FOR BAD DATA STRUCTURE
GC COMPUTES ITS TIME

ALTERNATE FREE STOR

SIZE OF FREE STORAGE

FREE STOR IN USE

WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS
HOLDS ADRS Of AT-HO DURING PUTBYTE
AREA FOR PRINGING *?TYPN?

DCB FOR PRINTING

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR
WHERE TO PUT NXT PRINT CHAR

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC Of LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE *>*
SYNTAX ERROR CARD COLUMN INDICATION
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

NUMBER OF CHAR READ FROM EACH CARD
READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE *>!
POINTER ATT

FIRST LOC IN CSSUYM

SAVE AREA FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS
TIME SETAT LAST STIME

LABEL OF LAST ENTRY IN TV TABLE
LABEL OF START OF TRANS VECT TABLE
POINTER AT CHAR OBJECTS LIST
POINTER AT FPROPS STRUCTURE
POINTER AT ALL OBJECTS LIST
POINTER AT SPECIAL ‘UNBOUND’

USED BY GC TO ‘OR IN Ml &M2BITS
ADRS OF BEGINNING OF STACK
TRANSFER VECTORs AORS Of RTN XXXX

o5

PAGE 9

SUYM MNEMONICS SORTED BY APPENDIX PAGE 10

MNEMONIC CLASS APP CSECT COMMENTS

ATOM MACRO 0.1 MACLIB ? IS ARG AN ATOM

EQ MACRO 0.1 MACLIB ? ARGl =ARG2(TESTS TWO POINTERS)
FST MACRO 6.1 MACLIB FIRSTELEMENT OF LIST

NULL MACRO 8.1 MACLIB ? ARG = NL

RPLF MACRO 8.1 MACLIB REPLACES FIRST PTR OF LIST

RST MACRO B.1 MACLIB ALL BUT 1ST ELEMENT OF LIST

RSTAlL MISC 6.1 CSSUYM RSTI(Al). BAL'EDTO BY RST MACRO
RSTA2 MISC 8.1 CSSWYM RST(A2). BAL’'EDTO BY RST MACRO
RSTA3 MISC 8.1 CSSuUYM RST{A3). BAL'EDTO BY RST MACRO
RSTMAK MACRO 6.1 MACLIB MAKE ROUTINES FOR 'RST' TOBAL TO
RSTT MISC 0.1 GCSSUYM RST(T). BAL’'EDTO BY RST MACRO
RSTTT HISC Bel CSSWYM RSTITT). BAL’'EDTO BY RST MACRO
CELL MACRO B.2 MACLIB LOADS ATOM CELL INTO REG

GETNAME MACRO 0.2 YACLIB LOADS PTR AT PNAME CHR STR ATM
GETNUM MACRO 0.2 MACLI®S GET VALUE OF NUM CHAR STR ATOM
HEAD MACRO 5.2 MACLIB LOADS HEAD OF ATOM

RPLC EL MACRO 8.2 MACLIB REPLACES ATOM CELL

RPLHD MACRO 8.2 MACLIB REPLACES HEAD OF ATOM

TAIL MACRO 8.2 MACLIB LOADS PTR AT TAIL DF ATOM

CHAR MACRO 0.3 MACLIB CREATES A CHAR OBJECT ATOM

EVCH MACRO Be3 MACLIB GETS ARITH VAL OF EBCDIC BITS

F SUBR MACRO 0.3 MACLI B CREATES AN ATOM WITH FSUBR PROP
HASH MACRO 0.3 MACLIB HASH CODE AN IOENT FOR OBLIST
YATOM MACRO 0.3 MACLIB CREATES AN ATOM STRUC (IN CSFREESTY)
QCHAR MACRO 0.3 MACLIB CREATES A CHAR OBJ FOR{*''}?1,?
STRAT MACRO 8.3 MACLIB CREATES STRING ATOM STRUC (FREEST)
SUBR MACRO 8.3 MACLIR CREATES AN ATOM WITH SUBR PROPERTY
VALUE MACRO 8.3 MACLIB CREATES AN ATOM WITH A VALUE

POP MACRO 0.4 MACLIB GETS TOP OFF STACK-REDUCES STACK
POPN MACRO 0.4 WMACLIB REDUCES STACK N TIMES

PUSH MACRO B.4 MACLIB PUTS ARG ATOP STACK

RPLTOP MACRO 0.4 MACLIB REPLACE TOP ITEM ON STACK

RPLTOPN MACRO 8.4 MACLIB REPLACE NTH ITEM OF STACK

TOP MACRO 8.4 MACLIB GETS TOP OF STACK-BUT LEAVES IT
TOPN MACRO 8.4 MACLIB GETS NTH ITEM ON STACK

BIT MACRO 8.5 MACLIB IDENTIFY MNEMONIC WITH BIT IN WORD
B ITTBLHK MACRO 8.5 MACLIB MAKE A TABLE FOR ‘BIT'MACRO
FINDRIT MACRO 8.5 MACLIB FIND BIT MNEMONIC FOR BYTE-IN-WORD
I NVFR TB MACRO 0.5 MACLIB CHANGE BIT

RESETB MACRO 8.5 MACLIB TURN OFF BIT

SETBIT MACRO B+5 MACLIB TURN ON BIT

TESTS8 MACRO B.5 MACLIB TEST BIT

CAL MACRO Be.6 MACLIB SUBROUTINE CALL)
RET MACRO 8.4 MACLIB SUBROUTINE RETURN

SuB MACRO B.6 MACLIB SUBROUTINE ENTRY

TVMAK MACRO B.6 MACLIB MAKE A TRANSFER VECTOR FOR CAL

X8 MACRO 0.6 MACLIB TRANSFER INTO MIDDLE OF SUBROUTINE
AND MACRO 8.7 MACLIB COMBINE TWO PREOS

BCMAC MACRO B.7 MACLIB MAKE A BR CONDITION INSTRUCTION
ELSE MACRO 8.7 MACLIB COND - END TRUE; START FALSE PART
END IF MACRO 6.7 MACLIB COND - END FALSE; END CONDITIONAL
GOoTQ MACRO Bs7 MACLIB BRANCH

IF MACRO 0.7 MACLIB COND - START PREDICATE

NOT MACRO 6.7 MACLI B NEGATE PREDICATE MACRO TEST

ORX MACRO Be.7 YACLIB COMBINE TWO PREDS

oL6

MNEMON It

THEN

CHTBL
F IXup
GCPUT
INST4
SWEAR

ATAMT
CSREAD
GETCH
PBCLOSE
PBHD
PBOPEN
PUTBYTE
RDAT
RDCHAR
RDCLASS
RDCOL
ROEND
RDERCNT
ROERLOC
RDERMS
RDERNO
RDERR
RDERRCNT
ROLIST
RDLNG
RDSE
RDSTAT
RD SUPCTR

CSEVAL
MAIN

E XPR

F EXPR
FSUBR
SUBR
BINDERY
EVAL
EVGET
EVLIS
UNBIND

CSGC

Ml

M2
ATCOL
AT-CO
ATC1
CHOKE
COLLECT
coLx

GC
GCABEND
GCPUT

SWYM MNEMONICS SORTED BY APPENDIX

CLASS APP
MACRO 0.7
MACRO 0.8
MACRO 0.8
MACRO B.8
MACRO 0.8
MACRO 0.8
SWYM C
CSECT C
CAL C
CAL C
SUYM c
CAL C
CAL C
CAL C
SWYM C
SHYM C
SWYM C
SWyM C
SWYM C
SWYM G
SUYM C
SwWwyMm C
CAL C
CAL C
CAL C
SWyM C
CAL C
SUYM C
SUYM c
CSECT D
MISC 0.1
STRUC 0.2
STRUC 0.2
STRUC 0.2
STRUC 0.2
CAL 0.3
SUBR 0.3
CAL. 0.3
CAL 0.3
CAL 0.3
CSECT E
FIELD E.2
FIELD E.2
CAL E3
MISC E3
MISC E3
MISC E.3
CAL E3
CAL E3
SUBR E.3
MISC E3
MISC E .

CSECT

MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB

CSSWYM
CSREAD
CSREAD
CSREAD
CSSWYM
CSREAD
CSREAO
CSREAD
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSWYM
CSSHYM
CSSUYM
CSSUYM
C SREAD
CSREAD
CSREAD
CSSUYM
CSREAD
CSSUYM
CSSUYM

CSEVAL
CSMAIN
CSFREEST
CSFREEST
CSFREEST
C SFREEST
CSEVAL
C SEVAL
CSEVAL
CSEVAL
CSEVAL

CSGC
CSSUYM
C SSUYM
CsSGC
CSGC
C SGC
CSGC
CSGC
C SGC
CSGC
C SGC

3 CSGC

PACE 11

COMMENTS

COND - END PRED; START TRUE PART
MAKE A CHARACTER TABLE {(FORTR)
GC-MAKE ENTRY IN FIXUP TABLE
GC-PUT WORD TO NEW CORE

ASSEMBLE INSTRUCTION WO/ ALIGN ERR
SYSTEM ERROR

ATOM OFFSET (6}

READ ROUTINES

GET A CHARACTER

FINISH CHAR STRING ATOM

HOLDS ADRS OF AT-HD DURING PUTBYTE
START MAKING CHAR STRING ATOM

PUT BYTE INTO CHAR STRING

READ AN ATOM

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC OF LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE '>°
SYNTAX ERROR CARD COLUMN INOICATION
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

TNDICA'TE INPUT SYNTAX ERROR

SYNTAX ERR-PARENS MADE BEFORE '>'
READ A LIST

NUMBER OF CHAR READ FROM EACH CARD
READ AN S-EXPRESSION

READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE *>*

INTERPRETER AND RELATED ROUTINES
MAIN LOOP OF STUTTER INTERPRFTER
INDICATOR FOR S-EXPR FUNCTIONS
INDICATOR FOR S-EXP SPECIAL FNCTS
INDICATOR FOR ASSEMBLED SPECIAL FNC
INDICATOR FOR ASSEMBLED FUNCTIONS
BIND ARG ATOMS TO THEIR VALUFS
STUTTER INTRPRTR EXPRSN EVALUATOR
GET FUNCTION DEFINITION OF ATOM
EVALUATE LIST OF EXPRESS IONS
RESTORE OLD BINDINGS OF ARG ATOMS

GARBAGE COLLECTOR

GARB COL MARKING BIT

GARB COL MARKING BIT

COLLECTS AN ATOM

PART GF ATCOL FOR TYPE 0 ATOMS
PART OF ATCOL FOR TYPE 1 ATOMS
BRANCH TO IF STORE EXHAUSTED, ABEND
CREATES IMAGE OF ARG IN NEW CORE
CHECKS AND COLLECTS ONE POINTER
CONTROLS GARBAGE COLLECT ION

BAL TOIF DATA STRUCTURE ERRyABEND
BAL'ED TO BY GCPUT MACRO

o7

MNEMONIC

F END

GCARAD
GCTIME
MEMNXT
MEHSIZ
MEMUSE
#M1IM2

ATOM

EQ

FST
LIST
NULL
QST
TAK2
GETOBJ
IVCCH

| VQMO
MAKSTRNG
READ
QEADCH
STIVCCH
STIVQMO
EJECT
EXPLODE
PRATBAD
PRINT
PRIN1
PRLNG
PRPEND
PRPT
TERPRI
COND
GET
PUTPROP
QUOTE
REMPROP
SASSOC
BELL
ERROR

FALSE
FINISH
INIT
NLENGTH
PUTCH
PUTSTR
STAKN
STIHE
SUFRROR
TRUE
TTIME

CHAROB S
CSFREEST

SUYM MNEMONICS SORTEO BY APPENDIX

CLASS

SWYM
SWYM
SUYM
SUYM
SUYM
SWYM
SUYM

SURR
SUBR
SUBR
F SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUBR
SUYM
SUBR
SUBR
SWYM
SWYM
SWYM
SUBR
FSUBR
SUBR
SUBR
FSUBR
SUBR
SUBR
SUBR
SUBR

Ml SC
MISC
MISC
CAL
MISC
CAL
CAL
CAL
MISC
MISC
CAL

STRUC
CSECT

APP

mmmmmmm
NN N NN

VMORAPRRAEPRARREPRPOUWLOWWWWWWWMNNNEENNONN N — e —

MT M TT MM T T T T TTTNTMTTMTTTTTNNT NTT T

Iz [oNoNoNoNoNoNoNoNoRoNO)

CSECT

CSSWYM
CSSUYM
CSSUYM
CSSWYM
CSSHWHYM
CSSUYM
CSSWYM

CSSUBS
CSSUBS
CSSUBS
CSEVAL
C SSUBS
CSSIJBS
CSSUBS
CSREAD
CSREAD
CSREAD
CSREAD
C SREAD
C SREAD
C SREAO
CSREAD
CSPRINT
CSEVAL
CSSUYM
CSPRINT
CSPRINT
CSSWYM
CSSUYM
CSSUYM
CSPRINT
CSEVAL
CSEVAL
CSEVAL
CSEVAL
C SEVAL
CSEVAL
€S2250
CSSURS

CSSUYM
CSMAIN
CSINIT
CSEVAL
CSSUYM
CSPRINT
CSSuUBS
C SSuBS
CSSWYM
CSSWYM
C SSuBS

CSFREEST
CSFREEST

COMMENTS

POINTS AT END OF FREE SOTR

GC ABENDS FOR BAD DATA STRUCTURE
GC COMPUTES ITS TIME

ALTERNATE FREE STOR

SIZE OF FREE STORAGE

FREE STOR IN USE

USED BY GC TO ‘OR IN M &M2 BITS

STUTTER ROUTINE FOR-1S ARG ATOM?
STUTTER RTN FOR-ARGL = ARG27?
STUTTER RTN FOR =1ST ELEM OF LIST
MAKES A LIST OF THE ARG EXPRESSIONS
STUTTER RTN FOR = IS ARG = NIL?
STUTTER RTN FOR = REST OF LIST
YAKES LIST W/ FST ARGl ANO RST ARG2
FINDS SYMBOL FOR CHAR STRING ARG
RETURNS NEXT INPUT CHAR

RETURNS STATUS OF QUOTE MODE

MAKES CHR STR ATM FROM LIST OF CHRS
READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD

SETS CURRENT INPUT CHAR

SETS QUOTE MODE

MOVES PRINTER TO NEXT PAGE
CONVERTS ATOM TO LIST CHARS IN PNAM
AREA FOR PRINGING *2TYPN!

PRINTS ITS ARG AND GOES TO NEXT LIN
PRINTS ITS ARG

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR

WHERE TO PUT NXT PRINT CHAR

MOVES PRINTER TO NEXT LINE
CONDITIONAL EXPRESSION EVALUATED
FINDS PROPERTY OF AN ATOM

STORES PROPERTIES ON ATOMS PROP LST
RETURNS ITS ARG UNEVALUATED
REMOVES PROPERTIES FROM P-LIST
FINDS ARG ON AN ASSOCIATION LIST
RINGS BELL ON 2250

WRITES MESSAGE AND GOES TO TOP LVL

L Al4NILS RET; (BRANCH TO IT)
CLOSE FILES AND EXIT

SET UP SWYM REGS AND OPEN FILES
GET LENGTH OF LIST

PUT CHARACTER IN PRINT' LINE
PRINT A CHARACTER STRING ATOM
GET FREE STORAGE BLOCK

START TIMER

SYSTEM ERROR

L Al,T3 RET; (BRANCH TOIT)
HOW LONG SINCE LAST STIME

ATOM WITH VALUE - LIST OF ALL CHARS
FREE STORAGE, INCL INITIAL STRUCTS

2k8

PAGE X2

MNEMONIC

FPROPS
NIL
OBLIST

T
UNBOUND

Al
A2
A3
A4
A5
A6

w
IS

—|—|(/)'UZ|"1'|!0

—

AT

C ARDRDR
CELFNC ’
CELREL
CELVAL
CSSUYM
DUBUORK
NUMAT
NUMATVAL
PRINTER
ST

SYYM
SUYMSAVE
SYSFOO
TIME
TVEND
TVSTART
VCHAROBS
VFPROPS
VOBLIST
VUNBND
#PO
#XXXX

CSINIT
CSMAIN
CSPDL
CSPRINT
CSSUBS
€S2250

SWYM MNEMONICS SORTED BY APPENDIX

CLASS APP

STRUCH
STRUCH
STRUC H
STRUCH
STRUC H

REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG
REG |
REG I
REG 1

el I e R]

MISC M
SWYM M
FIELD M
FIELD
FIELD
CT

w

x

<

=
TTXTXTTZTTXTITTTXITTTXTXTXTXX

[eNeoNeoNeNeNo]

CSECT

C SFREEST
C SFREEST
CSFREEST
C SFREEST
CSFREEST

CSSUYM
CSSUYM
CSSWYM
C SSuwM
CSSUYM
C SSWYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
C SSWYm

CSSUYM
CSSUYM
CSSUYM
CSSUYM
C SSWYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSUYM
CSSWYM
CSSUYM
CSSUYM
CSSUYM
CSSUYM
CSSWYM
CSSWYM
CSSUYM
CSSUYM
CSSWYM

CSINIT
CSMAIN
C sPDL
CSPRINT
CcSSsusBs
€S§2250

COMMENTS

STRUCTURE: ((SUBR .1)(FSUBR
ATOM WITH VALUE-NIL

ATOM WITH VALUE = LIST OF ALL ATOMS
ATOM WITH VALUE-T

RECOGNIZED BY EVAL AS ERROR VALUE

ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

BASE REG FOR ALL ROUTNS

ODD REGISTER CONTAINING F'4*
FREE STORAGE POINTER
LINKAGE REG (RETURN ADDRESS)
POINTS AT NIL

STACK PDINTER

BASE REG FOR CSSWYM

TEMP (EVEN, NEXT TO TT)
TEMP {NDDy NEXT TO T)

EQUATED TO ATOM OFFSET (6}

NCB FOR READING CARDS

ATOM HEAD-FUNC DEF TYPE BITS
ATOM HEAD-CELL IS RELOCATABLE
ATOM HEAD-CELL HAS VALUE(NOTFNC)
GLOBAL INFORMATION FOR SWYM RTNS
DOUBLE WORD WORK AREA

WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS
OCB FOR PRINTING

POINTER AT T

FIRST LOC IN CSSUYM

SAVE AREA FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS
TIME SET AT LAST STIME

LABEL OF LAST ENTRY INTV TABLE
LABEL OF START OF TRANS VECT TABLE
POINTER AT CHAR OBJECTS LIST
POINTER AT FPROPS STRUCTURE
POINTER AT ALL OBJECTS LIST
POINTER AT SPECIAL ‘UNBOUND’

AORS OF BEGINNING OF STACK
TRANSFER VECTOR’ ADRS OF RTN XXXX

INITIALIZATION

MAIN STUTTER LOOP

STACK

PRINT ROUTINES

BASIC SUBROUTINES

2250 EXPERIMANTAL INTERFACE

2k9

PAGE 13

HNEHONIC

BINDERY
COND

C SEVAL
EVAL
EVGET
EVLIS
EXPLODE
GET
LIST
NLENGTH
PUTPROP
QUOTE
REMPROP
SASSOC
UNBIND

CHAROBS
CSFREEST
EXPR
FEXPR
FPRQPS
FSUBR
NIL

OBLI ST
SUBR

T
UNBOUND

ATCOL
ATCO
ATC1
CHOKE
COLLECT
coLx
CSGC

GC
GCABEND
GCPUT

CSINIT
INIT

CSMAIN
F INISH
MAIN

C SPDL

CSPRINT
EJECT
PRINT
PRIN1
PUTSTR
TERPRI

SWYH MNEMONICS SORTED BY CONTROL SECT IUN

CLASS

CAL
FSUBR
CSECT
SUBR
CAL
CAL
SUBR
SUBR
FSUBR
CAL
SUBR
FSUBR
SUBR
SUBR
CAL

STRUC
CSECT
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC
STRUC

CAL
MISC
MISC
MISC
CAL
CAL
CSECT
SUBR
MISC
MISC

CSECT
MISC

CSECT
MISC
Ml SC

CSECT

CSECT
SUBR
SUBR
SUBR
CAL
SUBR

APP CSECT

Aoy W Www

OCMTMTATMO®TTNM NOOOTTO

ITIoIITO

°cmoe oo mmmMmmMmmmmmm

o

MO T ~To

goozTx

SR

AW

gy

[N

NN

WWwWwwww

w Ww

CSEVAL
CSEVAL
C SEVAL
CSEVAL
CSEVAL
CSEVAL
CSEVAL
CSEVAL
CSEVAL
C SEVAL
CSEVAL
CSEVAL
CSEVAL
CSEVAL
CSEVAL

CSFREEST
CSFREEST
CSFREEST
CSFREEST
CSFREEST
C SFREEST
C SFREEST
CSFREEST
CSFREEST
CSFREEST
C SFREEST

CSGC
CSGC
CSGC
CSGC
CSGC
CSGC
C SGC
CSGC
CSGC
CSGC

CSINIT
CSINIT

CSMAIN
CSMAIN
CSMAIN

CSPDL

CSPRINT
CSPRINT
CSPRINT
CSPRINT
CSPRINT
CSPRINT

PAGE 14

COMMENTS

BIND ARG ATOMS TO THEIR VALUES
CONDITIONAL EXPRESSION EVALUATED
INTERPRETER AND RELATED ROUTINES
STUTTER INTRPRTR EXPRSN EVALUATOR
GET FUNCTION DEFINITION Of ATOM
EVALUATE LIST OF EXPRESSIONS
CONVERTS ATOM TO LIST CHARS IN PNAY
FINDS PROPERTY OF AN ATOM

MAKES A LIST OF THE ARG EXPRESSIONS
GET LENGTH OF LIST

STORES PROPERTIES ON ATOMS PROP LST
RETURNS ITS ARC UNEVALUATED
REMOVES PROPERTIES FROM P-LIST
FINDS ARG ON AN ASSOCIATION LIST
RESTORE OLD BINDINGS OF ARG ATOMS

ATOM WITH VALUE = LIST OF ALL CHARS
FREE STORAGE, INCL INITIAL STRUCTS
INDICATOR FOR S-EXPR FUNCTIONS
INDICATOR FOR S-EXP SPECIAL FNCTS
STRUCTURE: ({SUBR .1} (FSUBR
INDICATOR FOR ASSEMBLED SPECIAL FNC
ATOM WITH VALUE-NIL

ATOM WITH VALUE = LIST OF ALL ATOMS
INDICATOR FOR ASSEMBLED FUNCTIONS
ATOM WITH VALUE-T

RECOGNIZED BY EVAL AS ERROR VALUE

COLLECTS AN ATOM

PART OF ATCOL FOR TYPE 0 ATOMS
PART Of ATCOL FOR TYPE 1 ATOMS
BRANCH TO IF STORE EXHAUSTED, ABEND
CREATES IMAGE OF ARG IN NEW CORE
CHECKS AND COLLECTS ONE POINTER
GARBAGE COLLECTOR

CONTROLS GARBAGE COLLECT ION

BAL TO IF DATA STRUCTURE ERR, ABEND
BAL'ED TO BY GCPUT MACRO

INITIALIZATION
SET UP SWYM REGS AND OPEN FILES

MAIN STUTTER LOOP
CLOSE FILES AND EXIT
PAIN LOOP OF STUTTER INTERPRETER

STACK

PRINT ROUTINES

MOVES PRINTER TO NEXT PAGE

PRINTS ITS ARG AND GOES TO NEXT LIN
PRINTS ITS ARG

PRINT A CHARACTER STRING ATOM
MOVES PRINTER TO NEXT LINE

250

MNEMONIC

CSREAO
GETCH
GET(08J
IVCCH
1vamo
MAKSTRNG
PBCLOSE
PROPFN
PUTEYTE
RDAT
RDERR
RDERRCNT
RDLIST
RDSE
READ
READCH
STIVCCH
STIVQMOD

ATOP
CSSUBS
EQ
ERROR
FST
NULL
RST
STAKN
STIME
TAK2
TTIHE

AT
ATAMT
Al

A2

A3

Ad

A5

A6

B
CARORDR
CELFNC
CELREL
C ELVAL
CSSWYM
c4
DUBWORK
F
FALSE
FEND
GCABAD
GCTIME
L
MEMNXT
YEMSIZ

SWYY MNEMONICS SORTED BY CONTROL SECTION PAGE 15

CLASS

CSECT
CAL
SUBR
SUBR
SUBR
SUBR
CAL
CAL
CAL
CAL
CAL
CAL
CAL
CAL
SUBR
SUBR
SUBR
SUBR

SUBR

CSECT

SUBR
SUBR
SUBR
SUBR
SUBR
CAL
CAL
SUBR
CAL

MISC
SWYM
REG
REG
REG
REG
REG
REG
REG
SWYM
FIELD
FIELD
FIELD
CSECT
REG
SWYM
REG
MISC
SWYM
SWYM
SWYM
REG
SWYM
SWYM

amoom MM Mo M

APP

DN NN

T T TMOOOOOOOOOTTMTTTO O

. . .
— s — O1 — [ASI ST\)

[—

PN

MM—MMMQOQO—= =~ EETTIXTXrm——————OX
N

CSECT

CSREAD’
C SREAD
CSREAD
CSREAD
CSQEAD
CSREAD
C SREAD
CSREAD
C SREAD
CSREAD
CSREAD
CSREAD
C SREAD
CSREAD
CSREAD
C SREAD
C SREAD
CSREAO

C SSUBS
¢ SSUBS
CSsSuBs
¢ SSUBS
¢ SSUBS
C SSuBS
¢ SSUBS
c SSUBS
CSSUBS
cSSURS
¢ SSURS

CSSWYM
CSSWYH
CSSWYM
C SSWYM
CSSWYM
CSSWYH
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSWYM
CSSWYM
¢ SSWYM
CSSUYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
C SSWYM
CSSWYM
CSSWYM

COMMENTS

READ ROUTINES

GET A CHARACTER

FINDS SYMBOL FOR CHAR STRING ARG
RETURNS NEXT INPUT CHAR

RETURNS STATUS OF QUOTE MODE
MAKES CHR STR ATM FROM LIST OF CHRS
FINISH CHAR STRING ATOM

START MAKING CHAR STRING ATOM

PUT BYTE INTO CHAR STRING

QEAO AN ATOM

INDICATE INPUT SYNTAX ERROR
SYNTAX ERR-PARENS MADE BEFORE '>*
READ A LIST

READ AN S-EXPRESSION

READS ONE EXPRESSION FROM CARD
READS ONE CHARACTER FROM CARD
SETS CURRENT INPUT CHAR

SETS QUOTE MODE

STUTTER ROUTINE FOR-1S ARG ATOM?
BASIC SUBROUTINES

STUTTER RTN FOR-ARG1=ARG2?
WRITES MESSAGE AND GOES TO TOP LVL
STUTTER RTN FOR=1STELEM OF LIST
STUTTERRTNFUR=1S ARG =NIL?
STUTTER RTN FOR - REST OF LIST

GET FREE STORAGE BLOCK

START TIMER

MAKES LIST W/ FSTARGL AND RST ARG2
HOW LONG SINCE LAST STIME

EQUATED TO ATOM OFFSET(6)

ATOM OFFSET (6)

ARGUMENT REGISTER & RESULT REGISTER
ARGUMENT REGISTER

ARGUMENT REGISTER

ARGYJMENT REGISTER

ARGUMENT REGISTER

ARGUMENT REGISTER

BASE REG FOR ALL ROUTNS

DCB FOR READING CARDS

ATOM HEAD-FUNC DEF TYPE BITS
ATOM HEAD-CELL IS RELOCATABLE
ATOM HEAD-CELL HAS VALUE{NOTFNC)
GLOBAL INFORMATION FOR SWYM RTNS
0DD REGISTER CONTAINING F'4’
DOUBLE WORD WORK AREA

FREE STORAGE POINTER

L A14NILs RET; (BRANCH TO IT)
POINTS AT END OF FREE SOTR

GC ABENDS FOR BAD DATA STRUCTURE
GC COMPUTES ITS TIME

LINKAGE REG (RETURN ADDRESS)
ALTERNATE FREE STOR

SIZE OF FREE STORAGE

251

MNEMONIC

MEMUSE
MI
M2

N
NUMAT
NUMATVAL
P

PBHD
PRATBAD
PRINTER
PRLNG
PRPEND
PRPT
PUTCH
RBCHAR
RDCLASS
RDCOL
RDEND
QDERCNT
RDERLOC
RDERMS
RDERNO
RDLNG
RDSTAT
RDSUPCTR
RSTA1
RSTA2
RSTA3
RSTT

R STTT

s

ST
SWERROR
SWYM
SWYMSAVE
SYSFaO
I

TIME
TRUE

TT
TVEND
TVSTART
VCHAROBS
VFPROPS
VOBLIST
VUNBND
#MIM2
#PO
#XXXX

BELL
52250

AND
A TOM

SWYM MNEMONICS SORTEO BY CONTROL SECTION

CLASS

SWYM
FIELD
FIELD
REG
SWYM
SWYM
REG
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
MISC
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
MISC
MISC
MISC
MISC
MISC
REC
SWYM
MISC
SHYM
SWYM
SWYM
REG
SWYM
MISC
REG
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM
SWYM

SUBR
C SECT

MACRO
MACRO

APP CSECT

.4 CSSWYM
.2 CSSWYM
.2 CSSWYM
CSSWYM
CSSWYM

C Sswym
CSSWYM
CSSUYM

3 CSSWYM
CSSYYM

3 CSSWYM
CSSUYM
CSSWYM
CSSWYM
CSSWyy
CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSWYH
-~ CSSWYM
CSSWYM
CSSWYM
CSSUYM
CSSWYM

1 CSSWYM
1 CSSWYM

1 CSSWYM

w w

I CSSWYM
1 CSSWYM
CSSWYM
CSSUYM
CSSWYM
CSSWYY
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSWYM
CSSwwm
CSSWYM
CSSWYH
CSSWYM
CSSWYM

. CSSWYM
CSSWYM

.4 CSSWYM
CSSWYM
CSSWYM

E
E
E
I
M
M
I
C
F
M
F
F
F
G
C
C
C
C
C
C
c
C
C
C
C
6
B
B
B
6
I
M
G
M
M
M
I
M
G
I
M
M
M
M
M
M
E
M
M

F.5 CS2250
0 €S2250

7 MACLIB
1

6.
6.1 MACLIB

COMMENTS

FREE STOR IN USE

GARB COL MARKING BIT

GARB COL MARKING BIT

POINTS AT NIL

WORK AREA FOR PRINTING NUMBERS
WORK AREA FOR PRINTING NUMBERS
STACK POINTER

HOLDS ADRS OF AT-HD DURING PUTBYTE
ARE4 FOR PRINGING '?TYP!:{'

DCB FOR PRINTING

LENGTH OF PRINT LINE

WHERE TO PUT LAST PRINT CHAR
WHERE TO PUT NXT PRINT CHAR

PUT CHARACTER IN PRINT LINE

LAST CHAR READ

CLASS OF LAST CHARACTER READ

LOC OF LAST WORD READ

LOC OF LAST CHAR TO READ

PRINT #PARENS CREATED BEFORE *>*
SYNTAX ERROR CARD COLUMN INDICATIDN
READ SYNTAX ERROR MESSAGE AREA
SYNTAX ERROR NUMBER

NUMBER OF CHAR READ FROM EACH CARD
READ ROUTINES STATUS INFO BYTE
COUNT #PARENS CREATED BEFORE >

RST(Al). BAL'EDTO BY RST MACRO
RST(A2), BAL'EDTO BY RST MACRO
RST(A3). BAL'EDTO BY RST MACRO
RST(T). BAL'EOTO BY RST MACRO
RST(TT). BAL'EDTO BY RST MACRO

BASE REG FOR CSSWYN

POINTER AT T

SYSTEM ERROR

FIRST LOC IN CSSWYM

SAVE ARE4 FOR CALLING OS

SAVE AREA FOR SAVING OS LIMK REGS
TEMP (EVEN, NEXT TOTT)

TIME SET AT LAST STIME

L Al,Ts RET; (BRANCH TO IT)
TEMP (QDDy NEXT TOT)

LABEL OF LAST ENTRY IN TV TABLE
LABEL OF START OF TRANS VECT TABLE
POINTER AT CHAR OBJECTS LIST
POINTER AT FPRDPS STRUCTURE
POINTER AT ALL OBJECTS LIST
PCINTER AT SPECIAL ‘UNBOUND’

USED BY GC TO 'OR IN ML &M2 BITS
ADRS OF BEGINNING OF STACK
TRANSFER VECTOR, ADRS OF RTN XXXX

RINGS BELL ON 2250
2250 EXPERIMANTAL INTERFACE

COMBINE TWO PREDS
? IS ARG AN ATOM

252

PAGE 16

MNEMONIC

BCMAC
BIT
BITTBLMK
CAL
CELL
CHAR
CHTBL
ELSE
ENDIF
EQ
EVCH
FINDBIT
F IXUP
_FST
FSUBR
GCPUT
GETNAME
GETNUM
GOTO
HASH
HEAD
IF
INST4
| NVERTB
MATOM
NOT
NULL
ORX
POP
POPN
PUSH
QCHAR
RESETS
RET
RPLCEL
RPLF
RPLHD
RPLTOP
RPLTOPN
RST
RSTMAK
SETBIT
STRAT
suB
SUBR
SWEAR
TAIL
TESTB
THEN
TOP
TOPN
TVMAK
VALUE
X8

SWYM MNEMONICS SORTED BY CONTROL SECTION PAGE 17

CLASS

MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRC?
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO
MACRO

APP

mmmmmmmmmmmc»c»c»ooo\oocpooooooc»oooooomoooxc»oooooooodwoooocuooc»ooosooouooooooooouoooucooooo
OWORBRNUIUNOWO WA == AR N—_NOUWARRANTNWAOONINIINODNOW= 0O W=NN®®WNMOOo N

CSECT

MACLIB
MACLIB
MACL 18
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
PACLIB
MACLIB
YACL IB
MACL I B
MACLIB
MACL 18
MACL 18
MACLISB
MACLIB
MACLIB
HACLI 8
PACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MAC118
CACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
PACLIB
MACLIS
MACLIB
MACLIB
CACLIB
MACLIB
MACLIB
MACLIB
MACLIB
PACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACLIB
MACL I8

COMMENTS

MAKE A BR CONDITION INSTRUCTION
IDENTIFY MNEMONIC WITH BIT IN WORD
MAKE A TABLE FOR ‘BIT"MACRO
SUBROUTINE CALL

LOADS ATOM CELL INTO REG

CREATES A CHAR OBJECT ATOM

MAKE A CHARACTER TABLE (FOR TR)
COND - END TRUE: START FALSE PART
COND - END FALSE; END CONDITIONAL
7 ARGl = ARG2{TESTS TWO POINTERS)
GETS ARITH VAL OF EBCDIC BITS

FIND BIT MNEMONIC FOR BYTE-IN-WORD
GC-MAKE ENTRY IN FIXUP TABLE

FIRST ELEMENT OF LIST

CREATES AN ATOM WITH FSUBR PROP
GC-PUT WORD TO NEW CORE

LOADS PTR AT PNAME CHR STR ATM

GET VALUE OF NUM CHAR STR ATOM
BRANCH

HASH CODE AN IDENT FUR OBLIST
LOADS HEAD OF ATOM

COND - START PREDICATE

ASSEMBLE INSTRUCTION WO/ ALIGN ERR
CHANGE BIT

CREATES AN ATOM STRUC (IN CSFREEST
NEGATE PREDICATE MACRO TEST

? ARG = NIL

COMBINE TWO PREDS

GETS TOP OFF STACK-HEDUCES STACK
REDUCES STACK N TIMES

PUTS ARG ATOP STACK

CREATES A CHAR OBJ FOR''{*')'1,?
TURN OFF BIT

SUBROUTINE RETURN

REPLACES ATOM CELL

REPLACES FIRST PTR OF LIST
REPLACES HEAD OF ATOM

REPLACE TOP ITEM ON STACK

REPLACE NTY ITEM Of STACK

ALL BUT1ST ELEMENT OF LIST

MAKE ROQUTINES FOR ‘RST’ TO BAL TO
TURN ON BIT

CREATES STRING ATOM STRUC (FREEST)
SUBROUTINE ENTRY

CREATES AN ATOM WITH SUBR PROPERTY
SYSTEM ERROR

LoampTRAT TAIL OF ATOM

TEST BIT

COND - END PRED; START TRUE PART
GETS TOP OF STACK-BUT LEAVES IT
GETS NTH ITEM ON STACK

MAKE A TRANSFER VECTOR FOR CAL
CREATES AN ATOM WITH A VALUE
TRANSFER INTO MIDDLE OF SUBROUTINE

253

