
CS53

A PROGRAMMI NG LANGUAGE FOR THE 360 COMPUTERS

BY

NIKLAUS WIRTH

TECHNICAL REPORT NO. CS53

DECEMBER 20, 1966 :

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UNIVERSITY

EE DL

A PROGRAMMING IANGUAGE FOR THE 360 COMPUTERS

by

Niklaus Wirth

December 20, 1966

Sh SARL Ie

Abstract

A programming language for the IBM 360 computers and

1s 1mplementation are described. The language, called

PI360, provides the facilities of a symbolic machine

language, but displays a structure defined by a recur-

| sive syntax. The compiler, consisting ofa precedence

E syntax analyser and a set of interpretation rules with

strict one-to-one correspondence to the set of syntactic

rules directly reflects the definition of the language.

k-th syntax rule k-th interpretation rule

cs = + & 8 «= LE J J V50 Zl 515; ®n Yo fe (V1 Vp ? n)

PI360 was designed to improve the readability of programs

which must take into account specific characteristics

and limitations of a particular computer. It represents

an attempt to further the state of the art of program-

ming by encouraging and even forcing the programmer to

improve his style of exposition and his principles and

discipline in program organization, and not by merely

providing a multitude of "new" features and facilities.

The language 1s therefore particularly well suited for

tutorial purposes.

The attempt to present a computer as a systematically

organized entity 1s also hoped to be of interest to

designers of future computers.

1

Eh) F
STA ed

Snell

A Programming Language for the 360 Computers

Page

Contents

I. Introduction, aim and purpose +... . . . 1

II. Definitionof the language . . « +. « + « « « « « « « . . &L

1. Terminology, notation, and basic definitions 5

2, Data manipulation facilities 11

3. Control facilities v v ov vv wv eu wu We. . 22

IIT. Examples ©. . vv i i hh ee ee ee ee ee ee ee ee 29

IV. The object code . + v vv vv vw ee ee ee ee... Bh

Vv. Addressing and segmentation . . . + + + + +. +. 38

1. Program segmentation 39

2. Data segmentation . « « « vv 4 44 4 4 uu wou... kO

3. Program loading . . +. + + 4 4 vv 4 eee eee. 2

4. Problems connected with input-output programming . . 41

VI. Compiler methodology + « v v vv 4 vo 4 vv vv vw vo «. U3

1. General organization +. + vv 4 4 o.oo... b3

2. Identifier tables . . + v vv vv vv ww ww oo. hk

3. Handlingof syntactic errors hb

VII. The development of the compiler 5k

-VIII. Performance..ueueueoeoeoeoeeee oo ooo

IX. Reflections on the 360 architecture . . , 58

X. How to use the PI360 system , 60

Acknowledgments . « + vv 4 4 eee eee ee ee... BL

REFEIENCES vv + 4 tt eee eee ee ee ee eee.)

11

UE rT po
DIRE SA)

I. Introduction, Aims and Purpose

In an era of feverish and prolific activity 1n the design of more

and more sophisticated and intricate programming aids, the proposal of

a machine language may seem anachronistic to some readers. This report

describes an attempt to provide a tool for those applications where 1t

1s essential to conceive the program as closely as possible in terms of

an existing computer 1n order to directly take into account its particular

. capabilities and limitations. Sophistication has not been an aim in this

attempt, but emphasis was rather put on a clear and conceptually syste-

matic exposition of the available facilities. The result is reliability

on the part of the implemented system as well as on the part of the user

who 1s not subject to misunderstandings about the nature of complicated

and 1ll-defined--facilities. None of these objectives should be called

anachronistic.

In the summer of 1965, the author decided to undertake efforts to

implement the proposed successor to ALGOL describedin [2] on the IBM

360 computer which at that time had been chosen as Stanford's next genera-

tion machine. It was felt that the evolving project should be conducted

in a thorough and systematic manner, worthy of an academic endeavour, and

making use of the best available methods on compiler construction known.

The results should consist of a well-organized system whose structure and

principles were sound and precisely understood, and which was intelligibly

) documented.

After many years of experience with ALGOL, 1t was clearly recognized

that a compiler written in 360 Assembly Language would neither be able

to meet the desired documentation standards, nor constitute a sufficiently

convenient programming tool. The only other language available on the

360, FORTRAN, was not deemed adequate either. Against the strong argu-

ments of the undesirability of the large amount of additional efforts re-

quired to produce a new language and its compiler, 1t was decided to

develop a tool which would:

1. allow full use of the facilities provided by the 360 hardware,

2. provide convenience 1n writing and correcting programs, and

5. encourage the user to write in a clear and comprehensible style.

1

As a consequence of 3., it was felt that programs should not be able

to modify themselves. The language should have the facilities necessary

to express compiler and control programs, and the programmer should be

able to determine every detailed machine' operation. In this respect, the

language features the property of a conventional assembly code. In its

appearance, however, it resembles a high level programming language due

to the presence of structure. Being specifically tailored for the 360

computer, the language was appropriately named PL360.

Chapter II 1s the definition of the language. It is given in terms

of a syntax, and the semantic explanations of the individual syntactic

constructions. Knowledge about the nature of the 360 architecture is

prerequisite (cf. [1]); however, the definition does not require familiar-

ity with the 360 Assembly Language. A few self-explanatory examples of

programs are listed in Chapter III.

The following two chapters are devoted to the implementation of

PI360. They exhibit the code which the compiler generates corresponding

to various language statements, and the method of segmentation and addres-

sing. Chapter VI gives an account of the organization of the compiler,

which relies on a rigorous syntax analysis of the text while at the same

time generating the target code. The compiler constitutes a large scale

practical example for the application of the techniques described in [3],

which have been extended to process incorrectly constructed texts and to

* meaningfully diagnose errors. The success of this facility is considered

to be a major contribution to make predecence grammars useful in practical

applications.

© The methods employed 1n producing the compiler are described in Chap-

ter VII. A bootstrapping technique was used to make the compiler available

on the 360 computer without prior use of any of the languages existing on

that machine. Programming the compiler in its own language provided a

thorough test for the adequacy of the language to its anticipated purpose.

Chapter VIII gives a brief account of the size and the performance

of the translator on a 360/50 computer. Concluding remarks about the

language and its implementation lead to a brief examination of the appro-

priateness of the 360 architecture for this experiment.

2

pT IAN
[a

N

.

[5s EE

Ln

, .

II. Definition of the Language Page

Contents

l. Terminology, notation, and basic definitions 5

1.1. The computer. «+ « « « « « « « vv vv vv vv ve wD

1.2. Relationships «+ + « «+ « « vv « « vv vv «vv... 6b

1.3. The PLOGIaM. « « « « + « « « oo oo oo ow ow oT

L.A, Syntax . . vv vee ee ee ee ee ee eee TT

1.5. Syntactic entities « « « « « « « « «oo. oo... 9

1.6. The vocabulary of basic symbols =. . « 10

2. Data manipulation facilities . . « « « « « « «. « oo « . . 11

2.1. Identifiers « « « « « « «et 4 et ee ee oe ee o.oo. 11

2.2. Numbers and strings . . . « « « + « «oo oo. 11

2.5. Register declarations =. . « « « « « « « + «+ « . . 13

2.4, Cell declarations «+ « « « « « « « « « « « « « « « . . 1h

2.5. Cell designators « « « « « « « « « « « «wo « « « «15

2.6. Register assignments . « +. « + + + + +o + oo... 16

2.7. Cell assignments = « « « « « «+ «+ « + « « « +... . 18

2.8. Function declarations =. . . « « « « . «o.oo... 19

2.9. Function statements «+ « « « « « « « « © «oo . . . 20

2.10. Synonym declarations =. « + « + + « + + + + oo oo. 2]

2.11. Segment base.declarations 22

3. Control facilitleS « « « « « « « « oo eo oe eo 0 ee ee. 22

3.1. If statements .« « « « « ¢ «ve 4 ee eee eee 22

3,0, Case statements . + « « « « + «oe 4 ev ee ew... 2k

3,3, While statements « « « « « « « « « «vv vv vo. . 2k

© 3.4. For statements - + + «+ 4 ce 4 ee eee ee eo. 25

3.5. BLOCKS « « + « 4 vt ve ee ee eee ee eee. 26

3.6. Goto statements « « « « vw © « © vw © © 0 0 © © 0 0 © Ef

3,7. Procedure declarations . « « « « « « « « « « « « «22

3.8. Procedure statements . + + + + 4 + 4 ee 4 oe 28

1. Terminology, notation, and basic definitions

The language 1s defined in terms of a (/360) computer which comprises

a number of processing units and a finite set of storage elements. Each

of the storage elements holds a content, also called value. At any given

time, certain significant relationships may hold between storage elements

and values. These relationships may be recognized and altered, and new

values may be created by the processing units. The actions taken by the

processors are determined bya program. The set of possible programs

form the language. A program 1s composed of, and can therefore be decom-

posed into elementary constructions according to the rules of a syntax,

or grammar. To each elementary construction corresponds an elementary

action specified as a semantic rule of the language. The action denoted

by a program 1s defined as the sequence of elementary actions corres-

ponding to the elementary constructions which are obtained when the pro-

gram 1s decomposed (parsed) by reading from left to right.

1.1. The computer

According to their specific capabilities, processing units are divided

into central processing units (CPU), input-output processing units (chan-

nels), and input-output devices. At any time, the status of a unit 1s

described by a sequence of bits, called the program status word (PSW) for

CPUs and the channel status word (CSW) for channels. A status word con-

tains, among other information, a pointer to the currently executedin-

‘struction. In particular, the program status word also contains a quan-

tity which 1s called condition code.

Storage elements are classified into registers and core memory cells,

simply called cells. Registers are divided into three kinds according to

their size and the operations which can be performed on their values.

The kinds of registers are:

a. 1lnteger or logical (a sequence of 32 bits)

b. real (a sequence of 52 bits)

c. long real (a sequence of 64 bits)

>

Cells are classified 1nto seven types according to their size and the

type of value which they may contain. A cell may be structured or simple.

The types of simple values and simple cells are:

a. byte, or character (a sequence of 8 bits),

b. short integer (a sequence of 16 bits, usually interpreted as an

integer 1n two's complement binary notation),

c. integer or logical (a sequence of 32 bits, usually interpreted

as an integer in two's complement binary notation),

d. real (a sequence of 32 bits to be interpreted as a floating point

binary number),

e. long real (a sequence of 64 bits to be interpreted as a floating

point binary number),

f. command(a sequence of 64 bits, usually interpreted as a data
channel command).

1.2. Relationships

The most fundamental relationship 1s that which holds between a cell

and 1ts value. It 1s known as contalnment; the cell is said to contain

the value.

Another relationship holds between the cells which are the components

of a structured cell, called an array, and the structured cell itself.

It 1s known as subordination. Structured cells are regarded as containing

the Cartesian product of the values of the component cells. The component

cells themselves are well-ordered.

A set of relationships between values 1s defined by monadic and dyadic

functions or operations, which the processors are able to evaluate or per-

form. The relationships are defined by mappings between values (or pairs

of values) known as the operands and values known as the results of the

evaluation. These mappings are not to be precisely defined in this report;

instead, references will be given to their definition in official publica-

tions on the /360 computer [4].

6

1.3. The program

A program contains declarations and statements. Declarations serve

to list the quantities which are involved 1n the algorithm denoted by the

program, and to associate a name, a so-called identifier, with each quan-

tity. Statements specify the operations to be performed on these quanti-

ties, to which they refer through use of the identifiers.

A program 1s a sequence of tokens, which are basic symbols, strings,

or comments. Every token is itself a sequence of characters. The follow-

ing conventions are used in the notation of the present article:

a. basic symbols constitute the basic vocabulary of the language

(cf. 1.6.). They are either single non-alphanumeric characters

or underlined letter sequences;

b. strings aresequences of characters enclosed in quote marks (");

c. comments are sequences of characters (not containing a semicolon)

preceded by the basic symbol comment and followed by a semicolon

(3). It is understood that during execution of a program, all

comments are ignored.

In order that a sequence of tokens be an executable program, it must be

constructed according to the rules of the syntax.

1.4. Syntax

A sequence of tokens constitutes an instance of a syntactic entity

(or construct), if that entity can be derived from the sequence by one or

more applications of syntactic substitution rules. In each such appli-

cation, the sequence equal to the right side of the rule is replaced by

the -symbol which is its left side.

Syntactic entities (cf. 1.5.) are denoted by English words enclosed

in the brackets {(and) . These words describe approximately the

nature of the syntactic entity, and where these words are used elsewhere

in the text, they refer to that syntactic entity. For reasons of nota-

tional convenience and brevity, the script letters ¥ and 7 are also

used in the denotation of syntactic entities. They are understood to

I

stand for any kind of register or type of cell, possibly subject to re-

strictions mentioned in the accompanying text of the paragraph.

Syntactic rules are of the form

(A) ::=§

where (A) is a syntactic entity (called the left side) and & is a

finite sequence of tokens and syntactic entities (called the right side

of the rule). The notation

ay r= gles oo le

1s used as an abbreviation for the n syntactic rules

~ (A) ::= E17 (A) ::= £0 eo op (A) ::= E

If in the denotations of constituents of the rule the script letters ¥

or ¥ occur more than once, they must be replaced consistently. As an

example, the syntactic rule

(X register) ::=(¥ register identifier)

1s an abbreviation for the set of rules

(Integer register) ::= (integer register identifier)

(real register) ::= (real register identifier)

(long real register) ::= (long real register identifier)

8

1.5. Syntactic Entities

(arithmetic operator) 2.6.
(base declaration) 2.11.

(block body) 5.5.
(block head) : 3.5.

(block) 5.5.

(case clause) 35.2.

(case sequence) 3.2.

(case statement) 3.2.

(condition) 3.1.

(decimal digit) 2.2.

(decimal integer number) 2.2.
(decimal scale factor) 2 9

(declaration) 3.5,
(for clause heading) 3.4.
(for clause) 3.4.
(for statement) 3.0L,
(fractional number) 2.2.
(function declaration) 2.8.
(function heading) 2.8.
(function identifier) 2.1.

(function name) 2.8.
(function statement) 2.9.

(got0 statement) 5.6.
(hexadecimal number) 2.2.
(1f clause) 5.1.
(1f statement) 5.1.
(increment) 3h,
(¥ register assignment) 2.6.
(¥ register declaration head) 2.3.
(¥ register declaration) 2.3.
(¥ register identifier) 2.1.
(¥ register) 2.6.
(label definition) 3.5.

| (limit) 3.4,
(logical operator) 2.6.
(monadic operator) 2.6.

(procedure declaration) 3.7.

~ (procedure head) 3.7.
"(procedure heading) 3.7,
(procedure identifier) 2 1.

(procedure name) 2-1(procedure statement) 5 «Oy

(program) 3.5.
(relational operator) 3.1.
(shift operator) 2.6.
(simple ¥ register assignment) 2.6.
(simple statement) 35.5.

(simple T type) 2.4,
(statement) 3.2.

(string) 2.2 (continued)

9

(I cell assignment) 2.7.
(IT cell declaration) ol,
(T cell designator) 2.5.
(I cell identifier) 2.1.
(T number) 2.2,
(IT subcell designator) 2.5.
(T synonym declaration) 2.10.
(7 type) 2.4,
(T value) 2.6.
(true part) 3.1.

(unsigned integer number) 2.2.

(unsigned long real number) 2.2.

(unsigned real number) 2.2,

(while clause) 3.5.
(while statement) 3.5.

1.6. Basic symbols

AlB|c|plete|alu|z]s|k|n|M|x|olpla|r|s|T|U|viW|x|Y|2]|

oberg etnet Li lklilnlnlololalelelafvivlalyol1|2|3|k|5]|6|7[8]9]

H-1x|/ |<l=l>]= =LHDMe] |
and| or|xor|abs|not|shte|shrt|shia|shral
if|then|else|case|of |while|do|for|step|until]
begin|end|goto| comment | nui |

integer|real|logical|larrayharacter|long| short
command | function| procedure |register|syn
segment |base

10

2. Data manipulation facilities.

2.1. Identifiers

(letter) ::= Al|B|c|p|E|F|clu|z|s|k|n|M|r]|o|P|a|r|s|T|UlV|W]|x|Y|Z]

alplclale|flglnlilslxt1iminiolplqizlsitlulvivix]|y]z

(identifier) ::= {letter)|(identifier){letter)|(identifier){(digit)

(X register identifier) ::= (identifier)

(T cell identifier) ::= (identifier)

(procedure identifier) ::= (identifier)

(function identifier) ::= (identifier)

An identifier is a K register—, J cell-, procedure-, or function

identifier if it has respectively been associated with a ¥ register,

J cell, procedure, or function (called a quantity) in one of the blocks

surrounding 1ts occurrence. This association 1s achieved by an appro-

priate declaration. The identifier is said to designate the associated

quantity. If the same identifier 1s associated to more than one quantity,

then the considered occurrence designates the quantity to which it was

assoclated in the smallest block embracing the considered occurrence. In

any one block, an identifier must be associated to exactly one quantity.

In the parse of a program, that association determines which of the rules

given above applies.

Any processing computer can be considered to provide an environment

in which the program 1s embedded, and in which some identifiers are per-

. manently declared. Some identifiers are assumed to be known 1n every

environment; they are called standard identifiers, and are listed in the

respective paragraphs on declarations.

2.2. Numbers and strings

(decimal digit) ::= o|i|2|3|4|5]|6|7]8|9

(decimal integer number) ::= (decimal digit)]
(decimal integer number)(decimal digit)

(unsigned integer number) ::= (decimal integer number)

(fractional number) ::= (decimal integer number) . (decimal digit)|

(fractional number) (decimal digit)

11

(decimal scale factor) ::= (decimal integer number) |
(decimal integer number)

(unsigned real number) ::= (fractional number) |
(fractional number) E (decimal scale factor)|

(decimal integer number) E (decimal scale factor)

(unsigned long real number) ::=

(fractional number) D (decimal scale factor)

(decimal integer number) D (decimal scale factor)

(7 number) ::= (unsigned J number) | (unsigned IT number)
(hexadecimal digit) ::= (decimal digit) |a|B|c|D|E|F|

Here JT stands for any one of

integer

real

long real

(hexadecimal number) ::= # (hexadecimal digit)

(hexadecimal number) {hexadecimal digit)

(integer number) ::= (hexadecimal number)

Numbers have their conventional meaning. They can either be given in

decimal or hexadecimal notation. The scale factor signifies that the

preceding number be multiplied by the indicated power of ten. The symbol_

stands for a minus sign.

A string 1s any sequence of characters enclosed by quote marks, with-

"in which a single quote mark (") is always denoted by a pair of adjacent

quote marks (""). Examples:

"ABC" denotes the sequence ABC

"A""Z" denotes the sequence A'Z

THAT denotes the sequence "A"

Examples:

integer numbers

0 1066 > #A #FOO

real numbers

1.0 0.1 -3.1416 2.TE5 1E10

12

long real numbers

5.37861289D0 _1p1o 8.9D5

strings

"A STRING IS A CHARACTER-SEQUENCE"

"DATE: 29/9/ 1966"

2.3. Register declarations

g In the following rules, the letter ¥ must be replaced by any one

of the following words (or word pairs):

integer

real

long real

(X register declaration head) ::=

(simple ¥ type) REGISTER (identifier) |

(K register declaration), (identifier)

(¥ register declaration) ::=

(X register declaration head) ({integer number))

Every identifier in a ¥ register declaration is associated with the ¥

register specified by the integer number enclosed in parentheses following

the identifier. It herewith becomes a ¥ register identifier. This

number must designate one of the existing integer (or logical) registers

numbered 0-15, or one of the existing real or long real registers numbered

0, 2, 4, and 6.

Examples:

integer register count (l), m(2), n(3)

‘long real register sum(4), product(O)

The following are standard register identifiers:

RO, Rl,..., R9, RA,..., RF

designating the 16 integer registers, and

FO, F2, F4, F6, FOL, F23, F45, F67

designating the 4 real and long real registers respectively. .

15

2.4. Cell declarations

(simple integer type) ::= integer |logical

(simple short integer type) ::= short integer

(simple real type) ::= real

(simple long real type) ::= long real

(simple byte type) ::= byte|character
(simple command type) ::= command

(T type) ::= (simple J type)
array ((integer 'number)) (simpleT type)

(T cell declaration) ::= (J type){identifier)|
(T cell declaration) , (identifier)\

Jy cell declaration) (J; number))|
(character cell declaration) ((string))

Every identifier occurring in a cell declaration 1s associated to

one unique cell of the indicated type, 1f that type 1s simple, or other-

wise to a unique array of cells of the indicated type. The number of

cells in an array 1s given by the number enclosed in parentheses following

the symbol array.

If a cell declaration 1s followed by one or more numbers or strings

within parentheses, then the cell is declared to contain those numbers

or strings as 1ts values. 7 and 7, must either be identical, or
be selected from the following combinations:

To Ty

short integer integer

byte integer

command integer

The number of such values must not exceed the number of declared elements

in the array. A string can only be assigned to a character cell, and the

number of characters must not exceed the number of indicated array ele-

ments. This assignment of values must be understood to take place only

upon the first time the block, in which the cell declaration occurs, 1is

entered.

1h

Examples:

fiytk a g

short integer 1, J

integer, age(2l), hight (68) }

long real x, y, z

array (3) integer size(36)(23)(37)

array (1000) real quant, price

array (8)byte flags

array (132) character line("")

Note : The symbols integer and logical, and byte and character are treated

as synonymous 1n the language.

2.5. Cell designators

(T subcell designator) ::= (J cell identifier) ({integer number))

(T cell designator) ::= (T cell identifier) |(T subcell designator) |
(T cell identifier) ((integer register)) |

(J subcell designator) ((integer register))

A cell identifier which is followed by a number or an integer regis-

ter enclosed in parentheses (called a subscript), must designate an array

of cells. When n is the subscript (number or current value of register),

then the construct designates that cell of the array which is located n

memory unit positions (1) from the beginning of the array, if the sub-

-script 1s preceded by the cell identifier, or (2) from the designated

position, 1f the subscript 1s preceded by a subcell designator. The num-

ber of memory units occupied by cells of various types are: character (1),

byte (1), shortinteger (2), integer (4), logical (4), real (4), long

real (8). The subscript used to designate any element of an array must

therefore be a multiple of the appropriate number.

Note: A subscript must not specify register 0 .

Examples of cell designators:

age

size (2)

prize(R1)
line (16) (R2)

12

2.6. Register assignments

(X register) ::=(K register identifier)

(T value) ::= (7 number)|(T cell designator)

(integer value) .:= (string) = . §

A K register designates the value contained in the identified register.

A value 1s either a constant, 1.e., a number or a string, or the content

of a designated cell. In the case of a logical value being a string,

that string must consist of not more than 4 characters. If it consists

of fewer than 4 characters, the string is extended to the left with null

characters. The bit representation of characters is defined in [1]

(EBCDIC).

(simple ¥ register assignment) ::=

(1) (X register identifier) := (J value)|
(X register identifier) := (K register) |

(2) (¥ register identifier) := (monadic operator){(J value)

(K register identifier) := (monadic operator){(¥ register)

A simple register assignment 1s said to specify a register, namely

the one designated by the register identifier to the left of the assign-

ment operator (:=) . To this register is assigned the -value designated

by the construct to the right of the assignment symbol. That designated

value may be obtained through execution of a monadic operation specified

by a monadic operator.

The following are legal combinations of kinds and types to be sub-

stituted respectively for the letters ¥ and J in the rules (1) and (2):

| T

integer integer

integer short integer

integer command

real real

long real 1B real

long real long real

16

(monadic operator) ::=_abs | neg | neq abs

The monadic operations are those of taking the absolute value, of sign

inversion, and of sign inversion after taking the absolute value.

Examples of simple register assignments:

RO =1

R2 := RA

R6 := age

FO := quant(Rl)

F23% =x

F45 := neg FOL

RD := abs hight

FO := neg abs Fb

(¥ register assignment) ::= (simple ¥ register assignment) |
(3) (KX register assignment){arithmetic operator)(T value)|

(register assignment)(arithmetic operator)(X register)]

(integer register assignment) {logical operator) (integer value)

(integer register assignment)({logical operator) {integer register) |

(integer register assignment) (shift operator) (unsigned integer number) |

(integer register assignment) {shift operator) {integer register identifier)

A register assignment specifies a register, namely the one which is spe-

cified by the simple register assignment or the register assignment from

which it 1s derived. To this register is assigned the value obtained by

applying a dyadic operator to the current value of that specified register

and the value designated by the construct following the operator. The

operations are the arithmetic operations of addition (+), subtraction (-),

multiplication (¥), and division (/), the logical operations of conjunction

(and), exclusive and inclusive disjunction (Xor, or), and those of shifting
to the left and right, as implemented in the /360 system. The operators ++

and —-- denote "logical" or unnormalized addition and subtraction when

applied to integer or real registers respectively.

(arithmetic operator) ::= +|=|*|/ [++] --

(logical operator) : :=_and|or|xor

(shift operator) ::= shif|shia|shr! |shra

17

|

In the syntactic rule (3), the same combinations of ¥ and JT re

permitted as specified for rules (1) and (2).

Examples of register assignments:

RO := R3

Rl := 10

RA := 1 + age - R3 + size (Rl)

R9 :=R8 and R7 shff8or R6
F2 :=3%,1416

FO := quant(Rl) * price(R1l)

FL5 := F45 + FOl

Note : The syntax implies that sequences of operators (including assign-

ment) are executed strictly in sequence from left to right. Thus

RL :=R2 + RL

1s not equivalent to

Rl := Rl + RZ

but rather to the two statements

Rl := R2; RL :=Rl + Rl

2.7. Cell Assignments

(J cell assignment) ::=

(T cell designator) := (¥ register)

The value of the designated ¥ register is assigned to the desig-

nated J cell. The allowable combinations of cell-type and register

kind are indicated in the table of section 26.

Examples of cell assignments:

1 = RO

price(Rl) := FO
x := F67

18

2 . 8unction declarations

(function name) ::= function (identifier) |
(function declaration) , (identifier)

(function heading) ::= (function name) ({integer number))

(function declaration) ::= (function heading) ({integer number))

There exist various data manipulation facilities in the 360 computer

which cannot be expressed by an assignment. To make these facilities

amenable to the language, the function statement 1s introduced (cf. 2.9.),

which uses an identifier to designate an individual computer instruction.

The function declaration serves to associate this identifier, which there-

by becomes a function identifier, with the desired computer instruction

code, and to define the meanings of the parameters of the function, 1i.e.,

to specify the format of the instruction. While the number 1n the func-

tion heading specifies the format (cf. table below) and 1s called the

format code, the number in the function declaration specifies the first

two bytes of the instruction code. In the following examples, the identi-

fiers were chosen to be the symbolic codes used 1n [4], and they are

standard identifiers.

Examples

function MVI(L) (#9200), CLI (4) (#9500),

MVC (5) (#D200), CLC (5) (#D500),

] STM(3) (#9000), IM(3) (#9800),

SRDL (9) (#8C00), SLDL(9) (#8D00),

IC(2) (#4300), STC (2) (#+200),

LA (2) (#+100), TEST (8)(#95FF),
SET (8) (#92FF), RESET (8) (#9200),

CVD (2) (4E00), UNPK (10) (#F300),

ED (5) (#DE0O), EX(2) (#4400)

19

Format No. of Assignment of fields

Code parameter in instruction
fields in

function

2 2

SS EY
3 3 ile]8
rrrr |

EE i
|; 3 EN

6 [a]

; :

3
I EE

9 ’. ble
I

10 4

0 8 16 32

2.9. Function statements

(function statement) ::= (function identifier))

(function statement) ((integer number))]

(function statement) ({(¥ register identifier))|

(function statement) ({T cell designator))|

(function statement) ({string))

A function statement represents the computer instruction designated

by the function identifier. The sequence of quantities enclosed in paren-

theses specifies the parameter‘fields of thefunction statementin accor-

"dance with its format, to which the fields must comply.

Examples

SET (flag)

RESET (flag)

IA(R1) (line)

MVC (15) (line) (buffer)

STM (RO) (RF) (save)

MVI("*") (line)

IC(RO) (flags (R1))

20

2.10. Synonym declarations

J, synonym declaration) ::=
{Ts type) (identifier) syn (7, cell designator) |
(Ts type) (identifier) syn (integer number) |
(7 synonym declaration) , (identifier) syn (7, cell designator))
J, synonym declaration) , (identifier) syn (integer number)

A synonym declaration serves to assoclate identifiers with the cell

which is designated immediately following the symbol syn, either by a

previously established cell designator or by an integer number representing

its absolute address in the computer's core memory.

Examples:

integer xlow syn x(4)

array (32768) integer mem syn 0

logical CAW syn 72

integer Bl syn mem (R1)

Note: The synonym declaration can be used to assoclate several different

types with a single cell. Each type is connected with a distinct

identifier.

Example:

long real x(#+E00000000000000)

integer xlow syn x(4)

- A conversion operation from a number of type integer contained in regis-

ter RO to a number of type long real contained in register FOl can

now be denoted by

xlow := RO; FOl := Xx

and a conversion vice-versa by

FOL := FOl ++ zero; x := FOl;RO := xlow

No initialization can be achieved by a synonym declaration.

21

2.11. Segment base:declarations

(segment base declaration) ::= segment base (Integer register identifier)

A base declaration causes the compiler to reference the specified

register as a base address for all cells subsequently declared in the

block 1n which the base declarationoccurs. Upon entrance to this block,

the appropriate base address 1s assigned to the specified register.

(cf. v.2).

5. Control facilities

3.1. If statements

(relational operator) ::= = | == | < | <= | >= | >

(condition) ::=(K register){relational operator)(T value) |
(X register){relational operator) @ register) |

(relational operator) | overflow

The 360 computer records one of four possible states in the so-

called condition code. A condition specifies one or more of these states,

which are numbered O, 1, 2, 3. The relational operators and the sym-

bol overflow designate the following states:

operator states

= 0

= 1,2

< 1

= 0,2

> 2

overflow 3

22

If a relational operator 1s enclosed by two operands, then those

operands are compared, and the condition code 1s set to state 0, if equal-

ity holds, to state 1 1f the first operand 1s numerically smaller, and to

state 2 if 1t 1s greater than the second operand.

(1f clause) ::= 1f (condition) then

(true part) ::= <simple statement) else

(if statement) ::= (if clause)({statement)]

(if clause) {true part) (statement)

The 1f statement permits the conditional execution of statements:

1. (1f clause) (statement)

The statement 1s executed 1f and only 1f the condition code 1s in

one of the states designated by the condition in the if clause.

2. (1f clause) {true part) (statement)

The simple statement 1n the true part 1s executed and the statement

following it is ignored, 1f and only if the condition code 1s in one

of the states designated by the condition in the if clause; other-

wise the true part is ignored and the statement following it 1s

executed.

Examples

1f RO < 10 then Rl :=1

if FO>= F2 then F2 := FO else FO := F2

if < then SET(flags(0)) else

if = then SET(flags(l)) else SET (flags (2))

Note: 1f the condition consists of a relational operator without operands,

then the decision 1s made on the basis of the condition code as

determined by a previous instruction.

Example:

CLC(15)(a)(v); if= then ...

25

3.2. Case statements

(case clause) ::= case (integer register) of

(case sequence) ::= (case clause) begin |

(case sequence) (statement; ;

(case statement) ::= (case sequence) end

Case statements permit the selection of one of a sequence of state-

ments according to the current value of the integer register (other than

register 0) specified 1n the case clause. The statement whose ordinal

number 1s equal to the register value is selected for execution, and the

other statements in the sequence are ignored. The value of that register

1s thereby multiplied by 4.

Example:

Bh case Rl of begin

Rl := RZ;

R2 := R3;

R% := R4;

R4 := RS;

end

3.3. While statements

(while clause) ::= while (condition) do

(while statement) ::= (while clause) (statement)

The while statement specifies the repeated execution of a statement

as long as the condition code 1s in one of the states specified by the

- condition 1n the while clause.

Examples:

while FO < prize(RLl) doRL := Rl + 4

while >= do

begin RO := RO + 1; Rl := Rl - R2;

end

Note that in the second example the condition code 1s set by the subtrac-

tion operation and then tested for being in states 0 or 2 .

2l

ee

3.4. For statements

(for clause heading) ::= for (integer register assignment)

(increment) ::= step (integer number)

(limit) ::= until (integer register? | until (7 value)
(for clause) ::= (for heading) (increment) (limit) do
(for statement) ::= (for clause) (statement)

T must be replaced by either of the types

integer

short integer

The for statement specifies the repeated execution of a statement,

while the content of the integer register specified by the for heading

takes on the values of an arithmetic progression. That register 1s
called the control register. The execution of a for statement occurs in

the following steps:

1. the register assignment in the for heading 1s executed;

2. if the number specifying the increment is not negative/negative,

then 1f the value of the control register 1s not greaterhot less

than the value specified as the limit, then the process continues

with step 3, otherwise the execution of the for statement 1s termin-

ated;

3. the statement following the for clause 1s executed;

"4, the increment is added to the control register, and the process

resumes with step 2.

Examples:

| for Rl := 0 step 1 until n do STC(".")(line(R1))
forR2 := Rl step _4 untilRO do

F2%in += quant (R2) * price(R2);
FOl := FO1l + F235;

end

25

5.5. Blocks

(declaration) ::= (¥ register declaration) (7 cell declaration) |

(function declaration) | (procedure declaration) |
(synonym declaration) | (‘segment base declaration)

(simple statement) ::= (X register assignment) | (7 cell assignment) |
(function) | (procedure statement) | (case statement) | (block) |

(goto statement) | null
(statement) ::= (simple statement) | (1f statement) |

(while statement)| (for statement)
(label definition) ::= (identifier) :

(block head) ::= begin|

(block head){declaration);

(block body) ::= (block head)| (block body) (statement); |
(block body){label definition)

(block) ::= (block body) end

(program) ::= (block) @

A block has the form

beginD; D; . . . ; Dy S; S; . . .; S; end

where the D's stand for declarations and the S's for statements.

The two main purposes of a block are:

1. To embrace a sequence of statements into a structural unit which

) as a whole 1s classified as a simple statement. The constituent

statements are executed in sequence from left to right.

2. To introduce new quantities and associate identifiers with them.

| These identifiers may be used to refer to these quantities in any of

the declarations and statements within the block, but are not known

outside the block.

Label definitions serve to label certain points in a block. The

identifier of the label definition 1s said to designate the point in the

block where the label definition occurs. Go to statements may refer to

such points. The identifier can be chosen freely, with the restriction

that no two points in the-same block must be designated by the same iden-

tifier.

26

The symbol null denotes a simple statement which implies no action

at all.

Example:

begin integer bucket;

TEST (flag); 1f = then

begin bucket := RO; RO := Rl; Rl := R2;

R2 := bucket;

end else

begin bucket := R2; R2 := Rl; Rl := RO;

RO := bucket;

end;

RESET (flag);

end

3.6.Go to statements

(go to statement) ::= goto (identifier)

The interpretation of a goto statement proceeds in the following

steps:

1. Consider the smallest block containing the goto statement.

2. If the identifier designates a program point within the considered

block, then program execution resumes at that point. Otherwise,

execution of the block 1s regarded as terminated and the smallest

: block surrounding 1t 1s considered, Step 2 1s then repeated.

3.7. Procedure declarations

"(procedure name) ::= procedure (identifier) |

segment procedure (identifier)

(procedure heading) ::= (procedure name) ({integer register 1dentifier))

(procedure head) ::= (procedure heading);

(procedure declaration) ::= (procedure head) (statement)

A procedure declaration serves to associate an identifier, which

thereby becomes a procedure identifier, with a statement (cf. 3.5.) which

1s called procedure body. This identifier can then be used as an

27

abbreviation for the procedure body anywhere within the scope of the

declaration. The integer register specified in the procedure heading

1s assigned the return address of control when the statement 1s invoked

by such an abbreviation (procedure statement). It must not be register 0.

If the symbol procedure 1s preceded by the symbol segment, the pro-

cedure body is compiled as a separate program segment (cf. chapter V.l).

It has no influence on the meaning of the program.

Examples

procedure P(R1l); RO := RO + 1

procedure SWAP(RA);

begin long real t;

~. t ¢= FO1l; FOL := F235; FOl := t;

end

Note: The code corresponding to a procedure body 1s followed by a branch

instruction taking the program address from the register specified

in the procedure heading, where the invoking procedure statement

had deposited the return address. Thus, the programmer must either

not use that register within the procedure, or explicitly store

and reload its value in the beginning and end of the procedure body.

3.8. Procedure statements

(procedure statement) ::= (procedure identifier)

The procedure statement invokes the execution of the procedure body

- designated by the procedure identifier. A return control address 1s

assigned to the register specified in the heading of the designated pro-

cedure declaration.

28

ec.

ITI. Examples

procedure magicsquare (Ro);

comment This procedure establishes a magic square of order n, if n
is odd, and 1 < n <16. X is the matrix in linearized form.

Registers 0...6 are used, and register 0 initially contains

the parameter n . Algorithm 118(Comm. ACM, Aug. 1962);

begin short integer nsqr;

integer, register n(O), 1(l), J(2), k(D);

nsqr := n; RL := n*nsqr; nsqri= Rl;

1 :=n+ 1shrl1; J :=n;

for k i= 1 step1 until nsqr do

Begin 3 := 1shlf6;R4 := J shif2 + R3; R3 := X(R4);

if RS—=0 then

begin 1 t= 1 = 1; J = J = 2;

if 1 <1 then i :=k + n;

if J <1 thenJ := J + nj;

R3 := 1 shil6; R4 := j shil2 + R3;

end;

X(R4) := k;

i =k +1;if 1 > n then i :=1- n;

ji=3 +1; if j >n thenJ :=j - nj

end;

. end

procedure 1nreal (R4);

comment This procedure reads characters forming a real number according
to the PL360 syntax. A procedure ''nextchar" is used to obtain,

the next character in sequence 1n register 0 . The result 1is

left in the_long real register FOlL . Registers 0 ... 4 and

all real registers are used;

29

byte sign, exposign; short integer ten (10);

long real fconl(#+E00000000000000), fcon2 (#4+700000000000000);

integer fconllow syn fconl (4);

function SRDL(9)(#8C00), LTR(1) (#1200);

whileRO < "0" do

begin £ RO = "-" thenSET (sign) else RESET (sign); nextchar;

end;

comment Accumulate the integral part in RL;

Rl := RO and #F; nextchar;

while RO >= "0" do

Begin O := RO and #F; RL := RL * ten + RO; nextchar;

end;

R2 := 0; commentR2 1s the decimal scale factor;

fconliow: := Rl; FOl := fconl+ ODO; comment FOl := Rl;

if RO = "." then

begimme n t Process fraction. Accumulate number in FO1;

nextchar;

while RO >= "0" do

begin RO := RO _shif 4; STC(RO)(fcon2(l));

FFO1 := FOl* 10DO + fcon2; R2 := R2 =- 1; nextchar;

end;

end;

if RO = "E" then

begin comment Add the scale factor to RZ;

nextchar; if RO = "-" then

begin SET (exposign); nextchar;

end else RESET (exposign);

Rl := RO and #F; nextchar;

while RO >= "0" do

begin RO := RO and #F; Rl := RL*¥ ten + RO; nextchar;

end;

TEST (exposign);

if = then R2 := R2 - Rl else R2 := RZ + RI;

end;

if R2 —= 0 then

30

begin comment Compute F45 := 10' R2;

if R2 < 0 then

begin RZ := abs R2; SET (exposign);

end else RESET (exposign);

F23 := 10D0; F45 := 1D0; F67 := F45;

while R2 -1= 0 do

begin SRDL(R2)(1); F23 := F23 * F673; FE] := F23;

LTR(R3)(R3); if < then F45 := F45 * F23;

end;

TEST (exposign);

if = then FOl := FOl/F45 else FOL := FO1 * F45;

end;

TEST (sign); if = then FOl := neg FOl;

end -.

procedure Binary Search (R8);

comment A binary search 1s performed for an 1dentifier in a table via an

alphabetically ordered directory containing for each entry the

length (no. of characters) of the identifier, the address of the

actual identifier, and a code number. The global declarations

array () integer directory

array() short integer tag syn directory (0)

array () short integer length syn directory (2)

array() integer address. syn directory (4)

integer n

are assumed. Upon entry, Rl contains the length of the given

identifier, R2 contains 1ts address. Upon exit, R3 contains

the code number, if a match is found in the table, 0 otherwise.

Registers 1-8 are used;

begin integer register £(1), fow(3), i(k), high(5), x(6), m(7);

array (3) short integer compare (#D500) (#2000) (#6000);

high := n; flow :=8;, comment index step in directory is 8;

51

while fow <= high do

begin i := Row + high shr! 4 shill 3; x := address(1i);

1f £ = length(i) then

EX(2) (compare); if = then goto found;

1f < then high := 8 else tow = 1+8;
end else

if I < length(i) then

EX(4) (compare);

if <=then high := i-8else low :=i+8;
end else

Imegin := length (i); EX(m) (compare);

if < then high := i-8else Low := it+8;

end;

end; =

i = 03

found: R3 := tag(i);

end

Assembly Language Code corresponding to the procedure’ Magic square' (first

example):

MAGICSQR STH 0, NSQR

LR 1,0

MH 1, NSQR
STH 1, NSQR

LR 1,0

| A 1, ONE
SRL 1,1

LR 2,0

L 55 ONE
B Lf

Ll LR 3,PNE
SLL. 3,6
LR L,2
SLL 4,2
AR 4,3
L 3,X(4)
C 3, ZERO
BC 8, Ih
S 1, ONE
S 2, TWP
C 1, ONE
BC 11,12

32

AR 1,0

L2 C 2, ONE
BC 11,13

AR 2,0

L3 LR 3,1

SL, 396

LR L,2
SLL 4,2
AR 4,3

Ih ST 5,%X(4)
A 1, ONE
CR 1,0

BC 13,L5

SR 1,0

L5 A 2, ONE
CR 2,0

BC 13,16
SR 2,0

L6 IA 5,1(5)
- L7 CH 5, NSQR

BC 12,11
BR 6

NSQR DC H

ZERD DC F'o"
ONE DC F'1"
TWO DC Flot

33

IV. The object code

Two principal postulates were used as guidelines in the design of

the language.

l. Statements which express operations on data must 1n an obvious

way correspond to machine instructions. Their structure must be

such that they decompose into structural elements, each corres-

ponding directly to a single instruction.

2. The control of sequencing should be expressible implicitly by

the structure of certain statements. (e.g., through prefixing

them with clauses indicating their conditional or iterative execu-

tion).

Register assignments, cell assignments, and function statements

strictly comply to postulate 1, as 1llustrated by the following example

(cf. also II.2.4, II.2.6.):

RA := I + AGE - R3 + SIZE(RL)

Code: LH 10,1

A 10, AGE

SR 10,3
A 10,SIZE(1)

The following sections serve to exhibit the target code corresponding to

constructions classified as "control facilities" in the definition of

the language. The code is described in terms of 360 symbolic assembly

language.

1. Construct: if (condition) then (statement)

Code: code for condition

BC ¢,L
code for statement

no

¢ 1s determined by the form of the condition, whose corresponding code

may be empty or consisting of a C or CR instruction.

34

Example:

ifRL < R2 then RO := R3

CR 1,2

BC 10,L ~

LR 0,3

2. Construct: if (condition) then (simple statement) else (statement)

Code : code for condition

BC c,Ll

code for simple statement
B L2

Ll code for statement

L2 . . .

5. Construct: case Rm of begin

(statement-1);

(statement-2);

(statement-n);

end

Code: SLL m,2

B L(m)
Ll code for statement-1

B LX

L2 code for statement-2

B LX

Ln code for statement-n

LL B LX
B L1

B L2

B Ln

LX . . .

35

4. Construct: while (condition) do(statement)

Code: I.1 code for condition

BC c,L2

code for statement
B Ll

2 . ..

¢ 1s determined by the form of the condition, whose code may either

be empty or a C or CR instruction. Note that the condition 1s es-

tablished before the statement 1s ever executed.

5. Construct: for (integer register assignment)

step (integer number) until (integer value) do

(statement)

The corresponding code depends on the sign of the number following

the symbol step. That number will be denoted by 1 below, and the

assumption 1s made that the assignment after the symbol for spe-

cifies register m .

Code: (i > 0)
code for assignment

LL C m,V

code for statement

LA m,1(m)
B Ll

L2 . . .

Code: (i < 0)
code for assignment

L1 C m,V

BC 4,12
code for statement

S m,I
B L1

L2 . . .

Note : The instruction labeled Ll is a CR instruction, if a

register 1s specified as limiting value; V denotes the cell con-

taining the limit value, I denotes the cell containing the decre-

ment 1 .

26

The BXH and BXLE instructions were not used in the construction.

The intricate rules about register assignment for control-, increment-,

and limit values were considered to be too restrictive, and furthermore

these instructions do not permit the testing of the initial value with

the limit without altering the initial control value. They are entirely

inappropriate for the case 1i< O.

6. Construct: procedure (identifier) (Rn); (statement)

Code: P code for statement

BR n

7. Construct: (procedure identifier)

Code: h BAL n,P or

L 15, newsegmentbase

BAL n,P
L 15, oldsegmentbase

where n and P are specified by the procedure declaration.

57

V. Addressing and segmentation

The addressing mechanism of the 360 computers is such that instruc-

tions can indicate addresses only relative to a base address contained

in a register. The programmer must <insure that

1. every address 1n his program specifies a "base"-register;

2. the specified register contains the appropriate base address

whenever an instruction 1s executed which contains an address;

5. the difference d between the desired absolute address and the

avallable base address satisfies

0< d< Loos .

This places a heavy burden upon the programmer, and it was consid-

ered to be unquestionably the duty of a compiler to ease the difficult

task, and to provide certain checking facilities against errors.

The solution adopted here was that of program segmentation. The

program 1s subdivided into individual parts, so-called segments. Every

quantity defined within the program 1s known by the number of the segment

in which 1t occurs and by 1ts address relative to the origin of that

segment, which serves as 1ts base address. The problem then consists

of subdividing the program and choosing base registers in such a way that

a. the compiler can reference the appropriate register automatically when

it compiles addresses, b. the compiler can assure that each base regis-

; ter contains the desired base address during execution, and c. the num-

ber of times base addresses are reloaded into registers 1s reasonably

small.

: First, it must be decided whether the process of subdividing the

program should be performed by the programmer or by the compiler. In the

latter case, a fixed number of registers must be set aside to serve as

base registers which the compiler has freely at its disposal. This was

considered undesirable. Furthermore, a program using a number of segments

much larger than that of available base registers would be subject to

considerable inefficiencies due to the necessity of loading base addres-

ses very frequently. It was therefore decided that the programmer should

33

designate the parts of his program which were to constitute segments.

He has then the possibility of organizing the program in a way which

minimizes the number of crossreferences between segments.

It should be noted that the programmer's knowledge about segment
sizes and occurrences of crossreferences is quite different in the cases
of program and data. In the latter case he 1s exactly aware of the

amount of storage needed for the declared quantities, and he knows pre-

cisely in what places of the program references to a specific data seg-

ment occur. In the former case, his knowledge about the eventual size

of a compiled program section is only vague, and he 1s in general unaware

of the occurrence of branch instructions implicit in certain constructs

of the language. It was therefore decided to treat programs and data

differently, and this decision was also in conformity with the desira-

bility of keeping program and data apart as separate entities.

l. Program segmentation

Due to the fact that the language does not allow programs to modify

themselves, branches are the only instructions referring to locations

within program segments. Since control lies by its very nature 1n exactly

one segment at any instant, 1t seemed appropriate to designate one fixed

register to hold the base address of the program segment currently under

execution. A branch leading into another segment must then always be

preceded by an instruction loading that register with the base address

'of the destination segment. Register 15 was chosen for this purpose.

An obvious approach to the problem of segmentation requires the

compiler to automatically generate a new segment, when the currently

generated segment's length exceeds 4096 bytes. This solution was re-

jected because of two reasons:

1. The programmer is not aware of the position of segment boundaries,

and therefore has no way to minimize branches from one to another

segment.

2. In most cases, the destination of an implicit branch (in 1f-,

case-, while-, for statements) 1s not known to the compiler at the

time of its generation. Therefore 1t 1s not known whether it will

consist of one or two machine instructions.

59

The approach taken consists in connecting segment structure with the

obvious program structure. The natural unit for a program segment 1s

the procedure. The only way to enter a procedure 1s via a procedure

statement, and the only way to leave-it 1s at its end or by an explicit

go to statement. The fact that no implicitly generated instruction can

ever lead control outside of a procedure minimizes the number of cross-

references 1n a natural way. Since only relatively large procedure

bodies should constitute segments, a facility was provided to designate

such procedures explicitly: a procedure to be compiled as a program

segment must contain the symbol _segment in its heading. In practice,

the requirement that such procedures be explicitly designated has proven

to be no handicap. It 1s relatively easy for a programmer to guess which

procedure exceeds the prescribed size, or otherwise to insert the symbol

segment after the compiler has provided an appropriate comment in the

first compilation attempt, Obviously, the outermost block 1s always

compiled as a segment.

2. Data segmentation

In the case of data, the programmer 1s precisely aware of the amount

of allocated memory as well as of the instances where reference 1s made

to these quantities. A base declaration was therefore introduced which

implies that all quantities declared thereafter, but still within the

same block and preceding another base declaration, refer to the speci-

) fied register as their base. These quantities form a data segment. At

the place of the base declaration code 1s compiled which ensures that

the register 1s loaded with the appropriate segment address. However

- 1ts previous contents are neither saved nor restored upon exit from the

block.

A base declaration 1s implicit in the heading of the outermost block.

It always designates register 1k.

Obviously, data segments declared in parallel (i.e., not nested)

blocks, can safely refer to the same base register. Data segments de-

clared within nested blocks should refer to different base registers.

LO

If they do not, 1t 1s the programmer's responsiblity to ensure that the

register 1s appropriately loaded when data in either of the segments 1s

accessed.

There 1s no limit to the size of data segments. All cell designa-

tors must, however, refer to cells whose addresses differ from the seg-

ment base address by less than 4096. If they don't, the compiler can

provide an appropriate indication.

5. Program loading

A scheme using program and data segments as described above results

in an extremely simple relocating loader program, since the segments can

be loaded without modification. It was felt that this benefit provided

by a computer incorporating a base register scheme should be put to full

advantage. Although the 360 computer still makes use of absolute addresses

in a few instances (program status words, data channel commands), 1t

was decided, not to allow for absolute addresses in a program. They

can, however, be generated at execution time. Consequently, the func-

tions of the loader are reduced to:

a. reading program and data segments into memory,

b. assigning the origin address of each segment to an entry in

the segment address table, and

c. transfering control to the program segment representing the

; outermost block.

The base address table must be available from any point in the pro-

gram. It was therefore placed in the low end of the first data segment,

whose origin address is contained in register 1k.

4, Problems connected with Input-output programming

The direct programming of input-output operations in PL360 is im-

practical in the scheme described so far for the following reasons:

1. Input-output operations on the 360 are designed to use the

interrupt mechanism to signal termination of processes performed

by data channels and devices in parallel with CPU operations,

41

Tens mm

In order to use the interrupt feature, 1t 1s necessary to create

program status words (PSW) and store them in certain fixed locations

of memory. A PSW contains the absolute address of a point in the

program, which is a quantity that cannot be generated by a FPL360

program.

2. Particularly 1n routines servicing interrupts, but also 1n some

other cases, 1t 1s desirable to be able to dispense of a program

base register. This could be done by locating these routines with-

in the first 4096 bytes of core memory. The loader described above,

however, chooses the absolute location of a segment on 1ts own.

These two shortcomings can be overcome in many ways. The following 1s

suggested:

1. A facility 1s introduced to designate a segment as an interrupt

service routine, with the effect that the compiler supplies infor-

mation to the loader, causing the loader to assign the segment's

base address to the appropriate PSW cell instead of the segment

address table. The compiler itself terminates this segment with

an LPSW instead of a BR instruction (cf. V.6.). This approach

forces a programmer to make explicit the fact that an interrupt

routine 1s conceptually a closed segment, and it circumvents the

undesirable introduction of a facility to generate labels as manipu-

latable objects.

: 2. A provision 1s 1ntroduced to cause the compiler not to refer to a

base register 1n the branch instructions contained in the interrupt

service segment. The loader 1s at the same time instructed to al-

locate this segment within the first 4096 bytes of core memory.

Usually, however, these facilities are not needed, because the

program 1s executed in the environment of an operating system (whose

choice 1s normally not up to the individual programmer) which executes

programs in the program-mode where input-output instructions are not

executable. The form which statements communicating with such an en-

vironment assume 1s determined by that particular environment and can-

not be defined as part of the language proper.

Lo

r

RAS
: IB

’ at +

.

VI. Compiler methodology

1. General organization

The compiler 1s a strictly syntax directed one-pass translator.

Its design served as a major test for the applicability of the techniques

described in [3] to practical programming languages. The language was

designed to conform to the rules of simple precedence grammars as postu-

lated in [3 J]. The development of a precedence syntax to whose individual

rules the meaning of the language could be properly attached was no easy

task. Interestingly enough, however, this design process provided many

insights into the nature of various conceptual elements, led to their

clarification and often simplification, and contributed a great deal to

the systematic structure of the resulting language.

The algorithm for syntactic analysis constitutes the core of the

compiler. It operates on the basis of a table containing the rules of

syntax and a table containing the precedence relations among input tokens,

and evokes the execution of an interpretation rule whenever a parsing

step is taken. The input tokens are obtained by calling a procedure

-n- =
Syntax Precedence Interpretation
Rules Rules

Relations

called "insymbol", which scans the sequence of input characters in the

manner of a finite state machine, and yields as a result either a basic

symbol of the language, an identifier, a number, or a string. It auto-

matically suppresses comments. It should be noted, that in the imple-

mented language no equivalent for the underlining of basic symbols 1s

43

provided, and that therefore a sequence of letters and digits, starting

with a letter and not containing blanks, may constitute a basic symbol.

Any such sequence must be matched by the insymbol routine against a table

containing the representations of all "letter-symbols". If a match is

found, the result 1s a basic symbol, otherwise an identifier. As a con-

sequence, 1dentifiers could not be constructed by the syntax analyser

itself upon receiving merely a sequence of letters and digits. The con-

sideration of numbers as tokens, on the other hand, was not a necessity

but rather a convenience.

The syntax analyser makes use of a stack (called "symbol stack")

to store not yet reduced symbols. Whenever a reduction takes place, the

interpretation rule corresponding to the applied syntactic rule 1s acti-

vated. These interpretation rules make use of a second stack (called

"value stack") to store information about each syntactic entity occurring

in the reduction process. To each entry in the symbol stack corresponds

an entry 1n the value stack, and vice-versa. Ideally, an interpretation

rule should exclusively reference data in those entries of the value

stack which correspond to symbols in the symbol stack being reduced by

the applying syntactic rule. This principle has been followed in the

simple example presented in [3]. Here, however, a deviation from it

was made by the introduction of conventional identifier tables, one con-

taining identifiers denoting program points (labels), one for all de-

clared identifiers.

2. Identifier tables

The presence of 1dentifer tables simplifies the search for identifiers

and eliminates the need for the specific right recursive definition of

the declaration structure used in [3]. The separation of the table into

one containing declared identifiers and one containing labels has its

reason 1n the fact that labels are the only identifiers which can occur

in a statement before being defined in the program, and must therefore

be treated differently as discussed below.

It should first be noted that the presence of the syntax rules

(1) (7 cell identifier) ::= (identifier)

In

(2) (function identifier) ::= (identifier)

(3) (procedure identifier) ::= (identifier)

etc.

constitutes a violation of the requirement that in an unambiguous prece-

dence grammar no two rules should have identical right parts. This

violation required a slight complication of the analysis algorithm with

the effect that an interpretation rule may cause an otherwise applicable

syntactic rule to be rejected. In the given example, the interpretation

rules specify that the considered identifier be located in the identifier

table. If location is successful,ten rule 1 is rejected unless the

table indicates that the identifier indeed designates a J cell, rule 2

1s rejected unless 1t designates a function, etc. This decision of the

applicability of a syntactic rule on grounds of essentially semantic

information reflects the argument that "Algol-like languages" are strictly

speaking not context free, 1.e., cannot be described by a phrase structure

grammar alone.

The above identifier search implies that the entire block-structured

identifier table be searched. The following program demonstrates that

labels cannot be subjected to the same process, and that therefore

(4) (label) ::= (identifier)

must not be a rule of the language.

. A: begin. . .

B: begin goto Lj;

L:

end;

end

In this example, rule 4 applying to L after the symbol goto would

detect L as present in the identifier table, because L was defined

as a label in the outer block (A). This would, however, be an erroneous

assumption, since a local L 1s defined later in the inner block (B),

to which goto IL should refer. Consequently, searches for labels must

FT —

be confined to the innermost block, and such a restricted search must

be represented by an interpretation rule connected with a distinct syn-

tactic rule with a different right part. In the language, that rule 1s

(go to statement) ::= goto(identifier)

Identifiers in the label table are marked as either defined or not

yet defined. Upon exit of a block, all undefined.. entries: are. col-

lected and considered as entries in the outer block, where some of them

may be found as already defined. This process made the use of a separate

label table desirable.

The compiler 1s designed to read the source program from cards or

tape; 1t produces (optionally) a listing, each line containing a corres-

ponding target program address. The code is compiled into core memory,

and as soon as a segment 1s closed, 1t 1s written onto secondary storage.

The segment 1s preceded by a record indicating the kind of the segment

(program or data), 1ts number, and its length. The program loader later

collects the segments from the secondary storage, lists the base

address which 1t assigns to each segment, and assigns 1t to the corres-

ponding entry 1n the segment address table.

5.Hamdling:of usyntacticcerrors

The syntax analysis algorithm described in [3] makes the assump-

tion that analysed programs are syntactically valid. This assumption

1s not tenable in the practical world of computer programming. Syntactic

errors are detected by the fact that for some string recognized as re-

ducible there 1s no matching entry in the table of productions. After

an error has been encountered, it 1s 1n most cases desirable to continue

compllation 1n order that subsequent errors may be located and indicated.

A method has to be devised to let the analysis algorithm proceed after

having made some assumption about the nature of the error.

This 1s 1n general a rather hopeless task. An investigation of a

large number of programs containing syntactic errors reveals, however,

that most of the committed errors exhibit strong similarities and can be

diagnosed by a relatively simple algorithm. In most cases, syntactic

46

errors are due to omission or wrong use of symbols merely conveying

information about structural properties of the program, such as inter-

punctuation symbols and the various kinds of brackets. Omission of ele-

ments explicitly stating program activities, such as operators and oper-
ands, are rare.

A second important consideration 1s that an incorrect construction

should be detected as early as possible, 1.e., before further steps are

taken on the basis of the incorrect text. The precedence grammar tech-

nique is an excellent scheme in this respect, because it is based upon

relations existing among symbol pairs. That none of the relations de-

notedby <, =, 3 exists between two symbols implies the impossibility

of these two symbols being adjacent in any sentence of the language.

The empty relation (denoted by ©) shall be defined as holding whenever

none of the others hold. On a left-to-right scan, its encounter consti-
tutes the earliest possible detection of an erroneous construction.

It should be noted that the use of two precedence functions instead

of the precedence relations implies that the analysis algorithm is based

on a condensation of the information contained in the matrix of relations.

This condensation relies on the assumption that empty relations can sim-

ply be ignored. The above considerations lead to the conclusion that

for practical reasons 1t 1s advantageous to have the relation matrix at

the disposal of the analyser rather than the functions.

The algorithm for diagnosing of and recovery from errors described

subsequently 1s a heuristic solution rather than one based on rigorous

theoretical principles. It is contended here that any such scheme must

make a very drastic selection from all the possible forms which errors

may assume. The important aspect 1s that those situations are mastered

intelligently which are likely to occur often,, Since a frequency sta-

tistic of errors reflects the behavior of the human users, such a selec-

tion must by definition be based on heuristics.

There exist two places in the analysis process, where illegal con-

structions may be detected (cf. [3], p. 18):

47

1. The empty relation holds between the symbol on top of the stack

and the incoming symbol:

0)
S, P

In this case a list I of insertion symbols 1s scanned. If for

some m, OS. ® T and I ® P, then I 1s 1nserted into the scanned
i m m k m

string in front of Pr . Since this insertion may lead to a correct
program (1n about 90 of the tested cases it did), an according comment

must be delivered to the programmer.

If for no m, S. ® 1 and 1 @ Po then the symbol Pe 1s
stacked.

2. The value of the function

Leftpart (S 5.) ‘

is undefined (Q), 1i.e., there exists no syntactic rule whose rightpart

1s 3 5 S. . This situation may occur even if for all k (J < k < 1)
8, P Skt1 ’

In this case a table of erroneous productions 1s scanned for aright-

part identical to 3 5 Co Ss . If a match 1s found, an error message
corresponding to that rule can be printed, and the analysis can proceed

with the statement

: §. := Leftpart(S. S.) .
J 5 I §

48

The augmented algorithm for syntactic analysis 1s then described

as follows:

procedure Invalid pair;

begin integer m; m := 1; -

while m <n A (SOI VIOP)do m := ml;
— Fm Tm kl =

. . . P P= a.if m < n then (P, 41) I cat (P, P)
end;

while PA "1" do

begin 1 = J = J+1; 5.3% Ps k t= k+l;
while 5 0 >0 By do
begin if 50h then Invalid pair;

while S, =03, doj:= J;

S. := Leftpart(S, . . . 8.);1 := 1
. 3 i 3/9 J
end

end

In the specific case of the PL360 language, the selected insertion Sym-
bols I are

m

3 (0)

49

The following are the selected erroneous productions:

0 (¥ register assignment)::=

(T cell designator) := (JT value)

1 (K register assignment) ::= -

(IT cell designator) := (monadic operator) (J value)

2 (register assignment)::=

(TJ cell designator := (monadic operator) (T register)

3 (blockbody) ::= (blockbody){statement); else

L (case sequence) ::= (case sequence) (statement); else

5 (function statement) ::= (function statement))

6 (I cell designator) ::=(J cell designator))

7 (procedure head) ::= (procedure name);

8 (condition) ::=
(T cell identifier)(relational operator) (J value)

9 (condition) ::= (T cell identifier)(relational operator) (K register)

10 (block head) := (block body){declaration);

11 (J cell designator) ::=

(T cell designator)({T number))

12 (simple T type) ::=

(simple J type) array ((integer number))

13 (procedure identifier) := (procedure identifier)W@ register))

14 (statement) ::= (blockbody) (statement)

50

The following table of messages accompanies the erroneous produc-

tions. If some erroneous production 1s found to be applicable, the

corresponding message 1s transmitted to the programmer.

0,1,2 Assignment must occur either to or from a register.

3,4 else must not be preceded by a semicolon.

5,6) without matching (.

7 A register specification 1s missing in the procedure heading.

3,9 The first comparand must be a register.

10 A statement cannot be followed bya declaration.

11 Write "(cell designator) ({integer number)) {integer register))"”

instead of

"(cell designator) ({integer register))({integer number))"

12 array should be the first symbol in the declaration.

15 Procedure statement must not have a parameter.

14 The symbol end is missing.

With these limited facilities, the syntax analyser was able to parse

and correctly diagnose the texts in which the following erroneous con-

structions were contained. The produced diagnostic messages are 1indi-

cated by their number enclosed in parentheses at the right margin, while

arrows 1ndicate the position where the analyser detected and diagnosed

the error:

51

begin real x; RO := a end missing ;
t

begin real x RO := a; end missing ;
t

if R1 = a then Rl := b; else Rt := c (3)
So t

P; P(RL);, (13)

IA(RO(R1); LA(RO)(R1)); missing)
(5)

array (5) integer m (12)(23) 3k4)(45(56); missing (
to missing)

RO := Rl; real x, Vy; (10)
1

a :=Db; a v= abs b; a := abs RO; b := neg Rl; (0)(1)(2)(2)
t t t t

x(RLl)) := Db; (6)(0)
t 1

begin if a = b then goto I; (8)
t

if s<RL then goto L; else goto K end (9)(3)
missing;

As can be seen from the later examples, the analyser is able to correctly

- diagnose even nested errors and relate them to their context. The diag-

nostic messages are meaningful, because the analyser has found applicable

an erroneous production which was anticipated by the compiler designer,

who 1n turn was able to associate an appropriate comment, knowing the

reasons why human programmers inadvertantly use such a construction. It

was found to be helpful to let the compiler list,in addition to the mes-

sage, the symbols currently in the parsing stack. They represent all

the unfinished syntactical entities 1n the parse, and give the programmer

valuable guidance toward understanding of his misuse of the syntax.

The choice of the appropriate insertion symbols and erroneous pro-

ductions requires a thorough-understanding of the analysis algorithm on

52

on the part of the compiler designer, as well as a subtle feeling to

anticipate frequent misuses of the syntax. Of course, further insertion

symbols and productions can easily be added to the tables in order to

increase the diagnostic capabilities. of the analyser. If a compiler is

capable of gathering statistical information about encountered erroneous

situations, this information could be evaluated from time to time in

order to expand the tables. As a result the compiler would truly seem

to adapt itself to its imperfect human environment in order to gradually

become a better and better teacher.

25

SARI EMER

Cady are

VII. The development of the compiler

At the time when the project to develop a compiler for PI360 was

started, no 360 computer was available to the author, nor did the facili-

ties promised with the forthcoming machine look too enticing to use.

It was therefore decided to use the available Burroughs B5500 computer

for the design and testing of the compiler, which was completed by the

author within two months of part time work. It accepted a preliminary

version of PI360 as described in [5] which contained the basic fea-

tures of the presently described language.

The compiler was then reprogrammed in its own language. Through

a loader and supervisor program (written in assembly code), the program,

recompiled on the B5500, became immediately available on the 360 computer.

The experiment of describing the compiling algorithm in PIL360 itself

proved to be the most effective test on the usefulness and appropriate-

ness of the language, and it influenced the subsequent development of

the language considerably. During this process, several features which

seemed desirable were added to the language, and many were dropped again

after having proved to be either dubious in value,, inconsistent with the

design criteria, or too involved and leading to misconceptions. The

leading principle and guideline was to produce a conceptually simple

language and to keep the number of features and facilities minimal. The

"bootstrapping" method in combination with the described compiling tech-

nique proved to be very successful for experimentation with and altera-

| tion of the language. The process of incorporation of a new feature
consists of representing the new feature in the syntax of the language,

and of defining the compiler actions corresponding to the new constructs

in the form of additional interpretation rules. These rules must of

'course be denoted in terms of previously available facilities.

In general, a significant drawback of the bootstrapping technique

1s the fact that programming errors are easily proliferated. However,

the combination of the bootstrapping method with the rigorous approach

to systematic compiler organization by means of strict syntax analysis

proved to be very successful, since the latter constitutes an enormous

step towards reliability, which can never be achieved by common heuristic

methods of compiler design.

5

| Algol .
Compiler

PL360 HEN PI360
Compiler Compiler
(Algol) B5500 (binary)

PI360 PL360
Compiler Compiler
(PL360) B5500 (binary cards)

Programs tput

(P1360) | outPu
360

Process of bootstrapping initial version of PI360 Compiler
from B5500 to 360 computer.

5d

syntax
Processor

syntax

ont of n | | Precedenceax

ym P1360 B5500 Tables
+ or n+l

P1360" 260 | PL360
New

| Rules

replace

6 nTables P1360
Compiler

P1360 Syntax

Compiler Analyser
PL360

Rules PL360"

PI360 Compilerinar

| New 560 Y
Rules

Process of bootstrapping compiler version
n 1nto version n+l .

56

psTMI Fy
he Ep Ba
i] Wee

VIII. Performance

The development of a job control and supervisor program was under-

taken in parallel with the construction of the compiler. The following

performance figures reflect the operation of the compiler under that

supervisor. It should be noted that the supervisor considers the com-

piler in the same way as a regular user's program.

Size (in bytes)

Supervisor 3 500

Job control 3 T00

7 200

Compiler program 12 700

Various compiler data 95 400 18 100

Identifier tables 14 400

Output area 2k 600

30 000 59 000

64 300

Timing

The processing of a job consists of the following steps, described

in terms of the present implementation on a 360/50 computer:

1. Loading of the compiler from tape

2. Compilation, with input from cards or tape, and output to

tape (and optionally to cards)

5. Loading of the compiled program from tape (or cards)

| 4. Execution of the program.

Steps 1 and 3, constituting what 1s usually called "overhead", take

4.7 secs. execution time. Compilation proceeds at the speed of

the card reader (1000 cpm). If the source program 1s read from tape

and the program listing 1s suppressed, the compiler (about 1500 card

records) recompiles itself in 39 secs (with listing in 109 secs). The

time required to load the system initially 1s 2 secs.

57

IX. Reflectionson the 360 architecture

Based on the experiences drawn from the compiler development, it

can be concluded that the objective to make direct machine programming

more convenient by providing a tool which 1s superior to common assembly

codes with respect to readability and writability, 1s commendable and

important. It can also be concluded that PI360 is fairly successful in

meeting this objective. The decisive factor, in the author's opinion,

1s the simplicity, frugality, and coherence of the language. A limiting

factor to this 1s the architecture of the underlying machine. In this

respect, the question "how well is the computer suited for this kind of

language?" becomes more significant than the opposite question "how

well 1s the language suited for the machine?". The author feels indeed

strongly about this point, and recommends future hardware designers to

confront themselves seriously with the first question, before yielding

to the well-known policy of answering every problem with the common and

omnipotent reply: "There is a bit somewhere".

As a matter of fact, the relatively systematic architecture of the

360 computer series provided a strong encouragement to devise a tool in

the sense of PL360. It seems nevertheless worth while to locate some

of its less fortunate features:

1. The 1dea of a "two-dimensional instruction set" with one coordinate

specifying the operation, the other the type of operand, is-very com-

mendable, and is properly reflected in PL360. But, the better a

principle 1s, the worse are its violations. There exist operands

of type full word integer, half word integer, full word logical,

short and long floating point, and byte in the 360 system. operations

on them are more or less grouped into columns in the matrix of instruc-

tions. However, instructions on logical and full word integer oper-

ands occur in the same column, certain operations are missing in the

half word format, and operations on bytes differ radically from all

others. A striking example 1s the inconsistency of the LH and STH

instructions, the first of which performs the function of assigning

an integer to a register, the second one that of assigning a half-

word logical quantity to a memory cell. This is not merely an unfor-

tunate feature, but a conceptual flaw.

58

2. The fact that many instructions are indexable only through misuse

of the base register field is very unfortunate. It 1s one reason

why none of those instructions fits into the scheme of the PI360

assignment statement. :

5. The more complex a single instruction,the more debatable becomes

the choice of its detailed form. The BCT, BXLE, BXH are good

examples, none of which fitted into the scheme of PL360 structures.

4. The 360 instructions exhibit a remarkable consistency in the scheme

of condition code setting, with the very peculiar exception of the

TM instruction.

This short list of architectural misfits 1s by no means complete.

It omits,e.qg., mentioning some dismal properties of the floating point

arithmetic and of the input-output mechanism. However, these have no

immediate effect on the structure of the PL360 language.

59

X. How to use PL360

This chapter 1s intended to serve as a reference manual for the

user of the PIZ60 language as implemented on the GSG/ SRD 360/50 computer

at SLAC. It describes the facilities and the usage of the compiler and

operating system, version Nov. 1966.

The operating system consists of a batch processing jobcontrol

program, and a set of elementary input output service routines with

i associated interrupt programs. The Jjobcontrol program incorporates a

loader, reading binary programs from either tape or cards, and 1t treats

programs to be executed, including the PL360 compiler itself, as sub-

routines.

JOBCONTROL

[P1360
programs

service

“routines

The jobcontrol program and the service routines are executed 1n the

* supervisor mode and are storage protected. Together they occupy the

first 8000 bytes of core memory.

1. The language

The implemented language 1s that described in Chapter 11,, with
the following symbol representations, restrictions, and extension:

a) Symbol representation

Only capital letters are available. Basic symbols which are de-

noted by underlined letter sequence in Chapter II are denoted by the

same sequence of capital letters. Such sequences may not be used as

identifiers. They are tabulated in X.8.

60

b) Restrictions

No go-to statement may refer to a label 1n a segment different from

the one where the goto statement occurs.

Oniy the first 10 characters of identifiers are significant.

c) Extension

To facilitate program debugging, a dump statement has been intro-

duced.

syntax:

(simple statement):i= (dump statement)

(dump statement) ::= (dump heading) ({length part))

(dump heading) ::= dump ({J cell designator))

(length part) ::= (1nteger register) | (integer cell designator)\

(short integer cell designator) | (integer number)

The dump statement causes the listing in hexadecimal form of the

values of the n consecutive memory cells (-bytes), the first of which

is designated by the J cell designator. n is the value of the length

part.

d) Additional standard functions

A set of standard functions 1s defined as supervisor calls for

elementary input and output operations. The referenced supervisor rou-

tines make use of parameter registers as specified below. They set the

condition code to 0, unless otherwise specified. Input-output devices

are designated by logical unit numbers (cf. X.8.).

READ Read a card, assign the 80 character record to the

memory area designated by the address in register 0 ,

Set the condition code to 1, 1f the end of the card

file 1s encountered.

READO26 Same as READ, with the addition of a character code

translation as specified in section X.8. The transla-

tion maps 026 punched characters into their 029

equivalents.*

61

WRITE Write the record of 132 characters designated by the

address 1n register 0 on the line printer. Set the

condition code to 1, 1f the next line to be printed

appears on the top of a new page.

PUNCH Punch the record of 80 characters designated by the

address in register 0 on the card punch.

READTAPE Read a record from the tape unit specified by the logi-

cal unit number is register 2 . The length of the

record 1n bytes in specified by register 1, and it is

assigned to the memory area designated by the address

in register 0 . Set the condition code to 1, if a

tape mark 1s encountered, Register 1 1s assigned

~ the number of bytes actually read.

WRITETAPE Write a record on the tape unit specified by the logical

unit number in register 2 . The length of the written

record 1n bytes 1s specified by register 1; the record

1s designated by the address in register 0 .

PAGE Skip to the next page on the line printer.

The following are tape handling functions. They affect the tape unit

specified by the logical unit number in register 2 .

MARKTAPE: Write a tape mark.

REWIND: Rewind the tape.

BSPREC: Backspace one record.

FSPREC: Forwardspace one record.

BSPTM: Backspace to the previous tape mark,

FSPTM: Forwardspace to the next tape mark.

A program interruption (cf. X.5.) due to arithmetic operations records

the interruption code in the byte cell FPI. This cell, being part of

the supervisor, 1s memory protected, and cannot be reset by the user's

program directly.

FPIRESET: Reset the value of the cell FPI to 0 .

62

2. Compiler instructions

The compiler accepts instructions occurring anywhere in the sequence

of input records. A compiler instruction card is marked by a $ charac-

ter in column 1, and an instruction in @olumns 2-4. Columns 5-80 of such

a record are ignored.

$026 The compiler assumes subsequent source cards to be

punched on 026 keypunches.

$029 The compiler assumes subsequent source cards to be

punched on 029 keypunches.

$LIST Subsequent source records are listed on the printer.

$NOLIST Subsequent source records are not listed.

$ PUNCH Computed program and data segments are punched on cards.

$PAGE A page is skipped in the listing.

$0 No trace output is listed.

$1 The relative address of all variables and procedures

are listed when they are declared.

$2 Addresses are listed as after $1, and the produced

machine code 1s listed in hexadecimal notation.

$TAPEn The subsequent source records are read from the tape

. unit with logical number n .

5. Compiler error messages

Errors are indicated by the compiler with a message and a bar below

the character which was read last.

Error No. Message Meaning

00 SYNTAX The source program violates the PL360

syntax. Analysis continues with the next

statement,

01 VAR ASS TYPES The type of operands 1n a variable assign-

ment are incompatible.

63

Error No. Message Meaning

02 FOR PARAMETER A real register instead of an integer reg-

ister 1s specified in a for clause.

03 REG ASS TYPES The types of operands 1n a register assign-

ment are incompatible.

04 BIN OP TYPES The types of operands of an arithmetic or

logical operator, are incompatible,

05 SHIFT OP A real instead of an integer register 1s

specified in a shift operation.

06 COMPARE TYPES The types of comparands are incompatible.

of REG TYPE OR # Incorrect register specification.

08 UNBEFINED ID An undeclared identifier is encountered.

09 MULT LAB DEF The same identifier 1s defined as a label

more than once in,the same block.

10 EXC IN1 VALUE The number of initializing values exceeds

the number of elements in the array.

11 NOT INDEXABLE The function argument does not allow for

an index register.

12 DATA OVERFLOW The address of the declared variable in

the data segment exceeds 4095.

; 13 NO OF ARGS An incorrect number of arguments is used

for a function.

14 ILLEGAL CHAR An illegal character was encountered; it

1s skipped.

15 MULTIPLE ID The same 1dentifier 1s declared more than

once 1n the same block.

16 PROGRAM OFLOW The current program segment 1s too large.

17 INITIAL OFLCW The area of initialized data in the compiler

is full. This can be circumvented by suit-

able segmentation.

64

Error No. Message Meaning

18 ADDRESS OFLOW The number used as index is such that the

resulting address cannot be accommodated.

19 INTEGER OFLOW The integer number is too large in magni-

tude.

20 MISSING @ An end of file has been read before a

program terminating @ was encountered.

21 STRING LENGTH The length of a string is either 0 or

> 256 .

22 DUMP TYPE The length part does not specify an inte-

ger.

23 FUNC DEF NO. The format number in a function declaration

1s 1llegal.

At the end of each program segment, undefined labels are listed with

an indication where they occurred.

4. Jobcontrol instructions, the form of input card decks

Cards containing a 0-2-8punch in column 1 are recognized by the

"READ" and "READ026" supervisor routines as jobcontrol cards, and give

rise to an end of file indication. Information contained in columns

- 2-9 (left adjusted) of such cards 1s interpreted by the job control rou-

tine as follows:

PL360 Control 1s given to the compiler to process the subsequent

source program.

DATA Control is given to the previously compiled and/or loaded

program. If the preceding compilation detected any errors,

the subsequent data cards are skipped.

LOAD Control 1s given to the loader routine, which loads subse-

quent "binary" program cards.

PAUSE The operator is notified, and the system waits for the opera-

tor's instructions given via the operator console typewriter

(cf. Xx.6.).

65

Other control cards are recognized and may be used to activate library

programs, which are not described in this Report.

Typical card deck compositions are:

data

source program | IDAT.

IPL360O
| 0 :

2 |

g i may contain
"compiler

oo . instructions"

Compilation and execution

data |

"binary" cards : x

LOAD

2

g | oo ~

Loading and execution

66

|

5. Program execution errors

The following error conditions can occur:

a. A "program-check" interruption occurred. This 1s indicated by the

message !

PRG PSW XXXXXXXXXXXXXXXX

If interruption occurred due to an arithmetic operation, the inter-

ruption code 1s stored in the byte cell FPI (floating point interrup-

tion), and control 1s returned to the interrupted program? Otherwise,

control 1s given to the job control routine.

b. An attempt is made to read beyond a control card. The message

EOF PSW XXXXXXXO0OCXXX

1s printed, and control 1s returned to the job control routine.

c. An 1llegal logical unit number has been used for an input-output

operation. The message

DEV PSW XXXXXXXXXXXXXXXX

1s printed, and control 1s returned to the job control routine.

d. The operator intervenes by causing an external interrupt. The message

EXT PSW XXX XXXXX

appears on the line printer and the operator console. (cf. X.6.).

6.Minimal configuration reauirements

Core memory: 65K bytes, protection feature

+ 1 card reader/punch (2540)

1 line printer (1403)

2 tape units (2401-3)

1 console typewriter (1052) (dev. addr. 009)

*

Such interrupts are counted, and the counts are listed (if £ 0) after

the end of program execution.

67

7. Loading and operating the system

The process of initial loading consists of the following steps:

a. Reset system

b. Mount system tape on any 9-track unit (usually device 282)

c. Stack jobs on the card reader

d. Make card reader, line printer, and tape 5 (used by the compiler)

ready.

e. Select the unit carrying the system tape on the Load Unit Switches®

f. Press the Load Key

Execution of the job sequence stacked on the card reader 1s imme-

diately started. Control is returned to the operator when either

a. a PAUSE control card 1s encountered, or

b. the operator presses the external interrupt key.

The computer then accepts instructions from the operator via type-

writer. Each message must be terminated with an EOB (end of block)

character. The following free-field instructions are accepted:

a. dump XXXXXX, NNNNNN' EOB

dump NNNNNN' EOB

dump EOB

The values of the registers and of the MNNNNNN byteicells istarting at

theinitialiaddressXXXXXX' are ligtedin hexadecimal. form. ~If the.

initial address is omitted, 'lt:is taken as the beginning of the user's

data'segment area,’ and~if She count isomitted, it 1s taken as the length

of' the user's data, segment area . + “gv

b. device XX EOB

Devices are designated by logical numbers, The correspondence be-

tween logical numbers and actual device addresses 1s established by the

device table (cf. X.8). The above command causes the address AAA of

the device with logical unit number XX to be typed out. Subsequent

typing of the device address BBB causes that device to be assigned the

logical unit number XX, and the device with address AAA to be given

the logical unit number -YY, which previously designated device BBB

68

(1f any). As a result, every device 1n the system will always be

designated by at most one logical unit number.

before after

XX : AAA xx +: BBB

YY : BBB YY : AAA

c. EOB

Processing resumes with the next job 1n sequence.

The operator 1s informed about abnormal conditions encountered

by the error analysis routines of the elementary input = output

programs contained in the supervisor. The following messages are

typed:

a. XX YYY NOT RDY

b. XX YYY NOT OP

c. XX YYY I/O ERROR CCCC DDDD

d. XX YYY DEV END CCCC DDDD

XX represents the logical number of the afflicted device, YYY its

physical address, CCCC the encountered channel status, and DDDD

the device status.

Message a. 1s given when a device is not ready. Execution

resumes when the device is put into the ready state. Messages b.,

c., and d., are respectively given when a device 1s not operating,

when a malfunction 1s encountered, or when an error 1s discovered

upon device end interrupt caused by the reader, punch, or printer.

The operator must reply with one of the following messages:

a. 1lgnore EOB

b. exit EOB (resume processing with next job)

c. EOB (retry the operation after I/O ERROR; ignore the DEV

END condition)

Note that 1f a storage dump 1s desired before processing the

next job, then the interrupt key must be pressed first. If the

operator response 1s not recognized by the system, then "RETRY" is

typed out. In order to cancel a response, the CANCEL character must

be typed before typing EOB. In either case a correct response should
then be typed by the operator.

69

8. Tables

Character code translation table (used in READO26)

holes 026 --- 029 hex.

12-3-8 . . LB
12-6-8 < < 4c

0-4-8 ((4D
12-5-8 [(LD

12 se + LE
0-6-8 < | LF

12-0 & 50

11-3-8 $ $ SB
11-4-8 * * 5C
12-4-8)) 5D
11-5-8) 5D
u-6-8 5 ; OE

-. 6-8 X 1 5K
11 60

0-1 / / 61
0-3-8 , , 6B

11-7 -8 % 6C
0-5-8 - _ 6D

11-0 > 6F

5-8 : | TA

12-7-8 # TB
0-7-8 @ 7C

7-8 7D

L-8 " TF

Letters and digits are represented by the same hole combinations

on cards punched on either the 026 or the 029 keypunches, and do there-

fore not undergo any translation. The column designated "026" lists the

characters printed by the Stanford extended 026 keypunches.

70

BASK SYMBOLS

_ | (|

+ *

DO XOR SHLA WHILE
| F BASE SELL COMMAND

OF BYTE SHRA INTEGER

OR _ CASE SHRL LOGICAL
AB S DUMP STEP SEGMENT

AND ELSE THEN FUNCTION

END GOTO ARRAY OVERFLCW

FOR LONG BECIN REGISTER

NEG AULL SHORT CHARACTER
SYN REAL UNTIL FROCEDURE

NOTE: THESELETTERSEQUENCES MUST NOTBEUSED ASIDENTIFIERS.

STANDARD | DENT IF | ERS.

ARRAY {}INTEGER MEN SYNO:
BYTE FPI SYN 43

INTEGER Bl SYN MEM(R]l)

INTEGER B2S Y NMEM{R2)
INTEGER 8 3 SYN MEM{R3)
INTEGER 84 SY NMEM{R4)

INTEGER 85 SYNMEM{RS)

INTEGER 86 SYNMEM{R6)
INTEGER BTS Y NMEM(RT)
INTEGER B8 SYNMEM(RS)
INTEGER B9S Y NMEM{RY)
INTEGER B ASYNMEMIRA)
INTEGER BBS Y NMEM(RB)

INTEGER BC SYNMEM(RC)

INTEGER BDS Y NMEM(RD)

Tl

INTEGER REGISTER RQ (0)

INTEGER REGISTER ii 1 (1)
INTEGER REGISTER R2 (2)

INTEGER RLGISTER K3 (2)

INTEGER REGISTEK R3 (3)

INTEGER REGISTER R4 (4)

INTEGER REGISTER RS (5)

INTEGER REGISTER R&6 (6)
INTEGER REGISTER R7 (7)

INTEGER REGISTER R8 (8)

INTEGER REGISTER R9 (9)

INTEGER REGISTER RA (A)

INTEGER REGISTER RB (8)
INTEGER REGISTER RC {C)

INTEGER REGISTEK RD {(D)

REAL REGISTER Fo (0)

REAL REGISTER r-2 (0)

REAL REGISTER F2 (2)

REAL REGISTER Fa (4)

REAL REGISTER F6 (6)

-. LCNGH E A LREGISTERFOL1(0)
LCNG REAL REGISTER F23(2)

LONG REAL REGISTERF45(4)

LCNG REAL REGISTER Fé&é7T (6)

FUNCTION LA (2)(#4100)

FUNCT ION MV] (4) (49200)

FUNCTIUN MVC {S5) (#0200)

FUNCTION CLI (4) (#9500)

FURCT ION CLC {5)(#D500)

FUNCTION LM (3) 49800)

FUNCTION STM (3)(493000)

FUNCTIGN SLOL (9) (#8000)

FUNCTION SROL (9) (#8C00)

FUNCTION IC {2)(#4300)

FUhRCT ION STC (2){#4200)

FUNCT ION CVD (2) (#4800)

FURCT ION UNPK {10)(4F300)

FUNCTIUN to (5) {4DEQO)

FUNCTION EX {2) (#4400)

FUNCTION SET (8) (492FF)

FUNCTION RESET (8) #9200)

FUhCT ION TEST (8) (495FF)
FUNCTION READ (0){ #0A00)

FUNCTION RfA0026 {CIUL#0AODL)

FUhCT IUN WRITE (0) 4#0A02)

FUNCT ION PUNCH (0){ #0A03)

FUNCTION READTAPE (0)(#0A06)

FUNCTION WRITETAPE (0) (#0A07)

FUNCT ION REWIND (0) {(#0A08)

FUNCTIUNMARKTAPE (O)(#0A09)

FUNCTIONFSPTM (C) (#OAOQA)

FUNCT TION FSPREC (C){#0AOB)

FUNCTION BSPTM (CY (#0AO0C)

FUNCTION BSPREC (C)(#0AO0D)

FUNCTION PAGE (C){#OAOE)
FUNCTION FPIRESET (C){H#OAOF)

72

SYNTAX

<K REG*> s3= KIDD

<1 CELL 10> =::= <ID>

<FRCC 1ID> s:= SID

<FUNC ID> ss= <ID> ;

<K REG> t2x <K REG*)D

<T CELL*> 22=<T CELL ID> {<7 NUMBER>)
<1 CELL> $3=TCELL 10>

CY CELL 10> { <K REG*>) |

< TCELL*>

<T CELL*¥> (<KK REG®>)

<TVALUE> $s= <T NUMBER>

<T CELLS> |
<STRING>

<KSIASS> $3= <K REG#*> 33= T VALUE» |
<K REG%*> := <KK REG> i
<« KREG*>3= <UNARY OGP> <KTVALUE>

<K REG*> = <UNARY CP> <K REG>

<UNARY CP> 2:= ABS

NEG

NEGAB S

CARITH GPO HEE

}
* i

/ |

+ +]

<LCG CP> s:= AND

CR
X0R

<SHIFTQOP> $3=SHLA
SHRA

SHLL |

SHRL

KREG ASS*>3¢=<KSI ASS>
¢K REG ASS*> CARITHOP>XXTVALUE >

<K HEG ASS*:> CARI THOGP> <XKREG>
<KREGASS*> << L O GOP> KT VALUED]

KREG ASS *><LOGOPY> <KK REG> |
<KREGASS*> <(KSHIFTOP>XT NUMBER >
CKREG ASS*><SHIFTCP> <K REG*>

<K REG ASS> 33:= <K REG ASS*>

SFUNCTIOND $3= <FUNC 10>

SFUNCTIGNY> (LT NUMBER>)
SFUNCTICAN> (| <K REG¥*>)

CFUNCTIGON> (KT CELL> 1}
<FUNCTION> (<STRING> 1)

<CUMP HEAL> :2:=DUMP (LT CELL>)
<CASE SEC> 33=2C A S EXKREG*>OO f BEGIN

<CASESEQ> <STATEMENT> 3

<SIMPLEST> 23= {TCELL>%= <KK REG>]
<K REG ASS>

NULL

GOTO KIL> |

CPRGC IDB>
<DUMP HEAD> tt <T NUMBERY>)

<BUMP HEAD> (<K REG*> } |
<DUMP HEAL> (<T CELL>) }
<FUNCTION> |

< CAS ESEQ>END |
<BLECK>

73

<REL CP> 1 i= |
> |

< = |

> =)

COND ITICNY> 3:= KK REG%¥> CRELOP>XTVALUES>

CK REG¥> <REL 0OP> <K REG> |

CVERFLOW |

<REL OP>

IF CL> s2= | FLCONCITION>T H E N

<1RUE PART> $2= <SIMPLESTI>ELSE

<WHILED 23= WHILE

<CCND DD s2=z SCCANDITICN>D O

{FOR HEAD> ::=FCR<KREG ASS>
<INCREMD 2e= S TE PLTNUMBER>

<LIMIT> ss= UNTIL <KKREG*> |

UNTILKTCELL > |
UNTIL <T NUMBER>

<C0> 2:t= CC

SSTATEMENT®)> 2:=<SIMPLEST >

<IF CL> <STATEMENT*>
<KIFCL> <TRUEPARTY> <STATEMENT*>
<WHILE> COND DO> <STATEMENT*>]

<FOR HEAD> <INCREM> <LIMIT> <DO> <STATEMENT*>

<STATEMENT> $2= <STATEMENT*>

<SITTYPE> 3$:= SHORT INTEGER |

INTEGER]
LOGICAL

REAL
LCNG REAL |

BYTE |

CHARACTER |
COMMAND

<TTYPE> $:=<SITTYPE>
ARRAY(<TNUMBER3 J)<SI T TYPE

<1 CECL*> ee *=<TTYPE><ID> |

<T CECL> 4, <ID> |
<T DECL> { <T NUMBER>)
CT UVECLY> { <STRING>)

<T CECL> 2:= KT DECL*>

<K REG CC*> 3:= <SITTYPE> REGISTER <ID> :
<K REG DC> oo KID>

<KREGCC > ::= <K REG DC (<T NUMBER>)

CFUNC DECL*®*> s2:= FUNCTICN <ID> |
<FUNC DECL> , KID>

FUNC CECL-> :3= <FUNC DECL®*> (<KTNUMBERS>)

<FUNC DECL> ::= <FUNC DECL=> { <T NUMBER>)

<SYN CECL> ::=<TTYPE> <IO> SYN <KTCELL>

<T TYPE> <ID> S Y NXT NUMBER> I
SYN DECL> , <ID> SYN <T CELL> l
<SYN OECL> + K<ID> SYN <T NUMBERD

<CECL> ::= <T QECLD
<KRE GDC> |

<FUNC DECL> |
SYN DECL?> |
SEGMENT BASE <K REG>

<FRCC NAME> ::= PKCCEDURE KID>
SEGMENT PROCEDURE KID>

<PRCCHEAD*> :3:=<PRCCNAME> (<K REG*>

Th

CFRGC REACY> :2:= <PRCC HEAD*> ;

CLABEL DEFY ::= <IDY>

<BLGCKHEADY> s3::= BEGIN |
<BLCCKHEALY> <CECLY> 3 |

<BLOCKHEAD> <PROC HEAD> <STATEMENT> . ;
<BLCCKBCDY> =2:= <BLOCKHEAD>]

<BLCCKBCDY> <KSTATEMENTY> |
<BLOCKBODY> <LABEL DEF>

<BLCCK> ss= <BLCCKBGDY> END

<FRCGRAM> s2= a <BLOCK> a

DEVICE TABLE

LCGeNO. DEVICE ADDRESS

0 TYPEWRITER (1052) 009

1 PRINTER {1403) OOE

2 CARCREADER (2540) 00C

3 CARDPUNCH (2540) 00D

4 SYS TAPE {2401) 282

5 TAPE {2401) 181 (7 TRACK)

6 TAPE (2401) 182

7 TAPE (2401) 183
8 TAPE (2401) 184
9 TAPE (2401) 283 |

10 DISK {2311) 190
11 DI SK (2311) 191

: 12 DISK (2311) 192

13 DISPLAY (2250) 2EO

75

-

ru

rn Cc. O

o Oo
m : CMT EZ wp =

oO 3 CIC st [wd 7 m
— — CD em | Cr TM TOMETSTm =X MOO

ee ITI n= oo mn = MTONOQDIZIMT res ZN at OO on I
wn 0 op = / oY oO z= Coo mx =< >
RAL LX =m EX Ze Km OE Zr KZ 00 ea [TseOO — Tes MX OX

: "4 MN we TIM 2Z MT MZ Cw Z MITMZCr I Mee ZIM HD TMC 2 >mm

et — TT TF"NMCmem J Hoe eam-0 0. Me™ AO HH DO- XX XNVZX AMO rr
we TMZ mINZMmMM2Z i LemosZMH ZMOOQ 0 ee OZ2MOM Xe ooom Ccoc.
pd wn OO aE EVE wen . w4 MM. CC OO ITXR S — IX s ot 2 SMZO RN
EE | Be mf ewDOOC IX XXR > TM NXPXe on pd ss NP 4 HoOoXm OMX
.e ~~ er ~ ZZ Mss MZ NO Mme ooo mZAOm SS ® OOO = i OO = ¥X Xe2 -JTE pli~J

. ~~ [TY x A X~ ZO CT eeZ i ws => hn. om o WwW ES wd) Oo
: — TTX mAX NRWATIT Wn. VI WnWL VV em TO OX 2 mM | Om= oe |

mn m © A XTN=MN mm Ko i WIZ Mmoe x mh OH SY eee XM OO ® D> 2 0NZ =~ 0
Zz WC ooozz No ws -t TIM - CMe: MET ~~ 2M theXI
Hn ws OR se Z NT W~ OZ _x8 HZ ZZ > ee -f em ND

“TT = -—ae= Jl OMT WU ~ Ls aw OOo: MMAIO ow) oy “TY and pu ZT I =2mMmX
= OO RR wen TO Howe SMR XO #2 OH oOo 2 JorZzTxT m. oO oO»

T fa 2 WNO me mO > ws MT tf wy mm — : mm Z ~To6
M | ~~ we TMeupg2ZX 0K ZO ~ OnIr ~ TC Wn Nx 3: > we OY—

—~ Z Mes ew maDP~n TO No OOZ2~»m» m SFO Wn es ee TN mes 0 ODOM
ON | Ho ~Oowm. Cc i Mm oe 2 o- TR “we OZ MM ©oZOD

nt) rt A 4 * —- x I= xX xX Of wn 3 i WN CT - -f WD
Oo 1 TN we ss TN mM I mg - v2 OC SH x Tr 2Z x D> mM -— wt ~~
CeO Al 0D. we OD © oe “I> O =m we oO wn md o<

pot AT» m T nee ~ ™ 0 2X XxX 0 ee: bed — OQ
ee NN metn TT r x P= Im nw “ ZM=d se DBP QO Ne ODP

I T C—O oom wv pt xnoOoZm=n OO) wy owt — i a 2 == OO
x OZ ~~ WU! m “we ZMZ > OO 22 «O60 : - 5 3

Zz M se we ww om | | oe -— x: OO Z -~ Z OoOmI x To Zz oZ
mo2ZH Coes IT we x] es wd ad No » TO > TM oe om
om mm ox ON © © we O Pl Dee RN av] re —

| ~ =T=Tm ©» oo po T © ~ CW we TP # = NH Me

ws ap we MN RI IEErp B * x ww Oo 0 nx =z Mm wn Swll o
oo no CZ # nN wd BE = 4 oo OD EE Ww m= ZZ 3

* On = oo | ht Mm "ZMO iw on Ss»,

Oo nN Oo PI = 2 or
pst OJ) se we zZ — Mm m - oOo —-
a wo m Zz O00 > ww 5 Ll

Fo n mM — Mm we Zz oOo ZZ

-e Ww af T HC > > oN LI
5 ' 1) I» ws N 0 —f DO

I p= : x ws oO Do
h~- -e psd : TIT OD) we

.e x - :

-e oo
| -

ny

nal : wo

wl | _ oO
ag : Aaa > I>(n=es OO

- =Z | - | mT x TIT ZOZT

Le | | oo x Lr —- Mm

Cwnwooo —~0C oO GO ew — ~ mT ce

CY TO em TO ee 2) de we Z mI zZzm2=z IMT 2Z Oe —Z Mem Hl It se TW EN ™ mS
| Snw HO GO TO O= AZ a DO XZ
LANA sm OV Trt™ MW B= NA ~~ «XX TOC on mT =n

— GG) = NN HTM ee OZ MO Me 7M AO- AX Nw» OL DUD I IEE r—
DX ZX <o — -— OO tx J 3 oe TT pm (C CYDY.
-ITI- 26 Pt poe se TV TY oe TI MY ~~3 TDOWnevn TOS TT ~~

wi des wr HS HSC we HH CD se any mam| SOOTXT AN~~ I> wr pa TT=
rey C$ eR pe pw HT cx we ZW nn TI DV sm YE WDM ODT WD

20 MNM« NC ND 0 es VV TY ~ ee AMZ ~~ nC T = TF DYN FT oem 37 27 Tw
— ‘® EE owB + 11 fo + hh OO we mn 00 IN = 00 TT we -— qe pd

CC ~~ ms OO we Tee NO ws TLC 3 — RE > —4 r-Rolh.- BENE 4

Cem DT 0 + — AS p— $ {I SS RA pe i ANC md #8 jm DT
2 J a PN ws T » ON a TJ Un AM AN we I m no podsci ep)

—~ = ee SZC « oO WwW DeeDD TU GeZ2LMOe
- (DT oO LD) - TD : XI ONO TT ~~ ed YD
_—— ~~ Z © -) | Tee -e Ea ve ~~ MM
PT as ht TJ > — >) - ws 4 | ost 00 .y == = =r EDD
post om am To Ti -s -e TO Hh 3% UN ~~ ow o9
~~ z= | 3 | MINE Noe XD

— ON Sm = 2 nN Ww To OC we Z ™ SH Zowm
EEWW + vo a Hn se NY UN ~~ 2 - oe TT NIN
— at — po It *0 i 0 it we bo oO NC -)

oe (0 ~~ os : il Wo ARS 5 at ad vO0

r~ i © x - "TN ws EE A “rm — =

~Z ws OO : x “.e Nn -y rr iT ~N So pw
< | ~~ oJ No = Ww oO a ce

+ pt it | < - .- OD Ce

- _— >< NJ se —— —
-— x La Wh H oC -e -

> » = Ln we
pad —~ 2 -e

post | pa :

~~ 2
PY J

w»& L2

BEGIN COMMENT BINARY 1L SEARCE; - |
INTEGER M3 LONG REAL DEC SE |
PEEAY (3) SEFURT INTEGER MOVE {(#0D2C0)Y{ #400001 (#6009);
ARRAY (6) BYTE PATTERN (#40) (#20) (420) (#20) 12000420) 3
COMMENT EACH ENTRY IN THE DIRECTCRY CONSISTS DOF A TAGs LENGTH,

ANL ABSOLUTF ACCRESS OF THE IDENTIFIERS |

ARRAY (1CC) INTEGER CIRECTORYS
AKRAY (100) SHFURT INTEGER TAG SYN DIRECTORY (0); | |
ARFAY (1C0) SEORT INTEGER LN SYN DIRECTORY(Z2)3

AKRAY (1CC) INTECER ADR SYNDIRECTCRY(4);
AkKkAY (132) CHARACTER BUF (4 n)g

ARRAY (1000) CHARACTER ID 3

PrCCECUREFSEARCEF(RF)

BEGIN COMMENT PAKANETERS:IRLI=L E N G T HOFIDENTIFIER,R?2= ADDRESS
CF IDENTIFIERS RESULT:R3 = T A GI(O1 FNOTILOCATED).

REGISTERS USEC: 0 —- 8 :
INTEGER R EG I STERLII)ZLOWI{R)2114) HIGH(S5)y X(6)yM(T)3
ARRAY (3) SFORT INTEGER CUMP (#D500)1(#2000) (#6000)

COMMENT CUNMPARE CHARACTER INSTRUCTION:

FIG 149 s=ANLChe=8;
wHiLE LOW <= BHICF BO

BEGIN I 2= LCwt RIGH SHHC 4 SHLL 3: X :=ADR{I);

IF L = LN(]) THEN

BEGINEX(L)Y(CCMP)ISIF = THEN GOTO OUT:

IF < THEN RIGH :=1-R ELSE LOW := [+83

END ELSC

| f -L < LKN{T1) THEN

BEGIN EX(LY(CCNMP)

If <= THEN FIGH :=I-8ELSE LOW:=]+8;

ENC ELSE

BEGIN NM == LN(T)s EXIMY(COMP)

IF < THENEIGH:=I1I-RELSE LQW:=1+8;

END
END;

I := 0;
CUT:R 3 := TAGI(1);

EL(l131) (BUFYCEURD)S LALROY(BUFY: R6 2= ROS COMMENT HLANKRUFFERS

Rl := 0 :LA(R4)(ID);

CUMMENTREADICENTIFIERSAND ENTER THEMINTABLES;

Ll: HEADGZe; CLI(NEW)}{BUF)SI F == THEN

BEGIN RL ¢= R1+85 TAC(R1) : = R13

RZ = (3; R3 = RZ;
LZ: ICIR3Y{BUFIFPZ2))sIF R3 a= THEN

BEGIN R2:=R2+1:GCTCLZS

END3

EX (R22) (MCVE)3 ACRIRL)= R43

R4 $= Reiko RR? = RZ2-13 LN{(R]) := R23;

GoTo 1.1,
ENE

h : =K1;

COCMMENTREACANICENTIFIERAND SEARCHTITIN THETABLE

L3: READU26:If- = THEN
HEGIN R11: = 0 ;K3 := Rl; LA(R2)(BUF)}

78

L4: ICI(R3)(BUF(RL1})3IFR 3-=""T H EN
BEGIN R11: =R1l+1; GCTO L4;

ENC3

Rl 3= R1l-13; SEARCH; oo
CVCIR3)(CEC); MVCUS)(BUF(36)) PATTERN);
ED(S) (RUF (36))(CEC(S))3sWRITE: COMMENT WRITE IDENTIFIER AND TAG;
GOTO L3;

END

ENC a

BECINCOMMENTM A G | CSQUARE GENERATOR;

ARRAY (132) CHARACTER LINE (vn uw);

ARRAY (8) BYTE PATTERN (#40) (#20) {#20){#20) (#21) (#21);
LCNG REAL DBECS

ARRAY (256) INTEGER X ;

PRCCECURE MACICSCUARE (R6) 3

BECIN SHGRT INTEGER NSQR;3

INTEGER REGISTERN{O)oI(1),J(2),K(5);

NSGR = Ni; Rl = N®2ASQR; NSQR := RR];

[¢t=N+1 SHRL 13J = N;

FOR K 2= 1 STEP 1 UNTILNSQROOO

BEGIN R3 :=ISKLL 6, R4 = J SHLL 2 + R3 R3 :=X{R4)3

IF R3 =~=(THEN

BEGIN I = I; J := J-7;
IF I1< 1 THEN I z= 1+N;

IF J <1 Tt-EN J = J+N;

R3 = 1 SKFLL 6, R4 t= J SHLL 2 + RS;

END;

X{R4):1=K ;

| := I+1;3 IF I > N THENI = [-N;j

J 1 =Jd+ly IF J > N THEN J $= J-h;
END

ENC

PRCCECURE GETANCPRI N T(RS8)3

BEGINR 23=0:; FGRRI 2=0 STEP 4 UNTIL1020DOX(RYI):=R2;
MAGICSQUARESR6: = R O ; LACROI(LINE);
FORR1:= 1 STEP 1 UNTIL Ré6DO

BEGIN R4 : =R1 SKHLL 6 +4; LA(RS)(LINE(4));

FUR R2:= 1 STEP 1 UNTILR6 00
BEGIN MVC(S)(US){PATTERN)3 R3 3:3= X(R4)$ CVDI{R3)YI(DEC);S

ED(S) (BS) ECIB)): Ra: =R4+43RS = R5+7;

END 3

WRITE;

END

FO{L3MI(LINE)(LINE)sWRITE:

ENC

ED({I3LYCLINEYILINE); CCMMENTBLANK LINE;
RO = 3 ; GETANDPR INT;

AC z= 5 ; GETANCPRINT;

KC :=7 ; GETANDPRINT;
ENE d

79

4 3 3

S 5 1

) 7 6

11 10 4 23 17 --

18 12 6 ; 24

25 1S 13 1 l

) 21 2C 14 8

S 3 22 16 5

z2 21 13 5 46 38 30

31 23 15 14 6 47 39

4C 32 24 16 8 1 43

45 41 33 25 17 9 1

2 43 42 34 26 8 10
1 3 44 36 35 27 19
2c 12 4 45 37 29 28

80

Acknowledgments

The author wishes to express his sincere thanks to Mr. J. W. Wells

for his indispensable assistance. Mr. Wells recoded the compiler in 1ts

own language, and developed the supporting monitor system. Thanks are

also due to the GSG group at the Stanford Linear Accelerator Center for

their generous providing of computer time under favourable conditions.

And finally, the support of the National Science Foundation under grant

GP 4053 is gratefully acknowledged.

References

1. G. M. Amdahl, G. A. Blaauw, F. P. Brook, Jr. : "Architecture of

the IBM System/360", IBM J. of Res. and Dev. 8, No. 2, 87-101

(April 1964), and

G. A. Blaauw, et al.: "The structure of System/360". IBM Sys. J.

3, No. 2 119-164 (1964).

2, N. Wirth and C. A. R. Hoare, "A contribution to the development of

Algol", Comm. acu 9/6, 413-432 (June 1966).

3. N. Wirth and H. Weber, "Euler: A generalization of Algol, and its

formal definition: Part I", Comm. ACM 9/1, 13-23 (Jan. 1966).

4. "IBM System/360 principles of operation", IBM Sys. Ref. Lib.
. A22-6821-2,

5. N. Wirth: "A programming language for the 360 computers", Tech.

Report CS 33,Stanford U., Dec. 1965.

81

