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ABSTRACT:

£~CAILULUS*

By

Taul Lawrence Richman

We use recursive function theory to lay the basis for
a partially constructive theory of calculus, which we
call the e=-calcuius. This theory differs from other
theories that have grown out of recursive function
theory in that
(1) it is directly reiated to the varisbleeprecision
computations used in scientific computation
todsy, =nd
(2) it deals explicitly with intermediate resuits
rather than ideali answers.
As € — 0, intermediate resilts in the e€-calc.lus
approach their corresponding answers in the calculus.
Thus we say "the €-calculus approaches the calculus,
as € -»0 ." It is hoped thet investigations in the
e-calculus will lead to a better understanding of numeri-
cal analysis. Several new results in this direction are
presented, concerning instability and also machine numbers.
Discrete notions of limit, convergence, continuity, arith=-
metic, derivative and integral are also presented and
analyzed.
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Chapter 1: Irtroducticn

1.1 Summary

By a "notion" we mean a property of or an operation defined on a
function or functions. The calculus can be thougnt of ag a collection

of elementary notions such as limit, convergence, continuity, derivative

and integral, together with certain proved relations between notions,

such as the reciprocal relationship between integration and differentia-
tion, Fundamental to all this are the concepts of a real number and

a real function. In the usual textbook developments, these basic
concepts are not presented constructively, the notions are not
necessarily effective or computable in any sense and relations between
notions are often proved unconstructively. This is in direct contrast

to E, Bishop's Foundations of Constructive Analysis [Bl] and in partial

contrast to recursive or computable analysis (Turing, Mazur, Grregorczyk,
Goodstein, Specker, Klaua, Aterth and Kreisel, to mention a few
researchers in the area), Bishop defines constructive concepts of regl
number and real function, develops constructive notions and proves
relations betwee: notions constructively. (lle thnen goes on 4o
constructive theories of sets, metric spaces, comp.iex analysis,
measure, integration, rormed Linear spaces, locally compact abelian
groups and commutative algebras.) His work is based on trouwer's
intuitionistic mathematics. In their work, 'constructive" is an
undefined or primitive term. Recursive analysis alsc has coustructive
concepts of real number and real function (see [G2, pp. €1-2{) urd

deals with constructive notions, but it allows uncorstructive proofs

[



{see Kreisel {Kl, p. 101]) It is based on recursive function theory,
initiated by Church. In recursive analysis, "constructive" is defined
in terms of recursive functions.

Both of these constructive theories are presented in a way which
makes them foreign to numerical computation as it is done on today's
computers. Here, we use recursive function theory to develop a theory
of not only constructive, but even finitely computable real functions

and defined notions, which we call e-functions and g-notions; these

represent the intermediate results which arise from numerical
computation. We call the resulting theory g-calculus. This theory
is directly related to modern day numerical computation. e-Functions
are essentially defined over a finite set, R(e) , of g-precision

machine numbers. R{e) approximates the real numbers and each

e-function and e-notion approximates respectively a function and a
notion from calculus. And, as e =+ 0 , R(e) approaches {i.e. becomes
dense in) the reals and each e-function or g-notion approaches (in

a sense to be defined) its corresponding function or notion. Thus

we say the e€-calculus is a discretization of the calculus such that,
ags e —» 0 , the e-calculi: approaches the calculus;

The value of the g-calculus to numerical esnalysis is that it
presents a model of variabl:-precision computations. The study of
R(e) , e-functions and e-notions within the context of this model
should lead to a better understanding of numerical computation. Our
pPrincipal resulits in this direction are

(1) a new and simple definiiion of numerical instability (the

kind caused by propa:ution of roundoff-error) together with



a suggestive geometiric characterization (ch. 3), and
(2) an algorithm for overcoming such instabilities {ch. 3 and
eh, L),
Other new results rresented here include

(1) a characterization of the concept of variable-precision

machine numbers (sec. 2.2), and

(2} two new definitions of computable real functions, one
allowing furiciions with discontinuities (ech. 7).
Before we present the ¢-cualculus, we give a motivating example
to point out some of the basic problems involved in forming such
a theory (i.e., involved in going from ideal mathematics to actual

numerical computation), and to develop some of our basic notalion,



1.2 A Motivating Example

Let us use "precision ©i’ computation” in a general way to mean
the accuracy of a given mathematical approximation together with the
precision of the arithmetic used to evaluate this approximation. Tt is
often said that "numerical analysis is not very interesting because
all you have to do to get more accuracy in a numerical result is in-

crease the precision of computation.” As a broad and optimistic point

of view, the above statement is quite reasonable. But, when applied
to particular cases, it can be quite false. Increasing the precision
of computation can drastically decrease the accuracy of the result:

For example, consider an algorithm which uses

f(x,¥) = (gly) - &(x))/(y-x)

to approximate ? = E% g(t)|t=x . Fix x . For simplicity, suppose
f(x,y) » £ monotonically as |y-x| =0 , and that f(x,yl) is
computed in g certain form of single-precision arithmetic to give
a single-precision approximation, F(zl; X, yl) s> to ¢ (here,
"e," denotes "single-precision"). This would be the value of the
el-limit corresponding to ylsz fx,y) . We can increase the
precision of computation by
(1) replacing ¥y, by ¥y, with 0< \ye-x] < iyl-xl ,

yielding a more accurate mathematical approximation,

f(x,ye) {more accurate because of the monotonicity

assumption), and

(&) evaluating f(x,yz) in a certain form of double-precision

arithmetic, yielding a doutle-precision approximation,
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This would be the value ol the eg-limit. But F‘keg; Xy yzj is nor

necessarily closer tc¢ £ than Fgel; Xs yl) 3 in facu, 16y, in

too close to x , F(e.: x, yg) may be much wor:ge Lhar &
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(e.g., see example 3.1-2, where g{x) is taken 1o be x + 1 ) Thiv

is illustrated in figure 1 2-1 us three graphs 'with x {ixea)

where

(a) f(x,y) versus 1/ {y-x) ,
(v) F(el; X, ¥ versus 1/{y-x) , and

(c) F(eg; X, y) versus 1/(y-x) ,

ari in the int ¢ , X+l
varies the interval (x, x+1)}
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Notice that graph (b) stays close to f for awhiie, but then falls
off sharply to zero. Graph ic' stays close to f for awhile lcnger,
but then it toc falls off to zero. In general, F which exnibit
such tehavior are called unstablie (this is discussed in detail in

ch. 3). See Riesel [Rl! for a similar ex»mrla.

The tocls normally used to deal with such instabilities are

roundoff-error bounds, RF, and truncation-error bounds, TF. RF

bounds the error incurred by using F in place of f § ©%F Dbounds
the error incurred by using f(x,Y) in place of ylipl t{x,y) -
And RF + TF %bounds the error incurred oy using F 1in place of

yléyx f(x,y) + RF and TF are shown in figure 1.2-2, which is a

redrawing of figure 1.2-1.

Yy -x) iy -x)
1 1 __‘_E-—.:E

‘ 7
l /’?C)

FIGURE 1.2-2
RF and TF



Of course, roundoff error is just a particular kind of truncati:on
error; namely, it is the truncation errcr caused by using F.€; %, y.
in place of  lim Fley; x, y) (which is = T(xX,y)}. Both errors are
caused by replecing infinite processes by finite prccesses. However,
it is useful to distinguish roundoff errcr from truncaticn error so
that they can be dealt with separately. The motivation for introducing
these bounds comes from R. E- Mocre's thecry of interval analys:s

[M3, M4} . The key idea is that such bounds can be used to give
precise information about a numerical resultj i.e., ar interval

which contains the result.



1.3 An Outline

In the next two sections we give our basic notation and we
discuss recursive natural functions and recursive natural operators.
In chapter 2, we present the basic concept of a variable-precision
computation, including the concepts of machine numbers, real inputs,
subroutines, e-functions and g-operators. We give three examples
of machine-numbers: floating-point, logarithmic and rational.

And we give our main reason for introducing truncation-error bounds.

In chapter 3, we define and discuss rumerical instability. A
geometric characterization of instability is given which leads to
the concept of "an e-wave", to a proof that there is some desirable
behavior even in the presence of instability (thm. 5.5-1), and
finally to a (very inefficient) algorithm for overcoming instability
{def. 3.3-4). This motivates our definition of e-limit, given in
the first section of chapter 4 (defs. 4.1-1, 4.1-2). We prove
that, under certain conditions, the g¢-limit of an g-function
approaches the limit of its corresponding ideal function as ¢ -0
{(thm. 4.1-1). This g-limit is shown to be a potentially erficient
algorithm for overcoming instabilities of an approximation function
by using a stably convergent truncation-error bound.

In section 4.2, we define g-comparison relations, <s and =,
and we p: “ve that the truth-value of the g-comparison of two real inputs
approaches the truth-value of their comparison as ¢ — C . These
considerations are basic to what follows, and must be understood.

In section 4.3, we use these g-comparison relations to define

¢-convergence and e-continuity (pointwise). Again we prove that

8



these e-notions approach (in a certain sense) their corresponding
notions as € —»C . In section 4.5, we do the same for g-convergence
and e-continuity over intervals. In preparation for this, we prove
in section k.4 some theorems about the kinds of discontinuities an
ideal function can have whilc there exists an e-function
corresponding to it. These latter results are also made use of

when we define e-integrability in section 6.2.

In chapter 5, we define e-operators for e-arithmetic, e-limit,
g-composition and e-recursion. We alsc define two initial e-functions,
the identity and the constant e-functions. The choice of these
¢-operators and initial g-functions was motivated by the operations
and initial functions used in Mendelson [Ml, pp. 120-1] to derine the
recursive natural functions. We illustrate the use of these
e-operators and e-functions by using them to define an g-function
corresponding to e .

In chapter 6, we use the g-operatcrs and initial e-functions
of chapter 5 together with the e-convergence of section k.3 to
define g-differentiability and th.n e¢-derivative, g-integrability
and e-integral. In section 6.3, we prove the e-calculus analog to
the fundamental theorem of calculus.

In chapter 7, we define two notions of computable real function
(based on g-functions), and we prove that one of them is equivalent
to one of the standard definitions from recursive analysis. We
also prove that the operators and initial functions of chapter 5 are
complete, in a certain sense.

The discussions of g-convergence and e-continuity in secti-ns



4.3 and 4.5 and of eg-derivative and e-integral in chapter 6 are
only of definitional interest. Chapter 5 and the rest of chapter 4

are of more general interest; developments presented there should

be useful in extending ocur theory.

10



1.4 Notation
Next our basic notation is presented. We begin with o lict,

using 8 and T to denote sets and m , an integer > O :

Symbol or Expression Meszning

= equal in numeric vulue

m

= equivalent
= implies
o if nd only ir
€ set membership
U union
n intersection
c inclusjon: S Te (x € 0= 3 & '
8-T S N {the complement of T)
e, oM used only in defining scts
{3 the null set
Sc’m if m> 1, the list X, Xj,e.., ¥
X, 1s the empty list
s(®) if m>1, 8X.,.x8 (m-rold); gt
is [JTO}
f:S(m) =7 f is a function from S(m) 1o T
~ (var) generally indicates repetition on @
subscript, as in ;m
[x] greatest integer irn x
n {0, 1, 2,... 1}
R{e) e-precision machine numbers (sec,

11
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m the set of all machine numbers

(sec. 2 2)
?(- ), \f(.) conversion functions {sec. 2.8)
%, 2 ... roundup and rounddown machine =r'ttme-ic
(sec. 2.8)
N, (a) machine neighborhocd of a {sec. 2.8
= <E e-compariscn relations {sec. 4.2)
¥ a £(P) ¥ approximates f over P (sec. 2.5}
bool [statement) =1 if statement is true,

= O ctherwise (sec. 4.2}
Note that S(O) #1{ 1, since IOE S\o) . Define R and ¥ by

R=f{x: x is a finite real number} ,

b

RU {=, », a} ;

" "

® stands for "undefined". Thus "x = @" means "x is undefined in terms
of the members of R U f-», ®1" . We will treat @ like any other

point in ® , except that w> x for all x €F - fw} , and o is

isolated from the rest of K (the null set is the only neighborhccd
of @ ). For example, ®» -o =@, 0/ ,o+3 =0, (-l) X0 =a,
J._li,mm (»-l)fL = @, etc. All our constants, variables and functions will
take values in K .

We will use the usual neighbcorhood definition of limit for tke
doubly extended real line, with the addition that a limit which does
not exist in the usual sense has the velue a .

To simplify inequalities, we let

12



la-v| =0 if a=b,

even when a = b € {-», ®», @} . We do this because we use |a-b| to
measure the distance between a and b . It is easy to show that this

distance function satisfies the triangle inequality,
fe-p] < Ja-c] + fe-v] ,

for a, b, ¢ € ¥ . (In showing this, it is best %o refer to the special
rules for arithmetic involving +« and ®w given in sec. 2.8).

We will use notation of the form

r s
Al if Rl

A otherwise,

to indicate that B = Ry (L<j<n) when j is the smallest

integer such that Rj is true, and Rn is defined to be true

always.

13



1.5 Recursive Functions and Operators

Inductive schemes for defining recursive natural functions
can be found in Mendelson (ML, pp. 120-1] and elsewhere. Let h
be the set of nonnegative integers, O, 1, .... The recursive

(m)

functions from n N (m > 0) are those mappings from n(m) -h
which obtain the image point via constructive operations on the domain
point. Recursive functions essentially characterize the input/output

of Turing machines.

By recursive operator we mean a standard recursive functional

with its integer arguments left unspecified. Thus a recursive

operator ¢ of n function arguments constructively maps n

(m,)

functions, o : N * sn{4=1, ..., n) , into a function,

(m)

¢(al, ceey an) : —-N for some m> O . Inductive schemes
for defining recursive functionals may be found in Schoenfield
[s2], Grzegorczyk [Gl], Klaua [K1] and elsewhere.

The reader does not need to know any more about recursive
functions and recursive operators than what we have just stated.
We will not use their inductive definitions. As usual, we say a
process is "effective" or "constructive" precisely when that process

can be carried out by purely mechanical means (i.e., by a Turing

machine).

o1



REMARKS: In section 1.2 we saw that incrzasing the precis’on of compiise
tion may decrease the accuracy of a numerical result. Ii. sectior 5.3
we show that this does not apply to purely aritinmetic prccesses, i.e.,
rational function evaluation. There, increasing precision ultimately

leads to convergence. ‘The trouble arises when limits are involvea:

1
e.g., 1im f{x,y) in section 1.2, &nd %;2 E: a; in Riesel's exampie
i=1

[R2]. The root of this trouble is an interchange of limits which may
not work. This merits further explanation. (Keep the example of sec-

tion 1.2 in mind for the foliowing.) In general, we will have

lim Ple; x,y) = £(x,y)
€0

for y £ x . This implies

lim 1lim F(e; %,¥y) = lim f(x,y)
yx €0 Yy x

But in order to compute successive approximations to this limit, we

must define an ¢-1imit e-operstor, §£¥, such that IIM F(e; x,y)

is the finitely computablie e-approximation to %ig £f(x,y) and suca tra
iim yI_.xN F{e; x,y) = %},;(n t{x,y) .

e~ 0

This interchange of limits is investigsted in chapter 3.

15
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Chapter 2: Basic Concepts

2.1 Variable-Precision Compuiations

Before launching into a description of our model, we firs*
loosely describe the kinds of finite computations which we are
interested in modeling. These are characterized by having the
following facilities:

(1) variable-precision machine numbers;

(2) the ability to make decisions bused on a comparison of the
values of machine numbers;

(3) variahle-precision input routines for inputting the members
of ¥ into machine numbers (at a specified precision),
and for giving roundcff-error bounds on these inputted
values; and

(%) wvariable-precision arithmetic {(g-arithmetic) for machine
numoers.

We formalize (1) - (3) in this chapter; (4) i:c formalized in section

5-3.

16



2.2 Machine Numbers and Their Compurison

Let 8.(i =1, 2, .++; be a finite subset of T with
{=, =, 0} c S; - 1In order to formalize (1) and (2) above, we define
the concept "Si is effectively generable from i ." Essentially
we mean by this that there is an algorithm, with input parameter i ,
which produces as cutput all the elements of Si - But this is not
precise because we as yet have not said what "produces as output a
member x of ® " mesns: e.g., Xx may have a nonrepeating decimal
expansion, so our algorithm cannot in general produce Xx by
producing & decimal expansion for x . We define this concept

precisely as follows. Let N be as in section 1.5. Define the

function, 8: n(2) »{-®, ve., -1, 0,1, .vv, @, w} , by

<0 if is= J = l
® if i =J=2
(2.2-1) o(i, j) = j
W if i=J=3
L i-3 otherwise.

e functicons from h to N and define

~

Let oy and 02

a(-) = e(al('); dg(')) . We say o, a, compute a € R
(or @ computes a) precisely when
|a - a(n)/n] < 1/n for n=1, 2, ...,

and we use a and < o« > interchangeably. See Grzegorczyk

[G2, p. 61) for a similar definition. When @, and o, are

recursive a compute a s (cr <o > is a
e and oy Qp pute s We say a o




computable number. For given « n(m+l) -n (m>1) and a

l) aei
. - m - - - .
fixed X, € Tl( ), we treat o/(xm, <) = e(al(xm, P ae(xm, *)) 1like

a function of one variable, so that when a(?m, -) computes a € ¥
we use < a(;m, *) > interchangeably with a .
Let S), 85, -«- be zs described above. Let 1{i) te the

number of elements in Si . We say Si is effectively generzble from

i precisely when £(+) 1is recursive and there are recursive

functions, oy, oyl n(5) —-N , such that, with o(-) = e(ql(-), ae(')} s

we have

Si={<0’(i) i, ')> 7<0{(i; 2, ')> ) ---1<Q’(i’ l(i): ')> } ’

<afi, 1, ) > = =, <ali, 2, ') > =w, <afi, 3, D=

We call the pair (o, !) a generator of 5; -

The concept of variable-precision machine numbers is formalized us
follows. We use the positive real constants, el’ PR to dencte
the possible levels of precision: ¢, denotes single-precision, etc.

“~

We use e to denote a varianie which takes values in the set
(2.2-2) e={e, ey o0 ]

DEFINITION 2.2-1: A machine number system, (R, &) , is a set

——

& of constants €1) €y -oo together with & mapping, R: £ -

(set of subsets of ), where

(1) e, =0 strictly monotonically as i == ,

(11) R(ei) is dense in R,

U
i>1
(111) R(el) c ﬂ.(ea)c: ceey

18



(Iv) ®(e) 4is finite, for each ¢ in &,

(v) {0, 1, =, o, 0)} c R(El) » and

(v1) R(ai) is effectively generzble from i .

R(e)(n) represents a discretization of Euclidean n-space. Condition

I reflects the statement "decreasing g increases the precision";

noc other use of the values of the €, will be made in this paper.
Conditions II and VI are the only really essential restrictionsjy if
R and & satisfy them, minor modifications will produce an R'

and &' which satisfy I-VI. (If I is violated, replace € by any
&' satisfying it; if IIT is violated, let R'(ei) = él R(ej), ete.)
Condition II allows us to get at any number in R thrg;gh the exclusive
use of machine numbers. The nesting condition, III, says that we may
. reuse, at precision Ei4p 2 2OV machine number that we used at
precision € this will be used in dealing with instability and in
the proof that our e-limit approaches limit as ¢ - 0 . Condition
IV will simplify our treatment of instability. Condition VI means

that R could really be used as the basis of a variable-precision
number system on a computer; it insures that the switching of precision
can be done automatically. (We investigate other implications of this
condition below.) That O and 1 are in R{e) will prove convenient
in many situations, but never will this be a necessity. However, having
<, @, w € R(e) greatly simplifies ocur model. We give three examples
to clarify these ideas and to show the variety of machine number systems

which satisfy I-VI.

Example 2.2-1: Let B be an integer > 2. Let O.a1 agee. 84
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denote a base B fracticn Define g? =izt e

A base B normalized floating-point number system iz given Ly

© (©]
89 = {Els Egy C } s

(0]
) (E?) = {O, -, @, cu} U{x: \):\ = O»':\l Ay - e 8 X8

a, >0, and e is an integer, le| « g}

0]
We chose these £y because each real number » such that
i-1

i . i
B < x| < gt-1)6? -

can (in principle) be inputted into

R.Q(eei)) with a relative error < this :?

EXAMPLE 2.2-2: Llet Bl be scme finite number > 1 . Define

1/10
i

* -
Biyp =P and g, = l—2/(airl). A base B, logarithmic

number system is given by

* *
E{el, €0 o - 1

(4]

¥*
R (c:) {0, =, @, @} U {x: |x| = B? » e an integer, |e| < UJE]}

E
We chose these € because euch real number x , with

1-1 i+l o 1-1

il 10** 110

+10

8, <Ix] <8 » can "in principle) be inputted

x, ¥ i . *
into R (ei) with a relative error < this €, - We had to uce

different bases, 8.1 , approaching 1 as 1 —e® , sO that condition
TI is met. The fact that some of the ai will be irraticnal czuses

no difficulties

EXAMPLE 2.2-3: Define st =
Ev# = {Eﬁ: Eia . *} >

1/(10"+1) and

R#(ef) = {0, -w, », @} U {x* x =p/q for integers p and q

with |p| » |q] < 101}

o
<

Reproduced from
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+

We chose these e because each real number x , with

1/(10%-1) < x| < 1¢*-1 can (in principle) be inputted into
n*(e’!) with a relative error < this et . (This last
statement is more difficult to prove thun the corresponding
statements of the other examples, so a proof is included in the ‘

appendix to this chapter. The other statements are alsoc proved

there as simple corollaries. )

Another important property which R must possess is that the
members of R(ei) must be representable in some simple form which
varies with i in a simple way. This is necessary so that the members
of R(e) can be represented simply in the computer. For example,
any x € ﬁ@(e?) - {0, =, =, @} can be represented by a pair of
integers (a, e) with ai'l < la| < Bi and |e| < ai-i since
x must equal fa s—i) 8° for some such a and e . Andany
x in R*L:I) - {0, =, @, w} can be represented by a pair of
integers (+ 1, e) with |e| < 10°% s since x must equal

e
+
85

ot

for some such e . A sirilar statement can be made about
. In fact, any R which satisfies condition VI possesses
this representability property. Suppose (aa, lﬂ) is a
generator for R(ci) . Then any x in ﬂ(si) can be represented
by a pair of integers (i, j) , with 1< j < ‘R(i) , since x
must equal some < aa(i, js *) > . So much for representability. Next
we consider comparison of maciine numbers.
The fact that each member of ﬁ(ti) has a unique representation
in terms of g«

()
decide whether < an(i, Jjs *)Y>1is > ,< or=«< aa(i, k, *)> 3

means that, given i, j and k, we can effectively
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when J # k we have < aR(i, j» ) > §< aﬁ(i, k, *) > and we can
determine which is greater by computing aa(i, js n) and
aR(i, k, n) for some finite number of values of n . This gives us
(2) of section 2.1. Further, the following two conditions imply
the existence of a generator for Si:
(1) there are recursive functions ai, aé, t' sucn that,
with a'(:) = G(ai('), aé(*)), we have

£'(i)
SiE U {<a'(i, §» ) >} for i=1,2, ...,
=1

J
(2) the relation < a'(i, jy, ") > =<a'(i, k, «) > is
effectively decidable from j and k .

Thus condition VI on R 1is not too restrictive in (implicitly)
requiring (aR, ZR) to be nonredundant.

Throughout the rest of this paper, we assume that R, & and
a corresponding generator (aR, !R) are given and fixed. All of
the following definitions are implicitly relative to these
R, & and (aa, IR) .

For later use, we define the machine number set, M , by

(2.2:3) m=

If f and & are the R# and e# of example 2.2-3, then

m 1is ﬂ# » the set of rationals together with -®, ® and w .
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2.3 Input Routines

We handle the inputting of members of K essentially by
assuming that members of T are given by giving an input routine. To
avoid confusing a number with its input routine, we intrcduce a new

concept, that of a real input.

DEFINITION 2.3-1: A real input x = (X, RX) is a pair of mappings,

X, RX: & =M , such that
(1) Xx(e) , rx(e) € R(e) and RX(e) > O for all c¢ €€,
(2) |x(e) - x(n)| < RX(e) + RX(T)) for all e , T €E ,
(3) Ellyo RX(e) = 0 .

If x= (X, RX) satisfies (1) and (2}, we call x & poor real

input. We call (X, RX) an input routine for x -

It follows that the numeric value corresponding to the real

input x 1is just eli?O X (¢) . When a real input x is used in a

context that ceils for a numeric value, we let that value be

lim. X (¢) . Thus for each & we have
E =0
(2.3-1} Rx(e) > |x(e) - »| ,

and so RX(e) is just a roundcff-error bound, bounding the error
caused by using X(e) in place of (the numeric value of) x .

A real input can be thought of as a variable ranging not only
over ¥ but also over input routines. We will find it unnecessary
to distinguish notationally between a real variuble (ranging over
R ) and a real input, or between a real constant and a fixed real

input. When a real input is named x , its input routine will be



named (X, RX), etc. Note that For real inpule x sng ¥,

- n

("=" wmeans "equal in numeric val:

o

precisely when
(2.3-2) fx(e) - v{e)| < ®x(e) + RY(e) for a1 g € B .

This relation will be useful iu defining e&-compariscon relsiic

The following convertions will simplify nolation later:

v
us,

wnroaznTas this paper, See sel

S|

(1) when, in & given context, the valve of the real input x
is known to be in R(e) and (n, KX) has not been
explicitly specitied, :t will be zssumed that X{8% = x
(in value) ang RX(b} = 0 for ali &< ,

(2) when we state that x € M, for a real input x, we meen
that [RX(e) = 0 or ¥i(e) <o = |X{e)] for scme &
and x §M means (Ix| 4« and ®X(e) 4 0 for mi el
and

(3) we will use the same nctaticn for sets of rumbers and se’s of
real inputs., If P is {in a given cuntex’) a sel of nuaers
and it is not known that P &M, then the seb, 2, cf real

inputs contains all real inputs x with valve in %he numier

set P .,

o]

M, 1Lhen the real input set P contains all resl inp

[f the namber set P is kuown to be a subse! oI

ik e

[

with valve in the number set P such *hat x € M (under

convention (2) atcve).

By (3). R may denote the set c¢f 4l numbers or tlhe se’

inputs, depending on context. We use a ruvle snalogous 4o (T

is a set of w-tuples of numders.

Reproduced from
best available copy
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2.4 Multiple-Frecision Subroutines

Let ;O dencte the empty list and for m > 1 Ilet ;m denote

Xy Xypeees xm . For the moment, let X, be m > O variable poor
R . < .

real inputs and let 7m+l""’ xm+n be n > 0 fixed real inputs.

A multiple-precision subroutine of m > O variables and n > O con-

stants is essentially a computer subroutine with inpuhk € and with

access t¢ any finite number of values of the input routines for X

+n’

say

XJ(‘l)‘ X;j(ee)"“’ xJ.(eM)

(2.4-1) for j=1l,e.., mn ,

ij\el)’ ij(=2)””‘ b4 ijkeM)

and with output in R{e), with the requirement that if any XJ(E) er
ij(e) is @ then the cutput is « . We ecall € and §m the inputs.
With inputs ¢ and ;m’ we denote the cutput value of the subroutine

F vy Fle; ;m) . If for some j <m we have lin, gup RXJ(E) > 0,

ther. we allow F +to nct halt when its inputs are ;Q and (any) ¢ .
When this happens we write F(e; ;m) = @ becsuse F(e;;m) is unde-
fined in terms of the members of R - {w} (see sec. 1.4).

This can be formalized as follows, For n =1, 2,... let 8
be the nt'h prime: P, = 2. ete. Let X be a poor real irput and

suppose that for i > 1,

X(ei) = <an(i-) ') > . Rx(‘i) = <aa(i) k 1 >

in-l’

For j2>1 define



<

Define the ;' Gddel rumber of X (m>0) b

_ gn.(x. ) gn. (x.; grn.(x )
(2.4-2) N ()=t kg, 2 x ... xp 0™,

where the empty product is 1 (i.e., GNJ(;O) = 1) . GNM(;m) contains
complete information about the numbers shown in (2.&-1). We say that

y is m-determining (m > 1) precisely when Y is recursive and,

for i=1, 2,...,
(1) o<v{i, §) £ 4pi) forany j,
(2} for any pocr real inputs ;m’ v(i, GNk(;m)) = 0

for 1 <k<i, and if any xj(ai) or ij(ei) is @

then v(i, 6N (x ;) = 3, ?

(3) for any real inpuvs ;m there is an M > i with

v(i, GNM(Im)) £0.

1l

Thus Y waits until sufiicient information about X has been col-
1.
lected (in GNM(xm)), and then Y returns a nonzero value. When

linéjgf RXj(e) >0 for some j, GNk(;m) may never contain enough

information about xj for ¥ +o return a nonzero value. (Gf ccurse,

even when 1lim inf RX.(e) = C < lim sup RX,(e¢) for some j we may
€0 J e~0 J

have v(i, GNka)) = 0 for some i ang all k, but this will not

be due to lack of information about xj .y We say Y is O-determining

precisely when ¥ is recursive and 1 < v(i, 1) < IR(i) . Let

ity LGN (%)) be ¥{i, GN (¥ j) wher is the 1

,n(Y(i G n(xm); £ 0) be ¥{1, G M(xm;) where M is “he least
value of n such that vy(i, GNn(;m)) # 0, or let it Ye 3 when ‘here

is no such n .
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DEFINITION 2.4-1: A multiple-precision subroutine of m > O variables

and p > 0 constants, Kopsrores Koo is a mapping, F

—_——
e x {poor real inﬂts}‘m) - M, such that there is gan min-determining

Y which satisfies the follcwing for any poor real inputs ;m and

(2.4-3)  Flegs x ) = <cplic 8 (V{1 GN (x 1)) #0), ") > .

We say Y determines F relative to (aR, ta) . We stress that so

long as the ;m are real inputs {not just poor). the ccmputation of
Fle; ;m) via Y will always halt. Essentially the only subrcutines
whose computation may faii to halt are those which, with inputs €
and ;m’ try to find an 0 < e such that, say Rxl(n) <t, for some
tolerance level 0 < t <= ; for exampie, when xy is 8 poor real
input with RXl(C) =® for all ¢, such a subroutine will fail to
halt. We will use “subroutine” as an abbreviation for "multipie-

precision subrcutine.” An immediate consequence cf the above defini-

tions is
F(e; ;m) = w if any Xj(e) or RXJ.(E) is @ .

This convention is taken from Scott [S1]. Note that these definitions

have all been relative to (Ota, la) .

THEOREM 2.4-1: If F 1is a subroutine relative to (da, IR) and

(o ta) is some other generator of ﬁ.(ci) tnen F is a subroutine

reiative to (aé, lR) .



This means that the ccncept of subrcutine is independent of wnich

generator of R(si) cne uses.

Proof: Let GNJ(;m) and GNS(;m) denote the jth Godel numbers
of ;m relative to (Qh’ zn) and (Q’, tﬁ), respectively., The
ccasiderations of section 2.2 show that there is an effective prccedure
which, when given anv generator for ﬁ(ei) and any Jj > 1, can order
the members of R(ej) . This means that there are recursive functions

¢, end @, such that cpl(i, oY= 0 and
<ogli, 0.1, 3), ) > = <ogli, 3, ) >,
o,(1, 6N (x ) = oN.(x )
for any 1> 1 and 1< J < £(i) . Define y' Dby
it NG )Y = 0y (h, v, @ (3, GG, 90

for i2>1, §J>1 and any ;m . If Yy determines F relative to
H : - z ' N
(Qh’ ZR) then vy' determines F relative to (QR, lﬂ) . This

completes the proof.



2.5

€-Funcrion

LY

An 1dea. functiocn of m variablLes  .m z U} 1S 2 mapyitid,

~ =
= k, with the constraint that ffxu‘ =w 11 any xl = w
'

DEFINITI.N 2.5-.t For m > O, an e-functicn, &, of m variavieo

R e ——

corresponding to &n 1dezl runcticn £ (of m variables) .var a set

P_of m-tuples of rea: inputs is a triple (B, KF, TF) <¢f sub-

We

tc
P

m =

roJdtines, where for any rea. inputs x we have
’ Ior any rea. 1oputs X = We have

{1} for eacn €, RF{g; xm\, > |F(e; xm) - f(imjl ,
(2) [x €F and f(:’cm) fwl= g BF(e; X ) =0, and

= m

(3} if m=0, 1 then TF = w; otherwise, for aii ¢,

’ L (e \ o i Yo \
{2.5-1) TFle; X/ 2 It(xm, y,%lm £X_1» vl .

cail F a domain set of F and we write

’~f(g‘l >

be read ¥ correspords to {or approximates) f over (or mca)
This definition 18 iliustratea in figure 2.5-1 for the case

2 and Xx = ® ,

[\
O



~
- RF at ¢
TF B
I >V
ye
im (e, y)
$% L=y ¥ % = (F, RF, TF)
FIGURE 2.5-1

RF is a roundoff-error bound, bounding the error incurred by using F

in place of f . TF 1is a truncation-error bound, bounding the error

incurred by using f(;m) in place of lim f(;m 12 y) . For example,
m-1

n
if f(x, n) = Z g(i), then TF(e; =, n) bounds the truncation error
i=1

o
| i: g(i)} . RF(s; x_ ., Y) + TF(e3; x_ ., Y) bounds the error incurred
f=n+l m-1 m-1

by using F(e; X ., Y) in place of y__‘,l(im f(;m-l’ y) . For the above

m-1
' m-1

graph, this bcund is smallest when Y = Ve -
Conditions (1) and (3) on ¥ require that the bounds RF and TF
work properly for any real inputs ;m and any € . Condi*on (2)

requires the convergence of F to f and RF to 0 at ;m €P for
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which f(§m) is definea. .We must nave =F — O in order %o effectiveluy
compute, via F, an approximasion to f 0 fthat is correct (U witrin

scme desired and evbitrarily smail tolerance.; If instead of {2 we

tave

(2:)[§m€ P and me) fwl = g (e xm) = 5x) ,

we say F weskly corresgcinds tc f cver F  and we write

We call P a weak domain set of ¥ ., An immedisie conseguence of

these definitions is

THECREM 2.5-1: If QCF zand Fw £f(P) (or ¥~ £(P)) then

Fe Q) (or F~ Q) .

We will use F(g; xm'; to dencte tne triple of valiues,
(Fie; x ), RF(e; xm), TF( ¢, xm)) .

For an, triple a of numbers, we will use {2 )i to derote

3 3

al(l < 1<3) . Thus we have

etc. e-Functions are finitely computable in the following sense: +there

1/

15 a Turing machine whi:h, when given an ubjezt~ for computing the
xJ(e‘; and ij(e) fur any given &, can cutput the triple of values,

Fe, ;m) fer any given €



Dealing with the instabilities alluded to in the introduction was
not our main reason for introducing the truncation-error bounds ({TF)
We had to introduce them because any definition of "¥ e-converges
at x," which is based only on the veiues of F(e; x, y) ard
RF(E; x, ¥) (e and x are fixed here), cannot have much to do with
"f converges at x) (which is true when %igx f(x,v) § @) ; rememter
vhat F and RF can only take on a finite number of different values
for each fixed € . The truncation-error bound, TF, gives us tne
needed local information about f .

1’ Y2, and V3 determine the subroutines F, RF ané
TF respectively. Then we say (Yl’ Yo Y3) determines ¥ = (F, R¥F, TF)

Suppose ¥

and (Yl, Yg) partially determines ¥ . When we say ‘given F' we

mean “given (vl, Y, Y}) determining % ."

1/We call the thing which computes (X., RX,} &n "cbject” rather thun
a Turing machine because there may be Ho suth Turing machine; there
are only a countable number of Turing machines, but there are an un-
countable number of vaiues of ¥X_ . See Shcenfield [S1, p. 248] fer
similer considerations. n



2.6  An Exampie: e*

Following is an example of how one might go about defining an
e-function corresponding to e* over R . This example is formslized
in section 5.7.

re: [yl denote the greatest integer in y and let sgn(x)
denote the sign function at x (which is @ if x is , and other-

wise is -1 if x<O0, is O if x=0, and is 1 if x> 0) .

Define (
w if kew, or y>o
f(x,k,y) = ¢ © if y<i
(y]
gi(‘|x|>n-l/(n-l)5 Cthervise ,
n=1
L
|x|[y]/[y]5 if k = = and |x‘ +1l<y <
t£(x,k, ) =
w otherwise ,
K if x=w
£ = ¢ ° if x=-o
o -sgn(x)
( 1im f£(x,»,y)) otherwise .
{ y-—>co
-]

tf(x,»,y) bounds the remainder term, | %: (-lxl)n/nll . The pcint
n=y]

here is that tf can be computed using only arithmetic, [-], |'|
and numerical comparisons. It should not surprise the reader that
there is a subroutine, F, such that F(e; ;3) ~>f(;5) as ¢ =0
for most X, - We can use the methods of intervel analysis, or an

3

errcr analysis in the style of Wilkinson [W2], to obtain a subroutine RF .
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We can use interval analysis to obtain a subrcutine, TF, which

satisfies
TF(e3 %) > tf(;j) .

The result is ¥ = (F, RF, TF), an e¢-function corresponding to f over

most of §<3) . For each ¢, let Ye be some member of R(e) withr
Ye #o and 1lim yo == . Let RG(e; x) be either of the two
g -0

smallest numbers in R(e) which are > RF(e;x,m,ye) + TF(e;x,m,yE) .

We can define an e-function corresponding to

w if x|l > =
g(x) = { & if x<0
e it x>0

by

mn

HMe;x) (F(E;x,w,ye), RG(e;x), w) .

Thus J(€i+1;x) is computed at a higher precision of computation
(see sec. 1.2) than is J'(ei;x) and we will have Fps g(P) for some
set PCR . It is easy to get 3exp from & .

This method of =zprroximating ex by an alternating series has
the numerical disadvantage of involving cancellation, but it affords
the use of the simple and rapidly convergent truncation-error iound,
lx\n/nl (when n > x1) . A method based on Elxln/n! would inveave
no cancellation (so lower precision arithmetic could be used) “ut
we would have to use a more complicated and more siowly converging
truncation-error bound of the form len EJYh[‘xl+1]/nl {va1iid for
any n > 0) . We use the former method here becmuse i simplifies tie

formalization in section 5.7.
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2.7 Operators
Operators and e€-operators wili be cur principal venicles for de-
fining nctions and e-nctions in chapters 4-€. Let Sf be the set of

all ideal functions of 0O, 1, 2... variables, An operator of n 2> 0O

(n)
£

ideal functions over S C© 8§

is a mapping, 0 : § =8, . Let 'f'n

denote the list <of ideal functicns, f.,..., fr, and likewise for
- L

F ana F . We say ¥ corresponds to f over P  precisely
n n n n n

when ’.ii s fi(Pi) (1 <1 <n), and we write

F ~ T(P)
n n' n

iet S be tne set of all in such that there is a ?n €S and a Fn

with ¥ mf (P ). Let 5 be the set of all wesk e-functions. A

weak g-operator, {(®,Q), corresponding to P over S'C S is a

mapping, ¢: 8' — Sw’ together with a set funchion, «, which depends

on % , T » Pn’ such that
() if F T (P), F €s' ana T €3, thnen
nn n n

n

T Y ~ (T Mafl F.P N
(P\vf'n) p(fn/(vhgnv n? Pn)/, and

—
n
—

there exist recursive operators “1l and \Y2 such that,

3 F (T t ¥
it F T (F), F €8,7 €5 and (Ya5 00 Ya5.17 Y1)

er \ ) (T T
determines ’f'i (1<1<n), then \Yl(v3n), YQ(YBn))

partially determines ¢(?r’-n)
When these conditons hold, we write

(&, Q) ~ ¥is")



Condition (1) requires that ¢ gives e-approximations %0 @ and ust
B ¢ as € ™ O in the sense that we at least have

m O(F Je: % V). = AF MUX S
ii%)~®(5n)(c, xp,)l ¢(fn/(xp,

for ;p € Q(ﬁn, ?n’ En) at which ﬁ(?n7(;p) £ w. Conditon (2)
requires that ¢ Dbe finitely computable from its arguments; it reguires
¢ to constructively map the determiners of §n into a partigl deter-
miner of ¢(§n) . We have left truncation-error bounds out of (2)
because, fcr the e-operatsors which we will present later, we do not
believe there is an avtomatic way to define a good truncasticn-error
bound for ¢(§n) from the determiners of the ?n (see def. 4.2-1).

In general, such bourds depend on certain analytic properties of

¢(§n), properties which cannot be effectively recovered irom the
numeric information given by {he determiners of ﬁn . Ve avoia ti.ls
problem in most cases by assuming such bounds to be given. If g(f )
is a funstion of O or 1 variatles, then the TF peri of % = ¢(%)
is, by definition, identically w, and this probiem does nci arise.

We will rave more to say about this in chapter S.

If condition (1) abcve nhcide with “¢(§n3 ~ b(?“3", we sy (b, @)

-

is an_ €-operator correspcnding to ¢ cver 8! (and not just a weask

e-operator), and we write
("; ")\‘RSQS/\S') .

The “goodness” of (®, Q) depends on row nontrivial tre relation

between ?n, £f,F and Q(?n, £, Pn) is, how large 8' is, and

especially on how efficient ¢ :s, in terms of the number of e¢valuvatiors

36



of the in required to evaluate ®(?n}(e; ;m)’ ard the accuracy
achieved (i.e., the size of (¢(§q)(e; ;m)DE) . For example, le*
) (sn) s (0, w, w) and Qbad(ffn, £, Pn) = {}, the null set.

Then (0 Qbad)'a #(8) for any operator # over S and its

bad’
corresponding S . Of course this is not a good e-operator in any
sense. The formalization of a measure cf the gocdness of (®, &) 1is
a worthwhile and as yet unsolved problem. When this is satisfactorily
solved, the rules for e-izing a notion will be complete.

For simplicity, when we present particular e-operators, we will
give a constructive analytic definition of @, rather than giving

Yl and Y2 . It is a simple but tedious task to construct particular

Yl and Y2 from such a definition.
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S8 YWounding Sorroatines

Reardop s eounddown  e-sxidos’ fe gunroatines, A anG ,

for * beire o+, -, A, T are twitiglae-precision s.broulines w i
- ’ b b =

essentialiy glve upper and lower Oonis Oon Lie ideul urivimetlic cperani

-y %y T . We muke tihls precise as [cllows., For any a € R, deline

an €-neighborhood of u, & (u,. b

F R4 H
t - z 4
where [a. =nd &, ure ihe larprest nemiers of &) Sarasl ine
5., <a,<u, or, il ris is no, poasunlie, then . = & < al, woad

ta, and 5, are ine smallesi wmenvers ol Re) - [} satisCoin

a <, < or, if »his is uot possiile, when 2 < a, = :h] . Mhe
7/ 4
fact thaw -» =a@na « are in bi(e) means Lran L e, is owell gt
and ronempi for ail o €k . por & C f-u, =, o}, deline
Roe, o dubo
For esch €, we reguire iz A( x O gallsty
Ly
(1) R¥,\e) # wii-i,2, =0 YT A “
1 r, X H o
(3 { an 3 o R s (e v, coon Jee o, .
(2] or any a, & ¢ Rie,; we have o LA VE; iyt o
N, n, X ’
N (s¥b)  and  c. .
£ .l.,‘)‘ - - E
Condition (1) stutes thai vos An . 40 nou Lse the iiLatted rolasli-
2
error bounds. Cunditicn &, requlres A, . and 4 R Ca
-~ =y
upper and lower approximations o o w * i . 51 odis ewst o e -
suacn subroutines exist., For <zemglie, solroatires or ,
- -~
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and

AE— can Dbe defined as follows. (The T () and Y(-) defined
’

here will be used later.)

EXAMPLE 2.8-1: Define t-precision roundup and rounddown converted

~ J

values, I(e,B) and I(e,B), for the number < 8 > as follows. Let
n, be the least integer such that the interval [(B(no) —l)/no,

(B(no') + l)/no] overlaps at most me of the intervals

[(an(i: L, nO) 'l)/noy (aa(i: L, no) + l)/no](ls 1 5 la(i)) . If S(UOJ
is =, ® or w then let T and Y be 1, 2 or 3, respectively.
Ctherwise let the intervals about aa(i, ?, n) and C?a(i, Y, no) be
the first ones lying completely to the right and left, respectively,

of the ce abaut B(no) . Define
* »
(2.8-2) I(el, B) = <an(1, 1, ) > for * being ~ and -

Then f(a, B) EN", <B>) and I(e, B) < (<B>) S'f(c, 8) .

*
Define - . b
Bk oY

+
ﬁ;,d,k(n) = aﬂ(i’ J, 2n) 1aa(i: k, 2n) for n>1 .
+ -
Then ﬁ'i',,j,k computes < Qp(i, i, +) >+ < (1, k, «) > . (See Bishop

(B1, pp. 16, 21] for similar Gefinitions ¢f +, - , X and + .) Let

g =<1, §, *)> end b= <C1n(i, k, *) > . We can define the

“A by

For

n,t

ol +
(208-3) Al,:(ei; a, b) = I(‘i! bI,J,k)’ Ae’i.

Fcr the rest of the paper, we assume particular An » to be given,
’

€, b € R(e) we will use a * b and a* b to denote Al (€ 8,b)
2
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and AE’*(E; a,b}, respectively, mitting the subscript & whenever

no confusipn can arise. For subroutines F and G, we wilil zdbreviate
TN LT Ao LT . - - P

Fle; x )+ G(e; x .. by (F¥c'(e; Xgi» €W, In general, we wiil

factor out arguments ac much as possibie, calling the resulting form

argument factored forwm.

In ader to prove that the An,* corverge to ldeal srithmetic
as € = 0, we must first state expiicitly the special rules for
arithmetic involving =~ » and w . Let x,y,z € R satisfy = <y<w
and 0 < z <« . The specia. ruies are

General: X *w=w?* x=w .,

Addition: ® + (~@;, =W ; ®3 @ =@+ y=®

Multiplicaetion: = X 0 =w 3} ® X z = = .

Division: x = 0

]
8
i
8
I

=w; yTe=0 .

These, combined with the usuz. definition of real aritnmetic (see, fir
example, Bishop [Bi, pp. 16, 21]) and the usuai essociative, commutztive
and distributive laws, completely define the arithmetic of ®R. For

example, ® «® =oo + (~®) =w and ® X (=10, = (=1) X (® » 10) = = .

THECREM 2.8-.: Suppcse 'é_i,ubxi(e‘; = xi(i = 1,2) &and X, % X, £aw .

N TP . PN .
Then Xl(e1 X,(e; and X.(e; &X,(e) approach x, * x, as

€=0.

Proof: If x, x, € R then x *x, #w implies that X, Yx, 1s
finite. We have that )(l(s; ® ngs"v and X. (&> % Xe(s'} are in
Ne(xl(e) * Xe(e]) and poperty II of R together with the continuity

of arithmetic give us convergence. If x. or Xy is infinite tten
-

ho



xl * x2 # w und the above special rules for arithmetic involving

yield that lx1 ¥ X \ is one of
1 2

m+m,m?y,mxz,y+m

Converpence is elear in these cases. Tnis completes the proof.

For A,B € R(g}, 1let

(2.8-4) 0 if A

B
A= B = ¢AZ B if A>B

B2 A othervise,

(2.8-5) 0 if A

i}

B

|a % B| = ¢ max{0,A g B} if A>B

¢

max{C, B e A) otherwise

This simplifies inequalities, because |A 2, B| anda |A o B| are

effective upper and lower bounds on the distance, |A - BI, between

A and B (see sec, 1.4).

L1
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RFMARKS: In our model, we have assumed that it is possibvle %o use
arbitrary levels of precision {(arbitrarily small E) Bui in practice,
we almost always use single- or dcouble-precision, and *there is a firite
upper limit on how high the precision can be (precisions higher tlzn
double-precision being provided via software). However, our model does
not preclude an emphasis on single- and double-precisicon ccmputetions.
We feel it is conceptually correct to keep arbitrary precision in mind
in the design and analysis of algorithms; doing so helps keep algorithms
machine independent and is kind to the occasional user who requires

high accuracy.

In our definition of roundcff-error bounds and truncation-errsr
bounds (sec. 2.3 and 2.5), we have taken the stand that numerical
analysis should concern itself with rigorous approximation rather than
just estimation. However, it should be possible to form an "t-calceulus
of estimation” by defining tnese bounds to be statistical guantities,

In fact, it should be possible to form. an "€-calculus of stable €-
functions" which involves no error bounds, as we indicete in the remarks
after chapters 4 and 5. (Such an g-calculus would not have very initer-
esting g-notions of e-comparison, g-convergence and e-ccntinuity.) The
_ast two e€-calculi should be interesting to explore. The last cne will
probably resemble current scientific computation more closely thzan “he
g-calculus developed in this thnesis. In the Me-calcaius of statis
¢-functiocns"”, & "poor resl imput” x would he a mepping X: & -+ M

such that X{e) € R(e) . A "real input” x with valae ¢ € K woild b

a "poor real input” such that Zor every 8 > 0 there is ar £ with
|x(e) - c] <& . A "subrcutine” would essentially remain as before. Ar

“an F s £(P)" would be a "subtrcutine” F owith Llim ry gy % J = £{n )
g5 &S

all x_ € P at whicn f(X ) # w .
m m’ -

he

HeYal



2.,A Appendix: Maximum Keiative Srer

Here we prove statements made uboui ‘he examp.es of sec i o

THEOREM 2.A-1: hssume that, for each €, R{e) - {0} 1s symme .7 -

——— .

about O . Zet O(e) and <{e) be the smuilest and largest fiille

positive numbers in R(e) and define

(2.A-1) E(e) = su min X-Yi
6(z} < le < 7{¢] y € R(e)l x ‘

Letting a < a' range over positive finite neightors in R(e)

yields
(2.4-2) E(e) = mgx(a'-a)/(a‘+a)
Proof: By symmetry it suffices to consider only x with

6(e) <x<7t(e) . For a € Rle) with ®(e) < a < *(¢), let a' dentr

the successor of & in R(e) . We have

E(e) = max sup min |x-vl

a<x<a y € ﬂ{e}l X |

= max Sup min (x-a a'-x

a . y ——
a<x<a x X

The facts that (x-a)/x 1is monotone increasing and (a'-x)/x is
monotune decreasing for x £ 0, and that these functions intersect
at (a + a')/2 yield (2.8-2). This completes the proof.

This theorem gives immediale results for examples 2.2-1 andéd o,:-0.

© -1 . .
For a € da(ei) with a = (t877)B® ana B* 1 <o < B we nave

b3



-i

-i - - in€
and B%7Y/{s ta, is swa._est for such a when a = B “BS,

e

yielding a +a = ﬁ'lse + (B + B-l}ﬁ eﬁe-i . Be-1 and

©, 6. o] a=1 -3 ®
E (ei} = max . g® l/(EB - g€ o= €, -
le| <&
¥* * -+
For a €R (Ei) with a = B? we have a = Bi*‘ and
Es
* x e+ . € *
E(e,) = omax .(B " -B7)/(B] "+ B, =¢ .
lel < ottt

To prove this for R# we need mors muchinery. First we note ithat it

suffices to take the maximum in {(Z.A-2) over GOle; < a < 1 ({(rather thsn
6(e} < a<(e)) for R# : suprose w = p/q> 1 and a = p /g
then the successor of b= gq/p is b = g/t and we have

b-b ./a - _/a g -a

For n =1, 2,... define 'ne orey series of order n, Fn. o

be the sequence of rationals, :/q, with O0<p<g<n &ndG.C.D.{p,q; =
written in inereasing order. We shall reguire tne following wwo we.ll known

iemmas (see Niven and Zuckerman [N, pp. 223-1232}).

LEMMA 2.A-1: If p/a and © /4 ars consecutive fractions in F

n

then p'q -pg’ = 4.

LEMMA 2.A-2: If p/q and t /1 are consecutive in F, iben

among ail rationais with - a.ue between these two, (ptp Ulgrq

is the unigue one with sme.iest densmin. .or.

Ne



We will also need the following two new results.

LEMMA 2.A=3: For n > 2, if p/q < p'/q' are cousecutive in Fn

and p > 0, then pqg' > [é(n+l)] .

Proof: F‘2 is <09,

-
pobE

s = >, 850 the thecrem is true for F2 by inspeztion.

Suppose it is truve for Fq

a Any conseeutive fractions in Fn will
T + 1 + T ? 1
be either E B or PR or Ep_ b where 2R are consecu-
q’ q q’ atq’ 7 q*q’’ Q' q
tive fractions in F__, (by lemma 2.A-2). We have pg' > [n/2] . 1In

the last two cases this implies
' . 1
pla*ra’) = pa + pa’ > 1 + [n/2]) > [5(n+ )]
(prp')a’ = pa' + p'q’ > (/2] + 1 > [5{nt1)]

and the induction step follows. In the first case, if n 1is even tien
B
(/2] = [%(ml)] ss pq' > [é—(rﬁ-l}] . Or, if pa' > [n/2] then

pq' > [%(ml)] . Suppose n is odd and pg' = in/2] . Then we have

Fo-
A

<pg' = (n-1)/2 )

t'a=pg' +1=(n-1)/2+1 ,

Fe)
Vs

a+q Sn .

It follows that (p+p')/(gq+q') is in F, and so v/a, p'/q' could

not have been consecutive in Fn . This completes the proof.
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LEMMA 2,A-L: Le

Proof: Let a = p/g

n be > 2 and et & < a' rur tiroust
congsecutive fractions in Fn with a > 0 Then we *ave
max a'-a L
g+ el f )
d[%\n+¢,] + 1
(48
and a’ = p'/gq° . We have
[A ! . - -
E/rg =-/9 P = B9 = < e
p /e’ p/qa platga  Opglot L= .

Further, the fractions

ol

in Fn because (|

ff[r;(n-r’_;} +

PR - R el Ly
Vil5n1)1 + 1), L,/[E(VH,L}J ar

v

]+ 2+ [5(rx+l)] » n, uand for

This comp.etes the proof.

comp.eting our task.
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Chapter 5: Numerical Instability

3.1 A Definition

To simplify notation, we restrict this discussion to g-function:
and functions of two variables. Let x be a real input and supp.s= that

ylipx f(x, y) exists. Let F be a subroutine satisfying

(3-1-1) climg Fles x5 y) = £lx, y)

for y €m - [x} at which f(x, y) # @ - This means that, with
F=z(F, w, w) , we have F ~ f({x} x M - {x})) . We do not require
(3.1-1) for y = x because (1) we do not need to, and (2} this coutd
cause problems when f(x, y) is discontinuous at y = x (x fixed}~

We are interested here in & computation of yl}mx Fix, y: wJ:Lh
proceeds at precision € by selecting a Y, € R{e) and ther. using
Fle; x, yé) to approximate ylipx f(x, y) . We call the rule used %o
select these ye's (as a function of F, x and possibly cther things: a

stopping criterion because it tells us where to step at precision ¢

We say that this stopping criterion works at x precisely when
(3.1-2) gllPo Fle; x, ye) = ylipx £(x, y;

This framework is quite general. f(®, n) might be the nLh iterate
of an iterative procedure for evaluating nliya f(w, n; , as in Newton s
or Bernoulli's method for finding zeros o7 a polynomial, or as in numerical
integration methods for ordinsry differential eguations The assumpti 1.
that nlipm f(», n) exists means that the discrete method converwes ir ewxar .

arithmetic, with exact starting values. {(This iIs weaker than " mverg .

L7



as defined in Ralston [Rl, p. 171..

We are now ready to discuss numerical stability. As used i1 nurerica:
analysis, stability deels with the way lccal rounding errors of sume
iterative procedure propcgate and effect the total accumulated erv::

(See Henriei [Hl, pp. 11, 302, 309i end Ralston {Kl, p. 175 ‘under 1,

Let us consider an example-

EXAMPLE 32.1-1: Let 4yr Qpr - be defined by

- ( \
9 7 Qn(qO’ Qo vy

~ Lo 4 . Y
At precision € , let 9% approximate 9y Qi approximate the Lh

recurrence relation, Q,, and define El’ ?;'2, U %
qn = Qn(.qo, qu neey qn_l) .

The nth local rounding error of this iterative procedure is

~ ~ o~ L
qn thqo’ qlx b) qn_l) ’

and the totel accumulated errcr is q - q - let f(x, y) = q
when n = [y} >0 and x ¥ @ ; otherwise let f(x, y) = @ . Suppose
we are interested in the finite limit, ylea o, y) = ahimy q -

Let F(e; x, y) be defined in terms of the ’in so that (3. 1-1)

is satisfied for x = =« . (This is easy, but tedious, to do; F

will be effective so long as the '5_“ are.) Then F(e; ®, y) - ©i», y
is the total amccumulated error.- If, as y —s® through finite

values in R(e) , |F(e; ®», y) - f(», y)| becomes large, it wuuld

be said that "numerical instability has set in at precision e ."

L&
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1f this happens for iafinitely many vaiues of € , i* would be

said that F 1is unstable at = suppese this rappens, and .et e

be some value in R{(g' * ere the toteaL errcr has bec :wme large

Then we would have lim. ltig; =, y ) # Llim f'=, ¥y, , evern TLOue:
E — € y —mw

0

we may have El}p

o ‘ye - @ anpd ye { @ This is tne tregedy of

numerical instability; when F 15 unstable at » , there will oe

seemingly qulte reasonable stopping criteria that 4. not work at o

Cn the other hand, if F is stable at = .in the sense usual
tC numerical analysisj, then any s.ch reasonabls stopping criterie

should work at =

This idea of stability generalizes easily to any F, 2 and
f satisfying the assumpticns at the begioning -f this secticon, wherner
or not they involve iterative methuds and local riunding errirs nornd
generalization, it is important that "reasonsbie’ stopping criteria

chonse ye‘s that satisfy
Ixie) - vl > BXie

s0 that yc is effectively distinet from x &t precision ¢ This
is necessary so that F 1is not unstable just because f'x, y. ls
discontinuous at y = x . e.g , when f(x, y) involves divisiins by

(x-y) Define the set, ple; x) , of members 5f R.¢) that are

effectively distinct from x at precision e by

{3.1-3) ple; x) ={Y. YERe) and |x.e: - Y| > kKXie:}

DEFINITION 3 1-1. We say & stopping critericn is reascneble gt

X precisely wh'n its vy _'s satisfy

L9



(3.1-4) v €ple; x) U {w} , Limyy =x.

0

If RX(e) = w then (3.1-4) forces the choice Vg =@ - This cannot

happen when ¢ 1is sufficiently small.

DEFINITION 3.1-2: Suppose  lim f(x, y) 1is finite snd

F~r({x} x M- {x})) . We say F_is stable at x precisely

when any stopping criterion which is reasonable at x , works at

X . Otherwise, we say F_is unstable at x .
Following is an example of an F unstable at O .

EXAMPLE 3.1-2; Let &(c) be the smallest positive number in R(e) -

Suppose a certain form of eg-arithmetic is to be used and that in this
e-arithmetic we have 0+ 1 =1, 8(e) +1 =1, 1 -1=0 and
0/(0 - 8(¢)) = 0 (see section 5.3 for a detailed discussion of
e-arithmetic). Suppose a sBubroutine F , evaluated at {(e; x, ¥),
approximates f(x, y) = (x +1 - (y + 1))/(x - y) by replacing x
and y by X(e) and Y(e) and by replacing arithmetic by this
g-arithmetic. (That F satisfies (3.1-1) follows from corollary
5.3=1 in chapter 5.) Define Y = 6(e) . Then these yc's satisfy
(3.1-4) for x veing O, but F(e; O, yé) = 0 for all e , while

d -
yH48o £(0, y) = g (t+1) |,c=0 =1. Hence F 1is unstable at O .

50



3.2 A Geometric Characterization

F is unstable at x 1if ard only if there is a reasonable at x

stopping criterion whose ye's satisfy
(3.2-1) Jimg [Fles x5 v.) - £x, ) | >0

Interpreting this geometrically, we find that the graph of F{e; X, Y
versus finite Y € R(e) acts like an g-wave. This is pictured in figure

%2-1 for x = and € = ¢

4

1’ €2

//"

lim £ ;
.;;'-’u (m’y ye1 ¥

Figure 3,2-1 Instability

As € -0 , the e-wave moves towards x . The crest of the g-wave

stays uniformly away from ylin f(x, y) . (See example 3.1-2}.
Two usual stopping criteria are
(1) choose y, to be the first value of Y for which
TF(e; x, Y} < RF(e; x, Y) , 88 Y - x via some fixed
approach, and
(2) choose Y, to be the first value of ¥ (as Y - x via
some fixed approach) such that F(e; x, Y) and the previcus
four values of F are equal, within some tolerance.
The trouble with such stopping criteria is that they cean make Fle; x, ye?

ride the crest of the g-wave cut 1o x, thereby des reving ¢ rvergorc
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2.2 A Stopping Criterion That Wcrks

The question arises, is there gany suvipping ¢(ritericn loffecs el
computable or not) whien yields convergence even when F is unstatle
At x 7 The answer is given in the affirmative by the foliowing

definition and theorem.

#

DEFINITION 2.3-1: Stopping criterion §. C. selects Ve to be

that value of Y € R(e) closest to x at which |F(e; x, Y) -

v lim £(x, y)| essumes its minimum over all Y € R(e) (taking

the smaller value for ¥, in case of & tie).

We call (ye, F(e; x, ye)) the base of the g-wave of F &at x . Of

course yE cannot be effectively computed from F and x .

THEOREM 3.3-1: If % ~ f{{x} x (m - {x})) ana yliyx fix, y!

is finite, then §. C-# works at x .

+

Note that S. C. works whether F is stable or nct. Thus there is

some desirable behavior even in the presence of instability-
Proof: Let (! = ylipx f(x, y) . For any real input y , we have
(2.3-1) |F(e: x, y) - 1] < |F(e; x, y) - £(x, ¥)| + |£(x, y) - 2] -

Let an N> O be given. By choosing y sufficiently close to x ,
keeping y € M - {x] , the second term on the right side of (3.3-1)
becomes < /2 . Then by making ¢ sufficiently small, this value
or y is in R(e) and the first term on the right gide of {3 -2-1)
becomes < 1N/2 (the nesting property III of R{e) allows this). For

such y and ¢ , the left side of (3.3-1) is < T . The left sice
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~#

bounds the distance of the F(g; X, ye) of S. C. from ¢ ,
and so S. C-# works. This completes the proof.
Thus the height of the base of the g-wave of F an x approeachnes

yl.i_’mx f(x, y) as € =0 .
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Z.4 An Algorithm for Jverciming Znstability

#

We derive an effective analog to 3. C. as follows. Suppose

Fm £({x} x M- {x}}) end yli?x fix, y) exists.

DEFINITION 3.4-1: 5. C t selects Ve to be the smallest value

of Y in R(e) for which (KF T 1F) (e; X, ¥) assumes its minimur

over all Y in Rfe) .

This is finitely computable bLecause R{e) is a rinite set. This stopping

criterion keeps us close enough to the base of the g-wave of [ at x

that we get convergence even in the unstable case, provided only that
there is & sequence, y;, y,» .-, With each y, Em- {x1,

(3.4-1) such that

ilimm 1%m_§8p TFE; X, yi) = 0.

THEOREM 3.4-1: Suppose that

(1) m £, ¥) o,
(2) Fm £({x} xM - (x})) , &nd
(3) TF satisfies (3.4-1).

Then 8. c.## works at x -

Proof: This proof in essentially the same as that of theorem 3.3-1.

We will prove that for every N> " there is a 8 > 0O with

(kF % TF) (e} x, v,) <7 for all e <8 ,

L

where Ye is chosen by §S. C.

Let an T > O be given. By assumption, there is a Y in some
a(al) - {x} with
S4



l}m_fgp TF ey %, Y)Y < TMrh

For this Y there are 62, 8, € &€ with

3
TF{e; x, Y) <7/2 for all e <86, ,
RF(e; x, Y) <T/4 for all € <6,
<

There is & 6h such that R(éu) corntains an “l and an T, with

/4 < My <My <N . Let 8 = min(Gl, 62, 55, 64) . We have
(RF ¥ TF) (e; x, yg) < (RF TTF) (g3 %, Y)<T for all e <6

The first inequality makes use of the nesting property I7. of R . ke
second inequality uses the facts that

(1) (RF? TF) (€3 x, Y) € N, ((RF + TF) {e5 x, Y1),

(&) (RF + TF) (g5 x, YV <3 7/%, ana

(3) My, M, € R(e) by property III of R )
This completes the proof.

Thus 8. C-##

is a (totally inefficient) algorithm for overcomin
instability. It should be possible to find a more efficient algori+thm
for which theorem 3.4-1 holds because
(1) we do not need to find the exact minimum of (RF ¥ 17)
(e x, YI over Y € R(e) ; we only need t= stay "sufficiently
close™ to it, and
{2) 1in particular cages, it should be possible to localize
the search for A

On the other hand, it should be possible to show that any stopping

criterion, for which thecrem 3 4-1 hclds, must require so many

N,
Lol



R L Y, . .
evulaationg of RF O+ [r Leochonse  y Lhat it connol bte very oo
3
In chapter b, we precent an ef ®iciont algoritlm that aimoet

satisiles this taeorem (it has a s mewhat more sur nuent third

hypothesis, regarding 1TF ).
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.5 Appliceiions

de have proven tho aumerzcal instabiilicy 1s mot »n ws34n7iaw
limitation of “ianite computa-icoc. Convergent rondc: f-error and
truncation-error bounds can be combined with an unstable subroutioe
to form a convergent algorithm for computing the asscciated limit.
Here, we consider applicaticns <f this result 1o the initial-value
problem for cordinary differential equations Instabilities can
generally be classified as

(I} those due to the particular methnd of solution used, and

(11) those due tc the prcblem peing solved.
We will give an example of each and we will show that the instabiiities

+

in both of these examples can be cvercome by S. C. Of course,
the best way to cvercome instabili<ies of type 1 is to find a stable

method of solution.

EXAMPLE 3.5-1: (onsider solving the initial-value problem

7

y' = -y, y(©0) =1, by the corrector formula,

— h’
(3.5-1) Yool = Vi1 = 3Wpar * by *y..q) s

from Milne's method (see [R1, p. 182]). This is a well-known .-
stable formula. Since yn depends on h , let us write yn(h) . Tek-
ing yo(h) = 1 and yl(h) - e D , we find the solution of the alaove

difference equation to be
v, (6) = A(h) r (n)" + Ba) r_(0)",

where



_ =2h + V}u(he + 3

h +3

-h
e hx2) 23 1. g .

2 V3(n® +3) °

For fixed h> 0 , we have |r (h)] <1< |r_(n)| ana B(h) # 0,

A(h) =

so that |yn(h)| —-® as n - , whereas y(nh) -0 . However,

for any finite X we have

: Xy _ =X
iy Vola) =7 -

(3. 5-2) o1

Let fx(e, y) = yn(g) when n = [y] > 1, and let it be
otherwise. Let Fx(e; @, y) approximate fx(w, y) by evaluating
(3-5-1) in some form of e-arithmetic (see sec. 5.3), where the
approximations used for the initial values converge to the correct
values, yo(%) =1 and yl(ﬁ) = e-x/n , 88 £ -0 . It follows
from corollary 5.3-1 that Fx satisfies (3.1-]) RFx can be defined

as in sections 5.3 and 5.6, and TF can be defined so that
X

¥, (e5 @ 0)> |y, (5) - |.

L

It follows that S. C."" works when it is applied to Fx .

+

Because of its extreme lack cf efficlency, S. C. could not be used

in practice. But the g-1limit defined in section 4.1 could be applied

to this Fx with reasonable efficiency.
EXAMPLE 3.5-2: Consider solving the system,

(3.5-3) Y’ z » y(0) =1,

! y » 2(0) =-1,

N
]
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by the Newton-Cotes closed If'ormula,

Yn+y Yn h Zpe1 * “n
(5.5-4) = + =
Zn-rl zrl y + h

n+l n

Again, we will write yn(h) and zn(h) . The general solution
(3.5-3) is y = Ae” + Be”" , and the initial values give y = ¢ "

The general solution to [%.5-4) for Y, is

v (h) = A)GE)™ + B()ED)"

Taking y, = -z, = 1 yields A(h) =1 and B(h) = 0 .
But roundinag errors in computing (3.5-4) in g-arithmetic will build
up so that l?;(h)! becomes large as n does, even though

B(h) should have been zero. We computed ?;(.05) and 3;(%)
for n = 20, 30, ..., 1000, on an IBM360/65 computer in short and

long-precision; ?n(05) is graphed in figure 3.5-1 .aG all the

data is given in tables 3.5-1 and 3.5-2.

X

—_— e

—-——- 3;(“05) short-precision
- ?;(105) iong-precision

Figure 3,5-.. 3;(.05)
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We again have (3.5-2). The rest follows as in the last example,

except the initial values for F_ are to be yo(h) = -z (h) = 1.

0

X . . XN oot
It is possible to construct examples where Jim, yn(ﬁ) = y(») does
not hold, even when the initial values are assumed exact. The methods

of this chapter cannot be used to overcome such instabilities.
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n

TABLE 3.5-1

Data from example 3.5-2

~
v, (.05)
double-precision single-precisicn
3.6780277885662R=01) 3.677254'~01 3, 65T8027TRESKATLI -]

2423060416715%12°-01
1435278A841343281111
Re20422411202865¢-02
%a97559495062CRA =02
3.5175364265653 =02
1483002 7648945949212
1 1098582825339C Y= 2
6,73092931520775-03
42082089591 T¢R35%=03
20475654485R8473( ¢-03
1.501403860662339.03
9,10552542521220-14
5.522206177985C6°-04
3, 34903569 E642RTY-04
20v317 1967683137%~1'4
1.23178051697556 =04
2,47C26701162CR]1%-05
4,53064C7968545430-05
2 T4 740637 218367°=0%
1,6659083066350€] 015
1, 0099A813299105*=-05
6,119036419615134¢-0FK
3,7007446569034C2°-06
2¢2274R650449654%-06
1.32% 336G6F 261 9="5
Te564336564B564C5°-07
3,829965621343330%-07
1.073618406882%0°-07
~1,40856502026300°-07
~4,25%:94941 BU 6B 0207
~841777268R723RC9'=07
~1,41932731505055'-06
-24383322137¢51 0 v=06
=~3,95592 3400869216056
~6.53371141864086%=6
=1.0792127R347470C*-05
«1e779930C2273211'-05
—2¢9352834392%222'-45
-4, R401R2534369191-0%
~7¢3810732TBRTR2T -5
~1431600152448B3491-04
“2.1699505R7671661 =Nk
=2,5787 154149002 - 4
~5¢999773229M1009° =04
~94728096351516491=04
«1e604059145R8467331-0)
-206449220T74061471-03
“40361193766615670=" 3
=Ta191142225T642R4-013
~1.18574247C43548'-02
=1.95516256167532%-02
- 34223R5403004472°'-02
-5e31579162..23125~:2
~BeT651 7039981834007
-1, 445282086881621-N1
~2e383116959344627=01
=3,929505077116149-01
-6 4TI33375261 (04301

24229116'-01
1.349900°-0}
8.154595'=C2
4,892212'-02
24873845'-02
1.600527¢-02
7.208926'-03
4, 7T877314-C4
-6,229091¢=-03
~1,452738'-02
~2.653506'-02
~4.53174R =02
-T,566941%=.2
-1,253403-0
~2,070141*-01
=3 ,415665'-C]
-5.632893'-01
-5,283278=v1
-1,531482+00
~20525161%¢00
~G,l6361.008LT
~h.8652001+00
=14131960°¢01
-1.8606377%+01
-3,077260%+0)
=5,073912°#C1
-9, 366090°¢0]
=1.379449+02
=24274450%¢02
-3,750C88%402
~641B327 3041 2
-1.019509%+03
=l,681017%303
-24771725°+03
-4,570008" +03
=T74535.27%4 3
~14242391°+04
~2.064A4506% 204
=3,377685%+04
~5,569184%+0%&
~541823964%4 &
=1.5140C1v+05
~2e4963329205
-4.116C75005
=6, 7R6T6A? 405
-1.118995°+06
=1sRe499T7¢ +0n
~3,06207774+06
5159V 40
=9.2705300 406
~1+3636%1'+07
~24243355%+07
-3,707096%4N7
6112374000 7
-1.007R331+0R
~1e 661772408
-2.739960%408
~4451766344+0"°

Reproduced from

best available copy

61

2.230604147167031 =01
le #5278884134720:1-01}
R. 204276112657361=02
4e975594095053R52'~02
3,01 7536426732654 ~C2
1.83003764927345'~02
1.109R8582830 756902
64 73092932815136° =03
4,08208960652379°-03
2.47565451118244-03
1.50140330082156-03
9. 1F6526CRTIC2NST 1 =4
5.52220526508476*-04
3,349)3779TTSR451 =04
2e” 3108244338655 <04
1.23178540851172*-04
1.47037766766656¢ =35
4 530540962057629-05
2.74762566526953¢~05
1,66634555556896°~15
1.0105/435494416 =05
6e12886525873795-%6
3.71695734017579-06
2425421 367360218106
143671.7230632851'-"¢6
8.29106053214121*~07
5.02825841156337¢-07
3.04947510339075°~07
1.869607417216579=07
1o 12165561 MW RAL4B0-:T
5sA0217187326516%=08
4,12529539183310°~08
2,5018%771724790"-08
1051729529262239°-0R
9.2319f 2207073970 -"5
3,530654 249727259-0
34 384€R520253133° 09
241352580164 0R8820=09
1e24482306245044%-09
74549446 79644784~ 1L
%, 579493815A89N9¢=10
2., TT670751N56442°~10
1.6939E2T493R872¢=10
1e3212R0T3845790°~10C
5019373534404134°-11
3,7502989359T6%0°~11
2.27B07307104144°-11
1.38157718586R867¢-11
3.37B8160596T694°~12
5,081679285353134%~]12
3,08175183027841°-12
)« R6BIR2201B5579~12
1.133476886923149-17
6. HTH1684T4T76296%—13
4. 1649594878N1339-13
24528338267347C3°-13
145333549R45546])°~13
94 2992984062007 20~14

yn(.OS?

ENCLEN A
Pa?hivit
1e2 34500 oo i .
B, 2064998627398 L1 -
4e 9TRT0HB3678640 -2
3,01973A347223134%% ~U¢
1. 8315638RRB734621-02
1411989965382423-02
6. 7379669950854 7t -03
4s0R67714620846407¢-03
24757521 766663603
1250343919297757¢-23
9,11881965554516-C4
50 5308437014768361-06
3+35462627902512-04
2003658385010644°--04
10234096806 C86680~04
T+4851B298FT770067-05
4¢528939297624848°~05
2675364493497471°-0%
1.67017007902456%~05
1,01 300935986307*~0%
6e144212353328272v-06
3. 7266531 7207868 =06
2260325406981 06°-06
1.370959084384"190 =0'6
8.31528719103573°-(C"
56063476625678917-(7
3.05902320501827*-07
1,85820]13672A153: - N7
1412535174719260 ¢ 7
6.B254031378633690°% - (A
4,13993771R78519"-0%
2¢51099915574399- -0R
1.52299767644T7127v~CR
9,23744365137% A1
5.67279643 753726
3, 49H2ATR1I6AS T -
2.06115362243857° 29
12501528663867%-09
T453256€42791193*=1r
44 59C05537B6523237~10
24799468052R6872'-1"
1.69189792261 604 -2 "
1.07261879631 700 -1~
6224164062050 78701

3,7751346544279121 -1 1
2428973484506455¢°- 11
1¢3837943B649641=11
G442 360375646809 ~12
5.1790RI 22CEIZE -1 T
FeNA4BL1C12ATIT "~ 7
1.RTQAS28816539N09'~] 7
1,13989] 8% 204a s -1
6a914400106960230~113
4ol TATYRERHTTANET =1 Y
2454360564737~ 51 - 12
1+542811703]9149*-11
G AR TH22QLHRLO2{ 1~ 1.




610
629
430
b49
65¢
66C
L X44
680
699
18]
710
120
T30
740
15
760
170
781}
790
8
810
820
830
860
850
880
872
88
R9)
200
810
920
93
949
950
960
970
98,
994%
1000

TABIE 3.5-1 (con't)

Data from example 3.5-2

double=-precision

=1.0683728€257608°%+00
=1a761632862£25151 %4950
=~2.,9067643887201720400
~4,73961206254854¢00
~T.8975582136S81 eI
=1.30222251344191%491
=2¢1472263%82%5262%¢01
~3.54054669596£8]12%e0)
=5.837982067194C4 4401
=9.62627975C1C 799 en )
=1.587259C7002114402
-2,.61722050606276°402
~4,31551679667756%202
=7.11582580805257°402
~1.173323597152443%4¢,3
~14934663516746121%+03
=3.19008R995086057403
=5.260111568883386%+03
=9.67336939026156%403
=1.43016571TLL L65%e90
=2,35B15738456857%404
~3.98034540683560° ¢04
~6,411472652643432%004
=1.0571 8325971469405
—leT4318216745455%e:5
=2.87432102335CC17405
=4.733264B806200956*+0%
~T.81484314036862%405
~1s288584C82138C1 %404
=24 12473738361600° 406
~3,503464T781161C9%¢06
=5, 77683B885425C49¢06
=9, 5253898450550R N,
=14 57063491261 643%eQ7
=2.58980904785612¢+07
=6,270318232766%59°+07
~Te04129820R528N5* 07
“1e16173479316812%4+38
—1a91442224292436+0R
=3.156677565A]1 840 +08

Reproduced from
best available copy

¥,(.05)

=7.448329%408
“1.220193%4+(9
-20125111°%¢r 0
=3,339055%409
-5.505450%+09
=9, {T7445%°+(
“1.495717%+10
~2,467860%+10
=%,069136% 10
~6, 709189°+10
=1e1062C8%411
~1.823934%¢]1
=3,007370%+11
~%42958709%+11
=84176138%¢11
=l.34B10Vre)12
-24222774%+12
=3.6649886%+12
«6,043004%¢12
=9,064057%+12
=l.6642879%13
~2.708767%+13
%, 666251'+]123
~T.366124%+13
~1.2142235%+ 14
~2MI2LRG0e 14
~3.301066%+ 1%
“~5.,46208430%414
-06974361%¢14
«14479734%415
=2.439R71%+15
~44022938%¢15
=6.5633027%] 5%
~1eJ93664%¢16
~14803272%+16
=24973332%16
-4,902540%¢1%
-f.083218%¢14
=1.332T740%17
~241976¢52%¢17

single-precision

62

5e639721R7512698%~14
3,420 3077952101614
2.07430537765C69'~14
1,257998711625%2~14
7+629352820973674-15
40 6269542193439T7~15
2.,806097168432346-15
1.70180661951150¢~-15
1.03209033629137015
6.25929201735285%=16
3. 79605693719124%~16
2.30218500501407¢=]16
1439620029019724¢-16
84467500462286430°~-17
5213526346575092¢=17
3.11437C18549598°-17
1.888T6417286454°~17
lel14547400361525-17
6,9646027113845790'-18
42213785234 76064°-18
20 55509909698752¢ =13
1.54958445690AN9 -1 @
9e3977254R1262808°~19
5.699616£9323945¢=19
3,45650954 694102 -19
22096 26056203032¢~19
1427131381650966~19
Te 71011 4599224R56°-20
467592754 511187 =20
2,835797896870821 -2C
1.71981914482479'~20
1e04301463456T4511°-20
6432554206M597533¢=21
3.03623575120270¢~21
2.32055214825626%~21
1le41097816964182¢-2]
8.55712345282970°-22
510961691 TNM9419¢=22
34147333 78497071°~22
1.90875552327595¢-22

¥, (+05)

-. 0%

5675685232632 74%-14
3.4424647710866999°-14
2.0R796791166596"~14
1e266416554909420-14
T.68120468520213°~1"*
©.658R86165103427-15
2.82575T26711563%-15
1o 71 3908431542024 -1%
1,03952801167023°-15
6.3%511676014702"~16
3282424662809T715-16
2,31952283024358%~16
L.40696171244615°-16
8.53306762574410°-17
5.175555C0580189*~17
3,13913279204804°-17
1.90398028328646°~17
1o 15482241730159°-17
7.00435202616867°-18
42 24831542552916C°-18
2.5T6T5710915499%~18
1, 56288218933500°~14
9 47935965350479°-19
5,769522264293597~13
3.4RT726153199446°-19
2,11513103759109%=10
1.28289182360879°-19
T.70113224113383°-20
4e T1 969527152814 °=20
2,86251858054941°-20
1, 73620528310030*-20
1.05306173575539°-20
6,38714229305844°-2]
3,873949762868720°-21
2,34963833745282°~21
le42516408274094°-21
8464405711303612°-22
5.26288566336349°=-22
3.179970900197746°-22
1e928764984796393°-22



20
3
40
50
60
70
81
L 1]
100
111
120
133
140
150
160
173
180
190
200
219
220
230
240
250
26°)
270
280
290
300
317
329
330
34Q
350
360
370
380
39
400
410
420

TABLE 3.5-2

Data from example 35.5-2

(Note: y(5) = e™2 = 6.7379469990855'-03)

n single-precisionn n double-precision

6.,259691°-03

5.460650°-03
5.009264-03
5.949687'-03

1o 7853941-03
~1.430578*-03

2.511602'-G3
-9,466864'~03
4o T87731"-04
-1.192247°-02
~9.010211°'-03
-1.851527¢-02
~3e144952'-02
=244336430-02
~2.31894C*-02
~2+624966%*-02
=2.789574'-02
-3.652655'=02
~4.467228*-02
~64243775%~02
=T+417661%~02
~7.697296*-02
=5.590025%-02
-7.729518*-02
~1.126839~01
=1.092784°~01
-8.893842°¢-02
~1.420971*~01
-9.0529C8°-02
=1.554755*~C1
-6,847292*-02
-1.843618%~01
~2.111134°-C1
-B.065218-02
~14433600°*-01
~1.938782*-01
-2+ 166646°-01
=1+ 72049201
=-3.,021251*-01
-34281339%-01
=24661970'~-01

¥ (2)

6056312402779648~)13
6.66008827465367°-03
6.69412021149203°-03
6,70988861449936%-03
6+71845852303765'-03
6072362739157639'-03
6.72698278674873-03
6,72928349316458°-03
6,73092931920775°-03
647321471C5414C9°-03
6,73307338681753'-03
6.73379425406474°-03
6.73436623389642'-03
60734827742R818C0'=03
6,73520547117676*-03
6.73551848763167'~03
6.73578078464965*-03
6,7360326(28C934%-13
6073619235639365*-03
6, T73635547974731%~03
6.73649684680107'~03
6.73662016382665°'-03
6.73672842720946*~03
6,736823960844148°-03
6,73630867314930°~03
6.736984178485858°~03
6.73705172709532%~03
6.73711236526989°-03
6.,73716704114330¢-03
6.73721657511228*-03
6,73726155046883'-03
6.73730241728272°-03
6,73733975117423°-03
6.73737395472379-03
6473740522053359°*~-03
6.7374346108046514°-03
6.73746083027843%-03
6.73748531402137*-03
6.73750823211830°-03
6.73752922285242~03
6.T3754901743251~03

€3

v (2)

nn

6456312402790868°-03
6,66008827578716°-02
6.69412021215067*~-03
6,709888561592713*~03
6.71845852888167*-03
6,72362739775014°~03
6,72698278853473¢~03
6,72928350441466-03
6.73092932815196~03
6,T3214712415119°~-03
6073307339919532%~03
6.73379428368321°-03
6. 73436629883609¢*=03
6.73482778138931*-03
60 73520547763337~03
6073551850753462°~03
6.735780832776416°-03
6. 7136002084084923¢-03
6,73619238936501'~03
60 73€355510950464-33
6. 736469683923037¢-03
6073662025025945°-Q3
6,73672850653685°-13
6.73682403412359-03
60 73690875302489*-03
6, 73698423442461'-03
6473705177405624%-03
6.73711244818440'-03
6. T371£715674576-03
6473721665691298°~03
6, 73726158%43395¢-03
64737302649947136°-03
6.737339853216594-03
6.73737405122982~03
6,73740543922362'-03
0473743431683434°-03
6.737646094479951°-03
6. 737485552861N08°-0:13
6,737508233465946°-03
64T3752947178680°-03
60737564911718278%-03



430
449
450
460
470
480
491
500
510
520
530
540
550
560
570
580
599
600
610
620
630
647
650
660
673
682
690
700
110
72)
730
740
750
760
™m
780
790
800
810
829
830
840
855
860
87)
880
890
909
910
920
930
940
950
960
970
980
999
1607

-3.216861*-01
~24298895°-01
-24621343'-01
~44247934°-"1
=3.659283'-01
=44369898°-01
=2.354091°~(1
-4.,692361"-01
-4+ 564425°-01
~5.697100%*-01
-3.301094'-01
=5.685695'=( 1
-%,983457'-01
-4,773043°-01
=5,245693'-01
-6,700377'-01
-3.889994°'-1
-64671242'-01
=44950620'-01
=3.86403C6'-01
=3.033572-01
~2.756428°-C1
-3,408707°*-01
-3,852482'-01
-5.888437%-01
-T.872203*-01
=3.,430781'=(]
=6,937112°-01
-3,669302'-01
=7.802510-01
~5.162380*-01
=1.016203°%+00
-84151451°-01
-T7¢357829%-01
-6,082242°-01
-5.016716*-01
=4,7378956*-01
-1.,252605°+00
-1+300713'+00
~14 331237400
-5.401559'=01
-6 525357'~01
~8.N88494'-01
=9¢591714°-01
=1¢185460°+(C
=1.424537'+00
-64967568'-01
-9,581641°'-C1
-14313843+00
=1.,630921%4+00
=9.874165'-01
-1.385051!+00
=~7.232992%-ul
-1.191267°+00
=1.731914%+00
=16096796%¢00
=1.628775°+00
~9.935147°-¢1

6. T3756717392245%-03
60 73758422354465-)3
6,7376N0178647728°~03
6,73761493986216°-03
6,73762889376321°~-03
6.73764202839905°-03
6.T73765426435773%=n3
6473766612594913'=03
6.T73767672532680%-03
6.73768716786513°~03
6.73769694177T762°-03
6, T377059427C581'-003
6,T3771446165673'-03
64737722877176863'~03
6.73773079293770-03
6,73773792119116*-03
667377451006CB16°=1)3
6,73775166255439'-03
6,73775782487857'-03
60T737764%53266523%-93
6. 737769670839371=03
6,73777552133174-n3
6.73778042609231%-03
6,73778549849570*~-03
6,737790362R3562%-013
6.737794711058279-012
60 73779852498558°-07
6073780350997523*-03
60 737807129591780°-03
6473781M81512993°-03
6.73781432097763*-03
6,737681941643361°-03
6,73782126475786°~-03
6.73782467537295'-03
6.T7378275333658( *~03
6.73783071650218°%-03
6,73733354780333%=-03
6.73783652995367°-03
6,T37TR3944CB88058-03
6.7378414CC13634°-93
6.73784431764590%~03
64T73784715451264°~03
6.737R4877379254'=N3
6473785099926720-03
6,73785365971621%-03
6.73785540927053°-03
6,73785762185479°~03
6,73785952038243°-03
5.73786126569431°-03
64737863337965671~03
6.737864840511567-03
6.7378€5E80478379¢-03
6, 73786855901075*-)3
6 73786999140930%-03
6,73787132726719°~03
6.737873226739374~03
6.T3787457394860~03
6,T3I7T8T547487356%-03

6,73756740798635'-03
6a T3758446592876'~03
6.73760039536977'~03
6.73761530502086°-73
6.73762926941390'-03
6.73764237016332°-03
6., 73765467704661-013
60 73766625293218'~-03
5. 73767715458583°~03
6.73768743337044°-03
5.73769713584793¢--03
6,7377C630431939°-"3
6,T737714977235RR'~03
6,73772318970571*-03
6.73773097374647'=-03
6413773835864671'-03
6.T737745371237600=3
6,73775203613112-03
6.73775837593928'-03
6,73776441146410°-03
6,73777016187205°-03
60 713777564484225°~113
6,73778087670528°'-03
6.73778587256356'-03
6,73779C 66645175~ 23
6,73779521118206'-03
6,73775957893728°*~( 23
6. 73780376084265*-03
6. T3780776729641*-02
6.73781160797738'=(3
6.73781529190711~03
6,73781882749937°-C13
6,73782222261299°-03
6,73782548459333-03
6073782862931199*-C3
6,73783163619979*~03
6.73783453828859=03
6.73783733222987'-03
6.73784002333290%-03
6.73784261658259'-03
6.73784511666591*-03
6.,73784752799305°-03
6.73784985471704°-03
6.73785210075035-03
60 T73785426577910°~0*3
6. 73785636528441°-03
6,73785839055333'-03
6.73786034868853*~03
6.73786224262577¢-013
60 737864075141006*-n3
6.73786584886044°'-03
6. T73786756627456°-03
60 73786922974096'=023
6. T73787084149377*-03
66 73787240365646-73
6,T73787391824294°-03
6.73787538716515*-03
6, 73787681224056°-03



REMARKE: Our definitions of subroutine and stability (def. C.h-1 aud
3.1-2) depend on the machine number system (R, &) being considered

We can eliminate this dependence by defining an algorithm Q@ for an

ideal function f +to be a constructive mapping from {tre set & a1
(R, €)} into {the set of all subroutines}, such that F = Q(R, &

is a subroutine relative to (R, &) and F and f satisfy 31.-1)
Thus @ 1is a recursive operator {see sec. 1.5), mapping any determiner
(%, lﬁ) of (R, &) into a determiner Y of such an F = Q(R, &}

Roughly speaking, Algol procedures and Fortran subroutines are examples

of such algorithms. We would then say @ 3is stable relative tu (R, &

at x if Q(R, &) is stabie at x . Note that x is a real input,
and therefore x depends on (R, &) ., We would say @ is stuble
at ¢ (a numeric constant) if, for any (R, &) and any resl input
x=c, OR, &) is stable at x . If we allow @ +> take more argu-
ments, say a list of algorithms of the above type (as well as (R, €3,
then we get stronger and more general concepts of stabilitly, analogous
to those found in the literature on the numerical solution of oraincry

differential equations.
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Chapter 4: g-Limit, e-Comparison, e-Convergence, and

e~Continuity

4,1 e-Limit and Truncation-Error Bounds

Define an operator, bWim’ over the sel slim of ideal functions

of two variables, by
(4.1-1) plim(f)(x)= lim £(x,y) .
y K
Thus plim maps an ideal function of two variables into an ideal function
of one variable. This operator represents a notion of limit. {We con-

sider limits of the forms _lim_ g(i;, ?;) and lim h(i;, v) at the
i~ *m ‘ = Xy

end of section 4.3 and in section 5.4.) Having x in the argument list
of f considerably simpliifies notaticn because the TF part of ¥

depends upon where y 1is going; if we are interested in 1lim gly),
Y= X
we will simply form f, with f(k,y) = g(y) when k £ w, and then

consider %ipr(x,y) .

To formulate an €-notion of e-limit corresponding to 0 we

lim’

of e-functions and an eg-operator (.. , Q.. }

must define a set Slim iim’ “lim

over Slim such that if ¥ € Slim and %~ £{?P) then
¢lim($) ~ blim(f)(Qlim(,’ f, P)) . One way to define v, isto

select some effective stopping criterion (see ch. 3) and define
(h.1-2) o (F)(esx) = (Fles x, v,), (RF ¥ TF)(e5 x, v,), w)

where yE is the wvalue chosen by the stopping criterion when it is

given €, x &8nd ¥ . If we selected ihe S. C.## of definiticn %.L-1,
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we would have a totally inefficient olim with good accuracy, & large

Slim and a good Qlim . But its total lack of efficlency rules out

this °lim .

Another method is suggested by the proofs of theorems 3.3-1 and
3.4-1. Roughly, this method proceeds at precision € by
(1) findinga 8 <e¢ and a Y € R(8) such that the truncation-
error bound, TF(8; x, Y), is <,
(2) finding an M <8 such that RF(M; x, Y) <e, eand
(3) defining Onm(ﬁ)(e; x) to be (approximately)
(F(M; x, Y), 2¢, w) .
Of course, these steps will have to be modified and Slim will have
to be defined so that this process halts for each ¥ € §

1im’
and any real input x . A4s we shall see, the only stability require-

any ¢

ments needed to insure that this method converges concern TF (and not

F or F?®RF).

DEFINITION 4,1-1: Suppose ¥ a f(P) for some P . We say TF is

stably convergent at x relative to £ precisely when

[}gﬂx £lx,y) £ a)] = lip TF(e; x, Y‘) =0 ,

as long as the yc's are chosen by any reasonable at x stopping

criterion.
Thia is a stability requirement on TF because, if we assume that

}%TF(S; x, Y) nlways exists, then it is equivalent to requiring

that }g._pr(x,y) £ o should imply the existence of & tf such that
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(1) Hm TF(e; x, Y) = tf(x,Y) for all Y € M at which

tf(x,Y) f @,
(i1) TF 1is stable at x (under def. 3.1-2), and

(1i1) %é’mxtf(x,y) = 0.

Let Slim be the set of 8ll e-functions ¥ of iwo variables
such that for esch x € K and each ¢,
(1) [¥ €R(e) and RF(e; x, Y) # o] implies lim RF(e; x, ¥) = 0,
and
(2) [TP(e; x, Y) # w for some Y € R(e)] implies
[ %_i_.anF(E; X, yt) = 0 as long as the yE's are chosen
by any reasonable at x stopping criterion].
For the following, we assume that an effective, reasonable a* any
x £ w, stopping criterion, S.C., is given. We 2150 assume that =
r€ -»M 1is given which satisfies
(1) A(e) € R(e) and A(e) > O for all &,
(ii) PELR a(e) = 0, and
(iii) )\(ei) = < y(i, +) > for some recursive function, ¥ .
We define @_. in terms of S.C., A and the T and Y of section

1lim
2.8 vy

DEFINITION 4.1-2: let ¥ €S, , x and e be given. Let

b he values se_ected by S5.C. for TF and x .

V. s Y, » se0
EL &

If TF(e; x, yc) = & then define Qlim(s)(e; ®) = (w, v, w).
Otherwise, let & be the largest member of & such thet & <e

and TF(8; x, yé) < ale) . If RF(S: x, ya) = w then define
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°‘im(’}(£; x) ® (0, ®, @) . Otherwise let j be the smallest

integer _such that €5 <& gnd RF(cj; X, yb) < a(e) . Suppose
Flegs x, vg) is <Og(d, », ) > end let B(-) ve iy, k, -} .
Define

(4,1-3) - " a 1" v
Qlim(s)(e; x) = (I(e, Be)’ 2 Rale? |1(e, BE\ 2 1(e, Ss)l, )

’

For ¥ ms f(P), define

{4.1-4)
Qlim(” £, P) » {x: {x} x (M N {some neighborhood of x}) <P

and TF is stably convergent at » relative to fJ},

THEOREM 4.1-1: We have

() imr Qi) ™ P1inlB14n)

Proof: Suppose ¥ m £f(P) and ¥ € slim . Let x € Qlim(,’ £, P) be
such that I = g,&,mxf(x,y) # w . Then for sufficiently small e,
TF(e; x, y‘) £ and we can find a & with TF(8: x, ya) < a(e) .
et b denote the largest such value < € . This means that

|£(x, yg; - t] <A(e) . If & 1is sufficiently small (it will be, if
¢ was) then RF($; x, ’Y&) #® end we can find en M < & with

RF(1; x, ya) <A(e) . Iet 2 be the largest such 1T . This means

that

IF(eJ; x, yb) - £{x, yo')l < a(e) .

Thus we have

(4.1-5) iF(ej; x, v5) - t] < axie)
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For each €, the corresponding F('j(e); X, ys(e)) eguals some
< Qh(j(c), k(e), ) > . Let ﬁe(') be Qh(j(s), k(e), ") . From

(4.1-5) we know that

(4.1-6) Him, < B o=t

if 1=+ then < Bs > = for all sufficiently smaii e .

It follows that
(4.1-7) %i’%'f(e, B,) = %_1_;51'(& B =1 ,

~n v
becsuse I{e, Be) and I(e, Be) are both in NE(C Be >} . Further,

Ly the triangle inequality and (4.1-5) we have
~ o) v .
(4.1-8)  |T(e, B,) - £l <2 % a(e) ¥ |T(s, B) 2 I(e, B

By (4.1-7) and theorem 2.8-1, the right’ side of (k4.2-8) spprozcies

0 as € =0, which means that
s . ‘ \
My &, (F)(e; x) = (Qin 1(x,), 0, @} .

This completes the proof.

.1im overcomes instabilities in F and/or F ® RrF bty using &
stably convergent TF ., First it picks a place (yb(e)) at which
to evaluate the ¢-1limit, and then it increases the precision until
the crest of the tj(e)-wave has moved past yﬁ(i) . The efficiency
of Qlim wiil depend on

(1) how closely TF and RF approximate the errors tha’ they

bound, how difficult they are to evaluate, and
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(2) how judiciously 3.C. chooses its ve's; 1f they are
unnecessarily close to x then j may have to be made
very large (an expensive enterprise) before RF(EJ.,' X, ya}i A€},
especially when F or F ? RF  is unstable at X .
Thus we say that Q:Lim offers a potentially efficient algorithm for
overcoming instability.
We will use wxs(e; X, y) to dencte Qlim(i)(E; x) and we

call this the e-limit of ¥ at x .
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4.2 e-Comparison Relatious, <g end =,

In the following sections, we will need an g-less-than relation,

<£,

80 that

and an t-equality relation, = We will define these relations

(1) F(e; ;m) < Me; ;n) is true when, based only on the infor-
mation given by ¥(e; im) and He; ;n), f(§m) must be less
than g(?n), and

(2) ¥(e; ;m) = HMe; ;n) is true when, based only on the informa-
tion given by F(e; ;m) and #e; }n)’ f(;m) might be
equal to g(}n) .

Essentially, the e-less-than relationship holds when the interval

[F - RF, F + RF] lies entirely to the left of the interval

{6 - RG, G + RG], and t-equality holds when these intervals overlap
(see figure L.2-1). Of course e will not be an equivalence relation

because it will not be transitive.

|
- 3
F L ¢ J F oL ¢
F< ¥ ¥F- &
¢ ¢~Comparison ¢
(a) FIGURE 4,2-1 (v)

DEFINITION 4.2-1: ILet x and y be poor real inputs. Fecr ¢ € &,

define x =_y to be true (and x #t y to be false) precisely

when
(h.2-1) |x(e) ¢ Y(e)] < Rx(e) ¥ Ry(e)
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Define x <, y %o be true {and x ’Ee ¥y to be false) preciseiy when

x #E y and X(e) < Y(e) .
For a., 8, > 0, 2y € R(e), when the triple (33) appears in an
e-comparison {e fixed) this triple is to be understood to denote the

poor real input a ® (A, RA) defined by

(w, w) 8>¢

(A(8), RA(8)) =
(a, a,) 8=

This convention allows us to e-compare €=-function values directly.
; 2 ) = . v -5 LTy
At all times precisely one of ¥(e¢; xm) =, Me; yn), ¥(e; xm) <, e, Y

and He; ;’n) < %(e; ;m) holds,

THEOREM 4.2-1: Let x and y De real inputs. Then

b

=yelx=, y forau ¢

x<ymw[x <Y for all sufficiently smail €] -

x<ye& [x <¢ ¥ for some el .
Proof: If x =y then we have, for all &,
[x(e) g Y(e)| < Ix(e) - ¥(e)| < EY(e) + RY(e) < Rx(e) ¥ RY{:) ,

end so x =e ¥ for al1 ¢ . If x = ¥ for all e, then applying
theorem 2.8-1 and taking the limit of {4.2-1) as &= 0 yields
iX'YISO, so x=Yy.

If x <y then, for all sufficiently small ¢,

(4.2-2)  x(&) < Y(e), |x(e) ¢ Y(e)| > Rx(e) ¥ RY(e) ,
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the second inequelity holding tecause, by theorem 2.8-1,
|x(e) o ¥(e)| = |x-y| > 0 wnereas RX(e) ¥ RY(e} -0 . Thus x < ¥
for all sufficiently small ¢ . If x <,y {some €} then (L.2-2

holds and so
[x(e) - v(e)| > Rx(e) + RY(2)

implying x <y . This completes the proof.
let bool[statement] be 1 if the statement is true and O if

it is false. The notions of comparison given by

w 1t fl(xm) =w(i=1 or 2)
B (£ )(x ) = _
- o~ * ;— .
ool [11(xm) fz(xm)] otherwise,
for * being = and <, can be e-ized easily, (o yield weak €=

operators, (Q*, Q*) . The weskness of these e¢-operators i3 due to
the fact that the information given by 31(55 ;g)(i =1, £) mey never
{for any €) bve sufficient to determine that fl(;m) mist equal
f2(;m) . See Bishop [Bl, p. 24] and Aberth [A), pp. 287-8) for similar
considerations,

Techniques from interval analysis can be formslized in the e-calculus

to yield a weak e~operator corresponding to the oderator,

W if a or b isin {=, =, @}

B0s()(a, )
bool {£(x) > 0 for a < x <b] otherwise .

We leave this to the reader.
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4.3 ¢-Convergence and e-Continuity: Pointwise

In this context, we say f converges st x precisely when

w::f(x’ vY # @ ; i.e., precisely when the limit exists in the usual

sense. Otherwise, we say f diverges at x .

DEFINITION 4.3-1: Fix x and € . We say ¥ g-converges at x

precisely when

(4.3-1) I ¥(es x, y) Apw -

Otherwise we say ¥ e-diverges at x .

We say f is continuous at x precisely when

(4.3-2) (x, x) = %mxf(x, R

Otherwise we say f 1is discontinuous at x . Note that (4.3-2) uses

the transitivity relation & =Db £ c® a £ ¢ to insure that f{x, x) £ w .
Since = and #E do not satisfy such a transitivity relation, we

must explicitly insure this in

DEFINITION 4.3-2: Fix x and € . We say ¥ is e-continuous at x

precisely when

¥(e; x, x) =, %g»ixﬁ(es x, ¥) fo 0 and F(e; x, x) £ 0 .

Otherwise we say ¥ is e-discontinuous at x . We say ¥ ie

strongly e-discontinuous at x preciseiy when
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3(8; X, X) #s Iy-'Lng(E; X, y)

If we are interested in the continuity of g(y) at y = x, then we
simply form f, with f(k, y) = g(y) when k # w, and investigate
the t~continuity at x of some ¥F corresponding to f . ILet Ej
be es in definition 4.1-2, when 3 value for z is found (i.e., when

TF(e; x, ye) # w); otherwise let Ej be € . Let !Fe denote the

finite subset of 77((5) given by

SEE{.’:’(T]; x, ¥Y): YERM) and e, <N <e} |

J
From the definitions of e-function, of ¢-limit and of e-equality, it
follows that
(1) & e-converges at x when, based only on information confained
in sc, f must converge at x, and
(2) ¥ ec-diverges st x when, based only on information contained
in ¥, f might diverge at x .

\
Let S; denote the finite subset of 771(3’ given by

¥ = {F(n; x, x): £ <m<e} .
As above, we have
(1) ¥ is e-continuous at x when, based only on ?E U Fé s
f might be continunus at x, and
(2) ¥ 1is strongly e-discontinuous at x when, besed only on
Sl U 3; , I must be discontinuous at x .
These definitions can be expressed in operator, e-operzior form as
follows., Ilet S be as in section 4.1. Define operators

lim
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By P

each over S by
conv

cont’ lim’
s (£} (x) = bool [f converges at x]

conv
b

cont

’

(£)(x) = bool [f is continuous at x] ,

so long a8 x £ w . Of course, 0 (£)w) = 0

conv (£)(w) = ®w . Define

cont
e-operators corresponding weakly to the above by equating, for x #t w,

o ) iconv(S)(s; x) = (bool [¥ e-converges at x] ,
53

bool (¥ e-diverges at x], w) ,

lcont(s)(e; x) = (bool [¥ is e-continuous at x)] ,

(4.3-4)

1-bool [¥ 1is strongly e-discontinuous at x], w) ,

(b.3-5) Q. (% £, P)wa, (% £,P)N{x: (x, x)€P)

THEOREM 4.3-1: We have

(4.3-6) P comy® G 3m) ~ Deony(S

conv' lim

)

(b.3-7) (@ Q

cont’ cont) ~ bcont(slim) *

Further, if f converges at x for all x € Qlim(,’ f, P) then
®ony'¥) 1is not weak. If f is discontinuous at x and

f(x, x) o snd i f(x, y) f o for all x€Q

Cont(,’ f’ P))

then ocont(s) is not weak.

Proof: Consider g-convergence first. Suppose ¥ w f(P) and x 1is

in Qlim(,’ f, P} . If f converges at x then by theorem 4,1-1,
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%1§ F(ey x, y) = (%1& f{x, ¥), 0, ) as € = 0 and so %iQ Fle, x, y)

must be #c w for all sufficiently small € . If f diverges at x,

then &1& f{x, y) = w and so §1§ F(e; x, ¥) =, © must hold for ail € .

This and (4.3-3) yield (4.3-6) and the first remark after (4.3-7).
Consider e-continuity. Suppose ¥ f(P) and x is in

Qeont(” f, P) . If f is continuous at x then theorems 4.1-1,

4,1-2 and the fact that (x, x) € P give us Et-continui:y for all

sufficiently small e ., If f is discontinuous at x +then

f(x, x) = o or §1¥ f(x, y) = ® or else f(x, x) £ %ig f(x, y) .

In the first two cases we have ¥{¢; x, x) =, ® or 51% ¥(e; x, v) = 0
for all €, and so ¥ 1s always e-discontinuous at x . In the third
case theorems 4.1-1 and 4.2-1 imply that ¥(¢; x, y) ée §;¥ Fe; x, y)
for all sufficiently small €, so ¥F is e-discontinuous at x for
all sufficiently small € . This and (4.3-%) yield (4.3-7) and the last
remark. This completes the proof.

Let f be an ideal function of m + 1 variables and g an ides:
function of 2m variebles (m > 1) . Ve can easily discretize 'f

converges at x," (irue if Mmfﬁm, y) # @) end "f is contiruous
at xm" (true if f<;m’ xm) = Mm f(;m’ ¥y) # @) . However, with our

present setup we cannot discretize "g converges at ;m" (true if

_lim g(iﬁ, ;m) £®) snd "g 1is continuous at ;m" (true if
¥y x
m 'm
g(;m, xm) = _lim g(;i, ;m) # ©) because our truncation-error bounds
Y. ™x
mm

do not give the necessary local information about all the possible
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approaches of ym to xm . (The xm appearing in g\xm, ym) may
Just be dummy variables teliing where ;m is to go.) We could have
done this latter discretization if we had assumed truncation-error

bounds, TG(e; ;m’ 3;), for limits of the form _lim g(;m, ;m) .

Vi *m

We would then have defined an ¢-limit of the form _LIM e, ;Q, §m) .
vy =x
mom

Of course this e-1imit would not be more powerful, computationally,

than %I% *(c; ;ﬁ, y), because m successive applications of the
n

latter ¢€-limit are essentially as good as one applicaticn of the former;
the difference between these two e-1imits is thut the latter one will
approach §Q along the m-dimensional axes whereas the former one may

take any approach. This follows from the relation,

e gl yp) Ao = din o elx, v) = Mp ... p oe(x, ) -
¥y "X ¥y x 171 m m
m “m m m

Thus, if the limit exists, the domain set of & is large enough and

the truncation-error bounds involved are stably convergent, then both

these ¢-limits will work. We have avoided the more complicated form

of €-limit in order to simplify notation.



4.4 Discontinuities

In order to discretize convergence and continuity over intervals,
we must know more about the kinds of discontinuities f can have in P
while there still exists an e-function corresponding to f over P .,

Consider the ideal function f defined for finite x and y by
f(x, y) = vool [x <yl .
Define an e~function ¥ by

¥(e3x, y) ® (bool (x <'ﬂ y for some T > e], bool ix ;én y or

RX(M) = RY(M) = 0 for some T > ¢], w),
80 long as x and y are ": =, ®, @ ., In this case we have
Fm(f(x, y): ¢y or x=y€mM) .

However, we only have
5~ g(®2)y

the correspondence being weak because RX(T) £ O for M > ¢ implies
¥(e; x, x) = (1, 1, ) ant so uubRF(e;x, x)#0 forany x €m.
Let ¥' be any e-function weakly corresponding to f over 'ﬁ'(2) .
Then for x = y € M, RF'(e;x, y) cannot go to O with € because the
inputted values of x and y will always be inexact, and so ¥' will
never have enough information to decide for sure that x =y .

Many variations on this basic theme are possible, The underlying

principle is given by
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THEOREM U.4-i: Suppose ¥Fw £(P) and X, € P is a point of

discontinuity of f ({i.e., f(;m) = or _lim f(-y'm) # f(;m))

Yo *m

and f(;m) # w . Then at least one %y €EM.

Proof: Suppose ¥, £, P and ;m satisfy tne hypotheses, but |xil £ o
and in(e) £0 forell € end i=1,2,..., m. We will prove that
this implies lig RF(e; ;m) # 0, @ contradiction. Suppose Y, end

Y, are the given determiners of F and RF and that F end RF
involve respectively ry and r, subroutine constants, For k= 1,2
let nk(si) be the least value of n such that v, (i, GNn(§m+rk)) £ 0,

and define

( -
mei) = max(nl(si), ne(ei)) .
Let of(e) be the w-dimensional rectangle of real inputs,
o(e) = Gm: GNn(z)(ym) = GNn(e)(xm)} .

All the sides of o(e) have positive length. ILet £  and I_ be

+
the limit superior and limit inferior of f(-jm) as ;rm - ;m’ and
define

X1 - 1) if 14t

FEANE ) + -

K=
-21-| ', - f(;m)l otnerwise ,
n{e, ¢) = _ sup le - f(;m)l for c €R .

Vo € o(s)

K> 0 beceuse f 1is discontinuous at ;m . There are ;m € o(e)

vwhich make f(-y:m) arbitrarily close to the one of f,, !, f(;m)
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which is furthest from ¢ . Thus we have
n(e, ¢) > K for any ¢ € ¥ and any ¢ .
For eny real inputs ;m we have

RF(e; )

v

IF(e; 7)) - £ .

For ?m € o(e) we have F(e; §m) = ¥(e; ;m) and RF{e; ?m) = RF(e; ;m) s
yielding

RF(e; x ) > - sgpq(‘)lf‘(e; x ) - £(5 )| = ne, Fle; X)) .
m

Thus RF(e; ;m) 2 K>0 for any €, the desired contradiction. This

completes the proof.

COROLLARY 4.4-1: Suppose ¥, f, P and ¥  setisfy the hypotheses

of the above theorem. Then for each j = 1,2,..., m, either

xJ €M or the function gly) = f(xl, aesy x,j-l’ Y, xj+l’ vaey xm)
is discontinucus at ¥y = x

J .

Proof: Define 4 by setting TG ®= o and

G(E; Y) = F(es xl""l x,j-l’ Y, xj+1’”" xm) )
rG(e; y) = RF(e; Xyseees X510 V5 Xgpqs eees xm) .

Then &as g(ij}) and g(xj) = f(;m) £w. If g is discontinuous

at xj then, by the above theorem, x:1 € M . This completes the proof.
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COROLLARY 4.4-2: If Fm £(P), (x , x ) €P, f(x, x ) # 0o and

f is discontinuous at ;m, then x €m.

Proof: Under the given assumptions, (;m’ xm) is a point of discon~
tinuity of f, so0, by corollary 4.4-2, either x €M or gly) = f(;m, ¥
is continuous in y at y = x, - The latter alternative is ruled out

by essumption, so we have x €M . This completes the proof.

CCROLLARY 4. 4-3: Let P be a set of m-tuples of numbers and

suppose F s £f(P) . Then f is continuous at every ;m €FP with

£(x ) # © and Ixil o (1=1,..., m).

The second use of P 1is as a set of real inputs (see sec. 2.3). For

example, P might be ﬂ'(m) .

Proof: Suppose ¥, f and P satisfy the hypotheses. Assume that
;m €P with f(;m) # o (and hence x, £® for all i) and

lxi| £® for i=1,.,., m ., Define ;m by
Yi(‘) = xi(c) Fl
RY, (¢) = max(®(s), RX (¢)) ,

for 1 =1,..., m and all €, where &€) is the smallest positive
number in R{e) . Then each y; 18 a real input and ;m €P ., From
theorem 4.4-1, we know that f cannot be discontinuous at ;m’ and

hence not at ;m . This completes the proof.
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4.5 e-Convergence and t-Continuity: Over Intervals

For simplicity, we consider oren intervals. ILetl ola, bY denote
[
the open interval between a and b{a, b € R} . Define the open

¢-interval between a and b, 6(e; 2, t), by

®(c; a, by = {v: Y €R(e) " o(a, D), ¥ ;ée g, Y;ée b}

For Y € R{c), the decisicu Y € &(e; a, b) is effective, given real

inputs a and b, and we have

6(e; a, b) C ofa, b} for s11 e ,

(h.5-1) ,
U ®&e.; a, ) = ola, ) M

i
i>1

We say f converges cver oia, b) precisely when f converges

at all x € o(a, b) . Otherwise, we say f diverges in o(a, b} .

DEFINITION 4.5-1: We say ¥ _e-converges over ®{e; &, b) preciseiv

when ¥ e-converges at ali x € ®(e; a, b} . Otherwise we say

—

¥ e-diverges in_ ®&(e; 3, b)

We sa f is continuous over ofla, b precisely wnea f is contirnuocus
N2

at a1l x € ola, b) . Ctherwise we say f is discontinuous in o{a, b) ,

DEFINITION 4.5-2: We say ¥ is e-continusus over @{c, a, &)

precisely when % is _e-continuzus ab 8il x € ©(e; &, ) .

Otherwise we say ¥_ is e-discontinudus in  6(€; s, b) . We say

¥ is strongly e-discontinucus in ®e; 3, b) precisely when there
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is an x € &(e; a, b) such that ¥ 1is strongly e-discontinuous

at x .

We express this in operator, e¢-operator form by defining, for = #w

and b#w and f € Syim ?

Jo (f)(as b)

eenvo bool [f converges over ofa, b)]
(f)(a) b)

bool [f 1is continuous over ofa, b)] ,

bccnto

and defining, for a #t w and b #E w,

Qconvo(,)(s; a, b) ® (vool [¥ e-converges over ®(e; a, b)), », w) ,

Qconto(s)(s; a, b) % (vool [¥ e-continuous over ®&(e; a, o)} ,

1-bool [¥ 1is strongly e-discontinuous in ®&(e; a, b)), ®)

Since the evaluation of & (%)(e; a, b) and ¥

. 3
conto (¥)(e; &, b)

convo
involves the evaluation of §lim($) only at €-points (e; x) for
which x € R(e), the set 8  of e-functions to which ’convo and

[ ] may be applied is defined as follows. ILet So be the set

conto
of all e-functions & of two variables such that for each € and

esch x € R{(e) ,

(1) (Y € R(¢) end RF(e; x, Y) £ w] implies }1%11?(:; x, Y) = O,
and

(2) [TF(e; x, Y) # o for some Y € R{e)] implies
[ Lig TF(e; x, ye) = 0 as long as the y_'s are chosen

by any reasonable at x stopping criterion].
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In order for & and ¢ . Towork weil on FE€ 8 . F L. ieve
convo couty :

to approximate its {f wuniformiy over ofa, BY IV in 4 Sense t oo

defined. Otherwise, for examp.e, f may ccnverge over o(a, 0y,

but for each i, ¥ may eg-diverge at x for each x €6 ; 3, P, -

S(ei_l; a, b) . We would thea have

(1) x€mN ofla, ¥Y = F e-converges at x for sll suf“izi=ni.y
smail €}, =nd

{(2Y % e-diverges in ®(e; a, b} for &21 € .

DEFINITION 4.5-3: We say ¥ approximstes f uniformiy at a, b,

written ¥ as fla, b]l, preciseiy wher there is

a § > 0 sucn that
, (e
for each & <8 and every {x, y; € &(e; a, b)' we have

(l) f(x) Y) # o= Fes X, ¥y fl'e Wy ﬂlg'

(2) tip £(x, 2) #w=TR(e; x, y) £ @

et P be a set of pairs of real inputs. We say P covers
\(2) . - o, IS IS ’ . 4 N ',(5‘,
ole, b precisely when, for each pair of numbers (c, d, € ¢iz, o}
there 1s a pair X, ¥y €P with x=¢ 2and y=4d . Zet q be a

set of real inputs. We say @ covers a{a, b) (1M rrezisely wnen,

for each € and each number ¢ € ova, b) N R(c)} there is a real inp=*

x €4 with X(8) =c and RX{(8) =0 for 8 <e¢ , Define

. 2 u .
Q,O(?, £, B = {(a, b): a £ b, P covers Lla, b7, F& tia, v}

? -
£f{x, y) # o for [x, y; € 3(s, 'D‘)\L‘), Q’im(g’ t, )Y covers ofs, o im

8e
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THEOREM b4.5-1: We have

(Qconvo’ Qo) ~ bconvo(so) ’
(.conto) Qo) ~ bconto(so) .

Proof: Suppose Fw f(P), ¥€ 5  and (a, b) €Q (¥, £, P) . Tren
corollary 4.4-2 and the fact that f(x, y) £ o for (x, y) € ols, b)(z)
imply that f converges over o{(a, b) - M . Suppose f converges
over the rest of of(a, b) . Then there is a & > 0 such that, for
each € <& and every (x, y) € &¢; a, b)(e), none of F, RF and
TF equals w at (e; x, ¥) . This means that ¥ ¢-converges over

&e; a, b) for alli e <& and so0

(5.5-2) 1 # . nyo(F)(Es 2, B) = (6 (£)(a, b), ©, @) .

convo

On the other hand, suppose there is an X, € &a, b) NM such that

f diverges at x . For all sufficiently small ¢, x € &c; a, b)

and TF(e; X y) = for all y . This means that ¥ e-diverges

in &(e; a, b) for all sufficiently small €, egain implying (4.5-2).
Consider continuity. Corollary 4.h-2 implies that f is con-

tinuous over o{a, b) - M. Suppose f 1is continuous over of(a, b) N M

also. By the uniformity assumption, for all ¢ < 8 we have

¥(e; x, x) £, 0 LIy ¥e; x, y) £, @ and F(e; x, x) =,

wi(c; x, y) for all x € &¢; a, b), i.e., that ¥ is e-continuous

over ©(¢; a, b) . This implies

(h.5-3) iy (8, (F)(e5 @, )y =B . (f)(a, b)

conto
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On the other hand, suppose there is an x_ € ola, b)Y N M such that f
is discontinuous at x_ . This x = is In &{e; a, b) for all suf-
ficlently small &t . By theorem 4,3-1, ¥ is e-discontinuous at X
for all sufficiently small & . Thus ¥ is e-discontinuous in
&(e; a, b) for all sufficiently small e, again yielding (L4.5-3).
This completes the proof.

It 1s not difficult to generalize this to half closed and closed
intervals, and to a definition of "¥ e-converges for % € &c; a, b)

1"

at ;m-l and "¥ is e-continuous for meG(e; a, b) at x_ ,"

m-1
for ¥ of m+ 1 wvariables.
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REMARKS: 1In the "e-calculus of stable e-functiors” mentioned in the
remarks at the end of chapter 2, an e-limit e-operater cuuld be defined
by using & particular, reasonable at any x f w, stopping criterion

to define
8 n(F)es x) = ¥les x, v )
Q. (F, £, P) = {x: 1im f(x, y) #f w= F is stable &t x} .
<m ¥= X ’

However, it would not be possible to define "e-comparison” relations,
<s and =7 satisfying theorem 4.2-1. It would nct be possible to
define "e-convergence" for reasons mentiorned in section 2.5. Due to
the lack of "e-comparison” and “e-convergence", it would not be
possible to define '"g-ccntinuity' either. A better name for this
"e-calculus" would be "a model of scientific computation" because the
model would still be strong enough to do basic computation, but the
reliability of results would have to be checked outside of the mcdel,
by physical tests or by an error analysis.

It is interesting that theorem 4.4-1 would no longer hold in this
model. When "F o £(P)", any ;m € P could be a point of discontinuity
of f, provided P dces not contain all "real inputs" ;m equal in
value to §Q or P does not contain a neighborhocd of ;m . However,
we would have

THEOREM: Suppose I;j.+; I (m > 1) are intervals contained

m

in R. Let I =3I x..xI . Suppose "Fp £(I}" and f(xm)

is finite for x € I . Then f is continuous in I .
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The second use of I is as & set of m-tuples of "real inputs’, under
the convention in section 2.3. By continuous in I we mea&n COnTLif «0.S

with respect to limits taken from the intericor cf I .

Proof: For simplicity, we consider only the case m = 1 . Let yl,ya,,J“

be arbitrary numbers in I epproaching x € I . Let 2, be & "real

input" with 2, =¥ Let “1 be the largest value of T such thar
Izl(e) - yl‘ <1 for e<1T and |F(R; zl) - f(yl)| <1 . Suppise F

uses only Zl(sl), Zl(ez),..., Zl(Yl) in evaluating F(N; 2 {see

hY
1/
sec. 2.4). For 1 =2, 3,... define z,5 ni and v, as fcllows.

{¢; for

" . ” - Fe )
Let 2 be a "real input” with z, =y, and Zige) = Zl_

1

Y <e . Let “i be the largest value of 1 such that

i-1
N<Y, 10 |Zi(e) - yil <i/i for €<M, and |F(M; zi}‘ . f'(yl)\ < 1/3
Suppose F uses only Zi(el), Zi(ee),-.., zl(vi) in evaluating

F(N;5 z,) . Note that v, €T, <YV, ; - Define W' & ->Mm ty Wle -2

where i 1is such that Ni41 <e<Tmy {or, if M, e then i - Iy

For M;,, <e <M, we have

A

[wie) - x| = {2, (e) - x| < {z;(e) - w,| + 1y, - x|

IA

i+ |y, - x| .

As ¢ -0 we have |yl—x| -0 and so |W(e) - x| -0 . Hence

wEW is a "real input” with value x . We have

beGx) - £(y,))

A

[£(x) - Fings 20] + [FON;5 2,0 - £y 0]

A

| £(x) - le; zi)\ + 1/
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But Zi(e) =W(e) for e> Yi» 80 F('ni; zi) = F(ni; w), yielding
[£(x) - £yl < 1e(x) - F(ngs Wil +1/1

Ae i -»® ye have N; =0, yielding f(yi) - f(x) . This completes

the proof.
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Chapter 5: More t&-Uperat.urs

- . . U o o
Our finai tasks are tc define €-derivative, I&\ﬁﬁ» £-irtegrat,
IDt(S), and to prove the tundamental %heorem of tlie ¢=-calculis,

egsentially that
Jot(E() (65w, 1Y = Fle, v} - FHey w)

where "-" here denotes €te-subiraction of e-iunciions, and 1s defined

below, OQur definitions will be based on

d ) . . R
af(x} = ;7_3%1 (£(x) - f(y}:/kx-y) y
n
b _ bea . \b—a
J° t(t)at - Lig, == Z: £la + P .
a =
For this, we willi need e-operators for g-sritometic (Q*, Q_,".‘\ 5
g-limit (Q ), €-composition (8" )}, and ¢-recursion (¢ _
— comp . —— rec
It is interesting tc¢ note that all these ¢-operators excep® i,im wii’

work in a fixed precision; i.e., when &(¥)(€; xm) is being evilu:ites,
only vaiues of ¥ at points [¢; ym) are reguireda ty & . If we
were to define Qlim in terms of the S.7, oy sectiir 3.4, iner
Qlim would have this property also. We will alsz need twe injut
. : ‘fn P m : : . " . -

e-functions, 3 ard Ck) the identity and the constant - -Tunctios
As mentioned earlier {se¢ sec. 2.7}, we will only be atle ‘.. zive
partial definitions of these ¢-uperalurs dDecause we have 1O dubomutic
procedure for generating stably convergen* truncation-error bounde,
probably nc such procedure exists. {However, it may be passiblc o

enerate such bounds from a cefiniticn ot the ideal functic: cxpregsed
T
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in terms of the operators and initial functions of this charter; this
is a wortnwnile research project.! We will assume truncation-error
bounds to be given; for completeness, unspecified truncationeerror
bounds may be taken to be identically @ . The roundoff-error bounds
which we generate will be of the per step variety (as seen in interval
analysis). Such bounds are notoriously inefficient in real situaticns.
If vetter bounds are avaiiable, they can be used in place of our auto-
matically generated bounds. (It may be possible to automatically im-
prove such automatically generated bounds if we are given a definition
of the ideal function under consideration in terme of the operators
and initial functions of this chapter.)

For the following sections, we need definition b.1-1 for TF of

m+ 1>2 variables (it was stated for TF of 2 variables).

DEFINITICN 5-1: Suppose ¥ s f(P) . We say TF is stably conver-

gent 8t ;; relative to £ (m > 1) precisely when

Mo (g, v) Ao= g TF(e; X, v ) =0 ,
m

as long as the yc's are chosen by a reasonable at x  stopping

criterion. We always say TF of one variable are stably convergent

at ;O relative to f .
We wili use the notation,

TF ;m(f) or TF § P(f) ,

3



to dencte that TF is staebly convergent at ;w’ or at all ;m €r,
relative to f .
In the following, we wili reed tne mapping, V: e

given by

Vi(a, b, ¢;] = (a, L, .
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5.1 Identity e-Functions

For 1<Jj<m and x, Fwl{i=1,..., m), define the identity

(ideal) functions of m variables by

iM% ) = x
im 37

For 1< J<m, define
J?(e; ;m) e (Xj<€)) ij(c)’ TI';(£; ;m)) »

as long s no X, =g W, where 'I‘It“].1 is to be defined. Of enurse
TI; is identically w . For 1< j<m, TI?(E; ;m) = 0 so long as

n
= . > i
no x; = ® For m > 2, define TIm by

m oA mA M A .-
+R + ‘I Iml)(ea xm) .

TI,(e; xm) = (RIm-l “m m-1

m
m
Proof: The only thing requiring proof is that TI:(m >2) is stably

convergent. But this follows immedistely from “heorem 2.8-1, completing

the proof.
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5.2 Constant e-Functions

For any real input k  define the ccnstant Xk  ideal funcilon

of m veriables (m >1) by

r B
™|

Ly

ke
E]

. . no
so long as no xi =wn ., Define e€-functions (.'5k oy

2 . 2 N
ck(e; x,) = (Il(s; k, X7, P.Il(e; LIAE SO¥ @)
m - i+ 2 N oy ~
Ck(s; X, = J‘i *r; k, xmﬁ for m>2 .

. m mo(my, Al m(melt, m
THEOREM_5.2-1: Cp~ o (R7/) and TC_ ! R (c,)

This follows immediately from theorem 5.1-1.



5.3 eeArithmetic

For * being -, -, X, 7, define uperators f, by
! 6 b __ e - N
Lo lt, @)x ) = £lx ) *alx ) (m22) .

We define e¢~-operators corresponding tc these by first defining
e=arithmetic for machine numbers and corresponding E-aritnmetic
roandoff-error bounds.

t-Arithmetic subroutines, FI, for * being +, -, X, ¥, are

subrzitines of two variables which approximate ideal arithmetic. et
Ne(a) be the €-neighborhood of a € g, as defined in section 2.8.

The FL, must satisfy

(1) for x4 w and y# o, FLole; x, y) = Fole; X(e), v(e)),
and

(2) for any a, b € R(e}, PL (e; a, b) is in Nt{a *1v) .

For example, the rounding subroutines A of section 2.8 satisfy

*
2

these. Condition (1) states that the FL, do not use the inputted

error buunds. Condition {2) requires that, when Fi, operates at

e-precision on members of R{e), 1t must get an answer within two

machine numbers from the correct answer, unless the correct answer

18 in {- o, », @}, in which case F., must get the correct answer.
Lefine 3 function, w: {{(¢, X): € € &, X finite and 1n R{e)} - M,

by

wie, X) = max(|X - Yl|, |x - Yei) )

vhere Y, 18 the second member of R(e) bvelow %X (or the tirst below

X if tnere is only cne) and Y, is the second member of fe) - {w)
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above X (or the first above
(e
X€R(E), et |x! denote

error bounds, RFL*, for the

X if there is cnly one). For
|x 2 o] and |Xx| dencte |X o ¢f Jefli
L
FL*, by

(5-3-1) R, (e5 x, y) = (RX T RY)(e)
™ A AT A ~ ~ .
(5.3-2) Re (65 x5 y) = (X[ X RY = |¥| X RX * RXX RY)e)
w ift (Y] g rRY)(e} <O ,
A4
(5-3-3) R, (e5 % ¥) =
AN A ~ ~ RN
((Re X x| + Y| *+ RX) + (|¥| o RE e
- A4

@

(5.3-4) RFL, (&5 x, y) =j

We define ¢-arithmetic
f‘
as follows. Let Sarith

of m>1 varlables. When ¥~ f(?) , let f(;m) dezo%e (as well s

its numeric value) the poor

% €8

€Syritn 208 Fpm 1(P,) .

il

vie, (%) (e; %))

be the set of pairs of

otherwise,

if FL(€; x, ¥y) = ® or BX{e) = w

RY(g) = » or [FL,

o)
"

and

Lw(e, FL (e, %, ¥)) 2 R (e; x, y) othorvise

E-operators from the FL, and R¥T,

e-functicns  besh

Define

(FL,, R¥e,){e; fl(:?m), fe(;m)) .
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For m > 2 , we assume the third part of Q*(EQ) to be given. We will
abbreviate f,(f, g) by f*g and ¥,.(¥, &) by F*&. Also, we let -F

denote Cg - % . Define

Q (527 f2’

arith Py)=p NP, .

THEOREM 5.5-1: For * being +, -, X, + , we have

(005 Qrign) ™ PalSqpign) -

Proof: It suffices to prove thct, for each ¢ 2nd any real inputs

x and y ,

(5.3-5) RFL,(e; x, ¥) > |[FL(e; x, y) - (x * y)| ,
and that
(5.3-6) x*yfo » TORL G ) =0 .

Let €, x and y be given. If RX(e) or RY(s) is « or

FL,(¢; x, y) =w or [FL(e; x, y) = +o and = <, x <, and

- < ¥ < ] then (5.3-5) holds because RFL (e¢; x, y) =w . If

RX(¢) and RY(e) are finite, |x|=w or |y|-e, and

FL,(¢; x, ¥) = + » then FL,(e; x, y) = X(e) * Y(e) = x ¥y by
conditicns (1) and (2) cn the FL, ; in this case (5.3-5) reduces %o

0 > 0, which is true. Suppose FL,(e; x, y) , RX(¢) and RY(e) are
finite. Then either x, y and x * y are finite or x ¥y ®#x + o = 0,

By the triangle inequality, we have

(5.3-7)  [FL(e5 x, ¥) - (x * ¥)| < IFn,(e5 x, ¥) - (k(e) * ¥(e))| +
[2(e) * Y(e) - (x * y)| .
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By conditicns (1) and (2) on FIL, , we have
IFL, (e x, ¥) - (x(e) * ¥(e))| < w(e, FL(e; %, ¥)) .
For the second term on the right side of (5.3-7), we have
[xCe) + ¥(e) - (x + ¥)} < Rx(e) + Ri(e) < Ri(z; X, ¥)

Ix(e) x v(e) - x x y| < |X(e) x ¥(e) - X(e) x y| + {X(e) x y - x x y|

< |xCe)] x RY(e) + RX(e) x Iyl <R (e5 x, v) .

If ¥ is + @nd |y| = » then the above assumptions imply that x

is finite and x + y = 0 ; in this case, Ré(e; X, ¥) 1is either

@+ o =w or it is (scme finite number) + w = 0 , taking the latier
value for all sufficiently smali g , so (5.3-5) holds in this cese.

Suppose y 1is finite, Then

X(e) = Y(e) - x + y] = |{y x X(e) + ¥(g) - x) + y|

Iy - ¥(e)) x X(e) * ¥(e) + X{e) - x| * |yl

(Ry(e) x |x{e) *+ v(e)| + Rx(e)) ¥ |y| < B _(e; x, y) .

IA

Thus {5.3-5) holds in all cases.,

As in thecrem 2.8-1, it follows +hat, for x *y £ ® ,

lim
e-0

1}

FL*(E§ X, ) x*y ,

(5.3-8)

x ¥ y Jor all sufficientiy

i

Ix * y| = == [F(e; x, y)
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This impiles that, for x * y being finite,

lim

eC wle, FL (e; x, y)) =0 .

For such x ¥ y , 1t foiiows from theorem 2,8-1 that

lim

e__’O R*(c; x’ Y) =0 »

and (5.3-6) foilcws., When |x *# y| = , (5.3-6) follows frem (5.3-4)
and (5.3-8)., This completes the procf.

We say that f is raticnal if it can be defined from the i"
and c: by a finite number of arithmetic operations. We say thas
$ is rational if it can be defined from the &, and €] by a finite

J

number of e-arithmetic eg-operations.

COROZIARY 5.3-1: ILet ¥ be the rational e-function whose definiticn

corresponds to that of the raticnal functicn f . Then

% w £(X™)y

This fcllows from theorems 5.1-1, 5.2-1 a 2 5.3-1 by 2 simpZe induc*t: on

argument, wnich we omit. For example, this means that

, z 2y . I o .
s = \Ji + Cl (Jg + cl)) ; (Jf J;) curresponds o the f c*
%2

example 3.1-2 cver
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5,4 e¢-Limit
Here we generalize the definiticns of seciion 4,1, Iet sl*m
be the set of all ideal functions ¢f 2,3,... variabies. Define an

operator plim over 8., by

B9 - yj;i;;‘mfcimm :
Assume a A(*) as in section #.1 and an effective, reasonable ai any
x # w , stopping criterion, §.C., have been given. Let Slim e
the set of all e-functions of 2,%,... variables such that if
F e 8im then for each ;h € R(m) and each €

- b T -
(1) [Y€R(e) ana RF(e; X, Y) / @] implies ei%RF(e; x5 ¥) =0,

and

(2) [7F{e; ;ﬁ’ YY) £ w for some YER(e)) implies

lim - .
[c-+OTF(£; X ) yc) = 0, as long as the y_'s are cnosen by

8 reasonable at X stopping cri%erion] .

Define Qlim by

DEFINITION 5.u-i: Ist %€8,, . X

and € D»2e given. Le%
m—- — —-—-u

Y. V¥, 5--. dencte the vaives selacied by S5.C. for TF and
&y f2
x . If TF(¢; X ye) =w , define
) { s % =
(5.4-1) V[§Lim‘3)<t’ Am)} (s w) .
Otherwise, let ® be the largest member ¢ € such that & < e

and TF(5; X s yB) <Me) . If KF(v; ;m’ ys) = w , appiy (5.4-1),
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Otherwise let j Dbe the smsllest integer such that cj <8

.z (e . =
and RF(;J., x ¥s) S A(e) . Suppose F\EJ, X ya) is

QR(J«” k, )>> . Let ﬂe(~) be aa(‘j, k, *) . Define
vie, F)(esx )] = (2e8,), 2 K ale) T [He,p) 2 Te BN .

For m > 2 we assume the third part of Qlim(.'r') +5 be given. Iefine

Uim PY

Qi (F,1,P) = [;m : {';?m} x (MmN {sume neighbornocd of x } <P

im
and TF | Em(f)} .

Theorem L4,1-1 generalizes immediately to

THEOREM 5.4-1: We have

(8 im Ugn) ™ OyypfSiay) -
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5.5 ¢=Composition

n -
For n=1,2,..., let Scomp be the set of ali (n+l) - *uples

(f, Zn), of ideal functions, where f takes n variables and each

8y takes m variables {some m 2 1) . Define a composition operator

n n
bcomp over Scomp by

BB BDG) = 2(g,(5))

We abbreviate brclomp(f, En) by f(g_'n) . (In context, it will be zlear

whether the g, are functions or varisbles.) We will alsoc use

— — N . . n -
p.(£, g)g,) or (f+g)(g ) interchangeably with bcomp(f tee),
etc.

For the present, let gi(;m) denote (together with its numeric

value) the poor real input, (Gi(- ;;m) s RGi(- ;;m)) . Define

V['?omp(% j’n)(t?;m)] E V[F(e; gn(;":m));| ’

Let s’c‘omp be the set of all (n + 1) - tuples (%, 3), of

. - - - - n
e-functicns such that (%, Jn) w (T, gn)(P, Pn) for some (f, gn)é Scomp

and some P, Fn , and such that the computation of ¥(e ;gn(;m)) via
the determiners of ¥ and Jn halts for any real inputs ;m (see

section 2,4). We assume the third part of &> (%, jn) to be given.

comp
. n = - n
We will abbreviate Qcomp(,’ Jn) by 3‘(Jn) . Define Qcomp by
n - = ~ = n =
Qcomp(y, Jn, £,8,P P)={x :x€ n P, and g (x ) €P}

i=1

(Note that gn(;m) again denctes poor reel inputs, as explained above.

And gnGm) cannot be in P unless each gi(;m) is a real input.)
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THEOREM 5.5-1: We have

(.n F] Qn ) ~pn (sﬂ ) .

comp comp comp ™ comp
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5.6 g=Recursion

We are interested in the follicwing form of recursicn., Let
80280 and h be given ideal functions of m, m and m. variables

(m > 1} . We define f by recursion as follcws:

(5.6-1) f(xm) = go(xm) if x <1
h(;m,f(;m_l,xm-l)) otherwise .

We put this in operator form by defining

prec(gw)go,h) =f ,

where f is as in (5.6-1), and defining Srec to be the correspcrd.ng
set of (ga,go,h) . The following example illustrates itne use of th:s

recursion, The cperators of this example will be used iater.

EXAMPIE 5.6-1: Define the operators o, and o, over the §..

+ m

of section 5.4 by

(x -1]

o, (e)(x ) = _Z glx % -1)
i=0
[x -1

o (g)(x ) = a elx ,x -i)

where the empty sum is defined to be Cg(;m) » the empty product is

me= & bt m+l
c-(x ) , and 2: and N are =w. Let g, be ¢ and g
wm K . + C X
i=0 i=0
o
be c? . . For * being + and X , we have
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m+ 2

¢ omEL .
' g*’g(‘m+l

‘e }‘ .ﬂ"r\‘_m ‘l-‘-\‘
rec’ w

PR B
e & i

c,ig) =4p

Betn 9, &na ¢ will be used in section 5.7, wiere we ael.ne ..

. X :
c-functivn which correspends tc e Jver R .

let & ,b N be given, and define the r part % ® k".&m,,g},n)

_— — e
. . m M t 14 -
by 1etting & denote N(&m, “.r’(_&“, oy Jg - €YY and ey.atiag
“ L=l 1 L .

4

(.. o p m - -
G lesx ) if & (ewx ) ==

<o . M =y
3X if d.e.x ;< 1
O\.E’ m) m\E, m/ €

- = ) ( m . My, = \ i, _-
u.(:,xm) if (3 Cl) e5x,) <, J;\s,xm)

w otnerwise .

The third test is needed because it can happen that J:;(-:,; V<

m
but (J:: - c’.i‘ - cr]r: - e - CT)(;;;m) f.t 1 no matter how many c‘.i‘ 's
are g-subtracted from J: . Thus the evaluation of F(e,;m) vis
(5.6-2Y with the third test replaced by 'otherwise" (and %he fourth
alternative removed) wouid not halt for certain e and S?m . However,
evaluation °f F(t;?m) via (5.6-2) will aiways hal+,

Fur the following definition of RF , We wilil need an g-compariscn
operator, < . We want s(;;?m) < :r(g;_?n) %o hold wnen. based suly on

information given by 3(;;;(“) and T(u?n) , s(;ﬂ,\ must be < t’fu\, .

DEFINITION 5.6-1° igt x and y be puor real inputs. Zeiine

xS,y to be true (and x £ y tc be Taise) precisely when
s ¢ be true and . Xc be

X(e) < ¥{e} , RX(e) and RY(e) are finite, and
[x(e) o vled| > rule) ¥ pY(e) .

- 8
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We adopt the conventicn in section 4.2 concerning the use of triples,
a3 s with Sc .
Define the subroutine ER by

(5.6-3) ER(esx ) = (R, ¥ 86, F [6, 20, Nesx) -

ER bounds the errcr caused by using G in piace of &, tor

J
(j)k) € {(O)O)’ (013): (1,0), (l,l)] . RF is defined by

' RO (e5%,) 1if o<, fleX)
RGo(e;J-:m) if 3:(:;;,“) < 1
RG,(e3%,) if 1< Slesx ) and
(5.6-4)  RE(es ;m) i ﬁ (Jmm - CT\(E;;m) < u:(e,n_cm)

- . m - ¢ -
ER(esx ) if (& - e7Mesx ) < Siesx

w otherwise .

As usua., we assume TF to be given. ILet Nm be given by

N =% : is a positive i : ‘
n 1xm Xn positive integer and no %y

i
3
—

If m=1, 1et S & EO} 3 otherwise let S be some subset ¥ F
et T=8 % (R - {»}) , where {;O} X P is defined to be i , fur

any set P .
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For P. 238 x !'®} and F, =T defire Q_ _ bty
i < Teo
'Sx?—Nn it 7,5(7'-N"\x5
1 - W
S x R o2, =T xR oand g (x 7).
3 DRI A
7 - -
~ =y n{x_ .,L,y) for any x .& and
Qrec(jj’g},’P}) = 1 m-¢’ Y Mo~
any ¥ £ o
| i cthorwise .
For P. and P. not of this furm, et ve [},
1 z TeC
Let S be t of all F, a1, (P for some T, € 2
L rec he se Py j( 35) » for some 1y rou
and some P, , such that the computation of & (F ) e;x ) via 4ie
3 rec' % m
determiners of -9'-_5 nalts for any real inputs X {see sechion “u0 Y.

THEOREM 5.6-2: We have

]

f
““rec’ Qrec) ~pre:: Sre )

<

Procf: Suppose T =35 x (R - {=}) , ¥ g (S x fw)) ¥~ gol."l) s

% m h{(T~ Nm) X R) (JQ,JO,Q’) €3 . end (gm,g,yh) €s... -

et £ =p

N o \ [
rec BuiBooh) and F =@ (8,8 N} . Suppose

X R - Y P £ C - 7 Y = (%

X, €s xR N and f(xm, Fw . If x, <1 then *'xm) go\xm)

and V{?(s‘,;m)] = V[&O(e;'im)'_l for all sufficiently small e , yielding
TP 3 - @ then M%) - g (3 5

convergence. If > = ® *hen ,(xm) gm\.r.m) and

V[?(e;;m)} = V[Jw(a;;m)J for all zuificiently awall € » agaio y.olding

convergence, Suppose 1 < ¥ @ Let Jx and jx be given by
m m



X m 1 ) 1
e Y a————
[x -]
m

m T m
Jx 'V(J:nn-l’ S s "C(‘g;:‘.-l’ I - cl))
m m m

Fer all sufficiently small € we have

3 (esx My, =
xm(e’ m) ﬁc 1, (Jxm - cl)(z;xm) <£ 1y,

and so

(5.6-5)  V{F(e3x )] svin(d, V(& L, & - c:;‘, cee F M)

m m-1? “m
h

We alsc have
- X ) = nlx prs - W - Ty -
(5.6-6) f\xm) h(xm, h(xm_l, X =liees H(‘\m-l’ % (% 1],

ifs

= _ f.
go(:xm_l, X, “‘m])) U ) B

Successive applications ¢f corollary 5.3-1 and theorem 5.5-1, working
from the inside %o the cutside on (5.6—5), give us convergence.
In addition %c the atove hypotheses, suipose ¥ & h{T x B) =znd

go(xm_l,l) = h(xm_l,l,y) for any x_ o €€ and any y Fao . From

-

the above, we have F s £{S X R - Nrr) - Suppose x €5 x B AN

and f(?ﬁ) £ @ . Derine ¥ vy
m

J;(!T(e;;m) = {me(c;§m), EP(E;}M__I,Z),L») for all ¢ =2nd¢ ¥y
s {3

where z is the real impub (Ix (- ;-'.;

SDRL (e3y)) . (Wnew V. s

_ m m
X, the value of z is 1 .) Eeuetions (5.6-5) and (5.6-6) vaors
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(5.6-1)  ViF(e;x )] = vIv(S L n(S . I - el & e Dlesy))

(5.6-8) f(;m) = h(;m, B(X__ys X =lsee- h(§m_1, 1, gO(Sc'm_l, oN...»
If X, = 1, these last equations are

VIF(e:x, )] sv{-'r;(m(e;;mn ,

£(x,_y» 1) = nlx 5 1, gy(x, 45 0))

and z is Just X - In general, we have

L]
¥

. -
(R ¥ 86y + log 26y Dlesxy yo2) 5

ER(e;X, 15 2)

Gl g ) = (s 8 (e,

Gy (e3x 4, 2) = me(tﬁm) )

Ry (e5x o, 2) = Rme(cﬁm) ;

go(xm_l) Z) = go(xm_lJ l) ?
g (x5 2) =hGx 1, 1, 8(x 1, 0)) = gy(x _;, 1) ,

the last equality following from our additional aypotheses, Further,

by theorem 5.5-1 and corollary 5.3-1, we have
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lim

t-%OGO(E;xm—l’ z) = 8O(xm-l" 1

lim s _ -
Q")OGl(t’xm-l, Z) - go(xm_l} l) H

iim ., = _
s-—)OH"l(E’xm-l’z) =0 .

lim = _
C"')ORGO(E’xm'l’Z) -
By this and theorem 2.8-1, we have

lim

( '- =
e__)oER‘z,xm_l,z) 0 .

From this and (5.6-7) and (5.6-8), it follows that

1lim TY = - |
—0 V[?(s,xm)J = (f(xm), o) .
This completes the proof.

m+l m+l
0 1
of wtl variables. For * being + and x , define

Let Jv+ be € and "x be C et & be an e-funection

m+1 2 m+2y
T (H) =8 (7, &, M) * NS, £,

sxF-nN_ if PESx('ﬁ’-Nl-lei)(z)

qum(-j';g, P) = .
otherwise .

%
Let S, be the set of all & of m+l = 2,5.... variables such
that the computation of Z*(J)(e;;m) via the determiner ¢f ¥ halis

for any real inputs ;m .
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COROLIARY 5.6-1: For * being + and x , we have

(z*'qsum) L U*( s:um) .

Proof: Suppese & g(s x (K - N - lm})(e)) . Then
HIW2) w52 L g(1™2) % ™5 w (- w - (1) B X ) mne

theorems 5.6-1 and 5.5-1 yield E,.(d) n o, (g)(5 x § - Nm) . This

completes the proof.
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5.7 An e-Functicn Corresponding tc e Over ¥

First we mention that e = w ’ e® =2 and € = . let

f xp(x) = e as in secticn 2.6, Define two basic g-tnchisns,

® and @, by

(5.7-1) P =g (e))

(5.7-2) a=4¢_ (¢}, e £, £ -
By corollary 5.6-1, P a och)(R’ - Nl) ; p = a+(c§) is essentially

an entier for positive reals, because

w if x=-w, »
(5.7-3) plx) = { o if x<i

{x] otherwise .

By theorem 5.6-1, Qs a(R) , where alx) = |x| . We use @ and @

to define ¥ as follows:
exp

(5.7-4) 7= (a’{ * P(«sﬁ)) ’

(5.75)  F=rin(&, £, £ - -a), &),

(5.7-6) y=u_ (el v (N, ey, 8, ((E, ),
(5.7-7) Fexp = TreclCar HEy - &), €5+ KT - €D + ) .

N .
T forms terms, xn'l/(n-l).' . % forms sums, Zl(-lxpn"‘/(n-l).' .
n=
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& checks for x = -» , to insure that 3exp(e;-°°) = 0 , and otherwise
w

it approximates Z(-|x|)n/n.' . 3exp checks for X = o , “c insure
n=0

that ¥ (e;©) = » , and otherwise it compuites HMeix) and

P
reciprocates this value when x > O . The only essential part of this
definition that is missing is & definition of the TF part of %,
because TF is the onliy truncaticn-error bound used here. i1n the
following discussion, we will define TF and use our previovs theorems
to prove that yexp ~ fexp(m‘ The only nontrivial part of this
development is the definition of a statly convergent TF .

Theorems 5.1-1, 5.5-1 und 5.3-1 yield that

Jl{ +P(J,l:) ~ i;_' + p(it)(R()‘) - Nh) . This and corollary 5.6-1 imply

that T o t(ﬁ(B) - N3) , where

w if x=w,m=w, or n2w=
t(x,m,n) = { 1 if n<1

x[n]/[n].‘ otherwise .

Thus ¥ as f(RG) - N3) s where f 1is defined in section 2.6. For the
next steo, we need the TF part of ¥ . We could define TF from

hp A 'J(-O(«%), JZ, .‘g) without making use of any special properties
of (R, &) , but a considerable derivation is required ‘o insure that
the resulting TF is stably convergent at all (x, ®) with x finite.
For simplicity, we instead skeich a definition of TF for the case
where (R, €) isa floating-point number system and g~arithmetic
satisfies the usual relations needed for an error analysis in the

styie of Wilkinson [W2] . We work from the tf of section 2.6. Let
a finite x ©be given and let
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Y = v(e) = (X(e)| % mx(e)) T ((1ze) % (1ze) x (23e))

For integers n >Y let flE(Yn/nJ) denote the product
Y x (¥/2) x (¥/3) x ... x (¥/m) evaluated in floating-poin%
ge-arithmetic, where m is the largest integer with Y <m < n such
that overflow and underflow do not occur (or m is w« , if there is
no such integer). Using this m instead of n is two-thirds of the
trick needed to define TF for an arbitrary (R, £) . Assume %hat
the value I wused in place of i in (Y/i) satisfies I = i x (1+ni(e)) R
where |ni(;)\ <¢ . Then for some \n3(5)| <e (J1,..., 3m) ,
we have
n m S
£1 (Y /nd) = (Y /m!) x T (1 +7Mie))
€ _ J
1
3m (1+0(e))

(ClxCe)| + mx(e))m) x 1
(e} + Ri(e))/m!) x =1 (e

v

v

|x‘m/m: .
Further, we have

lim Ny 44 _ ns
om0 fle(Y /n!) = |x|%n! ,

so we define

fle(Yn/nJ) if k=o and |x|l+1< y< «
TF(e;x%,k,y) =
w otherwise ,

wnere n is the largest integer <e ¥ . We prove that TF 1is stably

convergent at {(x, ®) for finite x as follows. iet Ve s Vg sene
1 z
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satisfy v, € R(e) - (o} @and iﬂg y, = - For some ‘1\3(5)‘ < 2

we have

.
Y(e) = (Jx(e)] + RX(e))(2-6) x T (1 + 7"(e))
J=1

TF(e3x,2,5,) < ((IX(e)] + RR(eD(EEP (@ + 26))\

for all sufficiently small € . As ¢ -0, m —® and the right side
above goes to O . Thus TF is stably convergent at all (x, =)
with x finite.

Thus ¥ = (F, RF, TF) isin 8, and &, (5)(3], )~

¢1m(r)(1‘;, ) (R x %#®1)y | nig and theorem 5.6-1 yield ¥ g(X),

where g 1is defined in section 2.6. This implies that Foxp ™ T () .

P exp
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REMARKS: It is easy to define initial g-functions and g-operators
analogous to those of this chapter for the '"g-calculus of stable
e-functions” discussed at the end of chapters 2 and 4. However,

our example in section 5.7 would have to be changed, because the
subtractions in I(- |x|)n/n.’ makes F unstable at (x,») . This

can be remedied by defining F in terms of gl|x|%/n! .
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Chapter . g-Derivative and e-Integral

£.1 g-Differentiabilizy and ¢-Derivative

Define a difference operator, d, over the set S o5 1deal

functions of one variable ty

o

2 2,
1 e

. .o ./.2\). .
alr) = {f) - )+ (4

We say f is different:tble at x precisely when d(f) converges

at x . Otherwise, we say f ig nondifferentiable at x . Define

a difference g-operator, i, QD), over the set SD o1 e-functicns

of one variable by

2 2
1 ‘92)

PxP.

) 20y .
D(F) = (f;(al) - 9(&2)) + (3

-

1}

Q) (F, £, P)
By theorems 5.1-1, 5.5-1 and corollary 5.3-1, we have
(Ds Q) » alSp)

DEFINITICN 6.1-1: We say ¥ is e-differentiable at x precisely

when D(F) g-converges at x . Otherwise, we say % _is

e-nondifferentiable at x .

Our previous analysis of g-convergence at x carries over immediately
to g-differentiability at x , so we will not bother to express this in
operator, e¢-operator form.

Define a derivative operator, %{ s over Sd by

S () =9, (@) .
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Let. 8 be the set of all e-functions, % , of one variable such

a/dt
. . . L \ .
. > - : - or, f(=— [ ! X
that D(F) € Slim Define an e-derivative ¢-operator, T Cajae v b

Dy = )

Qd/dtfy’ f, P)= % im (D(%), a(f), P x B).

We call %ﬁ- (F)(e; x) the e-derivative of F &t x . By theorem

Lk.1-1 we have
Gy Q) & (8, )
Dt a/dt d/at
Thus, under the usual conditions, the g¢-derivative at x of an
e-function approaches the derivative at x of its corresponding ideal
function as ¢ -0 .
It deserves mention here that there is & function, 1 , such tha:
(1) f(x) is finite for a1l x € R ,
(2) there isa Fa £(X) , and
(3) £ is nondifferentiable at every point in R .

See Grzegorczyk [Gl, pp. 199-2011.
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6.2 g-Integrability and e-Integral

Let C dencote & finite clesed interval of numbers. For £ being

& set of real inputs, we say P ccvers ( almost everywhere precisely

when C has a subset C° of Lebesgue measure zerd such that for any

c € C-C there isan x € P with x = ¢ . As is usual, we write

"g.e " for "almost everywhere." Let "over C" be implicit in the

statements "f is continuous a.e , bounded ur integrahble. From analys

we know that the bounded, Lieman integrable funcliions are precisely

those ihat are bounded and continucus a.e. {See Royden [RZ, p. 70!. 1
Suppose f is a brunded ideal function and thut F a J\P) In

order for the information conteined in the set {Fle; x): ¢ € &,

x € CN Pl to determine whether f 1is continuous a.e , P will have

to cover C a.e. {Remember that 7T gives nc information vecaise i ':

of ¥'s of one variable are =« , Similarly, the set,
{f1 Fa (P} and f is bounded} ,

will contain both integravble and ncnintegrable ideal functisns unlegs
P covers C a.e

low, suppuse we have a detinitizn of "F is g-integrable .over
wrich is based only on the values of & Then, the weakest requirement
on the size of P which might make the cunditions,

(1) F=1(Py,

{2) f is bounded, and

(3) % is e-integrable for all sufficiently small ¢ ,
equivalent ot |[f 1is integrable} is

(4) P covers C a.e

Reproduced from
best available copy




However, by theorem 4.4-1, we kncw that conditions 1, 2 and 4 by
themselves inply that f 1is integrable, i.e., that £ is continuous
everywhere in C except possibly at points in M N C , a set of
measure zero. Hence essentially the only definition of "¥ is

¢-integrable", which uses only the values of % and for which we have

(1) - (4) hold o f is integrable,

is "¥ is e-integrable precisely when 1 =1 ."

Consider basing our definition on the values of &'

58 ,
an ¢-function which may have a worthwhile truncation-error bound.
(This is reasoneble because it is only by a fluke of notation that
¥ of one variable have noc worthwhile truncation-error bound.) Then

we have the additional information given by TF' , which satisfies
F' (e; x, ¥) > |£(Y) - Sy £y -

Ageain, let us assume that f is bounded. Let z be a poor real input
such that, for each € , |Z(¢) - ¢| < RZ(e) for all c€cC .
If TF'(e; 2, 2) < ® then we will know that yliyc f(y) exists for

all c € C . And this implies that f is integrable, by

.2-1: (.
THECREM 6.2-1: Suppose f is bounded over C and ylipc £(y)

exigts for all c € C . Jhen f has at most a countable number of

discontinuities in C .

So far as we know, this is a new result.

Proof: (This was proved independently by Bill Glassmire and Paul

Rosenthal.) Define
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First we prove that g 1s continuous. Suppcge y. "¢ 38 1 " @

Fir eact : there is an x £ ¢ with

lely > - e M < Vs, dy, - x ) = v,

’ . N -
pecdise Yo tim £{x} . Tnhus
4 é\yl, x gAy‘ { 104

-

Jdam, x o= ¢, lam g(yl) = glc) .

since y1 was an aroitrary approach, thls means that g is conlinuols
1n ¢ . Next we prove that b £ f only on a countable sel. S.pp.se
n.t. We have

@

Uootx: al{x) » £{x) + vyl
n=’

{x glx) > £0x)}

n

If *this set is uncountable tnen a! lesst one of trie sets un the rignt

L o . . .
.8 uncountarle; suppose mn = {X' g.x!) > 1(x) + 1/ut  is. Then 1ts

1

members nave a c..s"er point, Xx and there 1s a seguence, X., X

0}

gan

Lrom Er and 4ppr Iaching 5 such that
1

N . N
%<XV) > !\KmW + 1/a for m=1, ,..
ak

-5 cafx ) - Y. vp
aan, elx ) = elx) —alx )+ v/n
s contradiction. S:milarly, the set {x: g{x) < f(x)} is counta:ile

Tnerefore, the set Ix: g{x) # fix)1 1s countidble This completes

‘he proof.



Thus we can define e€-integratiility as follows., For finite =
an@ b, et c[a, B] dennte the ciosed interval between a and b .

z(a, b) be a

For given, finite real inputs =% and b, let =z
poor real input such that
(1) fer each e, |z(e) - x| < RzZ(e) for all x € cla, b),

N {x: |zle.) - x| < RZ{e,)} = cla, b], and

i>1 : .

(3) z{*) and RZ(:) ere effectively computable from a and
b .

It is easy to verify thet such =z exist,

DEFINITION 6.2-1: Suppose ¥ a f(P) for some P . Let s'zs(ag
F

)

Let z = z(a, b) be as above. For finite a and b, we say T

is good relative to f, a and b precisely when [f is integrable

over cla, bl] = [TF'(e; 2z, z) <w for all suificiently small e] .

Let TF' and z = z(a, v) be as above. We put these results in

operator, e-operator fcrm by defining

8.4 = {ideal functions of one variable, bounded over of -, =)}

bint(f)(a, b) = bool [f 1is integreble over c[a, b]] ,
provided a and b are t:nite, and

{¥: F e f(?) for some f € S, &nd some P,

Sint

and computation of TF'/e; x, x) via the determiner

of TF' halts for any poor real input x (see sec, 2.4); ,
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Qiﬂt(g)(z; a, b} = (bool [TF'{e; x, 2z <wl, bool [Tk e; 2z, 2) = wl,ul,

. _a
provided - «E b <E e, and

Qint(g’ f, P) = {{a, b): TF' 1is good relative to f, a and b} .

An immediate conseguence of the above sanalysis is

THEOREM 6.2-2. We have

I \ ~ \f
802 Qoed ~ 0 sint)

Further, if f 1is integrable over cfa, b] for all

(a, b) € Qint(y, f, P}, then oint(y) is not weak, and

vice versa.

Now for the integral. Using the notation of chapter 5, we define

a partial sum and an integral operator over Sint by

Rt = (15 - 1) 5 p(y)  (m=k,5)

Lp(i) X’

-
-

-
"

n* x g, (£(t))

’

a2 2 2
blim(bpsum{*))<ll’ 12’ cm)(al b)

it p. ()a, b) =121
Jatigi(a, b) = ¢ int

w otherwise .

et
no
N



We define e€-operators for these by
e (- er(d) (=, 5,

o [ o4 L
T= Ji+9{fs'} LS 'id

k4

¥ TN X BT

Qpeun'®s T P ® Qg (XTI ), £(8), o (%, T, £, 1, F,

§‘(3) v (’ﬁ' - Nl)(Ef)) - Nk ,

e, 0 ()N, £ e s, )

lim' psum

th(S)(:; B, b) = if §int(3)(e; a, b) ® (1, 0, w)
(0, w, w) otherwise |,
Qi.nt.egra.l(:" f, P) = Q'mt(” £, P) 0

S £, £, ¢ ..,

comp' lim' psum

Sintegral = {5 Fe sint and ’psum(s) € slim} :

The theorems of chapter 5 and theorem 6.2-2 yield

THEOREM €.2-3: We have

(-r Dt, Q‘integral) ~ I dt(sintegral)

Further, [Dt{(¥) is weak if and only if & . (¥) is weak.
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£.3 The Fundamental Thecrem 5F the E-Tnlculis

Fcllowing is the e€-calzuius analog to tone tundamental lheorem

of the calculus.
THEOREM €.3-1: Fix a, b € K and assume that

(1) —d—(f) is bounded and integrable cver ca, ti, and
at A8 bounded and lntegrable cver » 2nd

{2) Fue(l 1) .

Then, for any € we have

(6.3-1) o) es o, ) = (S(L) - FEN(es 8, )

Proof; For any a

17 2 2 0s % € k(e 1let 9(35) be

{x: lal - x| < w}

o(ay)
For any e~function & of m variables and sny {v; %) we have

m

[#ws gl 1) implies g(;m) € p(e; ;m))] . This means tra‘

: 4 " I rer®
b = far((1))a, v) € pf‘rDt(-D%\Fb)(e; &, b)) ,
B = t(b) - £{a) € p{{H(S) - L5 a, 1)
The fundamental theorem nf the calcoulus tells us that A = B, yield.ug

{6.3-1). This completes the proof.
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Chapter 7: Computeble Real Functions and Completenecs

7.1 Computable Real Functions

We say that a set of real inputs FP_ covers 'R'(m) (m> 1) pre-

(m)

cisely when each value in ¥ is taken on by some member of P .

We say P covers %(0) precisely when P ={X )} . Let X, be the

class of eall ideal functions, f, such that there is a P covering

'R'(m) (m>0) and an F with F o £(P) . We say f is computable
- 1

depends on (R, €) =2nd it contains many

precisely when f € Kl . l(l
finctions with discontinuities. We will not consider )(l further.

By speclalization of an ideal function f of m> 1 variables,
let us mean the replacement of a varisﬁle by a numeric constant, yield-
ing an ideal function of m-1 variables. Let Ké be the class cf
all ideal functions f such that there is an ¥ a f(?'(m)) end F and
RF &re subroutines of m variables and no constants. Let l-(2 be

the smellest class of ideal functions containing Hé and closed under

specialization. We say f is computable,, precisely when f € X, .

If f € K, then there is en % m f(ﬁ(m)) such that F and RF are
subroutines of m variables and n > O constants. (We do no® kncw

whether the reverse is true.) As we shall see, 1‘2 is indepencdent o

(R, &) . By theorem 4,4-1, we know that any f € K, is contirucus v*

all ;m er(™ Litn f(?c'm) .

let & be as in section 2,2 and W as in 1.5. Let us say
v % Nnon give a € X precisely when
(1) for each n > 1, either a,{n) = a.(nY =3 or
= 1 2

Q.

la - 6(ay(n), ay(n))/n|l < Un ,
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(2) if a # @ then, for all sufficiently large n, either
o { .
a(n)y £3 or n)£3

For m > 1, we say C, give ;m precisely when

o Oin give xi

o
2i-1’

(i =1,2,..., m) . 'Also, ve say ao give x We say recursive

0"

operators *l’ #2 give f precisely when for any Otzm and ;méﬁ(m) R

[3-2_1; give ;m] =» “l(g)’ tg(ﬁ) give f(;m)] .

Let KB‘ be the class of all ideal functions f for which there exist
recursive operators 11, *2 which give f . Let )‘3 be the smallest

class of ideal funetions which contains K; and whicn is closed under
specialization. We say f is computable.j precisely when f € 1(3 .

This is analogous to Grzegorczyk's definition of computable continuous

reel functions of one varisble [G2] . “'5 obviously does not depend on

(R, &) and we have

THEO (d1-1: KQ 5)(3 .

Proof: We prove this by proving Ké E Kj' . Our proof is based on two

transformation functions, tl and te . Suppose Otl, 02 give a € i

and define the poor real input tl(ﬂl, 0!2) &=x by

of-) = 8@, (), &)

xle) = (e, @) ,
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® if Xe)=w ,
Rx(e) =
|f(:, a) 2 I(e, a)| othervise

If a # w then this x 1is a real input. Let y be a poor real input
and define tz(y) = (ﬁl, Ba) as follows. Let an n > 1 be given.

It RY(cn) = ® or lim sup RY(e) > 0 then define Bl(n) = ﬁe(n) =%,

Otherwise let J(n) be the smallest value of j such “hat

v
RY(ej) < I(ej, Y}n)’ vhere Y}n(k) = [k/3n] so that < Y5> = 1/3r .
Then

¥(ey0y) - ¥l < W/3n .

Suppose Y(:j(n)) is < aR(J(n), k(n), *)> and let Gn(‘) be
ua(j(n), k(n), ). If < 6n> = .® @ or o then < bn > =y ;
in this case, define ﬂl(n) = ﬁe(n) =1, 2 or 3 respectively. Supruse

< Gn > is finite. For any integer i, define

i/3 if 1= 3(i/3]
r(i) = {(i-1)/3 if 1=13[1/31+1
(i+1)/3 otherwise

Note that r(i) is.always an integer. Define
al(n) = lr(ﬁn(in))| ’
8,(n) = |r(6n(5n))| - r(8 (3n)) .

In this case we have
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Bl(n) - 3?(1'1) = I‘(an(Bﬂ)) »

ly - =(8_(3n))/n|

S ly - 1oy )+ f¥egey) - 8 (30)/30] + Y3n < Yn .

Jfn)

Thus if y 1is a real input then Bl, 32 give y . Further, if y is

a real input or if RY(*) "w then 81 and b2 are computable from

(v, RY) .
We prove )Cé = le as follows, Suppose f € Ké . Then there is
an ¥ s f(ﬁ(m)‘ such that F and RF are subroutines of no constants

{see sec. 2.4). We will construct recursive operators '1’ ¥, vhich

give f . Suppose a, give ;m . Define poor real inputs }m by

[ ]
vy ® el g o)

let f(?m) denote the poor real input (F(-; }m) , RF(*; 'im)) and

define §, and tz by
(1T, 4, (T0)) = 60250

Then '1 and '2 are recursive operators and they give f . Thus
reExX .
: 3

We prove KB' < Ké as follows. Suppose f € KB' . Then there are
recursive operators §,, ¥, giving f . We will define an . 3 f‘(ﬁ(m))
such that F and RF are subroutines of no constants, Suppose ;m

are poor real inputs. Define % by

4
CORUL M A NC
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Define F and RF by
ee 3 (e, 3 v 7
(rCe5 x ), BFO; X)) = 6, (w (o), (e 0)

and set TF ®w . Then ¥ ® (F, RF, TF) is the desired &-function.
This completes the proof.

Let X ©bve the class of all f: R — R such that there is an
'€ Ki {or Xé) with f£{x) = £'{x) for ell x € R . X is precisely
Grzegorczyk's class of computable continuous real functions [G2]. In
[G2] Grzegorczyk proves X to be equivalent to several other classes
of computable real functions which have.appeared in the literature.
In [G2, p. 192] he proves that the f € X are computably uniformly
continuous in any segment. He also constructs an f € ¥ which is not

differentiable at any point [G2, p. 199].
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7.2 Completeness

Let X* be the class of all f: R(m) =R (m >0) such that -here

- - (m) -
f(x ) for all xm€R . let XK

1 e
is an f ex3 with f(xm) n

be the class of all f: R -~ R {m>0) which can be defined exciu-

. n .n n
sively in terms of the cy, ij, bes Byr Byr Besor Boomn? Pre

comp ¢ from

chapter 5.

THEOREM 7.2-1: X* C K¥* |
In this sense, the initial functicns and operators of chapter 5 are

complete.

Proof: We only sketch the proof. The Stone-Wierstrauss theorem (see
Bishop [Bl, pp. 97, 1G0}) shows that we can construct an arbitrarily
close (in the sup norm) polynomial approximation to & continuous
function over a compact set if we are given
(1) access to any finite number of (arbitrarily close approxima-
tions to) values of the function over t:.e compact set, and
(2) the modulus of continuity of f .
Grzegorczyk [Gl, p. 192) has shown that every f € K* of one variable
has a computable modulus of continuity, and his proof generalizes tc f
of eny number of variables. Thus any f € ¥* can be written sz a

polynomial in m variables:

J J J J
-y _ 1l m, 1 m
f(xm) = 11!!; 2 e(n, Py XeeeXp ) X x. XX x &,

J

where p, denotes the it prime number, c(n, k) 1is ihe g

coefficient of the nth polynomial, the sum is taken over all 3;
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such that 0<j, <n (i =1,2,..., m}, and where the ntP polynomial
A}
approximates f over the m-dimensional square, [-n, n](m’, with 8

LY

maximum error less than 1/n . Further, we can assume that each c/n, kj
is rational. Thus, in order to show that X¥ C K** we need only show

thet X#* includes all computable rational functions, c(n, k) . But,
since division is one of the closure operations of K**, we need only

show that ¥** contains all recursive rational functions, %b(n, k) .

It is obvious tihat the initial functions.and operations, except the
effective minimum, used to define the recursive functions in {M1, p. 120-i]
can be simulated by the operators and initial functions of K#* . That the

effective minimum operator can also be simulated in this way follow from

the following:

n n n n n
& j - - =

t S + f(i 21 iy cl) for n = m+l, m2 |,

m+l mrl 2., mtl mtl

=

hemp ey "o iy e ),
B} 8 yE  a,.m

g brec(cu)’ cox h)(lm-l’ im + cl) ’

uy(£(i® mey? V)£ 0D =0, (s(lm T 1m+11)(1 Ry el .

This deserves some explanation. For 1 > j 20, if 1= j+¥l and
f(;m-l’ 3} = 0 then h(;m-l’ i, 3) = i, or otherwise h(;m-l’ i, 9" =3 .
If f(;m_l, k) =0 for k=0, 1,..., £ then g(;m_l, 1) = 141
othervise, g(;m-l’ £) 1is the least value of n such that f(;m ,nt A0,

B
-4

This completes the proof.
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Summary and Conclusiong

We have deve.oped a theory of numerical computation based on re-
cursive function theory, with a flavur of interval analiysis. This
theory concerns itself with a genersal cluass of variable-precisicn
computations and the finite-precision [or intermediate) results arising
in such computations. For example, the floating-point c¢omputaticns ot
modern digital computers are i1n tris class. QJur main goal was to form
a realistic model of such computatitns. This was done by developing the

concerts of

et

(1) & machine number system (R, &) (sec. Z.w
(2) a real input x = (X, KX) {(sec. 2.3),
(3)

(L) an e-function ¥ = (F. RF, TF) (sec. £.5), an

subroutine F {sec. 2.4},

®

Q.

(5) e-arithmetic (seé. 2.8 and 5.3).
If this model had been our only goal, we would probably tave dispensed
with roundoff-error end truncatisn-error bounds (tne RX, KF and TF
indicated above) because such bounds are usually not computed on tne
computer. (We discuss the removal of these bounds in the remarks a’
the end of chapters 2, 4 and 5.) However, our secondary gual necessituted
the incorporation of these tuunds. This secondary goal was to find ovut
how concepts from the calcuius sich as convergence, continuity, differen-
tiability and integrability apply, at each fixed level of precision,
to numericalily computed functions which, after ali, can be viewed at
a fixed precision &8 a discrete set of p.ints on a graph. Tnis secundary
goal was achieved by associaiing *he numerically computed tunction, F,

with its underlying wethematica’ {.r 18eal) functiun, f, turough tne



use of roundoff-error bounds, RF, and 4rancationeerror bounds, IF .
Thus we defined an e&-function ¥ +to be a triple 'F, FF, 1F) .

In trying to apply convergence and continuity to e-iuncriins,
we vere lead to an investigation of stopping criteria and stabiliiy
(ch. 3). Out of this came a new and simple definition of stability;
the concept of an ¢-wave, and a proof that instability can be over-
come, given the requisite error bounds.

As presented in chapters 2 and 3, the concepts of subroutine
e-function and stability are machine dependent tecause they are def'ined
in terms of a fixed machine number system. In the remarks at the end
of chapter 3, we show how these concepts can be made machine independeat.

The part of the c-calcﬁlus dealing with notions from the calculus
is of definitional interest only. For example, one may have wondered
whether there is a definition of e-continuity which satisfies the
following: for each fixed precision €&, many numerically computed
functions which lock possibly continuous at a point x, but whose cor-
responding idesal function is discontinuous &t x, may be sccepted as
€-continuous at x; but, as € = 0 these functions should be weeded
out as e-discontinuous at x . We found (in sec. 4.3) that it :s
possible to form such & definition by making use of computablie infuris-
tion about {i.e., bounds on} *truncation and roundoff errors. de 43 not
expect sucn definitions to be of practicai importance.

On the other hand, the part of the €-zalculus which mdels scien-
tific computation should have practical implications. Our work on ‘
stopping criteria and stability tends in this direction. Buf we =5 yet

have no concrete appliications.
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