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€-CAILULUS™

By

Faul wuawrence Richman

ABSTRACT: We use recursive function theory to lay the basis for

a partially constructive theory of calculus, which we
call the et-calculus. This theory differs from other

theories that have grown out of recursive function
theory in that

(1) it is directly reiated to the variablee<precision
computations used in scientific computation
today, =nd

(2) it deals explicitly with intermediate results
rather than ideal answers.

As € +0, intermediate resilts in the e€-calc.lus
approach their corresponding answers in the calculus.

Thus we say 'the €-calculus approaches the calculus,
as € =»0 ." It is hoped that investigations in the
€-calculus will lead to a better understanding of numeri

cal analysis. Several new results in this direction are

presented, concerning instability and also machine numbers.
Discrete notions of limit, convergence, continuity, arith-

metic, derivative and integral are also presented and
analyzed.
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Chapter 1: Irtroducticn

l.1l Summary

By a "notion" we mean a property of or an operation defined on a

function or functions. The calculus can be thougnt of as a collection

of elementary notions such as limit, convergence, continuity, derivative

and integral, together with certain proved relations between notions,

such as the reciprocal relationship between integration snd differentia-

tion, Fundamental to all this are the concepts of a real number and

a real function. In the usual textbook developments, these basic

concepts are not presented constructively, the notions are not

necessarily effective or computable in any sense and relations between

notions are often proved unconstructively. This is in direct contrast

to E. Bishop's Foundations of Constructive Analysis [Bl] and in partial

contrast to recursive or computable analysis (Turing, Mazur, Grregorczyk,

Goodstein, Specker, Klaua, Aterth and Kreiseli, to mention a few

researchers in the area). Bishop defines constructive concepts of real

number and real function, develops constructive notions and proves

relations betwee: notions constructively. (lle then goes on 4o

constructive theories of sets, metric spaces, compiex ana.ysis,

measure, integration, rormed Linear spaces, locally compact abelian

groups and commutative algebras.) His work is based ou bFrouwer's

intuitionistic mathematics. In their work, constructive" is an

undefined or primitive term. Recursive anzlysis alsc has cotistructive

concepts of real nurber and real function (see [G2, pp. €Gl-2)) urd

deals with constructive notions, but it allows uncorstractive proofs



(see Kreisel Kl, p. 101]) It is based on recursive function theory,

initiated by Church. In recursive analysis, "constructive" is defined

in terms of recursive functions.

Both of these constructive theories are presented in a way which

makes them foreign to numerical computation as it is done on today's

computers. Here, we use recursive function theory to develop a theory

of not only constructive, but even finitely computable real functions

and defined notions, which we call e-functions and g-notions; these

represent the intermediate results which arise from numerical

computation. We call the resulting theory g-calculus. This theory

is directly related to modern day numerical computation. e-Functions

are essentially defined over a finite set, R(c) , of e-precision

machine numbers. R(e) approximates the real numbers and each

e-function and e-notion approximates respectively a function and a

notion from calculus. And, as e& +0 , R{e) approaches (i.e. becomes

dense in) the reals and each e-function or e-notion approaches (in

a sense to be defined) its corresponding function or notion. Thus

we say the e-calculus is a discretization of the calculus such that,

as € —» 0 , the e=-calculi.- approaches the calculus.

The value of the g-calculus to numerical analysis is that it

presents a model of variabl:-precision computations. The study of

R(e) , e-functions and e~-notions within the context of this model

should lead to a better understanding of numerical computation. Our

principal resuits in this direction are

(1) a new and simple definition of numerical instability (the

kind caused by prova-ution of roundoff-error) together with

2



a suggestive geometric characterization (ch. 3), and

(2) an algorithm for overcoming such instabilities {ch. 3 and

ch, Ub),

Other new results presented here include

(1) a characterization of the concept of variable-precision

machine numbers (sec. 2.2), and

(2} two new definitions of computable real functions, one

allowing furiciions with discontinuities (ch. 7).

Before we present the ¢-cualculus, we give a motivating example

to point out some of the basic problems involved in forming such

a theory (i.e., involved in going from ideal mathematics to actusl

numerical computation), and to develop some of our basic nolalion,

p,



1.2 A Motivating Example

Let us use "precision ©’ computation” in a general way to mean

| the accuracy of a given mathematical approximation together with the

precision of the arithmetic used to evaluate this approximation. It is

often said that "numerical analysis is not very interesting because

all you have to do to get more accuracy in a numerical result is in-

crease the precisionof computation.” As a broad and optimistic point

of view, the above statement is quite reasonable. But, when applied

to particular cases, it can be quite false. Increasing the precision

of computation can drastically decrease the accuracy of the result.

For example, consider an algorithm which uses

f(x,y) = (ely) - e(x))/(y-x)

to approximate 2 = <3 g(t), . Fix x . For simplicity, suppose
f(x,y) -» £ monotonically as |y-x| = 0 , and that £(x,y,) is

computed in a certain form of single-precision arithmetic to give

a single-precision approximation, Fle; X, yy) , to 2! (here,

"e," denotes "single-precision"). This would be the value of the

e,-limit corresponding to Sm f(x,y) . We can increase the
precision of computation by

(1) replacing yp by ¥o with 0< lyo-x| < ly, -x] ’
yielding a more accurate mathematical approximation,

£(x,¥,) (more accurate because of the monotonicity

assumption), and

(2) evaluating f£(x5y,) in a certain form of double-precision
arithmetic, yielding a doutle-precision approximation,

| 4



Fle 3 Xs yo) s tu 1 here, "eg," denwtes "doubie-pr -cignon’

This would be the value ol the e,-limit. But Filey; x, oy is not

necessarily closer t¢ £ than Flies Xs yy) ; in facu, 18 Ng iw

too close to x , F(e.: X, Yo) may be much worse Lhar TE Xy VY.

(e.g., see example 3.1-2, where g(x) is taken to be x + 1 ) chadg

is illustrated in figure 1 2-1 us three graphs ‘with x {ixed)

(a) 1(x,y) versus 1/{y-x) »

(bv) Fey; Xx, i versus 1/{y-x) , and

(c) Fleos X, y) Versus 1/(y~-x) ,

where y varies in the interval (x, x+1} .

1 yx] Ay, =x
0 ==-—

| - ,
si /
b) /

\ 4 | fo
\ / /

\ / | /

] \ \ XY \ = w

ER El x SL / |
1 FV IN { /a ~——

a ow

NN -—

fix,y) = (gly) - ga) 1y-x) and 7

FIGURE LL el

y.

Reproduced from

best available copy



Notice that graph (b) stays close to f for awhiie, but then fall:

off sharply to zero. Graph ic. stays close to ff for awhile lecnger,

but then it toc falls off to zero. in general, F which exhibit

such tehavior are called unstable (this is discussed in detail in

ch. 3). See Riesel (Rl! for a similar exnmrla.

The tools normally used to deal with such instabilities are

roundoff-error bounds, RF, and truncation-error bounds, TF. RF

bounds the error incurred by using F in place of f § WF bounds

the error incurred by using f(x,Y) in place of yim, t{x,y) .
And RF + TF bounds the error incurred by using F in place of

| yiilx f(x,y) « RF and TF are shown in figure 1.2-2, which is a
redrawing of figure l1.2-1.

0) =F—
—

| ~~ | J
| \ | /

t+ — |
\ ~EN

~ /\, RF at &¢ ,y / Fate, v,1 N 2> I

— N/ / 1
TF at TS —~ |

~ ¥
~~ {

TF at Yo

RF and TF
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Of course, roundoff error is Just a particular kind of truncation

error; namely, it is the truncation errcr caused by using F.€; x, y.

in place of lim, Fle; x, y) (which is = T(x,yJ).- Beth errors are

caused by replecing infinite processes by finite prccesses. However,

it is useful to distinguish roundoff errcr from truncaticn errcr so

that they can be dealt with separately. The motivation for introducing

these bounds comes from R. E.- Mocre's thecry of interval analysis

[M3, M4} . The kxey idea is that such bounds can be used to give

precise information about a numerical result; i.e., an interval

which contains the result.

7



1.3 An Outline

In the next twc sections we give our basic notation and we

discuss recursive natural functions and recursive natural operators.

In chapter 2, we present the basic concept of a veriable-precision

computation, including the ccncepts of machine numbers, real inputs,

subroutines, e-functions and g-operators. We give three examples

of machine-numbers: floating-point, logarithmic and rational.

And we give our main reason for introducing truncation-error bounds.

In chapter 3, we define and discuss rumerical instability. A

geometric characterization of instability is given which leads to

the concept of "an eg-wave", to a proof that there is some desirable

behavior even in the presence of instability (thm. 3.3-1), and

finally to a (very inefficient) algorithm for overcoming instability

(def. 3.3-4). This motivates our definition of g-1limit, given in

the first section of chapter 4 (defs. 4.1-1, 4.1-2). We prove

that, under certain conditions, the e€-limit of an g-function

approaches the limit of its corresponding ideal function as € = 0

(thm. 4.1-1). This g~-limit is shown to be a potentially erficient

algorithm for overcoming instabilities of an approximation function

by using a stably convergent truncation-error bound.

In section 4.2, we define g-comparison relations, < and Se
and we pr ve that the truth-value of the g-comparison of two real inputs

approaches the truth-value of their comparison as € —» C . These

considerations are basic to what follows, and must be understood.

In section 4.3, we use these g-comparison relations to define

g-convergence and e-continuity (pointwise). Again we prove that

| 8



these g-notions approach (in a certain sense) their corresponding

notions as € —=C . In section 4.5, we do the same for g-convergence

and e€-continuity over intervals. In preparation for this, we prove

in section 4.4 some theorems about the kinds of discontinuities an

ideal function can have while there exists an e-function

corresponding to it. These latter results are also made use of

when we define e-integrability in section 6.2.

In chapter 5, we define e-operators for g-arithmetic, e-limit,

e-composition and e-recursion. We also define two initial e~functions,

the identity and the constant e-functions. The choice of these

¢-operators and initial e~-functions was motivated by the operations

and initial functions used in Mendelson [Ml, pp. 120-1] to derine the

recursive natural functions. We illustrate the use of these

e-operators and e-functions by using them to define an eg-function

corresponding to e”

In chapter 6, we use the g-operatcrs and initial e-functions

of chapter 5 together with the e-convergence of section 4.3 to

define g-differentiability and th.n eg-derivative, g-integrability

and eg-integral. In section 06.3, we prove the g-calculus analog to

the fundamental theorem of calculus.

In chapter 7, we define two notions of computable real function

(based on e-functions), and we prove that one of them is equivalent

to one of the standard definitions from recursive analysis. We

also prove that the operators and initial functions of chapter 5 are

complete, in a certain sense.

The discussions of g-convergence and e-continuity in sections

9



4.3 and 4.5 and of g-derivative and e-integral in chapter 6 are

only of definitional interest. Chapter 5 and the rest of chapter 4

are of more general interest; developments presented there should

be useful in extending our theory.

10



1.4 Notation

Next our basic notation is presented. We begin with oo lict,

using 8 and T to denote sets and m , an lnteger > 0

Symbol or Expression Meaning

w= equal in numeric value

= equivalent

= implies

< if nd only if

€ set membership

U union

Nn intersection

c inclusion: SC Te (x € 0 = x & 1

S-T S NN (the complement of T)

nro, My" used only in defining scts

{1} the null set

x ’ > t ist . os :Xn if m > 1, he lis X19 Xo » Xo

x, is the empty list

st ) if m > 1, BX.,.XS (met2ld); &°

is Lx}
m - - al£18 ) - T f is a function from gio) 12 7

~ (bar) generally indicates repetition on

subscript, as in x
[x] greatest integer in x

n {0, 1, 2,... 1}

R{e) g-precision machine numbers (sec, -.=

11
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m the set of all machine numbers

(sec. 2 2)

Tc), Y(.) conversion functions {sec. 2.8)

2, EF 2, rcundup and rounddown machine =riitmeic

(sec. 2.8)

N, (a) machine neighborhocd of a (sec. 2.8

= < g-comparison relations {sec. 4.2)
¥ a £(P) F approximates ff over P (sec. 2.5

bool [statement] = 1 if statement is true,

= O otherwise (sec. 4.2}

Note that §'°) #1 1, since x, € 50) | Define R and ¥ by

R= {x: x is a finite real number} ,

K=RU i=, », a} ;

® stands for "undefined". Thus "x = @" means "x is undefined in terms

of the members of RU {-», ®1" . We will treat @ like any other

point in TW , except that w> x for all x EF - fw} , and @ is

isolated from the rest of ® (the null set is the only neighborhced

of @w ). For example, ® -o=@,0/0,+3 =a, (-1)x =a,

sim .1)t = Ww, etc. All our constants, variables and functions will
take values in RK .

We will use the usual neighborhood definition of limit for the

doubly extended real line, with the addition that a limit which does

not exist in the usual sense has the value a .

To simplify inequalities, we let

12



la-v| = © if a=b,

even when a = b € {-», ©, @} . We do this because we use |a-b| to

measure the distance between a and bv . It is easy to show that this

distance function satisfies the triangle inequality,

|a-v| < la-c| + |c-v] ,

for a, b, ¢c € ¥. (In showing this, it is best to refer to the special

rules for arithmetic involving +e and ® given in sec. 2.8).

We will use notation of the form

Ay if Ry

B =

Ah-1 ir Ro-1 :

A otherwise,

to indicate that B=R, (1<J< n) when Jj is the smallest

integer such that R, is true, and R is defined to be true
always.

13



1.25 Recursive Functions and Operators

Inductive schemes for defining recursive natural functions

can he found in Mendelson (Ml, pp. 120-1] and elsewhere. Let nh

be the set of nonnegative integers, O, 1, .... The recursive

functions from nm) aN (m> 0) are those mappings from nim) -N
which obtain the image point via constructive operations on the domain

point. Recursive functions essentially characterize the input/output

of Turing machines.

By recursive operator we mean a standard recursive functional

with its integer arguments left unspecified. Thus a recursive

operator ¢@ of n function arguments constructively maps n

(m,)
functions, a: Nh -n (1 =1, ..., n) , into a function,

pla cee a) : n(®) —Nn for some m> 0 . Inductive schemes
for defining recursive functionals may be found in Schoenfield

[s2], Grzegorczyk [Gl], Klaua [Kl] and elsewhere.

The reader does not need to know any more about recursive

functions and recursive operators than what we have just stated.

We will not use their inductive definitions. As usual, we say a

process is "effective" or "constructive" precisely when that process

can be carried out by purely mechanical means (i.e., by a Turing

machine).

1h



REMARKS: In section 1.2 we saw that incr2asing the precison of comprise

tion may decrease the accuracy =f a numerical result, [i section 9.3

we show that this does not apnly to purely aritimetic processes, i.e.,

rational function evaluation, There, increasing precision ultimatelx

leads to convergence. The trouble arises when limits are involivea:
n

.E. in section 1.2, =a 13 a, in Riesel's exampie

€.8.y Fh f(x,y) in section 1.2, and dam L ; 1 & EXETD
[R2]. The root of this trouble is an interchange of limits which may

not work. This merits further exp-anation. (Keep the example of sec-

tion 1.2 in mind for the following.) In general, we will have

lim Fle; x,y) = f(x,y)
£0

for y # x . This implies

lim lim Fe; x,y) = lim f(x,y) .
yx e~0 yx

But in order to compute successive approximations to this limit, we

must define an e-limit e-operator, LIM, such that IIM F(e; x,y)

is the finitely computable e-approximation to im f(x,y) and sua that

iim LIM Fie; x,y) = 3a £{x,y) .

This interchange of limits is investigated in chapter 3.

15
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Chapter 2: Basic Concepts

2.1 Variable-Precision Compuiations

Before launching into a description of our model, we firs?

loosely describe the kinds of finite computations which we are

interested in modeling. These are characterized by having the

following facilities:

(1) varisble-precision machine numbers;

(2) the ability to make decisions based on a comparison of the

values of machine numbers;

(3) variahle-precision input routines for inputting the members

of ¥ into machine numbers (at a specified precision),

and for giving roundcff-error bounds on these inputted

values; and

(4) variable-precision arithmetic {(g-arithmetic) for machine

numoers.

We formalize (1) - (3) in this chapter; (4) ic formalized in section

5-3.

16



2.2 Machine Numbers and Their Comparison

Let S,(i=1, 2, ...; be a finite subset of R with

{, =, w} C 8; .- In order to formalize (1) and (2) above, we define

the concept ih is effectively generable from i ." Essentially

we mean by this that there is an algorithm, with input parameter i ,

which produces as output 211 the elements of S, . But this is not

precise because we as yet have not said what "produces as output a

member x of K " means: e.g., x may have a nonrepeating decimal

expansion, sO our algorithm cannot in general produce X by

producing a decimal expansion for x . We define this concept

precisely as follows. Let NM be as in section 1.5. Define the

: (2) .
function, 9: h — { -, ee ay -1y 0, 1, sre3 @, w} » by

«C0 if i= J = 1

: © if 1 = J = 2

(2.2-1) oi, j) =

Ww if i=J=23

i= otherwise.

Let oq and os be functions from h to nN and define

a+) = 8a; (+); a (+) . We say ay, a, compute a € R

(or o computes a) precisely when

and we use a and < o > interchangeably. See Grzegoreczyk

[Ge, p. 61] for a similar definition. When @, and oa, are

recursive and oy Up compute a ; we say a (or <q > 1s a

i7



+

computable number. For given as Oy pol) -N (m> 1) and 2
. — m — —- - .fixed x € n ), we treat alx_, -) = 8 (ory (x DF oy (x -)) like

a function of one variable, so that when a(x ) computes a € ¥

we use < a(x; *) > interchangeably with a .

Let S,, 8,5 +. be zs described above. Let 1{i) be the

number of elements in S. . We say Ss is effectively generable {rom

i precisely when £(:) is recursive and there are recursive

functions, ayy Ont ne) —-+N , such that, with g(-) = 8 (ay (+ Jy asl) ,
we have

S; = { < (i, i, *) > » < ali, 2, -) > > trv < fi, L{i), ~) > } ?

< ai, 1, -) > = ~C < ai, 2, ') > = x, < afi, 5s )> = .

We call the pair (a, ) a generator of S; -

The concept of variable-precision machine numbers is formalized us

follows. We use the positive real constants, £17 LPYRRRRY to denote

the possible levels of precision: g, denotes single-precision, etc.

We use e to denote a variaonlie which takes values in the set

(2.2-2) e = {eg Ens oe 1.

DEFINITION 2.2-1: A machine number system, (R, &) , is a set

€ of constants €,, €,, --- together with a mapping, R: £€ -

(set of subsets of ¥), where

(1) E. —+0 strictly monotonicallyas i =e ,

(11) U R(e.) is dense in R ,
. 17 =——==

121

(I11) Rie) che) on)
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(Iv) Re) is finite,for each ¢ in &,

(Vv) {0, 1, =, », w}C Re) » and

(VI) R(e,) is effectively gener:zble from i .

ae) represents a discretization of Euclidean n-space. Condition

I reflects the statement "decreasing eg increases the precision";

nc other use of the values of the €: will be made in this paper.

Conditions II and VI are the only really essential restrictionsy if

R and & satisfy them, minor modifications will produce an R'

and &' which satisfy I-VI. (If I is violated, replace € by any

&' satisfying it; if III is violated, let R'(ey) = uv Rie), etc.)
Condition II allows us to get at any number in R through the exclusive

use of machine numbers. The nesting condition, III, says that we may

. reuse, at precision Bi 2 OW machine number that we used at

precision €: this will be used in dealing with instability and in

the proof that our e-limit approaches limit as € =» 0 . Condition

IV will simplify our treatment of instability. Condition VI means

that R could really be used as the basis of a varigble-precision

number system on a computer; it insures that the switching of precision

can be done automatically. (We investigate other implications of this

condition below.) That O and 1 are in f(g) will prove convenient

in many situations, but never will this be a necessity. However, having

<=, @, 0 € R(e) greatly simplifies our model. We give three examples

to clarify these ideas and to show the variety of machine number systems

which satisfy I-VI.

Example 2.2-1: Let $8 be an integer > 2. Let 0.8, Bee 8;

19



denote a base 8 fracticn Define e” rz ile git 401)
A base B normalized floating-point number system is given Ly

0, ©, ©
e = {es en 3,

©, © e

R (e7) =z {0, «=», @», a} U {x: |x| = O.ny ay -+ 8, XB

a, > 0, and e 1is an integer, || < gt) .

We chose these e because each real number x such that :

pl i glii-1gP <lIx| < (7-1) 8 “ can (in principle) be inputted into

R(e2) with a relative error < this £ :

EXAMPLE 2.2-2: l<t By be scme finite number > 1 . Define
_ a1/10 * Se thm

Bis = Bj and g, = 1 2/ B+). A base B, logarithmic

number system is given by

* x 0%

g = {een oo)

*, % : =

R (e;) = {0, =, », 0} U {x: |x| = : , e an integer, le| < 10°}
>

We chose these €. because euch real number x , with
i+. 1-i itl _ 1-1

81 "10 < |x| < g 10 -10 , can 'in principle} be inputted

into R (es) with a relative error < this ¢, - We bad tu ucw

different bases, 8. y apprecaching 1 as 1 —»eo , sO that condition

II is met. The fact that some of the 8. will be irraticnal cz .zes

no difficulties.

EXAMPLE 2.2-%- Define f = 1/{10%+1) and

wf (eh) = {0, -o, », @} U {x* x = p/q for integers p and gq
with |p| ,» la} < 207}

20
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We chose these et because each real number x , with
1/(10%-1) < |x| < 1ct-1 can (in principle) be inputted inte

ef (ef) with a relative error < this ef . (This last
statement is more difficult to prove thun the corresponding

statements of the other examples, 50 a proof is included in the ;

appendix to this chapter. The other statements are also proved

there as simple corollaries.)

Another important property which Rf must possess is that the

members of Rie, ) must be representable in some simple form which
varies with 1 in a simple way. This is necessary so that the members

of R(e) can be represented simply in the computer. For example,

any x € Re?) - {0, =, =, w} can be represented by a pair of
integers (a, e) with atl < lal < gl and |e] < gl-s since

x must egual (a 51) 8° for some such a and e . And any

Xx in Re) ) - {0 =, =, w} can be represented by a pair of
integers (+ i, e) with |e| < 10°% , since x must equal

+B; for some such e . A sirilar statement can be made about
at . In fact, any R which satisfies condition VI possesses

this representability property. Suppose CH L) is a

generator for R{e;) . Then any x in Re.) can be represented

by a pair of integers (i, j) , with 1<j < (i) , since x

must equal some < ag (1; jy» °) >. So much for representability. Next

we consider comparison of machine numbers.

The fact that each member of R(e,) has a unique representation

in terms of oq means that, given i, J and k, we can effectively

decide whether < ag (1, jy *) >is > ,< or =< ap (1, k, *) >;
21



when J # k we have < ag (1, js 1) > #£< oe (1, k, *) > and we can

determine which is greater by computing x (1, js n) and

ag (1, k, n) for scme finite number of values of n . This gives us

(2) of section 2.1. Further, the following two conditions imply

the existence of a generator for S.:

(1) there are recursive functions ays ays L' sucn that,

with a'(:) = 8a; (+), at(+)), we have

2 (i)

5, =U { <a'(i, 3, *) >} for 1i=1,2,... ,
j=1

(2) the relation <a'(i, j, ') > =<a'(i, k, +) > is

effectively decidable from Jj and k .

Thus condition VI on R is not too restrictive in (implicitly)

requiring CA Lo) to be nonredundant.

Throughout the rest of this paper, we assume that R, & and

a corresponding generator (og 5 LL) are given and fixed. All of
the following definitions are implicitly relative to these

R, & and (org » Lo) .
For later use, we define the machine number set, Mm , by

(2.23) m= U Re)
i>1

If R and & are the af and et of example 2.2-3, then

m is ed » the set of rationals together with =o, ® and w .
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2.2 Input Routines

We handle the inputting of members of ® essentially by

assuming that memters of T are given by giving an input routine. To

avoid confusing a number with its input routine, we intrcduce a new

concept, that of z real input.

DEFINITION 2.3-1: A real input x = (X, RX) is a pair of mappings,

X, RX: & -Mm , such that |

(1) X(e) , BX(e)€ R(e) and RX(e)> O for all ec € ¢& ,

(2) |x(e) - x(n)| < RX(e) + RX(Q) for all ec, NEE,

(3) lim, RX{(e) = 0 .

If x= (X, RX) satisfies (1) and (2), we call x apoor real

input. We call (X, RX) an input routine for x -.

It follows that the numeric value corresponding to the real

input x is just limg X (¢) - When a real input x is used in a

context that ceils for a numeric value, we let that value be

Lim, X (¢) . Thus for each ¢ we have

(2.3-1) Rx(e) > |x(e) - x| ,

and so RX(e) is just a roundcff-error bound, bounding the error

caused by using X(e) in place of (the numeric value of) x .

A real input can be thought of as a variable ranging not only

over RK but also over input routines. We will find it unnecessary

to distinguish notationally between a real variuzble (ranging over

R ) anda real input, or between a real constant and az fixed real

input. When a real input is named x , its input routine will be

3



named xX, RX), etc. Note that For rewl impulse x &nd oy, XY

("=" means "equal in numeric value! fnrouznoult this saper, see sel Tt)

precisely when

(2.3-2) |x(e) - v{e)j <®x(e) + RY(e) for 212 ¢ €8 .

This relation will be useful iu defining e&-compariscon relsiticus,

The following conventions will simplify nolation later:

(1) when, in agiven context, the valve of the real input x

is known to be in R(e) and (x, FX) has not been

explicitly specitied, :t will be assumed tnat X(3} = x

(in value) and RX(b} = O for all 8 <¢ ,

(2) when we state that x en, ior a real input x, we mean

that [RX(e) = 0 or Fie) <= = |x{(e)] for scme &!

end x §M peans (Ix| #« and ix(e) # 0 for mil el,

and

real inputs. If P is {ina given contex’) aseb =f nuuters

inputs cenhbalins 311 real inputs x with value in She numler

set FP . If the number set P 1s gkuswn to be 3 subse’ of

My, 1thenthe real input set P contains all res’ iupuis X

with valvein the number set P such *hat x € Mm (under

convention (2) ateve).

By (3), Rr may dencte the set cf all numbers or tle set 2f ».Y) real

inputs, depending on context. We use a rule mnalogous +o (7) shen

is a set of w-tuples Gf numbers.

“lh
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2.4 Multiple-Precision Subroutines

Let X dencte the empty iist and for m > 1 let x dencte

X19 Xosecos Xx . For the moment, let x be m > O variable poor

real inputs and let ¥ ....., X be n > 0 fixed real inputs.

A multiple-precision subroutine of m > O variables and n > 0 con-

stants is essentially a computer subroutine with input € and with

access to any finite number of values of the input routines for Xrn!

say

X,(e,), Xle,),nnn, Xie)

(2.4-1) for J = Lyesray m+n »

RX,(e), RX (ES)0 os RX (ey)

and with output in R{€), with the requirement that if any X,(e) cr

RX, (e) is @ then the cutput is «w . We call e& and x the inputs.
With inputs €¢ and Xs we denote the cutput value of the subroutine

F by Fle; x) . If for some j <m we have lim, sup RX (e) > 0,

ther we allow F to not halt when its inputs are x and (any) ¢ .

When this happens we write F(e; X,) = ® because Fle;x ) is unde-
fined in terms of the members of R - {ww} (see sec. 1.4).

This can be formalized as follows, For n= 1, 2,... let P,

be the nth prime: py = 2. ete. Let Xx be a poor real input and
suppose that for i > 1,

=< 3 . 2. - » 3

For Jj > 1 define

k K kK
1 2 23

-= X ) ¢ | I xX *gn, (x) p,” Xp, Pos

D>



Define the 2 Godel number of x (m> 0) by

gr. (x. gn, (x_; gr {x )
eo N(x ) = J 4 J 720 x... x Jn(2.4-2) G s(x) py X po Py ,

where the empty product is 1 (i.e., G(x) = 1) . GN (x) contains
complete information about the numbers shown in (2.4-2), We say thst

y is m-determining (mw > 1) precisely when Y is recursive and,

for i=1, 2,...,

(1) o<v{i, J) £151) for any Jj,

(2) for any pocr real inputs X_ vii, GN, (x 7) = 0

for 1 <k<1i, and if any X (ey) or RX, (e,) is w

then v(i, GN (x ,) = 3, 7
(3) for any real inputs x there is an M > i with

v(i, GN (x }) £0.

Thus Y waits until sufficient information about x has been col-i

lected (in GNy(x_7). and then ¥ returns a nonzero value. when

tim ind RE (e) > 0 for some J, GN. (x_) may never contain enough

information gbcut x for ¥ +o return a nonzero value. (Gf course,
even when lim inf RX (&) = C < lim sup KX,(e) for some J we may

have v(i. GN, (x )) = 0 for some 1 and all k, but this will not

be due to lack of information about Xs .; We say ¥Y is O-determining

precisely when ¥ is recursive and 1 < v(i, 1) < ta(1) . Let

= (v(t. GN (x )) £ 0) be vii, aM, (x J) where M is “he least

vaiue of n such that v(i, GN (x 3) 4 0, or let it Ye 3 when ‘here
is no such n .
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DEFINITION 2,4-1: A multiple-precision subroutine of m > 0 variables

and op > 0 constants, Xopsooces ogo is amapping, F °
per—e

€ x {poor rea’ inputs} ™ <M, such that there is an mtn-determining
[} I) w IF] 1 [ —

Y which satisfies the following for any poor real inputs x. and

any i>1:

= 3 Xx) =< cu (vi x DIT(2.4-3) Fle; x) Gali. a(v(i GN(x,}) #0), *)

We say Y determines F relative to (og, 1) . We stress that so

long &s the x are real inputs (not just poor). the ccmputation of

Fle; x) via ¥ will always halt. Essentially the only subrcutines
whose computation may fai’ to nalt are those which, with inputs ¢€

and X try to find an nm < ¢ such that, say RX, (1) < t, for some

tolerance level 0 < t <= ; for examp.ie, when xy is a poor real

input with RX. (€) ==» for all €, such a subroutine will fail to
halt. We will use “subroutine” as an abbreviation for "multipie-

precision subrcutine.” An immediate consequence of the above detfini-

tions is

Fe; x) = w if any X,(e) or RX ;{€) is @ .

This convention is taken from Scott [S1]. Note that these definitions

have all been relative to (og, to) .

THEOREM 2.k-1: If F isa subroutine relative to (og, lo) and

(og Lo) is some other generator of R(e,) then F isa subroutine

reiative to (ag, Lo) .
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This means that the ccncept of subrcutine is independent of which

generator of R(e,) one uses.

T - tf .th por -
Proof: let GN (x) and GN (x) denote the j Godel numbers

- : ? :

of x relative to (a, to) and (ag, ta); respectively. The

ccasiderations of section 2.2 show that there is an effective prccedure

which, when given anv generator for Rie.) ard any J > i, can order

the members of R(e ) . This means that there are recursive functions

¢, and @, such that @.{i, 0) = 0 and

<apli, 9.(i, 3), "1 >=<oi, 5, ) >,

o,(1, GNi(x)) = oN. (x) ,

for any 1>1 and 1<j< gi) . Define Y' by

a "NY Se = FN ’ . . YY a s \
viii, GNLx0) = 9g(1, vii, @,(d, ani(x 9)

for i >1, j>1 and any x . If ¥ determines F relative t¢

(ag; 2c) then vy' determines F relative to (02, £0) . This
completes the proof.

28



2.2 €-Funiuicn

An 1dea. function of m variables Lm > U) 1S 4 maPyilig,
om) _ =~ EE el

fk = Kk, With the constraint that fox = w 11 any xX = Ww.i

DEFINITI.N 2.5-1+ For m > 0, an _e-functicn, &, of m variavieo
en a ge la A os epee siteoA

corresponding to &n 1dexl tuncticn f (of m variables) .var a set
eees eee en ee ee PE ep ee er ef re

P_of m-tupies of rea: inputs is a triple (F, FF. TF) <¢f sub-
oJdtines, where for an a’. 1nputs X_ we have

\i) for eacn €, RFie; x) > |F(e; x - r(x )]| ,
— m = m m

2 x €F and £x) w=lim EKF(e;x) = 0 and(2) Ix x) Fw] rim BF(e; x y dnd

(3) 1f m=0, i znen IF= w; otherwise, for ali e,

(2.5-1 TFie; x; > f(x) - lim fx ., yi] .{ p, ) \&, IEREE \aa1’ yi
HE

We cail F a domain set of ¥F and we write

tc be read ¥ corresponds to {or approximates) f over {or mca)

P ' This definition 18 illustrated in figure 2.5-1 for the case

m=2 and X = ® ,
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\ ol at € Te RF + TF
\ Te, at €
\ '.

7 “. yee

\, REFICLRRR A~ ye

~~ — —~— | ~~
~~ - RF at €

TF

| Y
Ye

lim fo, y)
75% 42s % = (F, RF, TF)

RF is a roundoff-error bound, bounding the error incurred by using F

in piace of f . TF is a truncation-error bound, bounding the error

incurred by using f(x) in place of a f(x 1» y) . For example,
n

if f(x, n) = ), g(i), then TF(e; », n) bounds the truncation error
i=1

«@ '

BY g(i)} . RF(e; x ., Y) + TF(e; x _, Y) bounds the error incurred. m=1 m-1
i=nt+l

by using F(e; X_ _y Y) in place of a fx, 1» y)} . For the above
graph, this bcund is smallest when Y = Ye

Conditions (1) and (3) on ¥ require that the bounds RF and TF

work properly for any real inputs x and any € . Condi‘on (2)

requires the convergence of F to f and RF to 0 at x €P for
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which £{x ) is defined. We must nave =F — 0 in order to effectively

compute, via F, an arproximation to ff that is correct (Uo witrin

scme desired and arbitrarily small tolerance.,; if instead of (2, we

rave

2: )[x_ €P and (x) fwl= limp fle;x) = fix)(27) x (x) # dp fle;x J = f(x}

we say JF weakly correspinds tc I cver PF and we write

F~ oF)

We call P a weak domain set of ¥F , An immedizie consequence of

these definitions is

THECREM 2.5-1: If QCF and Fa f(P) (or F~ £(P)} then

Feo flQ) (or F~1£Q)).

We will use Fg; X to dencte ine triple of values,

’ Ls LC. es A AY

(Fie, XJ» RF{¢€; x > TF(e; x }) .

For an, triple 8s of numbers, we wil. use lag) to denote

a {1 £123). Thus we have

zap / = ae -

Fle: x 0). = Fle: x ©L 5 b J on (e; m’ 7

etc. e-Functions are finitely computable in the following sense: there

18 a Turing machine whi:-h, when given an obje~t~ for computing the

Xe) and RZ le) for any given e, can output the triple of values,
Fe, x) fer any given ©
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Dealing with the instabilities alluded to in the introduction was

not our main reason for introducing the truncation-error bounds (TF) .

We had to introduce them because any definition of "F e-converges

at x," which is based only on the veliues of F(e; x, y) and

RF(e; x, vy) (e and x are fixed here), cannot have much to do with

tt . 7 -

f converges at x) (which is true when im f(x,y) # @) ; remember
what F and RF can only take on a finite number of differenti values

for each fixed € . The truncation-error bound, TF, gives us tine

needed local information about f .

Suppose Yqp» Yoo and Yy determine the subroutines F, RF anc

TF respectively. Then we say {Yq Yor }) determines ¥F = (F, RF, TF)2 = > -

and (vy Y,) partially determines % . When we say ‘given F' we

mean given (Y;» \PY YJ determining % .

1/We call the thing which computes (X., RX.) an “cbject” rather thun
a Turing machine because there may be Ho suth Turing machine; there
are only a countable number of Turing machines, but there are an un-

countable number of values of x, . See Shcenfield {S81, p. 248] fer
similar considerations.

3a



2.6 An Example: e*

Following is an example of how one might go about defining an

e-function corresponding to e* over KR. This example is fcrmslized

in section 5.7.

ret [y] denote tne greatest integer in y and let sgn{(x)

denote the sign function at x (which is @ if x is w, and other-

wise is -1 if x<0, is OO if x=0, and is 1 if x > 0} .

Define

w if k=w, or y>w

f(x,k,y) = oo if y<d
lx |)" (n-1): otherwise |, |
n=1

x) 0 if k=wand |x|] +1<y<a
tf(x,k,y) =

otherwise ,

® if x =o

£ (x) = 0 if x= -o»
exp -sgn(x)

( lim f(x,»,y)) otherwise .
y - CO

;

tf(x,»,y) bounds the remainder term, | 2 (-1x])"/n!| . The pointn=|y]

here is that tf can be computed using only arithmetic, [-], | |

and numerical comparisons. It should not surprise the reader that

there is a subroutine, F, such that F(e; x,) = £(x,) as €¢ — 0

for most %s , We can use the methods of intervsl analysis, or an
error analysis in the sty_e of Wilkinson [W2], to obtain a subroutine EF .
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We can use interval analysis to obtain a subrcutine, TF, which

satisfies

TF es x) > £E(%,) :

The result is ¥ = (F, RF, TF), an e¢-function corresponding to f over

most of 73) . For each ¢, let Ye be some member of R(e) with

Ye £ © and Lm y, == . Let RG(e; x) be either of the two
smallest numbers in R(e) which are > RF{e;%,@,y,) + TF(esx,=,y, ) .
We can define an e-function corresponding to

Ww if |x| >w

g(x) = { e" if x <0

e™* if x>0 ,

by

Mex) = (Flesx,=,y,), Bo(esx), 0)

Thus ¥(e, 5%) is computed at a higher precision of computation

(see sec. 1.72) than is $e 5x) and we will have Fas g(P) for scme

set PCR. It is easy to get F exp from & .
This method of zprroximating e” by an alternating series has

the numerical disadvantage of involving cencellation, but it affords

the use Of the simple and rapidly convergent truncation-error ound,

1x1"/n! (when n > Ix!) . A method based on Elx|"/n! wouid invcive

no cancellation (so lower precision arithmetic could be used) ‘ut

we would have to use a more complicated and more siowly converging

truncation-error bound of the form Ix |” aut lxleal (valid for

any n> 0) . We use the former method here becmuse ii simplifies tie

formalization in section 5.7. .



2.7 Operators

Operators and g-operators will be cur principal venicles for de-

fining nctions end e-nctions in chapters L4-£., Let Se be the set of

ali ideal functions of O, 1, 2... variables, An operator of n 2 O

ideal functions over S c sto) is a mapping, © : S = 5s . Let f
denote the list <f ideal functions, f.,..., fs and likewise for

F ana P . We say ¥ corresponds to f over P precisely
n n n n n

when F. re £ (7) (1 <1 <n), and we write

TF ~ T(P) .
n nn

iet S be the set of all 5 such that there is a T €S and a P_

with %F, mf (P) . Let 5 be the set of all weak e-functions. A
weak g-operator, (%,Q), corresponding to f over S'C S is a

mapping, 9: S'— 5, together with a set function, «4, which depends

on F, fT ,P, such that
n’ n°’ n

(V if F mT (P), ¥F €S' anda T €5, tren
n n n n n

TY ~ Bf Mof TF _.P WNul 2) pt (alF , n’ Ps and

(2) there exist recursive operators LY and Y, such that,

3 TIT t ry

1f F tf (FJ, Ea €s5',f €5 and (Ya 5 0 Yui.’ Ys;)

er % (1 < ) SACHA vy.determines ¥, (1 <1 <n), then SATE ¥o(Y5,))

partially determines *(%,) :

When these conditens hold, we write

(®, Q) ~ Bs")

bY,



Condition (1) requires that ¢ gives e-approximations %0 @ and “hat

® +p as € = 0 in the sense that we at least have

lim ((F )(e; x 0), = $F 3x}
c= 0 In pl n p

for x, € uF, tf, P) at wnieh g(t (x) { w. Conditon (2)
requires that ® be finitely computable from its arguments; it reguires

® to constructively map the determiners of 3 into a partisl deter-

| miner of o(%) . We have left truncation-error bounds out of (2)
because, fcr the e-operators which we will present later, we do not

believe there is an automatic way to define a good trunceticn-error

bcund for o(%) from the determiners of the F (see def. 4.1-1).
In general, such bourds depend ¢n certain analytic properties of

p(t), properties which cannot be effectively recovered Irom the

numeric information given by {he determiners of 7 . We avoic tills

problem in most cases by assuming such bounds to be given. IF gee)

is a fun~tion of 0 or 1 variatles, then the T# peri of I = JEN

is, by definition, identicai.y ww, and this probler does ncl arise,

We will lave more to say abeut this in chapter 5.

If condition (1) above hcids with RIE ~ pf V7, we sey (P,Q)

is an__ e-operator corresponding tc @ cover 8! (and not just a weuk

¢ -operator), and we write

(Pp, 0) as HB")

The goodness” of (®, Q) depends on row nontrivial the relation

between EN f,F and WF, Eo) is, how Zarge 8' is, and
especially on how efficient ¢ :s5, in terms of the number of ¢valiuatiors



of the 7 required to evaluate EF le; x), ard the accuracy

achieved (i.e., the size of (BF ie; x), . For example, le

oF) = (w,w, w) and HEC f, P) = {}, the null set.

Then CA ag) = #(S) for any operator f over S and its
corresponding OS . Of course this is not a good e-operator in any

sense. The formalization of a measure of the goodness of (®, CQ) is

a worthwhile and as yet unsolved problem. When this is satisfactorily

solved, the rules for e-izing a notion will be complete.

For simplicity, when we present particular e-operators, we will

give a constructive analytic definition of @, rather than giving

¥, ani Y, . It is a simple but tedious task to construct particular

¥y and Y, from such a definition.
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and A,_ can be defined as follows. (The T (-) and Y(.) defined’

here will be used later.)

EXAMPLE 2.8-1: Define t-precision roundup and rounddown converted
”~ J

values, I(e,B) and I(e,B), for the number < 8 > as follows. Let.

ny be the least integer such that the interval [(8(ny) -1)/n,,

(B{ng) + 1)/n,] overlaps at most me of the intervals

[(op(1, z, ny) -1)/n,,, (aa (i, z, n,) + 1)/n 11 < ! < 1o(1)) . If Bn)
is «=, ®» Or w then let T and Y be 1, 2 or 3, respectively.

Otherwise let the intervals about (1, 1, n) and aa (i, Y, n.) be
the first ones lying completely to the right and left, respectively,

of the ame about B(n,) . Define

* »

(2.8-2) I(e., B) = < agli, 9, *)> for * being ~ and -— .

%* / ~ ~
Then I(e, B) € NS <B >) and I(e, B) < (<B>) <I{e, B) .

2 J
Defin - b

© © PI, i,k y
+

Br 5 (0) = a (i, j, en) + oad, k, 2n) for n>1 .
+ - .

Then BT 5k computes < AEH j, t) >< oo (1, k, +) >. (See Bishop
[B1l, pp. 16, 21] for similar definitions ¢f +, = , X and + .) Let

g = < as (1, i, *)> and b =< aa(i, k, *) > . We can define the

Ane by

(2.8-3) A, {e.;a, b)=1I(c,B:,.), A, lt;a, b)=1I(c,Bs. ).
1,+ 84% & 1’ P13,’ C2, fi i’ P1,3,k

Fcr the rest of the paper, we assume particular A » to be given,
b J

For &, 0b € R(e) we will use a *e b and a *e b tO denote Ay + €; a,b)2
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and ILE a,b), respectively, mitting the subscript € whenever
nc confusion can arise. For subroutines F and GG, we wiil zobreviate

Fle; x) Ge; x; by (F%¢' (e; x etc, in general, we will
factor out arguments ac much as possibie, calling the resulting form

argument factored form.

In arder to prove that the Bp converge to ldeal srithmetic

as € = 0, we must first state expiicitly the special rules for

arithmetic involving =~ eo and w . Let x,y,z €R satisfy oo <y <>

and 0 < z <« ., The special. ruies are

General: x *w=w?*x =u.

Addition: ® + (~@;= ; ® 3 © =®@ + Y= © ,

Multiplication: = XO =w j ® X z = ® |

Division: x + 0=® To =; y To =0 |,

These, combined with the usuz. definition of real arithmetic (see, fir

example, Bishop [Bi, pp. 16, 211) and the usual essociative, commutative

and distributive laws, completely define the arithmetic of RR. For

example, ® -® =o + (©) = w and ® X (=10, = (1) x (® x 10) = «= ,

THECREM2.8-.: Suppcse yim X.(e' = x. (i= 1,2) and x * x, Fw,

~~ PR , . ,

Then x, (e) *X (e; and X.(€, & Xe) approach x, * x, 8s
E~0.

Proof: If x,, x, € R then x * x, # w implies that x, * x, ls

finite. We have that X,(e; ¥ Xte’ and X.(e? £ X,(¢} ere in

N_(X (e] * X,(&7) and poyperty II of RK together with the continuity

of arithmetic give us convergence, If x. or X., is infinite tten
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x1 * X # w und the above special rules for arithmetic involving + =

yield that | x, ¥ Xx is one of1 2

© + @,®» Ty, ®mX Z,y Tmo .

Convergence is elear in these cases. Tnls completes the proof.

For A,B€ R(e), let

(2.84) 0 if A=B

A= Bl = (A2 B if A>B
€ € —

B = A otherwise,

(2.8-5) 0 if A=B

| A Sc B| = max O,A Se B) if A> B

max(C, B Gg A) otherwise .

This simplifies inequalities, because |A a B| and |A Se B| are
effective upper and lower bounds on the distance, |A - B|, between

A and B (see sec. 1.4).
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RFMARKS: In our model, we have assumed that it is possible Lo use

arbitrary levels of precision {arbitrarily small E) But in practice,

we almost always use single- or dcuble-precision, and there 1s a firite

upper limit on how high the precision can be (precisions nigher 4lzn

double=-precision being provided via software). However, our model does

not preclude an emphasis on single- and double-precision cceputetions.

We feel it is conceptually correct tno keep arbitrary precision in mind

in the design and analysis of algorithms; doing so helps keep algorithms

machine independent and is kind to the occasional user who requires

high accuracy.

In our definition of roundcff-error bounds and truncation-errsr

bounds (sec. 2.3% and 2.5), we have taken the stand that numerical

analysis should concern itself with rigorous approximation rathler tnan

just estimation. However, it should be possible {0 form an "C-calculus

of estimation" by defining tnese bounds to be statistical juantities,

In fact, it should be possible to forn. an "E-calculus of stable €-

functions" which involves no error bounds, as we indicete ir the remarks

sfter chapters 4 and 5. (Such an g-calculus would not have very inter-

esting ¢-notions of e-comparison, g-convergence and g-ccntinuity.) The

ast two e=-calculil should be interesting to explore. The last cne will

probably resemble current scientific computation more closely than “he

g-calculus developed in this thesis. In the "g-calceaius of statis

¢-functicns", a "poor resl input” x would he a mapping X: & -» M

such that X{e) € R{e) . A "real input" x with value < € RK wold }

a "poor real input" such that Zor every & > 0 there is ar ¢ wiih

|X(e) - c] <& . A "subroutine" would essentially remain as before. Ar:

“an # as £(P)" would be a "sutrcutine” F with PE. FE x) " £( Coe
all x € P at whicn f(X_) £ w.



2,A Appendix: Maximum Keiative vrr.r

Here we prove statements made aboui “he examp.es of sec ri d..

THEOREM 2.A-1: hssume that, for each €, R(c) - (W} is symme oo

about 0 . Let Oe) and <{e) be the smailest and largest fiilie

positive numbers in Re) and define

(2.A=1) E(e) = SU | min | 228 .6c) < Ix < 7{¢; y € Rie) x

Letting a < a' range over positive finite neightors in R{eD

yields

(2.42) E(e) = max(a’-2)/(a'+a)

Proof: By symmetry it suffices to consider only x with

8(e) <x<7t(e) . For a € R(e) with O(e)< a < (¢), let a' agents

the successor of & in R(e) . We have

E(e) = max sup | min |X|a <X<eé y € Rie) X |

= max Sup min [x-a £2] .a Lo SEa<x<a X X

The facts that (x-a)/x is monotone increasing and (a'-x)/x is

monotone decreasing for x # 0, and that these functions intersect

at (a + a')/2 yield (2.A-2). This completes the proof.

This theorem gives immediate results for examples 2.c-1 and 2, c=".

Q, © -i i - i

For a €R (e)) with a = (87°) anda B* Lo b < B* we have
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e-1 -i C, . -ln€
a'-a = B and BS '/(s ta, is swa..est {or such a when a = B “BT,

. . -i.e a= -i.,2 ane-1 e-i
yielding ata =8 B+ (BT +B ".,B8 = 2B + B and

©, ©. e-1,, 8-1 e-i ©
E (eg, = max , B  /(2B - FE = E.

i al i|e] < Bf
*, % . e etl ,

For a €R (e,) with a = B, we have a = B. andFy

*, x et e. et 1 e. hs
E (e,) = max ... BI T - BL, (BT + B., =e. .

i 21d i i i i
le] < 10

To prove this for at we need mors machinery. First we note that it

suffices to take the maximum in {Z.A-2) over Ge; <a < 1 (rather than

Ge} <a<7(ey) for R : suprose a = p/q> 1 and a =p /g ;

then the successor of b=q/p is b = g/t and we have

b-b Ja ~_/a a -a
b +b a + Ja a ta )

For n= 1, 2,... define vue Morey series of order n, Foo a

be the sequence of rationsa.s, <a, with 0 <p<g<n and G.C.D.(p,q; = 4, |

written in increasing order. We sha_l require tne foLiowing two we.rl Known

iemmas (see Niven and Zuckerman [N., pp. ~23-233]).

[EMMA 2,A-1: If p/a and p /q° ars consecutive fractions in Fo

then p'q -prq = 1.

LEMMA 2.A-2: If p/q and 1 /a are consecutive in F , then :
i —— L EE —— A A ———— —— I) A—y

among all rationais with .i.ue between these two, (ptp lara

is the unique one with sma.liesi denomin.or.
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We will also need the following two new results.

LEMMA 2.A-3: For n> 2, if p/q <p'/q' are consecutive in F

and p > 0, then pq' > (Z(n+1)] .

Proof: F, is <0, 5s z >, 50 the thecrem is true for Fs by inspection.

Suppose it is true for F 1 . nny consecutive fractions in Fo will
| t +  { ? H]

be either 2 E or BE ER or Ee Bo where 2 2 are consecu-
qa 9g q° atg g+q Q Q Q

tive fractions in F__. (by lemma 2.A-2). We have pg' > [n/2] . In

the last two cases this implies

Tos 1
plate’) = pa + pq’ > 1 + [0/2] > [F5(n+1)] ,

(pre'la’ = pa’ + p'g’ > [v/2] + 1 2 [F(n+1)] ,

and the induction step follows. In the first case, if n is even tien
B)

(n/2] = [5(n+1)] so pg’> (Z{n+2)) . Or, if pq! > [n/2} then
pq’ > [2(n+1)] . Suppose n is odd and pg' = in/2) . Then we have

q' <pg' = (n-1)/2 ,

a sr'g= pg’ +1l=(n-1)2+1 ,

qQq+QqQ sn .

It follows that (p+p')/(g+q') is in F_ and so o/a, p'/q' could

not have been consecutive in Fo . This completes the proof.
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EMMA 2,A-bh: let n be 2 and let un << a’ run ftirowsl oll

consecutive fractions in Fo witli a > 0. Then we ave

max a'=-a L
a n'+8a - el, - - )

2i=(ntl,] + 1
&

Proof: let a = p/¢ and a’ = p‘/q’ . We have

gE /C B/ 3 FE a £4 2 Pl5(ne2)) +

. . . 7 4 - - _ i _ 1

Further, the fractions 1 {{5(n+1)] + 1), i [Z(n+1)) are corsecubive

in F because (i=(n+17] + 2 + [Sint] » n, and for trese we Lave

1 M

ora * 1 4. aa )
2fsinel}} +L

This comp.etes the proof.

Taking n = 13° « 1 yields

E (eg = max (a -aj/{ai+a) = t
i I

OF 5 €F
n

comp.eting our “ask.

ITS
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Chapter 5- Numerical Instability

: 3.1 A Definition

- To simplify notation, we restrict this discussion to g-funcrtion:

and functions of two variables. Let x be & real input and supp.se that

yim, f(x, y) exists. Let F be a subroutine satisfving

(3-1-1) (lim Fes x, y) = fx vy)

for y €m - {x} at which f(x, y) # w- This means that, with

F = (F, w,w) , we have F ~ f({x} x MM - {x})) . We do not require

(3.1-1) for y = x because (1) we do not need to, and (2; this courd

cause problems when f(x, y) is discontinuous at y = x (x fixed).
: 3 .

We are interested here in a computation of yi, fix, y, whet

proceeds at precision £ by selecting a Y, € R{(e) and ther using

Fe; x, y) to approximate yim, f(x, vy) . We call the rule used to

select these y's (as a function of F, x and possibly other things:a

stopping criterion because it tells us where to step at precision e

We say that this stopping criterion works at x precisely when

(3.1-2) lim Fe; x,y,) = yim, f(x, y)

This framework is quite general. f(e, n) might be the nth iterate

of an iterative procedure for evaluating Lim flow, n, , as in Newton 3

or Bernoulli's method for finding zeros © a polynomial, or as in numerical

integration methods for ordinsry differential eguations The assumpri 1.

that Lim f(@, n) exists means that the discrete method converres ir. era.

arithmetic, with exact starting values. (This is weaker than ". ouverg:.
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as defined in Ralston (Rl, p. 171.

We are now ready to discuss numerical stability. As used ia nurerica:

analysis, stability deals with the way local rounding errors of sume

iterative procedure propcgate and effect the total accumulated erv::

(See Henrici [Hl, pp- 11, 302, 309i and Ralston (Kl, p. 175 ‘under 1,

Let us consider an example.

EXAMPLE 32%.1-1: Let dy» Apr + be defined by

- \

9, “© Q. ‘ay q,> ner Qc

~~ ~ . th
At precision € , let 95 approximate Qs Q approximate the |

recurrence relation, Q,, and define qs yo .e., by

1, = Gl Gr oer Gp)

The nth local rounding error of this iterative procedure ls

~~ - [= at Ca la4a Q 9p q, ’ qq) ’

and the total accumulated errcr is aq - q + Let f(x, ¥) = q

when n = [y] > 0 and x # w ; otherwise let f(x, y) = w. Suppose

we are interested in the finite limit, yrs f(w, y) = Lim aq -

Let F(e; x, y) be defined in terms of the q so that (3 1-1;
is satisfied for x = = . (This is easy, but tedious, to do; F

will be effective so long as the q, are.) Then F(eg; ®, y) - i=, y
is the total accumulated error. If, as y -s%® thrcugh finite

values in R(e) , |F(e; ®, y) - f(=, y) becomes large, it would

be said that "numerical instability has set in at precision ¢ ."
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If this happens for infinitely many vaiues of € , 1% would be

sald that Ff is unstable at = suppose this rappens, and Let Je

be some value in R(g' + ere the totaL errcy has ted me large

Then we would have 110, bey =, Ye # y He f=, ¥1 5, evel TLL
1 z= ® $ ® nis 1s tre tragedy ofwe may have e 1ilg Y, and Ye ; hig is tre tregedy of

numerical instability; when FF 15 unstable at ® , tnere will oe

seemingly quite reasongsble stopping criteria tnat Jd. not work at « .

Cn the other hand, if F is stable at in tne sense usual

tC numerical analysis), then any s.ch reasonable stopping criteria

should werk at o

This idea of stability generalizes easily to any F, x and

ff satisfying the assumptions at the beginning ff this section, whetner

or not they involve iterative methuds and local rounding errirs oth

generalization, it is important that "reasonsbie’ stopping criteria

choose Ye S that satisfy

|Xte) - yl > Bie)

50 that Ye 1s effectively distinct from x at precision € = This

is necessary so that F is not unstable just because f'x, y. ls

discontinuous at y = x . e.g, when fix, y) involves divisions by

(x-y) Define the set, ple; x) , of members 5f R.e) that are

effectively distinct from x at precisione by

(3.1-3) ple; x) ={Y. YE€Re) and {xe -Y|>kXe)

DEFINITION 5 1-1. We say & sLopping criteriin is reascnatle g!
Betta SERA a RE EE Wp p—

X precisely when its 's satis?X precisely whn ts y'S satlsly

L9



(3.1-4) Ve € pe; x) U {w} , e Lil, y, = %

If RX(e) = @w then (3.1-4) forces the choice y, = . This cannot
happen when ¢ is sufficiently small.

DEFINITION 3.1-2: Suppose lim f(x, y) isfinite and
F~f({x} x M-{x})). We say F is stable at x precisely

when any stopping criterion whichis reasonableat x , works at

Xx . Otherwise, we say F isunstable at x .

Following is an example of an F unstable at O .

EXAMPLE 3.1-2; Let 6(c) be the smallest positive number in f(e) -

Suppose a certain form of e-arithmetic is to be used and that in this

e-arithmeticwe have 0 +1 =1, 86(e) +1 =1, 1 -1=0 and

0/(0 - &(¢)) = 0 (see section 5.3 for a detailed discussion of

e-arithmetic). Suppose a subroutine F , evaluated at (ee; x, vy),

approximates f(x, y) = (x +1 - (y + 1))/(x - y) by replacing x

and y by X(e) and Y(e) and by replacing arithmetic by this

g-arithmetic. (That F satisfies (3.1-1) follows from corollary

5.3=1 in chapter 5.) Define y, = 6(e) . Then these y's satisfy

(3.1-4) for x being 0 , but F(e; 0, y,) = 0 for all e¢ , while
d _

yi, £(0, y) = x (t+1) leo =1. Hence F is unstable at O .

50



3.2 A Geometric Characterization

F is unstable at x if ard only if there is a reasonable at x

stopping criterion whose Ye 'S satisfy

(5.2-1) img [Fes x, v0) - £(x, yy) | > 0.

Interpreting this geometrically, we find that the graph of Fie; X, {.

versus finite Y € R{(e) acts like an e-wave. This is pictured in figure

%.2-1 for x= and ¢ = £17 Es

Patina dodestihnSng al sugpat pr g

- J 7
S-- SS 1 F at £1 v F oat €

~ r

“so. ! :
ea. al h

Chow “. ny []
Semana J _  ]

*r No 2 =N\ ia \ |

el !| :
. EE ———————————— re erento siesta i

lim f(e,y y v Y
ye €1 €2

Figure 3.,2-1 Instability

As €¢ —» 0 , the e-wave moves towards x . The crest of the eg-wave

stays uniformly away from yr f(x, y) - (See example 3.1-2).
Two usual stopping criteria are

(1) choose y, to be the first value of Y for which

TF(e; x, Y) < RF(e; x, Y) , as Y —x via some fixed

approach, and

(2) choose Ye to be the first value of Y (as Y -» x via
some fixed approach) such that F(e; x, Y) and the previous

four values of F are equal, within some tolerance.

The trouble with such stopping criteria is that they can make Fle; x, vy.)
ride the crest of the g-wave cut to. x, 1trereby des roving © rvesgereo,
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5.2 A Stopping Criterion That Works

The question arises, is there any suipping criterion lofiecs tury

computable or not) whica yields convergence even when F is imstatle

Rt x 7 The answer is given in the affirmative by the following

definition and theorem.

DEFINITION Z2.Z-1: Stopping criterion S. ct selects Ve to be
that valueof Y € R(e) closest to x at which |F(e; x, Y) -

y lim fx, y)| assumes its minimum over all Y € R(e) (taking
the smaller value for y in case of atie).

We call (v, F(e; x, v.)) the base of the g-wave of F at x . Of

course Ye cannot be effectively computed from F and x .

THEOREM 3.3-1: If & ~ f{{x} x Om - {x})) and yi Fix, y!
is finite, then §. ct works at x .

Note that S. c.t works whether F is stable or nct. Thus there is

some desirable behavior even in the presence of instability.

Proof: Let If = Sim f(x, y) - For any real input y , we have

(2.31) |F(e: x, y) - t] <|F(e; x, ¥) - £(x, y)| + |£(x, y) - 1] -

Let an | > O be given. By choosing y sufficiently close to x ,

keeping y € Mm - {x} , the second term on the right side of (3.3-1)

becomes < N/2 . Then by making ¢ sufficiently small, this value

or y is in R(e) and the first term on the right side of (3.2-1)

becomes < 1/2 (the nesting propervy III of R{e) allows this). For

such y and ¢ , the left side of (3.3-1) is <T . The left side
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bounds the distance of the F(e; Xx, y, | of §S. ot from ¢
and so ©&S. c.t works. This completes the proof.

Thus the height of the base of the g-wave of F an X apprcaches :

yim f(x, y) as ¢ = 0.

23



3.4 An Algorithm for Jverciming Instability

We derive an effective analog to 3. c.t as follows. Suppose

Fw £({x} x Om - 1x}}) and Jim fix, y) exists.

DEFINITION 3.4-1: S. C kd selects Ye to be the smallest value
of Y in R{e) for which (KF ? IF) (ge; x, ¥) assumes its minimum

over all Y in Rfe) .

This is finitely computable because Rie) is a rinite set. This stuppiiy

criterion keeps us close enough to the base of the g-wave of FF at «x

that we get convergence even in the unstable case, provided only that

there is a sequence, Vir Yor cers with each Y4 Em- (x1,

(3.4-1) such that

im, lim spp THE X, ys) = 0.

THEOREM _J.4-1: Suppose that

(1) Jim f(x, y) f @,
(2) Fa £({x} xm- {x})), and

(3) TF satisfies (3.4-1).

Then g. oH WOrks at x -

Proof: This proof in essentially the same as that of theorem 35.3-1.

We will prove that for every TN > 7 there is a 8 > 0 with

(KF* TF) (e} x, y,)<m for all € <b ,

where Ye is chosen vy §S. dd |
Let an T > O be given. By assumption, there is a Y in some

R(,) - {x} with
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| Lim sup Tk te; %, Y) < yl

For this Y there are 6, 6, € & with

TF(e; x, Y) <T7/2 for all e <4,

RF(e; x, Y) </% for all e <6, .
~

There is a §), such that RS, contains an Ty and an 7, with
x _ . * v

(RF % TF) (e5 x, y_) < (RF % TF) (e3 x, Y) < TN for all & <&

The first inequality makes use of the nesting property 171. of R . Ihe

second inequality uses the facts tha:

(1) (RF? TF) (e; x, Y) € N, ((RF + TF) {e3 x, Y)) ,
(2) (RF + TF) (ge; x, Y) <3 T/% , ana

(3) Ty» Ny € Rie) (by property II1 of R ) -

This completes the proof.

Thus 8. co. is a (totally inefficient) algorithm for overcoming

instability. It should be possible to find a more efficient algorithm

for which theorem 3.4-1 holds because

(1) we do not need to find the exact minimum of (RF T 17)

(ey x, Yi over Y € R{(e) ; we only need to stay "sufficiently

close” to it, and

(2) in particular cases, it should be possible to localive

the search for Yo ©

Ln the other hand, it should be possible to show that any stopping

criterion, for which theorem 3 4-1 holds, must require so many
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]

. he - v0 A if: 4 | 4 S : N - I
evuiuationg of RF + Ir UL choose y Loat it cunnol be very of ier

3

In chapter 4, we vrecent an efficicnt alsorit nm that aime

satigiles this taneorem (it hus a somewhat more sir ncendt third

hypothesis, regarding TF.
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.-2 Applicuiicns

We have proven ths umer:ical instalbiriity 15 mot on oS3407 19.

limitation of "nite computasicne. Convergent rowndcif-error ant

truncation-error bounds can be combined with an unstable subrourlioe

to form a convergent algorithm for computing the associated limit.

Here, we consider applicaticns -f this result to the initial-value

problem for crdinary differential equstions  lnstabilities can

generally be classified as

(I) these due te the particular method of solution used, and

(11) those due tc the problem being solved.

We will give an example of each and we will show that the instabiiities

in both of these examples can be overcome by S. co. H . Of course,

the best way to overcome instabilities cof type 1 1s to find a stable

method of solution.

EXAMPLE 3-5-1: (onsider solving the initlali-value problem

y' = -y, y(0) =1, by the corrector formula,

bh.
(3.5-1) Yoel = ¥po1 = 3Vpey tM, YY)

from Milne's method (see [R1, p. 1821). This is a well-known .--

stable formula. Since y, depends en h , let us write y, (h) Lo Tuk-

ing Yoh) = 1} and y,(n) ns eh y we [ind the solution of the alave
difference equation to be

y(6) = ACh) r(n)" + Bh) r_(n)",

where



NZ.
r(n) ==ht Yoh t3)
+ h + 3

en +3) +2nh 1A(h) = r5=1- B{h) .
2 V3(h© + 3)

For fixed h > 0 , we have |r (h)] <1< |r(h)] and B(h) #0,

so that ly, (n)] —® as n —-® , whereas y(nh) -0 . However,
for any finite XxX we have

. Xy _ =X
(3.5-2) Lim y, 5) =e =.

Let f(», y) =y (7) when n=[y]l> 1, and let it be o

otherwise. Let F (e; w, y) approximate £ (=, y) by evaluating

(3-5-1) in some form of eg-arithmetic (see sec. 5.3), where the

approximations used for the initial values converge to the correct

values, Yo (3) = 1 and y, (2) = c~X/n , 88 E 0 . It follows
from corollary 5.3-1 that P satisfies G-1-) RF can be defined
as in sections 5.3 and 5.6, and TF can be defined so that

x

X -X

TF, (e; ©, n) > fy, G) -e | -

It follows that S. cM works when it is applied to Fo .

Because of its extreme lack cof efficiency, S. c.H could not be used

in practice. But the g-limit defined in section Lk.l could be applied

to this F with reasonable efficiency.

EXAMPLE 3.5-2: Consider solving the system,

(3.5-3) y'=2z , y(0)=1,

z' = y » z2(0) =-1 ,
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by the Newton-Cotes closed formula,

+

Yn+1 “n h “n+l “n
(3.5-h) = + =

+ .

“n+l “n Yn+1 "

Again, we will write y (h) and z (nh) . The general solution
(3.5-3) is y = Ae” + Be" , and the initial values yive y = ot .

Thie general solution tu [%.5-4) for Y, is

: 2-hyn 2+hn

y(bh) = Alb) (533) + B(h)(Z3)

Taking yy = -2z, = i yields A(h) = 1 and B(h) = 0.

But rounding errors in computing (3.5-4) in g-arithmetic will build

up so that |¥_ (0) becomes large as n does, even though

B(h) should have been zero. We computed ¥ (05) and v (2)
for n = 20, 30, .., 1000, on an IBM36C/65 computer in short and

long-precision; y, (05) is graphed in figure 3.5-1 ua¢ all the

data is given in tables %.5-1 and 3.5-2.

«5 :

Ne.
Ne,

5 x Cpe ees Ntib I
100 N, 300 50C 700 AIC L0G

(%=5) \ A (x=5.)
\ :
\ A
! .

-.5 \ ‘

-X

—_—e

——— y (.05) short-precision
renee ¥.( 05) ionge-precision

Figure 3,5-_. y (.05)
>9



We again have (3.5-2). The rest follows as in the last example,

except the initial values for F_ are to be yh) = ~z,(h) = 1 .

| : Xy _ oro
It is possible to construct examples where lim y, (5) = y(») does
not hold, even when the initial values are assumed exact. The methods

of this chapter cannot be used t0 overcome such instabilities.
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Data from example 3.5-2
Ft

y,(.05) So }
n double-precision single-precisicn v (L035! oT

“n

2 3.618027 7R85662R 0} 3.6T12G4'=01 3, 6T802TTRESATLIZ ~N] Jo eTOTHLIYY Tw
1) 2423060416715%5%12-01 2e229NL6"'-01 2«23086041A716TNAY=01] aEEA
4) 1¢3527T8RAB&413431R="1] 1,349900'-01 le #527T8BBALILZT20:-01} Ted 33% o.oos .
50 Re 20422411202865¢-02 8.156595*=(C2 Ba 20427246112G5736'=02 A, 20549986273KY . (/
6d 2a PT755949504L2CHARY=(12 4,892212'=-072 Lo PTS594L05053R862V 02 HeaSTATOGR3IGTIRES - 2
7) 3.7175344265653, 9-032 2+.RBTR3845'=02 3,01 153662£T3265=C2 3.01 973R3L223)1460 - (Jy
89 1eR3N0D2 T64BI94504121) 1.600527¢-02 1.83003764927349'=)2 1. 8315638RRBT 3421-02
99 lo 1098528253360 Ya? 7.308926 '-03 le LASRS E2830 TRG 02 1611909965382423'-07?

100 6, 7T3092931520775*-0) Lo 7187731 -( 4 6. T3092932815196*=0% H. T3TGLHY950854Tt =03
119 4082089591 T¢RI5t.03 6.222091 ¢=03 4,082089606%2379°%=0) 420RGTT1I62846407~-03
12° 2e4T5A56485R4T3 ¢-03 ~1.,452738'-02 2:4T756545111824644-03 2+ 4757521 7666636%-0)
13) 1.501403860662339.03 ~2,653506"'-02 1.50140330082150-0)% 1+5034391929T7857¢-03
140 9. 1055254252]17220¢=4 4.931 TR =02 Fe IFSH26CRICZNET Y=), 9,]1188)9855845]18-C4
153 56522204617 T9BRCAY=04 =T,5865694) =. 2 5522205265084 76-04 55308437014 7636'=-046
160 1, 3490 IEC EL42BTY-04 =1:253403%-0]) 3.34G903TTITTISFR4S'=04 3.3586262T7902512-04
17: Sow] 1964T683137%=10"4 -2:,07T0141'-01 Za” 3I1NB24433BASKY=NG 2403464583865010644"--04
18% 1.231 T8NK1697556%=04 “3 ,41%48%'-7] 1.231785400851172'-04 1le23409606L865680~04
190 1o47C2GT01162CR1 9-05 -5.H032893v=0] Te TOATTALGTHLASH=)S T.HRASLEB298ETT0Q6"=-05
209 4,5306CT968%54543%-05 -5,283278'-u1 4e5305409462057629-05 4e5283929T7624848°-05
210 2s T0T6063T218367*=0% =~1,5831482%+00 2.T4TH256465269%39-05 Ce T5356449349T74 71-05
227 1.6659R30866358E] oun ~2e5251614¢00 1. 66634555556R96=15 1«670170079024%6%=05
230 1. 0099AR813299105%=0% -L,l636].008 T lo0105R43SH04L41 4-05 1.01 3009359R4630T7*~05
24) 5,11903419615134°%-0F ~haB865200+00 he 128865258T73795¢=-6 belng21235332822%-06
25) 3. 7T0NT46963034C20-064 -1.131960'+01 31. 7169573401 7579-06 3. 7266531 7207848" =06
269 2¢2274R6450449694%-06 =1.B&53T77%¢0) 2.25421 3ATUIGO21R89=06 2426032540698 06°-06
211 l. 32¥ 334GsF 2C] 0-5 =3,077260%+0] 1s 3671.7238628%51'=-"6 13709590 RAIRBLIQY =H
281 Te 5643345485464 C5%-07 =5,3T3012+( 1] 8.29106053%3214121*~-07 8,31528719103573r(7
29) 3.8299856213432300 37 =9,365090%0] 5.07282584113156337¢=-07 560634 7662567891 7-17
35° 1.073618406882%509-07 =1.379449%2+02 3,04947510339075*~-07 3.05502320501 827-07
31:2 ~1+,40856502826300°-07 —2s2T0450¢02 1e869607617214579=07 1,B5R10]13¢624153:-nY
32 wo 25 9 GS4T BER Va]? =2,750C9RY(02 le 1216.56) MH RI&LAB*-"] 1,12535174719260027
310 8. 17T726BRTZ23IRCYY=0T =f, 1832 30 4f 2 he AQZ21718T7326516%=018 6. B256N0337463%490°- CA
340 “1,4193273]1505055'-06 =-1.0139509%+073 %,12529%539183310°*~-08 45,13993T771RK78812-049
353 -24383322137¢51 104-06 al 681017803 2.,5018%77172479G0"-0R 2:.510999]15574399-0F
360 =3,955923400£92161'-06 ~2:TT1T25%%03 1e51729529262239%~=0R 1.52299716764T127"~ (A ]
370 ~6.533711418L4086%=:6 -4,570008° +03 Fe 2219F 220 IP TREAT" 9,217 486R1TIT A... ©
CLR) “1 0TP123R34TGTCCY=05 ~74535. 274 3 5.530654 24972 7249-94 5¢51279643T53T2G00
190 =], 77T99ARC22T3211'=-06 =1e2%2391*+04 3, 3046R5202531332-D9 3 49H2ATRLGESY=
6) —2¢93528343920222'-15 «2. 06A504% 20% 2:.05Z28R0140RBRZ2 =D 2«0A11536224308E7245
“19 4, A401 R2534362]9 11-08% -3,377685%+34 le 24482306245044%-09 1:25015280663867%9-00

. 420 ~ 74 98107I2TBATB2T 1-5 ~54569184*+04& Te 949465679644 TR4~10L Te53256C42791193=1r
3) ~143160015244B349-04% =F4182394' 1 & %.5T9493315A89NG*=]0 beSOCNS53TBARS 232-11
CED «2alO69958%RT6T) ebb =1.,5%140C1Y+05 2: TTATINTSINGELHL 29-10) Ce TA94 6805 2R6AN 2 ="
G5 ~2.,5787 1G41400 02. =. 4 ~2ea 4963329205 1.6839E2T423RAT2=10 1.691 RA9792241 8141-27
«40 ~54399773229R1009* =04 4.116075 9"5 16321 2A0T73P45790*~10C 1.026187Q6317A OV - 17
47) =94,72809K3151516491=04 te TROTHA® $US be 19373534404] 34°-11 be P?4166062260 7870-11
48) “«le60605014586T230-0) -1.113995% +06 3, 75029891359 T6%0*=~11 3, T7513654472T79121-11
499) ~2eH6443220T40S14T'=03% =1.RG&4SAT* +08 2.27TRB0T7307104144%-11 2.728973484%06465¢°-11
5.2 “443611937446 546T0=-" 1} -3,062077*+06 1.38157T7186R86R6T7*-11 1a 3IRR3TI43BLALIGLY=]
519 =Tal91142225T642R0-013 ~5¢ 1591046 3.37881605964THAAQ°~]? F062 36HITSULBRNG=17
527 ~1e135T74247C43548%-02 =9.270530% +06 S.,08164T7T9285353114%~]12 5.1 90RIPOEL
530 =1.9551628K1675327=0)2 ~1.3636%1'307 3,081 75133027841°-12 J, NAIABLCI2RTITer =] 7
540 -3422305403004472'=-02 ~2+243355%207 ).R6B9RZ220185579%~-12 1,RTAS 2881653909 ~] 0
TR -53431579162.23125%~2 -3., 70709607 1.13347688692314%~1? 1.171909)R% Apa gy Ant ~ | 2
569 ~BeTHESLTNAGINI RIL YD? he l123T4t80 7 he HTH ]1684T4T62°6%-113 6a 91440010696023%=~113
8710 -le 445282086006 21-N1 -1.00TR334+0R 4s 16HI594BTRAN1A4=]3 el TATIRERHTTANET=1
58) =2.383116959344621-0] ~1e 6617 7TAT+OR 2.528338267347C3-13 2. 5436656673TR 530-13
590  ~=3,929505077116144-01 -2.739960%408 1¢533356489R455456]*=-13 1.54281170119139711
6) “bo 4TI33375261 (040-1 ~4.517663% +0" 9 29929B84N62MNT 2014 Go AS TH22QLKRGD2{+= 1.
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TABLE 3.5-1 (con't)

Data from example 3.5-2

at

n double=-precision single-precision y, (+05) @

610  =1.0683728€257508%¢00 =7.448R29% +08 54639721R7512498%~14 5.67568523263274%~14
620  =1.76163262¢25151%¢0 =1.229193%409 3,42, 30779521R16%-14 3,4424T710866999¢-14
430  =2,9047438%87201720400 -26325111%¢r 9 2.07430537765C69'=14 2.0R796791166596= 14
640  ~4,78961206254854%+¢00 =3,339055 9409 1.2579987116255%2-14 1:26641655490942%-14
65¢  =T7.897558213658]17490 -5,5056450% +09 7.629352820973479-15 T.6812064685202134~1°
66C =1,30222251344191%91 =9,TTT7445°4(0 42 b2695421934397%~15 ©. 658R0861651034627-15
ATC  —2,1472263%825262%4¢01 “1,495717%+10 2.806C9716843734¢=15 2.02575S7268711563%-15
680 =3.5405466959% F120) =2,467860%+10 1, 701806619%51150°-15 1.71 390843154202-15
690  =5,837982Q671940440] “%,069138%10 1.03200033629137%-15 1.03952801167023"-15
TY:  =9,62627975C1C799% en} +6, 709189%410 6.259292013735285%=16 6.3°811676014702'-16
T10  =1,587259C7002114%¢02 =1a1062:0%4+11 3,79605693719124%~16 3:824624662809T15-16
720 =2,61722050606276402 ~1.823936%¢11 2.30218500501407%=16 2.%3195228302435R8%«16
T30 -4,31551679667756%002 -3,007370%4+11} 13%620029019724%-16 1.406861T12604515%-16
T40 ~=7,11582580805257%+02 ~%,95870Q%4+11 B8e40750042286430°~-1T 8.53306762574410°-17
75)  =1.173323597182443%4,,) -8.176138%¢11 5213526366575092¢=]1 7 5.175555%C 0580189 ~17
T60 -1.936463516746121%+03 =1.34810Vv4]12 3.11437C18549998°-17 3.,13913279204804°-17
TT0 =3. 19009R995988G50403 -20222770%+12 1:388T76417286654"~17 1. 9039B028328646°~17
78) =5,26011568883186%4073 -3,6649867+12 1o145674033615350-}7 1a 156R2241730158"~17
790 -9,67336939026156%403 «6.,043004%¢12 6.946027113845791-]18 7.,00435202616867°-18
BY =1.63016571T0LL 165%494 -9,064057%+12 ©a21378523416864°-18 2 2481542552916C°~-18
810 =2,35B15738456857%4+04 “1.542879% 13 2. 55509909698752%=13 2,576757L0915499v~18
820 -3,38034540683540°¢04 ~2:708767%+123 1. 54958445690AN9~18 1, 56288218933500°~14
B30  ~6,411647265263432%408 4, 666251412 9«3977254R126248%~19 9, 47935965350479° -19
840 =1.05718325971469%+05 -~Ts306124%0]13 $.6996416£9323045%=]19 5. 769%52226429359%«19
850 -1.76318216745455%55 “1.234235%414 3,45650954594102°-19 3.4RT726153199446°-19
B60 «2,87432102335CC1405 “2. MI2L RG 014 2.096 26056203032=19 2,11513103759]109%=]0
873 =4,73%4806200956°+05% ~34301066%+14 1¢27131381650966~19 1.28289182360879%-19
88 -7.81484316034862%405 ~5,4462843%414% Te 710 1F4599224A56=20 T.78113224113383°-20
RY)  =1,288584CB82138CL*4N6 “8.574361 ¢14 4a67592754511187~20 4e T1 949527152814%=320
900-24 12473738361600°*+06 “lo 79T34%4]15 2, 835797896870821 -2C 2,862518580549419-20
910 =3,503464T781161C9%¢06 =2.439R71 +15 le 71981914 482479920 1, 73620528310030°-20
920 =5.776B3BB5429C49%06  _4,022934%¢]15 1e0430146346T4511°-20 1a05306173575539¢=20
931 =9,52538984505S0AA, 6.633027] 5 He 32554260 597533021] 6.,38716229305844°-2]
94 3 =1.57063491261%463%a07 ~1+J93664%]16 3.083%23575120270-21 3,87394T628608720°~-21
950 =2.58930904785612°+07 ~14803272%+16 2.32655214825826%=21 2.34963833765282°~21
960 =6,27031823276659'¢07 =24973332%¢16 1.41097818964182¢=2] 1e425164082740949-21
9T0 -Te06129R20R%28NS%e07 -4,902%40' 41% 8.55712345%282970°~22 8. 64405711303612°-22
98s «1,16173479316812%4+)8 -8.083218%¢16 5+ 10961691 7N0419=22 $,.26288566336349%=22
993 =1.914462224292436°+08 ~1eI32T4AY417T 3,1673337849T0710=22 3.17997090019776'-22
1000 =3,156677555A1840°+08 ~2,197¢52%¢17 1.90875552327595¢-22 1.92 874984 796393022

Reproduced from
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TABIE 3.5-2

Data from example 3.5-2

(Note: y(5) = e™2 = 6.7379469990855'-03 )

(2) 5
n single-precision” =~ double-precision v,(=)

20 6.259691'-03 5¢56312402779648%-23 6.56312402790868°-03

3) 5 2460650%-(3 6,66008827465367°-03 6,66008827578716°¢*-D2
40 5.009264°-03 6:69412021149203~-03 5.69412021215067*-013
50 5:949687'-03 6, 70988861449936¢=03 6.709888561592713%*-03

60 le 785364%=(03 6.,71845852303765%=013 5,7184585288816T7*-03
T0 -1s430578*-03 66723627391576391=03 6, T72362739775014-0123

81 265116N2%=(3 6. 7269RB278674873=03 65,T72698278853473¢~-03
0 «QP. 46686403 607292834931 06458%~03 5,72928350441466°-03
100 Le T8TT31"-04 6,73092931920775'-03 6,73092932815196*~03

117 -1e192247°-02 6.7321L471C5414C9'-03 6, T3214712415119°~-03
120 -9.010211%-03 6,73307338681753'=03 Ge T3307339919532%-03

139 ~1.851527*-02 6. 73379425406476%*=03 6, 73379428368321'-03
140 ~3:1464952%=0Q2 8,73436623389642%-013 6. 73436629883609%=03
150 -2¢4336643%~-02 60 73682T7742R81800%'=013 6,73482778138931°*-03
1460 2318940 *~-L2 6,73520547117676*-03 6, 73520547763337-03
1713 -2+4624966%-Q2 6.73551848763167'~03 66 73551850753462'~03
180 =-2.789574'-02 6. T7T35780718464965°-Q13 6,73578083277416*-03
190 -3.652655'=(2 Ho T360228(:28C934%-3 6. 736002084084923¢-03
200 ~ho 467228%*-02 6.73619235639365%*=03 6.73619238936501'-03
219 ~656243775%=02 66 T3635547974731%-03 6 13£35551095046%-i33
220 =T.617661%~02 6. T364£9684680107"~-03 6. 73646868992303 74-03
230 <~7.697296%-02 6.73662016382665"-03 6e736620250259659-013

240 =5,590025'-02 6e73672842720946°~0 3 6.73672850653685°~03

250 -T.729518¢*-02 be T3682396844148%~D13 6. T3682403412359%-03
26°) ~1e 12683001 6, 13630867314920%~-013 Go T3690875302489%-03
270 =1.092784°*~-01 6.7369841784858S%~-03 Be 7136984234424561-073
280 ~f8e8930842%~02 6, 73705172709532%=03 Ge 7T3705177405624%-03
290 =} ¢%20971¢~-01 62737112365%526989%=013 5¢73711244818440'-03
300 -9,0%529C8'=02 6,T3716704114330%=~03 6 TAT1ET1I56T45T764-03
314% =1.55476560-C1 6.T3721657511228°-01 64 73721665691298*-03
32) -6,847292°~-02 6,73726155046883'-03 6.,73726158%43395°-03
330 -1l.843618%-01 6.73730261728272%-03 64T3730249947136'-03
34Q -2«111134°%=-(1 6.73733975117423°-013 6,737233985321659%-03
350 -B.065218'=-02 6.737137395472379=03 6.73737405122982%*-03%
360 ~1e433600%-01 60 73740522053359*-03 6.737T40543922362'~03

370 =1.938782%*-01 64 1374341080481 4%-03 00 7374346315683434%~03
3R0 =2.,166646°-Q1 5 T3746083027843%-03 66 T73746094479951°%-03
399 le 720492°-01 6. 7374853140213 7°-93 6a 7137485557186 1N8*=2 3

400 -3,021251°*-01 6.737508232118130°-03 65,7T3750833465946°-03
410 -3,281339%=-01 $5.T3752922285242~-03 64 T3752947178680¢-023
420 -2.661970%-01 6aT37T549176423281*=~03 60 T3T7569111718278*-03
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430 =3,216861*-01 66 T3756717392245%-03 64 73756740798635"'-03

44) -2.298895°'-01 60 7375B8422354465-)3 60 73758446592876'~03
450 -2.621343'-01 6.73760017847728°-03 6073760039536977'-03
460 =4.247934°-01 60 73761493986216°~03 6.73761530502086=713

470 ~3,659283'-01 6.73762889376321°-03 6.73762926941390%-03
480  =4,369898°'-01 6.73764202839905°-03 6.73764237016332°~03

491  =2,354(91°'~1 64T37654264357030=3 6, 737654677C4661°-013
500 =4,692361"-01 6.73766612594913'=03 50 737666252932189-03

510 -4.,564425°-01 6.73767672532680°-03 50 73767715458583°~03
520 ~5.69T100°-01 6.T3768716786513°~03 6. 73768743337064°-03

530 -3.301094'-01 6.73769694177762°-03 be 73769713584793¢-03

540  -5,685695'=(1 6, 7T377059427C581'-013 6+ 137 70630431939%-"3
550 =4,983457'-01 6.73771446165673=03 6073771497723%RR'=03
560 =4,773043°-01 6473772287717663'-03 6.73772318970571'-03

570 =5.245698"'-01 6.T73773079293770-03 6s 73773097374647'=03
560 -6.700377'-01 60 73773792119116°-03 6013773835864671'-03

597 -3.889994°-C1 60 T37T74510L04CBL6=1)3 64T37745371237600<13
600 -64671242'-01 5.73775166255439°-03 6.73775203613112°-03
610 ~4,950620'-01 6, 73775782487857%-03 6.73775837593928'-03
620 ~-3.8403C6°-0] 6.737764%3266523%~03 6.73776441146410°-03
630 =3,033572'-01 6 737769670839371=03 6,73777016187205°~03
647 ~2,756428'-(1 6. 73777552133174"-n3 60 13777564484225'~13
650 -3,408707°-01 6. 73778042609231%-03 6.73778087670528'~03
660 -3,852482°-01 6,73778549849570*-03 6.73778587256356'-03

613 -5.8884737-01 64 T37790316283562%-13 6473779C64645G175%~r3
683 -7.872203*-01 6.73779471105827¢-02 6473779521118206'~03

690 =3,430381'=(] 60 713779852498558%-07 6.73776957893728*~(3
700 =6,93T7112°-01 6 73780350997523°-03 6. 73780376084265'~03
710 =3,669302*-01 6. 73780712959780°-03 6 7T3780776729641°-03
72) =T7.8u2510°-01 6.73781M81512993*-03 6. TITB1160797738=3
730 ~5.162380%-01 6.73781432097763*-03 6.73781529190711*~03
T40 ~-1.016203°+00 6, 73761941643361°-03 6.73781882749937°'~-C3
750 -8.151451°~-01 6.73782126475786°~03 6,73782222261299°-03
T60 -T7.357829°-01 6.73782467537295°=03 5.73782548459333-02
TT)  =6.082242°-01 6.7378275333658( *-03 6073782862931199*-C3
780 =5,016716'-01 6.73783071650218°-03 6073783163619979%~03

790 =4,737896°-01 6.T73783354780333%-03 6.73783453828859=03
800 -1.252605°+00 6.73783652995367"~-03 6.73783733222987'-03
810 -1.300713'+00 6,T73783944C88058°-03 673784002333290'~03
827 -14331237'+00 6,7378414CC13634°-93 6.73784261658259°-03
830 =-5,401559'=01 6.73784431744590¢~03 6.73784511666591'-03
840 ~6.525357'-01 6.73784715451264'~03 6.737864752799305°-03

850 ~8.088494'-01 6.737R4877379256%=Nn3 6.73784985471704°-03
860 =9.591714'-01 64 73785099926720°-03 6.73785210075035-03
87) -1.185460°+0C 6,73785365971621°-03 60 T3785426677910°~3

880 -1.424537°+00 6.737855640927053°-03 6. 73785636528441'=-03
890 -6.967568'-01 6.73785762185479°~03 6. 73785839055333'~03
9) -9.581641°'~-C1 6.73785952038243°-03 6.73786034868853%-03
910  =1.313843¢00 5073786126569431°-03 6.73786224262577¢~-03
920 =1.630921°'+00 6673786333796671-03 6. 737864075141006°-n3

930 =9.874165'-01 6+.73786484051156%-03 6.73786584886044'-03
940 -1.385051¢+00 6. 737865E04T78379¢-03 64 T737B6T756627456°-03
9590 =-7.,232992°-ul 6, 73786855901075*~-)3 60 73786922374096=03
960 -1.191267%¢00 $0 73786999140930°-03 6. 73787084149377*-03
970 =1.731914'+00 6.73787132726719°~03 60 737872403656461-03
980 -1.096796%+00 64 73787322673937-02 6, 73787391824294°-03
990 ~=1.628775'+00 62T3787457394860~03 6.73787538716515'-03

1607 =9.,935147°-(1] 6.T73787547487356%-03 6o 7T3787681224056¢-03
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REMARKS: Our definitions of subroutine and stability (def. .4-> ard

%,1-2) depend on the machine number system (R, €} being considered

We can eliminate this dependence by defining an algorithm Q fir an

ideal function f to be a constructive mapping from {the set .¢ 417

(R, €)] into {the set of all subroutines}, such that F = QR, &

is a subroutine relative to (R, &) and F and f satisfy 31-0)

Thus @ is a recursive operator {see sec. 1.5), mapping any determiner

(og, Ny, of (R, &) into a determiner Y of such an F = QR, &}
Roughly speaking, Algol procedures and Fcrtran subroutines are examples

of such algorithms. We would then say Q@ is stable relative to (R, &’

at x if Q(R, &) is stabie at x . Note that x is a real input,

and therefore x depends on (R, &) , We would say @ is stable

at _c¢ (a numeric constant) if, for any (R, €) and any real input

x=c¢, QR, &) is stable at x . If we alow Q +> take more argu-

ments, say a 1ist of algorithms of the above type (as well as (R, € 3},

then we get stronger and more general concepts of stability, analogrus

to those found in the literature on the numerical solution of oralnary

differential equations. |
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Chapter 4: g-Limit, e-Comparison, e-Convergence, and

e-Continuity

4.1 e-Limit and Truncation-Error Bounds

Define an operator, i? over the set Sim of ideal functions

of two variables, by

(4.11) £1, (1) (x) = im f(x,y) . |
y—K

Thus Ps maps an ideal function of two variables into an ideal function

of one variable. This operator represents a notion of limit. (We cona-

sider limits of the forms lim g(x_, 7) and lim hix_, v) at the
Yo *m = Xn

end of section 4.3 and in section 5.4.) Having x in the argument list

of f considersbly simpiifies notaticn because the TF part of ¥F

. depends upon where y is going; if we are interested in lim g(y),
PX

we will simply form f, with f(k,y) = g{y) when k £ w, and then

££

consider Lg £(x,y) .

To formulate an €-notion of e-limit corresponding to Bim we

must define a set S..m of e-functions and an e-operator (®.. Ui
over S such that if ¥€ S,. and Fa f{(P) then

lim lim

¢ . i i1intF) ns Bs (£2(y; (F, f, P)) One way to define din is to
select some effective stopping criterion (see ch. 3) and define

(h.1-2) 0.(F)(e5x) = (Fle; x, v0, (RP + TF)(e; x, vy), w) ,

where Ye is the value chosen by the stopping criterion when it is

given €, x and ¥ . If we selected tne S. Ld of definmiticn 3.0421,
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we would have a totally inefficient in with good accuracy, a large

Sim and a good im . But its total lack of efficlency rules out

this ® im ;

Another method is suggested by the proofs of theorems 3.3-1 and

3.4-1. Roughly, this method proceeds at precision e by

(1) finding a §& <e¢ anda YE R(8) such that the truncation-

error bound, TF(8; x, Y), is <,

(2) finding an TM <8 such that RF(M; x, Y) <e, end

(3) defining JPMCIICH x) to be (approximately)
(P(N; x, Y), 2¢, w) . |

Of course, these steps vill have to be modified and Sim will have

to be defined so that this process halts for each ¥ € Sy im? any €
and any real input x . As we shall see, the only stability require-

ments needed to insure that this method converges concern TF (and not

F or F? RF).

DEFINITION 4.1-1: Suppose ¥ ay f(P) for some P . We say TF is

stably convergent at x relative to f precisely when |

[ns fix,y) £ o = lip, TF(e; x, Ye) =0 ,
as longas the Ye '8 are chosen by any reasonable at x stopping

criterion.

This is a stability requirement on TF because, if we assume that

Hp, TF(s x, ¥Y) always exists, then it is equivalent to requiring

that Hp f(x,y) # w should imply the existence of a tf such that
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(1) Tim TF(e; x, Y) = tf(x,Y) for all Y € M at which

tf(x,Y) # w ,

(i1) TF is stable at x (under def. 3.1-?), and

(114) Hip t5{x,y) = 0.

Let Syinm be the set of all e-functions ¥ of {wo variables

such that for esch x € R and each E,

(1) [Y € R(e¢) and RF(e; x, ¥) # w] implies lim BF(e; x, Y) = 0,
and

(2) [TP(e; x, Y) # w for some Y € R(e)] implies

2 LJ — ! 3

[ im TF(e; X, Ve! = 0 as long as the y_'s are chosen

by any reasonable at x stopping criterion].

For the following, we assume that an effective, reasonable at any

x # w, stopping criterion, S.C., is given. We =2ls50 assume that c

rE —-»M is given which satisfies

(1) A(e) € R(e) and A(e) > O for all «,

(ii) lim A(e) = 0, and

(iii) Ae, ) = < y(i, *) > for some recursive function, ¥ .

We define Pim in terms of S.C., A and the T and I of section
2.8 by

DEFINITION 4.1-2: Let JF € Soi x and € be given. Let

Ye ’ Ye y ... be the values se_ectedby S.C. for TF and x.
1 2 -—

If TF(e; x, Ye) = w then define 2. (Fes x)= (w, wv, w) .

Otherwise, let & be the largest member of & such thet 8 <e

and TF(6; x, Vg) < Ae) . If RFS: x, vy) = w tren define



0,5 (Fes x) ® (0, ®, ®) . Otherwise let Jj be the smallest

integer such that cs <8 and RF(e x, Yg) < Ae) . Suppose

Fes x, yy) is <Op(d, », °) > end let B.(-} be Cold, k,
Define

o_. (¥)(e; x) = (Ie, 8), 2X 2(F [I(e, B,) = I(e, 8), »)

For ¥ a f(P), define

(4.1-4)

QF f, P) » {x: {x} x (MN {some neighborhood of x}) CP
and TF is stably convergent at » relative to f},

THEOREM 4.1-1: We have

[w

(© Qin) ™PrinlSrgn)

Proof: Suppose ¥ oy f(P) and ¥% € Sim . Let x € CIC £, P) be

such that I = im, f(x,y) # w . Then for sufficiently small ¢,
TF(e; x, Ye) £w and we can find a 8 with TF(§;: x, Vs) < Ae) .

let & denote the largest such value < € . This means that

| £(x, yg) = tf] <a(e). If 8 is sufficiently small (it will be, if

e was) then RF($; x, Yg) # w and we can find en 7 <8 with

RF(M; x, Vg) < Ae) . Let 5 be the largest such 1 . This means
that

[P(e5 x, yg) = 2x, ypdb SMe)

Thus we have

(4.15) IF(e5 x, v) - 2] < 2A{e)
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For each e, the corresponding Fle, cys xX, Yai) equals some

<op(i(e), ke), -) > . Tet B(-) ve op(s(e), k(e), ©) . From
(4.1-5) we know that

if 1 =+® then < B, >= f for all sufficiently smalii ee .

It follows that

. a) Lv 4

(4.17) lim I(e, BP) = am I(e, B) = £ ,

”N wv

because I(e, e,) and Ie, B,) are both in N_(< Be, >) . Further,
Ly tlhe triangle inequality and (4.2-5) we have

” ~N L 4 .

(b.1-8)  [1(e, B,) - tl <2 Ke) * |I(e, 8) 2 I(e, BD]

By (4.1-7) and theorem 2.8.1, the right’ side of (L4.2-87 spproacles

O as ¢ — 0, which means that

; : \

lim 8, (Fle; x) = (Lim £(x,v), 0, w)

This completes the proof.

JT overcomes instabilities in F and/or F % RF by using z

stably convergent TF . First it picks a place (va(ey) at which
to evaluate the ¢-iimit, and then it increases the precision until

the crest of the Ej(e)wave has moved past Yee) . Tne efficiency

of 2 im wiil depend on

(1) how closely TF sand RF approximate tne errors tha’ they

bound, how difficult they are to evaluate, =ni
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(2) how judiciously 5.C. chooses its ve 'Ss if they are

unnecessarily close to x then Jj may have to be made

very large (an expensive enterprise) before RF(e; x, Vg Ae,
especially when F or F T RF is unstable at X .

Thus we say that im offers a potentially efficient algorithm for

overcoming instability.

We will use Lt Fle Xx, vy) to denote $n (F)(e; x) and we
call this the e-limit of F at x.
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L.,2 e-Comparison Relations, <, end =

In the following sections, we will need an g-less-than relation,

<<» and an &-equality relation, =, - We will define these relations

80 that

(1) F(e; x) <e Me; ¥,) is true when, based only on the infor-

mation given by ¥(e; x) and Kes; v ), £(x_) must be less

than e(y,), and

(2) ¥(e; x) =. He; vy) is true when, based only on the informa-

tion given by (eg; x) and Je; ¥,) f(x) might be

equal to e(v,) .

Essentially, the e¢-less-than relationship holds when the interval

[F «- RF, F + RF] lies entirely to the left of the interval

(G - RG, G + RG], and t-equality holds when these intervals overlap

(see figure L4.2-1). Of course =, Vill not be an equivalence relation
because it will not be transitive.

Fr G | F : G |
¥ < ¥ S- ¥

¢ ~Comparison ¢

(a) FIGURE 4,2-1 (b)

DEFINITION 4.2-1: Let x and y De poor real inputs. Fcr ¢ € &,

define x = y to be true (and x # y to be false) precisely
when

(h.2-1) |x(e) 2 Y(e)] < Rx(e) ¥ RY(e) .
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Define x <, y to be true (and x Re y to be false) precisely when

p' # y and X(e) < Y(e) .

For a., a, > 0, a € R(e), when the triple (25) appears in sn
g-comparison {e fixed) this triple is to be understood to denote the

poor real input a ® (A, RA) defined by

(w, w) § > ¢

(A(8), RA(S)) = .

This convention allows us to e-compare €=-function values directly.

At all times precisely one of ¥(e; x) =, He; YD %(e; x) <, He; v,)

and He; vy) < *(e; x) holds.

THEOREM 4.2-1: Let x and y De real inputs. Then

X=y® [x =, y for all ¢€]

x <ym= [x <, y for all sufficiently smail e] .

x <ye& [x <c ¥ for some ¢€] .

Proof: If x = y then we have, for ail E,

1X(e) o ¥(e)| < 1x(e) - ¥(e)| < RY(€) + RY(e) < RX(e) % RY(:)

and 80 Xx =e ¥ for all e¢ . If x =e ¥ for all e, then applying

theorem 2.8-1 and taking the limit of {4.2-1) as e=>0 yields

|x - yl <0, so x=y.

If x <y then, for all sufficiently small ¢,

(4.2.2)  X(e) < Y(e), |x(e) ¢ Y(e)| > Rx(e) ¥ RY(e)
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the second inequality holding tecause, by theorem 2.8-1,

|X(e) o Y(e)| = |x-y| > 0 whereas RX(e) ® RY(e} » 0. Thus x <g ¥

for all sufficiently small ¢ . If x<_y (some €)} then (&.2-2)
holds and so

Ix(e) - v(ed| > R¥(e) + RY(£)

implying x < y . This completes the proof.

Let bool[statement] be 1 if the statement is true and O if

it is false. The notions of comparison given by

Ww if f(x) =w(1=1 or 2)
B(T)(E) =

- ~ - * = »
bao’. [r(x ) £.(x J] otherwise,

for * being = and <, can be e-ized easily, (0 yieid weak ¢€=-

operators, (%,, Q,) . The weakness of these ¢-operators is due to

the fact that the information given by F, (e; x )(1 = 1, £) may never

{for any €) be sufficient to determine that £,{x_) mist equal

£,(x) . See Bishop [Bl, p. 24] and Aberth (AY, pp. 287-8) for similar
considerations.

Techniques from intervzl analysis can be formslized in the e-calculus

to yield a weak g-operator corresponding to the onerator, |

® if a or b isin {=, =, w}

p___(£)(a, bv) =
pos .

bool {£(x) > 0 for a < x <b] otherwise .

We leave this to the reader.
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4.3 e-Convergence and e-Continuity: Pointwise

In this context, we say ff converges at x precisely when

dm, L(x, y} # w ; i.e., precisely when the limit exists in the usual

sense. Otherwise, we say f diverges at x.

DEFINITION 4.3-1: Fix x and € . We say ¥ e-converges at x

precisely when

(4.3-1) LIM ¥(e5 x, y) Fp 0

Otherwise we say ¥ t-diverges at x .

We say f is continuous at x precisely when

(4.32) f(x, x) = Jim, f(x, vy) £w .

Otherwise we say f is discontinuous at x . Note that (4.3-2) uses

the transitivity relation 2 = b £ ¢ ® a £ ¢ to insure that f(x, x) A w.

Since =_ and fe do not satisfy such a transitivity relation, we
must explicitly insure this in

DEFINITION 4.3.2: Fix x and € . We say ¥ is e€-continuous at x

precisely when

¥(e; x, x) = LOM ¥(e; x, ¥) Ae w and ¥(e; x, x) Fe ©.

Otherwise we say ¥ is ¢-discontinuous at x . We say ¥F is

strongly e-discontinuous at x preciseiy when
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Fes x, x) fg 1DF(es x,y)

If we are interested in the continuity of g(y) at y = x, then we

simply form f, with f(k, y) = g{y) when k # w, and investigate

the e-~continuity at x of some F corresponding to ff . Let 2

be as in definition 4.1-2, when 3 value for 2 is found (i.e., when

TF(e; x, Ye) £ w); otherwise let £ be ¢. Let ¥_ denote the
finite subset of 2 given by

F ={F(M; x, ¥): YER) and e, SMe e}

From the definitions of e-function, of ¢-limit and of e-equality, it

follows that

(1) ¥ e-converges at x when, based only on information contained

in Fr f must converge at x, and

(2) ¥ e-diverges st x when, based on.y on information contained

in Fs f might diverge at x .
\

Let ¥. denote the finite subset of (>) given by

Fr = {F(1; x, x): £ <M<e} .

As above, we have

(1) ¥ is e-continuous at x when, based only on FU ¥: ,

f might be continuous at x, and

(2) ¥% is strongly e-discontinuous at x when, based only on

¥ U 7 , [ must be discontinuous at x .

These definitions can be expressed in operator, e-operzior form as

follows. let S,j, Dt &s in section 4.1. Define operators
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Lp Bont’ each over Stim’ OY

Bony E(x) = bool [f converges at x] ,

Bont (£)(x) = bool [f is continuous at x] ,

so long a8 x # w . Of course, Boony( Ew) = Bont) (@) =w . Define

e-operators corresponding weakly to the above by equating, for =x Fe Ww,

] (%)(e; x) = (bool [¥ e-converges at x] ,
(4.3.3) conv

bool [¥ e-diverges at x], w) ,

ont (Fe; x) ® (bool [¥ is e-continuous at x] ,
(4.34)

l-bool [¥ is strongly e-discontinuous at x], w) ,

(43-5) Q,.(% £, P) =a, (%, £, P)N{x: (x, x) €P] .

THEOREM 4.3-1: We have

(4.3-6) (® conv’ Qin) ~ AeonvSiim) ’

(4.37) (® cont? ont’ ~ Beont (S15) )

Further, if f converges at x for pll x € Q,, (¥, f, P) then

ond) is not weak. If f is discontinuous at x and

f(x, x) £ and HAD f(x, y) # © for all x € ont (Fs f, P),

then ©. (¥) is not weak.

Proof: Consider e-convergence first. Suppose ¥ mw f{P) and x is

in Ry 1p (Fs f, P) . If f converges at x then by theorem 4,1-1,
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Lip ¥(e; x, y) = (lig f(x, y), 0, ) as € = 0 and so 130 Fle, x, vy)

must be Fe w for all sufficiently small € . If f diverges at x,

then at f(x, y) = w and so pal: Fe; x, y) =, @ must hold for all € ,
This and (4.3-3) yield (4.3-6) and the first remark after (L4.3-7).

Consider e-continuity. Suppose ¥ me f(P) and x is in

ont (Fr f, P) . If f is continuous at x then theorems U.l-1,
4,1-2 and the fact that (x, x) € P give us E-continui:y for all

sufficiently small ee. If f is discontinuous at x then

f(x, x) = ® or lig f(x, y) = w or else f(x, x) # lig fix, y) .

In the first two cases we have ¥(e¢; x, x) =, © or LIM ¥(e; x, y) =p @
for all €, and so ¥ 1s always e-discontinuous at x . In the third

case theorems 4.1-1 and 4.2-1 imply that ¥(e; x, y) fe LI Fle; x, y)
for all sufficiently small €, so F is e€-discontinuous at x for

all sufficiently small € . This and (4.,3-4) yield (4.3-7) and the last

remark. This completes the proof.

Let f be an ideal function of m+ 1 varisbles and g an ides’

function of 2m variebles (m > 1) . We can easily discretize 'f

converges at x " (true if Ja fx vy) £ ) and "f is continuous
on : = _ - . .

at x (true if fx, x) = He £(x_, vy) # ®) . However, with our

: present setup we cannot discretize "g converges at x" (true if

lim g(x, Yy) £#w) snd "g is continuous at x" (true if
NA ¢
mm

g(x, x) = lim g(x, y,) # ®) because our truncetion-error bounds
y =x
mm

do not give the necessary local information about all the possible
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approaches of y to x . (The x appearing in gix, Yy) may

just be dummy variables teliing where Yy is to go.) We could have
done this latter discretization if we had assumed truncation-error

bounds, TG(e; x ’ y ), for limits of the form lim g(x ; y Y.
m’ “m - = m’ “m

yx
mm

We would then have defined an e-limit of the form LIM Ke; x, v7) .
y =x
mm

Of course this e-limit would not be more powerful, computationally,

than Lal Xe; xs y), because m successive applications of the
m

latter ¢€-limit are essentially as good as one application of the former;

the difference between these two e-1limits is thut the latter one will

approach Xp along the m-dimensional axes whereas the former one may
take any approach. This follows from the relation,

dim glx,vy Fel =» lim gx ,y )= lo ... li» ex, vy) .= w To EE ECEALERRCAAmm mm

Thus, if the limit exists, the domain set of JF is large enough and

the truncation~error bounds involved are stably convergent, then both

these ¢-limits will work. We have avoided the more complicated form

of €-limit in order to simplify notation.
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L.4 Discontinuities

In order to discretize convergence and continuity over intervals,

we must know more about the kinds of discontinuities f can have in P

while there 8till exists an e-function corresponding to f over P .

Consider the ideal function ff defined for finite x and y by

f(x, vy) = bool [x <y] .

Define an e~function ¥ by

¥(esx, vy) ® (bool [x 9 y for some TN > ee], bool ix 2 y or
RX(M) = RY(T) = 0 for some 1 > ¢], w),

go long a8 x and y are Fo «=, ®, ® . In this case we have

Fm f({(x, y): x#£y or x=y€M) .

However, we only have

> ~ 2%?)

the correspondence being weak because RX(T) # 0 for TM > ¢ implies

¥(e; x, x) = (1, 1, ) ane so $49 RF(e; x, x)# 0 for any x €m.

Let ¥' be any e-function weakly corresponding to f over x2) '

Then for x =y ¢ Mm, RF'(e;x, vy) cannot go to O with € because the

inputted values of x and y will always be inexact, and so ¥F' will

never have enough information to decide for sure that x= y .

Many variations on this basic theme are possible. The underlying

principle is given by
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THEOREM 4.4-1: Suppose ¥ = £f(P) and Xo €P is a point of

discontinuity of f {i.e., f(x) =o or _lim f(y) # f(x))
y x
mm

and f(x) # w. Then at least one x, €M .

Proof: Suppose ¥, ff, P and x satisfy the hypotheses, but |x, | £

end RX, (¢) #0 for ell € end i=1,2,..., m . We will prove that

this implies lip RF(¢; x) £ 0, a contradiction. Suppose Y¥, and

Y, are the given determiners of ¥ and RF and that F end RF

involve respectively ry and r, subroutine constants, For k= 1,2

let n(e,) be the least value of n such that vy,(i, GN (xwer, )) £0,
and define

{ -—n{e,) max(n, (e. ), n,(e,)) .

Let oe) be the m-dimensional rectangle of real inputs,

oe) = v,: GN (ey (¥p) = ON (eX)? .

All the sides of ofe) have positive length. Tet {, and !_ De

the limit superior and limit inferior of £(y_) as Yo - x and
define

He o- 1) if 1 4
DN Ty - + -

K =

3 t, - £(x)| otnerwise |,

n{e, ¢) = sup le - f(y) for c €E8 .
- m

y € os)
m

K> 0 becuse ff 1s discontinuous at x . There are fA € o(e)

which make £(y,) arbitrarily close to the one of f , I, £(x,)
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which is furthest from ¢ . Thus we have

he, c) >K for any c¢ € ® ana any € .

For any real inputs v, we have

RF(e; ¥) > [F(e; 7) = ev)

For y_ € o(¢) we have F(e; y,) = Pe; x) and RF{e; Yy) = RF(e; x) ,
yielding

RF(e; x ) > _ sup |F(e; x) - (3 )| = ne, Fle; x ))
y_ € os)
m

Thus RF(e; x) > K>0 for any &, the desired contradiction. This
completes the proof.

COROLLARY 4.4-1: Suppose %, f, P and ro satisfy the hypotheses

of the above theorem. Then for each j = 1,2,..., m, either

x, € M or the function g{y) = f(x, corr X32 Yr Xgpus ese x)

is discontinuous at y = xj°

Proof: Define 4 by setting TG ®= w and

Ge; y) = Fle; Xpress Xg_gs Vs Xspqseecy x) ,

RG(e; y) = RF(e; Xypeees X57 Ys Xip1 coe x) .

Then & as g(fx.}) and ex) = f(x) £w. If g is discontinuous

at xy then, by the above theorem, x € Mm. This completes the proof.
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COROLLARY 4. 4-2: If Fa £(P), (x , x) € Pp, f(x, x) £ ow and

f is discontinuous at x, then x €m.

Proof: Under the given assumptions, (xs x) is a point of disecon-

tinuity of £f, 80, by corollary 4.4-2, either xX. EM or gly) = fx, Y,

is continuous in y at y = x The latter alternative is ruled out

by assumption, so we have X_ € M . This completes the proof.

COROLLARY L.4-3: let P be a set of m-tuples of numbers and

suppose ¥ a f(P) . Then f is continuous at every x €P with

f(x) # » and |x, | Fo (L=1,..., m).

The second use of P is as a set of real inputs (see sec. 2.3). For

example, FP might be gm) .

Proof: Suppose ¥, f and P satisfy the hypotheses. Assume that

x € P with f(x) # w (and hence Xs £w for all i) and

|x, | fo for i=1,..., m. Define Y, by

Y,(e) = X.(e) ,

RY, (¢) = max(®(z), RX(¢)) ,

for 1 =1,..., m and all €, where O&€) {is the smallest positive

number in R(e) . Then each ¥y is a real input and Y, €P . From

theorem 4.4-1, we know that f canhot be discontinuous at Yo and

hence not at x, . This completes the proof.



4.5 e-Convergence and ¢-Continuity: Cver Intervals

For simplicity, we consider oren intervals. weil ola, bY denote

the open interval between a snd bla, b € R) . Define the open

¢-interval between a and b, 6(c; 2, t), by

8(e; a, oY) = {Y: Vv ER)" oa, b), ¥ Fo a, Y Fe bv}

For Y € R{e}, the decision Y € G(e; a, b) is effective, given real

inputs a and b, and we have

O(e; a, B) C ofa, for 111 e ,

U (ec. ; a, o) = ola, BY NM .
1>1

We say f converges cover o(a, b) precisely when f converges

at ell x € o{a, b} . Otherwise, we say £ diverges in ola, b) -

DEFINITION 4.5-1: We say a €-converges over Sle; a, b) preciseiv

when ¥ e-converges at ali x € ®(¢;, a, b} . Otherwise we say

¥ e-diverges in Ole; a, b) ,

We say f is continuous over ola, b) precisely wnea ff is continuous

at all x € ola, bt) . Otherwise we say f is discontinuous in oa, bY,

DEFINITION 4.5-2+ We say F is e-continusus over &e, a, o)

precisely when F is _e-continucus st ail x € Oe; us, Db) .

Otherwisewe say ¥F is e-discontinuous in ®&(e; &, b) . We say

¥ is strongly e-discontinucus in ®e; a, b) precisely when there
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isan x € 6(e; a, b) such that ¥ is strongly e-discontinuous

at x.

We express this in operator, e-operator form by defining, for a # w

and b#£w and f € 8.1m ?

Deenvol (2, b) = bool [f converges over ofa, b)]

| Beontol (2 b) = bool [f is continuous over ofa, b)] ,

and defining, for a #e w and Db Fe Ww ,

| 8 vol FHES a, b) ® (bool [¥ e-converges over ®(e; a, b)], », w) ,

& ontotFI(es a, b) = (bool [¥ e-continuous over ©(e; a, v)] ,

l-bool (¥ is strongly e-discontinuous in &(e; a, b}], ©) .

- . 5

| Since the evaluation of 8 onto F(E; a, b) and 8 vol) (es a, b)

| involves the evaluation of ¢, (%) only at e€-points (ej; x) for
which x € R{(g), the set 8 of e-functions to which § and

0 convo

: . -

onto may be applied is defined as follows. Let S, be the set

| of all e-functions F of two variables such that for each € and

each x € R(e) ,

(1) (Y € R(e) and RF(e; x, Y) # w] implies Him RF(e; x, Y) = 0,
| and

(2) [TF(e; x, Y) # o for some Y € R{e)] implies

. ] _ :

[ lim TF(e; x, vy.) = O as long as the y_'s are chosen

by any reasonable at x stopping criterion].

85



In order for §% and §¢ To work weil on FE€S8S LF «1. igve
convo Col on

to approximate its f uniformiy over o.a, LY VM in a sense ©. oc

defined. Otherwise, for examp.e, f may converge over oii, 0),

but for eacn i, ¥F may es -diverge at x for each x € 8c_; 3, bp, -

Se, 3 a, b) . We would thea have

(1) x €mMN ola, bY) = F e-converges at x for sll sufizi=ni.y

(2) FF ¢-diverges in O(e; a, b) for 21 ¢€ .

DEFINITION 4.5.3: We say ¥ approximates { uniformly at a, b,

u Co. _ CL.
written ¥ wa fle, bl, precisely wher there is a 6 > 0 sucn that

/ \ / (2)
for each € <8 and every (x, y; € 8&5 a, b)'~ we have

(1) fx, y) # wo =Fe; x, v) £,_ », and

(2) lin f(x, dF w= TR(e; x, vy) # ©

wet P be a set of pairs of real inputs. We say © covers

(2) : - pa) = . ? * LA - Leo{a, b) precisely when, for each pair of numbers .c, 4d, € ¢iz, 0)

there 1s a pair OX, yy €P with x=¢ and y=4d . Zet Q Ye a

set of real inputs. We say @Q covers a{a, tb) 17M precisely wnen,

for each € and each number c¢ € ola, b) N R(e) there is a real inps*

x €Q with X(8) =c¢ and RX(8)=0 for 6 <e , Define

Q,(%, £, PF) = {{a, Bb): a # b, P covers la, ob), Fa fia, vl) |

/ =
f(x, y) #0 for x, y, € 2(a, pv) ~/, Q ; (¥, t, ¥) covers ofz, ct my.

se
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THEOREM L.S-1: We have

(# onvo’ QQ) = Beonvo Sy) ’

(®_ nto’ 2%) ~ Poonto'Se)

Proof: Suppose F a f(P), ¥ € Sand (a, b) € Q,(%, f, P}) . Then
corollary 4.4-2 and the fact that f(x, y) £ ao for (x, y) € ofa, »)(2)

imply that f converges over o(a, b) = M . Suppose f converges

over the rest of oa, b) . Then there is a 8 > 0 such that, for

each € <8 and every (x, y) € &¢; a, p)(2) none of F, RF and
TF equals w at (e; x, vy) . This means that ¥ ¢-converges over

&e; a, b) for all e<& and so

(k.5-2) +3 8 onvol Tes a, b) = (Boonvot £)(es b), Wy w) .

On the other hand, suppose there is an x € 8(a, v) NM such that

f diverges at x . For all sufficiently small ¢, x_ € &c; a, bv)

and TF(e; Xs y) =o for all y . This means that ¥ ec-diverges

in 6&(e; a, b) for all sufficiently small €, again implying (4.5-2).

Consider continuity. Corollary 4.4-2 implies that f is con-

tinuous over oa, b) - M. Suppose f 1s continuous over ofa, db) NM

also. By the uniformity assumption, for all €¢ <8 we have

¥(e; x, x) 4, LR ¥e; x, vy) 4, © end Fe; x, x) =,

La Fe; x, y) for all x € &e; a, b), i.e., that ¥F is e-continuous
over ©(¢; a, b) . This implies

(4.5-3) a) (® onto T(E; 8s b))y = Peontol £85 b)
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On the other hand, suppose there is an x_ € ola, b) NM such that f

is discontinuous at x. This x is in &{e; a, b) for all suf-

ficiently small tt . By theorem 4,3-1, ¥ is e-discontinuous at X

for all sufficiently small 8 . Thus ¥ is e-discontinuous in

&(e; a, b) for all sufficiently small e, again yielding (4.5-3).

This completes the proof.

It 1s not difficult to generalize this to half closed and closed

intervals, and to a definition of "F e-converges for x € &ce; a, b)

at x 5" and '¥ is g-continuous for x € &(e; a, b) at xq"
for ¥ of m+ 1 variables.
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REMARKS: In the "e-calculus of stable e-functiors" mentioned in the

remarks at the end of chapter 2, an e-limit e-operater could be defined

by using a particular, reasonable at any x 7 w, stopping criterion

to define

o(F)e; x) = Fle; x, y_)

Qn (Fs f, P) = {x: Lim 20x, y) # w=F is stable at x} .

However, it would not be possible to define “e-comparison” relations.

<e and =? satisfying theorem 4.2-1. It would nct be possible to

define '"e-convergence'' for reasons mentioned in section 2.5. Due to

the lack of "e-comparison"” and "e-convergence', it would not be

possible to define "g-ccontinuity' either. A better name for this

"e-calculus'' would be "a model of scientific computation" because the

model would still be strong enough to do basic computation, but the

reliability of results would have to be checked outside of the mcdel,

by physical tests or by an error analysis.

It is interesting that theorem 4.4-1 would no longer hold in this

model. When "¥ a f(P)", any x € P could be a point of discontinuity

of f, provided P dces not contain all "real inputs" Yy equal in

value to x or P does not contain a neighborhocd of x . However,
we would have

THEOREM: Suppose I,je..s I \n> 1) are intervals contained

in R. Let I =I X..xI . Suppose "Fm £(I)" and f(x)

is finite for x_ € I. Then f is continuous in I .
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The second use of I is as a set of m-tuples of "real inputs’, under

the convention in section 2.3. By continuous in 1 we mea  COLTLL aris

with respect to limits taken from the interior cf I .

Proof: For simplicity, we consider only the case m = 1 . Let yy r¥pren

be arbitrary numbers in 1 epproaching x € I . Let 2, be a "real

input” with 2) ZY, Let Ty be the largest value of T such thar

12, (¢) - vy | <1 for e<T and |F(n; 2.) - fy, <1. Supprse F

uses only z,(e1); Z,(ep)sears Z,(v]) in evaluating F(M,; z,) (see

sec. 2.4). For i =2, 3,... define 2, Mn and v, es follows.
" . r” - SN SI

Let 2; be a "real input” with Z, = VY, and Zs (€) = 2,4] for

Yi <¢e . Let My be the largest value of T| such that

M<Y,qs 12, (e) - vs | <ifi for €<1M, and |F(M; 2.) Fly) < 1/3

Suppose F uses only z, (eg), 2, (eg)renns Z (vy! 1n evaliating

F735 z,) . Note that Yy SM; SY 4 . Define WwW 8 -»Mm by We Ze [

where i is such that 1, <e <7, (or, if My <e then i= 1.
< <

For Nis € ST we have

[wed - x| = {z,(e) - x{ <lz,(e) - y,| + ly, - x|

< 1 1 + = ¢SUi+ ly, - x

As ¢ =» 0 we have lv, - x| »0 and so |wW(e) - x| 0 . Hence
wEW is a "real input” with value x . We have

|£(x) - 2(y| < 10x) - PMs 20] + [F(Ny5 200 - fy0)

< f(x) - Fs 20] + 1a
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But Z,(e) = Wie) for e> Yi» 80 FM; z.) = F(N,; w), yielding

|£(x) = £(y;)| < |£(x) - Flug; w)| + 1/1

As i -®» we have MN; 20, yielding £(y,) — f(x) . This completes

the proof.
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Chapter 5: More E&-Lperatirs

. a | : . Uo Co CL
Qur final tasks are tc define e-derivative, =F E-1ntel ra,

[ot(%), and to prove the tundamental theorem of tie ¢e-calculls,

essentially that

(ZF) bY = Fle. b' o- Fle: ut

where "-" There denotes ¢-subtraction of e-funciions, and 1s defined

below, Qur definitions will be based on

Letx) = 1m (£(x) - £0) (xy)ax ‘Xs = al xX) - YI AX=y)

Ii d
b .  b-a [ {bea= —— = Th Nall 4J? f(t)at = lim == Loflas f220
a J=1

For this, we will need e-operators for g-sritimetic (g,, 2. ,
. CL n

¢-limit (®,. ), e-composition (& }), and ¢-recursion $¢_

It is interesting t¢ note that all tnese ¢-operators excep? bon wii’

work in a fixed precision; i.e., when &(¥F)e; x) is being evilu:zteo3 m J

only values of ¥ at points [&; Vy) are reguired ty @ . If we

were to define im in terms cf the 5.0.1 or section 3.4, ine
Yim would have this property also. We will alss need two input

. . o£ . m : i | Lo .
e-functions, 3 and C.’ the identity and the constant - -Tu.chis.
As mentioned earlier (see sec. 2.7), we will only be atle t.. sive

partial definitions of these ¢«~uperalors because we have no arvbomatic

procedure for generating stably convergen* truncation-error tvounde,

probably nc such procedure exists. {However, it may be passiblc to

generate such bounds from a definition of the ideal funcliu: wxpregsed

QL
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in terms of the operators and initial functions of this charter; this

is a worthwnile research project.! We will assume truncation-error

bounds to be given; for completeness, unspecified truncationeerror

bounds may be taken to be identically « . The roundoff-error bounds

which we generate will be of the per step variety (as seen in interval

analysis). Such bounds are notoriously inefficient in real situaticns.

If better bounds are availiable, they can be used in place of our auto-

matically generated bounds. (It may be possible to automatically im-

prove such automatically generated bounds if we are given a definition

of the ideal function under consideration in terme of the operators

and initial functions of this chapter.)

For the following sections, we need definition L.1-1 for TF of

m+ 1>2 variables (it was stated for TF of 2 variables).

DEFINITION 5-1: Suppose ¥F as f(P) . We say TF is stably conver-

gent at x, relative to f {(m> 1) precisely when

Pe f(x, vy) Fo= jin Te; x , v.) = 0 ,

aslongas the y's are chosenby a reasonable at x stopping

criterion. Wealways say TF of one variable are stably convergent

at x, relative to f.

We wilii use the notation,

TF § x (f} or TF { P(f) ,

93



to denote that TF is stably convergent at x , or at all x ¢ rp,
relative to f .

i. N

In the following, we wili reed tne mapping, V: “°° = % -,

given by

Vi(a, b, ¢;] = (a, bt, .
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5.1 Identity e-Functions

For 1<J<m and x, Fw i{i=1,..., m), define the identity

(ideal) functions of m variables by

ix) = x
Jim jo’

For 1<Jj<m, define

’ — [4 1} —
- = -§iles x) (x,(e), RX, (¢€), Tres x )) ’

as long 8s no X; = Wy where Ly is to be defined. Of rourse
tisy is identically w . For 1< j<m, TT (e; x) = 0 so long as
no x, =_w. For m>2, define TI" by

i € - m

me = \ _ moa MA ma | -TI(e5 x ) = (RT_ 4 + RI_¥ 1T,.4 |e; x) .

THEOREM 5.1-1: J = 9H) and TI] ! Rlm-2)y7) :

Proof: The only thing requiring proof is that TI {m > 2) is stably
convergent. Put this follows immedistely from theorem 2.8-1, completing

the proof.
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2.2 Constant e-Functions

For any real input k define tie constant kK idea’ Tunciion

of m variables (m> 1) by

We=

c. (x | = K >

sO long as no x, =n , Define e€-functions oN oy

1 2 2 \

-— vk 2 —- -

Cc, (e; X = S “(fr k, x) for m~>2 .

m m,~(m) om o~(m=L, mTHECREM 5.2-1: C xc (R’) ara TC, ! R (c.)
ree K k —— k K

This follows immediately from theorem 5.1-_.

9A



5.3 E-Ariihmetic

For * being +, -, X, 7, define operators pO, by

APA - rT - “OW

belt, )x) = fix) *elx) (m22) .

We define e=-operators corresponding to these by first defining

ge=arithmetic for machine numbers and corresponding E-arithmetic

roandoff-error bounds.

e-Arithmetic subroutines, FI, for * being +, -, x, +, are

subraitines of two variables which approximate ideal arithmetic. et

n_ (a) be the €-neighborhood of =a € R, as defined in section 2.8.
The FL, must satisfy

(1) for x4 w and y#_ wo, FLle; x, vy) = Fole; X(e), Y(e)),
ana

(2) for any a, b € R(e¢}, FPL(€; a, b) is in N (a * bp) .

For example, the rounding subroutines A , of section 2.8 satisfyb

these. Condition (1) states that the FL, do not use the inputted

error bounds. Condition (2) requires that, when FL, operates at

€-precision on members of R{e), it must get an answer within two

machine numbers from the correct answer, unless the correct answer

18 in {- ®, ®», w}, in which case FI, must get the correct answer.

Lefine a function, w: {{¢, X): €¢ € &, X finite and 1n R{e€)} =m,

by

wie, X) = max(|x - ¥,|, |x -1,]) ,

where bY 1s the second member of R{(e) velow X (or the rirst below

X if tnere is only cne) and Y, is the second member of Re) - {Ww}
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above X (or the first above X if there is cnly one). For
~

X€R(), let |X! denote |X= 0| and |X| dencte |X go CO] . Delire
“Wr

error bounds, RFL, , for the FLg, by

(5-3-1) Rr, (e; x; y) = (RX ¥ RY)(e) ,

_—— an

(5.3-2) Ry (5 x, ¥) = ( |X] R RY % | Y| REX TY RXR RY),

w if ly] og rRY)(e} <0 ,
LJ

(5-3-3) Rr, (5%, y) =
AN A ~ cn

(RY X |X) = JY] FRO) * |v] ori die)
A 4 ha

otherwise,

« if FL(e; x, y) = ® or RX{e) = «

or RY(e) =o or [FL {e; x, v) = +
X N

- <

and ® <e ve ® |

(5.3-4) BRFL,(e; x, y) =
0 if FL,(e; x, y) = +o

w(e, FL (e, x, ¥)) * R(€; x, y) otherwise .

We define ¢-arithmetic E€-operators from the FL, and RIT,

as follows, Let Sith be the set of pairs of e€-functicns beth

cf m > 1 variables. When ¥ = £f(?) , let (x) denote (as well os

its numeric valve) the poor real input, (F(-; x), RF(- ; x_)) .  Sunposn

FES, itn and Fm £,(P,) . Define

vie,(8 )(e; x J] = (FI, REQ) (es (x), f(x)
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Por m > 2 , we assume the third part of 8, (%,) tc be given. We will

abbreviate p,(f, g) by f*g and ¥,(¥, &) by Fx. Also, we let -F

denote Cj - ¥ . Define

Uritn(For fps Bp) = 2) NF,

THEOREM 5.3-1: For * being +, -, X, + , we have

(0s Qin) ™ AxlBypign) |

Proof: It suffices to prove thet, for each ¢ end any real inputs

x and y ,

(5.3-5) RFL,(e; x, y) > [FL (e; x, y) - (x * y)|

and that

(5.3-6) x*yfo = URFL( x, y)=0 .€

Let €, x and y be given. If RX(e) or RY(¢) is = or

FL (e; x, y) =w or [FL (¢; x, y)=+® and = <, x<,® and

- <, ¥ < »] then (5.3-5) holds because RFL (e¢; x, y) =o. If

RX(¢) and RY(e) are finite, |x| =e or |y|-o, and

FL,(¢; x, y) = + » then FL, (e; x, y) = X(e) * ¥(¢) = x * y by

conditicns (1) and (2) on the FL, ; in this case (5.3-5) reduces 4

0 > 0 , which is true. Suppose FL(¢; x, y) , RX(e¢) and RY(e) are

finite. Then either Xx, y and x *¥ y are finite or Xx ¥ y x To = 0,

By the triangle inequality, we have

(5.3-7)  |FL.(e; x, ¥) - (x * y)| < |FL,(e; x, ¥) - (X(e) * Y(e))]| +

1X(e) * Y(e) - (x *y)|
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By conditions (1) and (2) on FL, , we have

FL,(e; x, ¥) - (x{e) * ¥(e))| < wle, FL(e5 x, ¥)) .

For the second term on the right side of (5.3-7), we have

IX(e) + ¥(e) - (x + y)) < Rx(e) + Ri(e) <R (25 x, 5) ,

x(e) x v(e) - x x y| < |X(e) x ¥(e) - X(e) x y| + {X(e) x y - x x y|

< [x(e)] x RY(e) + Rx(e) x ly] <r (e5 x, ¥)

If ¥ is + end ly] = ® then the above assumptions imply that x

is finite and x + y = 0 ; in this case, R,(e; X, y) is either

® + ®=® or it is (scme finite number) + » = 0 , taking the later

value for all sufficiently smali g , so (5.3-5) holds in this cese.

Suppose y is finite. Then

IX(e) + ¥(e) - x + y| = {yx X(e) + ¥(e) - x) + y|

= \{y - Y(e)) x X(e) + Y(e) + X{e) - x | + ly

< (RY(e) x |x{e) + v(e)| + Rx(e)) + ly| <8_(e; x, ¥y) .

Thus (5.3-5) holds in all cases,

As in theorem 2.8-1, it follows thai, for x *y £ w ,

lim

eo Fle X, y) =x *¥y ’

|x * vd = ® 2 [FL (€; Xa y) = x ¥y Jor all sufficientiy

small ee] .
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This impiles tha®h, for x * y being finite,

<1 -

Towle, FL(es; x, y)) = 0

For such x * y , 1t foiiows from theorem 2.8-1 that

lim

e—0 R,(e; X, y) = 0 )

and (5.%3-6) fcllcws., When |x yl =o, (5.3-6) follows fram (5.3-4)

and (5.3-8). This completes the proof.

We say that f 1s raticnal if it can be defined frcm the i
and cy by a finite number of arithmetic operations. We say tha=

F is rational if it can be defined from the I and Cc. by a finite
number of e-arithmetic e-operations.

COROLLARY 5.3-1: Let ¥ be the rational e-function whose definition

corresponds tothatof the raticnal functicn f . Then

Fo fH)

This fcllows from theorems 5.1-1, 5.2-1 a 2 5.,3-1 by a simple induct:on

argument, wnich we omit. For example, this means that

=! + c _ z + _ 2 R } io + - :h J €x Cl (5 + ce) (8 J) correspends to the fc?
exampie 35.,1-2 cver #2) .
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Here we generalize the definiticns of section 4,1. Iet S1:pm
be the set of all ideal functions cf 2,%,... variables. Define an

operator Bim over S., by

NT - iim er,
p(x) yx © XY) a

Assume a A(*) as in section 4.1 and an effective, reasonable at any

x # © , stopping criterion, 8.C., have been given. Let 5; De

the set of all e-functions of 2,%,... variables such that if

F € 8; then for each x € glu) and each ¢€im m

- Cas lim -
(1) [Yv€r(e) and RF(e; Xs Y) £ w] implies co FF €; Xs YY =0,
and

(2) [7F(e; Xp Y) # © for some YER(e)] implies

[Hin TF(e; x y })=0, as long as the y_ 's are cnosen by
e—0 > “mw? Ve ! TE

a reasonable at x stopping criterion] .

Define LIE by

DEFINITION 5.4-1: Iet Fes 5 Xo and € de given. Let

Y. » YY, s... denote the vaiues selached by S.C, for TF and
£1 Ez

x . If TF( ¢; X y,) =w , define

2 { : % =

Otherwise, let & be the largest member ¢f € such that ® <e

and TF(5; X Vg) © Me) . If EKF(b; X Ye) = w , apoiy (5.4-1),
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Otherwise let j be the sma_lest integer such that € 5 <8
a (le . =

and RF(e; X Vg) < Ae) . Suppose Fleys X Vg) is
L(y: k, «)> . Let B (+) be a (J, k, *) . Define

- -— ”~ Fy ~ La] A Ld

vig), (Fesx J] = (I(e,B,), 2 x Ale) * |T(e,B) 2 I(e,B)])

For m > 2 we assume the third part of 8. .(F) +5 be given, refine

Vim PY

Qi Fs E,P) = {x : {x } Xx (Mm N {some neighborhocd of x} cP

and TF | x (£)} .

Theorem 4.1-1 generalizes immediately tc

THEOREM 5.4-1: We have

(#500 Qin) ™ O3pfSsy)
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2.2 ¢=-Composition

n ]

For n= 1,2,..., let S comp be the set of all (n+l) - *uples
(1, g,) y of ideal functions, where f takes n variables and each

84 takes m variables (some m > 1) . Define a composition operator
n n

A comp over S comp by
Tl re— -_ —

Be omp( Er 8, (x) = f(g (x )) .

n — — Cr os .

We abbreviate Beomp! Tr g,) by f(g) . (In context, it will be zlear
whether the g, are functions or variables.) We will also use

LJ — R . " ig! J
p.(f, g)(g) or (f +g)(g) interchangeably with Pomp’ t +g, 8);
etc.

For the present, let g(x) denote (together with its numeric

value) the poor real input, (G, (+ x) , RG 3 3x) . Define

n - - ma

VI op (Fs ¥esx)) = V[F(e; g (x ))

Let Soom be the set of all (n + 1) - tuples (¥, J), of
- - = - n

e-functions such that (%, 4) ws (f, g, )(P, P) for some (f, CL S comp

and some P, P_ , and such that the computation of F(ese (x )) via

the determiners of ¥ and J halts for any real inputs x, (see

section 2,4). We assume the third part of comp (Fs 3) to be given.
y n = - n

We will abbreviate ® ompt Fs 4) by ¥(4) . Define Qeomp by
n - = ~ = 2 =

eomp! Fs 3, f, 8 P, P) = {x : x € n P, end g (x) € P}

(Note that g(x) again denotes poor reel inputs, as explained above.

And g, (x0) cannot be in P unless each g(x) is a real input.)
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THEOREM 5.5-1: We have

n n

(3 mp? op’ ~ Beomp Seomp *
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5.6 g=Recursion

We are interested in the folicwing form of recursicn. Let

20180 and h be given ideal functions of m, m and mt. variables

(m> 1) . We define f by recursion as follows:

g(x) if KA =

(5.6-1) £(x_) = go(x_) if x <i

h(x ,f(x _,,x -1)) otherwise .

We put this in operator form by defining

Doc (8yr80sh) =f ,

where f is as in (5.6-1), and defining Sec PO be the correspcrdi.ng

set of (g,+85sh) . The following example illustrates *ne use <f th:s

recursion. The cperators of this example will be used later.

EXAMPLE 5.6-1: Define the operators oc, and 0 over the 8.

of section 5.4 by

_ [x -1] _
0, (e)x)= T elx,x,-1) ,

i=0

[x-1]
Wx ) = (x -io (g)(x ) 1 E\X Xn i) )

i=0

where the empty sum is defined to be cpl) y the empty product is
ed w®

- +

er (x_) , and ) and II are =w. Let g, be Nak and g4 mM . . + C X
i=0 i=0

.

be ec] 1 . For * being + and X , we have
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- \ = 1 {Ra } Lt - SUNS Cl CyCate) Prec s g CRLICIRY ETE CE

Betn o_ ana x wil. be used in secticn 5.7, wnere we aet.ne a.
y -

c-function which correspends tc e ver RR.

let 4 ,4 X be given, and define the ft part F = 8 ‘dB XN)J Ll § 0 i

. . mn td mm .

by i1etting & denote ¥(3 , FS x xi - CY) and ey.ating

G {esx ) if Sex ) = ow
0x m m Tm [3

~~ / = \ ve f —_ . Mm —— )
LO-2 Figix } = ; if < 1(5.6-2) lex . Gores) Sexi <

- m My, = Ne
G. (gx) if (8 -e Vex )Y< X,(€5 m Tm es m e $e; nm

Ww otherwise

The third test is needed because it can happen that lex ) < owA

’ m m My, — , HA
\ - . - Cc - LI) -—  & - - 0 ++ " = N 1gbut i C, 1 J)lesx ) f. i no matter how many Cc. 3

m - , -

are g-subtracted from & . Thus the evaluation of Fie,x_) via

(5.6-2) with the third test revlaced by 'otherwise"” (and “he fourth

alternative removed) would not halt for certain ¢ and X, . However,

evaluation -f Flex) via (5.6-2) will always halt, |

Fur the following definition of RF , we wiil need an eg-compariscn

operator, 5, . We want 8(esx ) < T(esv,) to hold when. based suly on

information given by s(esx and T(esy,) , s(x) must be < ty) .b i a— =-

DEFINITION 5.6-1° Let x and y be puor real inputs. ZIeiine

x SY te be true (and x £ y tc be false) precisely when= Le be true land . te be132.8€) precisesy wich

X(e) < ¥{e) , RX(¢) and RY(e) are finite, and

. ”™ .
[x(e) o Y{e)| > Rule) + FY(e)
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We adopt the conventicn in section 4.2 concerning the use of triples,

8x1 with Ze . |
Define the subroutine ER by

(5.6-3) ER(e;x ) = (Ro. Tre. % [6 2G. Mex)’ *“m 0 1 0 Til'Ey

ER bounds the error caused by using G 3 in piace of &, tor
(j,k) € {{0,0), (0,2), (1,0), (1,1)] . RF is defined by

RG(esx) if o < I (ex )

amp a — << hetRG,(e3x) if Fesx ) , ok

RG, (e3%,) if 1% g{esx) and
(5.6-4) FEKF(&; x_) =

m N my - tr Ty(8 C Mesx ) “ Ilex )

Rp . - my, ey fe RvRER(esx) if (8 - €Mesx)) <, 8lex| |

ow otherwise .

As usua., we assume TF to be given. Iet N be given by

- No =x ox, 1s 8 pcsitive integer ana no xX, = wl a

. . - . . {men
If m=1, let S & fx} ; otherwise let S be some subset :¥ F .

et T=8 X (R - {=}) , where {x} X P is defined to be  , for
any set P,
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For P. 28 x lw} and F_ =T define Q@ by
i < rec

S XR -N iv n="..N)YXPF
Tm. » Li

S x R ff 2 =T xR and glx Lt)
3 Ome

- = nix Y for any x .& andJP) = nix 1s. ~ © moaeo des. % = I row
any YF

£1] cthorwise

For P, and P. nob of this form, leh Q be 1.“= <C

Let 3S be + t of all F = 1, (PD for some tf, € 2L ree he se Fy ws 4 5) ; for some f, roe
an me P such that the computation o F Vex via tled so 2 e computati £ 2S 5) EX)
determiners of J. nalts for any real inputs x (see section ~u00.3 y k m

THEOREM 5.6-1: We have

g /rec’ ec! “Loon 8o0c)

Proof: Suppose T =35 x (R - {=} , & amg (5 x lal), ¥ g (1) ,
Ia - /

¥ wm h{(T-N) xR), (&dN) &S _ aud (ggnh) €s  .
- + Y - ~ Le { \ . " .yLet f =p (g,&.n) and ¥=8 (8,8N) . Suppose
x ES XR-N and f(x YFdw. If x <> then (x)= g.(x)
m m m m m Sm

and V{F(e,x )] = Vid, esx for all sufficiently small &¢ , yielding
onvergence. If 2 = ® 4 (x) =g (x) andconvergence N hen (x) g(x)

ViF(e;x = vid (esx )] for all sufficiently small € » agaic y.olding

convergence, Suppose 1 < x << w , Let 3 and $ be given by
m m
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- m U4!

m Nr——— p——

[x -2]

“m nm m
4 =¥(d I ? ACY I B 9) )

m m m

Fer all sufficiently small € we have

3 (esx ) £ Myr 3
m

and so

(5.6-5)  V{F(e3x)] = V(d, vg $-e7, ... Fo Nex) .
We alsc have

_ le 3 = x o «1. LW(% o Ter(5.6-6) £x ) n(x; nix. X _=1:.. h(x. x = lx =1],

= o Mee .

Successive applications c¢f corollary 5.3-1 and theorem 5.5-1, working

from the inside 4o the cuiside on (5.6-5), give us convergence.

In addition tc the atove hypotheses, supose ¥ =h(T X RY and

- _ , 1 ro. = o ee reng(x, 4:1) = hix _;,2,y) for any Xo €ES andany y£fa. fw

the above, we have F ay f{S x R - N_) » Ouppuse x €ES XEN N

and r(x) £ w . Deine ¥ by
! m

. (e3y,) = (Go (e5v); EX(e3y, 402),0) for all g¢ anc Y, :
m om

where z is the real input (1, (+5¥ ),RI (+3¥.)) . {When Vv. is
m m - a

x, the value of z is 1 .) Ecuections (%,.6-5) ard (5.6-6) vaonra
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{ - r py = vl m m 1 _ a. ' . (..% -(5.6-7)  V{F(e;x)] (I CNS 5 cl)... 5 Nex)]

(5.6-8) f(x) = h(x_, h(x,» x lye. n(x 4» 1, gn(x 1 oN...) .

If Xx = l , these last equations are

cw = yg —

ViF(esx)] = vid (esx)]
m

and z is Just x. - In general, we have

ER(¢;x z) = (RG, F Re, + |G. 26. (esx 4,2)>“m-1? C 1 0 1 m-1" ’

G(esx4, 2) = Gy (e3%) ’

RG,(ex, 2) = Re, (e3%,) ’

Box,1» 2) = g(x 452)

g(x1, 2) =hlx_.. 1, g(x_,, 0) = glx_;5 1) ,

the last equality following from our additional hypotheses. Further,

by theorem 5.5-1 and corollary 5.3-1, we have
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lim = _ =
e000 E3%y 1s z) = ACHEY LA

Hm6 (5% 2) = g(x 1) |
e-=0 1" 7" m-1’ 0 'm=-1? ’

lim = _ilm = _

By this and theorem 2.8-1, we have

Hl pplesX .,2) = 0
e—0 2 mal :

From this and (5.6-7) and (5.6-8), it follows that

iim nr - - homat []
mrG VIF(e;x )] = (£(x_}, 0) .

This completes the proof.

Tet & be CO" and J be C1. Let J be an e-function
of m+l variables. For * being + and X , define

5,8) =&_ (€™, 3, HM)» $2) (Py |
* rect @w * T*? m+1l mt2’  m® “m’

|

S x KX -N_ if P=8S Xx (R - Ny - (eo) ) 2)
(#5857) E

{ } otherwise .

*

Let S__ be the set of all ¥ of ntl = 2,5.... variables such

that the computation of Ey ($)(e5% ) via the determiner ¢f & halts

for any real inputs x v )
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COROLLARY 5.6-1: For * being + and x , we have

*

(eQgun? ™ 9ulSgyy)

Proof: Suppose Hasg(8 x (K - , - 3 )(2)) . Then
2 +2 Moy , MD (2)

HITT) + SF mg(1T0) * ATS x (RoW, - (=) xB) ana

theorems 5.6-1 and 5.5-1 yield I, (Jd) no, (g)(s x ® - N_) . This
completes the proof.
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5.7 An _e-Function Corresponding tc e* over ¥

First we mention that e = w ’ e” =) and € =o ., let

Loxpl®) = ex as in secticn 2.6. Define two basic g-tnchions,
? and Q , by

2

(5.7-1) P=g(e) ,

ral a 2 c 1( - 1

(5.7-2) a =4e..C,C]- 9, 5 i el)(3; ¥ cy) :

By corollary 5.6-1, BP a 0, (SHE - N.) ; p= 0,c5) is essentially
an entier for positive reals, because

w if x= w, =

(5.7-3) plx) = { © if x<1

[x] otherwise .

By theorem 5.6-1, Qa a(R) , where a(x) = |x|. We use © and Qa

to define ¥% as follows:
exp

(5.74) 7 =z (d+ R(8))vor x\9 TELS, ’

(5.7-5) $=L,(0(&, 8, § -N(- aL), £) ,

1 1 ¢ 2

(5.7-6) y=8__ (c, b,(3), eb), a,(9),

’ _ 1 1 2 2 2 i 1

(5.7-7) Foun = brec(Cr HET = 8), €] + KE - es + €])

n-1 N -1

T forms terms, x /(n-1)! . ¥ forms sums, z (1x 2 (n-1)!n=
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4 checks for x = = , to insure that Fexp &3~=) = OQ , and otherwise

it approximates L-belY . F exp checks for xX = «» , Sc fusure
that Foxp' £52) = » , and otherwise it computes HM e:ix) and
reciprocates this value when x > 0 . The only essential part of this

definition that is missing is a definition of the TF part of ¥ ,

because TF is the onliy truncaticn-error bound used here. in the

following discussion, we will define TF and use our previous theorems

to prove that Foxp ~~ LexplR): The only nontrivial part of this
development is the definition of a stably convergent TF .

Theorems 5.1-1, 5.5=1 und 5.3-1 yield that

Ty + eg) as 1 + p(1,}) (8%) - N,) . This and corollary 5.6-1 imply

that 7T oy (&3) - Ny) , where

Ww if x=0w,m=w, or no

t(x,m,n) = { 1 if n<1

MESVIE otherwise .

Thus & £(243) - Ny) , where f is defined in section 2.6. For the
next step, we need the TF part of ¥ . We could define TF from

1%! = T(-a(£), 2, x) without making use of any special properties
of (R, €) , but a considerable derivation is required to insure that

the resulting TF is stably convergent at all (x, ®) with x finile,

For simplicity, we instead sketch a cefinition of TF for the case

where (R, €) is a floating-point number system and e-arithme:ic

satisfies the usual relations needed for an error analysis in the

style of Wilkinson [W2] . We work from the tf of section 2.6. Let

a finite x be given and let
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Y = ¥(e) = (IX(e)| F RX(e)) F ((1ze) ¥ (1ze) % (2ze))

For integers n >Y let £1 (Y"/ n!) denote the product
Y x (¥/2) x (¥/3) x ... x (¥Y/m) evaluated in floating-poin%

e-arithmetic, where m is the largest integer with Y¥ <m <n such

that overflow and underflow do not occur (or m is w , if there is

no such integer). Using this m instead of n is two-thirds of the

trick needed to define TF for an arbitrary (R, £) . Assume that

the value I used in place of i in (Y/i) satisfies I = i Xx (24m, (e)) A

where [n,(e)| <e . Then for some InjCe) | <e (J=1,..., 3m),
we have

n m om
£1 (Y /nl) = (Y/m!) x TW (1 + 7i(e))

€ 5=1 J
3m (1+1:(e))

m
> :

> ((1x(e)] + RxX(e)) /m?!) x Ler
> 1% 1% m2 .

Further, we have

lim Ny 4 _ Nn; _,

so we define

£1 (v"/n!) if k= oo and |x| + 1 < y Se o
TF(e;X%,K,¥) =

w otherwise ,

wnere =n is the largest integer <e ¥ . We prove that TF is stably

convergent at (x, ®) for finite x as follows. Iet Yo 3 ¥ sens
J. c
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lim "

satisfy Ye € Rie) - {=} and £0 Ye = «© , For some I (ed | < 2¢
we have

~-3 [ "Y(e) = (|x(e)] + RX(e))(2-€)™" x 1 (2 + 0"(e)) ,
J=1

+

TF(&;%,2,y, ) < (( 1x(e)| + RX(e))(3=£Y (1 + 2¢) YY! 3

for all sufficiently small € «. As € -» 0, m —® and the right side

above goes to O . Thus TF is stably convergent at all (x, =)

with x finite.

Thus ¥ = (F, RF, TF) is in 8 im and &,. (5)(S 3) As

Blin (£) (1 co) (R x g@-1)) . This and theorem 5.6-1 yield 4 =~ g(X),
where g is defined in section 2.6. This implies that & sf (KR).

exp exp
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REMARKS: It is easy to define initial e¢-functions and ¢-operatore

analogous to those of this chapter for the "g-calculus of stable

e-functions” discussed at the end of chapters 2 and 4. However, |

our example in section 5.7 would have to be changed, because the

subtractions in £(- |x|)%/ni makes F unstable at (x,o) . This

can be remediedby defining F in terms of rx |%/n? .
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| Chapter ©. g-perivative and e-Integral

£.1 eg-Differentiability and e¢-Derivative

Define a difference operator, d, over the set S 4 of ideal

functions of one variable ty

fey om rer ON. 2 EN
a(r) = {fy - ti 0) (i = is) -

We say f is different.:tble at x precisely when 4d(f) converges

at x . Otherwise, we say f{ ig nondifferentiable at x . Define

a difference g-operator, io, ps over the set Sp ot e-functicns

of one variable by

_ 2 2 . 2 2

QF, f, P) = PX P .

By theorems 5.1-1, 5.5-1 and corollary 5.3%-1, we have

’ h)

(D, Qp) PY a(S, ‘

DEFINITION 6.1-1: We say ¥ is e-differentiable at x precisely

when D{F) e-converges at x . Otherwise, we say ¥ is

e-nondifferentiable at x .

~~ Our previous analysis of g-convergernce at x carries over immediately

to e-differentiability at x , so we will not bother to express this in

operator, €-operator form.

Define a derivative operator, <= s over Sq by

(8) = 4, (alr)dt lim ’
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Let . Sa/dt be the set of all e-functions, % , of one variable such
. ) - , -¢ or, flee, (. vythat D(¥) € Slim Define an e-derivative ¢-operator, ry oj 2 od

2 (F) =e. (DF)

Qa/at(Fs Ts B)= yy, (D(F), af), Px P).

We call =F)(es Xx) the e-derivative of ¥ &t x . By theorem
4.1-1 we have

Ea, Vm (8)
Dt’ “d/dt d/dt

Thus, under the usual conditions, the g-derivative at x of an

g-function approaches the derivative at x of its corresponding ideal

function as e€ =» 0 .

It deserves mention here thet there is 8 function, { , such thar

(1) f(x) is finite for mall x € R ,

(2) there is a F a f(R) , and

(3) f is nondifferentiable at every point in R .

See Grzegorczyk (Gl, pp. 199-2011.
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£.2 g-Integrability and e~Integral

Let C denote a finite closed interval of numiers. Yor P being

a set of real inputs, we sey P ccvers ( aimost everywhere precisely

when C has a subset (°° of Lebesgue measure zerd such that for any

c € C-C there isan x € P with x = ¢ . As is usual, we write

"a.e" for "almost everywhere.” Let "over CC" be implicit in the

statements "tf is continuous a.e, bounded ur integrable. From analysis,

we know that the bounded, KWieman integrable funclions are precisely

those that are bounded snd continucus a.e. {Jee Royden {RZ, p. 70!|

Suppose Tf is a brunded ideel function and that Fa JP) In

order for the information contained in the set (Fle; x): ¢ € & ,

x € CN P} to determine whether f is continuous a.e., P will have

to cover C &.e. (Remember that TF gives nc information bLecaise Li:

of ¥'s of one variable are = « , Similarly, the set,

(£1 Fas £(P; and f is bounded} ,

will contain both integrable and ncnintegrable ideal functions unless

P covers C a.e

Mow, suppwuse we have a definition of "F is e-integrable (over

wich 1s based only on the values of F . Then, the weakest requirement

on the size of FP which might make the counditions,

(1) Fa L(Py,

(2) f is bounded, and

(3) F is e-integrable for all sufficiently small € ,

equivalent ot [f is integrable! is

(4) P cavers C a.e

best available copy



However, by theorem 4.4-1, we kncw that conditions 1, 2 and 4 by

themselves inply that f is integrable, i.e., that f is continuous

everywhere in C except possibly at points in Mm N C , a set of

measure zero. Hence essentially the only definition of "¥ is

¢-integrable", which uses only the values of ¥F and for which we have

(1) - (4) hold e f is integrable,

is "¥ is e-integrable precisely when 1 =1."

Consider basing our definition on the values of = % (45) ’
an ¢-function which may have a worthwhile truncation-error bound.

(This is reasoneble because it is only by a fluke of notation that

% of one variable have no worthwhile truncation-error bound.) Then

we have the additional information given by TF’ , which satisfies

TF (e; x, ¥) > |£(Y) - Lim, £(y)|

Again, le! us assume that f is bounded. Let z be a poor real input

such that, for each ¢ , |Z(e) - ¢| <RZ(e) for all c € C .

If TF (ge; z, 2) <w then we will know that yi, f(y) exists for
all c € C . And this implies that f is integrable, by

2-1: (
THEOREM 6.2-1: Suppose f is bounded over C and yim, £7)
exists for all c¢c € C . ‘hen f has at most a countable number of

discontinuities in C .

So far as we know, this is a new result.

Proof: (This was proved independently by Bill Glassmire and Paul

Rosenthal.) Define
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g(c) = Zim £3) fer. oo €C
y C

First we prove tnat g 1s continuous. Suppose Ys Yc dis 1 Ta

For eaecn 1: there 18 an x, p c with |

. - LX . ~~ Af a - - XxX. ht 1/1lely> = cle) < Vs, by, - xd ,

LeCdusE JY ) = -im fix} rn TNS
1 X y.

FY

; /  ~r= = g.¢C .(Lam, % CH LAT, ely.) £.C

Since Y, was an aroiltrary approach, this means that g 1s conlinaous

in ¢ ., Next we prove that © £ t only on a countable set. S.pr.se

n.t. We have

Lo +]

{x gx) > fx) = Ux: a(x) » fx) + nat
n=

If this set is uncountable then at lesst One of trie sets oun the right

ce sine vontahle gone FE o= {x cx)> (x)+ Vay dg 1 58 unc oyuntat.e, Suppose £0 = xX g.Kt > 1 x] yay 1s. nen 108

members nave a Cc..g8" er point, Xs and There 1S a sequence, X., X geo

Lom BE and 4ppr aching xg such tha’i]

Ni R

glx VY» {x} + Yn for m= 1, <a...
mm mi

Zim x )=gix)y glx.) + nrcam elx ) = elx)) ax) + rn,

a contradiction. Similarly, the set (x: glx) < f{x)} is countaile

Tnerefore, “he set ix: glx) £ f{z)1 1s countable This completes

“he proof.
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Thus we can deiine e€-integratiility es follows. For finite =a

and b, 1et cla, bt] denote the closed interval between a and bY .

For given, finite real inputs = and b, let =z = z(a, b) be

poor real input such that

(1) fer each e, |Z(e) - x| < RzZ(e) for all x € cla, bl,

(2) Nn {x |z{¢) - x| < RZ{¢,)} = cla, b], and
i> .

(3) 2(*) and RZ(:) ere effectively computable from a and

bb.

It is easy to verify thet such 2 exist,

2

DEFINITION 6.2-1: Suppose ¥ a f(P) for some P . Let F =5(J,) }
Let z= z(a, b) be as above. For finite a and b, we say TF’

is good relative to f, a and b precisely when {f is integrable

over cla, bl] = [TF'(e; z, z) < w for all sufficiently small e] .

Let TF' and z = z(a, vt) be as above. We put these results in

operator, e€-operator fcrm by defining

S.ot = {ideal functions of one varistle, bounded over of, =); ,

pb, (f(a, b) = bool [f is integrable over cls, bl] ,

provided a and b are i.nite, and

. (DO ye wo8, + 1%: ¥ ow £f(P) for some f € 5... and some P,
and computation of TF'e; x, x) via tle determiner

of TF' halts for any poor reali input x (see sec, 2.4); ,
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b. (F)les a, by = (boo. [TF'{e; x, z, <wl), bool |The, 2, 2) = w,u’,
. a

provided -e “¢ © <g e«, and

Qt (Fs £f, PY) ={(a, db): TF' is good relative to f, a and b} .

An immediate consequence of the above analysis is

THEOREM €.c2-2:. We have

Bin Yung 0; nt Sint) ’

Further, if f is integrable over ca, b] for all

(a, v) € Qt (Fs f, F}, then 8. 1%) is not weak, ang
vice versa.

Now for the integral. Using the notation of cnapter 5, we aefine

a partial sum and an integral operator over SP by

pT = (12 - iT) + p(3)) (m= 4, 5)2 i L

t =i + pil)xn’

0 Cf) =n" x a (r(t))
psumn + g

4 / & ¢:C . 2 2 \
£10 Pogum: £77(17s los c_)(a, L,

if fp,(f){a, b) = 1
[atif}(a, b) =

w otherwise .
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We define ¢£-operators for these by

Cou (LI) eR (mek, 5)

Tw 9 +0) x¥’

bgal® = XE)

Ueun'Ts © P) BQ (KT), 28), of(FT, £, ¢, F,
~ A

3) x ®-m) yy ow,1 4

’ (es
810 sun) £5 Ces a,b)

Jot(%)(e; By ®) = if b(Fe; a, b) ® (1, 0, w)

(0, w, w) otherwise

Qntegrall®’ f, P) = Q, (Fs f, P) N
2

% oup 150 Poeun H oT 5 Cor =e) 5

integral = iF: Fe Sint and ¥ sum”) € Sim’ :

The theorems of chapter 5 and theorem 6.2-2 yield

THEOREM 6.2-3: We have |

(Jot, Qntegral’ ~ I}at(8y + egral’ ’

Further, [Dt{¥) is weak if and only if # (¥) is weak.
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€.3 The Fundamental Thecrem of the E-Talculis

Following 1s the e-calzulius analog to toe tundamental theorem

of the calculus.

THEOREM 6.3-1: Fix a, b € Bk and assume that

(1) 21) is bounded and integrable cver cle, tf, and

Then, for any € ve have

- D 2

(6.31) [ot((3)Mes a, 8) = (5(8) - FENes a, 1)

[; 0” : pr [e) aProof: For any a), a, > GC, 5 € Re) let play) be

play) = {xX lay -x| <£ a, .

For any e~function & of m variables and any {rs x) we have

(Fe gl 1) implies g(x) € o(Me; x . This means tras

b= far(2(1))a, v) € /[Dt{E(F))e; 8, bY)

B= f(b) - £(a) € p{{H(S) - KEN; a, 1).

The fundamental theorem of the calculus tells us that 4 = B, yieldog

(6.3.1). This completes the proof.
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Chapter 7: Computable Real Functions and Completeness

7.1 Computable Real Functions

We tay that a set of real inputs FP covers lm) (m > 1° pre-
cisely when each value in g(@) is taken on by some member of P .

We say P covers %(0) precisely when P = {x,] . Let XK be the
class of all ideal functions, f, such that there :s a P ccvering

gm) (m>0) and en F with Fw £(P) . We say f is computable,
precisely when f € XK, . X, depends on (R, €) 2nd it contains many

finctions with discontinuities. We will not consider ¥,y further.

By specialization of an ideal function f of m> 1 variables,

let us mean the replacement of a variable by a numeric constant, yield-

ing an ideal function of m-1 variables. Let XS be the class cf

all ideal functions f such that there is an ¥ a £m) end F and

RF are subroutines of m variables and no constants. Let K, be

the smallest class of ideal functions containing LY and closed der

specialization. We say f is computable, precisely when f & Lo .

If fr € K, then there is an ¥ mu £(&(™)y such that F and RF are
subroutines of m variables and n > 0 constants. (We do nol kncw

whether the reverse is true.) As we shall see, X, is independent oi

(R, &) . By theorem 4.4-1, we know that any f € XK, is continuwie z*

all x_ er‘™ ith f(x) fo.
Let 6 be as in section 2.2 and MN as in 1.5. Let us say

a, a: Mon give a € RK precisely when

(1) for each n > 1, either a(n) = a(n) = 3% or

la - 6 (a, (rn), a,(n))/ nl <n ,
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(2) if a # w then, for all sufficiently large n, either

a(n) £3 or oin)é3 .
1 2

ro po 1iga?
For m > 1, we say a give x precisely when CYL a5 give x,

(1 = 1,2,0.., m) . Also, we say a, give x, . We say recursive |
: : = — Lol)

operators V¥,, ¥, 8&ive f precisely when for any @, and x €R ,
————————————— m

(a,, give x 1 = [y(a,), (0,) give f(x)] .

Let Xs be the class of all ideal functions f for which there exist

recursive operators ¥ vo which give f . Iet x be the smallest

class of ideal functions which contains X, and which is closed under

specialization. We say f is computable, precisely when f € Ky .
This is analogous to Grzegorczyk's definition of computable continuous

real functions of one variable [G2] . X, obviously does not depend on
(R, €) and we have

-1: = .
THEO o1-1¢ X, X,

Proof: We prove this by proving K, = Ks . Our proof is based on two

transformation functions, ty and ts . Suppose a » a, give a €X

end define the poor real input t (ay, a) =x by

of)= ala), of)

x(e) = I(e, a) ,
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w if Xe) =w ,

RX(e) =
nN i" 4

|1(e, a) 2 1(e, a) otherwise .

If af w then this x is a real input. Let y be a poor real input

and define t,(y) = (By, B.) as follows. Let an n > 1 be given.

If RY(e ) = ® or lim sup RY(e) > 0 then define B,(n) = Bn) = 3,

Otherwise let J(n) be the smallest value of Jj such “hat
LY

RY(e ;) < Ie, Y5,)s where Ys, (k) = [k/3n] so that < V5,> = 1/3
Then

Y - yl < )¥(es0y) - vl £ 2/3n

Suppose Yes ny) is < ag(Jj(n), k(n), *)> and let 8 (7) be
ao (3(n), k(n), «YY. If < 8 > =-® ® or w then <3 >=y;

in this case, define B,(n) = B,(n) = 1, 2 or 3 respectively. Supruse

< LJ > is finite. For any integer i, define

i/3 ir 1 = 3(i/3]

r(i) = {(i-1)/3 if i =3[1/3] +1

(i+1)/3 otherwise .

Note that r(i) is alvays an integer. Define

B,(n) = lz(8_(3n))] ’

8,(n) = |2(8 (3a) - x(8_(30))

In this case we have
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B,(n) - B.(n) = r(8 (5n)) ,

ly = (8 _(3n))/n]

< - -< ly = ey) + [¥Ceqy) - 8(30)/30] + Y3n< Yn

Thus if y is a real input then Bs 8, give y . Further, if y is

a real input or if RY(*) mw then 8, and B, are computable from

(Y, RY) .

We prove x. Cc Ks as follows, Suppose f € x, . Then there is
an ¥ ng £(&™) such that F and RF are subroutines of no constants

(see sec. 2.4). We will construct recursive operators Vr ¥, vhich

give ff . Suppose a, give x . Define poor real inputs v by

yy ® tle5s ap)

Let £(y,) denote the poor real input (F(-; ¥,) , RF(*; y,)) and

define LA and J by

(4(T0), (8) = 6(27))

Then ¥; and \D are recursive operators and they give f . Thus

rex .
. p)

We prove x, Cc x, as follows. Suppose f € Xs . Then there are

recursive operators ¥ ¥, giving f . We will define an ¥ mya
such that F and RF are subroutines of no constants. Suppose x

are poor real inputs. Define a, by

F ¢
(oy)10 oy) ® tox)
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Define F and RF by

eo w (e 5 a ~ ~

and set TF #w . Then ¥ = (F, RF, TF) is the desired &-function.

This completes the proof.

let XK be the class of all ff: R —2R such that there is an

f' € Xs (or x.) with f{x) = £f'(x) for all x €R . X is precisely
| Grzegorczyk's class of computable continuous real functions [G2]. In

[G2] Grzegoreczyk proves XK to be equivalent to several other classes

of computable real functions which have appeared in the literature.

In [G2, p. 192] he proves that the f € X are computably uniformly

continuous in any segment. He also constructs an f € X¥ which is not

differentiable at any point [G2, p. 199].
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7.2 Completeness

Let ¥X* be the class of all f: gl) - R (m > 0) such that -ere
-— -— - \

is an f' € K, with £'(x_) = f(x) for all x € BR cer Ka
be the class of all ff: r(®) - R (m > 0) which can be defined exciu-

sively in terms of the Cpr ils pb,» b» p., — Beonp? Dee from
chapter 5.

THEOREM T7.2-1: X¥ C K¥* |

In this sense, the initial functicns and operators of chapter 5 are

complete.

Proof: We only sketch the proof. The Stone-Wierstrauss theorem (see

Bishop [Bl, pp. 97, 1C0}) shows that we can construct an arbitrarily

close (in the sup norm) polynomial approximation to a continuous

function over a compact set if we are given

(1) access to any finite number of (arbitrarily close approxima-

tions to) values of the function over te compact set, and

(2) the modulus of continuity of f .

Grzegorczyk (Gl, p. 192] has shown that every f € X* of one variable

has a computable modulus of continuity, and his proof genera’lizes t¢ ff

of any number of variables. Thus any f € ¥X* can be written ss a

nolynomial in m variables:

r(x) = lim L c(n, pL X, os X Ng X he X...X or ,
In

where p, denotes the ith prime number, c(n, k) is ihe KF
coefficient of the oth polynomial, the sum is taken over all EN
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such that 0 < Jy <n (i =1,2,..., m)}, and where the nth polynomial
LY

approximates f over the m-dimensional square, [-n, n{®7, with a

maximum error less than 1/n . Further, we can assume that each c/n, k;

is rational. Thus, in order to show that X* CK** we need only show

| that X** includes all computable rational functions, c¢(n, k) . But,

since division is one of the closure operations of X¥*¥%, we need only

show that X** contains all recursive rational functions, b(n, k) .

It is obvious tnat the initial functions and operations, except the

effective minimum, used to define the recursive functions in [Ml, p. 120-1]

can be simulated by the operators and initial functions of K** . That the

effective minimum operator can also be simulated in this way folilow from

the following:

n n n n n n n |
a _ no _t i o-d,, ec * £1 1» i c,) for n= ml, m2

m+l mt+1l 19 4 mt+1 mt1=u»

h beclc, ’ i » © 1 sy v ) ’

= m mw “m m m
g IC Co? h)(i, > i + c.) ’

/ = . .

This deserves some explanation. For 1 > J>0, if i= j+41 and

(x, 1s J) = 0 then n(x, i, 3) = i, or otherwise LUCIE PEF DIE I

If 2x.» k) =0 for k=0, 1,..., { then (x, 1) = +1

otherwise, a(x 1» £) is the least value of n such that 2{x__.,0; £0.
This completes the proof.
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Summary and Conclusions

We have deve.oped a theory of numerical computation based on re-

cursive function theory, with & flavour of interval anaiysis. This

theory concerns itself with a geners. class of variable-precisiin

computations and the finite-precision sr intermediate) results arising

in such computations. For example, the fioating-point ¢omputaticns ot

modern digital computers are in tris ciass. Jur main goal was to form

a realistic model of such computecizns. This was done by developing the

concerts of

(1) a machine number system (R, &) (sec. z.&),

(2) a real input x ® {X, RX) (sec. 2.3),

(3) a subroutine F (sec. 2.4],

(4) an e-function ¥ = (F. RF, TF) (sec. 2.5), and

(5) e-arithmetic {seé¢. 2.8 and 5.3).

If this model had been cur only goal, we would probably tave dispensed

with roundoffe-error and truncatisne-error bounds (the RX, KF and TF

indicated above) because such bounds sre usually not computed on tne

computer. (We discuss the removal of these bounds in the remarks a’

the end of chapters 2, 4 and 5.) However, our secondary goal necessitated

the incorporation of these touunds. This secondary goal was to find out

how concepts from the calculus sich as convergence, continuity, differen=

tiabiliity and integrability apply, at each fixed level of precision,

to numerically computed functions which, after all, can be viewed ar

a fixed precision a8 a discrete set of points on a graph. Tnis secondary

goal was achieved by assccisiting the numerical.y computed function, F,

with its underlying msthematica” {.z 18ead) furiction, [f, tur ugh tne

220



use of roundoff-error bounds, RF, and ‘rancationeerror bounds, IF .

Thus we defined an e-function ¥ to be a triple '¥, #F, iF) .

In trying to apply convergence and continuity to e-iuncrions,

we were lead to an investigation of stopping criteria and stabiiiiy

(ch. 3). Out of this came a new and simple definition of stabilitiy,

the concept of an ¢-wave, and a proof that instability can be over-

come, given the requisite error bounds.

As presented in chapters 2 and 3, the concepts of subroutine

e-function and stability are machine dependent tecause they are defined

in terms of a fixed machine number system. In the remarks at the end

of chapter 3, we show how these concepts can be made machine independent.

The part of the g-calculus dealing with notions from the calculus

is of definitional interest only. For example, one may have wondered

whether there is a definition of t-continuity which satisties the

following: for each fixed precision €&, many numerically computed

functions which lock possibly continuous at a point x, but whose core

responding ideal function is discontinuous at x, may be accepted as

€-continuous at x; but, as € = 0 these functions should be weeded

out a8 e-discontinuous at x . We found (in sec. 4.3) that i+ is

possible to form such a definition by making use of computable inforie-

tion about (i.e., bounds on} truncation and roundoff errors. de 4d; nut

expect such definitions to be of practicai lmportance.

On the other hand, the part of the €-calculus which m.dels scilen-

tific computation should have practical implications. Our work orn ’

stopping criteria and stability tends in this dlrection. Buf we =85 yet

have no concrete appiications.
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