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ABSTRACT

We introduce a new three-stage process for calculating
the zeros of a polynomial with complex coefficients. The algor-
ithm is similar in spirit to the two-stage algorithms studied
by Traub in a series of papers, The algorithm is restriction
free, that is, it converges for any distribution of =zeros. A
proof of global convergence is given.

Zeros are calculated in roughly increasing order
of magnitude tc avoid deflation Instability. Shifting is
incorporated in a natural and stable way to break equimodularity
and speed convergence. The three stages use no shift, a fixed
s01ft, and a variable shift, respectively,

Tc obtain additional insight we recast the problem
and algorithm into matrix form. The third stage is inverse
iteration with the companion matrix, followed by generalized,

Rayleigh iteration,
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A program implementing the algorithm was written
in a dialect of ALGOL 60 and run on Stanford University's
IBM 360/67. The program has been extensively tested and
testing is continuing. For polynomials with complex
coefficients and of degrees ranging from 20 to 50, the time
required to calculate all zeros averages 8n2 milliseconds.

Timing information and a numerical example are
provided. A description of the implementation, an analysis
of the effects of finite-precision arithmetic, an ALGOL 60
program, the results of extensive testing, and a second
program which clusters the zeros and provides a posteriori

error bounds will appear elsewhere.
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1. INTRODUCTION

We introduce a three-stage algorithm for calculating

the zeros of" a polynomial P,

n
P(z) = Zaizn'i, a, =1, a, £ 0,
i=0

(SN

V4
P{Z) = ET (Z_pi) 0
i=1
The conditlon I 1 1s for convenience only. The coefficients

are in general complex. The algorithm involves iteration in

the complex plane, Elsewhere we shall analyze the appropriate

analogue for polynomials with real coefficients (and complex

conjugate zeros) which uses only real arithmetic,,



The zeros are calculated one at a time and zeros
of multiplicity m are found m times. The zeros are found in
roughly increasing order of magnitude to avoid the
instability arising from deflation with a large =zero
(Wilkinson [lo]).

The algorithm is similar in spirit to the two-stage
algorithms proposed by Traub [6], [7]1,[8]. In [6] Traub
gives a class of always convergent algorithms for calculating
the largest zero. An instance of the class of algorithms
given in[6] follows. Notation has been modified to agree
with the notation of this paper.

Let

(1.2)

G(x+1)(z) = ZG(X)(Z) - a(x)P(zL A = 0,1,...,L-1

where a(x) is the leading coefficient of G(X)(z). Let z, be

arbitrary and let

(1.3) 20 = %y - R (z)

where

R(L) (z) = a(L)P(Z)/G(L)(Z.)




If P(z) has a largest zero and if L is sufficiently large and
fixed, then this iteration converges to the largest =zero,
The appropriate modification of this algorithm for

the case of a pair of complex conjugate zeros was announced

in [7].
In [8] Traub gives the following algorithm for cal-

culating the smallest zero. Let

(1.4)
1O (z) = p'(2),
(A)
H) (2) = %-liH(}\)(z) e P(z):} , R =0,1,...,I-1.
Let z, be arbitrary and let
(1.5) Zyy] = %y - V(L)(zi),
where
, V(L)(Z) = B(L)P(z)/H(L)(z),
and B(L) is the leading coefficient of H(Io(z). If' P(z) has

a smallest zero and if L is sufficiently large and fixed, then

the iteration converges to the smallest zero.




The implementation by Jenkins and Traub of a general
polynomial solver based on two-stage algorithms is described
in [3]. Separate procedures are used depending on whether
there are one or two smallest zeros. TIf there are more than
two distinct smallest zeros, a process of "double translation*'
described in Section 6 of [3] is used to break up the
equimodularity.

The two-stage algorithm implemented in [3] has the
following desirable characteristics:

1.  The mathematical algorithm is restriction-free,
that is, it converges for any distribution of zeros.

2. Zeros are calculated in roughly increasing order of

- modulus; this avoids the instability which occurs

when the polynomial is deflated with a large zero.

3. The final stage is an iterative process and thus
has the desirable stability features of iterative
processes.

4. Few critical decisions have to be made by the program
which implements the algorithm.

5. The algorithm is fast except for polynomials with

many nearly equimodular zeros.
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The three-stage algorithm introduced in this paper
enjoys the first three characteristics, improvedfourth and
fifth characteristics and a new characteristic.

b+ The number of critical decisions is further reduced,
5* The algorithm is fast for all distribution of zeros,
6. Shifting is incorporated in the algorithm itself
in a natural and stable way, Shifting breaks equi-
modularity and speeds convergence.
We summarize the contents -of this paper,, The main
properties of fixed and variable-shift H polynomials are
given in Sections 2 and 3 and the mathematical algorithm is
stated in Section 4. Global convergence for an arbitrary
distribution of zeros is proven in Section 5 and the quadratic
character of the convergence is established in Section 6.

In Section 7 we recast the problem and algorithm
in matrix form and prove that Stage Three may be viewed as an
efficient process for carrying out inverse powering using
a companion matrix with shifted eigenvalues and generalized
Rayleigh iteration. Although we are dealing with the case of
a non-Hermitean matrix with nonlinear elementary divisors, the process
does mot suffer from the customary (Ostrowski [5])slow convergence.

In Section8 we prove that the third stage is
precisely equlvalent to Newton-Raphson iteration applied to

a sequence of rational functions converging to a linear




polynomial. It 1is a Newton-Raphson iteration even though

no differentiation is performed.

Our focus in this paper is on the mathematical
algorithm and its properties., Timing information and a numerical
example are provided. A description of the implementation, an
analysis of the effects of finite-precision arithmetic, an
ALGOL 60 program, the results of extensive testing, and a second
program which clusters the zeros and provides a posteriori
error bounds will appear elsewhere.- In Section 9 we do discuss
a number of important points pertaining to stability and
decisions to be made by the implementing program, 1In the final

section we give a small numerical example.




2. FIXED-SHIFT H POLYNOMIALS

We introduce fixed-shift H polynomials and prove a
number of their properties. Let H(o)(z) be a polynomial of
degree at most n - 1. Let s be a complex number with
P(s) # 0. Define the sequence
(2.1)

A
g(M1) (5) =E%§-[H(”(z) - }ﬂg—(;?—)—mz) 1 , A =0,1,...

The H(x)(z) are polynomials of degree at most n =~ 1.

Define

(2.2) Py(2) = GEb

The properties of H(x)(z) follow from the following lemma
which is easily proven by induction.
LEMMA. Assume
1% (2) = i e{0)p, (2).

i=1

Then for all A,

(2.3) 1M (2) - i o{%) (py-5) 72, ().
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0) .
Note that the assumption about H( (z) 1s equivalent

to assuming that the partial fraction expansion of
H(O)(Z)/P(Z) has only linear terms. We will ensure this by

-taking-ﬁP)(z) = pPr(z)., A matrix formulation of this is given

in Section 7.

We define

(2)
ﬁ(x)(z) H (z)

9 (py-5)

L
i=1

Thus ﬁ{x)(z) is H(x)(z) divided by its leading coefficient.
Our interest in H polynomials is due to the following theorem

—which follows from (2.3).

THEOREM. Assume (0) ¢4 # IgeL s be such that

lpl-SI < Ipi—S|, i=2,...J. Then for all finite 2z,

(2.4) lim E“\) (z) = Pl(z).

A0

Observe that (2.4) may- be written as

P(z)
11 - .
(2.5) %aﬂaz ﬁ(f)(é) = P

(The zero labelled p, depends on the choice of s.)
The rate of convergence depends on max[lpl-sbﬂpi-s|]. This
suggests that s be changed to be the best available approxima-
tion to p,. This leads to the idea of 'variable-shift H

polynomials.




3. VARIABLE-SHIFT H POLYNOMIALS

Let H(O)(z) be a polynomial of degree at most n - 1.

Let s, be a complex number with P(so)# 0. Define the sequence

(), e
?\"‘1) _ 1 - 7‘ - P A
1) (2) = A KV (@) - e )
(3.1)
P(S)\)
Sa+1 T Sh T 'ﬁ(?\‘i‘l)(s)\)' ’
A= 0,1,..., If P(Sk) — 0, terminate the calculation. The

H(k)(z) are polynomials of degree at most n - 1. There should

be no confusion from using the same symbol for the sequences

generated by (2.1) and (3.1). The fOllOWing lemma is eaSily
verified |
LEMMA . Let
4
0
1O (2) = ) o{Vpy(2)
i=1

Then for all A\,

(3.2) r
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We defer the investigation of the convergence of

the variable-shift process to Section 5.
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4, THE ALGORITHM

We motivate the three-stage algorithm described
below. In Stage One, we calculate a sequence of fixed-shift
H polynomials with s = 0. This is the no-shift process, The
purpose is to make the smaller zeros stand out. (See
Section 9.) If there is a smallest zero, we obtain con-
vergence according to the theorem of Section 2 and the
fixed-shift calculation of Stage Two is not necessary.

However, rather than testing for convergence of
the no-shift H sequence, we terminate Stage One after a small
number of steps and enter Stage Two where we calculate a
sequence of fixed-shift H polynomials using a complex number s

-whose madulus is less than the smallest zero and whose ampli-

tude is randomly chosen. (See Section 9). There are only
a finite number of points on the circle |z| = |s| which are
equidistant from two or more zeros. According to (2.5) the

sequence

will converge to the zero closest to s, provided there is such
a zero. As soon as {tk} passes a. convergence test ($ee

Section 9), we are ready to enter Stage Three. Let the test be
passed when A = L. Then s - P(s)/ﬁ(L) (s) should be close to py
and this is the starting value of the shift for Stage Three.

These shifts should converge very rapidly to Pq (see Sections

5 and 6).
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The algorithm is used to calculate a
zero of P. After each zero is found, the polynomial
is deflated and then the algorithm is applied to
the deflated polynomial,, Hence P represents either the original.
polynomial or a polynomial obtained by deflation.

Stage One. No-Shift Process .

19 (2) = M(z),

(4.1)

(ML) (,) o [(”( 2z) - E(;(-\())—)(QlP(z) , A = 0,1,...,M-1.

Stage Two. Fixed-Shift Process.

Take B to be a positive number such that

B < min|p,| and let s be such that |s| = B8 and such that
(14_2) 1S-Pl|< |S"pi|1 1=2:---,J-

Let

(4.3)

(Ml)( ) = 1 [ (7\)(2) %?g-ﬂ P(z)] , A = M,M+1,...,L-1.
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Stage Three. Variable-Shift Process.

Take
sp, =8 - _?és) s
H™ (s)
and let
(M)
H'™ (s.)
(A1) 1 (A) A
H (z) z-s, H' " (z) —_P(E;)——P(Z) s
(4.4)
P(s,) .
S =8, - - s AN = L,L+1,
A1 A ﬁ(Hl)(S?\)
There are a number of iterative processes used in
the algorithm. In each of the three stages there is an
iteration producing a sequence of polynomials. Regarding the

vector of coefficients as basic, we refer to these iterations

as vector iterations. In Stage Three we compute a sequence

of shifts, We refer to this as a scalar iteration.
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5. PROOF OF GLOBAL CONVERGENCE
We investigate the convergence of the three-stage
algorithm. We begin by investigating the convergence of the

variable-shift process defined by (4.4).

LEMMA: Assume
1. |s;-p; | < 3R, where R = m%? | py-py |
i1, ciL) # 0,
e{T)

iii. D, = 1 1

Lt ) T

1=2 1
Then Sy = Py-

PROOF. We defer to the end of this proof the
demonstration that the iteration is always defined. We show
first that if the iteration is defined, it converges. We

know by (3.2) that

t=L
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Some algebraic manipulation leads to

MR (N im (A)
Sa+17P1 il: Td 1%

(5-2) = )
P1 TP ()
1+ L?i J d1
i=2
where
S, -p ()
N CS IR ¢ B S
i 84 -Py i Cixi
Let
EINERY T
BRI

We prove convergence by showing there exists a T;, such that
for all a > 1L, Tx < 1, < 1. The proof is by induction.

Observe that

L)I - !sanLI

e -
1 17P1

Hence




By hypothesis DL <

(5.3)

Then TL < T, < 1.

fort

Thus

(5.4)

Observe that

Hence

(5.5)

e N - 5
L = o ) 1- L
1- L |d1 |
2
l Let
3
_ 2DL
L T I
Assume now that TL’TL+1""’T7\-1 < 1, < 1.
= L,I4+1,...5\,
'St"p]_' < !SL_pl | < %R,
|St'p1| 2 lpl‘pil - 'st’pll > 2R
|rj(_t)| < l’ t = L)L+1,.oc,7\c
(A) (A1) 4(n-1)
d1 = Pi di
e
) 1M <oy

Hence
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From (5.2), (5.3), (5.4),(5.5) it follows-that T, < 7 < 1

for » > L which completes the proof of convergence.
We now show that the sequence {s)} is always

well defined for AN > L.

C§X)(91‘Sx)_lP1(sx)
(M) (g ) = 12 _

CI(L)\) ('P _S')\)—l

191
_ .
1+ i dj([)‘) [r?‘)]

1=2
= Pl(s')\) ‘*-L R

1 + Z dy‘)rg?‘)

Pl(sx)% 0 by hypothesis i and the contraction argument.

as we have seen,

§ a0 LT 1

i=2

Since,

ﬁ(x+1)(sx) # 0 and the iteration is well defined. This com-

pletes the proof of the lemma.
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We now investigate the convergence of the three-
stage algorithm defined in Section 4. The major result of the

paper is given by the following

THEOREM. For all L sufficiently large and fixed, Sy = Pp-

PROOF. Since H(‘O) (z) = P'(z),
o
1(0)(z) = 2JmiPi(z) ,
1=

and it follows from (2.3), with s = 0, that

1M (z) - i m Py, (2).
i=1

Then

) (2) = i my o (p,-s) (XM, (2)
i=1
= i (L)P (z)

(L)

We have ¢y #Z 0., Furthermore

DESPEIGI S
My \P1/ \P1i~8

1=2 1 =2

Recall that | py-s | < | py-s |.
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Fix M. Then by choosing L sufficiently large we can make

o{P)

D= ) —fr
i=2 loq "

as small as desired. Choose L so that

(5.6) D < %
and
2DL

-The condition of (5.7) ensures that |s;-p;| < 3R. All the

hypotheses of the lemma now hold and the conclusion follows.
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6. RATE OF CONVERGENCE

Let

(6.1) C(h) = 814241 P1

ISp40P1 |

In the last section we proved the existence of a number T,

such that for A > 0,

|s -pq |
(6.2) [SnP1l

A< <L

where 1, = QDL/(l—D We defined R = m§n|p1—pi|. The rate

L)‘
of convergence of our algorithm is governed by the following

THEOREM. Let the hypotheses of the lemma of the

previous section hold. Then

(6.3) c(n) < 2 Ta(x-.l)/z.

PROOF. From (5.2),

d§L+x)

StanP1

iL (L+%) L+x) 5&

L Alaper - - -

(6.4) SL+7\+1-p1 - i=2

e
(sp40=P1) §E [:(L+x):r (L42)

1=2
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One may verify that for all A and 1 > 1,

L+2) A 1 2
lr( | < 15 ST < g °
L> Tsyip Pyl = R
and
x A-1)/2
1=2

Substituting these bounds into (6.4) establishes the theorem.

Thus the process 1is second order with an error
constant C(A) which approaches zero. This may be contrasted with
the conventional Newton-Raphson iteration in which there is

no control over the error constant.

COROLLARY. Let the hypotheses of the lemma of the

previous section hold. Then for » > 0,

1R'r"

|S L,

P | <

n = 103-2" - (A%++2) ).

PROOF. For A = 1 this follows from (6.2), For » > 1

it follows upon substituting (6.3) into (6.1).
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7. VARIABLE-SHIFT ITERATION IS GENERALIZED
RAYLEIGH ITERATION

We now give a matrix interpretation of our algorithm.
We show that in a matrix'formulation the vector iteration of
the third stage is inverse powering with a matrix whose eigen-
values have been shifted, while the scalar iteration is gener-

alized Rayleigh iteration.

Let
0 0 0 =
1 0 0 A g
A =
. . 1 ]

be the companion matrix of P. Let

n-1
H(?\)(Z) _ > h:(Lx)zn-l—i
- 1=0
and
M = WM, n{)y,




Let
) n-1
P(z n-1-j
P, (2) Z-p, " }: Py 42 .
J=0
Define

By = (Pyp-17++++P10)>

qi = (1:---:92_1).

One may easily verify that for the eigenvalue pi,'the right

and left elgenvectors are Py and gi, respectively.

One may verify that the initial condition
10 (2) = p1(z)

is equivalent to

.}.1_(0) = i myPy >

i=1

the fixed-shift recurrence

(7.1) (1) (z) = E%E-[é(x)(z) - E;%;§§1-P(Z)]
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is equivalent to

(7.2) nMD) L ey 1)

while the variable-shift recurrence is equivalent to
(7.3) n(M) (4 1) 1M

Equations (7.2) and (7.3) exhibit the processes as inverse
powering with a matrix whose eigenvalues have been shifted,
This is als¢ called inverse iteration (Wielandt [9]). We
show that

y P(s%)
-(7.4) Sa+1 T S - g

2
is equivalent to

(7.5) a1 = [ OO, O )
where .
[g‘k)lT = (1,sN...,s£'1).

Now (7.4) may be written as

SAH(X+1)(SA) - héx+1)P(sx)
(7.6) SaHl T H(x+1)(sx)



Observe that

(7.7)

From (7.1),
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H(A+1)(SA) _ [S(x)]Th(x+1) .

o) Ee)
0 =T FET -
Hence.
st(x+1)(sk) - hé%+1)P(sx) = kH(K+1)(sx) + H())(sk)

[8(7\) ]T(A_l’_x(M-l) __h(7\)) + [8(7\) ]Th(?\)

15Ny Tan (1)

Substituting this result together with ('7.7) into (7.6) com- ,

pletes the proof.

We summarize this result in a

THEOREM. The variable-shift recurrence
(A+1) 1| SGY
AL _
H (z) “z-s, H' " (2) _P—(_S—T_P(Z) s
P(S)\)
Sa+1l =

T E )
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is equivalent to

h()\+1) _ (A_S%I)-lg(x) ,

(e (M) 1Ta, (A+1)

S —
M1l = [E(%)]TE‘K+1)

Observe that E‘k) - Dy and [§fx)]T - q%. Hence (7.5)

is a generalized Raylelgh iteration (Wilkinson [11, p.179],
Ostrowski [5]) appropriate for non-Hermitean matrices.

However we are in a very favorable position as
Tompared with the usual situation when inverse iteration and
generalized Rayleigh iteration are applied.

1. No calculation has to be performed to determine
the left eigenvector. It is simply [g(x)]T,

2. Multiple eigenvalues of a companion matrix imply
nonlinear elementary divisors. In general this
leads to (Ostrowski [5]) linear convergence. In
our case multiple zeros do not affect the rate of
convergence (tis still quadratic) and require no
special attention.

3. The inverse iteration is carried out explicitly.

4., The initial vector h(o) and all succeeding vectors

A . .
Q( ) lie in the subspace spanned by the eigenvectors
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of A. Furthermore the 1_1_()‘) cannot be deficient
in the eigenvector corresponding'to the eigenvalue
being calculated.

5. Our process is globally convergent to one of the
smallest eigenvalues of A and hence deflation is
carried out under favorable conditions.

Bauer and Samelson [2] have suggested an iteration
which 1s related to Stage Three of our algorithm. Performance
of an analogous process on a sequence of polynomials of

decreasing degree leads to Bauer's [1] Treppeniteration.



8. NEWTON-RAPHSON ITERATION
We show that the formula
P(s%)
S _ 8, - -
ML = P ﬁ(x+1)(SA;

is precisely a Newton-Raphson-iteration performed on a cer-
tain rational function. The word precisely in the previous

sentence is to emphasize that the iteration is not merely of

Newton-Raphson type. We prove the following

THEOREM. The formula

S _ S -
ML = T ﬁ()+1)(

is identical with

Sh#l = S T [W(}\)(sx) -

where
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PROOF. Let

Hence

mAy+HVANv _ NH mAyVANV

may be written as

<Ay+HVANV _ o
and
viM ey = M),
Furthermore
Smyf: _ <Ay:myv

g

0]
e
(@]
)




P(s?\) P(s)\)h(gM'l)
S _ 8, - — =8, - —
AL = T H(7\+1)(S7\) A H(7\+1)(S)\)

This permits us to regard variable shift iteration in
the following manner. We are performing Newton-Raphson itera-
-tion on a sequence of rational functions P(z)/H(M(z). For A
sufficiently large, P(z)/H()‘)(z) is as close as desired to a
linear polynomial whose zero 1i's Py- This shows why the process

is so powerful.

Note that no differentiation 1is performed in our
calculation of the sequence {s)\}. The division by z -5y has

the effect of differentiation.
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9. IMPLEMENTATION OF THE ALGORITHM

The program implementing the algorithm, a discussion
of how the program makes its decisions, stability of the
algorithm in finite precision arithmetic, the results of
extensive testing, and a program which clusters the zeros and
provides a posteriori error bounds will appear elsewhere.
Here we confine ourselves to a few observations.

The termination of Stage One, that is, the choice
of M, is not crucial. 1Indeed Stage- One is not necessary from
theoretical considerations. The function of Stage One is to
accentuate the smaller zeros. Numerical experimentation
indicates thdt this makes the decision to terminate Stage Two

-more reliable. In the implementation, M is set at 5, a number
arrived at by numerical experience.

The following three major decisions have to be
made by the program:

1. Selection of the shift s.
2. Termination of Stage Two; that is, the choice of I,.
3. Termination of Stage Three.
We indicate how these three decisions are made.
1. Selection of s.
This parameter is chosen so that |s| = B,

B < minlpﬂ, i =1,2,...,3J and so that

(9.1) | s-py | < | s=py |, i=2,...,J.
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A lower bound on the moduli of the zeros due to Cauchy
(Marden [4, p.98, ex. 1]) is given by the unique positive

zero, B, of the polynomial

z% 4 | allzn'l oot la g lz-la, .

This number 1s easily calculated by Newton-Raphson iteration.
The value of s is then chosen by using random numbers from a
uniform distribution to pick a point-on the circle of radius
B. It is highly probable that the s so chosen will be

closest to just one of the zeros of P and hence the condition
(9.1) is satisfied. If the condition is not satisfied, the test
described below may not be passed in which case a new value

of s is chosen. Observe that s need not be closest to the
smallest zero of P. It is easy to show that it will be
closest to a zero whose modulus is at most three times the
modulus of the smallest zero. Hence we guarantee that we will
never perform a deflation using a zero which is large compared

to other zeros of P. Thus we avoid a situation (Wilkinson [10]

which could lead to serious instability.

2. Termination of Stage Two.

We do not attempt to carry out Stage Two far enough

to assure that the conditions of the Theorem of Section 5 are
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satisfied. (These are only sufficient conditions). Instead

we test for the convergence of the sequence s - P(s) /E(A)(s).
Experience has shown that it is efficient to terminate Stage
Two after only a very weak test for convergence has been

passed. Let t, = s - P(s) /ﬁ(x)(s). If t., ¢

A o) are

AOUA+L? t)\+

defined and

then we terminate Stage Two.

If the test is not passed by the time ) reaches a
certain value (which itself is varied depending on how many
Shifts have been tried), a new value of s is generated with
modulus B and random amplitude.

Since we are using such a weak convergence test for
the sequence, we must allow for the fact that there will be
cases when Stage Three is started prematurely with an Sy, and
H(L) which do not lead to convergence. This causes no dif-
ficulty as we observe below. We emphasize that the generation
of a sequence of values of s is only a contingency. In
practice it is very rare that the first s chosen doesn't
serve, and the largest number of trial shifts required in

the course of extensive testing has been three.



Termination of Stage Three.

As in [3] we terminate Stage Three when the computed

value of the polynomial at s, 1is less than or equal to a bound

A

on the roundoff error in evaluating P(s Numerical experience

A)'
indicates this is a good stopping criterion for polynomial
zero-finding as it stops the iteration Jjust as the limiting
accuracy has been reached. Since we expect rapid convergence
of the third stage we place a limit of ten on the number of
iterations. If convergence is not aehieved when this limit is
reached we return to Stage Two with the value of s used the
last time we were in Stage Two unless the limiting value of
A has been reached,

We turn to some other matters. We describe how the process
for computing the H polynomials in either Stage Two or Three is
actually carrled out, We describe the Stage Three process, the

Stage Two process being entirely analogous.

Rather, than computing the H polynomials by

(9.2) ML (z) o L1 x(M(y) ()

_s)\ : _P(—S—{)_—- P(Z) )

the "scaled recurrence"

A% L e (o),

(9.3)

ﬁ(%+l)(z) = zjéx P(z) - §1?7f;_7




is used. This generates a sequence of monic polynomials and
avoids the overflow and underflow problems' which would occur
if (9.2) were used. The use of (9.3) 1is equivalent to a
method of scaling used by Traub [6, Section 9].

The computation of ﬁ(x+1)(z) by (9.3) requires 4n
(in general complex) multiplications and additions, This may
be reduced to 3n by the following observation.

Let

P(z) = @M (2)(z-5,) + B(s,),

BN (2) = oM (2)(z5,) + BN (s ).

H
—-Then
,. P(s,)
(9.8 B (5) =M (y) - ﬁ—_({;-?:)— o{M (2).
A

If P(SA) and ﬁ(x)(sx) are calculated by the usual Horner
recurrence, then Qéw)(z), Qék)(z) are generated.as a byproduct.
In Stage Two s 1is fixed, P(s) and ng)(z) are formed just once,
and only 2n (in general complex) multiplications and additions
are required per step.

A discussion of stability will appear elsewhere.
Here we limit ourselves to a few observations. The process

of calculating ﬁ(wﬂj(z) by (9.3) is precisely the deflation

of the polynomial
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P(s.)
(9.5) P(2) - o M=)
A

which has a zero at Sy and whose remaining zeros are near the
zeros of P(z)/(z-pl). Because of the way that s and the s,
are chosen, these numbers are among the smallest zeros in
modulus of the polynomial given by (9.5), which is a desirable
situation.

We use (9.4) rather than (9.3), in carrying out the
process. Observe that in (9.4) ﬁ(%)(z) is calculated as the
sum of a polynomial which is near P(z)/(z-pl) and a polynomial
with small coefficients which may be viewed as a correction
-term. This is a favorable situation for the control of
roundof f,

The variable-shift stage may be viewed as a non-

stationary iteration. It has the usual desirable stability

properties common to 1terative processes.
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10. NUMERICAL RESULTS

Extensive numerical experimentation, performed on
an IBM 360/67, leads to the timing results given below,
Additional testing is planned.

For polynomials with real coefficients and of
degrees ranging from 20 to 50, the time required to calculate
all zeros averages 4n2 milliseconds. Thus a 20th degree
polynomial takes 1.6 seconds, -a 50th degree polynomial takes

10 seconds.

The time for all the real polynomials of degree 20
or greater which were tested ranges from 3n2 to 7n2 milliseconds.
The polynomials used in the testing range from polynomials with
randomly chosen zeros to polynomials with multiple zeros and
clusters of near equimodular zeros. The fact that the time
required is insensitive to the distribution of zeros is most
encouraging.

The algorithm reported in this paper was not tailored,
for polynomials with real coefficients. Elsewhere we shall
report on an algorithm designed for real coefficients. The
real algorithm cuts the time by a factor of roughly two.

" For polynomials with complex coefficients and of
degrees ranging from 20 to 50, the time required to calculate
all the zeros averages 8n2 milliseconds.

These figures were obtained from an ALGOL 60 imple-
mentation of the algorithm. A FORTRAN implementation would

be faster.
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For 1llustration we exhibit a low degree numerical
example. The purpose of this example is not intended to
prove anything about the efficacy of the algorithm and its
implementation, This has been done through extensive testfng
which will be reported elsewhere,

The example given below has a zero of multiplicity two as
well as three almost equimodular =zeros, two of which form a near-
multiple pair.

P(z) = 22 - (13.999+51)z" + (T4.99+55.9981)z3
- (159.959+260.9821)z° + (1.95+463.9341)z

+ (150-199.951),

P(z) = (2-1-1)%(z-4+31) (z-4-31)(2-3.999-31).

In calculating each of the zeros below, five no-
shift steps were taken (M = 5). 1In Table 1 we give the value
of s used in Stage Two, the number of Stage Two steps (L-M),
the value of s;, used to start Stage Three and the iterates 5143
used in Stage Three.8 The program was written in a dialect of
ALGOL 60 and run on Stanford University's IBM 360/67.

Observe that the well-conditioned zero at 4 -3iis

calculated accurately even though the polynomial has already

been deflated with three i1ll-conditioned. zeros.
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TABLE 1. A Numerical Example

Zero (1) s = - .37087 + .179071, L - M = 2, sy, = .999% + 1,00011
3 SL+]
1 1.00000000000426 + ,9999999999782011

Zero (2) s = - .66572 - .0930011, L - M = 2, sy = .99975 + 1.00051
] SL+)
1 .999999999974143 + 1.000000000001921
2 .999999999995742 + 1.000000000021801

Zero (3) s = 1,1968 + .920161, . - M = U4, s = 4,6023 + 3,08591

L
J SL+y
1 3.99420181191240 + 3.006238036392071
2 3.99946028022349 + 2,9999530671867681
3 3.99939735288312 + 2.999886588791281
h 3.99900069469391 + 3.000383503135241
5 3.99892674982940 + 3.000001012817341
6 3.99899965220352 + 2.999999183018531
7 3.99899999997589 + 2.999999999985161
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Zero (4) s = 26797 - 2.38811,L -m= 4, Sy, = 3.8372 - 2.67541
] SL+g
1 3.99861695624235 - 3.002343341883751
2 4 ,00000000757741 - 3.000000004356321
3 4 ,00000000000000 -~ 3.000000000000001

Zero (5) 4 ,00000000002411 + 3.000000000014841
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