
CS40

HOW DO YOU SOLVE A QUADRATIC EQUATION?

BY

GEORGE E. FORSYTHE

TECHNICAL REPORT NO. CS40

JUNE 16, 1966

COMPUTER SCIENCE DEPARTMENT

School of Humanities and Sciences

STANFORD UN IVERS ITY

Nh

-
HOW DO YOU SOLVE A QUADRATIC EQUATION?

{

| by
-

George E. Forsythe

1

'.
Abstract

The nature of the floating-point number system of digital computers

| 1s explained to a reader whose university mathematical background is very
\. limited. The possibly large errors in using mathematical algorithms blindly

with floating-point computation are illustrated by the formula for solving

- a quadratic equation. An accurate way of solving a quadratic 1s outlined.

| A few general remarks are made about computational mathematics, including

L the backwards analysis of rounding error.

“

| 1. Stages of scientific computation.
Y—

The automatic digital computer 1s one of man's most powerful intellectual

tools. It forms an extension of the human mind that can only be compared
\-

with the augmentation of human muscle provided by the most powerful engines

BR in the world.

Computers are used in a wide variety of applications, ranging from the

control of artificial satellites to the automatic justification and hyphen-

~ ation of English prose, and even to the storage and searching of vast

libraries of medical literature. However, computers were originally invented

— with the sole aim of permitting arithmetical computations to be carried out

rapidly and accurately, and this remains one of the major uses of computers

L today.

For example, as early as World War I, L. F. Richardson had indicated

- how the weather might be forecast with the aid of a vast computation then

Prepared under Contract Nonr-225(37)(NR-OL4-211) at Stanford University.
Reproduction in whole or in part 1s permitted for any purpose of the
United States Government.

-

| |

L
far beyond human capability, provided that enough upper-air weather obser-

(vations were available as input data. By the 1940's the upper-air

L observations were beginning to appear 1n quantity, Hence, when John von
Neumann and others asked the Government for funds to support computer

L development, they promised that computers would make it possible to carry
out the arithmetical part of a modern version of Richardson% program.

L. It was expected that the weather would soon be forecast routinely by com-
| puter, and this has occurred, It was even hinted that computers might make

. it possible to predict, for example, the future course of hurricanes after
a variety of human interventions, and thus lead to theeventual control of

L the weather.
There are many intellectual steps involved in a project like weather

| forecasting by computer. In the first place, a reasonable model of the
weather must be reduced to systems of equations, both algebraic and dif-

L ferential, The actual solution of such systems of equations 1s completelyx beyond the powers of any computer, because the equations involve the infinite

number of variables needed to represent, for example, the wind at each of

L an infinite number of points of space.
{ Consequently, the second stage of numerical weather prediction 1s to

L replace the actual meteorological equations by a finite number of equations,
[This 1s done by first replacing the infinite number of points of space by
(. a finite number of points arranged in a cubical mesh which looks like a

number of huge coarse screens spaced above each other, made of squares

| perhaps 100 miles square, Instead of trying to describe and predict the
| wind at each point of space, one describes and predicts 1t at the points

| of the mesh (i.e. the corners of the squares of the screens). The equations
| which describe the exact flow of air and moisture are replaced by much

f simpler equations which relate these quantities at neighboring points of

L the mesh. A great deal of mathematical analysis and experimental compu-
tation are needed before one can discover simple equations for the mesh

L which 1n fact reasonably well simulate the actual equations for continuous
space. This 1s a subject that has interested mathematicians very much.

| It 1s, however, much too difficult and technical for discussion here.

]

g

At the end of the second stage just described, we have a finite number

1 of equations to solve. Each equation deals with unknown quantities which
are real numbers. Recall that real numbers may be thought of as infinite

L decimal expansions like
-3.3333333333 3333333333 3333333333 cece

| (3's continued without end), or
L 3.1415926535 8979323846 2643383279

L (digits continued without end, but without a predictable pattern). Since- a computer 1s necessarily a finite collection of parts, it cannot hold

3 even a single general real number, with 1ts infinite number of decimals.

L Hence the third stage of the use of computers for weather prediction in-
| volves the use of a finite number system, to simulate the real number sys-

L tem of mathematics.
: The purpose of this note 1s to describe this computer number system

L and some difficulties involved in using it. To illustrate the difficulties
we shall consider a mathematical problem that 1s very much simpler than the

equations of meteorology =- namely the quadratic equation,
i

L 2. Floating-point numbers
3 We shall first describe a simplified computer number system, the so-

called floating-point numbers, and then show some of its behavior with a

L simple mathematical computation.
The usual number system of a computer reduces the infinite number of

| decimal places of real numbers to a fixed finite number. We first consider
\ decimal numbers with a sign and one nonzero digit to the left of the decimal
. point, and exactly seven zero or nonzero numbers to the right of the deci-

L mal point. Examples of such numbers are -/.3456780, +1. 0000000,
y +3 03333333, -9.9808989. We say that such numbers have 8 significant

lL digits. One can represent approximately 200,000,000 different numbers
in this way, but they all lie between -10 and -1, or between +1 and +10.

L
3

|
-

| To enable computers to hold much bigger and much smaller numbers, we add

a sign and two more decimal digits to serve as an exponent of 10 . The

L exponent is allowed to range from -50 to + 49. Thus the number - 87 2/3
‘ 1s represented by

\ +01
- 8.7666667 X 10 :

\ In this system, which 1s much like so-called scientific notation, the

representable numbers all have eight significant decimal digits, They
\

range from

: ly -: -9. 9999999 X 10 7 to - 1.0000000 x 107°
I.

and from

bo
— -

+ 1.0000000 x 107°° t09. 9999999 x 1049

L The number zero 1s added, and represented by + 0.0000000 X 10~7° .
Approximately 20,000,000,000 distinct real numbers are thus representable

1 in the computer, and these take the place of the infinite system of mathe-
matical real numbers.

LL This computer number system 1s called the floating-point number system,
The "point" 1s the decimal point. The exponent permits the decimal point

effectively to "float" as much as 50 places away (to the left or the right)
“

from its home position.

| By special programs it 1s possible also to use so-called double pre-Ig guvb.c Pre”
cision numbers --numbers which have not 8, but 16 significant digits,

with the exponent kept between -49 and + 50 . There is a penalty in time
- CL

for using these double precision numbers, but this penalty varies greatly

among different computers.

-

In this paper we shall write floating-point numbers in various ways,

but there will be understood to be exactly 8 significant digits, For
+

L example, we may write the number eleven as 11 or 11.0 or + 1.1000000 X 10 o1

i or 1.1 X 10% .
- Actual computers more frequently use number bases other than 10 - for

example, 2 or 8 or 16 - and the actual number of significant digits

|

4

-

varies over wide ranges. However, the reader need not be distracted by

i those considerations; our 8-digit decimal system illustrates all the es-
sential matters very well.

, 3. Computer arithmetic

Resides holding floating-point numbers, every scientific computer must

L be able to perform on them the elementary arithmetic operations of addition
and subtraction, multiplication and division. Let us consider addition

first. Sometimes the exact sum of two floating-point numbers 1s itself a

L floating-point number. For example,
+ +00

\ (+ 2.1415922 x 107°) + (+ 9.7182818 x 10")
+

= + 1.1859874 X 10 OL .

1

In this case, the computed sum 1s the same as the exact sum, and the

| computation is said to be without rounding error. More frequently the
exact sum is not a floating-point number. For example, the exact sum of

+01

| + 6.6666667 X 107% and + 6.6666667 X 10° ~~ is 133.333334, a number| with 9 significant digits. Hence the exact sum cannot be held in the

computer, but must be rounded to the nearest floating-point number - in
| +02 Co |

w this case to + 1.3333333 X10 ., This 1s a typical example where com-

puter addition 1s only approximately the same as mathematical addition.

L An even worse defect of computer addition appears when the numbers |
are numerically very large, SO that the sum exceeds the capacity of the

| +49
floating-point system. For example, the true sum of + 9.9900000 X 10

and + 9.9990000 X 102 1s 1.9989 X 107°, a number greater than the

| largest possible floating-point number. The computer should signal in
some manner than an overflow has occurred, and give the problem-solving

L program some option about what action to take. But 1t 1s impossible toY store an answer which represents the exact sum to even one significant

L digit.
Analogous effects occur 1n computer subtraction.

-
5

L Computer multiplication suffers from the same two defects of computer
addition =- the necessity for rounding answers, and the possibility of ex-

L ponent overflow. While ordinary rounding 1s no more serious than with
addition, overflow can be far worse, for the following reason. The exact

L sum of two floating-point numbers cannot exceed 2 X 107°, but the exact
| product of two floating-point numbers can be as large as 9.9999998 X 1072,

L and the product of two numbers as small as 1027 can lead to overflow,
Moreover, there 1s a possibility of underflow in multiplication. For

\ example, the true product of 1.01 X 100 and 1.0L X 107° 1s
- 1,0201 X 10 0°, a number smaller by a factor of 107% than the smallest
! nonzero floating-point number. The most we can expect from the computer

L is that it replace the product by zero and give the program a signal that
underflow has occurred.

L Analogous effects occur in computer division
| We assume that our computer operations of addition, subtraction,

multiplication, and division, in the absence of overflow or underflow,

will yield as an answer the floating-point number which 1s closest to

L the exact real answer. (In case of a tie, we permit either choice.) In
fact many actual computer systems achieve this accuracy, and none give

L very much less.

L
4, Are floating-point numbers satisfactory?

L Any one who uses a digital computer for scientific computation 1s
faced with a number system which 1s only approximately that of mathematics,

L and arithmetic operations which are only approximately those of true ad-
dition, subtraction, multiplication, and division, The approximations

appear to be very good, being generally correct to less than one unit in

- the eighth decimal digit. Only the most sophisticated of all scientific

| and engineering computations (those 1n optics) deal with numbers accurate

L to anything close to eight decimal places, We might therefore presume that
rounding errors would provide no trouble in most practical computations.

L Moreover the range of magnitudes from 10770 to 10+ safely covers the
| range of all important physical and engineering constants, so that we

. might presume that would have no trouble with overflow or underflow.
6

L

Is the floating-point arithmetic system so good that we can use it

i without fear to simulate the real number system of mathematics? Computer
designers certainly hope so, and chose the numbers of significant digits

! and the exponent range with this expectation.
f

| The answer by now 1s clear: we may not proceed without fear! There

are real difficulties. On the other hand, it 1s often possible to proceed

. with intelligence and caution, and get around the difficulties. However,

it has required an astonishing amount of mathematical and computer analysis

L to get around the difficulties, particularly in large problems. And so far
we know well how to handle only relatively simple mathematical problems.

!

L We will illustrate some of the difficulties and their solution in the
context of an elementary but important problem, the well known quadratic

L equation of elementary algebra.

| 5. The quadratic equation
The reader will recall considerable time spent in the ninth grade or

> thereabouts, finding the two roots of equations like

. 2
L (1) 6x“ + 5x -4=0.

| One first acquires some experience in factoring the quadratic. School
- examples dofactor with a frequency bewildering to anyone who has done

mathematics outside of school. For example,

. 2
(2) 6x” + 5x -4 = (2x-1)(3x+4) ,

|

(as the reader could have discovered after some trial and error. If the

lefthand side of (2) is to be 0, then either 2x - 1 or 3X+ 4 must

. be 0. The two possibilities tell us that the roots of (1) are 1/2

and =4/3

L However, factoring in whole numbers 1s not always possible, and turns
out to be unnecessary. For one soon learns a formula which gives the two

| roots of any quadratic equation without having to factor anything. The
main result 1s the following, the so-called quadratic formula:

~ /

S If a, b, and c are any real numbers, and if a £ 0, then the
quadratic equation

2
ax + bx +c =0

1s satisfied by exactly two values of xX, namely

) -b A Vo©-lac(3 *1 = 2a.

and

(4) x -b - blac\ 2 = 2a ’

¥ As an example of the use of the quadratic formula, the roots of
_ equation (1) are

2

5V5" - h(E) (h)
L 1 = 12

5 +Viel 5+116 1
' = 12 i 12 S12 2 ?

5 -V121 16 4
2 = 12 JA

“

The roots agree with those found by factoring, of course.

w The great power of the quadratic formula 1s that it provides a straight-

forward series of steps proceeding from the real numbers a, b, c¢ to the

solutions X15Xy The steps are those of evaluating the expressions 1n
(3) and (4) in some systematic fashion. The assumption that a £ 0 is

- necessary to be sure that an 1llegal division by 0 is not calledfor.
Any such systematic process for computing some desired answer is called

| an algorithm. In an algorithm no guesses are allowed--one proceeds directly
|

from the data to the answer The importance of algorithms is that computers

have been expressly designed to be able to carry out algorithms and nothing

C but algorithms. That is to say, the logical steps performed by a computer
are exactly those of an algorithm.

“ Next we give a detailed algorithm for evaluation of the quadratic
: formula (3). (It could be simplified.)

g
8

-

| _
| : Algorithm for computing one root x of the quadratic equation
| ax + bx +c =0.

(1) Compute z = = .
L (11) Compute y = b .

(111) Compute w = 4a .

{ (iv) Compute v = w .C .

L (v) Compute u =y =v .

\ (vi) Compute t Vu(vii) Compute s = z +t

(viii) Compute r = 2a

L (ix) Compute X, = s/r .
|

L Notes: 1. For simplicity we here assume that u = be - hac 1s not
negative, to avoid having to deal with imaginary numbers like V-1.

L | 2. An algorithm for computing Xo requires the replacement
_ of steps (vii) and (ix) by

LC
(vii)' Compute s' = z - t .

L (1x)' Compute x, =s'/r .

| In mathematics the above algorithm is implicitly understood to use real
numbers, and to carry out with them exact arithmetic operations including

l addition, subtraction, multiplication, division, and even extraction of thesquare root of u = b? - 4ac . As we showed in Sec. 3, a computer cannot
{ carry out these exact arithmetic operations and, indeed, cannot even hold

L arbitrary real numbers a, b, c¢ . Thus, although a real digital computer
can carry out the exact logical steps of the algorithm, it must replace

L all numbers by floating-point numbers, and all arithmetic operations by
approximate operations.

L The question, then, is this: will the limitations of actual computer
floating-point systems make any appreciable difference to their use in

L solving quadratic equations?
The answer 1s: sometimes yes, and sometimes no. We shall give examples

l to illustrate both cases.
Q

L

| 0. Examples of the quadratic formula on a computer
2

i Example 1. 6x + 5x -4 =0
For this example of (1), the algorithm of Sec. 5offers no difficulty

| for a computer with the precision we have given, except possibly for the
square root required in step (vi). Let us make the reasonable assumption

| that we have a method (indeed, another algorithm) for computing square
roots with an error not exceeding 0.8 of a unit in the least significant

| decimal place. In that case, we will find t =Vu =Vb~ - Lac to be11.000000 .

| Then we find that
x, = (= 5+ 11.000000)/12 = .50000000 ,

L a perfect result. The computation of X, leads to no loss of accuracy
i until the final division:

Xo _ - 16.000000/12.,000000 = -1.3333%33 ,

L as rounded on the computer. Since this is the correctly rounded value of
) the true Xp WE conclude that the computer algorithm has done as good a

| job as it could possibly do.
2

1 Example 2. X = 10°x +1 =0 ,
Before examining the computer solution, we note that the true solutions,

| rounded to eleven significant decimals, are
X, = 100000, 00001 = 1.0000000001L X 10 ,

g and
-6

x, = ~0000099999999999 =9.9999999999X10

L Moreover, 1t can be shown that xq and X, are well determined by thedata, in that small changes of the coefficients 1, 10°, 1 cause only

| slight changes 1in xy and Xx,
Now let us apply the algorithm of Sec. 5, and see what are the computed

values of X4 and Xp

“— 10

L We have
i a = 1.0000000 x 10 °°

b = -1.0000000 X 10"
+00

c = 1.0000000 x 10
-

| First, to get xq
i

2 = <b = 1.0000000 x 10"

y =b° = 1.0000000 x 101°
-

w = 4a = 4.0000000 Xx 10"

{ v = w-c = 4.0000000 x 107°
i +
— u = y-v = 1.0000~00 x 10 10 (see below)

| t = Vu = 1.0000000 x 107%L s = z+t = 2.0000000 x 107°
r = 2a = 2.0000000 x 10"

. x, _ r/s = 1.0000000 X 10"
The step that calls for comment is the computation of u =y - v,

- where the value of vis completely lost in rounding the value of u to

: eight decimals. The final answer Xq 1s correct to eight decimals.
-

We now compute Xx,

| 2 = -b = 1.0000000 x 10"%
2 +10

y = b = 1.0000000 x 10

C w = 4a = 4.0000000 x 100
| v = w-c = 4.0000000 x 10 OY

0 = y—v = 1.0000000 x 10+1°
- £ = Vu = 1.0000000 x 10%%”

s' _. . (see below)

“ r = 2a = 2.0000000 x 107°C

. Xy _ r/s' = 0 .
This time the computation of s' results in complete cancellation,

! so sand hence X, areboth 0 . Thus our algorithm has yielded a
- value of x, which differs by approximately 107° from the correct

— 11

_

i answer, and this might be considered a rather small deviation. On the
{ other hand, our computed value of Xs has a relative error of 100 per cent -
LL not a single significant digit is correct! Can this be considered a rea-

J sonable computer solution of the quadratic?
A study of ways in which quadratics are applied leads to the conclusion

that the measure of accuracy should be that of relative error. As long as

Re a root of a quadratic 1s well determined by the data, a good algorithm should

give 1t correctly to several or most of its leading digits, however large

C or small the root may be.

(Thus we must conclude that the quadratic formula for X, gave us
L 'practically no useful information about the root Xy It follows that

the algorithms of Sec. Sare an inadequate way of solving a quadratic

L equation, because an adequate algorithm must work in every case within 1ts
domain of applicability.

02 0| Example 3. 6 x 100% fF 5x 10% -4%x 100° = o .

| The present example 1s simply that of Example 1, with all its coef-
0

- ficients a, b, c upscaledby the factor 10° . Thus the roots are un-
changed.

- However, the algorithm of Sec. > breaks down at the second step,
1

| because y = be is truly 2.5X 100 , a number outside the range of
“ floating-point numbers. Thus the algorithm of Sec.d is again inadequate,

| though for a very trivial reason. A simple scaling of the coefficients
L would prevent the overflow.

Example 4. 107% 10° x 10% = 0 .
60. Here the true roots are extremely close to 10 and 1 . One of the

| roots 1s outside the range of floating-point numbers, and we could hardly
“ expect to get it from a computer algorithm. The problem 1s: can a reason-

able computer algorithm get the root near 1 ?

L Note that a simple scaling to make the first coefficient equal to 1
will cause the second and third coefficients to overflow. Hence a scaling

Sg suitable for Example 3will break down with Example 4, Certainly our

algorithm of Sec. 5 will not work.

- 12

—

Does the reader feel that equations with such a large root will not

occur 1n practical computations? Let him be assured that they do. The final,

~ physically important result of a computation is almost certain to lie safely

inside the range of floating-point numbers. However, intermediate results

— often appear with nonzero magnitudes smaller than 102° or larger than
| 1649

— Recently several computing experts agreed that one of the most serious

. difficulties with many current computer systems 1s that they automatically

— replace an underflowed answer by zero, without any warning message. In
-30 -30 ot °C| such a system, 10 X 10 X 1 X 1 would be computed as 0,

-30 L -30 0

- Whereas 10 > X 10° Xx 10 Xx 10° would be computed as 10 .

Example 5. x = L.0000000x+ 3.9999999 -
'

— The correctly rounded roots are, to 10 significant digits,

C X; = 2.000316228

and

_

xX, = 1.999683772 .

— If we apply the algorithm of Sec. 5, we find that

| z = -b = 4.0000000

Yy = be = 16. 0000000
| w = 4a =4.0000000

= v=w+c=16.0000000

ur =Yy-v =0

— t -Vu=o
| s =r =21=4.0000000

o r = 2a = 2.0000000

| X, =X, = s/r = 2.0000000 .

The computed roots are both in error by approximately 0.0003162 .

i I.e., out of 7 computed digits to the right of the decimal point, only

— 3 are correct. Also, the computer mistakenly finds a double root instead

of two distinct real roots.

—

13

ee

L The accuracy seems quite low. However, the roots of' Example 5 actually
change very rapidly when the coefficients are changed, In fact, the two

— computed roots xy ~*3 = 2.0000000 are the exact roots of the nearby
equation 0.999999992x - 3 .999999968x + 3 .999999968 = 0 . Thus, though

— Xq and X, are wrong roots of Example 5 by some 3162 units in their
last decimal place, they are true roots of an equation with a, b, c

differing from those of Example 5 by no more than 0.8 of a unit in their

last decimal place.

u Example 5 illustrates two different ways of measuring relative errors

in any computation. In the so-called forward approach to relative error

one notes that the computed roots xy and X differ by so many units
(here 3162) in the last place from the true roots of the given equation.

In the so-called backward approach to relative error one says that the

computed roots Xq and x, are the exact roots of an equation with coef-

| ficients which differ by no more than so many units (here 0.8) in the last
. place from those of the given equation. The forward measure of error is

perhaps more natural and certainly 1s traditional. The backward approach

to error 1s more recent, but in many contexts turns out to be considerably

easier to analyze and just as useful in practice, Backwards error analysis

1s one of the major ideas to be developed in the last decade of research

in computational mathematics. Cornelius Lanczos devised the backwards

| approach in another context in the 1940's. Wallace Givens exploited it
| in 1954 for computing roots of certain equations. But James Wilkinson has

done the most in the years since 1958 to exploit it as a basis for analyz-

“ ing errors 1n floating-point computations on digital computers.

| The reason why backwards error analysis 1s so useful 1s this: In

“ the floating-point arithmetic system neither addition nor multiplication
1s an assoclative operation, and the two are not distributive, Thus the

basic properties on which algebra 1s based fail to hold for floating-

point arithmetic. Hence a forward error analysis, which is based directly

| on the floating-point operations, is extremely difficult to carry out.
On the other hand, backwards error analysis interprets the result of each

| computer product, for example, as the true product of two real numbers which
~ differ very slightly from the factors of the computer product. Thus in

— 14

—.

|

I

I backwards error analysis one deals with true mathematical multiplication
and addition, which are associative and distributive. This permits analysis

. to be much more easily carried out, and often leads to closer bounds for

the error.

L This 1s not the place to develop these ideas further, but we hope to
have given the reader an inkling of why backwards analysis, when applicable,

L 1s often so much more satisfactory.

y
7. Criteria ofa good quadratic equation solver

- The above examples illustrate the variety of behavior of the quadratic
algorithm of Sec. 5. Examples 2, 3, and 4 make it clear that the algorithm

\ 1s not satisfactory for all cases, and hence that it is an unacceptable
algorithm. What do we really expect froma quadratic equation-solving

| algorithm?
Should we be content with the computer solution of Example 5, with its

| error of 3162 units in Xy and Xs since the computed roots do satisfy
an equation which 1s so close to the given one?

. We might be quite content with the results of Example 5, 1f we didn't
know how to do better, but certainly not with Example 2. Quadratic equa-

| tions arise 1n exceedingly many contexts of mathematics and computing.
They are so basic that we should like to be able to compute their roots

with almost no error, for almost any equation whose coefficients are float-

C ing-point numbers. Such performance can be achieved, and it is vastly

important to have such algorithms in the computer library. Then, when

Lo a quadratic equation occurs 1n the midst of a complex and imperfectly

understood computation, one can be sure that the quadratic equation solver

| can be relied upon to do its part well and permit us to concentrate atten-
tion on the rest of the computation.

| We want a quadratic equation solver that will accept any floating-
: point numbers a, b, ¢, and compute any of the roots Xs X, that lie
L safely within the range of floating-point numbers. Any computed root

should have an error 1n the last decimal place not exceeding, say, 10

| units. If either xy or Xo, underflows, or overflows, there should be
~ a message about what happened. 15

|

| 8. Some aspects of an accurate algorithm

| Such an algorithm has been devised by William Kahan of the University
of Toronto. The most difficult matter to take care of 1s the possibility

of overflow or underflow. It will not be possible to describe the complete

- algorithm, but we can give some of the more accessible ideas,

| First, we discuss the steps taken to overcome the great inaccuracy
- CL

in root Xs as computed 1n Example 2. In step (vii)' of Example 2, we

| subtracted two equal numbers z and t, to get s’ =0 . The true value
— of t was not quite equal to z, because 1n step (v) the true u was

not quite equal to y. But t and z, like u and y, could not be

. ‘distinguished, with only 8 decimal digits at our disposal.

An easy cure for the difficulty 1s to use another method of computing
{

- X59 in which the answer does not result from the subtraction of nearly
equal numbers.

.- If a, b, c are any real numbers, and if a £# 0 and c¢ £ 0, then

| the quadratic equation
.)

ax + bx +c =0

- is satisfied by exactly two values of x, namely

1 (5) x, _ _ °c-b - Vb© - Lac

| and
.

2C

-b + Vb~ - Lac
|-

. Formulas (5) and (6) can be proved, for example, by first applying| formulas (3) and (4) to the following equivalent form of the given quadratic

1 equation: 2

(2) + (2) +a =0 .X X

ke Note that ifb is negative, then there is cancellation in formula (4)

for x,, but not in formula (6), and there is cancellation in formula (5)
{

! 16

{

L

L
| for X1, but not in formula (3). The reverse statements hold in case b

[is positive. So, for any quadratic equation in which neither a nor c
L is zero, one selects formulas (3) and (6) when b is positive or zero,

: and formulas (4) and (5) when b is negative. For Example 2, formula (6)
u leads to the computer result that

| x, = —t— - 1.0000000 x 1077 ,— 10 + 10

L a perfectly rounded root.
The inaccuracy of Example 5 cannot be so simply cured, because it 1s

1 "inherent in working with only 8 decimals, as is revealed by the rapid
change of the roots with changes of “a, b, ¢. The best known cure is to

. identify the delicate part of the computation, and use greater precision
for it. So Kahan's algorithm uses double precision (here 16 significant

| decimals) in the computation of u = be - hac, followed by rounding toNX single precision. The rest of the computation does not need extra pre-
(cision, and 1s done 1n the normal way. There is a small penalty in the

L extra time required for that double precision computation, but it 1s a
negligible part of the total time, which goes mostly toward scaling and

C otherwise detecting and correcting overflow or underflow possibilities.

| Recomputation of Xq in Example 5 looks as follows
— z = -b = 4.0000000

y = b = 16.0000000 0000000
L w = 4a = 4.0000000 00000000

v =w'C =15.9999996 0000000

| u = y-v =0.0000004 00000000 0000000

| = 0.0000004 0000000, returning to
| single precision
- _ _t= Vu = 0.000632 555%

| s =z+t = 4.0006325
— r = 2a = 2.0000000

x, = s/r = 2.0003163, rounding up.

L Note that x, is in error by only 0.72 of a unit in the last deci-
[mal place.

(- 17

:

g It 1s not practicable to discuss scaling and dealing with possible
| overflow and underflow. The details are many and technical, and depend

L intimately on particular features of the computer on which they are carried
/ out. They are extremely important to actual computing, but carry less

L general interest than the ideas just presented. One of the obvious features
involves testing whether any or all of a, b, or ¢ are zero.

L

4 9. Conclusion
We have described some of the pitfalls of applying the quadratic for-

| .mula blindly with an automatic digital computer. We have given sound cures
- for two of the pitfalls, and indicated what other work has been done to

| create a first-class algorithm for solving a quadratic equation.
The quadratic equation 1s one of the simplest mathematical entities,

| and 1s solved almost everywhere in applied mathematics. Its actual use
on a computer might be expected to be one of the best understood of computer

algorithms. In fact, it is not, and some more complex computations were

_ studied first. The fact that the algorithm of Sec.5 is so subject to
rounding error 1s not very widely known among computer users, or among

| writers of elementary textbooks on computing methods, and certainly not by
most writers of mathematics textbooks. Of course it is known to special-

L ists in numerical analysis. Thus even in this elementary problem we are
working at the frontiers of common computing knowledge,

| The majority of practical computations are understood still less than
the quadratic equation. A very great deal of difficult research and devel-

L opment remains to be done before computers will be used as wisely and well
as they can be. It 1s almost certain, for example, that various parts of

the computations for weather forecasting contain pitfalls like those of the

- quadratic equation, and that ignorance of these pitfalls is introducing
computational errors that are interfering with progress in weather fore-

I casting. The same can be said about most nontrivial fields of scientific
computation.

L The moral of the story 1s that users of computers for mathematical
problems require some knowledge of numerical mathematics. It is not

. 18

|
_-

| sufficient to learn some programming language, and then simply translate

| formulas from a textbook of pure mathematics into the language of a computer.
1. The formulas and algorithms to be found in most mathematics texts were de-
3 vised for the exact arithmetic of the real number system. Few authors have

” given any attention to the robustness of the formulas--that 1s, to the be-
havior of the formulas when used with the approximate arithmetic of computers.

| | Until attention 1s given to robustness in mathematics textbooks, the would-
|

| be scientific computer must consult people and writings specifically concerned

| with machine computation.
:

| C

B

-

L

u

|
—

—

.

-

—

—

L 19

A

