CS 57

THE USE OF TRANSITION MATRICES
IN COMPILING

BY

D. GR IES

TECHNICAL REPORT CS 57
MARCH 17, 1967

Supported in part by the
Atomic Energy Commission.

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

L THE USE OF TRANSITION MATRICES IN COMPILING

—

by.

D. Gries

r— r—

r r— r— r— r— r-

-

Supported in part by the Atomic Energy Commission.

L
L

r— r— ¢

S el o

r- r— r— r— r

The Use of Transition Matrices in Compiling

Contents Page
1. INntroducCtion =« = « o « o o e e e e e e e e e e e e e e e e 1
2. Notation, terminology, basic definitions 3
5. Operator and augmented operator grammars and languages >
4. Parsing a string using an AOG - - .+ -+ -+ o o . ..o . 14
5. Sufficient conditions for a unique canonical parse 16
6. The transition matrix and stack « « « « « « 18
7. An example Of @ PATSE + « « « ¢ ¢« ¢ 4 e e e e e e e e e e 25
8. Representation of nonterminals in the stack « « « « « « « « « 27
9. Other uses of transition matrices « . « . « . .« . . . 28
10. SUMMATY = + + =+ + = e . e e e e e e e e e e e e e e e e . 39

REFETENCES = = o + o o o o o o o v e e e e e e e e e e e e e b
Appendix A. An ALGOL-like grammar and associated matrix , . . . , L2

F——

|
N\

—

(‘"‘s

-

r

The Use of a Transition Matrix in Compiling

1. Introduction,

The construction of efficient parsing algorithms for programming
languages has been the subject of many papers in the last few years.
Techniques for efficient parsing and algorithms which generate the
parser from a grammar or phrase structure system have been derived.

Some of the well-known methods are the precedence techniques of Floyd [4]
and Wirth and Weber [10], and the production language of Feldman [3].
Perhaps the first such discussion was by Samelson and Bauer [9]. There
the concept of the push-down stack was introduced, along with the idea

of a transition matrix. A transition matrix is just a switching table

which lets one determine from the top element of the stack (denoting a
row of the table) and the next symbol of the program to be processed
(represented by a column of the table) exactly what should be done.
Either a reduction is made in the stack, or the incoming symbol is
pushed onto the stack.

Considering its efficiency, the transition matrix technique does
not seem to have achieved much attention, probably because it was not
sufficiently well-defined. The purpose of this paper is to define the
concept more formally, to illustrate that the technique is very efficient,
and to describe an algorithm which generates a transition matrix from a
suitable grammar. We will also describe other uses of transition
matrices besides the usual ones of syntax checking and compiling.

We will require that the set of productions {Ui::= xi] form

an operator grammar (Floyd [4]), which means that no production has

. ,‘r- Nn__

the form U ::= XVngy for strings x,y and nonterminal symbols Vl

and Vo This restriction is not necessary in order to use a transi-

tion matrix. One may also describe suitable conditions for the general

phrase structure grammar {Ui::= xi} which allow the use of a
transition matrix. The restriction to operator grammars is a rather
natural way to reduce the size of storage necessary to implement the
technique. The syntax of the usual ALGOL-like languages can easily
be represented by such a grammar.

We emphasize that the use of a transition matrix is Jjust another
technique, though a very efficient one, for parsing sentences of a
suitable (programming) language.

Section 2 introduces the notation and terminology. Sections 3
through 5 are devoted to discussing sufficient conditions for a unique
canonical parse which enable us to use a transition matrix. These
conditions are of course closely related to those derived by Floyd [4],
Wirth and Weber [10], and Eickel et al [2]. Sections 6 and 7 explain
the technique and go through an example in detail. In Sections 8 and 9

practical examples and applications are discussed. Appendix A gives

Floyd's ALGOL-like grammar ([4]) and the associated matrix and subroutines.

All examples were produced by an algorithm, written in Extended ALGOL [11],

on the B5500 at Stanford.
The author is indebted to Jerome Feldman and Niklaus Wirth for
their critical comments on this manuscript. This work was partially

supported by the U.S. Atomic Energy Commission.

L

—

f o

r

rﬁ-—,-ﬁ

r‘ N

ralt

-

2. Notation, terminology, basic definitions.

Let V be a given set: the vocabulary. Elements of ¥V are

called symbols and are denoted here by capital Latin letters, S, T ,
U, etc. Finite sequences of symbols - including the empty sequence (A)
- are called strings and are denoted by small Latin Jetters u , v, vy,
z , etc. The set of all strings over V is denoted by V* .

If z =xy 1is a string, x is a _head and y a tail of z

A production or syntactic rule @ : U ::= x , is an ordered pair

consisting of a symbol U and a nonempty string x . U is called the

left part and x the right part of ¢ . We assume that U # X

Let & be a finite set of productions Ql,u.,Qn .y directly

—produces z (y — z) and conversely z directly reduces into y ,

if and only if there exist strings u,v such that y = ulv , z = uxv ,
and the production U ::= X is an element of & .
y produces =z (y 3 z) and conversely z reduces into y ,

4

if and only if there exist strings 1. ¢ {§ll such that y = x_

X =2z and
n

X, "X (i =1..,n; n>1)

Z 1s also said to be a derivation of y .

Let & be a set of productions ¢l"””¢n . If V , the vocabulary,
contains exactly one symbol A which occurs in no right part of a
production, and a non empty set 8 of symbols which appear only in the

right part of productions, then # is a phrase structure grammar.

The symbols of B are called terminal or basic symbols and are denoted

-

r

by capital letters T , Tl , T2 . The letters U , V always denote
symbols in V-8 and are called nonterminal symbols.

*
x eV is called a sentential form of & if either A =x or

A 5x . The set of sentences x = i.e., the set of sentential forms

consisting only of terminal symbols - constitutes the phrase structure

language L‘g , that is:
*
(2.1) Ly :={x|a3xAxehR]

Without restricting the set of phrase structure languages we

shall assume that

(2.2) UAU forany UEeV-B ;
(2.3) if U, 3U_, then the sequence
1 k
§)

is unique; and

(2-L¥) every symbol may be used in deriving some sentence: for
each symbol X € V there exists strings x , z , t such

*
that A 3 xXz .and either X € B or X 3t where t¢e¢fB .

A z.rse of the string into the symbol U is a sequence
of productions @,,9,,..+,® such that 5 = (Uj ti= Xj) directly
reduces z = u.x.v, into z, =u,u,v. (j = l,...,n) and z, = U

J-1 Jg J J J7373
The canonical parse is the parse which proceeds strictly from left to

right in a sentence, and reduces a leftmost part of a sentence as far

as possible before proceeding further to the right. That is,

N

the parse @l,mz,.”vwn of zg into U is canonical if and
only if for j = 1,...,n X, is not contained in uj for

all k> 3§ .

Every parse has a unique canonical form (simply rearrange the
productions to form a canonical parse), but in an ambiguous grammar
there exists more than one canonical parse for some sentence. An

unambiguous grammar is a phrase structure grammar such that for every

string x € Q& there exists exactly-one canonical parse of x into
the symbol A .

It has been shown that there exists no algorithm which decides
whether an arbitrary grammar is unambiguous. However, a sufficient
condition for a grammar to be unambiguous is subsequently derived,
and a method is explained which determines whether a given grammar

satisfies this condition.

3. Operator and augmented operator grammars and languages.

If no production Qi of the phrase structure grammar 4 takes
the form U ::= leVEy for some (possibly empty) strings x,y and
nonterminal symbols V, 'and V, ;, then (Floyd [4]) & 1is called an

operator grammar (OG). The phrase structure language Qg generated by

an 0G is then called an operator language.

Floyd proved that in an operator grammar no sentential form contains
two adjacent non-terminal symbols - i.e., if A 2 x then there exists no
strings Xy and X, and no nonterminals V1 and Vé such that

X = X1V1V2X2 The grammar in Figure 1 is not an operator grammar, since

<IF CLAUSE> and <STATEMENT> are both nonterminal.

5

L

~ 7 r

— c— r— r

AN S A ST AR SR A

r.,. —

<PROG> ::= <STATEMENT>
<PROG> t:= <IF CLAUSE> <STATEMENT>
<IF CLAUSE> ::= IF <EXPRESSION> THEN

<STATEMENT> ¢s= <IF CLAUSE> <STATEMENT> ELSE <STATEMENT>

<STATEMENT> ::= VARIABLE := <EXPRESSION>
<EXPRESSION> ::= <EXPRESSION> OR VARIABLE
<EXPRESSION> ::= VARIABLE

Figure-1

The grammar in Figure 2, which is equivalent to (generates the same

language as) the grammar in Figure 1, 1s an operator grammar.

<PROG> ¢ t= <STATEMENT>

<PROG> ::= IF <EXPRESSION> THEN <STATEMENT>

<STATEMENT> t:= IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
<STATEMENT> :i= VARIABLE := <EXPRESSION>

<EXPRESSION> ::= <EXPRESSION> OR VARIABLE

<EXPRESSION> ::= VARIABLE

NONTERMINAL SYMBOLS: <PROG> , <STATEMENT> , <EXPRESSION> .

TERMINAL SYMBOLS: IF 9 THEN , ELSE , VARIABIE , :=, OR

Figure 2

When parsing a sentence, at each step the leftmost right part x
of a production U ::= x must be detected. Then x is replaced by U
and the process is repeated. In order to reduce the number of symbols

to be checked at each step, we introduce intermediate reductions. For

L
L

—

— e o e rreoree

— =

instance, although the string

IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>

can be reduced directly to <STATEMENT> by the grammar of Figure 2,

we want to parse it as is shown below:

<STATEMENT>
U* | /
N 3
U /
* 2
u_— \
IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>

This can be achieved by constructing an augmented operator grammar (AOG)

ﬁk corresponding to & . The augmented operator grammar is useful for

describing theoretically the mechanism of the matrix technique to be
introduced later. However, so as not to complicate the process too
much, one can give mnemonic names-to the introduced symbols needed for
the intermediate reductions. For instance, in the above diagram UT

*
may be named "<IF*>" | U, "<IF expr THEN*>" , and

*
U5 "<IF expr THEN state ELSE*>" . That is, each new symbol is just a

representation of the head of the right part of some production. jk is

constructed from & by repeating the following step 1 until no longer

applicable, then step 2 until no longer applicable, and finally steps 3a

L

r— r—

r r— ¢ r—r—

ra—«!-

r— o

and 3b alternately until no longer applicable. New nonterminal symbols

will be introduced into V and V-8 (but not B). Note that all

newly introduced symbols are distinguished from the original nonterminals

by an asterisk "¥" .

step 1:

step 2:

If there is a production P’::: Teyl (yl may be empty), and

. * *

1if k new symbols Ul""’Uk have been created so far, create
*

a new symbol %&l)

(each production whose right part begins with T2) by the

replace each production Uf HEES T2yi

production Ui 1= Uk_l_lyi , and insert the production
*
Uk+l 1= T2 into the grammar,

After step 1 all productions have one of the forms

*
U, ::2=U, , U, ::= UeTy , U Uy , U ::=T.

1 2 1 1%

*
where y contains no introduced symbol U .

If there is a production Ul :F=[%T2yl (note that U2 must
be one of the original nonterminals of the 0G), and if k new

symbols have been created so far, create a new symbol U£+l s

replace each production. Ui 2i=U.T (each production whose

o oYy

*
right part begins with U'ET2) by U. ::=1U and insert

1 k+1Yi 7

*
the production Uk+l::= U2T2 .

After step 2 all productions have one of the forms

where y contains no introduced symbol U* .

8

I
|
~

r - — f— r— rr—~ ™

r\-—a—ﬁ

r\«v‘-

— T r— r—

r—

*
step 3a: If there is a production U1 = U'Tey , and if k new symbols

*
have been created so far, create a new symbol Uk+l , replace

*

each production U1 1= U2T2y.

*
5 by U, ::= Uk+lyi » and insert

1

) * *
the new production Uk+l"— U2T2 .

*
step 3b: If there is a production Ul 1= Q§bTey , and if k new

*
symbols have been created so far, create a new symbol Uk+l s

*

*
i = UL . . = .
replace each production UI Ul T2y1 by Ul Uk+lyl)
*

and insert the new production Upp1 *%%

An AOG has, therefore, only productions of one of the following forms:

c:= U, U, ::= U U
U oii= U, , Up = U, Uy fis 5
* * * * * B *
U =T , U ss:= 1T , U2 = UiT , U2 = UlUT
Figure 3

Note that we differentiate between the original Unstarred NonTerminal

Symbols (called UNTS) and the newly created Starred NonTerminal Symbols'

(SNTS), which for reasons explained later are also called stack

nonterminals.

Again, we have introduced augmented operator grammars and stack
nonterminals in order to be able to make intermediate reductions.
A stack non-terminal can also be thought of as a representation for the

head xT (ending in a terminal symbol T) of the right part of a

production U ::= xTy of the original 0G. As another example, if
Ul: := T1T2U3T4T5 is a production of the 0G, then the string T1T2U3TMT5
9

!

o

rp--.-ﬂ'

T o rr r— T

e

will be parsed as a sentence of the AOG as follows:

Ul Productions in AOG
‘ *
% Ul 1= Tl
U * *
* " U, = U,T
U - 2 171
5 * *
U5 s _UZUBTLL
% U* *
U M U5T5
e *
* / Ul s = ULI-
Ul _
[)
Tl T2 U3 TL; T5

Consider the 0G in Figure 2. After step 1 it will have been changed to

<PROG> : := <STATEMENT>
<IF*¥> $:= IF

<VARIABLE*> ::= VARIABLE

<PROG> 2 1= <IF*¥> <EXPRESSION> THEN <STATEMENT>

_ <STATEMENT> ::= <IF¥> <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
<STATEMENT> ::= <VARIABLE¥> := <EXPRESSION>
<EXPRESSION> : : = <EXPRESSION> OR VARIABLE

<EXPRESSION> ::= <VARIABLE*>

Step 2 changes it to

10

r— —

rrrrrr M o e

i r..«A

<PROG> : 1= <STATEMENT>
<TF%> 1= IF

<VARIABLE¥> ::= VARIABLE

<EXPR~OR*> = <EXPRESSION> OR

<PROG> $:= <IF*> <EXPRESSION> THEN <STATEMENT>

<STATEMENT> ::= <IF*> <EXPFRESSION> THEN <STATEMENT> ELSE <STATEMENT>
<STATEMENT> ::= <VARIABLE*> := <EXPRESSION>

<EXPRESSION> ::= <EXPR-OR*> VARIABLE

<EXPRESSION> ::= <VARIABLE*>

Finally, after step 3 we have the AOG of Figure 4:

<PROG> : := <STATEMENT>

<TF*> :=1IF

<VARTIABLE*> ::= VARIABLE

<EXPR-OR*> ::= <EXPRESSION> OR

<IF-THEN*> $ 1= <IF¥> <EXPRESSION> THEN
<IF-ELSE*> : 1= <IF-THEN*> <STATEMENT> ELSE
<VAR-:=%> : = <VARIABLE*> :=

. <EXPR-OR-VAR¥> ::= <EXPR-OR*> VARTABLE
<PROG> ¢ 1= <IF-THEN*> <STATEMENT>
<STATEMENT> ::= <IF-ELSE¥> <STATEMENT>
<STATEMENT> : i= <VAR-:=¥> <EXPRESSION>
<EXPRESSION> ::= <EXPR-OR-VAR¥*>

<EXPRESSION> ::= <VARIABLE*>

Figure 4

11

|
L

-

©e—

r— r (O i e A A S S e

r~

-

We will need the following definition: A string y 1is a phrase if

(3.1) y contains at least one terminal or SNTS; and
.) *
(3.2) there exists a production U ::= yl or U ::= Y1 of the
ACG where y, =y or yl = uUlv , Y = uﬂév and Ul #l% ’

for some u , v .

Thus, vy i1s a phrase if it is the right part of some production of the
AOG (except a production of the form 'Ul::= U2), or if it can be
reduced to the right part of some production by a sequence of
reductions U.1::= U.J . Given a sentential form x = X%y 1 Y is

called a reducible phrase (of x), if

(3.3) y is a phrase; and

*
(3.4) for some U (or U) as defined in (3.2), the string
resulting from replacing the string y by U (or U*)

is a sentential form.

The problem for the compiler, then, is to find the leftmost

reducible phrase and to make the correct replacement (reduction).

The following statements, which help to explain the relationship
between an OG and the corresponding AOG, follow directly from the
construction of the AOG. For lack of a better name, we call them

lemmas.

*
Lemma 1. Each SNTS U appears as the left part of only one production
U ::= x . The corresponding right part x appears as the right part

of no other production.

12

|
-

e N caun Y G St AR AR SR S

-

*
Lemma 2. If the SNTS's U are numbered in the order in which they

* % *) , * * .
were 1introduced, Ul’U2""’Un » and 1if a production Ul ii= UJ.y exists

in the A0G, then 1 > j

Lemma %. For each production U ::= y with y £ V8 of the AOG there

* * *

exists a unique set of productions Ul =Yy U2 2= UiV, seees

* * *

Un 1= Un-ly _p o b= Unyn of the AOG such that y = YiVpeo¥, -

Lemma 3 follows directly from the construction and Lemmas 1 and 2.

Lemma 4 follows directly from Lemma 3.

Lemma 4. If q>l,(p2,.,. %EFbI is a canonical parse of a string x relative
to the 0G, then we get a parse of x relative to the AOG by substituting
for each ?; (which is not of the form Ul 1= U2) the unique set of

productions defined in Lemma 3.

Since two different canonical parses {@n} and {)‘m} of a string must

for some i have tpi)é)‘i , we have also

Lemma 5. Different canonical parses of a string x with respect to

an 0G, yield different canonical parses of x with respect to the AQG.

Therefore we have finally

Lemma 6. If an AOG is unambiguous, the corresponding 0G must also be

unambiguous.

A sufficient condition for an 0G to be unambiguous is therefore the

unambiguousness of the corresponding AOG.

13

|
C

r..,_,& r-_ —— r‘,.ﬂ‘i, r-\ —— rs,,-s . r\“h_\

=

— =

r—

—

L, Parsing a string using an AOG.

In order to parse a sentence x we first enclose x in symbols Q*
and ¢ (where ®* is assumed to be a new SNTS and ¢ a new terminal
symbol), yielding ®*x® . Formally, we add to the AOG the productions
<Program> ::= ®*A® and ®* ::= 0 , where A is the symbol which appeared
only in a left part. We show that after each reduction the string has

one of the following two forms

(%.1) U*U* Yo -
. VSRR AU A VL
or
* % * *
(4.2) uuU,...0yun ... T,

where the U: are SNTS's, the Ti are terminals and Ul is an UNTS.
Note that the original string G*x¢ has form (4.1). We assume also
that no reduction U ::= U? , 1< 1 , can be made such that the resulting
string is still a sentential form, since such reductions will have
already been made. It will be seen later that the sufficient conditions
for a unique canonical parse fulfill this requirement.

From the form of productions in an AOG (Figure 3), any reducible
phrase containing Ui , 1 <1, must be Ui itself, and this by
assumption is not the case. Now at some point of the parse a reducible
phrase must contain Tl , and from the form of productions in an AOG,

Tl must be the last character of any reducible phrase containing it.
Therefore, at this step, the leftmost reducible phrase may not contain
T2,T5,...,Tm . We have therefore, using again the possible forms of

productions in an AQG,

14

L
L

r— r— -

rA

— r—

=

— r r— " T

-

Lemma 7. A leftmost reducible phrase at step k, assuming the string is

of form (4.1), must be either

* *
U, 5 Ty, or UT .

Assuming a string of form (4.2) the leftmost reducible phrase 1is

* * l/
UZUl 3 UlUlTl 5 oOr UlTl)

*
In the case (4.1), if we know which of the strings U , T. or

) 1
*
UlTl is the leftmost reducible phrase, we make a reduction U ::= U* ,
— a
* * *
Uzz D Tl resp. U ::= UlTl , yielding again a string of the form
(4.1) or (4.2).

In case (4.2) we first make a sequence of reductions

U2 HHE Ui geeey Uj ti= Uj—l
d ' = U*U * *
reduction U ::= %5 0 U ::= UlUjTl s

on which of the three possibilities is the leftmost reducible phrase.

for some j > 1 , and then execute a final

or U :i:= UjTl » depending

Note that at each step not only the leftmost reducible phrase, but
also the sequence of reductions to be made, should be unique. If this
is the case, then of course there exists a unique canonical parse. The
next section-gives sufficient conditions for the uniqueness of the
canonical parse. The reason for calling the U* "stack nonterminal
symbols"™ is now clear. They are the only symbols which get pushed into

the stack.

i,

Note that a reduction U ::= Ui or U*::= T1 at this time would
result in a string which is not a sentential form, since the grammar
is an AOG (two original nonterminals of the 0G would eventually appear
adjacent) .

15

v —

4
t

!
¢
-

r-

r-

r

PR

5. Sufficient conditions for a unigue canonical parse.

We will use the following set L(S) where S is a symbol:
£(8) = {SllelSy is a sentential form for some X,y . .

£(8) is just the set of symbols which are adjacent and to the left of
Sl in some sentential form. The construction of £ or related sets

has been discussed elsewhere (see for instance Wirth and Weber [lO])-

We therefore do not wish to discuss at length the construction of L(S)

We just state that
S, € £(8) if and only if (S, =SV S, <SVS, @& >5),

where = , < and ® > are the precedence relations defined by Wirth

and Weber (page 18, [10]) .

Now consider case (4.1). We have a sentential form
* ¥ U* T * .
Ullh IR Tl PRI Tm . If 'Uz is a leftmost reducible phrase,

then obviously

*
(4.3) 4 a production U ::= U, such that U € S(Tl).

*
Similarly, if Ule or Tl is a leftmost reducible phrase, we have

respectively
L g 50 : * *
@OEJ 3 a production U = Ule ;
* * *.
(%.5) 3 a production U ::= T, such that [& € £(U) .
, * *
Consider case (4.2). We have a sentential form U UAUL S T
* *
Depending on whether U£U1 , UHH? , Or UlTl is a. leftmost reducible

16

r—

.

- - -

r—

phrase, we have respectively

*
(4.6) 3 a production U ::= Uy, where U € S(Tl) , and either
U, = Uy or U2 =>U; 3
4 i * * T U, U
%.7) 3 a production U ::= U,UT where U, =U or U, =0 ;
* * * ;
(4.8) 3 a production U ::= U)T, where U, € £u)? and either
U2 = Ul or U2 --=>U1

We may now state the main

*

Result. Let U£ be a SNTS, U, a UNTS and Tl a terminal symbol.

1
*
Assume that for any such Ul , Ul and Ti

(a) At most one of the conditions (4.3), (4.4), (4.5) holds;

(b) At most one of the conditions (4.6),(%.7),(%.8) holds;

(c) If one of the conditions (4.3) - (4.8) holds, the production

described therein is unique.

Then there exists a unique canonical parse for each sentence x of the
language.

The result follows from the fact that at each step the leftmost
reducible phrase is unique (from (a) and (b)), and the corresponding
reduction or set of reductions is unique (remember the restriction on an

0G that 1if IE $>Ui then the reductions U.J RS Uj+l’ o v0y Ug qii® U,

are unique).
The algorithm which generates the "compiler is then straightforward.
We first check that if Ul ;JJJ, the sequence of productions

U, ::=10

1 o) UL, = Uj is unique. Next the AOG is constructed.

j=1

17

—

-~

o

£(8) is then determined for all terminal and SNTS S . Then for each

*
U, and Tl the productions are searched to see whether conditions (4.3),

(L.4), or (k.5) hold, and if so, the production number (or just the left

*
part) together with the reducible phrase is recorded. If for some Uz

and Tl two different reductions are found to be possible, then some
sentence may not be parsed unambiguously with the technique given in the

next section. Note that this does not mean that the grammar is unambig-

uous ; it just has not satisfied our sufficiency conditions. Triples
*

Ul , Ul and Tl are handled similarly.

6. The transition matrix and stack.

We have seen that, with sufficient restrictions on the grammar, at
each step in the parsing of a sentence according to the augmented operator

grammar AOG, the partially reduced string has the form

* *
(6.1) U Uy oo UyT e Tm
or

* % *
(6.2) U Uy .o GUT T

where Ul is a non-terminal symbol of the original OG, Ti are terminal

*
symbols, and UE are SNTs of the AOG, or can be thought of as

(6.3) a representation for the head xT (ending in a terminal
symbol T) of the right part of a production U ::= xTy

of the original OG.

Furthermore, in the case (6.1) the leftmost reducible phrase, either

18

|
L

e

P

r—

— r

r— r— - -

r—

e

*

* *
U! B Tl or U!Tl is uniquely determined by U! and T]_, In the

case (6.2), the leftmost reducible phrase is unigquely determined by

* * *
Ui , Tl and Ul and 1s either IhUi,IHIl or I&UiTl

In order to parse a sentence as quickly as possible, we construct

a transition matrix B == a rectangular matrix B whose elements bib

are numbers of subroutines. Each column j represents a terminal symbol

T (or a class of terminal symbols — for instance, one column could

represent the class <type> consisting of Bemllean, and integer).

*
For each stack symbol Uz we designate two rows of the matrix = a basic

row and a secondary row. Their uses are as follows:

Suppose at a step of the parse, the string has the form (6.1).

* *
Then the basic row .U, = i corresponding to U2 together with the

bl
column j representing Tl determine an element bij of the matrix -
the number of a subroutine which, when executed, will effect the unique

reduction to be made.

If the string has form (6.2), the secondary row corresponding to

*

Ul together with the column representing Tl determine an element of

the matrix. When the corresponding subroutine is executed, Ui will be
checked and the appropriate unique reductions will be made.

For practical purposes we assume that the secondary row always
follows the basic row. That is, if the basic row for Uj is row number
ij > then the secondary row is number bUf + 1

The pushdown (last-in-first-out) stack ST consists of elements,
each consisting of two parts. If p is the pointer to the current top
stack element, the two parts of the top stack element are labeled STlP

and STZP. The contents of each stack element are best illustrated by

19

i
L

=

-

. r— r—

r— -

— rm— r—

=

a diagram. If the string has the form (6.1) or (6.2), the stack config-
uration is as illustrated in Figure 5a or Figure 5b respectively, where

*
again U. 1is the index or row number of the basic row corresponding to

bi
*
U, .
i
(ST1 , ST2) (ST1 , ST2)
U* 0 *
(b ;0) top of stack (bUI + 1, Ul)
* *
Uy 4 20 0) GUpy 4 15 0)

(0 +1,0) bottom of K 01,
v% , ottom of stac (bUi 1, 0)

(a) (v)
Figure 5

Note that the first part STl of a stack element which is not the
top stack element is always the index of a secondary row, since when it
later becomes the top stack element, ST2P must contain a nonterminal
symbol U . Later it will be shown how the second part of each element
may be used systematically to hold semantic information.

To illustrate how efficient the technique is, we give an example of
a typical implementation on the IBM 7090. Suppose that the stack element

STlP actually contains the instruction
* *
TRA%{ADDRESS OF B[, U,> 01},4 or TRA* (ADDRESS OF B[,U, + 1, 01}, 4

that the matrix B is stored rowwise in memory, that each matrix element
consists of a single location containing the address of the corresponding
subroutine, that there exists a vector COLUMN to map a terminal symbol

into the corresponding column number, and that the stack pointer p is

20

!

r-

SN

r— r-

r—

—

in index register 1. The following sequence then determines the sub-

routine to be executed:

XA T1,2 PUT THE INCOMING SYMBOL IN INDEX REGISTER 2.
CLA COLUMN,?2 COLUMN NUMBER FOR Tl IN ACCUMULATOR.

PAC O,k COMPLEMENT OF COLUMN NUMBER IN XRA,

TRA STI1,1 JUMP TO TOP STACK ELEMENT, WHICH IN TURN

WILL JUMP TO THE SUBROUTINE

As an example of a matrix and subroutines, consider first the
grammar in Figure 6, which is the same as the grammar in Figure 2

(Section 3) except for the introduction of the production
<PROGRAM> ::= & <PROG> @.

Both the matrix in Figure 7 and the associated subroutines of Figure 8
were produced exactly as they appear from the grammar of Figure 6 by the
algorithm programmed in Extended ALGOL [11] on the B5500 (except for the
numbering of the rows of the matrix).

The SNTISs of the AOG do not appear in the matrix or subroutines;
we have labeled the basicrows of the matrix with the head of the right
part of the production which they represent. Correspondingly, for example,
subroutine 400 of Figure 8 contains the instruction
SE} < ROW(<EXPRESSION> OR), which means that STlp is to have as
its value the index of the basic row corresponding to the SNTS which
represents <EXPRESSION> OR . This is row 13. As can be seen, the AQOG
is actually not necessary practically, but is a convenient theoretical

tool.

21

The zero elements of the matrix represent incorrect pairs, while

the other matrix elements are numbers of the subroutines listed in
Figure 8.

The individual statements of the subroutines are separated by a
slash "/", The statement "NEW T1" means "SCAN", or use the symbol
T2 as the next incoming symbol Tl . If the statement "NEW T1" is

not executed, the old T, will be used again on the next cycle. After

1
a'subroutine has been executed, the next cycle is performed.

Some of the subroutines test ST2P for the presence of a nonterminal
symbol. If ST2P is one of the nonterminals listed, a corresponding
subroutine is executed. If not, a syntactic error has occurred = the
original string is not a sentence of the grammar.

Note also that if a reduction to some non-terminal U is made
(ST2P - U), the original production of the operator grammar corresponding
to this reduction is also listed for reference.

The following simplification has been made. Suppose that xT is
the right part of only one production U ::= xT of the 0G, and that
there is no production Ui ::= xTy for some nonempty v . The AOG will
contain among others two productions- U* HEES xlT and U ::= U*.

Obviously this is not necessary. 1In order to save the intermediate step,

the two productions are replaced by the single production U ::= xlT .

22

-~ ON o w N

-0
--o

PRODUCTIONS

1 <PROGRAM> ti= PHI <PROG> PHI

2 <PROG> RE] <STATEMENT>

3 1= IF <EXPRESSION>THEN <STATEMENT>

4 <STATEMENT>1t8=1F <EXPRESSION>THEN <STATEMENT> ELSE <STATEMENT>
5 18z VARIABLE t= <EXPRESSION>

6 <EXPRESSION>$t= <EXPRESSION>OR VARIABLE

7 ti= VARIABLE

NONTERMINAL SYMBILS
1 <PROGRAM> 2 <PROG> 3 <STATEMENT> 4 <EXPRESSION>

TERMINAL SYMBOLS

5 PHI 6 I F THEN 8 ELSE
9 VARIABLE 10 i= 11 OR.
MATRIX IS 14 x
Figure 6
P 1T E v s 0
H F H L A R
| E S R
N E |
A
B
|3
PHI 0 1 0 0 1 0 0
SECONDARY ROW 3 0 0 0] 0 0
IF 0 0 0 0 2 0 0
SECONDARY ROW 0 0 4 0 0 0 5
IF <EXPRESSION>
THEN o] 1 0 1 0 0
SECONDARY ROw 6 0 0 7 0 0 0
IF <EXPRESSION>
THEN <STATEMENT> 1
ELSE 0 0 0 0 1 0 0
SECONDARY ROW 8 0 8 0 0 0
VARIABLE 10 0 10 10 0 9 10
SECoNDARY Row 0 0 0 0 0 0 0
VARIABLE 1= 0 0 0 0 2 0 0
SECONDARY ROW 11 0 0 10 0 0 5
<EXPRESSION>OR 0 0 0 0 12 0 0
SECONDARY ROW 0 0 0 0 o

Figure 7

H2

MATRIX SUBROUTINES,

1

400

401

402

404

405

406

THOSE SUBSWHICK ARE ACTUALLY MATRIX ENTRIES HAVE NUMBERS LESS THAN 400

8
ST1PeST1P+1 / PeF+1l / ST1PeROW(TI) /7 NEW T1
ST1P«STiP+1 / ST2Pe¢<EXPRESSION> FOR PROCUCTION *EXPRESSION> :3= VARIABLE / NEWT1
USE SUBU4J1I FST2P | S<PRCG> <STATEMENT>
USE SUB40D21 FST2PIS <EXPRESSION>
USE SUBG4)0I FST2P | S<EXPRESSION>
USE SUB 4031 FST2P | S<STATEMENT>
USE SUE 434 IFST2P IS <STATEMENT> -
USE SUB 4051 FST2P | S <STATEMENT>
ST1P€ROW(VARIABLE i=) / NEW T1
PePey / ST2P«<EXPRESSION> FORPRODUCTION <EXPRESSION> ::= VARIARLE
USESUE?4061FST2P IS <EXPRESSION> h
Pepel / ST2P¢<EXPRESSICN> FORPRONDUCTION <EXPRESSION> 33= <EXPRESSICN>CR VARIARLE
PeP+1 / STIP«ROW(<EXPRESSION>OR) / New Ti
Pep=1i / ST2P¢<PROGRAM> F O RPRODUCTION<PROGRAM> tt= PHI <PROG> PHI
STIP«ROW(I F <EXPRESSION>THEN) / NEW
Pep=y / ST2P«<PRGI> F O RFRODUCTION <PROG> 18z |F <EXPRESSION>THEN
ST1PeRCW(IF CEXPRESSION>THEN <STATEMENT> ELSE) / NEW Tl
PeP=y / ST2Pe<STATEMENT> FORPRODUCTION <STATEMENT> %%z | f <EXPRESSION>THEN
ELSE <STATEMENT>
Pep=1 ST2P+<STATEMENT> FOR PRODUCT IONCSTATEMENT> 1t= VARIABLE <EXPRESSION>

Figure 8

/ NEW T

/ NEw T1

<STATEMENT>

<STATEMENT>

L

- M T

—

I An example of a parse.

Let us parse the sentence

¢ IF VARIABLE THEN VARIABLE := VARIABLE §

of the 0G in Figure 6. We start with the following configuration:

Cycle P STACK El Rest of string
1 1 ([row] 1 [PHI], O) IF VARIABLE THEN VARIABLE :=

VARIABLE PHI

The row labeled PHI in Figure 7 and Tl = "IF" determine subroutine 1
of Figure 8. Execution of the first statement "Sgl - STlp + 1" of sub-

routine 1 changes ST1, to [row]2. The stack pointer is then increased

1
by 1 and the index of the row corresponding to "IF" (since Tl = "IF"),
which is 3, is put in ST12 . "VARIABLE" is then scanned, yielding
Cycle P STACK 5 Rest of string
2 2 ([row]3, 0) VARIABLE THEN VARIABLE :=

VARIABLE PHI

([row]2, 0)

Row 3 and "VARIABLE" now determine subroutine number 2. Here we change

ST1, to [rowlk, put "<EXPRESSION>" in ST2 and indicate that the next

2
symbol, "THEN", is to be scanned. This yields

2 4

Cycle P STACK I, Rest of string
3 2 (4, <EXPRESSION>) THEN VARIABLE := VARIABLE PHI
(2, 0)
25

Row 4 and "THEN" lead to subroutine number 4. There, ST22 is checked

for "<EXPRESSION>" . Since it 1is correct, subroutine 402 is executed
yielding
Cycle B STACK El Rest of string subroutine to execute
L 2 (5, 0) VARIABLE := VARIABLE PHI 1
(2, 0)

Continuing in this manner gives the following configurations at the begin-

ning of each cycle.

Cycle B STACK El Rest of string subroutine to execute
s 3 (9, 0) := VARIABLE PHI 9
(6, 0)
__________ (2, 0)
6 3 (11, 0) VARIABLE PHI 2
(6, 0)
__________ (e, Q)
T 3 (12, <EXPRESSION>) PHI 11
(6, 0)
R o o)
8 2 (6, <STATEMENT>) PHI 6
I ¢ Y o)
9 1 (2, <PROG>) PHI 3 (STOP)

26

8. Representation of non-terminals in the stack.

Strictly speaking, one should insert the nonterminal symbol U
itself into STQQ . This is however neither practical nor necessary.
In practice, nonterminals fall into classes whose elements are the
same semantically. For instance, in ALGOL the nonterminals <primary> ,
<factor> , <term> , <simple arith expr> are introduced only to help
define the precedence of operations. In a compiler, they would all be
represented by an address specifying a location which gives the type,
location of the value during execution time (accumulate, register,

storage location), etc. The determination of which U is actually

in ST2P turns out to be almost always a semantic evaluation, which
would have to be done anyway. There is therefore very rarely any list
searching to determine which U is in STZP, but just a semantic
evaluation of ST2P . Accordingly, a reduction U ::= x is accomplished
by inserting into ST2P the semantic meaning of the symbol U and not
U itself. Notice that we assume in the discussion of the method that
productions Ui ::= U._ have no "interpretation rule" associated with
them, which is usually the case.

Note also that the part ST2P of the elements p =1, n-1
may also be used systematically to store semantic information. If we
formally parse the ALGOL statement BEGIN A := (B+E)+C*D END there will

be in the stack at some time the elements
(b<term*> + 1 , identifier)
(b<expr +> +1 , 0)

(b<var i=>+1, 0)

[

(b<BEGIN> +1 , 0)

((<&>+1,0)

We can, though, use the second part of each stack element to contain

semantic information:

(b<termﬁ> + 1 , (semantics of D))

(b<expr +> + 1 , (semantics of C))

(b<VAR :=>+ 1 , (semantics of B+E))

(b<BEGIN> + 1 , (semantics of A))

(b< ¢ >+ 1, (any necessary information))

9. Other uses of transition matrices.

Two other uses will be introduced here, both concerned with optimi-
zing the calculation of addresses of subscripted variables within FOR-
loops ([61,[91,[5]).

Provided that a FOR-loop meets certain conditions, calculation of
the address of a subscripted variable A[El" e En] occurring in the

statement of the FOR-loop may be optimized if the Ei satisfy certain

restrictions, some of which we list here:

1. Ei is linear in the loop variable of the FOR-loop , 1 =1, o .%,
That is, Ei may be put in the form Cl * I + C2 , Wwhere Cl and
02 are expressions not containing the loop variable I

2. Ei contains only simple integer variables, integer constants,

parentheses (and), and the operators + , - , and *.

28

n .

="

3. The variables appearing in the Ei do not change within the

FOR-loop statement.

Restrictions 1 and 2 may be checked systematically using the
(operator) grammar in Figure 9. If A[El,o ... En] 1s the subscripted
variable and <CONST EB>=>[E1,---,En], then A[El;---,En] satisfies
restrictions 1 and 2 and moreover no E. contains the loop variable. If
<LIN EL>w=p [El’ En] , then similarly A[El, e En] satisfies
restrictions 1 and 2 but at least one- E; contains the loop variable.

From the grammar we generate the optimizable subscript checker =
the transition matrix and subroutines in Figure 10. Note that column 1
of the matrix contains only zeroes. We may map all terminal symbols
except for the ones listed in restriction 2 into column 1. Ify when
parsing a subscripted variable according to the grammar in Figure 9, an
error occurs, then this subscripted variable is handled in the usual way.
Otherwise, it may be possible to optimize here and the variables occurring
in the Ei should be stored in some list for further checking.

As a second example we look at the FOR-loop itself. We want it

to have the form

FOR I ~ El STEP E, UNTIL E; DO S ;

2

3

where the variables in E2 do not change within the statement S , E2

does not contain the loop variable I , and the Ei are integer expres-
sions. The further restriction is again made, that the E. consist only
of integer simple variables, integer constants, @) , +, -, and ¥ .
Note that E, and E may contain the loop variable I , but E2 may

1 >
not. The variables in E2 should be listed for further checking.

29

0%

PRODUCTIONS

<LIN ELEM>

<LIN SUBS>

DO 0 -a gt 00 . b . o e
COEXNOPN BLWNT OO @NO N D W

[\OJN ST} \S]
W =

[N\ O]
(o) N

<LIN EXPR>

<LIN FACT>

<CONST ELEM>tt=

<CONST SUBS>t:i=

<CONST EXPR>yt=

<CONST TERW>1t=

<CONST FACT>)t=

<LINTERM>1t1i=

NONTERMINAL SYMBJLS

1 <CONST ELEM>
5 <CONST EXPR>

9 <LIN TERM>

TERMINAL SYMBOLS
11
15 *

19 INTEGER VAR

MATRIX IS 18

x10

2
6

12
16
20

(<CONST SUBS>)
{ <LIN SUBS>

<CONST EXPR>
<CONST SUBS>»
<IN EXPR>

<LINSUBS=>»
<LINSUBS>e
<CONST SUBS>,

<CONSTEXPR><+ O R =>

<+ O R=>
<CONST TERM>
<CONSYT TERM>*
<CONST FACT,>

<CONST TERM>

|

<CONST EXPR>
<LIN EXPR>
<CONST EXPR>

<LIN EXPR>
<CONST TERM>

<CONST FACT>

C <CONST EXPR>)

INTEGER

INTEGER VAR

<LIN EXPR> <+ O R=> <LIN TERM>

<CONSTEXPR><+ O R =>

<LIN EXPR> <+ O R=>
<+ OR «> <IN TERM>
<LIN TERM>

<CONST TERM>w
<LIN TERM> #

<LINFACT>
4 <LIN
LOOP VAR
<LIN ELEM>
<CONST TERM>
<LIN FACT>
[
(
LOOP VAR

EXPR>

13
17

<LIN TERM>
<CONST TERM>

<LIN FACT>
<CONST FACT,

)

<CONST SuBS»>
<CONST FACT>

Figure 9

14
18

<L | NSUBS>
<LIN EXPR>

<+ 0O R=>
INTEGER

¢

4
SECONDARY ROW
<CONST SUBS>»
SECONDARY ROW
<LIN SUBS>
SECONDARY ROW
<CONST EXPR><+ (R »>
SECONDARY ROW
<+ CR =>
SECONDARY ROW
<CONST TERM>+
SECONDARY RQOW
(

SECONDARY ROW
<LIN EXPR> <+ 0 w»>
SECONDARY ROW

<LIN TERM> =«
SECONDARY ROW

00O D000 00

R

>

Y 0 1
5 6 7
0 0 1
9 9 7
0 o 1
10 10 7
0 0 0
11 11 11
0 0 o
12 12 12
0 0 0
13 13 13
0 0 1
0 0 4
0 0 o
15 15 15
0 0 0
16 16 16

Figure 10

[u—

-

OO POPOPR OO PODMODMO PO

OFr O— 00— 0~ 0~ 00— RO~ O~

~
MNOoO—OooOo oo oo

p—

p—

= e
SCuocpowe

—
@)

TMOM42Z—

OO SO O O OO OO

MOT 42—

D> <

O DLW OW O WE OPD WD WDDW

VOoOoOr

> <

cCoO o RO RO R OREAOLEOOPOLBEOS

MATRIX SUBROUTINES, THOSE SUBS WHICH ARE ACTUALLY MATRIX ENTRIES HAVE NUMBERS LESS THAN 000

1 STiIPeSTIP+1 PePe+} / STIPeRONW(TL) / NEW Ti

2 ST1PeSTiP+1 / ST2P«<CQONST FACT> FOR PROOUCTION <CONSTFACT>11= INTEGER / NEW TI
3 ST1PeSTiP+1 / ST2Pe¢<CoNST FACT, FOR PRODUCTION <CONST FACT> #81= INTEGER VAR / NEW T3§
4 ST1PeSTIPey / ST2Pe<LIN FACT> FOR PRODUCTIONSLINFACT> t3= | OO P VAR / NEW Tl
5 EITHER

USE SUB 406 IFST2p IS @ CONST SUBS>CCONSTEXPR><CONST TERM><CONSTFACT>
USE SUBU&p? IF STOPT S <LINSUBS> <LINEXPR><LINTERM > <LINFACT>

6 EITHER
USE SUB 400 IF ST2P IS «<CONST SUBS><CONST . EXPR><CONST TERM><CONST FAC T >

USE SUB 403 IF ST2P IS ¢LINSUBS > «LINEXPR> <LIN TERM> <IN FACT>

? EITHER
USE SUB 401 IF ST2P IS «CONST EXPR><CONST TERM>CCONST FACT >

USE SUB 434 IF ST2P IS <LINEXPR> <LIN TERM> <LIN FACT>

8 EITHER
USE SUB&J2TF ST2P | S ¢CONST TERM><CONST FaACT>

USE SUB 405 IF ST2P IS «LINTERM> <LIN FACT>

9 EITHER
USE SUB 408 IF ST2P IS «<CONST EXPR><CONST TERM><CONST FAC T >

USE SUB 439 IF ST2P IS «LINEXpPR> <LIN TERM> <LIN FacT>

10 EITHER
USE SUs411IFST2P | S «CONST EXPR><CONST TERM><CONST FACT>

USE SUB 410 IF STOP IS «LINEXPR> <LINTERM > <LINFACT>

11 EITHER
USESUB 412 | fS8ST2P T S «CONST TERM><CONST FACT>

USE SUB 413 IF ST2P IS «LIN TERM> <LIN FACT>

12 EITHER
USE SUB 414 IF ST2P IS ¢CONST TERM><CONST FACT >
USE SUBA1S IFST2P 1 S «LINTERM> <LIN FACT>

13 EITHER
USE SUB 416 IF ST2P 1S «CONST FACT>
USE SUB 417 IF STOP IS «LIN FACT>

14 EITHER
USE SUB®18 | F ST2P | S «CONST EXPR><CONST TERM><CONST FACT>

USE SUB 419 1F ST2P IS <LINEXPR> <LIN TERM* <LIN FACT>

15 EITHER |
USE SUB 421 IF ST2P IS <CONST TERM><CONST FACT,

USE SUB 420 IF ST2P IS ¢LINTERM> <LIN FACT>

Figure 10 (continued)

¢¢

16
400
401

402
403
404
405

406

407

408
409
410
411

412
413
414
415
416
417

418

419

420
421

422

USE SUB 422 IF ST2P IS «CONST FACT>

Pep+l
PePey
PtP+I
PepP+l
Pep+l
PeP+}
PePe=q

PeP=1

PeP=1
PepPey
PeP=1
PeP=y
PeP=y
PepPe=i
Pep=1
PeP=1
PeP=y
PeP=y
PeP=1

PeP=y

PeP=1
PeP=y
PePey

/
/

/

ST1IP*ROW(<CONST SUBS>») / NEW T
STIPeRON(<CONSTEXPR><+¢ O R =>) / NEW T1i
ST1PeROW(<CONST TERM>+) / NEW TI
STIP*ROW(<LIN SUBS> ») / NEW T1
STIP®ROW(<IN EXPR> <é DR =>) / NEW T 1
ST1P*ROW(<LIN TERM> o) / NEW T1

ST2Pe<CONST gLEM>

ST2Pe< IN ELEM>

§T2P¢<CONST SUBS,
sT2Pe<IN SUBS>
sT2pe<LIN SUBS>
ST2PecLIN SUgS>
ST2P«<CONST EXPR>
ST2P*<LIN EXPR>
ST2P*<CONST ExPR>
sT2Pe< IN EXPR>
ST2Pe<CONST TERM>
ST2Pe<LIN TERM>
§T2P+<CONST FACT>

SY2Pe<LIN FACT>

SY2Pe<LIN EXPR>
SY2Pe<LIN EXPR>
ST2Pe¢<LIN TERM>

FOR PRODUCTIONS{ INELEM> tis

FOR PRODUCTION <CONST SUBS>$3= <CONST SUBS>»

" FOR PRODUCTION <|_ INSUBS> it=

FOR PRODUCTION <LINSUBS> 1=
FOR PROpUCTION <LINSUBS> i1ts

FOR PRODUCTION <CONSTEXPR> gt=

FORP R ObUCTION <CONSTELEM> 31

t

<CONST SUgsS>») / NEWT |

<LIN SUBS> 3 / NEW Ti

<CONST EXPR>

<CONST SUBS>, <LIN EXPR>
<LIN SUBS> o <LIN EXPR>
<LIN SUBS> » <CONST EXPR>
<CONSTEXPR><+ O R => <CONST TERM>

FOR PRODUCTION <LINEXPR> 132 <CONST EXPR><+ O R => <LIN TERM>

FOR PRODUCTION <CONSTEXPR> tis<+ OR >

FOR PRODUCTION <L INEXPR> 1t
FOR PRODUC TION <CONSTTERM> 3 3=

FOR PRODUCTION <LINTERM> 1=

<€+ OR =>

<CONST TERM>*

<CONST TERM>*

FOR PRODUCTION <CONST FACT> gs=(

FOR PRODUCTION <L IN FACT> ti=

FOR PRODUCTION <LIN EXPR> tix
FOR PRODUCTION <LIN EXPR> 1=
FOR PRODUCTION <IN TERM> tis

Figure 10 (continued)

<L IN EXPR>
<LIN EXPR>
<LIN TERM>

<CONST TERM>
<LIN TERM>

<CONST FACT>

<LIN FACT>
<CONST EXPR>) / NEW
<LIN EXPR>) / NEW
<+ OR *=> <LIN TERM>

<+ OR => <CONST TERM>
. <CONST FACT>

Tl

T

r‘--ﬂ r"‘—d r-—‘h.

-

The grammar of Figure 11 is then constructed. The terminal "INT

CONS, VAR" represents the class of integer constants and simple integer
variables (except the loop variable of this loop). The corresponding
transition matrix and subroutines are in Figure 12. e call this the

loop checker. Since we are not interested in the precedence of the

operators + , -, ¥ , we have simplified the productions for arithmetic
expressions. Note also in Figure 11 that " * " is used as a unary
operator. Since we assume that the subscripts have been or are being
checked for syntactical errors by another part of the compiler, this
will never happen. Grammars should always be constructed according to
what they will be used for, and should be as simple as possible.

One can incorporate the loop checker and optimizable subscript
checker into an existing syntax checker as follows. al]l three are put
in memory together. The main syntax checker executes as it normally

does, performing the usual "cycles" described already.

cycle
timi
sy - ortimizie
checker checker checker

When a FOR is scanned, the syntax checker activates the loop checker.

Thereafter both process in parallel. The syntax checker processes

one symbol and then passes it on to the loop checker, which when finished

returns to the syntax checker to process the next symbol:

3k

PROCUCTIONS

1 <FOR LOOP>

2 <EXP1>

3

4

g <EXPYIFACT>
7 <EXP2>

8

9

10

11

12 <EXP2 FACT>
13

“ ee % oo oo an e
e %u 20 % s o0 ee ee

[U L LI N T T I)

FOR LOOP VAR
00

CEXP1> Chrp=pX>
C4s=p x> <EXP1 FACT>

<EXP1 FACT>

NONTERMINALSYMBILS

i <FOR LOOP>
5 <EXP2 FACT>

TERVMINAL SYMBOLS
6 FOR

10 UNTIL
14)

MATRIX IS 18 x 10

(<EXP1>
INT CONS»VAR
<EXP1> C+p =y X>
<EXP2> C+s=pX>
<EXP2> C+p=pXx>
K4+r= 9 X> <EXP2 FACT>
<EXP2 FACT>
(<EXP2>
LOOP VAR
2 <EXP1> 3
7 LOOP VAR 8
11 DO 12
15 INT CONS»VAR

. <EXP2>

<EXP1 FACT>

)

<EXP2 FACT>
<EXP1 FACT>
<EXP2 FACT>

<EXP1 FACT> 4
. 9
C+p=y x> 13

Figure 11

STEP

<EXp2>

<EXP1>

UNTIL

<EXP2>

9¢

FCR
SECONDARY ROW
FOR LOOP VAR
SECOND*RY ROW
FOR LCOP VAR
[
SECONDARY RO
FOR LOOP VAR
e <EXF2>
STEF
SECONDARY ROW
For LOOP VAR
* <EXF2>
STEF <EXP1>
UNTIL
SECONDARY ROW
<EXF1> <+p=,yxd>
SECONDARY ROw
C+2=p XD
SECONDARY ROwW
(
SECONDARY FKQOW
<EXF2> <+s=yp x>
SECONDARY ROW

D

OO O0OO

oo

DO DD OO OO D

T o D

= <

c o o

o w

OWOWOoOWOoWwWwOow

« s

T

2

P
0 0
0 0
5 0
0 ¢
0 0
0 6
0 0
0 0

—

e NeloNeNe e No e No e
[
DOOCOFHFO OO0

—

Figure 12

o= zE

OO O O

<

—

—
leNeoRoNaoRV. Nol \ViloNo o

[eReoNoNe]

o O

I v 4+ A

Vv X .

oNeoNoNe

[y

o

[-
WO NHHHOOWONP

o o O o

-

QO O O+ O+ O

o O OO

(=)

- [-
O NOOOWOo2

=
(o]

co oo W Cw LN ZO O -4 = v

onN

ONONOMNMDONON

L¢

MATRIX SUBROUTINES,

1

10

12

13

14

15

16

17

18

400

401
402

ST1P«ST1P+1 / PeP+1 /
STiPeSTIP+1 / ST2Pe¢<EXP1 FACT>
ST1PeST1P+1 / ST2P«<EXP2 FACT>
ST1P«ROW(FOR LOOP VAR

ST1P«ROW(FOR LOOP VAR .

USE SUBUD2IFST2P I S <EXP2>

EITHER
USE SUBU4Y0 IF STEP Is <EXPi>
US E SUBU4D1IFST2P Is <EXP2>

USE SUE 4331 FST2P| s <EXP1>
USESUL 400 I1FST2PIs<EXP1>
USE SUB 434 IFST2P IS <EXP2>
USE SUB 4361 FST2P 1 S <EXP2FACT>
USESUB 435 IFST2P IS <EXPY1FACT>
EITHER
USE SUB 435 1FST2P 1 S <EXP1FACT>
US ESUBUDEIF STEP | S<EXP2FACT>
USE SUBU4JBIF ST2P |S<EXP2FACT>

USE SUB 407 1rST2P 1 S <EXP1FACT>

EITHER
USE SUBU4OTI FST2P I S <EXPIFACT>
USE SUBU&08IF ST2P 1 S <EXP2FACT>

EITHER
USE SUBA4OGI FST2P | s <EXP1>
USE SUBU410IFST2P 1 S <EXP2>

EITHER

USE SUBA11 T FST2P | S<EXPIFACT>
USE SUB 4121 FST2P | S<¢EXP2FaACT>

THOSESUBSWHICH ARE ACTUALLY MATRIXENTRIESHAVE \UM BERS LES STHAN4 0O

ST1IP«ROW(TY) 7/ NEW T1

F O RPROCUCTION<EXPIFACT>tt= INT CONSsVAR
F O RPROCUCTION <EXP2 FACT>:t= LOOP Var
/ NEW T1
) / NEW T

<EXP2 FACT>
<EXP1 FACT>
<EXP2 FACT>
<EXPL FACT>
<EXP1FACT>

<EXP2 FACT>

<EXP1 FACT>
<EXP2 FACT>

PePet / STIP«ROW(<EXP1> <=y x>) f NEW Ti
PeP+1 / STIPe«ROW(<EXP2> Cep =y x>) / NEW T}
STIP«ROW(FOR LOOP VAR . <EXP2> STEP) /

Figure 12 (continued)

/ NEwWT1
/ NEW Ti
NEW T1

8¢

403

404

406
407

408

410

411

412

ST1PeRONW(
Pep=1/
STEP
PepP=1 /
Pep=l /
Pep=1 /
PeP=} /
PeP=1 /
PeP=1
Pepel /
PeP=1 /

FOR LOOP VAR

ST2p«<FOR LOQP>
<EXP1> UNTIL

ST2P¢<EXPL>
ST2P+<EXP2>
ST2Pe<EXP1>
ST2Pe<EXP2>

ST2P«<EXP1 FACT>

ST2P«<EXP2 FaACT>

ST2pe<EXpP2>

ST2Pe<EXP2>

¢ <EXP2>

F O RPRODUCTIONCFQOR LOOP>
<EXP2> DO

F O RPRODUCTION <EXP1>
F O RPRODUCTION <gxP2>
F O RPRODUCTION<EXP1>
F O RPRODUCTION<EXP2>

FOR PRODUCTIOh <EXP{FACT>

FORPRODUCTIONEXP2 FACT*

FOR PRODUCTIOh <EXP2>

F O RPRODUCTION<gXP2>

<EXP1>
FOR
NEW T1
<EXP1>
<EXP1>
<trmr x>
<+ ™o X>

(

<EXP2>

<EXP2>

Figure 12 (continued)

UNTIL

LOOP VAR

C4p=pX>
Cds=pX>
<EXPLFACT>
<EXP2 FACT>

<EXP1>

<EXP2>

Crpmp XD

<+ = x>

<EXPL FALT>

<EXP2 FALTS>

<EXP1FACT>

<KEXP2 FACT>

/

<EXP22>

/

/

NEW Tl

NEW T

NEW T4

3
3
¥
¢
L-

re-

k-

cyc le
v
syntax loop optimizable
checker variable
checker checker

The loop checker disconnects itself as soon as it determines that the
loop is not of the right form, or when it is finished. Similarly, the
optimizable subscript checker is connected when the [of the subscript
variable A[El,. e En] is first scanned, The optimizable variable
checker disconnects itself when finished or when it is determined that

this subscripted variable does not satisfy one of the restrictions.

cycle
2 ™
syntax loop optimizable P)
checker b ot
checker SubSCrip
—> checker

The loop checker and optimizable subscript checker are not concerned
with errors and error recovery, If any error occurs, they simply discon-

nect themselves, or will be disconnected by the syntax checker itself.

10. Summary.

The ideas in this paper have been used intuitively in the ALCOR-
ILLINOIS 7090 Compiler ([5], [1]). The second pass actually contains
the three matrices illustrated in Section 9. The matrix technique has
its most important use, in my opinion, in a student system, where a
very fast compiler resides in core and must also produce excellent error

messages. Because the syntax checker matrix for ALGOL is so large (on

39

rem

N

the 7090 (100 X 45) and because over sixty percent of the array elements
represent illegal symbol pairs, a much wider variety of error messages
is efficiently possible. An algorithm is being developed for producing,
from the grammar, an error recovery subroutine for each "error" element
of the matrix. Another advantage of the matrix technique is the simpli-
city of the overall design.

The only disadvantage is the space used. A partial solution to
this problem might be to parse those constructions of the grammar which
are most used (for instance, expressions) using the matrix technique and
to use some other slower but less space-consuming technique for the rest
of the grammar. ©Note also that the size of the matrix may be cut in
half by allowing only one row for each stack nonterminal symbol. Each
subroutine must then check whether a nonterminal exists in 5T2P or not

(ST2P nonzero or not).

Lo

—

e

r

REFERENCES

[1] Bayer, R., Murphree Jr., E., Gries, D. User's Manual for the ALCOR-
ILLINOIS 7090 ALGor-60 Translator, 2nd ed., U. of Illinois,

Sept. 196k.

[2] Eickel, J., Paul, M., Bauer, F. L. and Samelson, K. "A Syntax Con-
trolled Generator of Formal Language Processors,'_Comm. ACM 6

(Aug. 1963), 451 - L55.

(3] Feldman, J. A., 'A Formal Semantics for Computer Languages and its
Application in a Compiler-compiler," Comm. ACM 9 (Jan. 1966),3-9.

(4] Floyd, R. W., "Syntactic Analysis and Operator Precedence," J. ACM 10
(July 1963) 316 - 333.

(5] Gries, D., Paul, M. and Wiehle, H. R., 'Some Techniques Used in the
ALCOR-ILLINOIS 7090," Comm. acwm 8 (Aug. 1965), 496 - 500.

(6] Hill, V., Langmaack, H., Schwarz, H. R., and Seegmuller, G. "Efficient
handling of subscripted variables in ALGOL 60 compilers,' _Proc. 1962
Rome Symposium on Symbolic Languages in Data Processing, Gordon and
Breach, New York, 1962,311- 340.

[7] Nauer, P. (Ed.), "Report on the Algorithmic Language ALGOL 60," Num.
Math. 2 (1960), 106- 136; Comm. ACM 3 (May 1960), 299-31k.”

(8] 'Revised Report on the Algorithmic Language ALGOL 60,"
Comm. ACM 6 (Jan. 1963), 1 - 17.

[9] samelson, XK. and Bauer, F. L., "Sequential Formula Translation,"
Comm. ACM 3 (Feb. 1960),76-83.

[10] Wirth, N. and Weber, H., "EULER: A Generalization of ALGOL, and its
Formal Definition: Part I," Comm. ACM 9 (Jan. 1966),13-25.

[11]) Burroughs B5500 Information Processing Systems Extended ALGOL Language
- Manual.

L1

i
L

r—"'- r\,.—..< r-»__A

r

.~ r oo

"

~

Appendix A.

Below is the grammar of an ALGOL-like language defined by Floyd ([4])
in his article on operator precedence. Note that in the subroutines the
phrase "ambiguity in sub" appears 6 times. This means that in this
subroutine the reduction to make is not uniquely determined from Uf s
Ul and Tl’ and not that the grammar is ambiguous. The difficulties
can be circumvented by either changing the grammar or using semantic
information to determine which reduction to be made.

The matrix and subroutines were constructed using the grammar as

input.

42

¢h

PRODUCTIONS

-
OO0 N> OV W —

(=3
-

-
[V ¥ 3 S

N = .
[=3N=ReCIEN Y. ¥

NN NN
aF W

W NN NN
O Om NO

WWw ww
we v —

10 1=

L<ID LIST> 3=

1=
<LITCON> 1:=
$1is
td=
iIt=
<SUB VAR> 1=
<VARIABLE> &=
[RE 3
<FUNCDES> 1=
<PRIMARY> its
i13=
i1t=
Id=

<FACTOR> tiz
1i=
1=
$i=
<TERM> iIt=
iIi=
<SIMP AEXP> tt=
$i=

<ARITH EXP> 1=
$i=
<AEXP LIST> T : =
$tiz
<RELATION> 3t=
1t=
<BOOL PRIM> 3=
$8=
[RE
iz
Ii=
<BOOL SEC> =

1=
<CONJ> 1t
It=
<DISJ> fi=z
ii=
<]IMPL> (R
Ite
<BOOL EXP> i=
i1ls
<EXPR> I1It=
It=

<EXP LIST> 13e

It=
<LIM PAIR> 1=
<LIM P LIST>s1s

iIt=
<NAME PART> 11
<SPECIFIER> 3=

LETTER

ID

<ID LIST>
DIGITSTR

DIGITSTR .

o DIGITSTR
DIGITSYR .

ID s

10

<SUB VAR>

D (

<FUNC DES>
<VARIABLE>

<LITCON>

¢ <ARITH EXP>
<PRIMARY>

<PRIMARY> e *

[<FACTOR>
<+ O R *> <FACTOR>
<FACTOR>

<TERM> <* O R/>
<TERM>

<SIMP AEXP> €4 O R *=>
<SIMP AEXP>

IF <g0o0L EXP>
<ARITH EXP>

<AEXP LISY> |

<ARITH EXP> <REL OP>
<RELATION> <REL OP>
<T O RF>

<VARIABLE>

<FUNC DES>

<RELATION>

(<BOOL EXP>
<BOOL PRIM>

NOT <g00L PRIM>
<B0O0OL SEC>

<CONJ> AND
<CONJ>

<DISJ> OR

<DISJ>

<CIMPL> IMPLIES
<CIMPL>

<BOOL EXP> EQUIV
<ARITH EXP>

<BOOL EXP>

<EXPR>

<EXP LIST> »

<ARITH EXP>

<LIM PAIR>

<LIM P LIST>,

ID (

<TYPE> <D LIST>

DIGITSTR
<AEXP LIST> 3

<EXP LIST>)

)

<FACTOR>

<FACTOR>

<TERM>

THEN CARITHEXP>ELSE
<ARITH EXP>

<ARITH ExP>
<ARITH EXP>

<800L SEC>
<CONJ>
<DISJ>

<IMPL>

<EXPR>
<ARITH EXP>

<LIM PAIR>
<ID LIST>)

<ARITH EXP>

i

54

18=
It=
tics
1=
ti=
1=
It=
t:a
i11=
tics
tic
ji=
Iis=
1=
jis
ti=
$ix
tis
i1tz
it
13=
ii=
Is=

55
56
57 <SPEC LIST>
58 .
59 <DECL>
60
61
62
63
64
65
66 <DEC LIST>
67
68 <FOR LEL>
69
70
71 <FORLIST>
72
73 <GO STATE> ¢
74
75 <ASS STATE>
76
144 €PROCCALL,b2=]
78 <COMP ST>
79
80 <CL STATE>
81
82
83
84
85
86
87
88
89 <OP STATE>
90
91
92
93 <STATEMENT>
94
95 <STLIST>
96
97 <PROGRAM>
NONTERMINAL SYMBOLS
1 ID
5 <VARIABLE>
9 <TERM>
17 <RELATION>
21 EXP<DISIHLISTY
2s <SPECIFIER>
29 <FOR L EL>
33 <PROC CALL>

<TYPE> VALUE
<TYPE> ARRAY
ARRAY <IDLIST>

<SPECIFIER>
<SPEC LIST> 3

<TYPE> <IDLIST>

C ONS Ta nNT ID

<TYPE> ARRAY

ARRAY <IDLIST>
SWITCH <NAME PART*
PROCEDURE <NAME PART>
FUNCT IDN <NAME PART>
<DECL>

<DEC LIST> 3
<ARITH EXP>
<ARITHEXP> STEP
CARITH EXP> WHILE

<FOR L EL>
<FOR LIST> »
GO TO 1D
G0 TO 1D

<VARIABLE> &=
<VARIABLE> t=

D (

BEGIN <STLIST>
BEGIN <DEC LIST>
<GO STATE>

<ASS STATE>
<PROC CALL>

ID 1

ID 3

COMMENT

<COMP ST >

FOR 1D

IF <BOOL EXP>
ID H

FOR 1D

IF <BOOL EXP>
IF <g00L EXP>
<CLSTATE>

<OP STATE>

<STATEMENT>

<ST LIST> 3

PHI <ST ATEMENT>

<IDLIST> 3
<FUNC DES> 7
CSIMP AEXP> 11
<BOOL PRIM> 15
<IMPL> 19
<LIMPAIR* 23
<SPEC LIST> 27
<FOR LIST> 34
<COMP ST> 35

<ID LIST>

<ID LIST>

<SPECIFIER’

t= <EXPR>

<ID LIST> L <LIM P LIST>)

[<LIM P LIST>]

3 <SPEC LIST> 3 <STLIST>

1 <STATEMENT,

<DECL>

CARITHEXP> UNTIL <ARITH EXP>

<BCOL EXP>

<FOR L EL>

t <ARITH EXP> }

<EXPR>

<ASS STATE,

<EXP LIST>)

END

3 <ST LIST* END

<CL STATE*

t= <FOR LIST> DO <CLSTATE>
THEN <CLSTATE>ELSE <CL STATE*
<OP STATE>

i= <FORLIST>D O <QP STATE>
THEN <CL STATE>E L S E <0P STATE>
THEN <STATEMENT>

<STATEMENT>

PHI

<LITCON> 4 <SUB VAR>

<PRIMARY> 8 <FACTOR>

<ARITH EXP> 12 CAEXP LIST>

<BOOL SEC> 16 <CONJ>

<BOOL EXP> 20 <EXPR>

<LIM P LIST> 24 <NAME PART>

<DECL> 28 <DEC LIST>

<GO STATE> 32 <ASS STATE>

<CLSTATE> 36 <OP STATE>

END

&H

37

<STATEMENT>

TERMINAL SYMBOLS

40
44
48
52
56
60
64
68
31

80

MATRIXIS116%X42

LETTER

4

%

I F

<T O RF>
IMPLIES
VALUE
=
FUNCTION
GO TO
00

<STLIST>

THEN
NOT
EQUIV
ARRAY
SWITCH
STEP
BEGIN
PH1

39

<PROGRAM>

DIGITSTR
(

<+ O R=>
ELSE

ANC

t

3
PROCEDURE
UNTIL
COMMENT

)

<* O R/>
<REL OP>
OR
<TYPE>
CONSTANT
END
WHILE
FOR

9t

col
<ID 'LudT e »
SECONDARY ROW
DIGITSTR
SECONDARY ROW
SECONDARY Row
DIGLTST R .
SECONDARY ROW
t
SECONDARY Row
10 (
SECONDARY ROW
SECONDARY ROW
<PRIMARY?> Lo
SECONDARY ROW
e
SECONOARY ROW
<+ C R*>
SECONDARY ROW
<TERM> <* OR />

SECONDARY ROW

<SIMP AEXP> <¢ DR »>

SECONDARY ROW
IF
SECONDARY ROW

IF <BOO, EXP>
THEA

SEConNDARY ROW
IF <B0OO, EXP>
THEN <ARITH EXP>

ELSE

SECONDARY Row
CAEXP LIST> »

SECONDARY ROW
<ARITH EXP> <REL

SECONDARY ROw
<RELATION> <REL

SEConDARY Row
NOT

S EcO NbARY ROW
<CONJ> AND
SECONDARY Row

oP>

oP>

TM ~4 M

OO VOV O o000 ON

ONPND OO

[=1 5}

OO ON DN O ON

—_

-
AOO0OHL® O—0 O WoO DO D

[\

VD A —~4— O~

—
O+ O SO0 SO0 OO

O O Ore O —

O — O 00O INOD

0112

~°"‘o.—-o~ —_

O

o

-

-

-
SMNOoOND OSSO OO0 DO LTS

-
OO0 OWO O OO0 DO

o=y
=K

n N n
0O WO

w
oo

w
[l - Yol =N} o<

w

ocooc oo oo Y

L 1 ¢
0 0
0 5
0 6
0 0
0 0
0 0
0 9
0 0
1 0

14 0
1 0
14 19
1 0
14 25
141260
14 27
1 0
14 28
0
1 29
1 0
18 30
1 0
14 0
1 0
14 0
10
14 36
1 0
14 0
10
14 38
141 3 0
1 0
14 40
o}
14 at

) +« 8 < <«
* + *
0 0

R R

- /

> >

0 0 0 0
0) 0 0
6 0 6 6
0 0 0
0 [0 0
0 0 0 0
9 0 9 9
0 1 0 0
0 0 1 0
15 Ib 17
0 1 1 0
15 0o 16 17
0 1 1 0
15 1 16 17
150 0261260
1 1 0

15 0 27 27
0 1 1 0
15 0 28 28
0 1 1 0
15 0 29 29
0 1 1 0
15 0 30 17
0 1 1 0
15 0 16 17
0 1 1 0
15 0 16 17

0 1 1 0
5 0111 0
0 0 16 17

0 1 1 0
5 0 16 17

110
15 0 01617
0 1 1 0
15 0 16 17

0 0
15 0 116117

ocoococoCo 00 SO - O 0 000 00O

O -

> —

Ore O - Or OO = O —

o
n
o

ZMI-

SO o OO0 woo IO

oNo

28

(95}
oo

cwvoBococ oo

L w
O O

~m

2O00 O DO WOO DO oD

=

DA

v UO

N
00O OO WOODOOO

nN
(=]

26.0

PR -“+A

-

OO OO0 O0OO0WO WSOSDCO OO SO

O W

oo

OWOwW OO 0SOC O O

-0z

o 0o oo ocC 0o — O L0000 OO0

O —

oo

O OO OO0 O O2

n
O 20D 0WOO0DOO D

BN

b J=)

n
SN ONO ODSCO WOO ™DAXNO O

2N

®«n NN
0o mON ©

N
(SR}

»wm—r— T X~

n
SWOWO OO 000 SO0

2N

[N S VR)
s OO o eN O

n
w O

<w~cCcoOom

FPoooowvwoocooooco

N N I L,
"“oooBomoﬂomo“o

oo

OO0 D00 0WoOoOoOm”OO

n

n n N
OO%OOOQO\IOO’)O

8o

0000 OO0 000 0

OR

<DISJU>

42

42

SECONDARY ROW

00O DODOOOCWMOOODODODDODDO OO
T
CnOdI o000
<+ & A
SnOn oo EooCo00000 oo
<+ o«
= e b=l R=Xe\ ZTocooco @ SoooCcCOODOoOD
N A A
OO OO0 OO
SRS RS =)
=}
—0 —0 M0 OO0 000000000 O
OO MO Zococo e oo OO
CoCc o0 ZocofCoe oo
o N o~
OCnNoOorTOoOO =ZooCoe® CooD0ooD
<+ -
OMOT 00 O0O0OO OO0
E
o
=
O~ —O O—O00O0 o000 O0OO
O~ ONSOMh SONO0O0OO 0000000
B
=
TRy MY m— 0000 0000000
~ - =
-t
-
O —O O O©O—O0 00O 0000 OoO OO0
CNONOD 1IN TOINOCOS SO0
- — — e —
OMOYTOoOIn OO0 000000
T <
o
I T A —FOOO OO0 O0O
e ~ -t i -
OOOOOOOGOMOOOOOOOOOOOO
]
cCNoagocaCNcacoCoo Ao oo
- =TT E
—0 o= —O o000 OTIIOO
—O — @O — w0 QOO0 OIIOO
00T O SOVWOO—-O—=OTO RS0 0
M § x = <t vy vy
NS ANNO Ao NoNocAONOTIS ND
1%2)
mwwwh z z s %
=
5232 2 5 8 83385 8 § &,
S, . T ESygxr o o« of
> > A >
T e xAZ-Z & X kE EAZ &
IAIALB g £ T £ gL <
Qaoroxag=g 5 £ 4 adm 2 Ao
ZXZNZWZ 37 Z z Z ZmZp Zp
OQwo ~o e le) e} 5 0O 030565
AO ©QJIOITORO AOAF. O OT OgLO<
AW WL DwowHngns oW we
QA NONONHNETNL NBEDANLTNDWNDN OY
X O X @ e > > N~ @ oo z Z
- @O W a4 g - K T »w O Q
v v v v v \ v v < v o O

oo o
<
o < oo
N
=X oo
Ia\
o “o
N
o~ <o
o\
—o ©OO©°
O Om
oo [
S o
oo o
oo (=X}
—_o o
(=]
—
~
0” —_
-4
2 o=
—
—
- o
")
own o
oo (=]
(=]
<t — <
— —
SO =N\
©
S\
o— <d
(=] —
—
o —o
—
00 =X
o
O NS
z X
2z
5f ¢
<
>
N
< A
a -0
=z w Z
QO =0
OA 0O
ww w
NDa o
> 0o
n -
.- vV

b7

<ID _1ST>

ARRAY

4

CWO OO0
E 4
[eReXeNoXoXe)

00 o =

coo o =

coco @ ©

o

o

—o0o o o

o~o o ©
—

o

— oo ©
=1

o

—oo o o

SO O =4
—

ocooco o

o

—<tOoO o

— - -

SECONDARY Row
SECONDARY ROW

SWITCH
SECONDARY ROW

PROCEDURE

<NAME PART>

PROCEDURE

o o

SECONDARY ROW

<NAME PART>
<SPECLIST>

PROCEDURE

H

CnO o
o
cocoo
cooo
cooo
oo
cooo
cococo
cocoo
cocoo
coco o
=

co o
OOVO
coo o
cococ o
coco o

S oo o

SooD
cooo

NoOoONO

SECoNDARYROW
SECONDARY ROW

FUNCTION

<NAME PART>

FUNCTION

OCNOO OO
o©

O OO OO
=000
=000

o0 oo
=l = =Rk

00 oo

=T ooc00

]

SooD
cCoO co00
-0 oo —o
0O OSSO M~

-
OO0 DOm0

-

=200 —0

z zox
o Qouwg
..o
> % >
o W @
<hF g2«
=] DPD
ZP=x2
S-8%8
oxo
W= 0w
NO N
W =
o «
- v v

<ARITHEXP> STEP

10

110

10

CARITHEXP> UNTIL

IIOooO00OCO0
SDOITOO OO0
N
Conoo =
coNo©®O
N
Co—OOo =
O —Coo=

O N oo

DS~ —-OO

SECONDARY ROW

<FOR L1ST>
SECONDARY ROW

GO TQ

4

SECONOARY'ROW

SECONDARY Row
<ARITHEXP> WHILE
GO TO

10

Sssoco¢m
o
SO>I+ OO
S\
D OoONS D
Seoass
o
DI~
SIS
ST OoODD
SO
o
DO -~ (=]

DSDIoOoDD

SOoO00 o0

NONO NDO

SECONDARY RoW

BEGIN
SECONDARY ROW

SECONDARY ROW

<VARIABLE>

<DEC LIST>

BEGIN

ShOomMOoOO
n ™
SO0
cooo0ooo
coococoo
SO00 oSO
(=Rl e N =l
cCoo0oocoo

ocoo00Co@

SO O (=)

oo

COoOoOo OO

Mo ANO NO

z = 2
o 2 o
r_ <
> >
& z
< <
[a) o (=]
z Zz2 =z
O o o
O o o
[TN) i w
w w v
o
[=INe}
— w

S S

o
S S
> So
o o SO
oo So
SN o
S <o
S o
> S -
o
oo <o
) -
S~ S o
—
— S o
—
— S o
S S o
—
oo S o
.. S <
—
-
oo S o
S SN
— —
-Oo o
—o e
oo oo
©
N L R}
A A A
ﬂ a
> |-
- =
i's Ow
g 5 380
oS Fgouw ntC
— — v Vv
3
< <
o Q
2 z
o]
8 8
w w
7] n oz
mnun_. %:D _mu.
I e IL e O m.-l

L8

(=]
S 0000
o
o 00 (=]
(=]
(=]
5l (=] [=J
[=J
(=]
(=]
5l o [=J
[=J
e} (=]
S (=] (=]
(=]

=)
co_o ©
<)
<)
colo o
<)
oo ©
<)

o co oD

NO NS NS

H

LIST>
SECONDARY ROW
SECONDARY Row

SECONDARY ROW

ELSE
<ST
PHI

o ® o [=X=NeNoN- e > OO0 O o< 000000 O
AT — ocow o0 = % ﬂ % ~ p=4 - - x A a N
[=] =) CO0OVOoOO0OO0OMROOO0OOODO OO0 O~ 9x SO00 O O 00 DO 00 0O OO O
ISR IR S B B) o o &
["~0y: 4 COTODDO0OO0O0DO0ODO00DOO0OIDDO0O OO0 O ™O SE=N-YoRoNR—je sy
OO XX W=+ SO0 O0OO00O0 OO0 o oo owO0 COCO000 OSC0000
o O~z COTTODDO0OO00DODO00O0 O DO o OO O O 000000000000
(LY [=] OCOTTDDODO0OO00DDO0SC00 [eXN-Ne¥o) o OO O -O OO0 00
EIT —JdW COVODODO0ONOODO0OODOOOOVS~NOW OO O0O00 DO 00
A o a a m o
UNT — SOV ODO0ONOD OO0 OO0 SO0 000 DO OODODOO0O
H I NI ST S Y et
7]
- wa CONODO0NODO0OO0O0O0 OO NOP OO0 O o9 VooooOCoOoOOD 00
[T S NS N < B | ™m
FUNCTION DO DD O0OO0O0ODO0DO0OO0O0ODOTDDOOD COO0O OO0 cCoococooocoo0o 00
wz o COOVODO0ONDODODO0OO0O O SDO® [(=X === 4 OO O
a0 o IS IRe] ™ Y NN T -
ax o oWwo Do COTOCOO0O0O0SO0000 0 O0OVO 00 © OO0 oo SoococoooOoO00
vz -Ox OO DD OO0 OO0 O0OOWO OO0 © ©O0 o000 OO0 CODOD2D00
COTDODO0O 00D O0SCO0O0C 00 OO0 © oo o owun O0ococoooOoOROCOo
- H «
COZDK < Zr- COTDDO0 00D OO0 0 OO0 00 o oo o oo 00O 00O 00
N OOV OO0 NOD OO 0O O IO OO O o<+ DO OO D O
o~ (o] o N m o o o RUMW o
qax @ < > OO0 OO O OO0 cCo & OO ©C 00 SO OO Cwoe oo
< o
> < D uw OO0 00000000 0O OO o ©oSo o000 OO0 OCOCOCOO 0O 00
'
Vi >0 WA DO COO0OO0DO0ODO0OOLC OO D00 O [+ OO O oo OO oo COoO
A
A A a
a o >x
A A > > A A
N s W W a a
p [=) o
™ o) Y-
x k3 3 Qo zx 0O O » - =) 2
z & 3 3 5 % z 2 3 292 3 58 338z 2 24343 o 3
S 2 9 2 x @ 2+42 2 9 2 £ o Fo« 2 oo @ 2622
= [s = [YCY V.inn o W\n v v v Dnlnh(Dn([
> > > > > > > >
2 Z x & T T & Tz oz § x I TAkak T x =«
< = < « 5 < < < < < < 4 < < <0 g «
*Q o0 g © S5 9 aaa o g g o o owixanZag O o
HZx = Z g2 z nNVv.nNV ZAz Z 3 z ZwmZwzOz= zZ z
©wor5 Sko o o [Qs O O o [e) 640 O0=-0 © ©
—0®n 0 p© O O O«0O O, 0 & O o o O OxoFO ovao
D Weew W ow wrw wuSy = o w L we We W< wWOw
2 e 2 (2 X"] 2] 2] D e SCS] ® " < N L W DX NDee DD nzwv
o o] o [W won W oxr W - o
[- o o a +* - L L x X « -« o o o
v o O — = <« vV a Vv V ¥VH —+ Hew v v VvV Z v

49

S

Go G @

©

<DISy> DR 0 0 00 00O0OO00O0 0
SECONDARY ROW 0 0 042 00 0 o 0 o 00420000 0 0 0 0 O 0 o0 O 42082

<IMPL> IMPLIES 0 0 0 0 0 [0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 6 0.43 0 0 0 043 0 0 0 0 0 0 4] 0 43 43

<BOCL EXP> EQUIV 0 0 00440 00 00 O0OO0OOU @ 000000000 O0CO0G®o0O0 aso0s40
SECONDARY ROW 00 0

CEXP LIST> |, 0 0 0 0 0 0 0o o o O o o O 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<ARITH EXP> 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY RO W 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<LIM P LIST>, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 © 0 4] 0
SECONDARY ROW 0 0 0 0 0 0 0 o o O 0 0 0 0 0 0 0 0 0

<TYPE> 0 49 50 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 05 2 0 0 o 0 0 o 0 0 0 0 o 0 0 0 0

<TYPE> VALUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEC ONDARY Row 0 0 05 3 0 0 0 0 0 0 0 0 0 ¢} 0 0 0 0

<TYPE> ARRAY 0 0 0 0 0 0 o o o O 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 [0 Y 0

ARRAY 0 0 0 0 00 0 [} 0 0 0
SeCoNDARY ROW 0 [¢] o 57 00 0 0 0 0o 0o o 0o 0o o 0 0 8 0 0 0000 0 0

<SPEC LIST> ; 1 [+] 1 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 5 8 0 0 0 0 0 0 0 0 0] (¢} 0 0 0 0 0

CONSTANT 0 0 0 0 0 0 0 o o © 00 00 00 0 o0 o 0 0 0
SECONDARY ROW 0 0 0 0 0 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0

CONSTANTI O

1= 0 o' o 0 0 0 0 0 /] 0 0 0 0 0 (4] 0 0 0 o]
SECONDARY ROW 0 [+} 0 60 0 0] 0 (o]] 0 0 0 [V} (4] 0 0] [0}

<TYPE> ARRAY

<ID LIST> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 00 0 0
SECONDARY Row 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARRAY <ID 157>

t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEConDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SWITCH 0 0 0 0 (s} 0 0 0 v}
SECONDARY ROW o 0 g0 ® O [V 0t 0 b o I 0 0 [T T] b

PROCEDURE 0 0 00 65 0 0 0 0 0 0 0 0 0 0 0 0 b b
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PROCEDURE <NAME PART*

3 1 0 0 0 0 0
SECONDARY ROW o 0 ¢ 6 % O o 0 o0 i W M@ oW ow oo wowow

PROCEDURE <NAME PART> o

| <SPEC LIST>

H 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 1 0 0
SECONDARY ROW 0 0 0 67 0 35 0 0 68 0 0 0 0 0 0 0 0 0 0

FUNCTION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONOARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

FUNCTION <NAME PART>

s 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 1 0 0
SECONDARY ROW 0 0 0 70 0 35 0 0 0 0 0 0 0 0 0 0 0 0 0

<DEC VST 1 0 1 0 1 0 1 1 0 1 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 00 o 70 0 0 0 0 0] 0 0 0 0 0 0 o] 0 0

C¢ARJTHEXP> STEP 0 - 00 0 0 0 0 0 0 0 000 7 x 0 0000 o 000 il
SECONDARY ROW 0

<ARITREXP> STEP

CARIJTHEXP> UNTIL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

@000000
MO FTOINO
~ ~ ~

®0°00°0
[eYoNeoNeNoRa)
[eXeNoNoN ol o)
[eYoNoloNoR =
OCO0OO0OONO

~

@000000
cooo0wvC

~
[eNeNoNeNolNo]
[oNeolNeloNo e
[~YoNeNoN-Na]

@000000
[~YoNoloRale)
[eN-NeNeoNeoNa
[eNeNoleNoNo)
©COO0O 000
[eJoNoNaRol e

@ CoOococoo
qu =
WIO (=)

HR !R
>z > >
[4 R>R
<A <. <
DPDSD
NXNIN
UEULQ
OT O o
Ll Lt wo
D3 @0

a Q

< L o

v v [3-]

79

10

SECONDARY ROwW

GO 1o

OO0 ~0 0O
[eNoNeNo Yol
[oNoNeNoR e
oo0oo0oox O
COO0COoO —o
COO0O0O0o0 —o
coOoOo0oocoo
[eNeNoNo¥ o)
[oNeNoNe Yol o)
OCOO0OO~0O
OO0 OCwcom

[] @©
0000 —CO
COOO O
0OO0OOoInNon

(3] m
Oo00O0—0O
OO0OOoO«~ON

[o] @©
00 o—oO

CoCcooo o

[=NeleNal =

= = E
o o Q
x ¥ o
o
> > >
[4 [+ 4 o
dA« <
auwo a
- 4 z
OO o
oo ©
lad = 40 2 Wi
V) X U =D
< (L]
> (W]
— v [}

<DEC LJIST>

BEGIN

o oun M

oo

e NoRaje e o]

-0 A0 00

LOIFTOO0O0

—o —o 00

-o —Oo 00

OO0OO0OOCOOo

o

[N oo eXeo

000000

coocooo

[~ NeNeNoNeo)e

[eReNoNoNelo

[=NeNeNelXe]

x =T =
o o o
x o o
> > >
a [+ 4 [+ 4
a «a@ «
o (o] o
4 4 P4
o o [=]
O O o
w (7} [W]
w @ own

@
[=} o
o = a

10

FOR
Ix

SECONDARY ROW

1
o)

1D

FOR
i=
00

<FOR LIST>

o o

SECONDARY ROW

<BOO, EXP>

112

<CL STATE>

THEN

000000

-0 O —~O

FOIFIOIO

—_ O e O O

— O — O O

[eNeloNeNoNe)

[eNeNeNeNo)e]

[=ReleleRol=

(=N o NNl

= = x
(=} o o
[« 4 o o
-
I S
[+ 4 [4 @
<A« «
arao o
2w 2
Oo-0 O
0 Jo o
w [N W
[FVRD)] w) w
N - >
2 0 X
[V} v a

25

MATRIX SUBROUTINES, THOSE SUBS WHICH ARE ACTUALLY MATRIX ENTRIES HAVE NUMBERS LESS THAN 400

1 ST1P«STiP+1 / PeP+1 / ST1P+ROW(TY) / NEW Ti
2 STiPeST1IP+y / ST2Pelp FO R PROCUCTION 10 1tz LETTER
3 ST1Pe«STIP+1 / ST2P«<BOOL PRIM> FOR PROCUCTION <BOOL PRIM>33= <T OR F>
4 STIPeSTIP+1 / ST2Pe<CL STATE> F O RPROCUCTIONSCL STATE>2t= COMMENT
5 USE SUB 424 IFST2P IS ID
6 PeP=1 ST2Pe<LITCON> FOR PRODUCTIoN<LITCON> t1= DIGITSTR
ST{P«ROW(DIGITSTR / NEW TI
8 PeP=y SY2Pe<LITCON> FOR PRODUCTION <LITCON> 1= DIGITSTR
9 PePey §Y2P¢«<LITCON> F ORPRODUCTION<LITCON> 1:= OIGITSTR .
10 PepP~i 5Y2P¢<LITCON> FOR PRODUCTION <LITCON> 1tz OIGITSTR .
11 USE SUBUI6| FST2P | S <AEXP'LIST> CARITHEXP> <SIMP AEXP> <TERM> <FACTOR>
<VARIABLE>| O <SUB VAR> <LITCON>
12 USE SUBU4)Y1IFST2P 1S 1D
13 USE SUB 425 IFST2P | S<AEXP LIS T><ARITHEXP> c SIMP AEXP> <TERM> <FACTOR>
<VARIABLE>| O <SUB VAR> <L ITCON>
14 USE SUB 402 IFST2P IS ID
15 USE SUB 433 IFST2P | S <PRIMARY> <FUNC DES> <VARIABLE> 1D <SUB VAR>
I'b USE SUB 435 IFST2P | S<SIMPAEXP> < TERM> <FACTOR> <PRIMARY> <FUNC DES>
<SUB VAR> cLITCON>
17 USE SUB 404 IFST2P IS <TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABRLE> |
<LITCON>
18 EITHER
USE SUB4J0 IFST2P IS <IOLIST> 10
USE SUBUG$3 I FST2P | S<EXPLIST> <EXPR> CARITHEXP> <SIMP A E X P > <TERM>
<FUNC DES> <VARIABLE> 10 <SUB VAR> <LITCON>
<D1Sy> <CONJ> <BOOL SEC> <BOOLPRIM» <RELATION>
AMBIGUITY IN SUB 18
19 EITHER
USE SUBU27 IFST2P I S<IDLIST> 10
USE SUBA426 1 FST2P | S<EXPLIST> <EXPR> <ARITH EXP> <SIMP AEXP> <TERM>
<FUNC DES> <VARIABLE>1 o <SUB VAR> <LITCON>
<DISJ> <CONJ> <BOOL SEC> <BOOL PRIM> *RELATION>
USE SUB 428 IFST2P | S<EXPLIST> <EXPR> <ARITH EXP> <SIMP AEXP> <TERM>

/ NEWT1
/ NEW TI
/ NEWT1
/ NEWT1

OIGITSTR /
<PRIMARY> <FUNC DES>
<PRIMARY> <FUNC DES>
<LITCON>
<VARIABLE> 1D
D <SUB VAR>
<F ACTOR> <PRIMARY>
<ROOL EXP> <IMPL>
<FACTOR> <PRIMARY>
<ROOL EXP> <IMPL>
<FACTOR> <PRIMARY>

NEW TI

19

<FUNC DES>
<DISy>

AMBIGUITY IN SUB 19

20 EITHER

10 <SUB VAR> <LITCON>
USE SUB&D8 | FST2P | S <RELATION>
21 USE SUB 409 IFST2P | S <CONJ> <B0OL SEC> <BpOL PRIM>
<RELATION>
22 usE sUB 410 IFST2P | S<DISy> <CONJ> <BOOL SEC>
<FUNC DES> <RELATION>
23 USE SUBU411IFST2P 1S <IMPL> <DISsJ> <CONJ>
<SUB VAR> <FUNC DES> <RELATION>
24 USE SUBA&L21 FST2P | s ¢<RODLEXP> <IMPL> <D1SJ>
10 <SUB VAR> <FUNC DES>
25 EITHER
USE SUB “29 IF ST2P |S <ARITHEXP><SIMP AEXP> <TERM>
1D <SUB VAR> <LITCON>
USE SUB 4301 FST2P 1 S <BOOL 'EXP> <IMPL> <DISJ>
1D <SUB VAR> <FUNC DES>
AMBIGUITY IN SUB 25
26 USE SUB 431 IFST2P IS <FACTOR> <PRIMARY> <FUNC DES>
27 USE SUB&321FST2P 1 S <FACTOR> <PRIMARY> <FUNC DES>
28 USE SUB 433 IFST2P IS <FACTOR> <PRIMARY> <FUNC DES>
29 USESUB434IFST2PIS <FACTOR> <PRIMARY> <FUNC DES>
30 USE SUB 435 IFST2P Is ¢<TERMD> <FACTOR> <PRIMARY>
<LITCON>
31 USE SUBW&361FST2P 1 S <BOOL EXP> <IMPL> <D1SJ>
D <SUB VAR> <FUNC DES>
32 EITHER
USE SUB 437 IFST2P IS <ARITHEXP><SIMP AEXP > <TERM>
10 <SUB VAR> <LITCON>
USE SUB 438 IF ST2P IS <CL STATE> <G0 STATE> <ASSSTATE>
33 USE SUB#&22 1 FST2P1 SID -
34 USE SUB 439 Ir ST2P1 S «<STATEMENT> <CL STATE> <Gg STATE>

<VARIABLE>

<CONJ>

10
<BOOL SEC>

USE SUB 437I1F ST2P 1S <ARITHEXP> <SIMP AgXP> <TgRM>

<SUB VAR>

<BOOL PRIM> <RELATION>

<FACTOR> <PRIMARY>

*VARIABLE> 10

<ROOL EXP>

<FUNC DES>

<SUB VAR>

<BOOL PRI M > <VARIABLE> I D

<BOOL SEC>
<CONJ> <g00L SEC>
<RELATION>
<FACTOR> <PRIMARY>
<CONJ> <BOOL SEC>
<RELATION>

<VARIABLE> 10

<VARIABLE, 10

<VARIABLE>I O

<VARIABLE> 1 O

<FUNC DES> <VARIJABLE> |
<CONJ> <BpooL SEC>
<RELATION>

<FACTOR> <PRIMARY>

<PROC CALL><COMP ST>

<ASS STATE> <PROC CALL>

<BOOL PRIM> <VARIABLE>

<p0OOL PRIM>

<FUNC DES>

<ROOL PRIM>

<SUB VAR>

<SUB VAR>

<SUB VAR>

<SUB VAR>

<BOOL PRIM>

<FUNC DES>

<CoMP ST>

<IMPL>

<VARIABLE>

<FUNC DES>

<SUB VAR>

10

<VARIARLE>

<VARIABLE>

<SVARIABLE>

<LITCON>

<LITCON>

<LITCON>

<LITCON>

<SUB VAR>

<VARIABLE>

<VARIABLE>

<pP STATE>

35 USESUB 421 IFST2P IS <VARIABLE> 10 <SUB VAR>

3e USE SUB 4401 FST2P1 S <ARITH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>
10 <SUB VAR> <LITCON>

37 USE SUBG®&43 IFST2P 1S «ARITHEXP> <SIMP AEXP> <TERM* <FACTOR> <PRIMARY* <FUNC DES> <VARIABLE>
10 <SUB VAR> <LITCON>

38 USE SUBU482 |F STEP IS <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES>» <VARIABLE>
D <SUB VAR> <LITCON>

39 USE SUBUG43 I FST2P 1 S <ARITHEXP> <SIMP AEXP> <TERM»> <FACTOR> *PRIMARY > <FUNC DES> <VARIABLE>
10 <SUB VAR> <L1TCON>

00 USE SUB 444 IF ST2P IS <BOOLPRIM> <VARIABLE> g <SUB VAR> <FUNC DES> <RELATION>

41 USE SUBGU&4s | FST2P | S <BOOL SEC> <BOOL PRIM> <VARIABLE> 1D <SUB VAR> <FUNC DES> <RELATION»>

42 USE SUB 446 1F ST2P 1 S <CONJ> <BOOL SEC> <BOOLPRIM> .VARIABLE> ID <SUB VAR> <FUNC DES>
<RELATION>

43 USE SUBU44T IFST2P 1S <DIS> <CONJ> <BpOL SEC> <BOOL PRIM> VARIABLE> |ID <SUB VAR>
<FUNC DES> <RELATION>

44 USESUB 448 IFST2P | S <IMPL> <DISU> <CONJ> <BOOL SEC> <BOOL PRIM> <VARIABLE, 10

_,’:1 <SUB VAR> <FUNC DES> <RELATION*

45 USE SUB 449 IFST2P |S <EXPR> <ARITH EXP> <SIMP AEXP> <TERM> *FACTOR> <PRIMARY> <FUNC DES>
<VARIABLE* 1 O <SUB VAR> <L ITCON> <ROOL EXP> <IMPL> <DISJ>
<CONJ> <BOOL SEC> <BDOLPRIM> <RELATION,

46 USE SUB 450 IFST2P | S <ARITHEXP><SIMPAEXP> <TERM* <FACTOR> <PRIMARY> <FUNC DES> <VARIABRLE>
10 <SUB VAR> <LITCON>

47 USE SUBA51 1 FST2P 1 S <LIMPAIR>

48 USE SUBU14 I FST2P 1 S <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY* <FUNC DES> <VARIABLE*
10 <SUB VAR> <LITCON>

49 STIP«ROW(<TYPE> VALUE / NEW T

50 STiIP+ROW(<TYPE> ARRAY / NEW T1i

51 USE SUB&DOIFST2P 1 S <IDLIST> D

52 EITHER

USE SUBW52 IFST2PIS<IDLIST* 10

USE SUB 453 IF 8T2P IS <IO LIST> 10
AMBIGUITY IN SUB 52

53 USE SUBU4S81FST2P 1S «<IDLIST, 10

54 USE SUB 456 IF STOPIS«<IDLIST> 10

94

55 USES UB 4551FST2PIS <IDLIST> D

56 USE SUB 458 IFST2P |s <IDLIST> 1D

57 USESUB 457 | FST2P | s ¢IDLIST> 1D

58 USE SUB 459 IFST2P 1S <SPECIFIER>

59 USE SUB 460 IFST2P IS IO

60 USE SUB 461 IFST2P 1 S <EXPR> <ARITH EXP> <SIMP AEXP> <TERM>
<VARIABLE> ID <SUB VAR> <LITCON>
<CONJ> <BODL SEC> <BOOL PRIM> <RELATIDN>

61 USE SUBW41SIFST2P 1 S <LIM P LIST><LIMPAIR>

62 USE SUBWY52 | ST2P T s <LIM p LIST><LIMPAIR>

63 USE SUB 463 IFST2P I S <LIMP LIST>XLIMPAIR>

64 USE SUB 454 Ir ST2P 1S <NAME PART*

65 USE SUB 465 IF ST2P 1S <NAME PART*

66 EITHER

USE SUB 416 IF ST2P IS <SPECLIST> <SPECIFIER>
USE SUB 466 IF ST2P IS <SPECLIST> <SPECIFIER >
AMBIGUITY IN SUB 66

67 USE SUB&23IFST2P 1S <ST LIST> <STATEMENT><CL STATE> <GO STATE>
<0P STATE>

68 USE SUB 467 IFST2P IS <ST LIST, <STATEMENT> <CL STATE> «<Gp STATE>
<0P STATE>

69 USESUBU488 IF5T2P Is <NAME PART,

70 U SES Us 46 91 FST2P | S «STATEMENT> <CL STATE> <Gg STATE> <ASS STATe>

71 USE SUB 470 IFST2P 1 S <DECL>

72 USE SUB4&ryl! F STZP | s CARITHEXP> <SIHP AEXF> <TERM> <FACTOR*
10 <SUB VAR> <LITCON>

73 USE SUB 472 IFST2P | s <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR>
10 <SUB VAR> <LITCON>

74 USE SUB 473 IFST2P 1 S <BOOLEXP> <IMPL> <D1SJ> <CONJ>
D <SUB VAR> <FUNC DES> <RELATION>

75 USE SUBA4T4IFST2PIS <FOR L EL* <ARITH EXP> <SIMP AEXP> <TERM>
«VARIABLE> 1D <SUB VAR> <LITCON>

<FACT OR> <PRIMARY> <FUNC DES>
<BOOL EXP> <IMPL> <DI1SJ>

€ASS STATE ><PROCCALL> <ENMPST>

<ASS STATE> XPROCC A L L * <COMP ST>

<PROC CALL> <COMP ST> <gp STATE>

<PRIMARY> <FUNC DES> <VARIABLE>

<PRIMARY> <FUNC DES> <VARIABLE>

<BOOL SEC> <BOOLPRIM> <VARIABLE>

<FACTOR> <PRIMARY> <FUNC DES>

96

76

77

78
79

80

81

82

83

84

85
86

87

88

89

90

91

92

93

USE SUB1B8IFST2P1 S cARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>
ID <SUB VAR> <LITCON>
USE SUB 419 IF ST2P 1S <ARITHEXP><SIMPAEXP> < TERM > <FACTOR* <PRIMARY> <FUNC DES> <VARIABLE>
10 <SUB VAR> <LITCON>
USE SUB 476 IFST2P1S 1D
USE SUB 475 IFST2PIs ID
USE SUB 477 IFST2P1 s <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>
10 <SUB VAR> <LITCON>
EITHER
USE SUB 478 IF ST2P 1 S <EXPR> <ARITH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES>
<VARIABLE> 10 <SUB VAR> <LITCON> <BOOL EXP> <IMPL> <DI1SJ>
<CONJ> <BOOL SEC> <BOOL PRIM> <RELATION>
USE SUB 479 IF STEP1s <ASS STATE>
EITHER
USESUBUAI7IfSTEPI S«<DECLIST> <«<DECL>
USE SUB 4B11f STEP IS <DECLIST> <DECL>
USE SUB 423 IFST2P |s<ST LIST> <STATEMENT> <C|L STATE> <GO STATE> <ASSSTATE><PROCC AL L > <COMPST>
<0P STATE*
AMBIGUITY IN SUB 82
USE SUBW4BOIFST2PIS <ST LIST* <STATEMENT> <CL STATE> <GO STATE> <ASS STATE> <PROC CALL> <COMP ST>
<0P STATE>
UsE SUBA#482 |FST2P |S<STLIST> <STATEMENT> <CL STATE> <GO0 STATE> <ASSSTATE> <PROCC A L L ><COMPST>
<0P STATE>
PeP=y / ST2Pe«CL STATE> FOR PRODUCTION <CL STATE> 13 ID H
USE SUB 483 IFST2P 1S <CL STATE> <GO STATE> <ASSSTATE><PROCCALL><COMPST>
EITHER
USE SUB 483 IFST2P1 S «CLSTATE> <GO STATE> <ASS STATE><PROC CALL> <COMPST>
USE SUBU4B4 I FST2P I s <OP STATE>
USE SUB 495 IFST2P 1S 10
USE SUB 420 IFST2P 1S <FORLIST> <FOR L EL> <AR}TH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY>
<«FUNC DES> <VARIABLE> |D <SUB VAR> <LITCON>
USE SUB 486 IFST2P |s <FOR LIST* <FOR L EL> <ARITHEXP><CSIMPAEXP> <TERM > <FACTOR> <PRIMARY>
<FUNC DES> <VARIABLE> ID <SUB VAR> <L ITCON>
USE SUB 4871 r7ST2P1 S «CLSTATE> <GO STATE> <ASS STATE> <PROC CALL> <COMP ST>
EITHER .
US ESUB 487 IFST2P1 S<CL STATE® <60 STATE> <A§SSTATE *<PROCCALL> <COMP ST>
USE SUB 488 IFST2P 1S «0OP STATE*
USE SUB 489 IFST2P 1 S €CLSTATE> <GO STATE> <ASS STATE><PROCC AL L ><COMPST>

Lg

94

95

96

400
401
402
403
404
405

406

007
408
409
410
411

412
413

414

415
416

417

419
420

421

EITHER

USE SUB 499 If §T2P IS <CL STATE> <GO STATE>
USE SUB 490 IfST2P 1 S <OP STATE>

USE SUB 491 If ST2P IS <STATEMENT> <CL STATE>

USE SUB 492 If ST2P IS <STATEMENT> <CL STATE>

PeP+l
PeP4y
PePe+y
PeP+1
Pepet
PeP+1
PePel
PePet
PeP+y
PepP+y
PeP+1
PePs+l
PePel
PePet
PepPel
Pep+l
PeP+y
PePs)
PePey
PepPet
PePed

PePet

ST1peROW(
STIP«RONW(
ST1PROW(
ST1P«ROW(
STIP«ROW(
ST1P+ROW(
ST1P«ROW(
ST1P«RON(
ST1IP«ROW(
ST1P«ROW(
ST1P«RONW(
STiP«ROW(
STi1PeROW(
SYLP*ROW(
STY1P¢RONW(
ST1P+ROW(
ST1P«ROW(
SY1P«RONW(
SYL1P¢RONW(
SY1P¢ROW(
SY1PeROW(

SY1P«ROW(

<ID LIST>

10 (

ID 4
<PRIMARY> #*»
<TERM> <* O R/>
<CSIMP AEXP> <+ O R =>
<AEXP LIST> »

<ARITH EXP> <REL OP>

<RELATION> <REL OP>

<CDONJ> AND
<0ISJ> OR
<IMPL> IMPLIES

<BOOL EXP> EQUIV
CEXP LIST> »
<ARITH EXP>
<LIM p LIST>,
<SPEC LIST>
<DEC LIST> 3
<ARITHEXP> STEP
<ARITHEXP> WHILE
<FOR LIST>

<VARIABLE>$=

<ASS STATE> <PROC CALL> <COMP ST>

<Go STATE>

<GO STATE>

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

NEW

<ASS STATE><PROCCALL><COMP ST >

<ASS STATE><PROC CALL><cOMPST>

T1
T
T
T1
T1
T
T

Tl
T
T1
T
Ti
T
T
T1
T1
T

Tl

NEW T 1

NEW
NEW

NEW

T1
T1

Tl

<0P STATE>

<0P STATE>

86

422
423
424

425

426

427

428

429

430

431
432
433
434

435

PePey /
PeP+1 /
PeP=1 /
PeP=) /
NEW T4
Pepet /
NEW T1
Pep=1 /
NEW TI
PeP=1 /
NEW T1
PeP=} /
Pep=i /
Pepe=i /
Pep=i /
PeP=1 /
PeP=1 /
Pep=1 /

436 STIP«ROW(|

4 3

7 ST1P#RONC |

4 3 8ST1IP«ROWC(|

439

440

441
442

443

3

&

PeP=y /
Pep=y{ /
ELSE
Pep=y /

pep=1 /

PeP=y /

PeP=y /

PeP=y /

STiIP«ROW(| D

STYIP¢ROWC <sY LIST*] / NEW T1

ST2Pe<ID LIST*
ST2P«<SUB VAR>

SY2P¢<FUNC DES>

SY2P+<NAME PART>

ST2P«<PROC CALL,

ST2P«<PRIMARY>

ST2pe<BOOL PRIM>

SY2pe<FACTQOR>
SY2pe<FACTOR>
SY2P«<FACTOR>
ST2P«<TERM>

SY2P¢<SIMP ApEXP>

F <BOOL EXP> THEN) / NEW Ti
F <BOOL EXP> THEN

F <BOCL EXP> THEN

ST2Pe<0OP STATE>
STY2pe<ARITH EXP>
<ARITH EXP>
SY2P¢<AEXP LIST>
ST2pe<RELATIQON>
SY2P¢<RELAT IO N >
ST2P«<BOOL SEC>

ST2P¢<CONJ>

$) / NEwW Ti

FOR PRODUCTION <ID LIST>

FOR PRODUCTIOh <SusVAR>
FOR PRODUCTIOh CFUNC DES>
FOR PRODUCTIOh CNAME PART>
FOR PRODUCTION <PROCCALL>
FOR PRODUCTIOh <PRIMARY>
FoR PRoDUCTIoN<BOOLPRIM>

F O R PRODUCTIQN <FACTQOR>
FOR PRODUCTION <FACTOR*
FOR PRODUCTIOK <FACTDR>
FOR PRODUCTIOh <TERM>

F O RPRODUCTION <SIMP AEXP>

FOR PRODUCTION <OP STATE>
FOR PRODUCTION <ARITHEXP>

FORPRODUCTION <AEXp LIST>
FOR PRODUCTIoN <RELATION>
FOR PRODUCTION <RELATION>
FOR PRODUCTION«BOOL SEC>

FOR PRODUCTION <CDNJT

tt=

<ARITHEXP>ELSE

<CL STATE* ELSE

its

<ID LIST> |
1D L
1D
10 [§ =
1D
(<ARITH EXP>
<BooL EXP>
<PRIMARY> e *
(] <FACTOR>
<+ O R => <FACTOR>
<TERM> <* OR />
<SIMP AEXP> <¢ O R =>
) / NEW T%
) / NEW Ti
IF <BOOL EXP>
IF <B0OOL EXP>

<AEXPLIST>,

<ARITH EXP> <REL OP>
<RELATION> <REL OP>
NOT <BOOL PRIM>
<CONJ> AND

ID

<AEXP LIST> 1]

<eXPLIST,

<ID LIST>

<EXP LIST»

<FACTQR>

<FACTQOR>

<TERM>

THEN

THEN

<ARITH EXP>
<ARITHEXP>

<ARITH EXP>

<BOOL SECS

)

)

)

/ NEWT1

/ NEW T1

<STATEMENT>

<ARITH

EXP>

64

446

447

448

449

451
452

453

454

455

456

461

462

463

464

465
466

467

468

469

470

PeP=] / ST2P«<DISJ>
PeP=q / SY2P«<IMPL>
Pepe=y / ST2P+<BOOL EXP>
Pepe=i / SY2Pe<EXP LISY>
PeP=1 / ST2p¢<LIM PAIR>
Pep=~1 / SY2pe¢<LIMp LIST>
PeP=1 / ST2P«<SPECIFIER>
PeP=1 / ST2Pe<DECL>
Pep=i / SY2P¢<SPECIFIER>
Pepel / ST2P¢<SPECIFIER>
ST1P¢ROW(<TYPE> ARRAY
PeP=1f / ST2P«<SPECIFIER>
STiPeROW(ARRAY <ID
PeP=1 / §T2P¢<SPEC LIST>
STIP¢RDW(CONSTANT IO
Pep=l ST2Pe<DECL>
Pepet / sY2P+<DECL>

<LIM P LIST>) /
PePe=y SY2P+<DECL>

| / NEWTH
PeP=y SY2Pe<DECL>
ST1PeROW(PROCEDURE <NAME
ST1P¢ROW(PROCEDURE

Pep=i ST2p«<DECL>

; <ST LIST> END
ST1P«ROW(FUNCTION <NAME
PePey / ST2P¢<DECL>
Pepey SY2P+<DEC LI ST>

<NAME PART> 3

FOR PROCUCTIOh <D1SJ> 13=
FOR PROCUCTIOh <IMPL> 1t=
FOR PROCUCTIOh <BOOLEXP>st=
FORPRODUCTIONSEXP LIST>st=
F O RPRODUCTION <L IMPAIR> ttz
FOR PRODUCTION <LIM p LIST> 13=

FOR PRODUCTION <SPECIFIER> 13:=
FOR PROCUCTIOh <DECL> 1=
F O RPRODUCTION <SPECIFIER> 331=
F O RPRODUCTION<SPECIFIER> iz
<ID LIST> C)
FOR PROCUCTIOh <SPECIFIER> 3=
LIST> |) / NEW Ti

F O RPRODUCTION <SPEC LIST> 1=

<DISJ>
<IMPL>

<BOOL EXP>

SEXP LIST>

<ARITH EXP>

<LIM p LIST>»

<TYPE>
<TYPE>
<TYPE>
<TYPE>

/ NEW

ARRAY

<SPECLIST>

iz) / NEW Ti
FOR PROCUCTIOh <DECL> t8= CONS TANT
FOR PROCUCTIOh <DECL> 13= <TYPE>
NEW Ti
FOR PROOUCTIOh <DECL> $13= ARRAY
FOR PRODUCTION <DECL> 88 SWITcH
PART> 3) / NEW T1i

<SPEC LIST>

)

T1

FOR PRODUCTIoNKDECL> $t= PROCEDURE
/ NEW TI
PART>3) / NEW T1H
F O RPRODUCTION<DECL> tt= FUNCTION
<DECLIST>

FOR PROCUCTION <DE'C LIST, 1 RS

OR <CONJ>

IMPLIES <DISJ>
EQuIV <IMPL>
<EXPR>

s

<ARITH EXpP>

<LIM PAIR>
<Ip LIST>
<IDLIST>
VALUE SICLIST>
ARRAY <ID LIST>
<Ip LIST>

<SPECIFIER>
10 iz
ARRAY <ID LIST>

<ID LIST> C

<NAME PART>

/ NEw T1

<SNAME PART> 3

<NAME PART>?¢

<DECL>

<EXPR>

4

<LIM P LIST>

<SPEC LIST>

CSTATEMENT>

09

472

473
474

475

479

480

481

482

485
486

487

489

490

491
492

STIP¢ROW(<ARITHEXP> Stk

PeP=1 /
<ARITH EXP>

SY2Pe<FOR L EL>

PeP=1 / ST2pe¢<FOR L EL>
PeP=1 / SY2P+<FOR LIST>
PeP=y / ST2Pe¢<GO STATE,
ST1P«ROW(50TO 10
PeP=1 / ST2P+<GO STATE>
| / NEW T1i
PePe=l ST2P¢<ASS STAYE>
Pep=1 ST2P¢<ASS STATE>
PepPal ST2p¢<.OMP ST*
ST1IP«ROW(BEGIN <DECL IS
PeP=1 / ST2Pe<COMP ST»
END / NEW Ti
Pepmi / SY2P¢<CL STATE>
Pepay / ST2Pe<OP STATE>
STIP«RON((o 10
ST1P«ROW(FOR 10
PeP=1q / SY2Pe<CL STATE>
o <CL STATE>
PePe1 / SY2P¢<0OP STATE>
DO CoP STATE,
Pe«P=1 / SY2pe<CL STATE,
ELSE <CL STATE>
PeP=t / SY2P¢<OP STATE>
ELSE <DP STATE>
PeP=y / ST2P¢<ST LI ST»
PeP=1 / sY2P¢<PROGRAM>

<ARITHEXP>UNTIL

FOR PRODUCTION <FOR L EL>

FOR PROCUCTIOh <FOR L EL>

)

/ NEW T1

<ARITHEXP> STEP

<ARITH EXP> WHILE

F O RPRODUCTIONGFORL I ST >t8= <FOR LIST>
FORPRODUCTION <GO STATE> t3= GO TO

[) / NEW T1i
FOR PROCUCTIOK <GOSTATE> 11z GO TO
FOR PRODUCTION <ASS STATE> 8= *VARIABLE>
F O RPRODUCTIDN<ASS STATE> 3t= <VARIABLE>
FOR PROCUCTIOh <COMPST> 1t BEGIN
T>3 / NEwW T1
FOR PRODUCTION <COMPST> ttz BEGIN
FOR PRODUCTION <CL STATE> 1tz 10
FOR PRODUCTIon cor STATE> 1t IO

i=) / NEW T1

1= <FOR LIST> ¢)
FOR PRODUCTION <CL STATE> t3= FOR
FORPRODUCTION <OPSTATE> $3= FOR
FOR PRODUCTION <CL STATE, ti= F
F O RPRODUCTION <OP STATE> 1ts F
FOR PRODUCTION <ST LIST> g1t <SY LIST>
FOR PRODUCTION <PROGRAM> tt= PHI

<ARITHEXP> U
<BOOL EXP>»
’ <fFORL ELS
10
10 4
t= <EXPR>
itz <ASS STATE,

<ST LIST> END

<pEC LIST> 3

3 <CL STATE>

t <QP STATE*
/ NEW T1

10 i=

10 1=

<BOOL EXP> THEN

<BOOL EXP> THEN

3 <STATEMENY>

<STATEMENT> PHI

NTIL

<ARI TH EXP>

/ NEWT1

<STLIST>

<FOR LIST>

<SFORLIST>

<CL STATE>

<CLSTATE>

/ NEwW Ti

