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de Abstract:

— The traditional floating point arithmetic of scientific computers

1s biased towards fast and easy production of numerical results without

be enough provision to enable the programmer to control and solve problems

connected with numerical accuracy and cumulative round-off errors. The
—

author suggests the varying length floating point arithmetic as a general

purpose solution for most of these problems. Some general philosophies

are outlined for applications of this feature in numerical analysis. The

- idea 1s analyzed further discussing hardware and software implementations.
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Varying Length Floating Point Arithmetic: A Necessary

_ Tool For The Numerical Analyst

, 1. Introduction.

The concept of floating point arithmetic was introduced to the

~— digital computer technology in the early 1950's and since then it has

proved to be one of the soundest standards within the scientific com-

~ puting field. The extensive use of algebraic languages such as Fortran

and Algol 1s to a great deal based on the easy use of the floating point

number representation Its unquestionable success rests on the facts

— that the floating point number representation 1s easy to understand and

that 1t has proved to be reasonably foolproof in practice.

~~ Modern computing machinery has shown a trend to be more and more

L easily tailored to the needs of particular applications, This has been
made possible by advances in computer technology: fast logical circuitry,

I. modular construction, microprogramming, etc. At the same time the cost

of the central processing unit has dropped to be a small part of the

= overall system price, even when furnished with combined scientific and

commercial capabilities. With these developments in the background,
-

one 1s tempted to ask whether the specifications of the floating point

— unit of a modern scientific computer are developed as far as possible.

This question 1s of special interest to a numerical analyst, who 1s

= . often severely restricted by the standard floating point representation

_ in his work to devise new, reliable computer algorithms.

2. Objectives of numerical analysis,

~ When considering the practical work of a numerical analyst we notice

_ that there are quite a few different goals he is aiming at. These goals

w]e
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I are the yardsticks with which the value of his work and contributions
are measured. The principal quality measures of an algorithm are its

| er performance in terms of speed and core memory usage. The traditionally
very 1mportant objective of simplicity of an algorithm, while very

- important in manual computations, has somewhat lost its signficance.

| - This 1s true as far as the lack of simplicity does not reflect unfa-

| vorably in the program reliability.,

L In recent years there has been much research devoted to the problems

of numerical accuracy; which 1s not at all a rare troublespot when manip-

- ulating ever larger mathematical mecdels. The demand for accurate algo-

_ rithms 1s closely related to the desire to create foolproof, automatic
computer programs capable of giving correct answers for widely varying

L input data. In all algorithms reliability 1s a very desirable property,
especially in the building 'blocks of an application program package.

= There are many examples where a research and development project has been

o driven wildly out of schedule because the computer programs

have failed to produce meaningful results when receiving new data of

— unexpected characteristics. The most usual design flaws in application

programs, a bug left in the program or the Pack of generality in the

programming approach, can often be overcome more easily and with less

time delay than problems which are due to the negligence of roundoff
errors.

(- We could summarize the practical objective of the present day nu-

merical analyst as being to devise algorithms with an optimal speedy

- memory usage and program reliability trade-off in a given computing

environment. The life of the numerical analyst has become much easier
—
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1 in the last ten years 1n mind of these goals The increase of the speed
and memory space avallable in modern computers has made the best contri-

- bution to ease the situation in respect to the speed and space economy

| The extensive research of numerical methods in the last decade has

- resulted in a well organized body of algorithms for many central prob-

_ lems 1n applied mathematics, optimized in speed and memory usage.
The computing economy and the dependence of the real world on

’ computing have 1n many applications now reached a level where the

| quality standards for program foolproofness have been brought, to the

~ focus of attention" In many cases higher computing cost might quite

advantageously be paid 1f one could avoid with this payment the indirect
-— -.

| cost of delays and manpower wastage which are unavoidable when a computer

. program unexpectedly breaks down

The most important contributicns of modern numerical analysis as a

“ science have been made in improving the quality of algorithms used.

Much knowledge has been gained from the accuracy characteristics of
-

central numerical methods through both theoretical and practical work.

I. The methods used to overcome disturbing round-off effects in numerical

algorithms are to a great deal dependent on the facilities available in

- computer systems for this purpcse. Our objective in writing this report

1s to consider the methods which would be available for numerical analysts
-—

if the computer representation of mathematical real numbers could be

- performed in a more flexible way.

_ 3, General purpose developments for the accuracy problem.

| In order to anticipate accuracy problems due to cumulative round-

— off errors there has been developed a successful theory of algebraic
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1 round-off errors [16] . One conceptual breakthrough in this theory is
to turn attention from the forward error bounds developed for result

accuracy estimation to backward error bounds. The importance of the

latter concept 1s based on the possibility of comparing the effect of

= round-off errors on a common error scale with measurement or approxima-

_ tion errors. The backward method seems to be suitable especially for

] the analysis of round-off errors in floating point computations.

The automatic error tracking schemes have concentrated so far on

L three interrelated developments They are interval arithmetic [7],
tracing of error either on a deterministic or statistical basis [10],

L [14] and unnormalized floating point arithmetic [1]. These schemes
are by no means easy to use. Also with the exception of unnormalized

L arithmetic they would use computing time and memory space wastefully.
Unnormalized arithmetic has been the most successful of these schemes;

> the most significant recognition achieved by it has been its inclusion

L in the IBM 7090 computer system floating point instruction set [4].
The facilities to make 1t easy to use for significance tracking within

L an algebraic compiler scheme are still waiting to be devised.

L Once realized, the dilemma of how to overcome the accuracy problem
has certainly received some attention. Some scientific computers

L have been furnished with extra long word lengths. This approach,
however, causes wastage in computing speed and memory space in most

i

L problems. The most economical and practical solution devised so far

has been the inclusion of double-length floating point arithmetic in

scientific computers. This step has been strengthened by including |

| an equivalent new variable type in the Fortran IV algebraic programming
pL—

“a
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language. In some character oriented computers, e.g. IBM 1620, there

exists the possibility to use operands beyond the conventional double

length accuracy. Unfortunately the speed and memory space limitations

as well as the way this facility is supported 'by the Fortran compiler

have made the usage of this facility much more uncommon than one would

- expect from its intrinsic value,

Computer users have implemented for some computers an extension

of arithmetic in the form of a subroutine package allowing practically

unlimited computing accuracy. The author 1s aware of implementations

for the IBM 360, IBM 7090, CDC 1604 and Elliott 503 computers [12].

N This solution has been dictated by some important applications, 1n most
L cases by the solution of ill-conditioned polynomial equations. In these

applications the intermediate stage accuracy needed might be 50-100

. decimal digits.

The desire of computer users to get rid of artificial accuracy

= limits 1s reflected in the specifications of the new IBM programming

i. language PL/I. This language allows the programmer to define the operand

lengths. It remains to be seen, however, whether this feature will

- really be implemented in its full generality and with respective support-

| ing hardware modifications.
(-

L. Proposal for the generalization of floating point arithmetic,

The main disadvantages of the usual normalized fixed length

— arithmetics, which are known to the author, are:

1) inability to respond to an occasional need for higher accuracy,

= 2) lack of any provision for tracing round-off error,

| -5-
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L 3) no possibilities to gain memory space and speed advantages when
just a few digits of significance are needed.

L Some further disadvantages, which are usually easily solved by the

L programmer are: |
4) the limits set by the fixed length floating point exponent,

L 5) no possibility to use the floating point overflow and under-
t flow as an adjustable warning mechanism for the needs of certain

L applications,

L 6) the floating point number format does not leave any bits free
for flagging certain numbers.

L We shall outline a solution for the three major problems given above.
The minor problems are recorded here just for completeness; thelr nature

L and solution 1s strictly bound with the economies and conveniences of

L implementing floating point number formats and circuits 1n computer
systems.

_ An easy solution, which is not our actual proposal, for: all the
major problems would be to implement in hardware, instruction sets

LL corresponding to several lengths of floating point number representation,

; say 16, 24, 32,48,64 and 96 bits. The programming language, say

PL/I, would contain the possibility of defining the accuracy needed and

| the language compiler would choose the proper instruction set. If

accuracies beyond the hardware floating point formats were required, a

- subroutine package would take care of that case. Significance trace

L would be performed either using unnormalized arithmetic or more auto-
matically as proposed by Nickel [SO] using with the malin floating point

number a short floating point number to trace continuously the sig-

nificance. What would be the disadvantages of this solution?

- -6-
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One unpleasant thing from the numerical analyst's point of view

“ would be that the jumps between different accuracy levels might be still
| too large to enable the analyst the free use of the changing accuracy

= as will be envisaged later in this article. The lack of elegance and
economy in implementing instructions for many different floating point

A formats would limit in practice the enlargement of the present 32 and

“ 64 bit standard to at most 1 or 2 additional word lengths, say 16 bits
and48 bits. The threshold value for the accuracy, at which the trans-

= fer to the software implementation 1s made, would still be pretty low.
L The user would thus experience a significant computer slowdown when

accuracy 1s required above this level. Also because of the basic need

L to create programs which could automatically adjust themselves to a
| certain required result accuracy, the language compiler should be able

- to allow changing of the accuracy in a dynamic manner. This would
L cause dynamic recompilations of program blocks during run time or alter-

natively routing of all floating point computations through an instruc-

br tion selection subroutine.

The discussion above has served as an introduction to our actual

- proposal which 1s the use of the varying length floating point data form
| for digital computers. The basic feature we will propose would be to

make possible an incremental increase in the accuracy of the floating

.- point fraction over a wide accuracy range. A good step size for a

byte-oriented computer would be 1 byte or 8 bits. This would require

~ a floating point instruction set capable of performing arithmetic on

_ numbers with fraction parts of length, say 8,16,24,32, 40,48, ... ,
102k bits. The actual upper limit of the accuracy would,of course,

- -7-
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depend on the hardware implementation. This facility combined with proper

- programming language facilities would be quite a tool for both control-

ling and solving round-off error problems In the following we shall

= discuss the probable feasibility and impact of this proposal from three

. different points of view: applications of the proposed device in numer-

| ical analysis, implementation in computer hardware, and fitting the

- device 1nto the algebraic programming language techniques Whether

the varying length floating point facility should be augmented by

~ unnormalized operations or other means for significance tracking 1s

L not investigated in this article.

L 5e Applications in numerical analysis
In many well-known numerical methods there exists practical and

I. theoretical evidence for the need of high computing accuracy. The need

for high accuracy in the intermediate steps of an algorithm does not

necessarily have much to do with the fact that the accuracy of the phys-

ical measurements 1s well exceeded by the computer word length. Some

= numerical problems happen to be so 1ll-conditioned with respect to the

_ algorithms used to solve them that the digital random noise due to the
cumulative round-off errors destroys the real physical significance of

ha the results.

One obvious type of numerical method which leads to this ill=

= conditioning 1s one in which rich information from a large physical

- data aggregate has been packed into a compact form of a few numbers,

and subsequently delicate analy!i! ~ results are derived exploiting this

— packed information The real physical dependence of the original data

- «8.
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| might be a quite stable one, so that the results, if they can be extracted

9 in spite of the round-off noise, would be very valuable and meaningful

| indeed. On the other hand we meet also synthetic computing approaches
- where the results are derived by combining large numbers of data pieces,

1 but where balancing of errors occurs and therefore no trouble with round-
off phenomena 1s met.

© We mention as examples some of the best known cases with problematic

| round-off error history: solution of polynomial equations, inverting
- large or 1ll-conditioned matrices and solving the respective simultaneous

L linear equation systems, solution of some eigenvalue and eigenvector
problems, least squares fitting with accurate and 1ntercorrelated models

g In many of these problems even double precision computing has proved to
set limitations. The best known practical application with surprisingly

~ high intermediate accuracy needs 1s the design of communication filters,

| which includes the solution of 1ll-conditioned polynomial equations
|-

On the other hand, it 1s well known that 1n many simulation and data

— reduction applications the usual eight decimal digit floating point

number length 1s unnecessarily long and causes wastage of memory space

— and computing time.

We will try to outline different possible philosophies for the

= application of the proposed varying length floating point arithmetic.
— The methods are quite intuitive and heuristic, but we feel that a proper

theory of varying precision computations could be developed to give a

- firmer foundation for the design of these methods. It is worth men-

tioning that the existing different error analysis methods could be

i. brought into useful practical work through the proposed approaches.

-9-
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— As the first generalized application model we consider the case

where we have reasonably good a priori knowledge of the required com-
 _—

puting accuracy, either through former experience or theoretical insight.

O The computing accuracies would be determined either in the program

writing stage or dynamically based on the data before beginning a

— computation. As an example we mention a hypothetical simultaneous

3 linear equation systems solver for general purpose use. If we wish the
—

information contained in the 5 most significant digits of the data to be

L transmitted to the results without digital round-off noise, the following

accuracy rule would be reasonably sure without being too conservative:

~— [internal computing accuracy of the solution algorithm] = L =5 + clog, n,

L where n = number of simultaneous equations. This accuracy formula

1s devised using information on the Gaussian elimination method

[ based on both theoretical and practical evidence; see as a reference

Wilkinson [16], p. 108. Application model 1 is presented in a general

flowchart in fig. 1. This method might be called, using the terminology

of the control technology, "feed forward digital noise control."

. |

. Determine the computing accuracy, L »
required to give protection against |
round-off errors.

-~

Perform the computation with L digit

: internal floating point accuracy.

- |
Figure 1: Application model 1 for

O varying length floating point arithmetic,
feed forward digital noise contrcl.

~-1.0-
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g
Our second application model is a refinement of the first. It is

L not generally true that the necessary internal computing accuracy can be

L determined from the problem data. It 1s much more common that results
and some auxiliary calculations are needed to determine the proper inter

L nal accuracy. If the accuracy check after the computation reveals round-

{ off defects in the solution, a new solution process should be initiated
L with higher computing accuracy. There 1s always the possibility of a

L total failure in the first solution which might ruin our decision rule
to determine the necessary accuracy increase AL at this stage. There-

\ fore the accuracy check should be made once again after the second calcu-
: lation. The formula used in model 2 for L and AL would normally be
L reliable, based on some analysis of the effects of intermediate computing

accuracy on the result accuracy. Normally just one solution process would

- be needed, the numerically 1ll-conditioned problems going through twice

w and in exceptional cases more times. We would call-this application
model "feedback digital noise control." It 1s 1llustrated with a flow-

L chart in figure 2.

-
the computing accuracy L .
——

Check rp results of the computation es mxit
. Whether L was large enough?

~~ oo no

Determine AL to achieve desired accuracy.}

-

— Figure 2: Application model 2, feedback
digital noise control.
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As an example for application model 2 we consider once again the

L programming ofa general purpose linear equation system solver as dis-

cussed in connection with model1. We might consider that the formula

~ L= 5+ clog,n would give too high and uneconomical computing accuracies
L in our particular application field. The formula gives for n = 100,

L =19 . We would like to devise a better, more liberal estimate,

L which would work well in theimajority of cases. A heuristic formula

L satisfying our intuition might be L = 5 + log n, which gives for
n =100, L = 12 . However, since we no longer have now a firm theo-

t retical background we should make sure that we detect any i11-conditioned
equation systems which will not behave regularly. ror any computation

L philosophy desiring reliable results, ga check afterwards is useful and

| in this case it costs just a small fraction of the: actual solution time.
The checking method in the linear equation solver might be as follows:

L given the equation system Ax = b and its solution «(L) using L
decimal digit computing accuracy, we compute with L + 3 working digits

L the residual vector »(L) = Db - ax (DL) . This residual would subsequently

L be evaluated, component by component, on a suitable reference scale to
decide whether the 5 digit significance in the orginal data has been

| fully exploited. In this case the proper comparison base for the ; th
component in the residual vector would be

L
d; = max {o, |a y eee ja, x (L) 1

- The decision for acceptance of the solution nen might be made on

- condition that Ir. /a, | < 10” for all 1 = 1, 25 ee. , n. If

max |r. /a, | > 1077, then we should initiate a new calculation using
—

~12-



greater accuracy L + AL, where AL = 1 + smallest integer greater than

— log, (10°max |r. /a; |) . There exist methods which perform the new

L computation on less accuracy that I + AL but we do not consider them
here; they do not clarify nor counteract our main theme..

. Our third application model 1s designed for the case when we are

| unable to devise any reasonable rules for the initial computing accu-
- racy or for the accuracy increase after the first computation. The

L accuracy behaviour of the problem might be dependent on the actual
numerical values 1n the computation in a way which does not allow us

1 any estimates for the result accuracy or any backward error analysis to

1 judge whether the actual information in the data has been utilized. Thig
philosophy would be also suitable in any computation where available

1 error theory or experience 1s not relied on or where just for manpower
: economy, and the need to avoid delays due to the round-off error problems,
L one 1s willing to pay for the resulting excessive usage of computer time.

y The basic flow of control in this model would be: for an initial

- accuracy Ly = o we compute a result which we can think of as a vector
: I) Then we increase the accuracy by an increment g to L, =

L I, + B and compute a new result 2 (L) . If the difference of subse-
: quent results ney and neo measured with some meaningful method,
L e.g. using a vector norm, MR - (Lp), 1s not below our aimed result

accuracy level, we continue the computation with Ly = L, +B. When
-

we finally get [a - xs + 1) small enough, we exit from the

- algorithm with the result «(Ly + 1) . We shall call this application
model "digital noise filtering loop;" it is illustrated with a flow-

chart in figure 3.

~13-
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Some people might object to the decision rule of model 3, which

= 1s basedon a statistically behaving quantity (Ly) _ NACI iu

In fact in many computations the statistical expectation 1s theoretically

| the zero vector for this quantity. We discuss the nature of this deci-

— sion further in our forthcoming application model 4. In model 3 there

N might be some advantage 1n using significance tracking methods for

Sh estimating round-off effects, 1f available. The significance tracking

: results might help us 1n the decision to exit the loop; they could even
—

help us to choose the next B more sensibly so we would exit from the

_ noise filtering loop sooner.

Our model 5 is not totally unknown in present day computing practice.
b f

- It 1s used 1n a modified form: Ly = single length accuracy, L, =

n double length accuracy and the decision rule for exit 1s replaced by

the statement "double length results are as good as we can produce with

a this computing algorithm."

L=L +a 3 1=1 |
L | | N,

’ Produce the first results x “1

~ ei

- | Produce the results x'7i+ 1! | |
. < []| LL) _ empl desired result accuracy
— level? | y

| no {yes |
- << i=1+1 Exit with x Ui + 1)
_ Figure 5: Application model 3 for varying length

floating point arithmetic, digital noise filtering

loop..

— wll-



= Our fourth application model is used for error estimation. We

consider a situation where we have computing results and we are inter-
—

| ested to know the effect of round-off phenomenon on the results. We

_ might be unwilling or unable to-'rely on usual mathematically derived

| error bounds; these might be too conservative for us. To get the

~ round-off error impact on the result accuracy we shall propose one

method below which should work in all cases where the order of magni-

tude of the cumulative round-off effects 1s directly proportional to

_ the intermediate computing accuracy, Some successful computational

: experiments designed to prove this assertion have been reported by

— Ortega [1] for an algorithm for solving the matrix eigenvalue problem.

We should first of all perform the calculation with IL decimal

= digits to obtain our actual results in a satisfactory way. Then we

_ should increase the computing accuracy with say J digits and compute
: the new results. Investigating the coincidence of the results in the

~~ leading digits by subtraction would give us approximate errof infor-
: mation for our actual results in the form: error = K ° 107%, where

= k = x0) _ kL * 3)1073, and k(P1o7L and k(L +3)107L "0 are

— the stochastic errors for the results «(L) and  (L + 5) respectively’
In most computations x (L) can be considered as a stochastic variable

— obeying a Gaussian normal distribution with a mean value m = 0 and

standard deviation ¢ independent of the computing accuracy used. We

= assume here that the actual distribution for our specific computation

_ could be constructed allowing IL to take on the subsequent values Los

Ly + 1, Ly + 254.+... with different round-off pattern for every value of

L . Can we give any upper bound for g¢, when we have just a single

observation to rely on?

-15-



Using the critical value for a distribution for one degree of

— freedom we get with 1% risk of misjudgement:

2, 2
. og < \/ #0. 000157 < 10K .

This limit 1s achieved by applying the statistical principle that a

- coincidence which 1s too good to be true 1s as abnormal as the inci-

dentally large random deviation. The limit ¢ < 100 K 1s quite encour-
Se

aging already but there are still additional effects which work in

- favor of our method. Usually there are several result quantities with

errors of roughly the same magnitude and which are not 0 highly correlated.

~ In these cases if we use a vector norm as the measuring instrument, the

. error information 1s dominated by the largest deviation, which gives an
estimator for sup ¢ of a much lower variability. Our assumption of

L m = 0 1s also the worst case for our method. If m # 0 which means

that there 1s some bias 1n the round-off phenomenon, our method would

L (TL)
work even better. The round-off bias in X should be of the form

mo. 107 so that we would in fact estimate Im] + 0 which1s larger
than o .

_ The discussion presented above 1s intended just to support the

feasibility of our idea. We do not carry it forward to any completeness

- here. The conclusion 1s that multiplying the heuristic error observation

: quantity derived by our application model 4 by a constant c¢, which can
-

in many cases be less than 200, we get quite reliable bounds for the

actual error.

In most cases 1t would be advantageous to present as the final

results the more accurate ones based on the L + 3 digit computations.

~-16-
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| Even the error bound cK 10°F might be extrapolated for this case as
= cK 107L2 . Aproper name from the control technology for our method

would be "measurement of the digital noise level." Application model 4
-

is illustrated as a flowchart in figure 4.

a The same error estimation procedure presented above might be of use

. when applied to accurate investigations of the effects of physical

L measurement errors to the results of an algorithm or a chain of algorithms.
We should just choose a computing accuracy which 1s large enough to

= remove the digital noise to a level roughly 2-3 decimal places lower
u than the 'effects of the physical measurement errors. The physical errors

: to be introduced in the basic data should be simulated with the aid of

L their assumed external stochastic distributions. The same statistical

| bounding philosophy which was proposed above would be useful also for

= this purpose. If we can afford several simulation runs, we might with

L say 3 calculations with simulated observation errors get a quite

: realistic and reliable grasp on the real impact of the measurement

errors to the results. I would imagine that somebody has done already

this kind of investigations though the required error theory and error

- models are not readily accessible in the literature. This modified use

. of our application model 4 might be called ‘'measurement of the physical
data noise level in the results.' It 1s not based on the use of a

“ varying length arithmetic although its systematical and rigorous use

- would advocate this new concept because of the need to assure that the
disturbing digital noise level 1s a few digits below the physical data

8 noise level.

-

-17-
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| L | Assess an adequate accuracy, L digits, forthe actual computation.

Perform the computations with L and L + 5
- (1) (L +3)

digits to produce the results x and X :
EE

it Do the computation goals allow extrapolation of
ig the error bound to the higher accuracy?

no

(L) =I cl L +3
L Exit with X and error bound cK10 Exit with x and

error bound cK10Z T°

- Figure 4:~ Application model 4, the measurement of digital noise level.
i

he

There exist some new aspects 1n programming algorithms for the

_ different philosophies 1 - 4 for the use of varying length floating

point arithmetic. These aspects are due to the need to devise algorithms

— which would produce right results over a range of computing accuracies.

In all cases we should, of course, establish some absolute upper bound
a -

for the computing accuracy which should not be exceeded, the bound

- depending on our judgement of the possible accuracy needs of a particular

computer application, the problem size, and the aimed risk level in the

program reliability due to the round-off phenomenon. We shall discuss

briefly later in this article, in connection with programming languages,

problems due to the new role of the program constants and function sub-

_ routines which must be considered now 1n a different way than when using

fixed length floating point arithmetic. The diagnostic rules for the

— problem singularities should be reinvestigated, too. The proposed appli-

cation philosophies would make 1t necessary to perform these decisions

a

-18-
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more carefully than they have been done so far. In many cases where

— the computing approach constitutes several computations with succes-

sivelyrising internal computing accuracies, the first singularity

—- decisions should be routed to cause a recomputation with a higher accu-

racy on the initial data.
-

6. Some implications to numerical analysis.

= The possibility to feel free to use variable length floating point

_ operations would have many fruitful effects on numerical analysis. The

basic evaluations for different numerical algorithms - speed, numerical

accuracy and memory usage - could be perhaps ultimately reduced to consi-

deration of speed and memory usage alone, numerical accuracy being granted.

This effect might bring order and simplification to the ever growing mass

of numerical algorithms for one and the same problem with different numer-

ical accuracy properties. Without any hesitation we claim also that the

— numerical analyst would feel himself much better equipped for his goal

to create more automatic general solution procedures.

— The theory of varying precision computing might give rise to a new

| branch of algebraic round-off error theory. In application model bh we
outlined a new error model for statistical error theory. A philoso-

— phically satisfying property of this error model 1s that 1t allows 1n

principle an unlimited number of independent observations of the error

| variance estimation rule. Also it should be noted that without a varying

length arithmetic 1t 1s difficult to apply the results of error theories

B in practice 1n an effective way.

— Another promising field for varying length floating point computation

1s the theory of singularity. In computational handlingof nearly singular

— _19-
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models, very high computing accuracies are desirable. The numerical

_ decision rules for detecting singularity are today far from complete,

perhaps due to the lack of an arithmetic which 1s flexible enough for

~- rigorous singularity decisions.

| Let us consider the economy of the varying precision floating

N point approach in computer based problem solving. We assume 1n this

HL discussion that no penalties would be paid because of the generality of

: the proposed new arithmetic. In other words we assume that the new

- more flexible arithmetic would perform when applied in the standard,

present-day fixed length way as fast as todays standard implementations

- The operation times are assumed to be nondecreasing functions of the word

L lengthL . These functions are probably approximated pretty well by a

function of the form a + bL + 1° with positive constants a, b, c .

— In application model 1 we would save computer time assuming that

| the fixed word length 1s on an average too long for the problem require-

- ments. In addition we could provide for the computing client the extra

- service of assuring a predetermined cumulative round-off noise level.

In our model 2 we would also save similarly, at least if we assume that

— we are able to devise heuristic precision formulas, which on the average

are better than L = 8 and AL = 10. The second computation with a

= higher accuracy would be also necessary in fewer cases 1n our scheme

_ thanin the present day fixed length approach. If the second computation

1s needed because of the round-off dangers, an extra benefit is gained

J in that the computer customer would save one communication cycle with

the computing center. This results in significant savings 1n manpower,

i. computer time and overall problem solution time.

~20-



i
Generally speaking 1t appears to us that the third and fourth of

- our application models would result in increased computer time usage.

The extra cost incurred should, of course, be motivated by the needs

he of the application. This snbrn Cont could be thought to be an insurance

L premium paid for protection against the perils of the round-off phenome-
non. In fact the philosophies 3 and 4 are not available today. The

A

ig applications where these approaches would be adequate are now run with

; extensive man/machine co-operation.

- In some cases the possibility to move flexibly to our strategies

3 and4, when necessary, would result in large savings in the overall
~~ ~.

costs of problem solving. The author knows one technical development

L project depending on computing services where 6 months yere used mainly
to fight the accuracy troubles by careful programming using double

— length arithmetic and when this was not successful another 6 months were

L required to avoid the trouble using new computing methods. The losses were
counted 1n man years of engineering and programming talent plus a delay

L of one year in the product development schedule. The computer time
budget of the project was a negligible cost compared to these indirect

bh. losses. All economical considerations indicated the desirability of

L application philosophies 3 and 4; unfortunately they were not available
because of limitations in computer technology.

{

le Implementation 1n computer hardware.

L The author believes that flexible floating point arithmetic should |
not be too difficult and expensive to implement within a computer with a |

— microprogrammed instruction set. The author of this paper has partici-

pated in the construction of a software implementation for the essential

-21-
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features of varying length floating point arithmetic [12]. Another

— argument supporting the feasibility of varying length floating point

arithmetic 1s the fact that it has been in effect implemented, although

= in a too restricted manner, on the rem 360/4h computer. This computer

[5] has a rotary switch on the system control panel where the user can

choose the computing accuracy for the double-length floating point

o instructions in the range 32, 40, 48 or56 bits. This feature is

motivated in the machine manual [5] by hinting to the possibility of

— gaining speed when the full double-length floating point accuracy 1s

not needed.

- ~

The main system problems in hardware implementation of our proposal

“ would be the wise selection of floating point instruction and number

formats, the way the problem of operands of different lengths 1s handled,

— the optimal dimensioning of the floating point registers and the internal

decisions affecting the speed performance of the proposed feature.

~ A possible solution for the instruction format would be to attach

— to the floating point unit a new register called the "result accuracy

register." The result accuracy of a forthcoming operation would be

— defined by loading the register using a special "accuracy load" instruc-

tion with the desired number of bits or bytes for the floating point

~ fraction. In the floating point number format it might be desirable

to use a smaller exponent accuracy than 8 bits when the fraction part

1s exceptionally short, and more bits for the exponent in the high

— precision calculations. We do not know how this can be conveniently

: formated, however, without causing restriction for the operations between

BN operands of different fraction lengths.

— -22.
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We sketch a varying length operand handling scheme. This scheme
{

— would lead to a quite satisfactory speed economy and would require no

flagging of the operand tails. The arithmetic instruction set would be

= constructed to work only with numbers loaded in the floating point |
L registers. The instruction set would assume that the result and operand

| length are the same. It should, however, be possible to gain speed
L advantages, potentially available, when the operands are shorter than

the result accuracy. The microprogram performing floating point arith-

- metic could, for example, begin the operation by scanning the operands

L from the least significant end and recognize the zero bit string on the
, tail of a short operand,

L It 1s evident that the floating point registers for the operands
should be quite long to make the varying length floating point operations

- fast also in higher precisions. Compiler handling of the register over-

C spill in cheaper storage, without denying this possibility, might be a
| problem. It would be ideal from the systems programming point of view

“ 1f the microprogram could control the necessary subroutine branching

) process in that case. This could be achieved by the following arrange-

= men-t. When the accuracy register indicated too large a number for the

o floating point operand register, the load instruction would be interpre-

ted as an operand address load instruction. The subsequent arithmetic

[- operations would initiate an interrupt to the supervisor program which

would perform the necessary subroutine entries, The space reservations

- in the main core memory shouldbe performed by the object time block

_ entry mechanism, if the floating point register overspill was anticipated.

— 0%
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The length of the floating point registers would be a crucial

_ decision when planning the performance of a variable length floating

| point arithmetic. The manufacturer should offer several different

- floating point register sizes, e.g. 100 bits, 300 bits, 1000 bits,
with rising cost, preferably with a provision to add extra capacity

later 1f needed. Efficient coding of the subroutines handling the

operands exceeding the floating point register capacity would be impor-

tant. For this purpose the hardware implementation should include

hat some specially designed instructions operating on bit strings of length

| up to the floating point register capacity. The generality of varying

ha length arithmetic might be wasteful on short fraction lengths. This

Ig performance defect could be cured by preparing special independent

sections in the floating point microprogram for standard short operand

— lengths. The selection of the microprogram sector could be based on

the content of the accuracy register. This superspeed feature might

- be subject to a special price 1n the books of the scientific computer

He salesmen!

C 8. Varying length operands within the Algol language.
} The concept of varying length arithmetic will not be feasible at

- all 1f its use 1s not made possible within the major programming languages.

There should be no problems which cannot be readily overcome when this

hn new arithmetic 1s introduced to the programming languages, Algol and

PL/I. The compilers should be, of course, redesigned but applying
—

similar techniques as before. We consider the Algol language first

— because it 1s, so far, a better known and more used language than PL/I.
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The Algol language must be considered from several aspects to see

—_ the impact and the problems caused by the proposed new computer arith-

metic. We shall consider first its use as an algorithm publication and

— program exchange standard. The new language features enabling the pros

g grammer to express his decision on the appropriate computing precision
| will be considered next,.as well as the prerequisites for their eco-

4 nomical implementation. Some indirect effects due to the existence of
the variable, unlimited length operands are then discussed. These dis-

- cussions cover program constants, function and input/output procedures.

L The operand precision problem in floating point arithmetic has been
investigated in order to improve the Algol language [8], which awaits a

L major revision, being almost unaltered since 1960. According to an
idea mentioned in [3] this problem could be solved by introducing new

1 variable types: long real, long long real, etc., into the language.
This solution would have from the point of view of our application

~ models 1-4 two basic inflexibilities. Firs%, it would no% allow any
Ig dynamical precision changes, which would be essential for the applications.

Also it would provide higher accuraciles 1n unneccessarily large: incre-

“ ments and would give no provision for speed and memory savings due to

the use of very short operands. This straightforward solution would

= also contribute unfavorably, as noted in [3],to the elegance of the

Algol language.

The well known problem due to the dependence of Algol implementations

L on computer word length plagues to some degree the people making practical

use of the published Algol programs. The dependence on the word length

~ comes from program constants or through some implicit dependence. It

- -25-
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1s possible to program mathematical algorithms as procedures 1n a way

which minimizes the word-length dependence. This particular programming

style has, however, the drawback that it makes the respective procedures

- more complicated for the user by pushing all the decisions associated

with the computing accuracy to the procedure user. This must happen

" often 1n a way which no longer makes 1t possible to consider the pro-

1 cedure as a black box but requires the procedure user to go through

( the working mechanism of the algorithm. When computer users exchange
1 whole application packages this dependence on the word length 1s almost

Pe impossible to avoid and in practice 1t 1s a real trouble indeed.

- However, one of the basic goals of the Algol language has traditionally

L been, and should continue to be, the independence of the particular
computer implementation as much as 1s feasible.

- It would be an ideal situation if the new revised Algol language

could be designed on the assumption that the variable length floating

- point arithmetic would be available on scientific computer hardware.

1 This starting point could lead to a successful solution of a principal
; defect in Algol 60, the ignorance of the fundamental role which round-

. off phenomenon and computing accuracy are playing in every algorithm

based on the use of floating point arithmetic.

. 1% would be possible to repair the accuracy problem simply by

— declaring in the Algol language all real variables and arrays 1n a new

way: real(n) a, Db, c; real(n) array d[1:10]; where n would be an

. integer constant or expression specifying in decimal digits the minimum

significance of the declared operands. It seems to us, however, that if

we want the new Algol to be more economical for the user, some information

- -26-
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of the maximum accuracy to be used would be necessary. This would be

- furnished to the compiler if the declaration were given in the form:

| real(n,p) a, b, c; real(n,p) array d[1:10]; where n = accuracy of the
- operand, p = greatest n to be allowed, n and p are integer constants

i or expressions. The arithmetic statements should be evaluated using the
highest accuracy occuring in the operands and the result finally rounded

L to the length of the left part variable.
{ The author cannot accept the criticism presented in [3] of the

w decimal representation of accuracy in the language. For algorithm publi-

L cation and program exchange purposes a standard accuracy communicating
system would be desirable. The decimal number system is a standard which

L 1s unremovable from our mathematical education. The conversion of the

| accuracy specification to different machine representations should no%
be too difficult if we agree on the decimal system. A formula for the

| conversion rule for a pure binary machine could be the following: number
| of bits in the floating point fraction = 3.32 X decimal accuracy + a

4 positive implementation convenience allowance. The maximum allowance for
( the deviation of an implementation from the decimal equivalent should

L be agreed upon. We propose 8 bits as the maximum deviation as this 1s

| compatible with the most popular information organization style of the
contemporary third generation computers.

L Let us now consider the operand declarations,We can distinguish
R five different modes of accuracy specifications:

L 1) standard operand length,
2) nonstandard fixed length operand,

. 3) dynamic accuracy with fixed upper bound,
{

L 27.
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4) dynamic accuracy with dynamic upper bound,

. 5) dynamic accuracy without any upper bound.
I think that case 1, where the programmer would need no% specify

~- any accuracy as all, could be omitted in the Algol language. This

i would be a recommendation consistent to the principle of explicitness
as pursued in [3}. Case 2 would be the normal mode of accuracy dec-

tv laration in Algol. All variables with the same precision should be
grouped together in a declaration of the form: real(8) a, b, cj. The

S programmer could avoid accuracy pitfalls by using longer operands and

| gain speed and save memory space by using shorter operands. Case 3

- would allow dynamic accuracy changing without dynamic memory allo-
| cation. Present day compiler technology is probably not able to exploit

the slight difference between case 4 and 5. We differentiated between

— them jus% to point out that we would propose both forms of declaration

| real (n) a; as well as_real(n,p) a; to be permitted. This recommen-

= dation comes from the desire to honor the principle of minimum exceptions
Case L exists in our proposal because of our desire to include case 3

which allows the compiler to generate efficient code with dynamic accuracy

~ | characteristics Case t might be also useful when considering procedure

publication practices

~ The program constants present a problem when computing with

o dynamically changing precisicn. In some calculation, e.g. the trans-
cendental constant, m, might play such a role that it would be meaningless

- to perform calculations beyond the accuracy given for the constant.

Because the constents perform from the compiler point of view similar

= functions as the operand identifiers, the constants should be divided

-
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~ into two classes: 1) constants containing digits up to the equivalent

: amount of the operand identifier maximum length, 2) constants exceeding
—

| these limits. One possible and natural solution would be to introduce

_ to the language a constant declaration statement,the use of which would

be obligatory for constants exceeding the operand name length. The

— functions of a declaratimsal(n) constant Pi(3.14159265); would be

H to assign a storage space equivalent to a 9 decimal digit floating point

- representation for the value of the real identifier Pi, to define the
length of the operand Pi 1n an equivalent way as_real(n,9) Pi;, to give

the variable Pi the value 3.141 . . . in n decimal digits and to block

“ access of the program to the location Pi by forbidding the appearance of

Pi 1n the left side of an assignment statement.

~ Another new'problem would be the implementation of the elementary

. functions which are usually evaluated with optimized truncated power

series. New methods should be devised for these routines workingin a

Ce large range of accuracies. A basic problem would be to devise methods

\ which would be fast enough for short operands and accurate enough and
Co

+ not too slow for long operands. As an example, we sketch a possible
o

o ) method for the exponential function. Write a> = ev . where

: 0 <y<p<1 . Compute e’ = : vy ’ ef = (.. (e¥)2)2 Ca 2 . The
~ v=0 Vv!

computation should use intermediate precision of (n + 7) digits. We

~ should further reason out an optimal decision rule to choose gq, g,
and y based on some assumption concerning the demand distributions of

|S-

the argument x and the result precision n .

oe
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| The input/output procedures in the Algol implementations would in

“ principle need no amendments because of the varying length arithmetic.
The whole 1dea of this device focuses on the possibility of controlling

the effect of round-off errors. The user's data, as well as his accuracy

_ needs 1n the results, do no% exceed the accuracy range avallable today.
: However, for storing the intermediate results, to ease program debugging,
~ and for research in numerical methods 1t would be convenient to also have

_ variable length input/output routines. This would result in the redesign

~ of the existing routines.

| 9. Considerations for the programming language PL/I.

After a superficial glance a% [6]it appears that PL/I would allow

~ all the features that we want. There is a provision to declare the
. precision at will if the programmer wants to avoid the standard default

accuracy. This standard 1s 1mplementation dependent, e.g. for an IBM

— 360 PL/I implementation [15], it is equivalent to at leas% 6 decimal

digits. The programmer specifices the operand accuracy when declaring

~ a real floating point variable including, among the other possible

_ | attributes, a precision attribute. For example DECLARE A FLOAT (12)
specifies the variable A as a 12 digit floating point variable.

- The programmer must, however, notice that the compiler of a parti-

cular PL/I implementation 1s free to perform the space reservations and

$he actual computations using any suitable floating point format exceeding

_ the programmer's accuracy specification. Neither is the precision

attribute included in PL/I in the features which are allowed to be

— exploited in a dynamic manner 1n program block entries at object time.
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The concept of dynamic data length exists within PL/I;it applies to the

L string data. Let us consider whether the varying length string data

[ control concepts would be suitable for generalization to the flexible
length floating point numbers.

[ The basic difference between the floating point fraction length
control and the PL/I string data length handling philosophy 1s that

L the former must be program controlled, whereas the latter 1s designed to

{ } be data controlled. One goal 1n the design of the VARYING feature for
the string data seems to be parallel to the ideas featured in the block

[ entry mode 3 of our Algol operand declaration proposal. Both approaches
| enable the flexible size fluctuating of varying length data without losing

L the possibility of static storage allocation. The string data length

| control philosophy would be suitable for varying length integer and
rational arithmetic (infinite precision arithmetic)--which would be

I useful concepts for discrete numerical analysis—-but we cannot conceive
any easy method to assign automatically a natural accuracy for varying

{ length floating point results. Therefore the other feature reserved

{ | for string data length control, the possibility to se% the maximum
length of a string at object time, seems to be the only one which we

L can make use of. A slight variation to the floating point precision
| attribute would be desirable, 1f we want to minimize the speed wastage

L due to dynamic precision fluctuations.

[ Considerations presented above lead to the recommendation that the
parameter N would be allowed to be defined in the precision attribute

L (N) a% the object time. In order to achieve object time economies this
feature should be supplemented by a possibility to specify the upper

3 a
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| limit for the accuracy. We come so to the following language convention

_ "The precision attribute (w,d) of the floating scale 1s interpreted as
follows: w specifies the precision of the floating point number during

- the object time, d gives the upper limit of the precision, w and

1 d may be constants or expressions. If d 1s no% given, it 1s assumed
| that w = d ."

8 A change to the PL/I language implementation philosophy would be
{ needed, too, 1f we really want to benefit from the proposed application

h models 1-4 presented earlier in this article. The implementation should

L follow the programmer's accuracy specification. To be explicit, some
convention like the following would be needed. "The accuracies used by

[ PL/I implementation in storing and computing floating point numbers should
follow each other by increments of not more than an equivalent of 8

- bits. For a particular accuracy of a program it should be assigned the

L nearest larger precision to the equivalent of the accuracy in the pro-
grammer's specification.' This convention would still allow a binary

L implementation to follow abyte structure. The programmer could also

( be sure that if he increases the accuracy in his computation by 3

L decimal digits the round-off pattern is changed.

| Is it feasible to implement our ideas in the present generation of
computer hardware without supporting special hardware facilities? In

L a PL/I implementation for a computer without hardware floating point
facilities the ideas would be useful to consider immediately. The

— speed economies achievable might be worth earnest considerations. In

; a computer with floating point hardware and byte organized memory, like the

= eM 360, the accuracies 8, 16, 2k, 40, 48 and 56 for the fractional part

~32.

|



[
would be available for fast computing. For the accuracies above 56

) bits there should be a set of subroutines available in the language for

[ long precision arithmetic and elementary functions.
The extension of PL/I to the generality we are aiming at could be

[ accomplished honoring the upwards compatibility principle. The existing
PL/I programs could be run with the same speed efficiency using the

{ extended language compiler. To achieve this aim the new compiler should

[ 5 be able to choose between two modes of code generation. For every block
entry 1n the source program a decision would be made whether or no% any

L non-standard accuracy features are used. The arithmetic on the
) nonstandard or dynamic precision variables would be compiled using a
L floating point arithmetic selection subroutine. This subroutine would

[ perform arithmetic on the fraction accuracies 8, 16 and 24 bits using
single length floating instructions and rounding the result to the right

| result precision. The computations with the fraction lengths of 32,
40, 48 and 56 bits would be performed using the double length instruc-

{ tions, and fraction lengths 64, 72,. . . should be handled with the aid
| of special software subroutines. The user should be informed of the

L standard constant accuracies and of the full efficiency of the code %he
[ compiler would generate when he uses one of them. He cannot benefit

from other accuracies at the present time anyway, because in most

1 compilers all fraction accuracies below 24 bits are handled equivalent
to 24 bits internally and all accuracies between 25 and 56 bits are

. equivalent to 56 bits fraction accuracy.

L The introduction of varying length arithmetic without hardware
| support causes an extra burden, especially an extra allowance of core

L 35.
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L
memory space for the PL/I compller. The object time economies achievable

L today are due to the storage space savings and application flexibility

[ gains without any speed savings 1f the hardware floating point unit 1s
avallable. It 1s therefore doubtful whether these recommendations are

[ acceptable today when the PL/I compiler writing 1s difficult anyway.
The practical utility of our application philosophies would need more

L concrete case examples to act as a driving force towards these goals.

| The problem 1s that motivating application cases will not become
avallable until somebody constructs a compiler to make the programming

L of these applications feasible.
The best way to get these ideas properly investigated would be to

I get some university compiler group interested in our application models.

I This should happen in a place where numerical analysis research 1s
pursued, We believe that the application potential available through

I this kind of compiler 1s worth exploring for the benefit of numerical.
analysis.

L
10. Conclusions.

I We claim that round-off error differs in a fundamental manner from
other uncertainties involved in computing. It can be effectively fought

L using computer based means. This conclusion is more optimistic than

{ many earlier assertions [2], [13] concerning the nature of the error
problem. To promote this conviction we propose the return to the use of

I the term "digital noise" (or "processing noise" or "computing noise")
as a synonym for the term cumulative round-off error as proposed in [9].

[ This would distinguish round-off error from approximation errors and

L i.
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L
would also underline the responsibility of the computer system designer

L for this error category.

L We hope that the computer manufacturers would consider seriously
the inclusion of varying length floating point arithmetic in their

| scientific hardware and software. This feature when powerfully imple-
mented might prove to be an excellent sales argument for a new computer

L intended for the scientific computing market. The economies from which

[ the users would benefit with this feature are:
1) Better matching of computing precision to the actual needs

L resulting in speed improvements and core space savings
. 2) Running time savings when the fastest available algorithms could

L be used also for occasionally numerically 1ll-conditioned problems.

[ 3) Savings in the overall problem solving costs when numerical
accuracy problems can be handled with straightforward philosophies.

[ 4) The possibility to use brute force in solving round-off error
problems when delays 1n the computing service appear to cause unreason-

L able indirect costs.

| 5) A better overall quality in the scientific computing services
from the numerical precision point of view.

[ It seems not to be generally known that varying precision floating
point arithmetic would provide a more elegant and practical scheme to

L control the round-off errors than the earlier error tracking schemes.

L It has the overriding practical advantage that it does not only warn
the user of the round-off error problem, but it also helps him solve it.

L In order to exploit this philosophy some new research on the numerical
methods would be desirable. This research would be performed with the

|
i
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[
aid of a software simulated variable length floating point arithmetic,

| preferably augmented by an automatic error tracking scheme. With this

[ kind of work in the background it would be much easier to decide whether
the proposed new features are worth the extra hardware cost. In any

I case this research would catalyze new insignts on the effects of round-
| off errors in computing.

L
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