CsS 7

WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

BY

GEORGE E. FORSYTHE

SEP 21 W67

TECHNICAL REPORT NO. CS 77
SEPTEMBER 22, 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

- WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

1_ George E. Forsythe

Computer Science Department
Stanford University

Stanford, California 9305

WHAT TO DO TILL THE COMPUTER SCIENTIST COMES

George E. Forsythel
Computer Science Department

Stanford University

Computer science departments

What 1is computer science anyway? This is a favorite topic in
computer science department meetings. Just as with definitions of math-
ematics, there is less than total agreement and——moreover——you must know
a good deal about the subject before any definition makes sense. perhaps
the tersest answer is given by Newell, Perlis, and Simon [8]: just as
zoology is the study of animals, so computer science is the study of
computers. They explain that it includes the hardware, the software,
and the useful algorithms computers perform. I believe they would also
include the study of computers that might be built, given sufficient
demand and sufficient development in the technology. In an earlier
paper [4], the author defines computer science as the art and science
of representing and processing information. Some persons [10] extend
the subject to include a study of the structure of information in nature

(e.g., the genetic code).

Computer scientists work in three distinguishable areas: (1) design
of hardware components and especially total systems; (2) design of basic
languages and software broadly useful in applications, including monitors,
compilers, time-sharing systems, etc.; (3) methodology of problem solving
with computers. The accent here is on the principles of problem solving
--those techniques that are common to solving broad classes of problems,
as opposed to the preparation of individual programs to solve single
problems. Because computers are used for such a diversity of problems
(see below), the methods differ widely. Being new, the subject is not
well understood, and considerable energy now goes into experimental

solution of individual problems, in order to acquire experience from

J'Expanded version of a presentation to a panel session before the Math-
ematics Association of America, Toronto, 30 August 1967. The author is
grateful to Professors T. E. Hull, William Miller, and Allen Newell for
various ideas used in the paper.

o

rr— r— r— r" oo

r—

which principles are later distilled. But in the long run the solution
of probiems in field X on a computer should belong to field X, and
computer science should concentrate on finding and explaining the prin-

ciples of problem solving.

One example of methodological research in computer science is the
design and operation of "interactive systems," in which a man and a com-
puter are appropriately coupled by keyboards and console displays (perhaps

within a time-sharing system) for the solution of scientific problems.

Because of our emphasis on methodology, Professor William Miller
likens the algorithmic and heuristic aspects of problem solving in computer
science to the methodology of problem solving in mathematics so ably dis-
cussed by Professor Pélya in several books [9]. In computer science there
is great stress on the dynamic action of computation, rather than the
static presentation of logical structure. It tends to attract men of
action, rather than contemplative men. Our students want to do something

from the first day.

Computer science is at once abstract and pragmatic. The focus on
actual computers introduces the pragmatic component: our central questions
are economic ones like the relations among speed, accuracy, and cost of
a proposed computation, and the hardware and software organization required.
The (often) better understood questions of existence and theoretical com-
putability--however fundamental--remain in the background. On the other
hand, the medium of computer science--information--is an abstract one.

The meaning of symbols and numbers may change from application to appli-

cation, either in mathematics or in computer science. Like mathematics,

one goal of computer science is to create a basic structure in terms of

inherently defined concepts that is independent of any particular appli-

cation,

Computer science has hardly started on the creation of such a basic
structure, and in our present developmental stage computer scientists are
largely concerned with exploring what computers can and cannot economically
do. Let me emphasize the variety of fields in which computing has become
an important tool. One of these is applied mathematics, as Professor Lax

emphasizes, but this is merely one. Others include experimental physics,

business data processing, economic planning, library work, the design of
almost anything (including computers), education, inventory management,
police operations, medicine, air traffic control, national population
inventories, space science, musical performance, content analyses of
documents, and many others. I mustmemphasize that the amount of computing
done for applied mathematics is an almost invisible fraction of the total

amount of computing today.

There is frequent discussion of whether computer science is part
of mathematics--i.e., applied mathematics or "mathematical science." In
a purely intellectual sense such jurisdictional questions are sterile and
a waste of time. On the other hand, they have great importance within
the framework of institutionalized science--e.g., the organization of
universities and of the granting arms of foundations and the Federal

Government.

I am told that the preponderant opinion among administrators in
Washington is that computer science is part of applied mathematics. I
believe the majority of university computer scientists would say it is
not; cf. [8]. I would have to ask you how mathematicians feel about the
matter. COSRIMS* has so far taken the position that computer science is
a mathematical science, but many of the discussions emphasize differences

between mathematics and computer science.

In spite of the infancy of our subject, there are approximately 30
computer science departments in the United States and Canada today. There
is no longer any doubt that computer science will have a separate university
organization for several coming decades. I believe that the creation of

. these separate departments is a correct university response to the computer
revolution, for I do not think computers would be well studied in an
environment dominated by either mathematicians or engineers. However,

finding suitable faculty members is very difficult today.

What are these computer science departments doing? Answer: Roughly

the same things that mathematics departments are doing: education, research,

*Committee on the Support of Research in the Mathematical Sciences,
appointed by the National Academy of Science =~ National Research Council.

and service. We teach computer science to three types of students: to
our majors at the B.S., M.S., and Ph.D. levels, to technical students
who need computing as a tool, and to any students who wish to become
acquainted with computing as an important ingredient of our civilization.
We do research in our several specialties: e.g., numerical analysis,
programming languages and systems, heuristic methods of problem solving,
graphical data representation an:! processing, time-sharing systems,
logical design, business data processing, etc. We perform an unusually

large amount of community service in helping our colleagues with their

computing problems, both individually and by advising or managing the

university computation center.

- At Stanford University our graduate students are distributed
among roughly three major areas of computer science: numerical mathematics

- (about 10 percent), programming languages and systems (about 50 percent),
and artificial intelligence (about 40 percent). I have to emphasize

— that my own research field--numerical mathematics—--is drawing only about
10 percent of our students. This is because the other two areas have

{_ problems that seem more exciting, important, and solvable at this particu-
lar stage of computer science. Moreover, they require less prior educa-

L tion, permitting the student to start original research at a younger stage.
Thus in the past fifteen years many numerical analysts have progressed
from being queer people in mathematics departments to being queer people

- in computer science departments!

g ’ Computer science is rich in designs of programming systems and
languages, full of techniques for meeting this and that difficulty, and

heavily beset with colleagues who want to help. We are poor in theorems

~ and general theories; our deep intellectual questions are shared with
logic, economics, applied physics, and mathematics. On the other hand,

b the totality of techniques and ideas built into many of our moderate-
sized computing systems (say an Algol compiler or a large eigenvalue

- routine) 1is quite impressive, for a computer is extremely good at dealing
with very complex situations.

- Most of known computer science must be considered as design tech-
nique, not theory. This-doesn't bother us, as we all know that a period

- 4

-

r

rr r— ~ — r—

of developing technique necessarily precedes periods of consolidating
theory, whether the subject be physics, mathematics, biology or computer
science, As long as computers continue changing drastically every three
or four years, there is scarcely a chance to sit down and contemplate
the creation of a theory. 1In this respect our subject is reminiscent of
early engineering, and also of mathematical analysis in the time after
Newton, I wish to emphasize my nelief that this is a passing stage of

computer science.

The most valuable acquisitions in a scientific or -technical educa-
tion are the general-purpose mental tools which remain serviceable for a
lifetime, I rate natural language and mathematics as the most important
of fthese tools, and computer science as a third. The mathematics you
teach reaches its effective application largely through digital computing,
and hence you\and your students need to know some computer science. The
learning of mathematics and computer science together has pedagogical
advantages, for the basic concepts of each reinforce the learning of
the other [e.g., the concepts of function in mathematics and procedure
in Algol 60).

I have emphasized certain differences between computer science
and mathematics, particularly because I feel this audience may not be
aware of them. However, in another sense computer science and mathematics
are remarkably similar, The computer industry is overwhelmed by the pains
of growing so large so fast. In 197 there are over 40,000 computers in
the United States, Many thousands of programmers are constantly at work,

producing software and descriptions thereof. These people work under

extreme pressure of time, and many have had little supervised practice

- in the twin arts of programming for computers and expounding for human

beings Many compromises are made in the hurried effort to make reason-
ably available to users programs that work reasonably well (if not per-

fectly) .

Seen from this hurly-burly of production, we academic mathematicians
and computer scientists look much alike. We both insist on high standards
of rigor and exposition (in mathematicians* language), or performance and

documentation (in computer science terminology), and place a higher premium

= r— r— r—

r-r o r r r T Tre o

on quality than on promptness. As the computer era matures, we may find
ourselves more and more thrown together in defense of this intellectual
attitude. For the typical industrial programmer has little sympathy for
it. He knows that the computer is often powerful enough to overcome the
slipshod way it is understood and used. As an academic type, I can hardly
admit it, but I have seen enough computing to believe it. pespite some
grave deficiencies in users' understanding of the operation of hardware
and software, the fact is that most large programs yield results that

are satisfactory to the user--results that satisfy him as well or better

than the analyses he used to get from mathematicians!

We academic types must surely defend our premise that critical

analyses and proofs are worthwhile in this age of wholesale number-crunch-

ing.

What can you do now?2
And now follow my answers to the question of the title.,

First, you can get a little acquainted with computing. This

involves two steps:

Btep : Learn to program some automatic digital computer in some
language-~e.g., Fortran, Algol, PL/l,——and actually use the computer
enough to find out some of the fascination and frustrations of the com-
puter-man's world. Step B: Read some books from the list at the end of

this paper. Since computer science is not yet very deep and mathematicians

are very smart people, this should not be onerous.

Second, you can study how computing intersects mathematics. Applied
mathematics is no longer the same subject, now that you have a magnificent
experimental tool at hand. Moreover, there are several undergraduate
courses that owe their large enrollments largely to their wide applications
in technology and science: e.g., linear algebra, and ordinary differential
equations. I think both of these courses should be substantially influenced

by computers.

. r == r

In a linear algebra course, along with concepts like rank, deter-
minant eigenvalues, linear systems, and so on, ought to go some construc-
tive computational methods suitable for automatic computers. There is
plenty of literature now, and I think some of it should be worked into
courses in linear algebra. If nom“then an instructor should loudly
confess that he is ignoring these topics, and furnish some reading lists

for his students.

The same goes for ordinary differential equations, Here the situ-
ation is slightly different, in that textbooks in this field usually do
say something about numerical methods. The trouble is that it usually
dates from before the days of computers. It should be expunged and
replaced with at least an equivalent amount of orientation in today's
useful numerical methods for computers. See [7] for Professor Hull's

suggestions.

I think also that the calculus courses should be influenced by an
awareness of computing, but I do not expect this to be a very large

fraction of the courses, See [6] for some ideas.

The alternative to weaving computational material into various
mathematics courses is to teach computational mathematics in separate
courses, 1in either the department of mathematics or the computer science
department. This alternative is the accepted method at present, but many
have felt it should be only a temporary expedient. If computational
mathematics is taught in the computer science department, what effective
mechanism can there be to reunite the theoretical and the computational

aspects of mathematics?

There is a good deal of interest nowadays in computer-aided

instruction. I don't expect this to have a very large application to
university mathematics teaching. However, I should like to call your
attention to the usefulness of a computer-controlled cathode-ray-tube
display and "light pen" in giving vivid graphical representations of
sophisticated concepts. In one of these, developed by Professor William
McKeeman and Mr. William Rousseau at Stanford University, the scope shows
'both the complex z plane and the plane of f(z), for any simple elemen-

tary function £ typed at the console. When the light pen traces any

7

curve in the z-plane, a dot of light traces the curve f(z) . Many of
the elementary theorems of analytic function theory receive an impressive
illustration in this way. Professor Marvin Minsky has used similar dis-

plays in dealing with nonlinear ordinary differential equations.-

At a more fundamental level, the emergence of computer science has
added one more applier of mathematics. Along with operations research,
economics, and other more recently mathematized subjects, computer science

is relatively more interested in discrete mathematics (e.g., combinatorics,

logic, graph and flow theory, automata theory, probability, number theory,
etc.; see [1]), than in continuum mathematics (e.g., calculus, differential
equations, complex variables, etc.). Hence the mathematics department (in
my view) should devote much thought to orgacizing its curriculum suitably
from the standpoint of consumers of discrete mathematics, I feel that
currently common curricula are inherited from the days when continuum
mathematics was more in demand (from physics, mechanical engineering,

ete.) .

Third, you can help the computer scientist find his way to your
campus, and make him feel welcome. Abovz all, please don't judge him as
a mathematician, for he isn't one and isn't supposed to be one--his values
are different., The difference in values between mathematics and numerical

analysis is the subject of a provocative paper [5].

When the computer scientist does arrive on campus, be prepared for
a rather large impact, He is tied to a rampant field of rapidly growing
interest to students and scholars everywhere, He will need many colleagues
and new buildings He may take some of the heat off mathematics faculties
_ by providing a partial substitute for mathematics as a research tool. This
vast energy may have some undesirable side effects on your sense of impor-

tance and even your budget.

Fourth, if you are really enthusiastic, I recommend tackling some
research problems of a mathematical nature that would help computer science
(and your own publication list). There are serious and important mathe-
matical questions at almost every turn, and most computer scientists aren't
very good at mathematics I will leave to Professor Lax the important

area of experimental mathematics. One area of computer science with a

8

r

r r— r— r— r

probable payoff is the automation of algebra and analysis. So far, most
actual computing consists of automated arithmetic, A Fortran program,

for example, asks a computer to carry out addition, subtraction, multipli-
cation and division of (simulated) real or complex numbers, in a-sequence
which is dynamically determined by the course of the computation There
is nothing else., It is clear that computers are capable of automated
algebra, and there have been expsrimental systems for this since about
1961 . They are still primitive. Some of the roadblocks to further
development occur at surprising places. One is the question of simplifi-
cation (e.g., of rational polynomial expressions in n variables). 'What
do we mean by simplification? How shall we do it? See Brown [2] for one

irdication of the depth of the problem.

Proposed by Dr. R. W. Hamming, but still iargely in the future, is
the partial automation of analysis, Faced with an initial-value problem
for an ordinary differential equation, for example, a computer should 'be
able to put the pro'blem into some sort of normal. form (using automated
algebra, of course}. Then the computer should inspect the rormal form
o see whether it is a recognized standard equation. If it is, then a
solution formula should be obtained from a tabtle, and then transformed
(by automated algebra) back into the variables originally presented. Of
co urse, the user may want a table of values. The computer then must
decide whether to use the solution formula (if one exists>, or to compute
a numerical solution, In the latter case, a numerical integration formula
must be automatically selected (or devised), and then used (by automatic
arithmetic) to produce a table of answers and error bounds (more automated

aralysis). There are many unsolved pro'blems in this program, and mathe-

.maticians are uniquely qualified to define ths problems and start their

solution .

Most computation to date has been serial in nature, with only one
computation or decision being made at a time within the central processor,
Soon to arrive will be parallel computers, in which from two to perhaps
several hundred operations can ‘be formed simultaneously. The general
pattern of serial computation has been well understood since the work of

Babbage, Aiken, von Neumann, and others, There are good research problems

-~ in analyzing parallel computation and identifying the important features.
See [3] for a recent contribution.

~ There are good research problems in the theoretical aspects of the
design of algorithms. Initiated by Post, Turing, and others, there is an

- important theory that tells us that some functions are computable on a
"Turing machine," and some are not. (Turing machines differ in theoretical

g capability from existing computers only in having infinite storage capac-—
ity.) This theory has been extended to state that some problems can be
solved on a Turing machine with a suitable algorithm, but for some prob-

N lems no such algorithm can exist.

L It is essential to know that a problem is solvable, but this is
only the beginning. What is needed nextis information about how much
computer storage is required for the program and data, and how long the

L _

algorithm will run, In other words, we need theoretical information on
the complexity of solvability. There are some results by Kolmogorov and
others on the complexity of a computable function, but much more research

is needed.,

Other research problems lie in areas further removed from mathe-

matics . One such area is computer graphics--the uses of computers for

dealing directly with information in the form of structures. (Examples:

representing graphs of mathematical trees, design of networks, recognition

A of three-dimensional block structures from photographs, automatic reading
of bubble chamber pictures.) 1In this area there are problems of represent-
L ’ ing information, both visually and inside a computer store, and of proces-

sing the information. Most algorithms are being created by persons with
only a modest knowledge of mathematics, and it seems likely that an inter-
-es-ted mathematician could both help solve some computing problems and find

worth-while mathematical problems.

r

In summary, here are my four answers to the question of the title:

(1) Learn a little about computer science.

(2) Consider how mathematics curricula should be affected by
computer science.

(3) Help the computer scientist find his way, but expect a big
blast after he gets there.

(4) Think of computer science as a possible source of mathematical

research problems.

— r— rer

10

r

r— r—

r-—

N

Some books to read

Here are some suggested book readings in computer science:

F. L. Alt (editor), Advances in Computers, annual serial volume,

of which the seventh was issued in 1966, Academic Press. [These contain
interesting survey articles on a wide variety of topics in computer
science.]

Anonymous, Information, Freeman, 1966. [Originated as the Septem-

ber 1966 issue of the Scientific American.]

Jeremy Bernstein, The Analytical Engine: Computers, Past, Present,

and Future, Random House, 1964. [A good book to start with; it originally

appeared in the New Yorker.]

Edward A. Feigenbaum and Julian Feldman (editors), Computers and
Thought, McGraw-Hill, 1963. [These articles are devoted to the topic of
"artificial intelligence": to what extent can computers accomplish tasks

heretofore performed by human minds?]

L. Fox (editor), Advances in Programming and Non-Numerical Computa-

tion, Pergamon, 1966. [Series of articles explaining programming and non-
numerical computation to the uninitiated mathematician. The main non-
numerical applications dealt with here are theorem-proving, game-playing,

and information retrieval.]

T. E. Hull, Introduction to Computing, Prentice-Hall, 1966. [A

first course in Fortran and its use in computing, both arithmetic and
symbolic, by a mathematician and numerical analyst. It has a good

annotated bibliography that can serve to expand the present list.]

Kenneth E. Iverson, A Programming Language, Wiley, 1962. [The

author has created a notation useful for describing the logical design
of automatic computers and for programming computers. In other works
the author makes it clear that he would like hfs notation to replace

mathematical notation, which he finds full of inconsistencies.]

Marvin Minsky, Computation: Finite and Infinite Machines,

Prentice-Hall, 1967. [An advanced undergraduate textbook on automata,
computability, and so on. Actual automatic computers are never far out

of the author's mind.]

11

L

r—

r— r—

r

B. Randell and L. J. Russell, Algol 60 Implementation,, Academic

Press, 1960. [This book describes a program that translates a program
written in Algol 60 into the machine-language program of an actual com-
puter. Such programs are called "compilers," and are by far the most

frequent programs run by computers.]

Saul Rosen (editor), Programming Systems and Languages, McGraw-

Hill, 1967. [One of the most sopnisticated of the emerging parts of
computer science is the theory of programming languages. It extends
from abstract theories of written linguistics over to the psychological

questions of what languages human beings can most effectively use.]

Peter Wegner (editor), Introduction to System Programming, Academic

Press, 196k, [By a system the author means any program that controls the
course of programs through a computer, programs that translate from one
language to another, etc. Such systems are the "intelligence" that turns
a bare pile of electronic componentry into an effective "living" computing

machine.]

J. H. Wilkinson, The Algebraic Eigenvalue Problem, Clarendon Press,

1965. [This is devoted to computing the eigenvalues and eigenvectors of
a finite square matrix, by a man who has personally tested and analyzed
most known methods You will be surprised at how little space is wasted

in the 662 pages.]

12

]

r

r— r— r— r—

r—

60

10.

References

Edwin F. Beckenbach (editor), Applied Combinatorial Analysis, Wiley,
1964.

W. S. Brown, "Rational exponential expressions and a conjecture

concerning m and e," manuscript, Bell Telephone Laboratories,
1967.
A. B. Carroll and R. T. Wetherald, 'Application of parallel processing

to numerical weather prediction,' J. Assoc. Comput. Mach., vol. 14
(1967), pp. 591-61k.

George E. Forsythe, 'A university's educational program in computer

science," Comm. Assoc. Comput. Math., vol. 10 (1967), pp. 3-11.

R. W. Hamming, "Numerical analysis vs. mathematics," Science,

vol. 148 (23 April 1965), pp. 473-475.

R. W. Hamming, Calculus and the Computer Revolution, Committee on

the Undergraduate Program in Mathematics, P. 0. Box 1024, Berkeley,
California 94301, 1966.

T. E. Hull, The Numerical Integration of Ordinary Differential

Equations, Committee on the Undergraduate Program in Mathematics,

P. 0. Box 1024, Berkeley, California 94701.

Allen Newell, Alan J. Perlis, and Herbert A. Simon, 'What is computer

science?" submitted as a letter to Science, 1967.

George Pblya, How To Solwve It, 2nd edit. Anchor Book A93, Doubleday.

[Several other books.]

University of Chicago, Graduate Programs in the Divisions, Announce-
ments 1966-67, pp. 175-177, describing their Committee on Information

Sciences.

15

