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A GENERALIZED BAIRSTOW ALGORITHM

Gene H. Golub* and Thomas N. Robertson

I. Introduction: the Bairstow Process

The basic idea for finding the roots of real polynomials by finding

a quadratic factor makes use of the following identity

n n-1+ - (.2 n-2 n-3
(aox +a x . ..+an) = (x -ooc-fs)(box X Tl tb 2) + Ax + B. (1)
Equating coefficients gives (with b-l = b_2 = 0):
P = 8 + QO 4+ B, (2)
for k = 0,1,..., n-2 and
A =an—l + Olbn_2 + an_3
- (3)
B % * an 2
Beginning with arbitrary a_ and' B, (2) and (3) can be used to de-

fine an iterative process for getting a quadratic factor. At the ith
step Q; and Bi are used in (2) to provide coefficients bk 5 after
which, (3)is solved for o, , and B;,; with A and B set to zero.
This is usually known as Lin's method [2], which was extended and
studied by Friedman [3] and Luke and Ufford [4]. The convergence proper-

ties have not been fully established, but the method is often slowly

convergent.

* The work of the first author was in part supported by NSF and ONR.
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The Bairstow method [1] consists of solving the system

os]
i
o
—
e
™
~—
Il
o

by Newton's process of successive approximations. The theorem of Kanto-
rovich [5] gives conditions on A and B and on the starting values
ao, BO which ensure convergence. The verification of these conditions
is not computationally feasible, but the method is usually quadratically
convergent. More precisely, if we formulate the algorithm as in [6],
viz, replacing oy and Bn by a, + 6 and Bn + €, where 8 and ¢
satisfy

A+ 6Aa + €AB =0

6 =
B + Ba + €BB 0

(subscripts denote partial differentiation), then the iteration procedure
is  quadratically convergent if the sequences {Oh} and {Bn} have

limits s and t respectively, and further

A A
a B
D= £ 0 at (s,t)
%1 BB

This criterion is applied in the generalization which follows.
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II. Generalized Bairstow Algorithm

Consider (cf. identity (1) )

aP + a.p +...+ aP
on 1" n-1 n 0
(&)

= (Pz-aPl-BPO)(bOPn oty B, 5+...+1on 2PO) + AP, + BP_

where Pn(x) are nth degree polynomials satisfying a three term re-

cursion

P =(cx +d )P + e P
n n’*n n n-

n+l with P_

ll

Thus we can write
PP = I P T P T o1 B
and

= +
PP = Skofreo ¥ Y1 Plrr TUR kT Vie1Peer T YkoPken

for appropriate I, m, r, s, etc., so that equating coefficients now gives

1
P TS L lay v oty =t Doy +(Brom y -uy b,
! + (o -V )b -w b (ha)
Tn-k ~ 'n-k'"k-3 T "n-k'n-h’
(with b-h = b_5 = b_2 = b_l = 0) for k =0,1,..., n-2, and
A=a +ab o+ (B+am - ) o+ (ary - vyl ) -wd o (¥ )

(o9]
Il

an +an2+ocr(}3n_3 ~ w&on_4.

Equations (4a) and (4b) can be used to compute the factor

(P2 - aPl - BPO) by a natural extension of Bairstow's process. Begin

by choosing starting values ao,Bo . Having computed a, and Bi,
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(4a) will provide values for the quantities b, and their partial de-

rivatives with respect to @ and B . These in turn are used in con-

nection with (%) to provide values for A, B, Ay AB’ B -

. . 6 .
process will yield values for and €, from which ai+l’6i+l

follow,

To establish the convergence properties, write (4) as follows:

P(x) = (P2 - P, - BP )Q(x) + AP, + BP_
Theorem. If Pb - sPl - tPo is an exact factor with roots rl

and T then the convergence ¢ — s and B = % is quadratic if

Q(rl) and Q(re) are non-zero,
Proof. Differentiation of (4) w.r.t. o gives
0 = -Palx) + (P, - aP P )Q (x) + AP, + BP ,

so that evaluation at ¢ =s, B=1t, and x = ry gives

AR (3) +By . P(rlalr)

Similarly,
ABPl(rl) + By = Q(r))
Then Aa AB
S A Ar) (A, - AP (r)) )
a B

So (i) if ry £ N evaluation of (5) at x = r, gives two more equa-

tions which solve to yield

B Newton's
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~ B(rpelr)) - Blrylalr))

a Pl(rl) - Pl(rQ)

alry) - Q(re)
B P, (r)) - P (x,)

A

and thus D = Q(rl)Q(rz) ;

(ii) if r, =1, =1, differentiation of (B)w.r.t. x gives

o= -Pja(x) - PQ" (x) + (B, - aPy - BP_) ‘q (x)

! i
+ (P, - aP) - BP)Q,(x) + AP,
and evaluation at @ = s, B = t and x = r 9ives
I .
a, = ar) + P(r)e (r)/a;

Similarly,

AB = Q'(r)/al ’

SO D = Q*(r)

Thus in either case D £ 0 if Q(rl) and Q(rg) are non-zero.

The proof (i) above is the generalization of the result given by
Henrici [6] which ensures convergence of the Bairstow algorithm to a
quadratic factor of a polynomial if its roots have multiplicity one.
We have shown in (ii) that a root of multiplicity two can be extracted,
and the procedure remains quadratically convergent.

It is interesting to experiment with the classical Bairstow method
upon polynomials having repeated roots. It has been observed, for

example, that if ry has multiplicity two and I, is any other root,
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even if an initial approximation closer to (x -r )(x - r ) than to

1 2
2
(x - rl) is taken, the scheme "prefers" to converge to (x - rl)e,
avoiding Q(r,) = 0 . Similarly in the generalization we can say that
1
the extraction of "quadratic factors" P2 - SPl -t can be accompanied

with quadratic convergence if the roots of the linear combination

n
Z a P have multiplicity two or less.
wep Kk
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III. Applications

(i) Orthogonal polynomials

Orthogonal polynomials are important in curve fitting, ecf. [T];
they also play an important role in Gaussian quadrature. The method
we have presented is applicable to finding the zeros of linear combina-
tions of orthogonal polynomials, since such polynomials satisfy a three
term recurrence relationship.

Programming experiments using an IBM 1620 tested the method on

n
combinations of the form E: aka,- where Tk(x) is the kth degree
k=0
Chebyshev polynomial, and confirmed the properties of convergence to
the "quadratic factors" T2 —sTl - t . The recursion formulas
7.7, = &(T, ., + 7T, .), T.T =3(T T )
17k k+1 k 177 2k k+2 + “k-2
for Chebyshev polynomials yield
bk = Eak + omk_l + QBbk_2 + ocbk_3 - bk-h
with b_l = b_2 = b_3 = b-h =0
_ et + 2 et
A anl+ozbn_2+(5 'g)bn_s 5.4 - B s
_ a _1
B=ay, *B, ot 50 37 Eh.

db ob

k
The formulas for s==, SEE follow easily from (6)and apply to provide

Ay Bgs By By



‘—

r—

r— r— rmm M rer

—

e

(ii) Eigenvalue problems.

For the tridiagonal matrix

the characteristic polynomial

det(xI - A) = Pn(x)

satisfies

P =1, P =x-dlande+ =(x -4 _.)P

1 k+1

R T R
so that the method applies to the eigenvalue problem for arbitrary tri-
diagonal matrices.

Programming tests on symmetric tridiagonal matrices with known
eigenvalues gave good convergence and accuracy. The eigenvalues were
found in pairs, each pair being deflated out before the subsequent pair
wds obtained.

There have been a number of algorithms proposed to reduce an ar-
bitrary matrix to tridiagonal form; references to these algorithms are
given in [8]. The method presented, used in conjunction with such a
routine, offers a contribution to the solution of the complete eigen-
value problem. In particular, when approximations to the eigenvalues
are known this generalization of the Bairstow process is an efficient

means of obtaining final wvalues.



(iii) Symmetric polynomials

Consider a 2nth degree polynomial of the form

2n 2n-1 n
P (z)=2az" + a,z too+a? teta

It is easy to see that if Pén(z*) = 0, then an(l/z*) = 0 . Now

P (z) n_-n n-1 -(n-1)
21’1 zZ +z Z, +2
Poy(2z) = 0 when Wz) == — = a (F5— ) + a( 5 Yot
Z
Let us write
zk-+z_k
Rk(z) = =3 , so that
a
w(z) =aR(z)+aR _(z)+ + = R (2)
on 1n 1 2 "o
Note that
Rk+l(z) = ERl(Z)Rk(Z) - Rk-l(z) .

It is easy to see that the method presented here is applicable even

though Rk(z) is not a kth degree polynomial.

Computer Science Department, Stanford, California 94305

Mathematics Department, Occidental College
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