
CS 57

THE USE OF TRANSITION MATRICES

IN COMPILING

| BY

D. GR IES

TECHNICAL REPORT CS 57
MARCH 17, 1967

Supported in part by the
Atomic Energy Commission.

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

) THE USE OF TRANSITION MATRICES IN COMPILING

D. Gries

!

1

{

{

L

Supported in part by the Atomic Energy Commission.

-

L

i The Use of Transition Matrices in Compiling
I

L Contents Page

L 1, Introduccion « « « « © o so o o os o o o eo so os so o o o o o o o 1
2. Notation, terminology, basic definitions =. « « « « « « « « . 5

L 5. Operator and augmented operator grammars and languages p

| L. Parsing a string using an AOG - + + + + 4 4 4 4 4 a oo. 1h
5. Sufficient conditions for a unique canonical parse 16

6. The transition matrix and stack = « « « « « « + +... LL. . 18

\
7. An example of a parse ce ee ee ee eee eee ee eee 25

| 8. Representation of nonterminals in the stack « « « « « « « « « 27

| 9. Other uses of transition matrices « « « « « « « « « « «+ + . . 28
bt 10, SUMMAYY = = = © © © © o © © oo oo oo oo ss ss ss eo eo 459

‘ References « « «o o o o oe o o o o o so o o o oo o o eo o oo o o o o I
-

AppendixA. An ALGOL-like grammar and associated matrix , . . . , L2

{

w

|

i

| The Use of a Transition Matrix in Compiling
“

‘ 1. Introduction,

The construction of efficient parsing algorithms for programming

w languages has been the subject of many papers in the last few years.
Techniques for efficient parsing and algorithms which generate the

— parser froma grammar or phrase structure system have been derived.

Some of the well-known methods are the precedence techniques of Floyd [4]

= and Wirth and Weber [10], and the production language of Feldman [3].

3s Perhaps the first such discussion was by Samelson and Bauer [9]. There
the concept of the push-down stack was introduced, along with the idea

“ of a transition matrix. A transition matrix 1s just a switching table

which lets one determine from the top element of the stack (denoting a

= row of the table) and the next symbol of the program to be processed

_ (represented by a column of the table) exactly what should be done.

Either a reduction 1s made in the stack, or the incoming symbol 1s

- pushed onto the stack.

: Considering its efficiency, the transition matrix technique does

~ not seem to have achieved much attention, probably because it was not

L sufficiently well-defined. The purpose of this paper is to define the

concept more formally, to illustrate that the technique 1s very efficient,

— and to describe an algorithm which generates a transition matrix from a

suitable grammar. We will also describe other uses of transition

~ matrices besides the usual ones of syntax checking and compiling.

Tr We will require that the set of productions {U; i= x) form
an operator grammar (Floyd [4]), which means that no production has

—

1

the formU s:= XVqV oY for strings X,y and nonterminal symbols Vi

” and V, Thisrestriction is not necessary in order to use a transi-
_ tion matrix. One may also describe suitable conditions for the general

| phrase structure grammar AUSEEE x, which allow the use of a

a transition matrix. The restriction to operator grammars is a rather

| natural way to reduce the size of storage necessary to implement the

- technique. The syntax of the usual ALGOL-like languages can easily

_ be represented by such a grammar.

We emphasize that the use of a transition matrix 1s just another

— technique, though a very efficient one, for parsing sentences of a

: suitable (programming) language.

. Section 2 introduces the notation and terminology. Sections 3

_ through 5 are devoted to discussing sufficient conditions for a unique

canonical parse which enable us to use a transition matrix. These

C conditions are of course closely related to those derived by Floyd [4],
Wirth and Weber [10], and Eickel et al [2]. Sections 6 and 7 explain

= the technique and go through an example in detail. In Sections 8 and 9

" practical examples and applications are discussed. Appendix A gives

Floyd's ALGOL-like grammar ([4]) and the associated matrix and subroutines.

© All examples were produced by an algorithm, written in Extended ALGOL [11],

on the B5500 at Stanford.

~ The author 1s indebted to Jerome Feldman and Niklaus Wirth for

i their critical comments on this manuscript. This work was partially

supported by the U.S. Atomic Energy Commission.

2

—

i 2. Notation, terminology, basic definitions.
jhS—

¥ Let V be a given set: the vocabulary. Elements of ¥V are
| called symbols and are denoted here by capital Latin letters, S , T ,

U, etc. Finite sequences of symbols - including the empty sequence (A)
-—

- are called strings and are denoted by small Latin letters u, v, Vv ,
*

z , etc. The set of all strings over V is denoted by V .
 _—

If z =xy 1s a string, x is a head and y a tail of z .

- A production or syntactic rule @ : U :¢= x , 1s an ordered pair

IP consisting of a symbol U and a nonempty string x . U is called the
1g

left part and x the right part of § . We assume that U £ x .
¢

Ig Let & be a finite set of productions Pyse-esP, - y directly
—-produces z (y —* z) and conversely z directly reduces into y ,

— if and only if there exist strings u,v such that y = ulv , z = uxv ,

. and the production U ::= x is an element of # .

vy produces z (y 3 z) and conversely z reduces into y ,

L 1f and only if there exist strings yoo Asi such that y = Xr
X =z and
n

—_

Zz 1s also said to be a derivation of y .

Let &be a set of productions Pys++es®, - If V , the vocabulary,- I

contains exactly one symbol A which occurs in no right part of a

production, anda non empty set 8 of symbols which appear only in the

right part of productions, then # is a phrase structure grammar.

= The symbols of B are called terminal or basic symbols and are denoted

—

5

by capital letters T , Ty , Ts . The letters U , V always denote
—

symbols in V-8 and are called nonterminal symbols.

_ x €V is called a sentential form of # if either A =x or

_ Ax . The set of sentences x = 1.e., the set of sentential forms
consisting only of terminal symbols - constitutes the phrase structure

x language L that is:
LL of

Ww

(2.1) Ly :={x|A3xAx€R}
-

Without restricting the set of phrase structure languages we

= shall assume that

— (2.2) UAU for any Ue€V-B ;

\ (2.3) if U; 9U,_ , then the sequence

i. Uy t:=1, U, i= Us) 0 Olle U, #:= Up

1s unique; and

(2.4) every symbol may be used in deriving some sentence: for

| each symbol X € V there exists strings x , z , t such
w

Co that A 3 xXz .and eitherX € B or X 23 t where te .

A Z LSE of the string into the symbol U 1s a sequence
—

of productions @,9,,...,% such that P= (u, i= x) directly
reduces Zz. = u.X.v. 1nto Zz. = u.u.v.] = lyeeeyn) and z= U .. j=l = 53 3 = U%vy (37 Leen) n
The canonical parse 1s the parse which proceeds strictly from left to

right in a sentence, and reduces a leftmost part of a sentence as far |

as possible before proceeding further to the right. That is,

4

| the parse PrsPos ee er® of Z. into U is canonical if and

) only if for j = 1,...,4n Xy 1s not contained in u, for
« all k> j .

| Every parse has a unique canonical form (simply rearrange the

| productions to form a canonical parse), but in an ambiguous grammar
. there exists more than one canonical parse for some sentence. An

- unambiguous grammar is a phrase structure grammar such that for every

~ string x € Lg there exists exactly-one canonical parse of x into
| the symbol A .

It has been shown that there exists no algorithm which decides

° whether an arbitrary grammar 1s unambiguous. However, a sufficient

condition for a grammar to be unambiguous 1s subsequently derived,

To and a method 1s explained which determines whether a given grammar

satisfies this condition.

~- 3. Operator and augmented operator grammars and languages.

| If no production Ps of the phrase structure grammar # takes

the form U ::= xV,V,y for some (possibly empty) strings x,y and

3 nonterminal symbols vi "and Vv, yw then (Floyd (41) % is called an
| operator grammar (0g). The phrase structure language Lg generated by

a an 0G 1s then called an operator language.

Floyd proved that in an operator grammar no sentential form contains

- two adjacent non-terminal symbols = 1i.e., if A 2x then there exists no

. strings xy and X and no nonterminals v, and v, such that

X = XV VX, ~The grammar in Figure 1 1s not an operator grammar, since

— <IF CLAUSE> and <STATEMENT> are both nonterminal.

| p

|

| <PROG> : i= <STATEMENT>
be

<PROG> ::= <IF CLAUSE> <STATEMENT>

“ <IF CLAUSE> ::= IF <EXPRESSION> THEN

{ <STATEMENT> ::= <IF CLAUSE> <STATEMENT> ELSE <STATEMENT>

L <STATEMENT> :+= VARIABLE := <EXPRESSION>

} <EXPRESSION> ::= <EXPRESSION> OR VARIABLE
-

<EXPRESSION> ::= VARIABLE

4

bo

 - 1
Figure-1

L The grammar 1n Figure 2, which 1s equivalent to (generates the same

| language as) the grammar in Figure 1, is an operator grammar.
_ <PROG> : = <STATEMENT>

L
<PROG> :e= IF <EXPRESSION> THEN <STATEMENT>

L <STATEMENT> ::= JF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
<STATEMENT> ::= VARIABLE := <EXPRESSION>

L <EXPRESSION> ::= <EXPRESSION> OR VARIABLE

{ <EXPRESSION> ::= VARIABLE ’
“

NONTERMINAL SYMBOLS: <PROG> , <STATEMENT> , <EXPRESSION> .

L TERMINAL SYMBOLS: IF ¢ THEN , ELSE , VARIABLE , i=, OR

Figure 2
|

L When parsing a sentence, at each step the leftmost right part x
of a production U ::= x must be detected. Then x is replaced by U

and the process 1s repeated. In order to reduce the number of symbols

to be checked at each step, we introduce intermediate reductions. For

-—

6

-

-

L

| instance, although the string
IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>

can be reduced directly to <STATEMENT> by the grammar of Figure 2,

L we want to parse 1t as 1s shown below:
L

{ <STATEMENT>

L . ul _— g
h_—

L IF <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>
L

| This can be achieved by constructing an augmented operator grammar (AOG)

{ of) correspondingto # . The augmented operator grammar is useful for

{ describing theoretically the mechanism of the matrix technique to be
introduced later. However, so as not to complicate the process too

| much, one can give mnemonic names-to the introduced symbols needed for
the intermediate reductions. For instance, 1n the above diagram uy

[may be named "<TIF¥>" | u, "<IF expr THEN*>" , and
u, "<IF expr THEN state ELSE*>" . That is, each new symbol is just a

L representation of the head of the right part of some production. “ is
{ constructed from &by repeating the following step 1 until no longer

applicable, then step 2 until no longer applicable, and finally steps 3a

L
7

L

!

and 3b alternately until no longer applicable. New nonterminal symbols

will be introduced into V and V-B (but not B). Note that all

\ newly introduced symbols are distinguished from the original nonterminals

{ by an asterisk "¥" |
step 1: If there 1s a production U ;::=p p] TV (v4 may be empty), and

* *

L 1f k new symbols UpseeesUp have been created so far, create
*

{ a new symbol Urq replace each production Ue i= Ty,
(each production whose right part begins with I,) by the

| *

l production u. P= Urs , and 1nsert the production
*

(U1 P= I, into the grammar,
| After step 1 all productions have one of the forms

L U, ::=U U =U i= T) T1 °°" 2) [4 1 oe eo LY 5, Up 2:=U Y I4 U ::= °
1

where y contains no introduced symbol U .

| step 2: If there 1s a production Uy pe= UyLoyy (note that U, must
1 be one of the original nonterminals of the 0G), and if k new

symbols have been created so far, create a new symbol U¥*
k+1?

L replace each production. U, #:=ULy, (each production whose
] 1 1 * 1

i right part begins with UT,) by U. = Up i1¥s , and insert*

the production Uppy 23= UST, .

L After step 2 all productions have one of the forms
- & ® oO * * *

Upe=U,, 0) =U y 5 uu 3:2:=UT , U ::=T

L where vy contains no introduced symbol U* .
| 8

*

b step %a: If there 1s a production Uy p= UTy , and 1f k new symbols
= *

have been created so far, create a new symbol Uri1 , replace
| * *
{ : . eo, TR pa :

“ each production U, i= UoToys by Uj ii= Urs s and insert
* *

| the new production Upp 32= UT, .
\

*

step 3b: If there 1s a production Uy 1i= UU Toy , and 1f k new{

} *

- symbols have been created so far, create a new symbol Ur P
* *

; (i= 1 : . i= :

{ replace each production Us Us To¥ 5 by u, Upp 1s P* *

and insert the new production Uler 1 ii= Us UT, .

has An ACG has, therefore, only productions of one of the following forms:

L := U , U, ::= UU
{

* * * * ¥ %

L Uu :2:2=T , U ::= UT , Us $= UT , Uy T= U, UT

L
Figure 3

L
Note that we differentiate between the original Unstarred NonTerminal

' Symbols (called UNTS) and the newly created Starred NonTerminal Symbols
(SNTS), which for reasons explained later are also called stack

L nonterminals.

L Again, we have introduced augmented operator grammars and stack
nonterminals in order to be able to make intermediate reductions.

{
£ A stack non-terminal can also be thought of as a representation for the

: head xT (ending 1n a terminal symbol T) of the right part of a

L production U ::= xTy of the original 0G. As another example, if

l Uy 3 ITU T) Tg 1s a production of the 0G, then the string Ti TU:T), Te
9

{
-

1 will be parsed as a sentence of the AOG as follows:
—

| Ug Productions in AGG
Ao. EE—

| *
| ¥ Uy Di= Ty
- 7 \ Us i= UTU 2 171

{ ’ ol vu T

() pd EA
U L °*7 7375
2 | x

Uy -

Ty I, Ux I), Te
\
L

Consider the 0G in Figure 2. After step 1 it will have been changed to

L
<PROG> : i= <STATEMENT>

| <IF*> i= IF
I.

| <VARIABLE*> ::= VARIABLE

i <PROG> :1= <IF*> <EXPRESSION> THEN <STATEMENT>

. <STATEMENT> ::= <IF¥> <EXPRESSION> THEN <STATEMENT> ELSE <STATEMENT>

- <STATEMENT> ::= <VARIABLE*> := <EXPRESSION>

| <EXPRESSION> : : = <EXPRESSION> OR VARIABLE
<EXPRESSION> ::= <VARIABLE*>

Step 2 changes 1t to

\
-

“

| 10

-

Sn Sa SE Gun Sen Sai cut cant coun Sa San SuuhE aunt aus Anu SunSEaunnl coe

=

EERE ERE ERE EE EERE REE= =e 3% i i83E83F8» H§EBEEGS EGcE 2 EVE BEE LE = gg gg Vig"V
VV Z ’ © § F y

M © Go

| A 2 Ah 404485 5H 4

= EF ET gE zgabl 8 FF §VFEHEC J
pr VRE ry 9 78 8 V s 8 BV

” BEER E89F

0 9 7 E : np 2 ©
Eg 4 4

55

J ©
3
2

2
=
=

2

7

i

We will need the following definition: A string y is a phrase if
—

(3.1) y contains at least one terminal or SNTS; and
—

*

(3.2) there exists a production U ::= y, orU ::=y, of the
- _ _ _

ACG where y, = Y or Vy = ul, v y VY = ul,v and Yy > Us

! for some u , v .
-

t Thus, vy 1s a phrase 1f it 1s the right part of some production of the
-

AOG (except a production of the form -U; i= Us) or if it can be

g reduced to the right part of some production by a sequence of
reductions U.,::= U. . Given a sentential form x = XVX, os Y is

“ called a reducible phrase (of x), if

Ig (2.3) y is a phrase; and

#*

_ (3.4) for some U (or U) as defined in (3.2), the string

| resulting from replacing the string y by U (or U*)
- is a sentential form.

i The problem for the compiler, then, is to find the leftmost

reducible phrase and to make the correct replacement (reduction).

— The following statements, which help to explain the relationship

between an OG and the corresponding AOG, follow directly from the
-

construction of the AOG. For lack of a better name, we call them

- lemmas.

*

L Lemma 1. Each SNTS U appears as the left part of only one production
W*

U ::= X . The corresponding right part x appears as the right part

— of no other production.

12
{

-

* 1 1 1
Lemma 2. If the SNIS's U are numbered 1n the order in which they

were introduced, UpsUss eer U , and 1f a production u. ji= Uy exists

. in the AOG, then 1 > J .

i Lemma 3. For each production U ::= y with y [3 V8 of the AOG there
) | | | 5 5 5

exists a unique set of productions 1 = yy 0 Uy iim Uys sees

- * ur Uy of the AOG such that y =Uy, 1 1= n-19n-1 , Uu i= wn 0 e suc at y = Y1Vope ee, .

- Lemma 3 follows directly from the construction and Lemmas 1 and 2.

i Lemma 4% follows directly from Lemma 3.
-

(Lemma 4. If 9,100.0 E01 is a canonical parse of a string x relative
— to the 0G, then we get a parse of x relative to the AOG by substituting

{ for each Ps (which 1s not of the form Uy RE Uy) the unique set of

productions defined in Lemma 3.

~ Since two different canonical parses lo] and J of a string must

4 for some 1 have Ps £ Ao , we have also

Lemma D>. Different canonical parses of a string x with respect to
-

an 0G, yield different canonical parses of X with respect to the A0G.

—
Therefore we have finally

. Lemma 6. If an AOG is unambiguous, the corresponding 0G must also be

L unambiguous.
A sufficient condition for an OG to be unambiguous is therefore the

— unambiguousness of the corresponding AOG.

13

|

1 L. Parsing a string using an AOG.
In order to parse a sentence x we first enclose x in symbols 0

L and ® (where 0 1s assumed to be a new SNTS and ® a new terminal

symbol), yielding b x0 . Formally, we add to the AOG the productions

- <Program> ::= 0 AD and 5 ::= 0 , where A 1s the symbol which appeared

1 only in a left part. We show that after each reduction the string has
one of the following two forms

|

- (4.1) RA UU TT T
I - E

b (4.2) GU, Lo. LU UU LT

{ - where the U, are SNTS's, the I, are terminals and Uy 1s an UNTS.
” Note that the original string © xd has form (4.1). We assume also

1 that no reductionU ::= U , 1 <1 , can be made such that the resulting
string is still a sentential form, since such reductions will have

L already been made. It will be seen later that the sufficient conditions
{ for a unique canonical parse fulfill this requirement.

~ From the form of productions in an AOG (Figure 3), any reducible
L phrase containing Us , 1 <1, must be Us itself, and this by

: assumption is not the case. Now at some point of the parse a reducible
. phrase must contain Tl , and from the form of productions in an AOG,

lL I, must be the last character of any reducible phrase containing it.
| Therefore, at this step, the leftmost reducible phrase may not contain

3 TosTgsenerT . We have therefore, using again the possible forms of
productions in an AQG,

a
1h

-

| Lemma 7. A leftmost reducible phrase at step kK, assuming the string is
of form (4.1), must be either

{

L uh T *g 2 Ly» or UL, ‘

L
Assuming a string of form (4.2) the leftmost reducible phrase 1s

1 * *: U.T 1/UU » UU Ty» or Uh

L
In the case (4.1), if we know which of the strings U, » T, or

¥

L UT 1s the leftmost reducible phrase, we make a reduction U::= u” ,— a

* * * | | |

| U, L- I, resp. U ::= u,Ty , ylelding again a string of the form

L (4.1) or (4.2).
{ In case (4.2) we first make a sequence of reductions
LL

Us I= Uy goeey U, Pi= Us for some J > 1 , and then execute a final
duct] U = RY ur * U J |

(reduction i= UUs P= Y, 511 s or U :i:= U. Ty » depending
on which of the three possibilities 1s the leftmost reducible phrase.

L Note that at each step not only the leftmost reducible phrase, but

L also the sequence of reductions to be made, should be unique. If this
1s the case, then of course there exists a unique canonical parse. The

1 next section-gives sufficient conditions for the uniqueness of the
*

| canonical parse. The reason for calling the U "stack nonterminal
|. symbols" 1s now clear. They are the only symbols which get pushed into

| the stack.
1 * *

{ Note that a reduction U ::= Y, or U ::= T at this time would
S result in a string which 1s not a sentential form, since the grammar

is an AOG (two original nonterminals of the 0G would eventually appear

- adjacent).

15

5. Sufficient conditions for a unique canonical parse.

We will use the following set L(S) where S 1s a symbol:

—
£(8) = {8 |xs,8y is a sentential form for some X,y . .

— £(8) is just the set of symbols which are adjacent and to the left of

Sq in some sentential form. The construction of £ or related sets
-

has been discussed elsewhere (see for instance Wirth and Weber [10]).

L We therefore do not wish to discuss at length the construction of L(S) .

We just state that

-

s, € £(8) if and only if (5, =S5V 8<sVs, >5),
{

where = , <and ® > are the precedence relations defined by Wirth

. and Weber (page 18, [10]) .

Now consider case (4.1). We have a sentential form

- “ut uv T, T f uv | lef ducibl hU 5 oY ER I : TI , 1s a le tmost reducible phrase,

‘ then obviously
-

| *

(4.3) 2 a production U ::= U, such that ue £(T))

*

(Similarly, 1f U, Ly or TI, 1s a leftmost reducible phrase, we have

\ respectively

3% *
LE) 3 a production U ::= UT, ;

| * * *

(4.5) 3 a production U ::= T, such that U, c £(U) .

| ¥ %
Consider case (4.2). We have a sentential form U. . . . OUT . . .T .

CL 1 P11 m
* »

Depending on whether uu, r UpUit , OT UT 1s a. leftmost reducible

16

a
B

phrase, we have respectively

] *]

(4.6) 3 a production U ::= UU, where U € £(1,) , and either
~ U

— (4.7) 3 a production U ::= UUT. where U. =U. or U. =U. ;) 121 2 1 2 1°’

* a W%
- (4.8) 3 a production U ::= UT, where U, €e £(u)’ and either

Us =U; or U, =U,
"

We may now state the main

\

— *

Result. Let Y, be a SNTS, Uy a UNTS and Ty a terminal symbol.
{ *

Assume that for any such v, , Yy and I

(a) At most one of the conditions (4.3), (4.4), (4.5) holds;

“ (b) At most one of the conditions (4.6),%.7),(%.8) holds;

{ (c) If one of the conditions (4.3) - (4.8) holds, the production
-

described therein 1s unique.

{

C Then there exists a unique canonical parse for each sentence x of the

language.

— The result follows from the fact that at each step the leftmost

reducible phrase 1s unique (from (a) and (b)), and the corresponding
i

reduction or set of reductions is unique (remember the restriction on an

“ OG that if Ug =U, then the reductions U. i= Uggs o °°? U, q10= Us

are unique).

The algorithm which generates the "compiler 1s then straightforward.

We first check that if Uy =U. the sequence of productions

Uy P= Up» «ce .) Usop #37 U5 1s unique. Next the AOG is constructed.
|_—

17

£(8) is then determined for all terminal and SNTS S . Then for each

u, and Tl the productions are searched to see whether conditions (4.3),
| (4.4), or (4.5) hold, and if so, the production number (or just the left

part) together with the reducible phrase 1s recorded. If for some u,
— and Ty two different reductions are found to be possible, then some

sentence may not be parsed unambiguously with the technique given in the

= next section. Note that this does not mean that the grammar is unambig-

- uous ; 1t Just has not satisfied our sufficiency conditions. Triples

u, , Ul and I, are handled similarly.
|

6. The transition matrix and stack.

= We have seen that, with sufficient restrictions on the grammar, at

each step 1n the parsing of a sentence according to the augmented operator

grammar AOG, the partially reduced string has the form

~ * *
(6.1) UU oes UT ee TO

or

¥ ¥

he (6.2) 0 Uy . . . OUT eT

— where YU 1s a non-terminal symbol of the original OG, I, are terminal

symbols, and u, are SNTs of the AOG, or can be thought of as
|

(6.3) a representation for the head xT (ending in a terminal

- symbol T) of the right part of a production U ::= xTy

of the original OG.
—

Furthermore, in the case (6.1) the leftmost reducible phrase, either
-

13

\

-

9 I; or U,T{ 1s uniquely determined by Y, an Ti In the
|——

case (6.2), the leftmost reducible phrase 1s uniquely determined by

{ * * ¥*

L U, , I and Uy and 1s either Uu, uy, UT or UU, I, .

In order to parse a sentence as quickly as possible, we construct

- a transition matrix B == a rectangular matrix B whose elements bys
are numbers of subroutines. Each column j represents a terminal symbol

|

T (or a class of terminal symbols =— for instance, one column could

L represent the class <type> consisting of Beallean, and integer).
*

} For each stack symbol U, we designate two rows of the matrix - a basic

|. row and a secondary row. Their uses are as follows:

| Suppose at a step of the parse, the string has the form (6.1).¥ *

Then the basic row ay = 1 corresponding to U, together with the
-

L column j representing Ty determine an element Bey of the matrix -

the number of a subroutine which, when executed, will effect the unique
\

hw reduction to be made.

If the string has form (6.2), the secondary row corresponding to
- %

U, together with the column representing Ty determine an element of

L the matrix. When the corresponding subroutine 1s executed, Uy will be
: checked and the appropriate unique reductions will be made.
i

— For practical purposes we assume that the secondary row always
*

follows the basic row. That is, 1f the basic row for Uv, 1s row number

vYy » then the secondary row 1s number vy + 1 .

i The pushdown (last-in-first-out) stack ST consists of elements,
each consisting of two parts. If p 1s the pointer to the current top

- stack element, the two parts of the top stack element are labeled ST1,

and ST2, The contents of each stack element are best illustrated by
|

19

“

1 a diagram. If the string has the form (6.1) or (6.2),the stack config-
uration is as illustrated in Figure Ja or Figure Db respectively, where

*

LL again ns 1s the index or row number of the basic row corresponding to
*

U, .

| (STI , ST2) (ST1 , ST2)
LC (Uh 0) f k ttLUp top of stac (7, 1, u,)

* *

-

(UF +1,0) b £ k or: NA , ottom of stac (Uy 1, 0)
{

—

(a) (b)
L Figure 5

L Note that the first part ST1l of a stack element which is not the

top stack element 1s always the index of a secondary row, since when 1t

L later becomes the top stack element, STZ, must contain a nonterminal
symbol U. Later it will be shown how the second part of each element

|

may be used systematically to hold semantic information.

- To 1llustrate how efficient the technique 1s, we give an example of

| a typical implementation on the IBM 7090. Suppose that the stack element
STL, actually contains the instruction

| x x
“ TRA¥ {ADDRESS OF B[,U,, 0l},4 or TRA* (ADDRESS OF B[,U, + 1, 01,4

L that the matrix B 1s stored rowwise in memory, that each matrix element

consists of a single location containing the address of the corresponding

= subroutine, that there exists a vector COLUMN to map a terminal symbol

into the corresponding column number, and that the stack pointer p is
-

20

-

L

in 1ndex register 1. The following sequence then determines the sub-

routine to be executed:

|
-

IXA T1,2 PUT THE INCOMING SYMBOL IN INDEX REGISTER 2.

CLA COLUMN,?2 COLUMN NUMBER FOR Tl IN ACCUMULATOR.
|-—

PAC O,k4 COMPLEMENT OF COLUMN NUMBER IN XRA4,

— TRA ©STl,1 JUMP TO TOP STACK ELEMENT, WHICH IN TURN

WILL JUMP TO THE SUBROUTINE

—

As an example of a matrix and subroutines, consider first the

grammar in Figure 6, which is the same as the grammar in Figure 2

L (Section 3) except for the introduction of the production
<PROGRAM> ::= & <PROG> 9.

-

Both the matrix in Figure 7 and the associated subroutines of Figure 8

h. were produced exactly as they appear from the grammar of Figure 6 by the

algorithm programmed in Extended ALGOL [11] on the B5500 (except for the
“—

numbering of the rows of the matrix).

. The SNTSs of the AOG do not appear in the matrix or subroutines;

we have labeled the basicrows of the matrix with the head of the right |

— part of the production which they represent. Correspondingly, for example,

subroutine 400 of Figure 8 contains the instruction
-

ST1 ~ ROW(<EXPRESSION> OR), which means that STL, is to have as
. its value the index of the basic row corresponding to the SNTS which

: represents <EXPRESSION> OR . This 1s row 13. As can be seen, the AQG
— 1s actually not necessary practically, but 1s a convenient theoretical

tool.

21

CE ———————————S—————

The zero elements of the matrix represent incorrect pairs, while

B the other matrix elements are numbers of the subroutines listed in

_ Figure 8.

The individual statements of the subroutines are separated by a

~ slash "/" , The statement "NEW Tl" means "SCAN", or use the symbol

| Ts as the next incoming symbol Ty . If the statement "NEW T1" is
| not executed, the old I, will be used again on the next cycle. After

L a'subroutine has been executed, the next cycle 1s performed.

[Some of the subroutines test S12. for the presence of a nonterminal
symbol. If STZ, 1s one of the nonterminals listed, a corresponding

| subroutine 1s executed. If not, a syntactic error has occurred= the
original string 1s not a sentence of the grammar.

q Note also that 1f a reduction to some non-terminal U 1s made

- (STZ ~ U), the original production of the operator grammar corresponding
to this reduction 1s also listed for reference.

| The following simplification has been made. Suppose that xT is
the right part of only one productionU ::= xT of the 0G, and that

there 1s no production Uy ::= xTy for some nonempty y . The AOC will

contain among others two productions- v P= xT and U ::= vo.
Obviously this 1s not necessary. In order to save the intermediate step,

the two productions are replaced by the single production U i= x, 1 .

22

PRODUCTIONS

| <PROGRAM> ti= PHI <PROG> PHI

2 <PROG> 1t=z <STATEMENT>
3 $x | F <EXPRESSION>THEN <STATEMENT>
4 <STATEMENT>18=1F <EXPRESSION>THEN <STATEMENT> ELSE <STATEMENT>

5 1= VARIABLE tz <EXPRESSION>

6 <EXPRESSION>t t= <EXPRESSION>OR VARIABLE

7 t= VARIABLE

NONTERMINAL SYMBJLS
i <PROGRAM> 2 <PROG> 3 <STATEMENT> 4 <EXPRESSION>

TERMINAL SYMBOLS

5 PHI 6 I F 7 THEN 8 ELSE

9 VARIABLE 10 ‘= 11 OR.

MATRIX IS 14 x

Figure 6

no
\N

PT E \% : 0
HW F H L A = R

E S R
N E

A

B

E

PHI 0 | 0 0 | 0 0

2 SECONDARY ROW 3 0 0 0 0 0 0

3 IF 0 0 0 0 2 0 0
4 SECONDARY ROW 0 0 4 0 0 0 5
5 | F CEXPRESSION>

THEN lo] 1 0 0 1 0 0
6 SECONDARY ROw 6 0 0 7 0 0 0

7 | F <EXPI[ESSION>

THEN <STATEMENT> {
ELSE 0 0 0 0 1 0 0

8 SECONDARY ROW 8 0 8 0 0 0

9 VARIABLE 10 0 10 10 0 9 10
10 SECoNDARY Row 0 0 0 0 0 0 0
11 VARIABLE R= 0 0 0 0 2 0 0

12 SECONDARY ROW 11 0 0 10 0 0 5

13 <EXPRESSION?>OR 0 0 0 0 12 0 0
14 SECONDARY ROW 0 0 0 0 0

Figure 7

MATHIX SUBROUTINES, THOSE SUBSWHICH ARE ACTUALLY MATRIX ENTRIES HAVE NUMBERS LESS THAN 800 ,

1 ST1PeST1P+1 / PeFé1 / STI1Pe«ROW(TL J) 7 NEW Ti

2 STIPeSTiIP+1 ST2Pe<EXPRESSION> FOR PROCUCTION *EXPRESSION> tt= VARIABLE / NEWT!

3 USE SUBU4O11 FST2P| S<PRCG> <STATEMENT>

4 USE SUBU402| FST2PIS <EXPRESSION>

5 USE SUBU4J0I FST2P| S<EXPRESSION>

6 USE SUB 4031 FST2P | S<STATEMENT>

7 USE SUE 434 IFST2P IS <STATEMENT>

8 USE SUB 4051 FST2P | S<STATEMENT>

9 ST1PeROW(VARIABLE i=) / NEw T1

10 PePe=i / ST2Pe<EXPRESSIOND> FORPRODUCTION <EXPRESSION> ::= VARIABLE

11 US ESUE?406IFST2PIS <EXPRESSION> J

no 12 PeP=1 / ST2P¢<EXPRESSICN> FORPRODUCTION <EXPRESSION> s8= <EXPRESSICN>CR VARIARLE | / NEW Ti
=

400 PeP+y / STIP«ROW(<EXPRESSION>OR) / New Ti

401 PepP=1 / ST2P«<PROGRAM> F O RPRODUCTION<KPROGRAMS tt= PHI <PRCG> PHI / NEW TI

402 STiPeROW(1 F <EXPRESSION>THEN) / NEW Tl

403 PeP=y / ST2P«<PRGG> F O RPRODUCTION <PROG> 18= IF <EXPRESSION>THEN <STATEMENT>

404 STiPeRCW(IF CEXPRESSION>THEN <STATEMENT> ELSE) / NEW Tl

405 PeP={ / ST2Pe<STATEMENT> FORPRODUCTION <STATEMENT> t8= | f <EXPRESSION>THEN <STATEMENT>
ELSE STATEMENT

406 PeP=1 ST2P¢<STATEMENT> FOR PRODUCT IONCSTATEMENT> t= VARIABLE <EXPRESSION>

Figure 8

IE An example of a parse.
|

Let us parse the sentence

¢ IF VARIABLE THEN VARIABLE := VARIABLE §

L of the 0G in Figure 6. We start with the following configuration:

L Cycle P STACK I Rest of string
| 1 1 ([row] 1 [PHI], 0) IF VARIABLE THEN VARIABLE :=

VARIABLE PHI .

L The row labeled PHI in Figure 7 and Ty = "IF" determine subroutine 1
| of Figure 8. Execution of the first statement "STL - STL, + 1" of sub-

routine 1 changes STL, to [row]2. The stack pointer is then increased

| by 1 and the index of the row corresponding to "IF" (since Ty = "IF"),

| which is 3, is put in STL, . "VARIABLE" 1s then scanned, yielding
Cycle P STACK I; Rest of string

L 2 2 ([row]3, 0) VARIABLE THEN VARIABLE :=

| VARIABLE PHI
([rowl2, 0)

L Row 3 and "VARIABLE" now determine subroutine number 2. Here we change
L STL, to [rowlk, put "<EXPRESSION>" in STe, , and indicate that the next

symbol, "THEN", is to be scanned. This yields

Cycle P STACK I, Rest of string

L 3 2 (4, <EXPRESSION>) THEN VARIABLE := VARIABLE PHI |
(2, 0)

LC

22

] Row 4 and "THEN" lead to subroutine number 4. There, STe, is checked
| - for "<EXPRESSION>" . Since it is correct, subroutine 402 is executed

- yielding

| _ Cycle BP STACK I, Rest of string subroutine to execute
4 2 (5, 0) VARIABLE := VARIABLE PHI 1

rn (2, 0)

| LL Continuing in this manner gives the following configurations at the begin-

| ning of each cycle.

| | Cycle B STACK I Rest of string subroutine to execute
| - 5 35 (9, 0) := VARIABLE PHI 9

a. EE ¢- FUoH

- 6 3 (11, 0) VARIABLE PHI 2

g (6, 0)
= EE = SoJ

_ 7 3 (12, <EXPRESSION>) PHI 11

(6, 0)

5 8 2 (6, <STATEMENT>) PHI 6

SR C= Jo)SS

= 9 1 (2, <PROG>) PHI 3 (STOP)

—

| 26

—

] 3. Representation of non-terminals in the stack.

a Strictly speaking, one should insert the nonterminal symbol U

~ itself into STe This 1s however neither practical nor necessary.

| In practice, nonterminals fall into classes whose elements are the

| — same semantically. For instance, in ALGOL the nonterminals <primary> ,

<factor> , <term> , <simple arith expr> are introduced only to help

define the precedence of operations. In a compiler, they would all be

L represented by an address specifying a location which gives the type,

location of the value during execution time (accumulate, register,

~ storage location), etc. The determination of which U is actually

in BTZ, turns out to be almost always a semantic evaluation, which
would have to be done anyway. There 1s therefore very rarely any list

ne searching to determine which U 1s 1n ST2 but just a semantic

evaluation of STZ, - Accordingly, a reduction U ::= x 1s accomplished

= by inserting into STZ, the semantic meaning of the symbol U and not
B U itself. Notice that we assume in the discussion of the method that

| - productions Us P= U. have no "interpretation rule" associated with
5 them, which 1s usually the case.

Note also that the part STZ, of the elements p=1, n-1
— may also be used systematically to store semantic information. If we

| formally parse the ALGOL statement BEGIN A := (B+E)+C*DEND there will

” be in the stack at some time the elements

~ (,<term*> + 1 , identifier)
(, Sexpr +> +1 , 0)

- (Svar =>+ 1, 0)

| .

Co
—

(,<BEGIN> +1, 0)

RN ((<&>+1,0)

We can, though, use the second part of each stack element to contain

semantic information:

(|, <berm*> + 1 , (semantics of D))

- (, expr +> + 1 , (semantics of C))

_ (L<VAR := > + 1 , (semantics of B+E))

(, <BEGIN> + 1 , (semantics of A))

~— (,< ¢ > + 1 , (any necessary information))

9. Other uses of transition matrices.

_ Two other uses will be introduced here, both concerned with optimi-

zing the calculation of addresses of subscripted variables within FOR-

— loops ([6]1,[9},[5]).

Provided that a FOR-loop meets certain conditions, calculation of

- the address of a subscripted variable AE), . ce E | occurring in the
CL statement of the FOR-loop may be optimized if the E, satisfy certain

restrictions, some of which we list here:

—

1. BE. 1s linear in the loop variable of the FOR-loop , 1 =1, ¢ .*, n .

— That 1is, EB. may be put in the form Cy * I + Co , Where Cy and

Cs are expressions not containing the loop variable I .

2 E, contains only simple integer variables, integer constants,

— parentheses (and), and the operators + , - , and *.

2.8

-

3. The variables appearing 1n the BE, do not change within the

FOR-loop statement.

= Restrictions 1 and 2 may be checked systematically using the

(operator) grammar in Figure 9. If AE, ... En] is the subscripted

| variable and <CONST EL>=p [E> cee E » then AlE, cen E] satisfies
- restrictions 1 and 2 and moreover no E. contains the loop variable. If

<LIN EL>sp [E,, En] , then similarly A[E, E | satisfies

= restrictions 1 and 2 but at least one- E, contains the loop variable.

1 From the grammar we generate the optimizable subscript checker =
the transition matrix and subroutines in Figure 10. Note that column 1

C of the matrix contains only zeroes. We may map all terminal symbols

except for the ones listed in restriction 2 into column 1. 1fy when

— parsing a subscripted variable according to the grammar in Figure 9, an |

error occurs, then this subscripted variable 1s handled in the usual way.

Otherwise, 1t may be possible to optimize here and the variables occurring

— in the E, should be stored in some list for further checking.

j As a second example we look at the FOR-loop itself. We want it |

- to have the form

— FOR I ~ E| STEP E, UNTIL E; DOS ;

— where the variables in E, do not change within the statement S , Ey

does not contain the loop variable I , and the Es are integer expres-

— sions. The further restriction is again made, that the E., consist only
: of 1nteger simple variables, integer constants, (,) , + , - , and * .

— Note that BE, and BE may contain the loop variable I , but By may
— not. The variables in E, should be listed for further checking.

29

PRODUCTIONS

| <CONST ELEM> t= (<CONST SUBS>])

2 <LIN ELEM> = { <LIN SUBS> |
3 <CONST SUBS>tt= <CONST EXPR>

4 j= <CONST SUBS>» <CONST EXPR>

5 <LIN SUBS> t= <LIN EXPR>

6 jt= <LINSUBS >» <LIN EXPR>
7 ix <LINSUBS> eo <CCNST EXPR>

8 Ile <CONST SUBS>, <LIN EXPR>

9 <CONST EXP3>:= <CONSTEXPR>»<+O R => <CONSTY TERM>
10 ji= <+ O R => <CONST TERM>
11 iis <CONST TERM>
12 <CONST TERwW>s= <CONSTYT TERM>* <CONST FACT>
13 itz <CONST FACT,>
14 <CONST FACT>it= C <CONST EXPR>)

\N 15 fi= INTEGER
O 16 (RE INTEGER VAR

17 <LIN EXPR> t= <LIN EXPR> «+O R=*=> <LIN TERM>
18 id= <CONSTEXPR><+O R => <LIN TERM>

19 j= CLIN EXPR> «+O R*=> <CONST TERM>

20 REI <+ OR => <{ IN TERM>
21 it= <LIN TERM>

22 <LINTERM>1t= <CONSY TERM>+ <LIN FACT>
23 is <SLIN TERM> <COCNST FACT,
24 It= <LINFACT>

25 <LIN FACT> 11= (<LIN EXPR>)
26 Ii= LOOP VAR

NONTERMINAL SYMBILS

<CONST ELEM> 2 <LIN ELEM> 3 <CONST SUBS> 4 <L| NSUBS>
5 <CONST EXPR> 6 <CONST TERM> 7 <CONST FACT> 8 <LIN EXPR>
9 <LIN TERM> 10 <LINFACT>

TERMINAL SYMBOLS

11 (12 [13 ’ 14 <+ O R=>

15 * 16 (17)] 18 INTEGER
19 INTEGER VAR 20 LOOP VAR

MATRIX IS 18 X{§0

Figure 9

(] ’ < w C) I I L
+ N N 0

T T D

0 E E P

R G G

3 E Vv

- R R A

> R

Vv

A

R

(0 ©O 0 1 0 1 0 2 3 4
SECONDARY ROW 0 5 6 7 8 0 0) 0 0 0

<CONST SUBS>» 0 0 0 i 0 | 0 2 3 4

SECONDARY ROW oO 9 9 7 8 0 0) 0 0 0
<LIN SUBS> 0) 0 0) 1 0 1 0) 2 3 4

Na SECONDARY ROW oO 10 {0 7 8 0) 0) 0 0 0
<CONST EXPR><+ (QR => 0 0 0 0 0 1 0) 2 3 4

SECONDARY ROW 0 IT 11 11 8 0 11 0 0 0

<+ CR => 0) 0) 0 0 0 1 0) 2 bh 4
SECONDARY ROW Oo 12 12 12 8 0 12 0 0 0

<CONST TERM>+ 0) 0 0) 0 0 1 0 2 3 4
SECONDARY ROW O 13 13 13+ 13 0 13 0 0 0

(0 0 0) 1 0 1 0) 2 3 4
SECONDARY ROW 0 0 0) 4 8 0 14 0 0 0

<LIN EXPR> «+ (03 => 0) 0 0) 0] 0 1 0) 2 3 4
SECONDARY ROW 0 15 15 15 8 0 15 0 0 0

<LIN TERM> « 0 0) 0) 0 0 1 0) 2 3 0
SECONDARY ROW 0 16 16 16» 16 0 16. 0 0 0

Figure 10

MATRIX SUBROUTINES, THOSE SUBS WHICH ARE ACTUALLY MATRIX ENTRIES HAVE NUMBERS LESS THAN 000

§ STIPeSTIP+l PePe} / STIPE¢RON(TL) / NEW Ti

2 ST1PeSTiP+y / ST2Pe«<CONST FACT> FOR PROOUCTION <CONSTFACT>tt= INTEGER / NEW TI

3 ST1PeSTiPey / ST2Pe<CpNST FACT, FOR PRODUCTION «CONST FACT> t1= INTEGER VAR / NEW Ti§

4 ST{PeST{Psy / ST2Pe<LIN FACT> FOR PRODUCTONCLINFALT> tt= L OOP VAR / NEW TI

5 EITHER

USE SUB 406 IFST2P IS © CONST SUBS><CONSTEXPR>CCONSTTERM>CCONSTFACT>
USE SUBU&p? IF STOP IT S <LINSUBS> <LINEXPR><LIN TERM > <LINFACT>

6 EITHER |
USE SUB 400 IF ST2P |S «CONST SUBS><CONST EXPR><CONST TERM><CONST FACT >
USE SUB 403 IF ST2P IS ¢LINSUBS> <LINEXPR> <LIN TERM> <LIN FACT>

7 EITHER

USE SUB 401 IF ST2P IS «CONST EXPR><CONST TERM><CONST FACT>

USE SUB 434 IF $ST2P 1S ¢LINEXPR> <LIN TERM> <LIN FACT>
WN

AY 8 EITHER

USE SUBUWJ21F ST2P |S ¢CONST TERM>CCONST FACT>
USE SUB 405 IF ST2P IS «LIN TERM> <LIN FACT>

9 EITHER

USE SUB 408 IF ST2P 1S «CONST EXPR><CONST TERM><CONST FACT>
USE SUB 439 1F ST2PIS «LINEXpPR> <LIN TERM> «LIN FACT>

10 EITHER

USE S Us 4111F8T2P IS «CONST EXPR><CONST TERM><CONSTFACT>
USE SUB 410 IF STOP IS «LINEXPR> <LINTERM><LINFACT>

{1 EITHER

USE SUB 412 | fST2P 1 S «CONST TERM>CCONST FACTS

USE SUB 413 IF ST2P IS «LIN TERM> <LIN FACT>

12 EITHER

USE SUB 414 IF ST2P IS «CONST TERM>SCONST FACT>
USE SUBA4IS IFST2P 1 S «LINTERM> <LIN FACT>

I13 EITHER

USE SUB 416 IF ST2P IS «¢CONSTFACT>
USE SUB 417 IF STOP IS «LIN FACT>

14 EITHER

USE SUBU&18 | F ST2P | S «CONST EXPR><CONST TERM><CONST FACT>
USE SUB 419 1F ST2P IS «LINEXPR> <LIN TERM* <LIN FACT>

15 EITHER |
USE SUB 421 IF ST2P 1S «CONST TERM><CONST FACT,

USE SUB 420 IF ST2P |S «LINTERM> <LIN FACT»

Figure 10 (continued)

16 USE SUB 422 IF ST2P IS «CONST FACT>

400 Pep+l / STIPeROW(<CONST SUBS>») / NEW TI

401 PePey / STIP«ROW(<CONSTEXPR><¢O R =>) / NEW Ti

402 PtP+l / ST1Pe«ROW(<CONST TERM>+) / NEW TI

403 PeP+} / STIP*ROW(<LIN SUBS> e) / NEW T1

404 Pepe} / STIP®ROW(<LIN EXPR> <+¢ DR =>) / NEW T 1

405 PepP+l / STIPeROW(<LINTERM>) / NEW Ti

406 PeP=y / ST2P+<CONST gLEM> FORP RObUCTION CCONSTELEM> ia <CONST SUgS>]) / NEWT |

407 PeP=} / STY2Pe<|IN ELEM? FOR PRODUCTIONSLINELEM> tia (<LIN SUBS» 3 / NEW Ti

408 PeP=} / 8T2P«<CONST SUBS, FOR PRODUCTION <CONST SUBS>38=<CONSTSUBS>» <CONST EXPR>

409 Pepe} / sY2Pe<IN SUBS» * FOR PRODUCTION <|_INSUBS> tt <CONST SUBS», <LIN EXPR>

Wi 410 PeP=1 / ST2pe<LIN SUgS> FOR PRODUCTION <LINSUBS> $32 <LINSUBS> <LIN EXPR>

> 411 PeP=1 / ST2Pe¢cLIN SUgS> FOR PRODUCTION <LINSUBS> 18= <LIN SUBS> » <CONST EXPR>
412 PeP=y / ST2Pe<CONST EXPR> FOR PRODUCTION <CONSTEXPR>gt= <CONSTEXPR><+ O R => <CONST TERM>

413 PeP=1 7 sYT2P«<LIN EXPR> FOR PRODUCTION <LINEXPR> 13= <CONST EXPR><+ O R => <LIN TERM>

414 Pep=i / ST2P¢<CONST EXPR> FOR PRODUCTION <CONSTEXPR> tim<+ OR => <CONST TERM>

415 PeP=l / ST2pe<_IN EXPR> FOR PRODUCTION <{INEXPR> tts <+ OR => <LIN TERM>

416 PeP=} / ST2Pe<CONST TERM> FOR PRODUCTION <CONSTTERM>382 <CONST TERM>* <CONST FACT>

417 PeP=f / ST2Pe<cLIN TERM> FOR PRODUCTION <LINTERM> 11x <CONST TERM>* <LIN FACT>

418 PeP=1 / §T2P¢<CONST FACT> FOR PRODUCTION <CONST FACT> gs(<CONST EXPR>) / NEW TI

419 PeP=y / SY2Pe<LIN FACY> FOR PRODUCTION <L IN FACT> 11s (<LIN EXPR>) / NEW Ti

420 PeP=y / S$Y2Pe<LIN EXPR> FOR PRODUCTION <LIN EXPR> t3= <LIN EXPR>» «+ OR => <LIN TERM>

421 PeP=y / SY2Pe<LIN EXPR> FOR PRODUCTION <LIN EXPR> “g3= <LIN EXPR> <4 OR => <CONST TERM>

422 PePey / §T2PecLIN TERM> FOR PRODUCTION <| IN TERM> ttz <LIN TERM> + <CONST FACT>

Figure 10 (continued)

% civ

: The grammar of Figure 11 1s then constructed. The terminal "INT
CONS, VAR" represents the class of integer constants and simple integer

: variables (except the loop variable of this loop). The corresponding
| transition matrix and subroutines are in Figure 12. fe call this the

loop checker. Since we are not interested in the precedence of the

operators + , - , *¥ , we have simplified the productions for arithmetic

expressions. Note also in Figure 11 that " *¥ " is used as a unary

L operator. Since we assume that the subscripts have been or are being
checked for syntactical errors by another part of the compiler, this

L wlll never happen. Grammars should always be constructed according to
L what they will be used for, and should be as simple as possible.

One can incorporate the loop checker and optimizable subscript

| checker into an existing syntax checker as follows. A]]l three are put
in memory together. The main syntax checker executes as it normally

~ does, performing the usual "cycles" described already.

' =
— 1 aman

loop optimizable
subscript

checker checker checker

When a FOR1s scanned, the syntax checker activates the loop checker.

Thereafter both process in parallel. The syntax checker processes

one symbol and then passes it on to the loop checker, which when finished

returns to the syntax checker to process the next symbol:

3h

PROCUCTIONS

i <FOR LOOP> t1i= FOR LOOP VAR * <EXP2> STEP <EXP1> UNTIL <EXP2>

00

2 <EXPi> 11= <EXP1> C+p =p X> <EXP1 FACT>

3 i1i= Cér=p xD <EXP1 FACTS
4 $= <EXP1 FACT>

5 <CEXPIFACT>1t:= (<EXP1>)
6 $1tz INT CONS» VAR
7 <EXP2> 1t= <EXPL> C+p=ypXD> <EXP2 FACT>
8 yi= <EXP2> C+s= 9p XD <EXP1 FACT>
9 j1i= <EXP2> C+p=,pX> <EXP2 FACT>

10 t13= <4+0=9X> CEXP2 FACTS
11 t3= <EXP2 FACT>

12 <EXP2 FACT>$1i= (<EXP2>)
13 $i= LOOP VAR

NONTERMINALSYMBOLS
i <FOR LOOP> 2 <EXPi> 3 <EXP1 FACT> 4 <EXP2>

5 <EXP2 FACT>

Ni TERMINAL SYMBOLS
6 FOR 7 LOOP VAR 8 ° 9 STEP

10 UNTIL it DO 12 C+rp™ yp x> 13 (
14) 15 INT CONS» VAR

MATRIX IS 18 x 10

Figure 11

F L « S u D < () 1
0 0 T N 0 + N

R 0 E T ’ T

P P I -

L » C

V x 0

A > N

R S

y

Vv

A

R

FUR 0 4 0 0 0 0 0 0 0 0

SECONDARY ROw 0 C 0 0 0 0 0) 0 0 0
FOR LOOP VAR 0 0 S 0 0 0 0 0 0 0

SECOND*RY ROW 0 0 0 0 0 0 0 0 0 0
FOR LOOP VAR

Wi ¢ 0 3 0 0 0 0 1 1 0 2

On SECONDARY RO 0 0 0 & 0 0 7 0 0 0
FOR LOOP VAR

« <EXF2>

STEF 0 0 0 0 0 0 1 1 0 2

SECONDARY ROW 0 0 0 0 8 0 le 0 0 0
FOR LOOP VAR

+ <EXF2>

STEF <EXPI>

UNTIL 0 3 0 0 0 0 i 1 0 2
SECONDARY ROW 0 0 0 0 0 10 7 0 0 0

SECONDARY ROw 0 0 c 11 12 11 13 0 13 0

C+2=p XD 0 3 0 0 0 0 0 i 0 2

SECONDARY ROW 0 0 0 14 15 14 16 0 16 0

(0 3 0 0 0 0 1 1 0 2
SECONDARY KQOW 0 0 0 0 0 0 7 0 17 0

CEXF2> <+s=p XD 0 3 0 0 0 0 0 1 0 2
SECONDARY ROW 0 0 0 18 0 18 18 0 18 0

Figure 12

MATRIX SUBROUTINES, THOSESUBSWHICHK ARE ACTUALLY MATRIXENTRIESHAVE NUMBERS LES STHAN40O

1 STIPeST1P+1 / PeP+1l / STIP«ROW(T) / NEw T1

2 STIPeSTIP+1 / ST2Pe<EXP1l FACT> FO RPROCUCTIONSEXPIFACT>%8= INT CONSsVAR / NEWT!

3 STiPeSTiP+1 / ST2P«<gXP2 FACT> F O RPROCUCTION EXP2 FACT> t= (OOP VaR / NEW Ti

4 ST1P«RONW(FOR LOOP VAR) / NEW T1

5 STiPe«ROW(FOR LOOP VAR ¢) / NEW Tl

6 USE SUBUD2 I FST2P I S <EXP2> <EXP2 FACT>

FITHER

USE SUB4IIF STEP Is <EXPi> <EXP1 FACT>

USE SUBUJIIFST2P Is <EXP2> <EXP2 FACT>

0 USE SUF 4231 FST2P| ss <EXPi> <EXPL FACT>

9 USE SUL 400 1 FST2P Is <EXPi> <EXPIFACT>

10 USE SUB 434 IFST2PIS <EXP2> <EXP2 FACT>

Oo 11 USE SUB 4361 FST2P 1S ¢EXP2FACT>
~~ 12 USE SUB 435 IF ST2PIS <EXPL FACT >

13 EITHER

USE SUB 435 ST2P1 S <EXPIFACT>

US ESUBUDEIF STEP | S<EXP2FACT>

14 USE SUBU4OB IF ST2P IS<EXP2 FACT >

15 USE SUB 407 1 rST2P 1 S <EXPIFACT>

16 EITHER

USE SUBUUp71 FST2P1 S <EXPLIFACT>
USE SUBU4O8 IF ST2P I S <EXP2FACT>

17 EITHER
USE SUBU40G | FST2P | s <EXP1> <gXP1 FACT>

USE SUBU4ioIFST2P1 S <EXP2> <EXP2 FACT»

18 EITHER

USE SUBU111 FST2P | S<EXP{FACT>

USE SUB 4121 FST2P I S<EXP2FaACT>

400 PePet / STIPeROW(<EXFP1D <Hpmyx>) fo NEW Ti

40] PeP+1 / STIPeROW(<EXP2Z2> Cép =p X>) / NEWT}

402 STiP«ROW(FOR LOOP VAR & <EXP2> STEP) / NEWT}

Figure 12 (continued)

403 STiP«ROW(FOR LOOP VAR ¢ <EXP2> STEP <EXP1> UNTIL / NEW TI

404 Pep=y / ST2pe«<FOR LOQP> F O RPRODUCTION <FQOR LOOP t'= FOR LOOP VAR . <EXP2>
STEP <EXP1> UNTIL <EXP2> DO / NEWT

405 PeP=1 / ST2Pe<CEXPID> FO RPRODUCTIONKEXPL> t= <EXPi> CepmypX> <EXP1l FRAZT>

406 Pepe} / ST2Pe<EXP2> F O RPRODUCTION <gxpP2> t= <EXP1> Cts=pXx> <EXP2 FALT>

407 Pepmi / STZPe<EXP1> FO RPRODUCTIONEXP1> {132 Lerma XD <EXPI FACTS

408 PeP=1 / ST2Pe<cEXP2> FORPRODUCTION <EXP2> t= <Cep™rx> <EXP2 FACT>

409 PeP=y / ST2Pe<EXP1 FACT> FOR PRODUCTIOh <EXPL{FACT> 12:= (<EXP1>) / NEW TI

410 PeP=} ST2Pe<EXP2 FaACT> FORPRODUCTIONEXP2 FACT* 13= <EXP2> / NEW Ti

= 411 Pepel / ST2pe<cEXpPE> FOR PRODUCTIOh <EXP2> 1iz <EXP2> ChrmpXD> <EXPLFACT>
412 PeP=} / ST2Pe<EXP2> F O RPRODUCTIONCEXP2> $= <EXP2> Chr= XD CEXF2 FACTS

Figure 12 (continued)

:

cyc le

syntax optimizable

. E checker variaple
- The loop checker disconnects itself as soon as it determines that the

. loop 1s not of the right form, or when it 1s finished. Similarly, the
| optimizable subscript checker is connected when the [of the subscript

“ variable AE, . Co. E]is first scanned, The optimizable variable
checker disconnects itself when finished or when 1t 1s determined that

. this subscripted variable does not satisfy one of the restrictions.

. cycle | — | |

| checker Subscript

-

The loop checker and optimizable subscript checker are not concerned

~~ with errors and error recovery, If any error occurs, they simply discon-

3 nect themselves, or will be disconnected by the syntax checker itself.

— 10. Summary.

The ideas in this paper have been used intuitively in the ALCOR-

b- ILLINOIS 7090 Compiler([5], [1]). The second pass actually contains

the three matrices illustrated 1n Section 9. The matrix technique has
L_-—

its most important use, 1n my opinion, in a student system, where a

— very fast compiler resides in core and must also produce excellent error

messages. Because the syntax checker matrix for ALGOL 1s so large (on

59

i

-

; the 7090 (100 X 45) and because over sixty percent of the array elements

represent 1llegal symbol pairs, a much wider variety of error messages

1s efficiently possible. An algorithm is being developed for producing,
—

from the grammar, an error recovery subroutine for each "error" element

- of the matrix. Another advantage of the matrix technique is the simpli-

‘ city of the overall design.

= The only disadvantage 1s the space used. A partial solution to

this problem might be to parse those constructions of the grammar which
—

| are most used (for instance, expressions) using the matrix technique and

L to use some other slower but less space-consuming technique for the rest

! of the grammar. Note also that the size of the matrix may be cut in

= half by allowing only one row for each stack nonterminal symbol. Each

subroutine must then check whether a nonterminal exists in gT2 or not
— P

| (STe, nonzero or not).

A

!

—

_

.

J —

Lo

REFERENCES

[1] Bayer, R., Murphree Jr., E., Gries, D. User's Manual for the ALCOR-
ILLINOIS T7090 ALGor-60 Translator, 2nd ed., U. of Illinois,

! Sept. 1964.
I

[2] Eickel, J., Paul, M., Bauer, F. L. and Samelson, K. "A Syntax Con-
trolled Generator of Formal Language Processors,' Comm. ACM 6

—~— (Aug. 1963), 451 - 455.

[3] Feldman, J. A., 'A Formal Semantics for Computer Languages and its

_ Application in a Compiler-compiler," Comm. ACM 9 (Jan. 1966),3-9.

[4] Floyd, R. W., "Syntactic Analysis and Operator Precedence," J. ACM 10
| (July 1963) 316 - 333.

\

[5] Gries, D., Paul, M. and Wiehle, H. R., 'Some Techniques Used in the

| ALCOR-ILLINOIS 7090," Comm. acum 8 (Aug. 1965), 496 - 500.
[6] Hill, V., Langmaack, H., Schwarz, H. R., and Seegmuller, G. "Efficient

handling of subscripted variables in ALGOL 60 compilers,' Proc. 1962

L Rome Symposium on Symbolic Languages in Data Processing, Gordon and
Breach, New York, 1962,311- 340. |

[7] Nauer, P. (Ed.), "Report on the Algorithmic Language ALGOL 60," Num.
— Math. 2 (1960), 106- 136; Comm. ACM 3 (May 1960), 299- 31k.

[8] 'Revised Report on the Algorithmic Language ALGOL 60," |
. Comm. ACM 6 (Jan. 1963), 1 - 17. |

[9] Samelson, K. and Bauer, F. L., "Sequential Formula Translation,"

\ Comm. ACM 3 (Feb. 1960), 76-83.
[10] Wirth, N. and Weber, H., "EULER: A Generalization of ALGOL, and its

} Formal Definition: Part I," Comm. ACM 9 (Jan. 1966),13-25.
“

[11] Burroughs B5500 Information Processing Systems Extended ALGOL Language
- Manual.

-

-

\

L

L

~—

-

Lh

See

Appendix A.

= Below is the grammar of an ALGOL-like language defined by Floyd ([4])

L in his article on operator precedence. Note that in the subroutines the
phrase "ambiguity in sub" appears 6 times. This means that in this

+“ subroutine the reduction to make 1s not uniquely determined from U, 5

Uy and T,, and not that the grammar 1s ambiguous. The difficulties
~

can be circumvented by either changing the grammar or using semantic

L information to determine which reduction to be made.
The matrix and subroutines were constructed using the grammar as

L input.

1

“

{
L

}

“

i.

L

_
42

L

PRODUCTIONS

10 fis LETTER

2 <ID LIST> i= | D
3 1i= <ID LIST> | D

4 <LITCON> I= DIGITSTR

5 fie DIGITSTR .

6 tic * DIGITSTR
7 RE DIGITSYR » DIGITSTR

8 <SUB VAR> 1i= 1D f <AEXP LIST> 3

9 <VARIABLE> t= 1D

10 I= <SUB VAR>

11 <FUNC DES> 18: ID (<EXP LIST>

12 <PRIMARY> its <FUNC DES»

14 tis <VARIABLE>
15 1i= <LITCON>

idx 0 <ARITH EXP>)

16 <FACTOR> tix <PRIMARY>

17 I1t= <PRIMARY>oe * <FACTOR>
18 12 @ <FACTOR>

19 pix <+ O R ®> <FACTOR>

20 <TERM> itx <FACTOR>

71 tix <TERM> «<*O R/> <FACTOR>

2e <SIMP AEXP> ti= <TERM>
23 tis <SIMP AEXP> €4 O R => <TERM>

24 <ARITH EXP> t1= <S IMP AEXP>

25 iIt= IF <B0O0OL EXP> THEN CARITHEXP> ELSE <ARITH EXP>
26 <AEXP LIST> I : = CARITH EXP>

> 27 tix <AEXP LIST» | <ARITH EXP>
28 <RELATION> t= <ARITH EXP> <REL OP> <ARITRHR EXP>

29 t= <RELATION> <REL 0OP> <ARITH EXP>
30 <BOOL PRIM> 313= <TO RF>

31 $8z <VARIABLE>

32 tiz <FUNC DES>

34 yz <RELATION>

35 jin (<gO0OL EXP>)

<BOOL SEC> j= <BOOL PRIM>

36 15= NOY <p00L PRIM>
37 <CONJ> Its <BO0OL SEC»

38 iIt= <CONJ> AND <B00L SEC>
39 <DISJ> ji= <CONJ>

a0 13s <DISJ> OR <COCNJ>
41 <IMPL> $i= <pISS>

42 Its CIMPL> IMPLIES <D1Su>
43 <BOOL EXP> i= <IMPL>
44 ite <BOOL EXP> EQUIV <INPL>

45 <EXPR> I1It= <ARITH EXP>
46 1s <BOOL EXP>
47 <EXP LIST> 111e <EXPR>

48 RE <EXP LIST> <EXPR>

49 <LIM PAIR> 11= <ARITH EXP> 3 <ARITH EXP>

S50 <LIM P LIST>s1s= <LIM PAIR>
51 tix <LIM P LIST>, <LIM PAIR>

52 <NAME PART> 13x Ws) (<ID LIST>)
53 <SPECIFIER> = <TYPE> <iD LIST>

54 18= <TYPE> VALUE <ID LIST>

55 1i= <TYPE> ARRAY <ID LIST>
56 1ie ARRAY <I DLIST>

57 <SPEC LIST> 1:= <SPECIFIER>

58 XE <SPEC LIST> 3 <SPECIFIER’
59 <DECL> 11= <TYPE> <I DLIST>

60 Its CONSTa NT ID t= <EXPR>

61 t:a <TYPE> ARRAY <ID LIST> <LIM P LIST»)
62 13x ARRAY <I DLIST> t <LIM P LIST>]
6 3 tic SWITCH <NAME PART*

6 4 iis PROCEDURE <NAME PART> 3 <SPEC LIST> 3 <STLIST> END

65 $i= FUNCT IDN <NAME PART> | <STATEMENT,
66 <DEC LIST> = <DECL>

67 I= <DEC L1I1ST> 3 <DECL>
68 <FOR LEL>#:= <ARITH EXP>

69 tis CARITHEXP> STEP CARITHEXP> UNTIL <ARITH EXP>

70 iin <ARITH EXP> WHILE <BCOL EXp>

71 <FORLIST>11= <FOR L EL>

72 13s <FOR LIST>» <FOR L EL?

73 <GO STATE>: i « GO TO ID
7 4 id= GO TO ID { <ARITH EXP> 1}

75 <ASS STATE> 111i= <VARIABLE> t= <EXPR>

76 i= <VARIABLE> t= <ASS STATE,

144 <PROC CALL ,$8=1 D (<EXP LIST>)
78 <COMP ST> iis BEGIN <STLIST> END
79 fix BEGIN <DEC LIST> 3; <ST LIST™ END

80 <CL STATE> 11:= <GO STATE>
= 81 t= <ASS STATE>

+ 8 2 tix <PROC CALL>
8 3 ils ID |

84 il= ID 3 <CL STATE*

85 ite COMMENT

86 It= <COMP ST>

87 iIt= FOR | D i= <FOR LISYT> DO <CL STATE>
88 fin IF <BOOL EXP> THEN <CLSTATE> ELSE <CL STATE*

89 <0OP STATE> $} t= ID : <OP STATE>
90 Ii= FOR 1D t= <FORLIST>DO <QP STATE>
91 tte IF <BOOL EXP> THEN <CL STATE>E L S E <P STATE>

92 fix IF <g00L EXP> THEN <STATEMENT>
93 <STATEMENT> 3s <CLSTATE>

94 $= <OP STATE»

95 <STLIST> tie <STATEMENT>
96 ite <ST LIST> 3 <STATEMENT>

97 <PROGRAM> it= PHI <ST ATEMENT> PHI

NONTERMINAL SYMBOLS
1 ID 2 <I DLIST> 3 <LITCON> 4 <SUB VAR>
5 <VARIABLE> 6 <FUNC DES» 7 <PRIMARY > 8 <FACTOR>

9 <TERM> 10 CSIMP AEXP> 11 <ARITH EXP> 12 CAEXP LIST»
17 <RELATION> 14 <BOOL PRIM> 15 <BOOL SEC> 16 <CONJ>
21 EXP ¢pISUOLISTY nis <IMPL> 19 <BOOL eXp> 20 <EXPR>

< LIM PAIR" 23 <LIM Pp LIST> 24 <NAME PART>
2s <SPECIFIER> 26 <SPEC LIST> 27 <DECL> 28 <DEC LIST>

29 <FOR L EL> 30 <FOR LIST> 31 <GO STATE> 32 <ASSSTATE>
33 <PROC CALL> 34 <COMP ST> 35 <CLSTATE> 36 <OP STATE>

37 <STATEMENT> 38 «<STLIST> 39 <PROGRAM>

TERMINAL SYMBOLS

40 LETTER 41 » 42 DIGITSTR 43 .

4 4 [45] 46 (47)

48 *% 49 @ 50 <+O R => 51 <*O R/>

52 | F 53 T HEN 54 ELSE 55 <REL OP»
56 <T O RF> 57 NOT 58 ANC 59 OR

60 IMPLIES 61 EQUIV 62 $ 63 <TYPE>
6 4 VALUE 65 ARRAY 66 3 67 CONSTANT

68 ix 69 SWITCH 70 PROCEDURE 71 END

31 FUNCTION 73 STEP 74 UNTIL 75 WHILE
GO TO 77 BEGIN 78 COMMENT 79 FOR

80 00 81 PHI

MATRIX IS116X%X42

=
\N

col (DD €D, as @&
L : D . L 1 ¢ 3 + @ «<< « 1 T E < << N A 0 I £ i
E [* + * F H L R T 0 N R M 0
T G E s E T D P u

T I 0 0 N L 0 L 1

E 7 R R R I Vv
R S 0 E

T - / P F S

R > > > >

<ID 'LidT ’ 2 0

SECONDARY ROW 0 5 0 0 5 0 0 5 0 4) 0 0 0 0 0 0 0 0 0 0 0 0 0
DIGITSTR 0 6 0 7 0 6 0 6 6 0 6) 0 6 6 6 0 0 6 6 6 6 6

SECONDARY ROW 0

0 0 8 0
SECoNDARY Row 0

DIGLT,ST2 . 0 9 10 0 0 9 0 9 9 0 9 9 0 9 9 9 0 0 9 9 Q 9 9

SECONDARY ROW 0 0 { 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
ID t > oo © I 0 © ¢ oO O00 © 1 Oo 1 Oo 0 O00 © 3 0 0 0 oo ©

SECONDARY Row 0 11 t I 12 13 14 0 15 bb 17 & oOo © 0 0 i 0 0 0 © oo
10 (2 0 0 0 0 0 I 0 0 I 1 0 0 0 0 0 3 0 0 0 0 0 0

SECONDARY ROW 0 18 12 0 14 19 15 0 16 17 o 0 20 0 21 22 23 24 0
2 0 + 1 1 0 0 1 0 0 1 1 0 1 0 0 0 3 1 0 0 0 0 0

SECONDARY ROW 2 0 0 0 12 0 14 25 15 1 16 17 0 0 0 20 0 0 21 22 23 24 0
<PRIMARY?> Ww 0 2600101 120 20 141260 150 0261260 00260 x0 260 © 0 8 60 260 0 0

MN SECONDARY ROW 0 26 26
e 1 i 0 0 0 0 0 0 0 0 0 0 0 0

SECONOARY ROW 0 20 Io 01 © 20 14 27 15 0 27 27 0 27 27 27 6 O00 927 27 27 27 27
<+C R=> 2 0 1 1 0 0 1 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 28 0 0 12 28 14 28 15 0 28 28 0 28 28 28 0 Q 28 28 28 28 28
<TERM> <t OR /> 2 0 1 1 0 0 0 0 1 i 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 3 29 0 ¢ 12 29 1: 29 15 0 29 29 0 © 29 29 0 0 29 29 29 29 29
<SIMP AEXP> <¢ DR »> 0 30 00 1 0 0 1 0 0 1 1 0 0030 30 300 0 00300 30 0 0 0

SECONDARY ROW 0 12 30 114 30 15 0 30 17 30 30

| F 2 0 1 1 0 0 1 0 0 i i 0 1 0 0 0 3 1 0 0 0 0 0
SECONDARY ROW 0 Oo 0 © 12 0 14 0 15 0 16 17 0 31 0 20 0 O 21 22 23 2 0

| F <BOO, EXP>
THEA 2 0 1 1 0 0 1 0 0 1 1 0 | 0 0 0 0 0 0 0 0 0 0

SECo NDA RY ROW 0 0 0 0 12 0 14 0 15 0 16 17 0 0 32 0 0 0 4 0 0 0 33
| F <BO0, EXP>
THEN <ARITH EXP>

ELSE 2 0 1 1 0 0 10 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY Row 0 ~06 i0 12 36 14 36 15 0 11131 0 03 6 36 36 0 O 36 36 36 36 36
CAEXP LIST> » 2 37 0 1 0 0 1 0 0 0 16 17 1 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 12 37 14 0 15 0 0 0 0 0 0 0 0 0 0 0

cARITH EXP> «¢REL OP> 2 0 | 1 0 0 10 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY ROw 0 38 0 0 12 0 14 38 15 0 16 17 0 38 38 38 0 0 38 38 38 238 0

<RELATION> «REL 0OP> 2 0 1 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0
SECONDARY Row 0 39 0 0 12 0141 39 0 15 0 016 17 0 139 139 139 0 0 20 39 39 39 0

NDT 2 . 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 3 0 0 0 0 0 0

S EcO NbARY ROW 0 40 o © 12 0 14 40 15 0 16 17 0 40 40 20 0 0 40 40 40 40 0

<CONJ> AND 2 0 1 1 0 0 1 0 0 0 1 0 0 0 3 1 0 0 0 0 0
SECONDARY Row 0 44 0 0 12 0 14 ay 15 0 1161 17 0 41 41 20 © 0 41 a1 41 41 0

oD © ® ED,
<DISJ> OR 2 o 1 1 o 0 1 0 0 i 1 0 1 oo oo 0 3 1 0 0 0 og o

SECONDARY RON 0 42 0 0 12 0 14 42 15 0 16 17 0 42 42 20 0 0 21 42 42 yp 0

<IMPL> IMPLIES y) 0 | | 0 0 i 0 0 1 1 0 1 0 0 0 3 1 0 0 0 0 0
SECONDARY Row 0 0 0 0 12 0 14 43 15 0 Ib 17 0 43 43 20 0 0 21 22 43 43 0

<BOOL EXP> EQUIV AY |] 0 0 1 0 0 1 1 0 1 0 0 0 3 1 0 0 0 0 0

SECONDARY ROW 5 0 1 0 12 0 14 44 15 0 16 17 0 44 44 20 0 0 21 22 23 as 0
CEXP LIST> oO 45 ©o0 | =o oo 1 0 0 4g ¢ 0 l/l oo 0 0 3 t+ 0 0 OO 0 ©

SECONDARY ROW 12 0 14 45 15 0 16 17 0 0 0 20 0 0 21 22 23 24 0
CARITH EXP> 3 y) 0 I | 0 0 0 0

SECONDARY ROW 0 46 { 0 12 46 12 0 0 150 0t 1b170 0100 00 i 0 0000 I i 0 0
<LIM P LIST>, 2 0 0 | 0 0 | 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 47 0 12 47 ta 0 15 0 1b 17 0 0 0 0 0 0 0 0 0 O 48

<TYPE> 2 0

SECONDARY ROW 0 351 0

<TYPE> VALUE 2 0

S EconDARY ROW 0 51 0 0 0 0 0 0 0 0 0

<TYPE' ARRAY 2 0

SECONDARY ROW 0 51 O 0 s4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARRAY 2 0

SECONDARY ROW 0 51 © 0 56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
<SPEC LIST> 0

SECONDARY ROw 0

CONSTANT 2 0

SECONDARY ROW 0

CONSTANT I)

i= 2 01 1 0 0 1 0 0 1 1 0 1 0 0 0 3 1 0 0 0 0 0

SECONDARY ROW 0 0 0 0 12 oO 14 0 15 0O Ib 17 0 0 0 20 0 Oo 21 22 23 24 0

| H <TYFE> ARRAY
<ID LIST> 2 0 I | 0 0 10 0 110 10 0 0 y 0 0 0 0 0 0

SECONDARY ROw 0 61 0 0 12 62 14 0 15 0 1b 17 0 0 0 0 00 0 0 0 0 0 48
ARRAY <ID _1ST>
[2 0 1 1 0 0 1 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY Row 0 61 0 0 12 63 14 0 15 O 1b 17 0 0 0 0 0 0 0 0 0 0 48

SWITCH 2 0 0 0 0 oO 0 0 0 0 4) 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PROCEDURE 2 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 140 o 00 0 00O0O 0000 00 00 00 00 i 00 i 0 0

PROCEDURE <NAME PART>

0 0

SECONDARY ROW 0

PROCEDURE <NAME PART>

} <SPELLIST>

2 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

SECoNDARYROW 0 0 0 0 12 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33
FUNCTION 2 0 0 0 0 0 0 0 0 0 0 0-0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 0 0 1a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 6 9
FUNCTION <NAME PART>

0 0 0 0 0 0 0 p] 0 0 0 0 0
SECONDARY ROW 0 0 0 0 112 0 14 0 0) 00 0 0 0 0 0 00 0 00 0 00 00 0 33

<DECLIST*} 0 00 0

SECONDARY ROW 2 00 i of 00 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
CARITHEXP> STEP 0 | 0 0 I 1 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 12 0 14 0 15 o 16 17 0 0 0 0 0 0 0 0 0 0 0
<ARJTHREXP> STEP

CARITHEXP> UNTIL 2 0 1 1 0 0 10 0 110 10 0 0 0 0 0 0 0 0 0

OO SD a &),
SECONDARY Row 0 73 9 © 12 0 14 © 15 01617 0 0 OO ©O0O O oO 0 O0O 0 0 0

<ARITHEXP> WHILE 2 0 I 1 0 0 | 0 0 1 I 0 1 0 0 0 3 | 0 0 0 0 0
SECONDARY ROW 2 74 0 0 12 0 14 0 15 oO nn 17 0 0 0 20 0 0 21 22 23 24 0

<FOR LIST> 0 70 | 1 0 0 i 0 0 1 1 0 1 0 0 0 0 0 0 0 0 0 0
SECONOARY'ROW 0 8 ‘6 6 16 6 10 5 lo 19 0 0 0 0 0 0 0 4) 0 0 0

GO TO 2 0 0 0 78 0 0 0 0 0 0 0 0000 79 00 0 00 00 0 00 0 0
SECoNDARY ROW 0 0 0 0

GO 10 10

(2 0 1 0 0 I 0 0 I 0 I 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 12 80 14 0 15 0 16 17 0 0 0 0 0 0 0 0 0 0 0

<VARIABLE> = 2 o) I -0 0 -1 0 -0 1 1 0 { 0 0 0 3 I 0 0 0 0 0
SECoNDARY RoW 0 0 0 0 12 0 14 0 15 0 16 17 0 0 81 20 0 a 21 22 23 24 0

BEGIN 2 0 0 0 0 0 0 0 0 0 0 0 I 0 0 0 0 0 0 0 0 0

SECONDARY RON 0 0 0 0 12 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33
BEGIN <DEC LIST» 0

2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 2 0 14 0 8 & 8 © © O 0 0 0 ©O0 oo 0 © 0 33
10 : 2 0 0 0 0 0 0 0 0 0 0 0 0 0 85 0 0 0 0 0 0 0 0

SECONDARY RON 0 0 0 0 12 0 14 0 0 86 0 0 J 0 0 0 0 33
FOR 2 0

SECONDARY Row 0
FOR 10

t= 2 0 I 1 0 0 0 0 I I 0 | 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 89 0 0 12 0 1: 0 15 0 1b 17 0 0 0 0 0 0 0 0 0 0 0
FOR 10

t= <FOR L1ST>

~~ 00 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0
| Qo SECOND ARY Row oOo 0 9 OO 412 014.0 0 O0O 0 0 OO 0 9¢ 0 O0O OO 0 0 0 0 33

IF <BOO, EXP>
THEN <CL STATE>

ELSE 2 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 12 0 14 0 0 0 0 0 0 0 93 0 0 0 0 0 0 0 33
<ST LIST> 2 0 0 0 0 0 0 0 0 0 0 0 10 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 12 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33
PHI 2 0 0 0 0 O©0 OO © 0 0 0 0 10 0 0 0 0 0 0 0 0 0

SECONDARY Row 0 0 0 0 12 0 14 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 33

.

@ GO GD a2
< 14 A 3 (of | S Pp E F S U W G 8 C F D P
T A R 0 = Ww R N U T N H 0 € 0 0 0 H
Y R N 0 0 N E T I G M R [

P u A S T c c Pp I L 7 I M
E E Y Y C E T L E 0 N E
> A H 0 [N

N u 0 T
T R N

E

<ID LIST* 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONOARY'ROW 0 0 0 5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
DIGITSTR 0 0 0 6 0 0 0 0 6 0 b 6 6 0 0 0 0 6 6

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECoNDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
OIGLHTR . 0 0 0 9 0 0 0 0 9 0 9 9 9 0 0 0 0 ? 9

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
10 { 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 C 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0} 0 0 c 0
(0 0: 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY Row 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<PRIMARY> ** 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+ SECOND ARY ROW 0 68 00 26 0 0 0 0 26 0 26 26 26 0 0 0 0 26 26
\O) vo ©6 ©o0 oo O00 oo © © oo oo 0 0 0 © 0 O0 0 0 0

SECONDARY ROW 0 0 27 0 0 0 0 0 27 27 27 0 0 0 0 27 27

<+ C R => 0 0 0 0 0 0 0 0 28 0 0 0 0 0 4) 0 0 0 0
SECONDARY ROW 0 0 28 0 0 28 28 28 0 28 28

0

<TEBHGONDARY ROWR /> 0 0 © 29 0 0 0 0 29 0 20 290 29 0 0 0 0 290 29

0 0 0 0 0 0 0 0

<S [|RECORORARYCROBR => 0 0 00 30 0 0 0 0 30 0 30 30 30 0 0 0 0 30 230

IF 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

| F <BOOL EXP> 0 0 0 0 0 0 © 1 1 4 1 0
THEN 0 0 0 0 0 0 0 0 34 0 0 0 0 0 0 0 0 0 0

SECONDARY ROw 0 34 0 35 0 0 34

IF «BOO, EXP>
THEN <ARITH EXP>

ELSE 0 0 0 0 0 0

SECONDARY ROW 0 y 0 36 0 0 0 0 36 0 36 36 36 0 0 0 0 36 36

<AEXP LIST> , 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<ARITH EXP> <REL gP> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 38 0 0 0 0 38 0 0 0 0 0 0 0 0 38 38

<RELATION* <REL 0OP> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 6 09 0 0 0 0 39 0 0 0 0 0 0 0 0 39 39
NOT 0 - 0 0 400 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY Row 0 0 0 0 0 0 40 0 0 0 0 0 0 0 0 40 40

<CONJ> ANO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY Row 0 0 0 4% 0 0 0 0 a1 0 0 0 0 0 0 0 0 41 4)

Le

<DISy> OR 0 0 00 0CO0O0O0 0
SECONDARY ROW 0 0 042 00 6 0 OO 0 00D 42 0000 0 0 O00 0 O 0 0 0 420482

<IMPL> IMPLIES 0 0 0 0 0 Oo 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 oj 0.43 0 0 0 043 0 0 0 0 0 0 0 0 43 43

<BOOL EXP> EQUIV 0 0 00440 00 00 00 O0O0U GL 0 0 000000000 ®o0 0 aasosao
SECONDARY ROW 00 0

SEXP LIST > | 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<ARITH EXP> 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<LIM Pp LIST>, 0 0 0 0 0 0 0 0 0 0 0 0 0 0 ty 0 0 0
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<TYPE> 0 49 50 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 5 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<TYPE> VALUE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SEC ONDARY Row 0 0 0 5 3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

<TYPE> ARRAY 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 5 5 0 0 0 0 0 0 0 0 0 0 0 0” 0 0
ARRAY 0 0 0 0 C0 0 0 0 0 0

SECONDARY ROW 0 0 0 57 0 o 0 0 o o oo o o o 0 0 8 0 0 O00 OO 0 0

<SPEC LIST> ; 1 0 1 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 5 8 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CONSTANT 0 0 0 0 0 0 O o oo © 00 00 00 00 00 o 0 0 0
SECONDARY ROW 0 0 0 0 0 5 9 0 0 0 0 0 0 0 0 0 0 0 0 0

CONSTANTI O

i= 0 0 0 0 0 0) 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 60 0 0 0 0 0 0 0 0 0 0 0 0 0 v; 0

bk <TYPE> ARRAY
<ID LIST> [0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0°0 0 0

SECONDARY Row 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

ARRAY <ID _1S7>
t 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECoNDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SWITCH 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 go 0 0 0 0 if 0 0 0 if if 0 if 0 0 0 0
PROCEDURE 0 0 00 65 0 0 0 0 0 0 0 0 0 0 0 0 b) b

SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

PROCEDURE <NAME PART*

3 1 0 0 0 0 0

SECONDARY ROW 0 0 oh 660 0 0 0 0 0 il il 0 0 il il 0 0 il il
PROCEDURE <NAME PART> 0

<SPEC LIST>
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 1 0 0

SECONDARY ROW 0 0 0 67 0 35 0 0 68 0 0 0 0 0 0 0 0 0 0

FUNCTION 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONOARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FUNCTION <NAME PART>

3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 1 0 0
SECONDARY ROW 0 0 0 70 0 3 5 0 0 0 0 0 0 0 0 0 0 0 0 0

<DEC V5% 1 0 1 0 1 0 1 i 0 1 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 00 o 70 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

CARJTHEXP> STEP 0 - 00 0 0 0 0 0 0 0 000 7 x 0 0000 o 000 ol
SECONDARY ROW 0

CARITHEXP> STEP
CARITHEXP> UNTIL 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

an) GD Go G2
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 ¢ 0 0 0 73 0

<ARITHEXP>» WHILE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY RQNW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 74 0

<FOR LIST> 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 76 0 77 0 0 0 0 75 0

GO TO 0 0 0 0 0 0 0 0 0 0 9) 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 79 0 0 0 0 79 0 0 0 0 0 0 0° © 0 79

GO TO ID

[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

) <VARIABLE> = 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

SECONDARY ROW 0 0 0 81 0 35 0 0 81% 0 0 0 0 0 0 0 0 0 81
BEGIN 1 0 1 0 1 0 1 1 0 1 0 0 0 | l 4 1 0 0

SECONDARY ROW 0 0 0 82 0 35 0 0 83 0 0 0 0 0 0 0 0 0 0

BEGIN <DEC LJIST>
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 I 4 1 0 0

SECONDARY ROW 0 0 0 67 0 35 0 0 84 0 0 0 0 0 0 0 0 0 0

1D $ 0 0 0 85 0 0 0 0 85 0 0 0 0 1 1 4 i 0 85S
SECONDARY ROW 0 0 0 87 0 35 0 0 87 0 0 0 0 0 0 0 0 0 187

FOR 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
SECONDARY ROW 0 0 0 0 0 88 0 0 0 0 0 0 0 0 0 0 0 0 0

FOR 1D

UT i= 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

H SECONDARY ROW 0 0 0 0 0 0 0 0 0 0 76 o 77 0 0 0 0 90 0
FOR 1D

i= <FAOR LIST>

2] 0 0 0 0 0 0 0 0 0 0 0 0 0 { | 4 1 0 0

SECONDARY ROW 0 0 0 92 0 35 0 0 92 0 0 0 0 0 0 0 0 0 92

142 <B0OO0, EXP>
THEN <CL STATE>

ELSE 0 0 0 0 0 0 0 0 0 0 0 0 0 I I 4 | 0 0
SECONDARY ROW 0 0 0 94 0 35 0 0 O04 0 0 0 0 0 0 0 0 0 94

<ST LIST> 3 0 0 0 0 0 0 0 0 0 0 0 0 0 | i 4 1 0 0
SECONDARY ROW 0 0 0 95 0 35 0 0 05 0 0 0 0 0 0 0 0 0 0

PHI 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 4 | 0 0
SECONDARY ROW 0 0 0 0 0 35 0 0 0 0 0 0 0 0 0 0 0 0 66

MATRIX SUBROUTINES, THOSE SUBS WHICH ARE ACTUALLY MATRIX ENTRIES HAVE NUMBERS LESS THAN 400

1 STiPeSTiP+1 / PePe+l / STIP¢ROW(TY) / NEW Ti

2 STiPeST1IP+y / ST2PelD FO R PRODUCTION10 t= LETTER / NEWT!

3 STiIPeST{P+1 / ST2P«<BOOL PRIM> FOR PROCUCTION <BOOL PRIM>t:s <«<T OR F»> / NEW TI

4 STIPeSTIP+1 / ST2Pe<{| STATE> F O RPROCUCTIONSKCL STATE >$t= COMMENT / NEWT1

3) USE SUB 424 IFST2PIS ID

6 PeP=1 SY2Pe<LITCON> FOR PRODUCTIoN&LITCON> siz DIGITSTR

ST{P«ROW(DIGITSTR / NEW TI

8 PeP=y SY2Pe<LITCON> FOR PRODUCTION <LITCON> 11= DIGITSTR / NEWT

9 PePey SY2P«<LITCON> FORPRODUCTION<LITCON> $13= OIGITSTR .

10 PepP=l SY2P+<LITCON> FOR PRODUCTION <LITCON> 332 OIGITSTR . OIGITSTR / NEW TI

11 USE SUBUGJY6I| FST2P| S <AEXP LIST> <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES>

or <VARIABLE>| O <SUB VAR> <LITCON>
Fo 12 USE SUBUDIIFST2PI SD

13 USE SUB 425 IFST2P | S<AEXP LIST ><ARITHEXP>» c¢c SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES>
<VARIABLE>| O <SUB YAR» <LITCON>

14 USE SUBU4J2IFST2P|S ID

15 USE SUB 433 IFST2P|S «<PRIMARY> <FUNC DES> <VARIABLE> 10 <SUB VAR> <LITCON>

| b USE SUB 435 IFST2P | S <SIMP AEXP> < TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE> ID
«SUB VAR> cLITCON>

17 USE SUB 4D4 IFST2P IS <TERM> <FACTOR> <PRIMARY > <FUNC DES> <VARIABLE>| D <SUB VAR>
<LITCON>

18 EITHER

USE SUB 4J0 IF ST2P IS <IOLIST> |O
USE SUBU&{3 1 FST2P | S<EXPLIST> <EXPR> CARITHEXP> <SIMP AE XP > <TERM> <F ACTOR> <PRIMARY>

<FUNC DES> <VARIABLE> 10 <SUB VAR> <LITCON> <RO0OL EXP> <IMPLD>

<DISy> <CONJ> <BOOL SEC> <BOOLPRIM <RELATION>

AMBIGUITY IN SUB 18

19 EITHER

USE SUBU27I FST2P| S<IDLIST> Ke)

USE SUB&26|FST2P| S<EXPLIST> <EXPR> <ARITH EXP> <SIMP AEXP> <TERM> <FACTQOR> <PRIMARY>
<FUNC DES> <VARIABLE>1 © <Sug VAR> <LITCON> <a00L EXP> <IMPL>
<DISU> <CONJ> <BpOL SEC> <BOOL PRIM> *RELATION>

USE SUB 428 |FST2P| S<cEXPLIST> <EXPR> CARITH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY>

<FUNC DES> <VARIABLE> IO <SUB VAR> <LITCON> <ROOL EXP> <IMPL>

<DISY> <CONJ> <BOOL SEC> <BQOOL PRIM> <RELATION>
AMBIGUITY IN SUB 19

20 EITHER

USE SUB 437 IF ST2P 1S <ARITHEXP> <SIMP AEXP> <TgRM> <FACTOR> <PRIMARY> <fFUNC DES> <VARIABLE>
ID <SUB VAR> <LITCON>

USE SUBU&OB I FST2P | S <RELATION>

21 USE SUB 409 IF ST2P|S <CONJ> <B00L SEC> <«<BpOL PRIM> *VARIABLE> 10 <SUB VAR> <FUNC DES»
<RELATION>

22 use sUB 410 IFSTEP | S«<DISJ> <CONJ> <BOOL SEC> <BOOL PRI M><VARIABLE> I D <SLUB VAR>
<FUNC DES> <RELATION>

23 USE SUBUA&A11IFST2PIS <cIMPL> <DISJ> <CONJ> <BOOL SEC> «<BOOL PRIM> <VARIABLE> 10

<SUB VAR> <FUNC DES> <RELATION>

24 USE SUBAL12 1 FST2P | s «¢RO0L EXP> <IMPL> <D1SJ> <CONJ> <g00L SEC> <p0OOL PRIM> <VARIARLE>
10 <SUB VAR> <FUNC DES> <RELATION>

25 EITHER

USE SUB “29 IF ST2P |S <ARITHEXP>»<SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES» <VARIABLE>

ID <SUB VAR> <LITCON>
USE SUB 4301 FST2P1 S <BOQOL EXP> <IMPL> <D1SJ> <CONJ> <BO0OL SEC> <ROOL PRIM> <VARIABLE>

{1D <SUB VAR> <FUNC DES> <RELATION>
U1 AMBIGUITY IN SUB 25
NN

26 USE SUB 431 IF ST2P 1S <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE> 10 <SUB VAR> <LITCON>

27 USE SUBW&321FST2P 1 S <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE, 10 <SUB VAR> <LITCON>

28 USE SUB 433 IFST2P IS <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>I O <SUB VAR> <LITCON>

29 USESUB434IFST2PIS <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>1O <SUB VAR> <LITCOND

30 USE SUB 435 IF ST2PIs ¢<TERM> <FACTOR> <PRIMARY > <FUNC DES> <VARIABLE>| 0 <SUB VAR>
<LITCON>

31 USE SUB&36]1 FST2P 1 S <BOQOL EXP> <IMPL> <DI1SJ> <CONJ> <BOOL SEC> <BOOL PRIM> <VARIABLE>
ID <SUB VAR> <FUNC DES> <RELATION>

32 EITHER

USE SUB 437 1FST2P IS cARITHEXP> ¢SIMP AEXP> ¢TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>

10 <SUB VAR> <LITCON>
USE SUB 438 IF ST2P|S <CL STATE> <G0 STATE> <ASSSTATE><PROCCALL><COMP ST>

33 USE SUB #22 IF ST2P 1 SID"

34 USE SUB 439 IF ST2P1 S «<STATEMENT><CL STATE> «Gp STATE> <ASS STATE> <PROC CALL> <COMP ST> <OP STATE>

35 USESUB 421 IF ST2PIS <VARIABLE> 10 <SUB VAR>

36 USE SUB 4401 FST2P1 S <AR]TH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY > <FUNC DES> <VARIABLE>

Ke) <SUB VAR?> <LITCON>

37 USE SUBUsi IF ST2P 1S <ARITHEXP> <SIMP AEXP> <TERM® <FACTOR> <PRIMARY* <FUNC DES> <VARIABLE>

10 <SUB VAR> <LITCON>

38 USE SUB®82 |F STEP IS <ARITHEXPY> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>

ID <SUB VAR> <LITCON>

39 USE SUBU&G43 1 FST2P 1 S <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> *PRIMARY > <FUNC DES> <VARIABLE>
ID <SUB VAR> <LITCON>

00 USE SUB 444 IF ST2P IS «BOOLPRIM> <VARIABLE> |p <SUB VAR> <FUNC DES> <RELATION>

41 USE SUBU4s | FST2P | S «<BOOL SEC> «BOOL PRIM> <VARIABLE> 1D <SUB VAR> <FUNC DES> <RELATION>

42 USE SUB 4461F ST2P 1S «<CONJ> <BOOL SEC> «<BODOLPRIM> _VARIABLE> ID <SUB VAR> <FUNC DES>
<RELATION>

43 USE SUBU447T I FST2P | S<DISY> <CONJ> <Bp0OL SEC> <BODL PRIM» VARIABLE> | D <SUB VAR>

<FUNC DES> <RELATION>

44 USE SUB 448 IFST2P| S <IMPL> <DIS UO <CONJ> <BOOL SEC> <BOOL PRIM> <VARIABLE, 10

hdd <SUB VAR> <FUNC DES> <RELATION*
45 USE SUB 449 IF ST2P |S <EXPR> <ARITH EXP> <SIMP AEXP> <TERM> *FACTOR> <PRIMARY> <FUNC DES>

<VARIABLE* 1 O <SUB VAR> <LITCON> <ROOL EXP> <IMPL> <DISJ>

<CONJ> <BOOL SEC> <BDOLPRIM> RELATION,

46 USE SUB 450 IFST2P |S ¢ARITHEXP> C<SIMP AEXP> <TERM* <FACTQOR> <PRIMARY > SFUNC DES> <VARIARLE>
10 <SUB VAR> <LITCON>

47 USE SUBA5S1I FST2P 1 S <LIMPAIR>

48 USE SUBUI4IFST2P1 S <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY* <FUNC DES> <VARIABLE*

10 <SUB VAR> <L{TCON>

49 STiP«ROW(<TYPE> VALUE / NEW Ti

50 STIPeROW(<TYPE> ARRAY / NEW Ti

51 USE SUBUJOIFST2PI S<IDLIST> ID

52 EITHER

USE SUB#S2IFST2PIS IDLIST* 1D

USE SUB 453 IF ST2P IS <IO LIST> 1D

AMBIGUITY IN SUB 52

53 USE SUBUSAIFST2PISKIDLIST, 10

54 USE SUB 456 IF STOPIS«IDLIST> 10

56 USE SUB 458 IF ST2P Is <IDLIST> ID

57 USESUB 457 I FSTeP| s<«<IDLIST> 10

58 USE SUB 459 IFST2PIS <SPECIFIER>

59 USE SUB 460 IFST2PIS 10

60 USE SUB 461 IFST2P1S <EXPR> <ARITH EXP> <SIMP AEXP> <TERM> <FACT OR> <PRIMARY> <FUNC DES>
<VARIABLE> ID <SUB VAR> <LITCON> <BOOL EXP> <IMPL> <PISJ>

<CONJ> <B0O0OL SEC> <BOOL PRIM> <RELATIDN>

61 USE SUBW&ISIFST2PI S<LIMP LIST><XLIMPAIRS>

62 USE SUB 82 IF STZ2PI s «LIMP LIST><LIMPAIR>

63 USE SUB 463 IFST2P 1S <LIMP LIST>?XLIMPAIR>

6 4 USE SUB 454 1r ST2P 1S ¢€NAME PART*

65 USE SUB 465 IF ST2P IS <NAME PART*

66 EITHER

U1 USE SUB 416 IF ST2P1S «SPECLIST> <SPECIFIER>
U1 USE SUB 486 IF ST2P 1S «<SPECLIST> <SPECIFIER>

AMBIGUITY IN SUB 66

67 USE SUB 423 IFST2P 1S <ST LIST» <STATEMENT><CL STATE> «GO STATE> <ASSS TATE ><PROCCALL> <ENAMPST>
<0P STATE>

68 USE SUB 467 IFST2P IS <ST LIST, <STATEMENT> <CL STATE> «Gp STATE> <ASSSTATE>KPROCC A L L *<COMPST>
<0P STATE>

69 USESUBUSBIFST2PIs <NAME PART,

70 U SES Us 46 91 FST2P| S<STATEMENT><CL STATE> «Gp STATED <ASS STATE> <PROC CALL> <CcOoMP ST> <gP STATE»

71 USE SUB 470 IFST2P1 S <DECL>

72 USE SUBA47II FST2P| s <ARITHEXP><SIMP spxp> <TgRM> <FACTOR* <PRIMARY> <FUNC DES> <VARIABLE>
10 <SUB VAR> <LITCON>

73 USE SUB 472 IFST2P| s <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES> <VARIABLE>

1D <SUB VAR> <LITCON>

74 USE SUB 473 IFST2P1 S <BOOLEXP> <IMPL> <DI1SJ> <CONJ> <BOOL SEC> <BOOLPRIM> <VARIABLE>
ID <SUB VAR> <FUNC DES> <RELATION>

75 USE SUB U4T4IFST2PIS <FOR L EL* <ARITH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES>
<VARIABLE> ID <SUB VAR> <LITCON>

76 USE SUBU18 1 FST2P1 S ¢cARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNCDES> <VARIABLE>
ID <SUB VAR> <LITCON>

77 USE SUB 419 IF ST2P 1S <€ARITHEXP>KSIMPAEXP>< TERM > <FACTOR* <PRIMARY> <FUNC DES> <VARIABLE>

Yeo) <SUB VAR> <LITCON>

78 USE SUB 476 IFST2P1S ID

79 USE SUB 475 IFST2PIs ID

80 USE SUB 477 IFST2P1 s <ARITHEXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY > <FUNC DES> <VARIABLE>
10 <SUB VAR> <LJTCON>

81 EITHER

USE SUB 478 IF ST2P1 S <EXPR> <ARITH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY> <FUNC DES>
<VARIABLE> 10 <SUB VAR> <LITCON> <BOOL EXP> <IMPL> <D1ISJU>

<CONJ> <BOOL SEC> <«<BoOL PRIM> <RELATION>
USE SUB 479 IF STEPIs «ASS STATE>

82 EITHER

USESUBUAI7ZIFfSTEPI S«<DECLIST> <DECL>
USE SUB A4BY If STEP IS <DECLIST> <«<DECL>
USE SUB 423 IFST2P Is «ST LIST> <STATEMENT> «CL STATE> <GO STATE> <ASSSTATE><PROCC AL L > <COMPST>

<0P STATE*

Ny AMBIGUITY IN SUB 82
83 USE SUB 4BQ IFST2P1S <ST LIST* <STATEMENT> «CL STATE> <GO STATE> <ASS STATE> <PROC CALL> <COMP ST>

<0P STATE>

84 USE SUBU4B2 | FST2P | SST LIST» <STATEMENT> <€CL STATE> <G0 STATE> <ASSSTATE><PROCC ALL ><COMPST>
<0P STATE>

85 PeP=y / ST2P¢<CL STATE> FOR PRODUCTION <CL STATE> tt ID $

86 USE SUB 483 IFST2P1S <CL STATE> <<GO STATE> <ASSSTATE><PROCCALL><COMPST->

87 EITHER

USE SUB 483 IFST2P1 S «<CLSTATE> «GO STATE> <ASS STATE> «PROC CALL><COMPST>

USE SUBU4BUI FST2PI s <OPSTATE>

88 USE SUB 495 IF ST2P 1S 10

89 USE SUB 20 IFST2P 1S <FORLIST> <FOR LEL> <AR]TH EXP> <SIMP AEXP> <TERM> <FACTOR> <PRIMARY>
<FUNC DES> <VARIABLE> 1D <SUB VAR> <LITCON>

90 USE SUB 486 IF ST2P Is <FOR LIST* <FOR L EL> <ARITHEXP>KSIMPAEXP>< TERM > <FACTOR> <PRIMARY>
<FUNC DES> <VARIABLE> ID <SUB VAR> <LITCON>

91 USE SUB 4871 rST2P1 S «CLSTATE> <GO STATE> «ASS STATE> <PROC CALL> <COMP ST>

92 EITHER }
US ESUB 487 IFST2P1 S CCL STATE’ <G0 STATE> <ASS STATE *<PROCCALL> <COMP ST>
USE SUB 488 IF ST2P1S «OP STATE"*

93 USE SUB 489 IFST2PI S€CLSTATE> <GO STATE> <ASS STATE><PROCC ALL ><COMPST>

ot SSE SUB 499 If 8T2P IS <CL STATE> <GO STATE> <ASS STATE> «PROC CALL><COMP ST>
USE SUB 490 If ST2P 1 S «OP STATE>

95 USE SUB 491 If ST2P IS <STATEMENT> <CL STATE> <Go STATE> <ASS STATE><PROCCALL><COMP ST <0P STATE>

96 USE SUB 492 If ST2P IS <STATEMENT> «CL STATE> <GOSTATE> <ASSSTATE><PROCCALL><cOMPST> <0P STaATE>

400 Peps SYIp«ROW(<ID LIST>) / NEw Ti

401 PePed STIPEROW([0 ¢) / NEW 71

402 PePe+y SY1P«ROW(ID () / NEW Ti

403 PeP+l STIP¢ROW(<PRIMARY> w») / NEW Ti

404 PePed STIP«ROW(<TERM> <* OO R/>) / NEW T1

405 PeP+i STIP+ROW(<SIMP AEXP><+ OO R =>) / NEW Ti

406 PeP+} STIP«ROW(<AEXP LIST> ») / NEW Ti

M 007 PePet ST1Pe«ROW(<ARITH EXP> <REL OP>)} / NEW TI
408 PeP+i ST1P¢«ROW(<RELATION> <REL OP>) / NEW T1

409 Pepi STYIP«ROW(<CONJ> AND) / NEW Ti

410 PepP+1 STLIP«ROW(<DISJ> OR) / NEW T1

411 PePa) STiIP«ROW(<IMPL> IMPLIES) / NEW Ti

412 PePey STYi1P+ROW(<BOOL EXP> EQUIV) / NEW TT}

413 Pepe STIP*ROW(<EXPLIST> «) / NEW TI

414 Pepe+l STIP¢ROW(<ARITH EXP>) / NEW Ti

415 Pepel STIPeROW(<|LIM rp LIST>,) / NEw Ti

416 PeP+) STIP«ROW(<SPEC LIST> ;) / NEW Ti

417 PePs} SY1P«RUW(<DEC LIST») / NEW TI

418 PeP+} SY1IP¢ROW(<ARITHEXP>» STEP) / NEW T 1

419 PepPey SY1IP+ROW(<ARITHEXP> WHILE) / NEW T1

420 Pepe SYiP+ROW({ <FOR LIST> ,) / NEW T1

421 Pepe STLIP¢ROMW(<VARIABLE>#=) / NEW TI

422 PePey / STIP«ROW(| D !) / NEw Ti

423 PeP+l / SYIP+ROW(<sY LIST* 3) / NEW Ti

424 Pep=y / ST2Pe<ID LIST* FOR PRODUCTION <ID LIST> t= oD LIST> | ID

425 PeP=) / S$T2P«<SUB VAR» FOR PRODUCTIOh <SusVAR> t3= |D t <AEXP LIST> 1)

NEW T1

426 Pep=1} / SY2pe«<FUNC DES> FOR PRODUCTIOh CFUNC DES> tt= ID <eXPLIST,)

NEW Ti

427 PeP=1 / SY2P¢<NAME PART» FOR PRODUCTIOh CNAME PART> 8$3= ID « <ID LIST>)
NEW TI

428 Pep=y / STY2P«<PROC CALL, FOR PRODUCTION <PROCCALL> s33= ID <EXP LIST»)

NEW T1

429 PeP=1 / ST2P¢<PRIMARY> FOR PRODUCTIOh <PRIMARY> gtx (<ARITH EXP>) / NEW Ti

430 Pep=)] / SY2pe<BOOL PRIM> FOR PRoDUCTIo N<BOOLPRIM> i= <RopL EXP>) / NEW Ti

. 431 Pepet / SY2p¢<FACTQR> FORPRODUCTION <FACTQOR> tt <PRIMARY>e * <FACTQR>
0 432 Pep=} / SY2Pe<FACTOR> FOR PRODUCTION <FACTOR* t= 8 <FACTOR>

433 PeP=} / SY2P«<FACTOR> FOR PRODUCTIOK <FACTDR> $132 <+ O Re=> <FACTOR>

434 Pepe / SY2P«<TERM> FOR PRODUCTIOh <TERM> $13 <TERM> <« OR /> <FACTQOR>

435 Pep=1} / SY2P«<SIMP AEXP> F O RPRODUCTIONCSIMPAEXP> 32 <SIMP AEXP> <¢ OO R => <TERM>

436 STIP«ROW(| F <BOOL EXP> THEN) / NEW Ti

4 3 7S8TIPeRONC IF <B800L EXP> THEN <ARITHEXP> ELSE) / NEW Ti

4 3 8STIPeRONW(| F <BOOL EXP> THEN <CL STATE* ELSE) / NEW Ti

439 PeP=y / 5T2Pe<OP STATE> FOR PRODUCTION <OP STATE» 13= |F <BOOL EXP> THEN <STATEMENT>

440 pep=1 / SY2pe<ARITH EXP> FOR PRODUCTION <ARITHEXP> 1t1t= IF <g00L EXP> THEN <ARITH EXP>
ELSE <ARITH EXP>

441 Pep=i / SY2P¢<AEXP LIST» FOR PRODUCTION <AEXp LIST> 1ts <AEXPLIST>, <ARITH EXP>

442 PeP=1 / SY2pe<RELATIQN> FOR PRODUCTION <RELATION> $$= <ARITH EXP> <REL 0P> <ARITHEXP>

443 PeP=q / SY2Pe¢<RELAT ION > FOR PRODUCTION <RELATION> tt= <RELATION> <REL OP> <ARITH EXP>

444 PeP=1 / ST2Pe<BOOL SEC> FOR PRODUCTION«BOOL SEC> tt= NOT <BOOL PRIM>

445 PePey / ST2P+<CONJ> FOR PRODUCTION <CONJ? t11= <CONJ> AND <BOOL SECS

446 PeP=1 / 5T2Pe<DISJ> FOR PROCUCTIOh <DISJ> 13= <DISJ> OR <CONJ>

447 PeP=y / ST2P«<IMPL> FOR PROCUCTIOh ¢IMPL> 11= <IMPL> IMPLIES <DISJ>

448 PepP=y / ST2P«<BOOL EXP> FOR PROCUCTIOh<BOOLEXP>:t= <BOOL EXP> EQUIV <IMPL>
449 Pepi / SY2P¢<EXP LISTS FORPRODUCTIONSEXPLIST>g3t= <EXPLIST> |, <EXPR>

450 PepP=l / ST2p+<LIM PAIR> F O RPRODUCTION<LIMPAIR> ttz <ARITH EXP> <ARITH EXp>

451 Pep=1 / SY2pe<LIMp LIST» FOR PRODUCTION <LIM p LIST> 23= <LIM p LIST>» <LIM PAIR>

452 PePe=1 / SY2P«<SPECIFIER> FOR PRODUCTION <SPECIFIER> 33= <TYPE> <Ip LIST>

453 PeP=) / SY2P«<DECL> FOR PROCUCTIOh «DECL> t= <TYPE> <IDLIST>

454 Pepe] / SY2P+¢<SPECIFIER> FORPRODUCTION <SPECIFIER>33= <TYPE> VALUE <ICLIST>

455 Pepe] / ST2Pe«<SPECIFIER> FO RPRODUCTION<SPECIFIER> ti= <TYPE> ARRAY <ID LIST>

456 ST1PeROW(<TYPE> ARRAY <ID LIST>) / NEW T1

457 PeP=} / ST2P¢<SPECIFIER> = FOR PROCUCTIOh <SPECIFIER> :%= ARRAY <Ip LIST>

& 458 STiPeROW(ARRAY <1D LIST>) / NEW Ti
459 Pep=i / ST2P«<SPEC LIST> F O RPRODUCTION <SPEC LIST> 33= <SPECL |1ST>3 <SPECIFIER>

460 ST1PeRODW(CONSTANT 10 is) / NEW T%

461 PepP=] ST2Pe<DECL> FOR PROCUCTIOh <DECL> t= CONS TANT (0) tz <EXPR>

462 PeP=1 / sY2P¢<DECL> FOR PROCUCTIOh <DECL> t1= <TYPE> ARRAY <ID usT>
<LIM P LIST») / NEW Tt¢

463 PeP=j SY2P+<DECL> FOR PROOUCTIOh <DECL> 12x ARRAY <ID LIST> C <LIM p LISTS
/ NEWTH

464 PeP=y SY2Pe<DECL> FOR PROpUCTION <DECL> $8 SWITCH <NAME PART>

465 STiPeROW(PROCEDURE <NAME PART>}) / NEW Ti

466 STIP¢ROW(PROCEDURE <NAME PART >} <SPEC LIST> 3) / NEw Ti

467 Pep=i ST2P«<DECL> FOR PRODUCTIoN<DECL> $= PROCEDURE <NAME PART> 3 <SPEC LIST>
; <ST LIST» END / NEW TI

468 STiP«ROW(FUNCTION <NAME PART>3) / NEW Ti

469 Pepe / ST2P¢<DECL> F O RPRODUCTIONDECL> tt FUNCTION <NAME PART>! <CSTATEMENT>

470 Peps] SY2P«<DEC LI ST> FOR PROCUCTIOh <DEC LIST, st <DECLIST> <DECL>

471 STIPeROW(<ARITHEXP> Srtevr <ARITHEXP> UNTIL) / NEW Ti

472 PeP=1 / SY2Pe<FOR | EL> FOR PRODUCTION <FOR L EL> tts <ARITHEXP> STEP <ARITHEXP> UNTIL
<ARITH EXP>

473 PeP=1 / SY2pe<FOR L EL> FOR PROCUCTIOh <FORLEL> 33= <ARITH EXP> WHILE <BO0OL EXP>

474 PeP=} / SYT2Pe<FOR LISY> F O RPRODUCTIONCFORL I ST >38= <FOR LIST> » <FORL ELS

475 PeP=1/ ST2Pe<GO STATE, FOR PRODUCTION <GO STATE> tt GO TO 10

476 STIPeROW(G0 TO 10 () / NEW Ti

477 Pepey / ST2P¢<GD STATE> FOR PROCUCTIOK <GOSTATE> t= GO TO 10 t <ARI TH EXP>

\ / NEW TQ

| 478 PeP=} ST2P*<ASS STATE> FOR PRODUCTION <ASS STATE> $8= *VARIABLE> t= <EXPR>

479 Pep=1 ST2P¢<ASS STATE» F O RPRODUCTION <ASS STATE> 3%= <VARIARLE> ts CASS STATE,

480 PeP=1l ST2pe<.OMP ST* FOR PROCUCTIOh <COMPST> tts BEGIN <ST LIST» END / NEW T1

on 481 ST1PeROW(BEGIN <DECL IST >} / NEW TI
© 482 Pep=} / S§T2pe¢<COMP ST» FOR PRODUCTION <COMPST> ttz BEGIN <DEC LIST> 3 <STLIST>

END / NEW Ti

483 Pepe1 / SY2P¢<CL STATE> FOR PRODUCTION «CL STATE» siz 10 ! <CL STATE>

484 Pep=] / ST2Pe<poP STATE> FOR PRODUCTIoN cor STATE> REI (0) $ <QP STATE"

485 ST1PeROW((op 10 i=) / NEW T1

486 ST1P«ROW(FOR 10 is <FOR LIST> cc) / NEW T1

487 PeP={ / S§Y2Pe<CL STATE» FOR PRODUCTION <CL STATE» t3= FOR 10 i= <FOR LIST>

co <CL STATE>

488 PeP=y / SY2P««<0OP STATE FORPRODUCTION <OPSTATE> $3= FOR 10 iz <FOR LIST»
DO cor STATE,

480 Pepe / SY2pe<CL STATE, FOR PRODUCTION <€L STATE, $3 IF <BOOL EXP> THEN <CL STATE>
ELSE <CL STATE>

490 Pepe} / SY2P¢<(OP STATE> F O RPRODUCTION «OP STATE> 1ts IF <BO0OL EXP> THEN <CLSTATE>
ELSE <DP STATE>

491 PeP=4 / ST2P¢<ST LI ST» FOR PRODUCTION <ST LIST» tte <SYT LIST> } <STATEMENT>

492 Pepmi / SY2P*<PROGRAM> FOR PRODUCTION <PROGRAM> tt= PHI <STATEMENT> PHI / NEW TQ

