CS 62

VARYING LENGTH FLOATING POINT ARITHMETIC:
A NECESSARY TOOL FOR THE NUMER ICAL ANALYST

BY

MARTTI TIENARI

TECHNICAL REPORT NO, CS 62
APR IL 17, 1967

This work was supported by the
National Science Foundation and the
Office of Naval Research

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERS ITY

r.;’;_ r

r—

—

-

r

r

VARYING LENGTH FLOATING POINT ARITHMETIC: A NECESSARY
TOOL FOR THE NUMERICAL ANALYST

by

Martti Tienari

Abstract:

The traditional floating point arithmetic of scientific computers
is biased towards fast and easy production of numerical results without
enough provision to enable the programmer to control and solve problems
connected with numerical accuracy and cumulative round-off errors. The
author suggests the varying length floating point arithmetic as a general
purpose solution for most of these problems. Some general philosophies
are outlined for applications of this feature in numerical analysis. The

idea is analyzed further discussing hardware and software implementations.

P

¢

—

Varying Length Floating Point Arithmetic: A Necessary
Tool For The Numerical Analyst

1. Introduction.

The concept of floating point arithmetic was introduced to the
digital computer technology in the early 1950's and since then it has
proved to be one of the soundest standards within the scientific com-
puting field. The extensive use of algebraic languages such as Fortran
and Algol is to a great deal based on the easy use of the floating point
number representation Its unquestionable success rests on the facts
that the floating point number representation is easy to understand and
that it has proved to be reasonably foolproof in practice.

Modern computing machinery has shown a trend to be more and more
easily tailored to the needs of particular applications, This has been
made possible by advances in computer technology: fast logical circuitry,
modular construction, microprogramming, etc. At the same time the cost
of the central processing unit has dropped to be a small part of the
overall system price, even when furnished with combined scientific and
commercial capabilities. With these developments in the background,
one is tempted to ask whether the specifications of the floating point
unit of a modern scientific computer are developed as far as possible.
This question is of special interest to a numerical analyst, who is
often severely restricted by the standard floating point representation

in his work to devise new, reliable computer algorithms.

2. Objectives of numerical analysis,

When considering the practical work of a numerical analyst we notice
that there are quite a few different goals he is aiming at. These goals

wla

L

are the yardsticks with which the wvalue of his work and contributions
are measured. The principal quality measures of an algorithm are its
performance in terms of speed and core memory usage. The traditionally
very important objective of simplicity of an algorithm, while very
important in manual computations, has somewhat lost its signficance.
This is true as far as the lack of simplicity does not reflect unfa-
vorably in the program reliability.,

In recent years there has been much research devoted to the problems
of numerical accuracy, which is not at all a rare troublespot when manip-
ulating ever larger mathematical mcdels. The demand for accurate algo-
rithms is‘closely related to the desire to create foolproof, automatic
computer programs capable of giving correct answers for widely varying
input data. In all algorithms reliability is a very desirable property,
especially in the building 'blocks of an application program package.
There are many examples where a research and development project has been
driven wildly out of schedule because the computer programs
have failed to produce meaningful results when receiving new data of
unexpected characteristics. The most usual design flaws in application
programs, a bug left in the program or the Pack of generality in the
programming approach, can often be overcome more easily and with less
time delay than problems which are due to the negligence of round;off
errors.

We could summarize the practical objective of the present day nu-
merical analyst as being to devise algorithms with an optimal speed,

memory usage and program reliability trade-off in a given computing

environment. The life of the numerical analyst has become much easier

Do

in the last ten years in mind of these goals The increase of the speed
and memory space available in modern computers has made the best contri-
bution to ease the situation in respect to the speed and space economy
The extensive research of numerical methods in the last decade has
resulted in a well organized body of algorithms for many central prob-
lems in applied mathematics, optimized in speed and memory usage.

The computing economy and the dependence of the real world on
computing have in many applications now reached a level where the
quality standards for program foolproofness have been brought, to the
focus of attention" In many cases higher computing cost might quite
advantageously be paid if one could avoid with this payment the indirect
cost of délays and manpower wastage which are unavoidable when a computer
program unexpectedly breaks down

The most important contributicns of modern numerical analysis as a
science have been made in improving the quality of algorithms used.

Much knowledge has been gained from the accuracy characteristics of
central numerical methods through both theoretical and practical work.

The methods used to overcome disturbing round-off effects in numerical
algorithms are to a great deal dependent on the facilities available in
computer systems for this purpcse. Our objective in writing this report
is to consider the methods which wculd be available for numerical analysts
if the computer representation of mathematical real numbers could be

performed in a more flexible way.

3. General purpose developments for the accuracy problem.

In order to anticipate accuracy problems due to cumulative round~

off errors there has been developed a successful theory of algebraic

B

f
i
‘
]
L

T

— — =

r—

r— r- r

r—

o

-

SIS

round-off errors [16] . One conceptual breakthrough in this theory is
to turn attention from the forward error bounds developed for result
accuracy estimation to backward error bounds. The importance of the
latter concept is based on thelpossibility of comparing the effect of
round-off errors on a common error scale with measurement or approxima-
tion errors. The backward method seems to be suitable especially for
the analysis of round-off errors in floating point computations.

The automatic error tracking schemes have concentrated so far on
three interrelated developments They are interval arithmetic [7],
tracing of error either on a deterministic or statistical basis [10],
[14] and unnormalized floating point arithmetic [1] . These schemes
are by no means easy to use. Also with the exception of unnormalized
arithmetic they would use computing time and memory space wastefully.
Unnormalized arithmetic has been the most successful of these schemes;
the most significant recognition achieved by it has been its inclusion
in the IBM 7090 computer system floating point instruction set [L4] .
The facilities to make it easy to use for significance tracking within
an algebraic compiler scheme are still waiting to be devised.

Once realized, the dilemma of how to overcome the accuracy problem
has certainly received some attention. Some scientific computers
have been furnished with extra long word lengths. This approach,
however, causes wastage in computing speed and memory space in most
problems. The most economical and practical solution devised so far
has been the inclusion of double-length floating point arithmetic in
scientific computers. This step has been strengthened by including

an equivalent new variable type in the Fortran IV algebraic programming

ke

r-

language. In some character oriented computers, e.g. IBM 1620, there
exists the possibility to use operands beyond the conventional double
length accuracy. Unfortunately the speed and memory space limitations
as well as the way this facilitg‘is supported 'by the Fortran compiler
have made the usage of this facility much more uncommon than one would
expect from its intrinsic wvalue,

Computer users have implemented for some computers an extension
of arithmetic in the form of a subroutine package allowing practically
unlimited computing accuracy. The author is aware of implementations
for the IBM 360, IBM 7090, CDC 1604 and Elliott 503 computers [12].

This soluﬁlon has been dictated by some important applications, in most
cases by the solution of ill-conditioned polynomial equations. In these
applications the intermediate stage accuracy needed might be 50-100
decimal digits.

The desire of computer users to get rid of artificial accuracy
limits is reflected in the specifications of the new IBM programming
language PL/I° This language allows the programmer to define the operand
length#. It remains to be seen, however, whether this feature will
really be implemented in its full generality and with respective support-

ing hardware modifications.

., Proposal for the generalization of floating point arithmetic,

The main disadvantages of the usual normalized fixed length
arithmetics, which are known to the author, are:
1) inability to respond to an occasional need for higher accuracy,

2) lack of any provision for tracing round-off error,

-5~

r— r— r— r

e

3) no possibilities to gain memory space and speed advantages when
just a few digits of significance are needed.

Some further disadvantages, which are usually easily solved by the
programmer are:

4) the limits set by the fixed length floating point exponent,

5) no possibility to use the floating point overflow and under-
flow as an adjustable warning mechanism for the needs of certain
applications,

6) the floating point number format does not leave any bits free
for flagging certain numbers.

We shall outline a solution for the three major problems given above.
The minor problems are recorded here just for completeness; their nature
and solution is strictly bound with the economies and conveniences of
implementing floating point number formats and circuits in computer
systems.

An easy solution, which is not our actual proposal, for: all the
major problems would be to implement in hardware, instruction sets
corresponding to several lengths of floating point number representation,
say 16, 24, 32,48,64 and 9% bits. The programming language, say
PL/I, would contain the possibility of defining the accuracy needed and
the language compiler would choose the proper instruction set. If
accuracies beyond the hardware floating point formats were required, a
subroutine package would take care of that case. Significance trace

would be performed either using unnormalized arithmetic or more auto-

matically as proposed by Nickel [SO] using with the main floating point

number a short floating point number to trace continuously the sig-

nificance. What would be the disadvantages of this solution?

-6-

!
—

r— — -

— o r

r—

One unpleasant thing from the numerical analyst's point of view
would be that the jumps between different accuracy levels might be still
too large to enable the analyst_the free use of the changing accuracy
as will be envisaged later in this article. The lack of elegance and
economy in implementing instructions for many different floating point
formats would limit in practice the enlargement of the present 32 and
6t bit standard to at most 1 or 2 additional word lengths, say 16 bits
and 48 bits. The threshold value for the accuracy, at which the trans-
fer to the software implementation is made, would still be pretty low.
The user would thus experience a significant computer slowdown when
accuracy 1is required above this level. Also because of the basic need
to create programs which could automatically adjust themselves to a
certain required result accuracy, the language compiler should be able
to allow changing of the accuracy in a dynamic manner. This would
cause dynamic recompilations of program blocks during run time or alter-
natively routing of all floating point computations through an instruc-
tion selection subroutine.

The discussion above has served as an introduction to our actual
proposal which is the use of the varying length floating point data form
for digital computers. The basic feature we will propose would be to
make possible an incremental increase in the accuracy of the floating
point fraction over a wide accuracy range. A good step size for a
byte-oriented computer would be 1 byte or 8 bits. This would require
a floating point instruction set capable of performing arithmetic on
numbers with fraction parts of length, say 8,16,24,3%2, 40,48, ... ,

102k bits. The actual upper limit of the accuracy would, of course,

-7 -

r— r r——

r—

depend on the hardware implementation. This facility combined with proper

programming language facilities would be quite a tool for both control-
ling and solving round-off error problems In the following we shall
discuss the probable feasibility and impact of this proposal from three
different points of view: applications of the proposed device in numer-
ical analysis, implementation in computer hardware, and fitting the
device into the algebraic programming language techniques Whether

the varying length floating point facility should be augmented by
unnormalized operations or other means for significance tracking is

not investigated in this article.

5. Applications in numerical analysis

In many well-known numerical methods there exists practical and
theoretical evidence for the need of high computing accuracy. The need
for high accuracy in the intermediate steps of an algorithm does not
necessarily have much to do with the fact that the accuracy of the phys-
ical measurements is well exceeded by the computer word length. Some
numerical problems happen to be so ill-conditioned with respect to the
algorithms used to solve them that the digital random noise due to the
cumulative round-off errors destroys the real physical significance of
the results.

One obvious type of numerical method which leads to this ill~
conditioning is one in which rich information from a large physical
data aggregate has been packed into a compact form of a few numbers,
and subsequently delicate analy!i " results are derived exploiting this

packed information The real physical dependence of the original data

r. ——— r — r P rv» - r S r . r P

r\v"“"

might be a quite stable one, so that the results, if they can be extracted
in spite of the round-off noise, would be very valuable and meaningful
indeed. On the other hand we meet also synthetic computing approaches
where the results are derived by combining large numbers of data pieces,
but where balancing of errors occurs and therefore no trouble with round-
off phenomena is met.

We mention as examples some of the best known cases with problematic
round-off error history: solution of polynomial equations, inverting
large or ill-conditioned matrices and solving the respective simultaneous
linear equation systems, solution of some eigenvalue and eigenvector
problems,'least squares fitting with accurate and intercorrelated models
In many of these problems even double precision computing has proved to
set limitations. The best known practical application with surprisingly
high intermediate accuracy needs is the design of communication filters,
which includes the solution of ill-conditioned polynomial equations
On the other hand, it is well known that in many simulation and data
reduction applications the usual eight decimal digit floating point
number length is unnecessarily long and causes wastage of memory space
and computing time.

We will try to outline different possible philosophies for the
application of the proposed varying length floating point arithmetic.

The methods are quite intuitive and heuristic, but we feel that a proper
theory of varying precision computations could be developed to give a
firmer foundation for the design of these methods. It is worth men-
tioning that the existing different error analysis methods could be

brought into useful practical work through the proposed approaches.

-9-

PR
s

r— r—

—

e

S

r— r—-

r—

As the first generalized application model we consider the case
where we have reasonably good a priori knowledge of the required com-
puting accuracy, either through former experience or theoretical insight.
The computing accuracies would be determined either in the program
writing stage or dynamically based on the data before beginning a
computation. As an example we mention a hypothetical simultaneous
linear equation systems solver for general purpose use. If we wish the
information contained in the 5 most significant digits of the data to be
transmitted to the results without digital round-off noise, the following
accuracy rule would be reasonably sure without being too conservative:

[internal computing accuracy of the solution algorithm] = L =5 + 210g2 n,

where n = number of simultaneous equations. This accuracy formula

is devised using information on the Gaussian elimination method

based on both theoretical and practical evidence; see as a reference
Wilkinson [16], p. 108. Application model 1 is presented in a general
flowchart in fig. 1. This method might be called, using the terminology

of the control technology, "feed forward digital noise control."

Determine the computing accuracy, L ,
required to give protection against
round-off errors.

Perform the computation with L digit
internal floating point accuracy.]

Figure 1: Application model 1 for
varying length floating point arithmetic,
feed forward digital noise contrci.

-10-~

L

Our second application model is a refinement of the first. It is
not generally true that the necessary internal computing accuracy can be

determined from the problem data. It is much more common that results

r—

and some auxiliary calculations are needed to determine the proper inters

nal accuracy. If the accuracy check after the computation reveals round-

r—

off defects in the solution, a new solution process should be initiated
with higher computing accuracy. There is always the possibility of a
total failure in the first solution which might ruin our decision rule

to determine the necessary accuracy increase AL at this stage. There-

r— r— r>-

fore the accuracy check should be made once again after the second calcu-

lation. The formula used in model 2 for L and AL would normally be

o

reliable, based on some analysis of the effects of intermediate computing

accuracy on the result accuracy. Normally just one solution process would

r—

be needed, the numerically ill-conditioned problems going through twice
L_ and in exceptional cases more times. We would call-this application
model "feedback digital noise control." It is illustrated with a flow-
“ chart in figure 2.
| .
o Determine with a liberal heuristics
\\\ the computing accuracy L .
]
L- //\\ ///’ Perform the computations using L digits.
l
Check using results of the computation es myit
whether L was large enough?
~ : no
Determine AL to achieve desired accuracy.

- < L= 1 +AL

— Figure 2: Application model 2, feedback
digital noise control.

- -11-

L

—

r—

r r— r~— r—

m r— r r— r

r—

I

As an example for application model 2 we consider once again the
programming of a general purpose linear equation system solver as dis-
cussed in connection with model 1. We might consider that the formula
L= 5+ Eloggn would give too high and uneconomical computing accuracies
in our particular application field. The formula gives for n = 100,

L =19 . We would like to devise a better, more liberal estimate,

which would work well in theimajority of cases. A heuristic formula
satisfying our intuition might be L = 5 + logen, which gives for

n =100, L = 12 . However, since we no longer have now a firm theo-
retical baqﬁground we should make sure that we detect any illjconditioned
equation systems which will not behave regularly. For any computation
philosophy desiring reliable results, a check afterwards is useful and

in this case it costs just a small fraction of the: actual solution time.

The checking method in the linear equation solver might be as follows:
given the equation system Ax = b and its solution X(L) using L
decimal digit computing accuracy, we compute with L + 3 working digits
the residual vector r(L) =Db - AX(L) . This residual would subsequently
be evaluated, component by component, on a suitable reference scale to
decide whether the 5 digit significance in the orginal data has been
th

fully exploited. 1In this case the proper comparison base for the i

component in the residual vector would be

@, e @y

d, = max {|bi|) |a; in'n

1lxl

The decision for acceptance of the solution X(L) might be made on
condition that {ri/dil <107 for all i = 1, 2, ..., n. If

5

max |ri/di| > 10", then we should initiate a new calculation using

~12.

r— r—

r-—

— r—

— r— r—e

r— B

r-—

greater accuracy L + AL, where AL = 1 + smallest integer greater than

loglo(lOSmax Iri/dil) . There exist methods which perform the new

computation on less accuracy that L + AL but we do not consider them
here; they do not clarify nor counteract our main theme. .

Our third application model is designed for the case when we are
unable to devise any reasonable rules for the initial computing accu-
racy or for the accuracy increase after the first computation. The
accuracy behaviour of the problem might be dependent on the actual
numerical values in the computation in a way which does not allow us
any estimates for the result accuracy or any backward error analysis to
judge whether the actual information in the data has been utilized. Tpig
philosophy would be also suitable in any computation where available
error theory or experience is not relied on or where just for manpower
economy, and the need to avoid delays due to the round-off error problems,
one is willing to pay for the resulting excessive usage of computer time.

The basic flow of control in this model would be: for an initial

accuracy Ll = @ we compute a result which we can think of as a vector

x(Ii) . Then we increase the accuracy by an increment g to L2 =

Ll + B and compute a new result x(LZ) o If the difference of subse-

(x,)

quent results x(Ll) and x y» measured with some meaningful method,

e.g. using a vector norm, HX(LI) - X(Lg)“, is not below our aimed result

accuracy level, we continue the computation with L5 = L2 + B . Then

Li) (L

we finally get “X(-x7i+ 1)” small enough, we exit from the

algorithm with the result x(Li + l) . We shall call this application
model "digital noise filtering loop;" it is illustrated with a flow-

chart in figure 3.

-13-

Some people might object to the decision rule of model 3, which
is based on a statistically behaving quantity X(Li)- x(Li + 1).
In fact in many computations the statistical expectation is theoretically
the zero vector for this quantity. We discuss the nature of this deci-
sion further in our forthcoming application model 4. In model 3 there
might be some advantage in using significance tracking methods for
estimating round-off effects, if available. The significance tracking
results might help us in the decision to exit the loop; they could even
help us to choose the next B more sensibly so we would exit from the
noise filtering loop sooner.

Our model 3 is not totally unknown in present day computing practice.

It is used in a modified form: Ll = single length accuracy, L2 =

double length accuracy and the decision rule for exit is replaced by
the statement "double length results are as good as we can produce with

this computing algorithm."

L = Ll + o 3 1=1
A\ > | ' - (%)
// Produce the first results x'"1
/ |\ T 7
' = +
Li + 1 Li B
T
. . . : /L \
Produce the results x'"i + 1'

[
” x(Li)) x(Li_EL)H< desired result accuracyj::>
\level?

no yes

i=1i+1 Exit with X(Li + l)

AN :

Figure 3: Application model 3 for varying length
floating point arithmetic, digital noise filtering
loop..

]l

[,,_«.. p—

r—

Our fourth application model is used for error estimation. We
consider a situation where we have computing results and we are inter-
ested to know the effect of round-off phenomenon on the results. We
might be unwilling or unable to-'rely on usual mathematically derived
error bounds; these might be too conservative for us. To get the
round-off error impact on the result accuracy we shall propose one
method below which should work in all cases where the order of magni-
tude of the cumulative round-off effects is directly proportional to
the intermediate computing accuracy, Some successful computational
experiments designed to prove this assertion have been reported by
Ortega [1I] for an algorithm for solving the matrix eigenvalue problem.

We should first of all perform the calculation with L decimal
digits to obtain our actual results in a satisfactory way. Then we
should increase the computing accuracy with say 3 digits and compute
the new results. Investigating the coincidence of the results in the
leading digits by subtraction would give us approximate error infor-

mation for our actual results in the form: error = K ° 10_L, where
+ - -
k=) -k 31073, g xPoD apa k(T +3)pL -3

(L + 3)

are
the stochastic errors for the results X(L) and x respectively’,
In most computations K(L) can be considered as a stochastic variable
obeying a Gaussian normal distribution with a mean value m = 0 and
standard deviation ¢ independent of the computing accuracy used. We

assume here that the actual distribution for our specific computation

could be constructed allowing I to take on the subsequent values Lg»

Ly + 1, Ly * 2y.+.. with different round-off pattern for every value of
L . Can we give any upper bound for o, when we have just a single
observation to rely on?

-15-

-

-

2 . . .
Using the critical value for X - distribution for one degree of

freedom we get with l% risk of misjudgement: -
2 2
o< \/K./o. 000157 < 107K .

This limit is achieved by applying the statistical principle that a
coincidence which is too good to be true is as abnormal as the inci-
dentally large random deviation. The limit ¢ < 100 K is quite encour-
aging already but there are still additional effects which work in

favor of our method. Usually there are several result quantities with
errors of roughly the same magnitude and which are not %0 highly correlated.
In these cases if we use a vector norm as the measuring instrument, the
error information is dominated by the largest deviation, which gives an
estimator for sup o of a much lower variability. Our assumption of

m = 0 is also the worst case for our method. If m # 0 which means
that there is some bias in the round-off phenomenon, our method would
work even better. The round-off bias in X(L) should be of the form

m . 10-L so that we would in fact estimate |m| + o which is larger
than o .

The discussion presented above is intended just to support the
feasibility of our idea. We do not carry it forward to any completeness
here. The conclusion is that multiplying the heuristic error observation
quantity derived by our application model 4 by a constant c, which can
in many cases be less than 200, we get quite reliable bounds for the
actual error.

In most cases it would be advantageous to present as the final

results the more accurate ones based on the L + 3 digit computations.

~16-

rw-rw,o
T

r- r—r— r— o rr— r r—

e

— rr

r—

r—

Even the error bound cK lO_L might be extrapolated for this case as

Kk 10712 .

A proper name from the control technology for our method
would be "measurement of the digital noise level." Application model L
is illustrated as a flowchart in figure L.

The same error estimation procedure presented above might be of use
when applied to accurate investigations of the effects of physical
measurement errors to the results of an algorithm or a chain of algorithms.
We should just choose a computing accuracy which is large enough to
remove the digital noise to a level roughly 2-3 decimal places lower
than the 'effects of the physical measurement errors. The physical errors
to be introduced in the basic data should be simulated with the aid of
their assumed external stochastic distributions. The same statistical
bounding philosophy which was proposed above would be useful also for
this purpose. If we can afford several simulation runs, we might with
say 3 calculations with simulated observation errors get a quite
realistic and reliable grasp on the real impact of the measurement
errors to the results. I would imagine that somebody has done already
this kind of investigations though the required error theory and error
models are not readily accessible in the literature. This modified use
of our application model 4 might be called 'measurement of the physical
data noise level in the results.' It is not based on the use of a
varying length arithmetic although its systematical and rigorous use
would advocate this new concept because of the need to assure that the
disturbing digital noise level is a few digits below the physical data

noise level.

-17-

E
-

r r— r r r

—

r—

Assess an adequate accuracy, L digits, for
the actual computation. 1

Perform the computations with L and L + 3
+
digits to produce the results X(L) and x(L 3)~
]
k.10l = (T _ (L +3)
Do the computation goals allow extrapolation of
the error bound to the higher accuracy?
ino [ves .
-1 L +
Exit with X(L) and error bound ¢K10 L. Exit with x(3) and
error bound cK10¥ ™ 2

Figure 4~ Application model 4, the measurement of digital noise level.

There exist some new aspects in programming algorithms for the
different philosophies 1 - 4 for the use of varying length floating
point arithmetic. These aspects are due to the need to devise algorithms
which would produce right results over a range of computing accuracies.
In all cases we should, of course, establish some absolute upper bound
for the computing accuracy which should not be exceeded, the bound
depending on our judgement of the possible accuracy needs of a particular
computer application, the problem size, and the aimed risk level in the
program reliability due to the round-off phenomenon. We shall discuss
briefly later in this article, in connection with programming languages,
problems due to the new role of the program constants and function sub-
routines which must be considered now in a different way than when using
fixed length floating point arithmetic. The diagnostic rules for the
problem singularities should be reinvestigated, too. The proposed appli-
cation philosophies would make it necessary to perform these decisions

-18-

more carefully than they have been done so far. 1In many cases where
the computing approach constitutes several computations with succes-
givelyrising internal computing accuracies, the first singularity
decisions should be routed to c;ﬁse a recomputation with a higher accu-

racy on the initial data.

6. Some implications to numerical analysis.

The possibility to feel free to use variable length floating point
operations would have many fruitful effects on numerical analysis. The
basic evaluations for different numerical algorithms - speed, numerical
accuracy and memory usage - could be perhaps ultimately reduced to consi-
deration of speed and memory usage alone, numerical accuracy being granted.
This effect might bring order and simplification to the ever growing mass
of numerical algorithms for one and the same problem with different numer-
ical accuracy properties. Without any hesitation we claim also that the
numerical analyst would feel himself much better equipped for his goal
to create more automatic general solution procedures.

The theory of varying precision computing might give rise to a new
branch of algebraic round-off error theory. 1In application model % we
outlined a new error model for statistical error theory. A philoso-
phically satisfying property of this error model is that it allows in
principle an unlimited number of independent observations of the error
variance estimation rule. Also it should be noted that without a varying
length arithmetic it is difficult to apply the results of error theories
in practice in an effective way.

Another promising field for varying length floating point computation
is the theory of singularity. In computational handling of nearly singular

-19-

(T

models, very high computing accuracies are desirable. The numerical
decision rules for detecting singularity are today far from complete,
perhaps due to the lack of an arithmetic which is flexible enough for
rigorous singularity decisions.

Let us consider the economy of the varying precision floating
point approach in computer based problem solving. We assume in this
discussion that no penalties would be paid because of the generality of
the proposed new arithmetic. In other words we assume that the new
more flexible arithmetic would perform when applied in the standard,
present-day fixed length way as fast as todays standard implementations
The operation times are assumed to be nondecreasing functions of the word
length L . These functions are probably approximated pretty well by a
function of the form a + bL + cL2 with positive constents a, b, c .

In application model 1 we would save computer time assuming that
the fixed word length is on an average too long for the problem require-
ments. In addition we could provide for the computing client the extra
service of assuring a predetermined cumulative round-off noise level.

In our model 2 we would also save similarly, at least if we assume that
we are able to devise heuristic precision formulas, which on the average
are better than L = 8 and AL = 10 . The second computation with a
higher accuracy would be also necessary in fewer cases in our scheme

than in the present day fixed length approach. If the second computation
is needed because of the round-off dangers, an extra benefit is gained

in that the computer customer would save one communication cycle with

the computing center. This results in significant savings in manpower,

computer time and overall problem solution time.

-20-

Generally speaking it appears to us that the third and fourth of
— our application models would result in increased computer time usage.

The extra cost incurred should, of course, be motivated by the needs

he of the application. This extra cost could be thought to be an insurance

L- premium paid for protection against the perils of the round-off phenome-
non. In fact the philosophies 3 and 4 are not available today. The

A

?L_ applications where these approaches would be adequate are now run with

extensive man/machine co-operation.

-

In some cases the possibility to move flexibly to our strategies

3 and Y4, when necessary, would result in large savings in the overall

r—

costs of problem solving. The author knows one technical development

—

project depending on computing services where 6 months yere used mainly

to fight the accuracy troubles by careful programming using double

r-

length arithmetic and when this was not successfil another 6 months were

L. required to avoid the trouble using new computing methods. The losses were
counted in man years of engineering and programming talent plus a delay

L_ of one year in the product development schedule. The computer time

{ budget of the project was a negligible cost compared to these indirect

-

losses. All economical considerations indicated the desirability of

application philosophies 3 and 4; unfortunately they were not available

r—-

because of limitations in computer technology.

- T Implementation in computer hardware.

i— The author believes that flexible floating point arithmetic should
not be too difficult and expensive to implement within a computer with a

— microprogrammed instruction set. The author of this paper has partici-

pated in the construction of a software implementation for the essential

-21-

features of varying length floating point arithmetic [12]. Another
argument supporting the feasibility of varying length floating point
arithmetic is the fact that it has been in effect implemented, although
in a too restricted manner, onlfhe 1em 360/b4 computer. This computer
(5] has a rotary switch on the system control panel where the user can
choose the computing accuracy for the double-length floating point
instructions in the range 32, 40, 48 or 56 bits. This feature is
motivated in the machine manual [5] by hinting to the possibility of
gaining speed when the full double-length floating point accuracy is

not needed.

The méin system problems in hardware implementation of our proposal
would be the wise selection of floating point instruction and number
formats, the way the problem of operands of different lengths is handled,
the optimal dimensioning of the floating point registers and the internal
decisions affecting the speed performance of the proposed feature.

A possible solution for the instruction format would be to attach
to the floating point unit a new register called the "result accuracy
register." The result accuracy of a forthcoming operation would be
defined by loading the register using a special "accuracy load" instruc-
tion with the desired number of bits or bytes for the floating point
fraction. In the floating point number format it might be desirable
to use a smaller exponent accuracy than 8 bits when the fraction part
is exceptionally short, and more bits for the exponent in the high
precision calculations. We do not know how this can be conveniently
formated, however, without causing restriction for thed operations between

operands of different fraction lengths.

-22a

S,

— r—r r— r— ¢ r—

r

r—

We sketch a varying length operand handling scheme. This scheme
would lead to a quite satisfactory speed economy and would require no
flagging of the operand tails. The arithmetic instruction set would be
constructed to work only with numbers loaded in the floating point
registers. The instruction set would assume that the result and operand
length are the same. It should, however, be possible to gain speed
advantages, potentially available, when the operands are shorter than
the result accuracy. The microprogram performing floating point arith-
metic could, for example, begin the operation by scanning the operands
from the %gast significant end and recognize the zero bit string on the
tail of a short operand,

It is evident that the floating point registers for the operands
should be quite long to make the varying length floating point operations
fast also in higher precisions. Compiler handling of the register over-
spill in cheaper storage, without denying this possibility, might be a
problem. It would be ideal from the systems programming point of view
if the microprogram could control the necessary subroutine branching
process in that case. This could be achieved by the following arrange-
men-t. When the accuracy register indicated too large a number for the
floating point operand register, the load instruction would be interpre-
ted as an operand address load instruction. The subsequent arithmetic
operations would initiate an interrupt to the supervisor program which
would perform the necessary subroutine entries, The space reservations
in the main core memory should be performed by the object time block

entry mechanism, if the floating point register overspill was anticipated.

-3

The length of the floating point registers would be a crucial
decision when planning the performance of a variable length floating
point arithmetic. The manufacturer should offer several different
floating point register sizes, ;.g. 100 bits, 300 bits, 1000 bits,
with rising cost, preferably with a provision to add extra capacity
later if needed. Efficient coding of the subroutines handling the
operands exceeding the floating point register capacity.would be impor-
tant. For this purpose the hardware implementation should include
some specially designed instructions operating on bit strings of length
up to the floating point register capacity. The generality of varying
length arifhmetic might be wasteful on short fraction lengths. This
performance defect could be cured by preparing special independent
sections in the floating point microprogram for standard short operand
lengths. The selection of the microprogram sector could be based on
the content of the accuracy register. This superspeed feature might
be subject to a special price in the books of the scientific computer

salesmen!

8. Varying length operands within the Algol language.

The concept of varying length arithmetic will not be feasible at
all if its use is not made possible within the major programming languages.
There should be no problems which cannot be readily overcome when this
new arithmetic is introduced to the programming languages, Algol and
PL/I. The compilers should be, of course, redesigned but applying
similar techniques as before. We consider the Algol language first

because it is, so far, a better known and more used language than PL/I.

)

(.N;'.’-

r

= T

r—

s

r—

—

The Algol language must be considered from several aspects to see
the impact and the problems caused by the proposed new computer arith-
metic. We shall consider first its use as an algorithm publication and
program exchange standard. The new language features enabling the pros
grammer to express his decision on the appropriate computing precision
will be considered next,. as well as the prerequisites for their eco-
nomical implementation. Some indirect effects due to the existence of
the variable, unlimited length operands are then discussed. These dis-
cussions cover program constants, function and input/output procedures.

The operand precision problem in floating point arithmetic has been
investigated in order to improve the Algol language [8], which awaits a
major revision, being almost unaltered since 1960. According to an
idea mentioned in [3] this problem could be solved by introducing new

variable types: long real, long long real, etc., into the language.

This solution would have from the point of view of our application
models 1-4 two basic inflexibilities. Firs%, it would no% allow any
dynamical precision changes, which would be essential for the applications.
Also it would provide higher accuracies in unneccessarily large: incre-
ments and would give no provision for speed and memory savings due to
the use of very short operands. This straightforward solution would
also contribute unfavorably, as noted in [3], to the elegance of the
Algol language.

The well known problem due to the dependence of Algol implementations
on computer word length plagues to some degree the people making practical
use of the published Algol programs. The dependence on the word length

comes from program constants or through some implicit dependence. It

-25-

L

IS S st ol daniE- Ll cunl ca GRAN S

.

is possible to program mathematical algorithms as procedures in a way
which minimizes the word-length dependence. This particular programming
style has, however, the drawback that it makes the respective procedures
more complicated for the user by pushing all the decisions associated
with the computing accuracy to the procedure user. This must happen
often in a way which no longer makes it possible to consider the pro-
cedure as a black box but requires the procedure user to go through

the working mechanism of the algorithm. When computer users exchange
whole application packages this dependence on the word length is almost

impossible to avoid and in practice it is a real trouble indeed.

However, one of the basic goals of the Algol language has traditionally
been, and should continue to be, the independence of the particular
computer implementation as much as is feasible.

It would be an ideal situation if the new revised Algol language
could be designed on the assumption that the variable length floating
point arithmetic would be available on scientific computer hardware.
This starting point could lead to a successful solution of a principal
defect in Algol 60, the ignorance of the fundamental role which round-
off phenomenon and computing accuracy are playing in every algorithm
based on the use of floating point arithmetic.

1% would be possible to repair the accuracy problem simply by
declaring in the Algol language all real variables and arrays in a new
way: real(n) a, b, c; real(n) array d[1:10]; where n would be an
integer constant or expression specifying in decimal digits the minimum
significance of the declared operands. It seems to us, however, that if

we want the new Algol to be more economical for the user, some information

-26-

L

— r—

r— O ' r— e

r—w—h

r— r—

r—

of the maximum accuracy to be used would be necessary. This would be
furnished to the compiler if the declaration were given in the form:

real(n,p) a, b, c; real(n,p) array d[1:10]; where n = accuracy of the

operand, p = greatest n to be allowed, n and p are integer constants
or expressions. The arithmetic statements should be evaluated using the
highest accuracy occuring in the operands and the result finally rounded
to the length of the left part variable.

The author cannot accept the criticism presented in [3] of the
decimal representation of accuracy in the language. For algorithm publi-
cation and program exchange purposes a standard accuracy communicating
system woﬁld be desirable. The decimal number system is a standard which
is unremovable from our mathematical education. The conversion of the
accuracy specification to different machine representations should no%
be too difficult if we agree on the decimal system. A formula for the
conversion rule for a pure binary machine could be the following: number
of bits in the floating point fraction = 3.32 X decimal accuracy + a
positive implementation convenience allowance. The maximum allowance for
the deviation of an implementation from the decimal equivalent should
be agreed upon. We propose 8 bits as the maximum deviation as this is
compatible with the most popular information organization style of the
contemporary third generation computers.

Let us now consider the operand declarations,We can distinguish
five different modes of accuracy specifications:

1) standard operand length,

2) nonstandard fixed length operand,

3) dynamic accuracy with fixed upper bound,

_27-

i
-

t— o r

r—

4) dynamic accuracy with dynamic upper bound,

5) dynamic accuracy without any upper bound.

I think that case 1, where the programmer would need no% specify
any accuracy a% all, could be éﬁitted in the Algol larnguage. This
would be a recommendation consistent to the principle of explicitness
as pursued in [3!. Case 2 would be the normal mode of accuracy dec-
laration in Algol. All variables with the same precision should be
grouped together in a declaration of the form;_;gg;(B) a, b, c3- The
programmer could avoid accuracy pitfalls by using longer operands and

gain speed and save memory space by using shorter operands. Case 3

would allow dynamic accuracy changing without dynamic memory allo-
cation. Present day compiler technology is probably not able to exploit
the slight difference between case 4 and 5. We differentiated between
them jus% to point out that we would propose both forms of declaration
real(n) a; as well as_real(n,p) a; toc be permitted. This recommen-
dation comes from the desire to honor the principle of minimum exceptions

Case 4 exists 1n our proposal because of our desire to include case 3
which allows the compiler to generate efficient code with dynamic accuracy
characteristics Case 4 might be also useful when considering procedure
publication practices

The program constants present a problem when computing with
dynamically changing precisicn. In some calculation, e.g. the trans-—
cendental constant, m, might play such a role that it would be meaningless
to perform calculations beyond the accuracy given for the constant.
Because the constants perform from the compiler point of view similar

functions as the operand identifiers, the constants should be divided

-28..

P

into two classes: 1) constants containing digits up to the equivalent
amount of the operand identifier maximum length, 2) constants exceeding
these limits. One possible and natural solution would be to introduce
to the language a constant declaration statement, the use of which would
be obligatory for constants exceeding the operand name length. The

functions of a declaratiwesl (n) constant Pi(3.14159265); would be

to assign a storage space equivalent to a 9 decimal digit floating point
representation for the value of the real identifier Pi, to define the
length of the operand Pi in an equivalent way as_real(n,9) Pi;, to give
the variable Pi the value 3.141 . . . in n decimal digits and to block
access of the program to the location Pi by forbidding the appearance of
Pi in the left side of an assignment statement.

Another new'problem would be the implementation of the elementary
functions which are usually evaluated with optimized truncated power
series. New methods should be devised for these routines working in a
large range of accuracies. A basic problem would be to devise methods
which would be fast enough for short operands and accurate enough and

not too slow for long operands. As an example, we sketch a possible

o

method for the exponential function. Write ex = ey - 2 where
© v

0 <y<p<1 . Compute e = gV ;= (.. (ey)2)2 .)2 . The
v=0 V!

computation should use intermediate precision of (n + 7) digits. We
should further reason out an optimal decision rule to choose g, g,
and y based on some assumption concerning the demand distributions of

the argument x and the result precision n .

-29-

The input/output procedures in the Algol implementations would in
principle need no amendments because of the varying length arithmetic.
The whole idea of this device focuses on the possibility of controlling
the effect of round-off errors. The user's data, as well as his accuracy
needs in the results, do no% exceed the accuracy range available today.
However, for storing the intermediate results, to ease program debugging,
and for research in numerical methods it would be convenient to also have
variable length input/output routines. This would result in the redesign

of the existing routines.

9. Considerations for the programming language PL/I.

After a superficial glance a$% [6] it appears that PL/I would allow
all the features that we want. There is a provision to declare the
precision at will if the programmer wants to avoid the standard default
accuracy. This standard is implementation dependent, e.g. for an IBM
360 PL/I implementation [15], it is equivalent to at leas% 6 decimal
digits. The programmer specifices the operand accuracy when declaring
a real floating point variable including, among the other possible
attributes, a precision attribute. For example DECLARE A FLOAT (12)
specifies the variable A as a 12 digit floating point variable.

The programmer must, however, notice that the compiler of a parti-
cular PL/I implementation is free to perform the space reservations and
%he actual computations using any suitable floating point format exceeding
the programmer's accuracy specification. Neither is the precision
attribute included in PL/I in the features which are allowed to be

exploited in a dynamic manner in program block entries at object time.

-30-

r—

The concept of dynamic data length exists within PL/I; it applies to the
string data. Let us consider whether the varying length string data
control concepts would be suitab}e for generalization to the flexible
length floating point numbers.

The basic difference between the floating point fraction length
control and the PL/I string data length handling philosophy is that
the former must be program controlled, whereas the latter is designed to
be data controlled. One goal in the design of the VARYING feature for
the string data seems to be parallel to the ideas featured in the block
entry mode 3 of our Algol operand declaration proposal. Both approaches
enable the flexible size fluctuating of varying length data without losing
the possibility of static storage allocation. The string data length
control philosophy would be suitable for varying length integer and
rational arithmetic (infinite precision arithmetic)--which would be
useful concepts for discrete numerical analysis—--but we cannot conceive
any easy method to assign automatically a natural accuracy for varying
length floating point results. Therefore the other feature reserved
for string data length control, the possibility to se% the maximum
length of a string at object time, seems to be the only one which we
can make use of. A slight variation to the floating point precision
attribute would be desirable, if we want to minimize the speed wastage
due to dynamic precision fluctuations.

Considerations presented above lead to the recommendation that the
parameter N would be allowed to be defined in the precision attribute
(N) a% the object time. 1In order to achieve object time economies this

feature should be supplemented by a possibility to specify the upper

-31-

L

r—

rr— r—

r— r— o reoreo e

r—

=

limit for the accuracy. We come so to the following language convention
"The precision attribute (w,d) of the floating scale is interpreted as
follows: w specifies the precision of the floating point number during
the object time, d gives the upper limit of the precision, w and

d may be constants or expressions. If d is no% given, it is assumed
that w = d ."

A change to the PL/I language implementation philosophy would be
needed, too, if we really want to benefit from the proposed application
models 1-4 presented earlier in this article. The implementation should
follow the programmer's accuracy specification. To be explicit, some
convention like the following would be needed. "The accuracies used by
PL/I implementation in storing and computing floating point numbers should
follow each other by increments of not more than an equivalent of 8
bits. For a particular accuracy of a program it should be assigned the
nearest larger precision to the equivalent of the accuracy in the pro-
grammer's specification.' This convention would still allow a binary
implementation to follow abyte structure. The programmer could also
be sure that if he increases the accuracy in his computation by 3
decimal digits the round-off pattern is changed.

Is it feasible to implement our ideas in the present generation of
computer hardware without supporting special hardware facilities? In
a PL/I implementation for a computer without hardware floating point
facilities the ideas would be useful to consider immediately. The

speed economies achievable might be worth earnest considerations. In

a computer with floating point hardware and byte organized memory, like the

M 360, the accuracies 8, 16, 24, 40, 48 and 56 for the fractional part

-32-

T

L

—re e o

L

r— r— r—

would be available for fast computing. For the accuracies above 56
bits there should be a set of subroutines available in the language for
long precision arithmetic and elementary functions.

The extension of PL/I to the generality we are aiming at could be
accomplished honoring the upwards compatibility principle. The existing
PL/I programs could be run with the same speed efficiency using the
extended language compiler. To achieve this aim the new compiler should
be able to choose between two modes of code generation. For every block
entry in the source program a decision would be made whether or no% any
non-standard accuracy features are used. The arithmetic on the
nonstandaf& or dynamic precision variables would be compiled using a
floating point arithmetic selection subroutine. This subroutine would
perform arithmetic on the fraction accuracies 8, 16 and 24 bits using
single length floating instructions and rounding the result to the right
result precision. The computations with the fraction lengths of 32,

40, 48 and 56 bits would be performed using the double length instruc-
tions, and fraction lengths 64, 72, . . . should be handled with the aid
of special software subroutines. The user should be informed of the
standard constant accuracies and of the full efficiency of the code %he
compiler would generate when he uses one of them. He cannot benefit
from other accuracies at the present time anyway, because in most
compilers all fraction accuracies below 24 bits are handled equivalent
to 2k bits internally and all accuracies between 25 and 56 bits are
equivalent to 56 bits fraction accuracy.

The introduction of varying length arithmetic without hardware

support causes an extra burden, especially an extra allowance of core

-33-

r

r— - c—/ e e = M &= = &/ rr~r&

memory space for the PL/I compiler. The object time economies achievable
today are due to the storage space savings and application flexibility
gains without any speed savings if the hardware floating point unit is
available. It is therefore doubtful whether these recommendations are
acceptable today when the PL/I compiler writing is difficult anyway.

The practical utility of our application philosophies would need more
concrete case examples to act as a driving force towards these goals.

The problem is that motivating application cases will not become
available until somebody constructs a compiler to make the programming

of these applications feasible.

The gést way to get these ideas properly investigated would be to
get some university compiler group interested in our application models.
This should happen in a place where numerical analysis research is
pursued, We believe that the application potential available through

this kind of compiler is worth exploring for the benefit of numerical.

analysis.

10. Conclusions.

We claim that round-off error differs in a fundamental manner from
other uncertainties involved in computing. It can be effectively fought
using computer based means. This conclusion is more optimistic than
many earlier assertions [2], [13] concerning the nature of the error
problem. To promote this conviction we propose the return to the use of
the term "digital noise" (or "processing noise" or "computing noise")
as a synonym for the term cumulative round-off error as proposed in [9].

This would distinguish round-off error from approximation errors and

-34.

-

would also underline the responsibility of the computer system designer
for this error category.

We hope that the computer mgnufacturers would consider seriously
the inclusion of varying length floating point arithmetic in their
scientific hardware and software. This feature when powerfully imple-
mented might prove to be an excellent sales argument for a new computer
intended for the scientific computing market. The economies from which
the users would benefit with this feature are:

1) Better matching of computing precision to the actual needs
resulting in speed improvements and core space savings

2) Running time savings when the fastest available algorithms could
be used also for occasionally numerically ill-conditioned problems.

3) Savings in the overall problem solving costs when numerical
accuracy problems can be handled with straightforward philosophies.

4) The possibility to use brute force in solving round-off error
problems when delays in the computing service appear to cause unreason-
able indirect costs.

5) A better overall quality in the scientific computing services
from the numerical precision point of view.

It seems not to be generally known that varying precision floating
point arithmetic would provide a more elegant and practical scheme to
control the round-off errors than the earlier error tracking schemes.

It has the overriding practical advantage that it does not only warn
the user of the round-off error problem, but it also helps him solve it.
In order to exploit this philosophy some new research on the numerical

methods would be desirable. This research would be performed with the

~%5-

L

ke e e oo e

aid of a software simulated variable length floating point arithmetic,
preferably augmented by an automatic error tracking scheme. With this
kind of work in the background it would be much easier to decide whether
the proposed new features are worth the extra hardware cost. In any
case this research would catalyze new insignts on the effects of round-

off errors in computing.

Acknowledgements

I would like to sincerely thank Professor Gene Golub for awaking

my interest in the problems handled in this paper and for encouraging

and helping me to undertake the publication of this report, Professor
Niklaus Wirth contributed to the text with his valuable comments.
Mr. Michael Jenkins, M.S., has helped me to improve the language form as
well as the content of this report.

I want also to thank Stanford University for permitting me to use
the facilities of the Computer Science Department for my research work.
My residence at Stanford was made possible by grants of the Finnish
Cultural Foundation, the Emil Aaltonen Foundation, and the U. S. Educational
Foundation in Finland. The publication of this report is supported by the

National Science Foundation

-36-

L
L
L
L
L
L
L
L

REFERENCES

[1] R. L. Aschenhurst, "Techniques for Automatic Error Monitoring and

Control", Error in Digital Computations, Vol. I, L. B. Rall (Ed.)

New York: John Wiley and Sons (Oct. 1965), p. 43-59.
[2] S. Gorn, "The Automatic Analysis and Control of Computing Errors",

J. Soc. Industr. Appl. Math 2 (Dec. 1954), p. 69-81.

[3] C. A. R. Hoare and N. Wirth, 'Contribution to the Development of
Algol 60", Comm. ACM 9 (June 1966), p. L413-432,

[4] I.B.M. Reference Manual, "7090 Data Processing System", Form
~22-6528-2 (Feb. 1961).

[5] 1.B.M. Systems Reference Library, I.B.M. System/360 Model 44,
"Functional Characteristics", Form A22-6875-3 (Jan. 1966).

[6] I.B.M. System Reference Library, 1.s.M. System 360 Operating System,
"PL/I Language Specifications", Form C28-6571-3, New York:
International Business Machines Corporation (July 1966).

[7T] R. E. Moore, "The Automatic Analysis and Control of Error in
Digital Computation Based On the Use of Interval Numbers",

Error in Digital Computation, Vol I, L. B. Rall (Ed.) New York:

John Wiley and Sons (Oct. 1965), p.61-130.

[8] P. Naur, (Ed.), "Report on the Algorithmic Language Algol60",
Comm. ACM 3 (May 1960), p. 299-31k.

[9] J. von Neumann and H. H. Golds-tine, "Numerical Inverting of
Matrices of High Ordemll. Amer. Math Soe. 53 (1947),
p. 1021 -1099.

[10] K. Nickel, "Uber Die Notwendigkeit einer Fehlerschranken-Arithmetik

fiir Rechenautomaten. Num. Math. 9 (1966), p.69-79.

-37=

[

[11] J. M. Ortega, "An Error Analysis of Householder's Method for the
Symmetric Eigenvalue Problem", Technical Report No. 18, Appl.
Math. and Statistics Laboratory, Stanford University, California
(Feb. 1962).

[12] M. Tienari and V. Suokonautio, "A Set of Procedures Making Real
Arithmetic of Unlimited Accuracy Possible Within Algol 60",
Bit 6 (1966), p. 332-338.

[13] J. Todd, "The Problem of Error in Digital Computation", Error

in Digital Computation, Vol. I, L. B. Rall (Ed.) New York:

John Wiley and Sons (1965), p. 3-4l.

[14] w. C. Wadey, "Floating Point Arithmetic", E‘A(W17(1960L

p. 129-139.

(15] E. A. Weiss, The PL/I Converter, New York: McGraw Hill (1966).

[16] J. H. Wilkinson, Rounding Errors in Algebraic Processes, New Jersey:

Prentice-Hall (Jan. 1963).

-38~

