
CS54

A GENERALIZED BA IRSTOW ALGOR ITHM

BY

G. H. GOLUB and T. N. ROBERTSON

TECHNICAL REPORT NO. 54

JANUARY 13, 1967

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY



. A GENERALIZED BAIRSTOW ALGORITHM

L Gene H. Golub* and Thomas N. Robertson

I. Introduction: the Bairstow Process

i The basic idea for finding the roots of real polynomials by finding

[ a quadratic factor makes use of the following identity
n n-1+ _ 2 n-2 n-3

f (a x ta x : Lota) = (x -ox-B) (b_x thx TH.4D 5) + Ax + B. (1)
Equating coefficients gives (with b 4 = b_, = 0):

by = a, + 0b, + Bb . (2)
L for k = 0,1,..., n-2 and

l A =a. 4 + ab, + Bb 3
_ (3)

[ 5 A * Bo, 2
Beginning with arbitrary a and’ Bs (2) and (3) can be used to de-

L fine an 1terative process for getting a quadratic factor. At the ith
| stepa, and B. are used in (2) to provide coefficients b 5 after

L which, (3)is solved for sq and Bir1 with A and B set to zero.
[ This is usually known as Lin's method [2], which was extended and

studied by Friedman [3] and Luke and Ufford [4]. The convergence proper-

[ ties have not been fully established, but the method 1s often slowly
convergent.

¥ The work of the first author was in part supported by NSF and ONR.
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The Bairstow method [1] consists of solving the system

u
A=A(a,B) =O

{

| B = B{a,p) = 0

i by Newton's process of successive approximations. The theorem of Kanto-
rovich [5] gives conditions on A and B and on the starting values

_ a B, which ensure convergence. The verification of these conditions
1s not computationally feasible, but the method is usually quadratically |

convergent. More precisely, if we formulate the algorithm as in [6], |

viz, replacing a. and B_bya. + 6 and B_ + e, where 8 and «¢ |
_ Sm n n n n

satisfy

| A+ 8A + = |A, hg 0
+ 6 + = |

i B B, €By 0
(subscripts denote partial differentiation), then the iteration procedure

L 1s quadratically convergent if the sequences {a} and (B } have

L limits s and t respectively, and further
\ |
0 Ag

D = £0 at (s,t) .

- B, Bg

L This criterion 1s applied in the generalization which follows.

“
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II. Generalized Bairstow Algorithm
1

PL Consider (cf. identity (1) )

+...

g a bP + at ol + a Fg (4)
= - bad + *» 80(P, Py P )(b_P_ oti Py ste. td -P) + AP, + BP

|

L

where P(x) are nth degree polynomials satisfying a three term re-

LC cursion

| Pil = (cx + d_)P, +e?P., with P_, =0, P_ = 1 .
Thus we can write

-

= +

1 ERSi WEEE RE Ra
and

L
= + + + +

Pox = Sofie * Yen Fier TUE kt Vie1Tke1 © Yk2fies

L for appropriate 4, m, r, s, etc., so that equating coefficients now gives

L EE SP AUNks “x kK nk n k’ k-1 n k n-k’ k-2
| i + (a -v__)b -w_ Db (ha)
L Tk = 'n-k'Px-3 7 "n-k’n-l’

{ (with b_) > b_s = b_, = b_, = 0) for k = 0,1,..., n-2, and

1 A=a ,+0b ,+(B+am - r)b5 + (ar; -v))b, -wb (bb)
B=an+pgb ,+tarp i _WPnho4

#

L Equations (4a) and (4b) can be used to compute the factor

L (P, - ap; - BP) by a natural extension of Bairstow's process. Begin
by choosing starting values as Ps . Having computed a, and B.>

|
-
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(4a) will provide values for the quantities Dy and their partial de-

L rivatives with respect to &@ and B . These in turn are used in con-

i nection with (4b) to provide values for A, B, As Ags B By Newton's
' ' § '

process will yield values for © and €, from which SE Bir

| follow,
To establish the convergence properties, write (4) as follows:

] P(x) = (P, - OP, - BP_)a(x) + AP, + BP.
| Theorem. If P, ~- sPy - tp 1s an exact factor with roots ry

L and rss then the convergence & = s and B = t is quadratic if
Q(ry) and Q(r,) are non-zero,

Proof. Differentiation of (4) w.r.t. a gives

0 = -PQ(x) + (BP, - aP,BP)q (x) + AJP, + BP, (5)

. so that evaluation at a =s, B = t, and x = ry gives
L AR (rn) +B, . P(r)alr)) .

L Similarly,

AP _

A
Then 0 Aq

= = A -

B B
a B

So (1) if ry £ Tp evaluation of (5) at x = Ty gives two more equa-

[ tions which solve to yield

4
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Rar)- Rr)= 2

a

P, (r,) P, (x)
a(r;) - alr,)

A ACRES RCN— po Pir) - P(x)

| and thus D = Q(r,)a(r,) ;
— 1 2

(ii) if r, =r, =r, differentiation of (5) w.r.t. x gives

= = -plq(x) - P,Q" (x) + (P, - oP P) q(x)o= -Palx)- 1H tA 1” PY)
/ /

+ (P, - aP; - BP Q(x) + AF

~ and evaluation at @ = s, B=t and x = r JlVes

' Pa

L A= ar) 4 P(r)Q'(x)/a |

Similarl
. Yr

’

|-

SO D = Q*(r) .

Thus in either case D £ 0 1f Q(r;) and Q(r,) are non-zero.
:
- The proof (i) dpove 1s the generalization of the result given by

Henrici[6] which ensures convergence of the Bairstow algorithm to a
-—

quadratic factor of a polynomial 1f its roots have multiplicity one.

4 We have shown 1n (11) that a root of multiplicity two can be extracted,

and the procedure remains quadratically convergent.
:

. It 1s interesting to experiment with the classical Bairstow method

upon polynomials having repeated roots. If has been observed, for

example, that if ry has multiplicity two and To 1s any other root,
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even 1f an 1nitial approximation closer to (x - r, )(x - r,) than to
2

| (x = r) is taken, the scheme "prefers" to converge to (x = r

| avoiding Q(r;) = 0 . Similarly in the generalization we can say that
the extraction of "quadratic factors” P, - sP, - t can be accompanied

| with quadratic convergence 1f the roots of the linear combinationn

>. a_P have multiplicity two or less.
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III. Applications

L (1) Orthogonal polynomials

Orthogonal polynomials are important in curve fitting, cf. [T];

- they also play an important role in Gaussian quadrature. The method

| we have presented 1s applicable to finding the zeros of linear combina-
-—

tions of orthogonal polynomials, since such polynomials satisfy a three

L term recurrence relationship.

Programming experiments using an IBM 1620 tested the method on

L combinations of the form x a, T ,- where I, (x) is the kth degree
i Chebyshev polynomial, and confirmed the properties of convergence to

the "quadratic factors” Ty - ST, - t . The recursion formulas |

| |
TT = BT, + Ty 1) TT = 3(T 0, To)

L for Chebyshev polynomials yield |

L ob, = ca, + ab, 1 + Pb.» + a, a - oy ()
| with b_, = b_, = b_, = b_) =0
(

f REECEVINE EWI
5-8 + Bb, pt 5b gc tb,

L ob, db, | |
The formulas for ==, SB follow easily from (6) and apply to provide

Lo Ay Ags By Bg

L
i
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L (11) Eigenvalue problems.

4 For the tridiagonal matrix
\

d, uy (0
L £, d, .

-

. Ya-1

4 0 .-,
L the characteristic polynomial

L det(xI - A) = P (x)
L satisfies

L i P o=1 PF = x-4d, and Pla = (x - A, 17Py - wl Bq

L so that the method applies to the eigenvalue problem for arbitrary tri-
diagonal matrices.

L Programming tests on symmetric tridiagonal matrices with known

[ eigenvalues gave good convergence and accuracy. The eigenvalues were
found in pairs, each pair being deflated out before the subsequent pair

L was obtained.
| There have been a number of algorithms proposed to reduce an ar-

L bitrary matrix to tridiagonal form; references to these algorithms are
given in [8]. The method presented, used in conjunction with such a

L routine, offers a contribution to the solution of the complete eigen-
i value problem. In particular, when approximations to the eigenvalues

are known this generalization of the Bairstow process 1s an efficient

. means of obtaining final values.
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(111) Symmetric polynomials

1 Consider a 2nth degree polynomial of the form

_ 2n 2n-1 1 I
L Pp, (2) az + az +... az a

2n 2n-1 n
- o oot oa_(z + 1) + a, (z +z) + az

-

It 1s easy to see that if Po (2%) = 0, then Po, (1/2 ¥) = 0 . Now

i P_(z) n =n n-1 ~-(n-1) a2n Z +7 Z +z n
= _— = —_— MH... = = .Pp, (z) = 0 when Wz) = = a_( 5 ) + a, 5 )+ 5 0

Z

L Let us write
2 Fg E

[ R, (2) = —5— , so that
a

w(z) = aR (z)+aR .(z)+ + = R (2) .

[ Note that
R1(2) — 2R, (z)R, (2) ~ R._1(2) :

It 1s easy to see that the method presented here 1s applicable even

L though R, (2) is not a kth degree polynomial.

[ Computer Science Department, Stanford, California 9305

( Mathematics Department, Occidental College
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