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ABSTRACT

We introduce a new three-stage process for calculating

the zeros of a polynomial with complex coefficients. The algor-

ithm is similar in spirit to the two-stage algorithms studied

by Traub in a series of papers, The algorithm is restriction

free, that 1s, 1t converges for any distribution of zeros. A

proof of global convergence 1s given.

Zeros are calculated in roughly increasing order

of magnitude tc avoid deflation Instability. Shifting is

incorporated 1n a natural and stable way to break equimodularity

and speed convergence. The three stages use no shift, a fixed

anlft, and a variable shift, respectively,

Tc obtain additional insight we recast the problem

and algorithm into matrix form. The third stage is inverse

iteration with the companion matrix, followed by generalized,

Rayleigh 1teration,
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A program implementing the algorithm was written

in a dialect of ALGOL 60 and run on Stanford Unlversity's

IBM 360/67. The program has been extensively tested and

testing is continuing. For polynomials with complex

coefficients and of degrees ranging from 20 to 50, the time

required to calculate all zeros averages 8n° milliseconds.
Timing information and a numerical example are

provided. A description of the implementation, an analysis

of the effects of finite-precision arithmetic, an ALGOL 60

program, the results of extensive testing, and a second

program which clusters the zeros and provides a posteriori

error bounds will appear elsewhere.
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1. INTRODUCTION

We introduce a three-stage algorithm for calculating

the zeros of" a polynomial P,

Nn

n-i _

P(z) = ) az , a, = 1, a, £ 0,
1=0

(1.1)

J m,
i=1

The conditlon a, = 1 1s for convenience only. The coefficients

are in general complex. The algorithm involves 1teration 1n

the complex plane, Elsewhere we shall analyze the appropriate

analogue for polynomials with real coefficients (and complex

conjugate zeros) which uses only real arithmetic,,
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The zeros are calculated one at a time and zeros

of multiplicity m are found m times. The zeros are found in

roughly increasing order of magnitude to avoid the

instability arising from deflation with a large zero

(Wilkinson [lo]).

The algorithm 1s similar 1n spirit to the two-stage

algorithms proposedby Traub [6], [7],[8].In [6] Traub

gives a class of always convergent algorithms for calculating

the largest zero. An instance of the class of algorithms

given in[6] follows. Notation has been modified to agree

with the notation of this paper.

Let

60) (2) = P'(z),

(1.2)

cM)(2) = 2aM(z) ae), a -o0,1,...,00

where aM) 1s the leading coefficient of cM (2). Let Zo be
arbitrary and let

_ (L)
(1.3) Zyy1 = Z3 - R (z4)

where
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If P(z) has a largest zero and if L 1s sufficiently large and

fixed, then this iteration converges to the largest zero,

The appropriate modification of this algorithm for

the case of a pair of complex conjugate zeros was announced

| in [7].

In [8] Traub gives the following algorithm for cal-

culating the smallest zero. Let

(1.4)

1%(z) = 2 (2),

(A+1) 1.0) 1M(0)
H (z) = = | H (z) - 570) P(z) |, A =0,1,...,L-1,

Let z, be arbitrary and let

_ (L)
(1.5) Zygqp = 24 = V (z4)

where

L

yd ) (2) = (Lp) /u(T) (2),

and ol 1) 1s the leading coefficient of nh L (2). If' P(z) has

a smallest zero and1f L 1s sufficiently large and fixed, then

the iteration converges to the smallest zero.
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The implementation by Jenkins and Traub of a general

polynomial solver basedon two-stage algorithms 1s described

In [3]. Separate procedures are used dependingon whether

there are one or two smallest zeros. If there are more than

two distinct smallest zeros, a process of "double translation*'

described in Section 6 of [3] is used to break up the

equimodularity.

The two-stage algorithm implemented in [3] has the

following desirable characteristics:

1. The mathematical algorithm 1s restriction-free,

that 1s, it converges for any distribution of zeros.

2. Zeros are calculated in roughly increasing order of

- modulus; this avoids the instability which occurs

when the polynomial 1s deflated with a large zero.

3. The final stage 1s an iterative process and thus

has the desirable stability features of iterative

processes.

4. Few critical decisions have to be made by the program

which implements the algorithm.

5. The algorithm 1s fast except for polynomials with

many nearly equimodular zeros.



The three-stage algorithm introduced 1n this paper

enjoys the first three characteristics, 1improvedfourth and

fifth characteristics and a new characteristic.

br The number of critical decisions is further reduced,

5! The algorithm 1s fast for all distribution of zeros,

6, Shifting is incorporated in the algorithm itself

in a natural and stable way, Shifting breaks equi-

modularity and speeds convergence.

We summarize the contents -of this paper,, The main

properties of fixed and variable-shift H polynomials are

glven 1n Sections 2 and 3 and the mathematical algorithm is

stated in Section 4. Global convergence for an arbitrary

distribution of zeros 1s proven 1n Section 5 and the quadratic

character of the convergence is established in Section 6.

In Section 7 we recast the problem and algorithm

in matrix form and prove that Stage Three may be viewed as an

efficient process for carrying out inverse powering using

a companion matrix with shifted eigenvalues and generalized

Rayleigh iteration. Although we are dealing with the case of

a non-Hermitean matrix with nonlinear elementary divisors, the process

does mt suffer from the customary (Ostrowski [5]) slow convergence.

In Section8 we prove that the third stage is

precisely equivalent to Newton-Raphson iteration applied to

a sequence of rational functions converging to a linear



polynomial. It 1s a Newton-Raphson iteration even though

no differentiation 1s performed.

Our focus 1n this paper 1s on the mathematical

algorithm and 1ts properties., Timing information and a numerical

example are provided. A description of the implementation, an

analysis of the effects of finite-precision arithmetic, an

ALGOL 60 program, the results of extensive testing, and a second

program which clusters the zeros and provides a posteriori

error bounds will appear elsewhere.- In Section 9 we do discuss

a number of important points pertaining to stability and

decisions to be made by the implementing program, In the final

section we give a small numerical example.
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2. FIXED-SHIFT H POLYNOMIALS

We introduce fixed-shift H polynomials and prove a

0)number of their properties. Let H( (z) be a polynomial of
degree at most n - 1. Let s be a complex number with

P(s) # 0. Define the sequence

(2.1)
(A)

A+1 1 (N\) il = 0,1,...7° ) (2) ar : (2) DP (s P(z) A 3+ .
The 1M) (2) are polynomials of degree at most n - 1.

Define

_ P(z2)

The properties of H(A) (2) follow from the following lemma
which 1s easily proven by induction.

LEMMA. Assume

(0) _ (0)
H (z) = cy P, (2).

i=1

Then for all A,

0 -A,(2.3) 1M(2) = ) e (py-s) ey (2).
1=1
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(0) (2) is equivalentNote that the assumption about H 4

to assuming that the partial fraction expansion of

100) (2) /p(z2) nas only linear terms. We will ensure this by

taking (0), = pr(z). A matrix formulation of this 1s given
in Section 7.

We define

(2)

(0). yAJ, ei (Pie)
i=1

Thus 7M (2) is gM) (z) divided by its leading coefficient.

Our interest 1n H polynomials 1s due to the following theorem

—which follows from (2.3).

THEOREM. Assume (0) c; # IeL s be such that
| py -s]| < lpy-si, i =2,...,J. Then for all finite z,

(2.4) lim 1(M (z) = P,(2).
A>

Observe that (2.4) may- be written as

P(z)
(2.5) lim z - TR),+ = Pq .A> A (z) 1

(The zero labelled p, depends on the choice of s.)
The rate of convergence depends on max[ |p, -s|/[py-s| 1. This
suggests that s be changed to be the best available approxima-

tion to py. This leads to the idea of 'variable-shift H

polynomials.
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3. VARIABLE-SHIFT H POLYNOMIALS

Let 100) (2) be a polynomial of degree at most n - 1.

Let sg be a complex number with P(sy) # 0. Define the sequence

(31) 1 | (0) 5M Gs)

(3.1)
P(s)

Sal T Sa TF) (5)

A= 0,1,..., If Ps) — 0, terminate the calculation. The
g(M) (z) are polynomials of degree at most n - 1. There should

be no confusion from using the same symbol for the sequences

generated by (2.1) and (3.1). The following lemma 1s easily

verified |

LEMMA. Let

(0) = fOr (a).
i=1

Then for all A,

A) A)

1=1

A 0 -1

AN _clO TT (pms) Th
t=0



We defer the investigation of the convergence of

the wvariable-shift process to Section 5.
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4, THE ALGORITHM

We motivate the three-stage algorithm described

below. In Stage One, we calculate a sequence of fixed-shift

H polynomials with s = 0. This 1s the no-shift process, The

purpose 1s to make the smaller zeros stand out. (See

Section 9.) If there is a smallest zero, we obtain con-

vergence according to the theorem of Section 2 and the

fixed-shift calculation of Stage Two 1s not necessary.

However, rather than testing for convergence of

the no-shift H sequence, we terminate Stage One after a small

number of steps and enter Stage Two where we calculate a

sequence of fixed-shift H polynomials using a complex number s

-whose madulus 1s less than the smallest zero and whose ampli-

tude 1s randomly chosen. (See Section 9). There are only

a finite number of points on the circle|z| = |s| which are

equidistant from two or more zeros. According to (2.5) the

sequence

t = . _E(s)

will converge to the zero closest to s, provided there 1s such

a zero. As soon as {t,t passes a. convergence test (see
Section 9),we are ready to enter Stage Three. Let the test be

passed when A = L. Then s - p(s) /AL) (s) should be close to pq
and this 1s the starting value of the shift for Stage Three.

These shifts should converge very rapidly to Pq (see Sections

5 and 6).
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The algorithm 1s used to calculate a

zero of P. After each zero is found, the polynomial

is deflated and then the algorithm is applied to

the deflated polynomial,, Hence P represents either the original.

polynomial or a polynomial obtained by deflation.

Stage One. No-Shift Process .

1) (2) = Pz),

(4.1)

(A+1) 1 | ..(2) 1M(0)
H (z) = 7 |H (2) - 570) P(z)| , A = 0,1,...,M-1.

Stage Two. Fixed-Shift Process.

Take B to be a positive number such that

B < min|p,| and let s be such that |s| = 8 and such that

(4.2) |s-py| < Is-py], 1=2,...,J.

Let -

(4.3)

gM) yo 1 | gM (yg) 5) (5) P(z) A = M,M+1 IL-1
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Stage Three. Variable-Shift Process.

Take

S; = 8 - inl s

and let

(2)
H'" (s.)(A+1) __1 (2) A

H (z) "zs, HY" (2) - Fey PE) )

(4.4)

P(s,)
Sal TETow).yc MT bh

H (s,)

There are a number of iterative processes used 1n

the algorithm. In each of the three stages there 1s an

lteration producing a sequence of polynomials. Regarding the

vector of coefficients as basic, we refer to these iterations

as vector 1terations. In Stage Three we compute a sequence

of shifts, We refer to this as a scalar iteration.
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5. PROOF OF GLOBAL CONVERGENCE

We 1nvestigate the convergence of the three-stage

algorithm. We begin by investigating the convergence of the

variable-shift process defined by (4.4).

LEMMA: Assume

1. |s;-py | < 4R, where R = min | py-py |

L

il, e! ) # 0,

L

LL oi?) 1
111. Dp = =

L [ef 3i=2 1

Then Sy = Pq.

PROOF. We defer to the end of this proof the

demonstration that the iteration 1s always defined. We show

first that if the iteration 1s defined, it converges. We

know by (3.2) that

A A

1=1

: h-1( L a!

FL = cy ) mm (py-s¢) =, ATL
t=L



Some algebraic manipulation leads to

3 RORINCN 3 NORES -p 1 i 1 71
152 - _1=2 1=2

(5.2) p=IL _ =A (NTF (A)
1 + ). | Ti | dy

i=2

where

S,~p (A)
NCI JN 8
i 85 -Py 1 IM

Let

[8 a417P1 .
= A°

[§5-P1

We prove convergence by showing there exists a 1, such that

for allA > 1, Ty < Tq < 1. The proof 1s by induction.
Observe that

1) [8 17P.|pt | = ~ < 1.
1 EF

Hence
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| (L) 3 (L)+ d3 dy 7 | | 1 op.
TS SS Tr

1- ) | | d
2

1 Let
By hypothesis Dp < 7 e

2D
(5.3) Ll =

Then Tp < 7p < 1.

Assume now that Tp,Tp.qs..-5T53 < 7p, <1. Hence

|8-Pq | < |s1,-Pq | < 3R,

5 -py | 2 [pq =P | = 5, -pq | > 4R

Thus

Observe that

(A) _ (A-1) 5(A-1)
dj © = ry ds" 7

Hence

& (nN)
2
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From (5.2), (5.3), (5.4),(5.5) it follows-that T, < 7, <1
for » > L which completes the proof of convergence.

We now show that the sequence {s,} is always

well defined for AN > L.

(2) -1 |

oo (MN) -1
1=1 |

| \m2
| (A) (2)

=2 |
=P (s ) ES 1.
Po NNESINEN

1 + ) dy ry |

P,(sy) # 0 by hypothesis i and the contraction argument. Since,
as we have seen,

2

AN) TA) 1

1=2 |

7M) (s.) # 0 and the iteration is well defined. This com-
pletes the proof of the lemma,
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We now investigate the convergence of the three-

stage algorithm defined in Section 4. The major result of the

paper 1s given by the following

THEOREM. For all L sufficiently large and fixed, Sy 2 Pq.

PROOF. Since 1(0) (z) = P'(z),

)
10) (2) =) mip,(2)

1=1 -

and it follows from (2.3), with s = 0, that

ER3 H(z) =) mypy Py (2). oo
1=1 oo |

Then

L -M, -(L-MH( (2) = 3 M4Py (py-s) ( )p. (2)
i=1

J
_ (L) 5
= ). cy Py(z).

i=1

We have 2 # 0, Furthermore

i (1) M L-M

3 ie 3 (3) (3)(1) m Ps Ps —S ‘
=p C4 {=p 1 A i

Recall that | py-s | < | py-s |.
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Fix M. Then by choosing L sufficiently large we can make

3 ell)Dp = —TT
1=2 le

as small as desired. Choose I, so that

(5.6) D. < %

and

2D;

-The condition of (5.7) ensures that |s;-p,| < 3R. All the

hypotheses of the lemma now hold and the conclusion follows.



6. RATE OF CONVERGENCE

Let

|s Pq |
(6.1) C(h) = SL 2 .

ISP!

In the last section we proved the existence of a number Tq,

such that for A > 0,

E -pq |

(6.2) Te = << 1+2 P1

where 7, = 2D; /(1-D;). We defined R = min|py-py |» The rate
of convergence of our algorithm is governed by the following

THEOREM. Let the hypotheses of the lemma of the

previous section hold. Then

(6.3) C(A) < 2 MA-1)/2
=~ R 'L

PROOF. From (5.2),

: p {THN (LH) a{LH)
LL A sg py --- 1, 5.p7

SpalPL 1m HATH jmp LTA TH
(S7.9-P7) |

L+a "Fl 1+) [TT a{T+)
1=2



One may verify that for all A and 1 > 1,

L+2A) A 1 2Ir | < Tyo» - < 7 »
1 L T8y4p, Py] = R

and

IA) ©. 1 A(A-1)/2$a) 202
1=2

Substituting these bounds into (6.4) establishes the theorem.

Thus the process 1s second order with an error

constant C(A) which approaches zero. This may be contrasted with

the conventional Newton-Raphson iteration in which there 1s

no control over the error constant.

COROLLARY. Let the hypotheses of the lemma of the

previous section hold. Then for N > 0,

S140 7P1 < RT,

n= [3-2 = (AC++2)]2 a

PROOF. For A» = 1 this follows from (6.2), For » > 1

it follows upon substituting (6.3) into (6.1).
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| 7. VARIABLE-SHIFT ITERATION IS GENERALIZED

| RAYLEIGH ITERATION
We now give a matrix interpretation of our algorithm.

We show that in a matrix'formulation the vector iteration of

the third stage 1s inverse powering with a matrix whose elgen-

values have been shifted, while the scalar 1teration 1s gener-

alized Rayleigh iteration.

Let

O oO oo 0 -a,

1 0 ce (0 a, 3

0 1 coo 0 ao
A = |

» ° ce eo 0 1 —dq

be the companion matrix of P. Let

n-1

. 1=0

and

(A) ,T A A
MT = N,n(M)y
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| Let

(2) n-1P(z ) n-1-7P, Z = Uh St SR z .(2) = 25h ), Pi;
]=0

Define

T

Pi = (Pyp-1s-++2P30)

.

|

One may easily verify that for the eigenvalue Py> the right

and left eigenvectors are by and dq; respectively.
- One may verify that the initial condition

1(0) (2) = P'(z)

1s equivalent to

@. §h myPy
i=1

the fixed-shift recurrence

: 1 A), (A) |

(7.1) wM) (3) - 5 | (2) - prefers)



| 1s equivalent to

(7.2) n( M1) — (A-s1) "InN [

while the wvariable-shift recurrence 1s equivalent to

(7.3) nM) _ (A-5,1) "tn (M :

Equations (7.2) and (7.3) exhibit the processes as inverse

powering with a matrix whose eigenvalues have been shifted,

This is also called inverse iteration (Wielandt [9]). We

show that

P(sy)

-(7.5) S\L TSA TMT LY
H (55)

1s equivalent to

(7.5) ] rs (MN) 17 py (M1)
= [6 (MT, (WITAl [s A 1th A1

where .

(AN) T _ n-1

Now (7.4) may be written as

(A+1) (N+1)
s , H (s,! - hy P(s,]

H (54)
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Observe that

(7.7) HOD) (60) = [s(MTn (1)

From (7.1),

(n)

Cow) B85)
0 = p(s.) y

Hence.

+ A+1 A+1) (2)
5, HA 1 (s,) - nl 'p(s,) = sail (54) + HE (54)

_ [5 (MN 9Tap (AFL)

Substituting this result together with ('7.7) into (7.6) com- ,

pletes the proof.

We summarize this result in a

THEOREM. The wvariable-shift recurrence

(MN)
H'" (s%)

(A+1) 1 (AN) A
H (2) “zs, H(z) - BICNEE P(z) |,

P(sy)
S _ 8, = —m—y——

ML = "2A RO) (s,)
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1s equivalent to

n(M1) _ (A-s,1) Tn)

[5 (A) Tp (M1)

ML = TOTO

observe that h'M 5p and [s(MT al. Hence (7.5)
is a generalized Rayleigh iteration (Wilkinson [11, p.179],

Ostrowski [5]) appropriate for non-Hermitean matrices.

However we are 1n a very favorable position as

zompared with the usual situation when inverse iteration and

generalized Rayleigh iteration are applied.

1. No calculation has to be performed to determine

the left eigenvector. It is simply s(M 17
2. Multiple eigenvalues of a companion matrix imply

nonlinear elementary divisors. In general this

leads to (Ostrowski [5]) linear convergence. In

our case multiple zeros do not affect the rate of

convergence (tis still quadratic) and require no

special attention.

3. The inverse iteration 1s carried out explicitly.

4, The initial vector h(0) and all succeeding vectors

n(M lie in the subspace spanned by the eigenvectors



of A. Furthermore the n(M cannot be deficient
in the eigenvector corresponding'to the eigenvalue

being calculated.

5. Our process 1s globally convergent to one of the

smallest eigenvalues of A and hence deflation 1s

carried out under favorable conditions.

Bauer and Samelson [2] have suggested an iteration

which 1s related to Stage Three of our algorithm. Performance

of an analogous process on a sequence of polynomials of

decreasing degree leads to Bauer's [1] Treppeniteration.
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8. NEWTON-RAPHSON ITERATION

We show that the formula

P(s,)
S _ 84 - Ip—

M1 = TA gi) (g |
A

1s precisely a Newton-Raphson iteration performed on a cer-

tain rational function. The word precisely in the previous

sentence 1s to emphasize that the iteration 1s not merely of

Newton-Raphson type. We prove the following

THEOREM. The formula

P(s,)
- S S, =

M1 = "Nn 0 (WT)
: (p21)

1s identical with

(M)
W (5)

S Sy -

AML = TA (N)
[Ww (sy) 1°,

where

(MN) P(z)Ww (z) = .
HN(2)
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(A+1)
P(s,) P(s,)h

S S = = 8, - —

= SOFT OT Ly

(MN)
V (54)

Mower

(A)
W (54)

= 8S -—
)

ws)

This permits us to regard variable shift iteration in

the following manner. We are performing Newton-Raphson itera-

-tion on a sequence of rational functions p(z) mM (2). For A

sufficiently large, p(z) aM (2) is as close as desired to a

linear polynomial whose zero 1's Py - This shows why the process

1s so powerful.

Note that no differentiation 1s performed in our

calculation of the sequence {s,}. The division by =z -Sy has
the effect of differentiation.





EE

oo

9g, IMPLEMENTATION OF THE ALGORITHM

The program implementing the algorithm, a discussion

of how the program makes 1ts decisions, stability of the

algorithm in finite precision arithmetic, the results of

extensive testing, and a program which clusters the zeros and

provides a posteriori error bounds will appear elsewhere.

Here we confine ourselves to a few observations.

The termination of Stage One, that 1s, the choice

of M, 1s not crucial. Indeed Stage- One 1s not necessary from

theoretical considerations. The function of Stage One is to

accentuate the smaller zeros. Numerical experimentation

indicates that this makes the decision to terminate Stage Two

-more reliable. In the implementation, M 1s set at 5, a number

arrived at by numerical experience.

The following three major decisions have to be )

made by the program:

1. Selection of the shift s.

2. Termination of Stage Two; that 1s, the choice of I,.

3. Termination of Stage Three.

We indicate how these three decisions are made.

1. Selection of s.

This parameter is chosen so that |s| = B,

B < min |p|, i =1,2,...,J andso that

(9.1) | s-p; | < | s=py |, | = 2,...,].



A lower bound on the moduli of the zeros due to Cauchy

(Marden [4, p.98, ex. 1]) is given by the unique positive

zero, PB, of the polynomial

2” + lal" ola za |.

This number 1s easily calculated by Newton-Raphson iteration.

The value of s 1s then chosen by using random numbers from a

uniform distribution to pick a point-on the circle of radius

B. It 1s highly probable that the s so chosen will be

closest to Just one of the zeros of P and hence the condition

(9.1) is satisfied. If the condition 1s not satisfied, the test

described below may not be passed in which case a new value

of s is chosen. Observe that s need not be closest to the

smallest zero of P. It 1s easy to show that it will be

closest to a zero whose modulus 1s at most three times the

modulus of the smallest zero. Hence we guarantee that we will

never perform a deflation using a zero which 1s large compared

to other zeros of P. Thus we avoid a situation (Wilkinson [10]

which could lead to serious instability.

2. Termination of Stage Two.

We do not attempt to carry out Stage Two far enough

to assure that the conditions of the Theorem of Section 5 are
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satisfied. (These are only sufficient conditions). Instead

we test for the convergence of the sequence s - P(s) /H (A) (s).

Experience has shown that it 1s efficient to terminate Stage

Two after only a very weak test for convergence has been

passed. Let t, = s - P(s) aN (sy. If ys bayro Epo are
defined and

BENB LN EE BNVEE IE LOVE

then we terminate Stage Two.

If the test is not passed by the time ) reaches a

certain value (which itself 1s varied depending on how many

shifts have been tried), a new value of s is generated with

modulus B and random amplitude.

Since we are using such a weak convergence test for

the sequence, we must allow for the fact that there will be

cases when Stage Three 1s started prematurely with ans; and
q(T) which do not lead to convergence. This causes no dif-

ficulty as we observe below. We emphasize that the generation

of a sequence of values of s 1s onlya contingency. In

practice 1t 1s very rare that the first s chosen doesn't

serve, and the largest number of trial shifts required in

the course of extensive testing has been three.
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Termination of Stage Three.

As in [3]we terminate Stage Three when the computed

value of the polynomial at oN 1s less than or equal to a bound

on the roundoff error in evaluating P(s, ). Numerical experience
indicates this 1s a good stopping criterion for polynomial

zero-finding as 1t stops the iteration just as the limiting

accuracy has been reached. Since we expect rapid convergence

of the third stage we place a limit of ten on the number of

iterations. If convergence 1s not aehieved when this limit 1s

reached we return to Stage Two with the value of s used the

last time we were 1n Stage Two unless the limiting value of

A has been reached,

We turn to some other matters. We describe how the process

for computing the H polynomials in either Stage Two or Three 1s

actually carried out, We describe the Stage Three process, the

Stage Two process being entirely analogous.

Rather, than computing the H polynomials by

| 1M) (s )A+1) 1 (A) A(9.2) HM (z) o 11x (gy) P(z)|

the "scaled recurrence"

02) 2p (2),
(9.3) oo

P(s.) |(M1) yy _ 1 A =)
H (2) = 2557 | B(2) - cig HV (2)

A H (85)
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is used. This generates a sequence of monic polynomials and

avoids the overflow and underflow problems' which would occur

if (9.2) were used. The use of (9.3) is equivalent to a

method of scaling used by Traub [6, Section 9].

The computation of (M1) (4) by (9.3) requires 4n

(in general complex) multiplications and additions, This may

be reduced to 3n by the following observation.

Let

_ old) :

=(N) yy = (2) =(2) |
(2) = Q(z) (2-8) + HB" (s,).

-Then

I =(A+1) (A) P(s,) (7)
H (55)

If P(s,) and BN gs.) are calculated by the usual Horner
recurrence, then olM (2), lM (2) are generated.as a byproduct.
In Stage Two s 1s fixed, P(s) and lM (z) are formed just once,
and only 2n (1n general complex) multiplications and additions

are required per step.

A discussion of stability will appear elsewhere.

Here we limit ourselves to a few observations. The process

of calculating TM) (2) by (9.3) is precisely the deflation

of the polynomial



P(s,) _

(9.5) P(z) - TT AM(2)
which has a zero at Sy and whose remalning zeros are near the

zeros of P(z)/(z-pq). Because of the way that s and the s,

are chosen, these numbers are among the smallest zeros in

modulus of the polynomial given by (9.5), which is a desirable

situation.

We use (9.4) rather than (9.3), in carrying out the

process. Observe that in (9.4) 7M (2) is calculated as the

sum of a polynomial which is near p(z)/(z-pq) and a polynomial

with small coefficients which may be viewed as a correction

-term. This 1s a favorable situation for the control of

roundoff,

The variable-shift stage may be viewed as a non-

stationary iteration. It has the usual desirable stability

properties common to 1lteratlve processes.



10. NUMERICAL RESULTS

Extensive numerical experimentation, performed on

an IBM 360/67, leads to the timing results given below,

Additional testing 1s planned.

For polynomials with real coefficients and of

degrees ranging from 20 to 50, the time required to calculate

all zeros averages ln milliseconds. Thus a 20th degree
polynomial takes 1.6 seconds, -a 50th degree polynomial takes

10 seconds.

The time for all the real polynomials of degree 20

or greater which were tested ranges from 3n? to Tn milliseconds. .

The polynomials used in the testing range from polynomials with

randomly chosen zeros to polynomials with multiple zeros and

clusters of near equimodular zeros. The fact that the time

required 1s insensitive to the distribution of zeros 1s most

encouraging.

The algorithm reported in this paper was not tailored,

for polynomials with real coefficients. Elsewhere we shall

report on an algorithm designed for real coefficients. The

real algorithm cuts the time by a factor of roughly two.

" For polynomials with complex coefficients and of

degrees ranging from 20 to 50, the time required to calculate

all the zeros averages 8 4 milliseconds.

These figures were obtained from an ALGOL 60 imple-

mentation of the algorithm. A FORTRAN implementation would

be faster.
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For 1llustration we exhibit a low degree numerical

example. The purpose of this example 1s not intended to

prove anything about the efficacy of the algorithm and its

implementation, This has been done through extensive testfng

which will be reported elsewhere,

The example given below has a zero of multiplicity two as

well as three almost equimodular zeros, two of which form a near-

multiple pair.

1 _
P(z) = z° - (13.999+51)z + (74.99+55.9981)z>

- (159.959+260.9821)z° + (1.95+463.9341)z

+ (150-199.951),

2

P(z) = (2z-1-1)"(z-4+31)(2-4-31)(2-3.999-31).

In calculating each of the zeros below, five no-

shift steps were taken (M = 5). In Table 1 we give the value

of s used 1n Stage Two, the number of Stage Two steps (L-M),

the value of 81, used to start Stage Three and the iterates ST
used 1n Stage Three.8 The program was written ina dialect of

ALGOL 60 and run on Stanford University's IBM 360/67.

Observe that the well-conditioned zero at 4 -31is

calculated accurately even though the polynomial has already

been deflated with three i1ll-conditioned. zeros.
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TABLE 1. A Numerical Example

Zero (1) s = - .37087 + .17907T1, L - M = 2, s; = .999% + 1.00011

: SL+]

1 1.00000000000426 + ,9999999999782011

Zero (2) s = - .66572 - 0930011, L - M = 2, Sp = .99975 + 1.00051

J SL+]

1 .999999999974143 + 1.000000000001921

2 .999999999995742 + 1,000000000021801

zero (3) s = 1.1968 + .920161,» - M = 4, 5. = 4,6023 + 3,08591

J SL+]

1 3.99420181191240 + 3.006238036392071

2 3.99946028022349 + 2,999953671867681

3 3.99939735288312 + 2.999886588791281

4 : 3.99900069469391 + 3.000383503135241

5 3.99892674982940 + 3.000001012817341

6 3.99899965220352 + 2.999999183018531

7 3.99899999997589 + 2,999999999985161



- lLo-

Zero (4) s = 26797 - 2.,38811i,L -m= 4, St = 3.8372 - 2.67541

J SL]

1 3.99861695624235 - 3,002343341883751

2 4 ,00000000757741 - 3.000000004356321

3 4 ,00000000000000 ~ 3.000000000000001

Zero (5) 4 ,00000000002411+ 3.0000000000148441
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