CS38

AT1. Memo #40

-
&
a0

AD662

CORRECTNESS OF A COMPILER FOR ARITHMETIC EXPRESSIONS

BY
JOHN McCARTHY and JAMES PAINTER

TECHNICAL REPORT NO. CS38

APRIL 29, 1966
N

DEC 22 1967

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UNIVERSITY

Reproduced by the
CLEARINGHOUSE

for Federal Scientific & Technical

Informaiion Springfield Va, 22151 /5

STANFORD ARTIFICIAL INTELLIGENCE PROJECT April 1k, 1966
Memo No. kO

CORRECTNESS OF A COMPILER FOR ARITHMETIC EXPRESSIONS

by John McCarthy and James Painter

Abstract: This is a preprint of a paper given at
the Symposium on Mathematical Aspects
of Computer Science of the American
dathematical Society held April 6 and
7, 1966, It contains a proof of the

correctness of a compiler for arithmetic
expressions.

The research reported here was supported in part by the Advanced

Research Projects Agency of the Uffice of the Secretary of Defense
(8D 183)

CORRECTNESS OF A COMPILER FOR ARITHMETIC EXPRESSIONS

by John McCarthy and James Painter¥, Stanford University

1. Introduction.

~ This paper contains a proof of the correctness of a simple compiling
algorithm for compiling arithmetic expressions into machine language. .

The definition of correctness, the formalism used to express the description
of source language, object language and compiler, and the methods of proof
are all intended to serve as prototypes for the more complicated task of
proving the correctness of usable compilers. The ultimate goal, &s outlined
in references [1], [2], [3] and [L4] is to make it possible to use a computer
to check proofs that compilers are correct.

The concepts of abstract syntax, state vector, the use of an interpreter
for defining the semantics of a programming language, and the definition of
correctness of a compiler are all the same as in [3]. The present paper,
however, is the first in which the correctness of a compiler is proved.

The expressions dealt with in this paper are formed from constants and
variables. The only operation allowed is a binary + although no change in
method would be required to include any other binary operations. An example
of an expression that can be compiled is

(x43 J+(x+(y+2))
although, because we use abstract syntax, no commitment to a particular form
4is made.

The computer language into which these expressions are compiled is

a single address computer with an accumulator, called ac, and four instructions:

*IBM Resident Graduate Student, IBM Corp.

1

AT Lo

11 (load immediate), load, sto (store) and add. Note that there are no
Jump instructions. Needless to say, this is a severe restriction on the
generality of our results which we shall overcome in future work,

The compiler produces code that computes the value of the expression being
compiled and leaves this value in the accumulator. The above expression is
compiled into code which in assembly language might look as follows:

load x
sto t

14 3

add t

sto ¢ %
load x

sto t+l

load y

sto t+2

11 2

add t+2

add t+l

add t

Again because we are using abstract syntax there is no committment to
& precise form for the object code.

2. The source language.
The abstract analytic syntax of the source expressions is given by
the table:

(2.1)

AI kO

Predicate Associated Funciions
isconst(e)

isvar(e)

issum(e) sl(e) s2(e)

which asserts that the expressions comprise constants, variables and binary
sums, that the predicates isconst, isvar, and issum enable one to
classify each expression and that each sum e has summands s1{e) and
s2(e).
The semantics is given by the formula
value(e,t) = if isconst(e) then val(e) else if isvar(e) then cle,t)
else if issum(e) then value(s(e),t) + value(s2(e),t)

where val(e) gives the numerical value of an expression e representing &
constant, c(e,t) gives the value of the variable e in the state vector ¢
and + is some binary operation. (Naturally, usually + will be interpreted
as an 6peration that resembles addition of real numbers, but our results
do not dépend on this.)

For our present purposes we do not have to give a synthetic syntax for
the source language expressiozis since both the interpreter and the compiler
use only the analytic syntax. However, we shall need the following in-
duction principle for expressions:

Suppose ® is a predicate applicable to expressions, and suppose
that for all expressions e we have

isconst(e) © ®(e) and

isvar(e) D ¢(e) and

issum(e) A ®(s1(e)) A o(s2(e)) D o(e).

Then we may conclude that ®(e) is true for all expressions e.

5

AI 40
%. The object language.

We must give both the analytic and synthetic syntaxes for the object
language because the interpreter defining its semantics uses the analytic
syntax and the compiler uses the synthetic syntax. We may write the analytic

and synthetic syntaxes for instructions in the following table.

operation predicate analytic operation synthetic operation
it a isli(s) arg(s) mk11 (o)

load x isload(s) adr(s) mkload(x)

sto x issto(s) adr(s) mksto(x)

add x isadd(s) adr(s) mkadd(x)

A program is a list of instructions snd null(p) dsserts Vthat p is
the null list. If the program p is not null then first(p) gives the
first instruction and rest(p) gives the list of remaining instructions. We
shall use the operation pf*p2 +to denote the program cbtained by appending
p2 onto the end of pj. Since we have only one level of list we can identify
8 single instruction with a program that has just one instruction.

The synthetic end analytic syntaxes of instructions are related by
the following:

(3.1) is1i(mk1ri(a))
a = arg(mkli(a))
is1i(s) o s = mkli(arg(s))
null(rest(mkii(a)))
is1i(s) > first(s) = s

(3.2) isloed(mkload(x))
x = adr(mkload(x))
isload(x) D x = mkload(adr(x))
null(rest(mkload(x)))
isload(s) D first(s) = s

AI Lo

(3.3) issto{mksto(x))
x = adr(mksto(x))
issto(x) D x = mksto(edr(x))
null{rest(mksto(x)))
issto(s) D first(s) = s

(3.4) isadd(mkedd(x))
x = adr(mkadd(x))
isadd(x) © x = mkedd(adr(x))
null(rest(mkadd(x)))
isadd(x) D first(s) = s

(3.5) = null(p) D p = first(p)*rest(p)
(3.6) = null(pi) A null(rest(p]l)) = pl= first(p*p2)
(3.7) noull{pi*p2) = null(p4) A null(p2)

The * operation is associative.

(The somewhat awkward form of these relations comes from having a general
concatenation operation rather than just an operation that prefixes a single
instruction onto a program).

A state vector for a machine gives, for each register in the machine g
its contents. We include the accumulator denoted by ac as a register.
There are two functions of state vectors as introduced in [3], namely

1. c(x,m) denotes the value of the contents of register x in
machine state 1.
2. a(x,x,n) denotes the state vector that is obtained from the state

vector n by changing the contents of register x to O leaving the other

registers unaffected.

AT 40

These functions satisfy the following relations:

(3.8) c(x,a(y,x,n)) = Af x=y then a else c(x,n)
(3.9) a(x,a,a(y,B,n)) = if x=y then a(x,a,n) else a(y,B,a(x,a,n))
(3.10) a(x,c(x,m),n) = 0

Now we can define the semantics of the object language by
(3.11) step(s,n) = if isli(s) then a(ac,arg(s),n) else if

isload(s) then a(ac,c(adr(s),n),n) else if

issto(s) then a(adr(s),c(ac,n),n) else if

isadd(s) then a(ac,c(adr(s),n)+c(ac,n),n)
which gives the state vector that results from executing an instruction and
(3.12) outcome(p,n) = if null(p) then n else outcome(rest(p),step(first(p),n))
which gives the state vector that results from executing the program p with
state vector 1.

The following lemma is easily proved.

(3.13) outcome(p1*p2,m) = outcome(p2,outcome(pi,n))
L, The compiler.

We shall assume that there is a map giving for each variable in the
expression a location in the main memory of the machine. loc(v,map) gives
this location and we shall assume
(k.1) e¢(1oc(v,map),n) = c(v,t)
as a relation between the state vector 7 before the compiled program starts
to act and the initial state vector § of the source program.

Now we can write the compiler. It is

(k.2) compile(e,t) = if isconst(e) then mkii(val(e)) else if

isvar(e) then mkload(loc(e,map)) else if
igsum(e) then compile(si(e),t)*mksto(t)*compile(s2(e),t+])*mkadd(t)

Here t 4is the number of a register such that all variebles are stored

AI 40

in registers numbered less than t, so that registers t and above are
available for temporary storage.

Before we can state our definition of correctness of the compiler, we
need a notion of partial equality for state vectors.

b =a %2

where ;1 and §2 are state vectors and A is a set of variables means
thet corresponding components of gi and §2 are equal except possibly
for values of variables in A. Symbolically, x € A D c(x,gl) = c(x,§2?.
Partial equaiity satisfies the following relations.
(%.3) %1 = £, is equivalent to gl 1} §2 where |} denotes the empty set.
(4.4) if AcB and Ci =4 b, then G4 = s
(4.5} if ;1 = §2 then a(x,a,gi) o W0 1% a(x,a,ga)
(4.6) if xeA then a(x,a,8) =, §
(2.7) if Qz = §2 and §2 =p §3 then CI = AUB ;5

In our case we need a specialization of this notation and will use

Ci =t §2 to denote & =ix|x 2 t} §2
and

;1 = 22 to denote ;1 g T §2

and

by =¢,ac Sp todenote & =ci, _acvx>t) S
The correctness of the compiler is stated in

(4.8) Theorem4 - If n and & are machine and source language state
vectors respectively such that c(ioc{v,map},n) = c(v,)
then outcome(compile(e,t),n) = a(ac,value(e,t),1)
It states that the result of running the compilied program is to puf'
the value of the expression compiled into the accumulator. No registers

except the accumulator and those with addressess > t are affected.
5. Proof of Theorem]:

The proof is accomplished by an induction on the expression e being

compiled. We prove it first for constants, then for variables, and then

AT 4O
for sums on the induction hypothesis that it is true for the summands.

Thus we have three cases.

-

I. isconst(e). We have ' Justification
outcome{compile(e,t),n) = outcome(mk1i(valle)),n) L,2
= step(mkli(val(e)),n) 2,38, 5.%
= a(ac,arg(mk1i(val(e))),n) 3.1, 5.11
= a(ac,val(e),n) 43
= a(ac,value(e,t),n) 2.%
= a(ac,value(e,t),n) L.3, 4.k
II. isvar(e). We have
outcome(compile(e,t),n) = outcome(mkload(loc(e,map)),n) 4,2

= a(ac,c(adr(mkload(loc(e,map))),q),n) %13, 5.2,.3:11

{ = alac,c(1oc(e,map),1),n) 5.2
: . = alac,cle,t),n) b.1
= alac,value(e,t),n) - 1 1
= alac,value(e,&),n) L.3, 4.4

III. issum(e). In this case we first write

‘ outcome(compile(e,t),n) =

RS
L]

outcome{compile(sl(e),t)*mksto(t)*compile(se(e),t+1)*mkadd(t5,n) k.2

outcome(mkadd(t),outcome(compile(sa(e),t+i),outcome(mksto(t),
outcome (compile(si{e),t),n)))) 3.1

using the relation between concatenating programs and composing the

functions they represert. Now we introduce some notation. Let

AI 40

v = value(e,t)

v = value(sl(e),t)
v, = value(s2(e),t)
so that v = v +v,. Furtrer let
By = outcome(compile(si(e),t),n)
Co = outcome(mksto(t),gl)
g3 = outcome(compile(s2(e),t+1),§2)

gh = outcome(mkadd(t),ci}
so thet €, = outcome(compile(e,t),n) and we want to prove that

Ey = a(ac,v,q)

We have
§£ = outcome(compile(sd(e),z),n)
=. a(ac,vi,n) and Induction Hypothesis
c(ac,Ci) = ¥ 3.8
Now
g2 = outcome(mksto(t),gi)
= a(t,c(ac,{i),cl) 5.12, 3.5, 5.11
= a(t,vl,gi) Substitution
= id a(t,v ,a(ac,vi,n)} k.5
Eifan a(t,vi,n) 4.€, 3.9
and
e(t,t,) =y 3.8
Next
Cj = outcome(co;;ile(SQ(e),t+1);CE)
=31 a(ac,vz,ge) Induction hypothesis(see note, p.13)
=teq a(ac,v,,a(t,vg,m)) 3.9, 4.5
and

AI ko

c(ac,gj) = v, and c(t,gj) = vy 3,8
Finally,
£y, = outcome(mkndd(t),;j)
= a(ac,c(t,§5)+c(ac,§5),§5) 3.12, 3.4, 3,11
= a(ac,v,CS) Definition of v, substitution
erd u(nc,v,a(ac,va,a(t,vi,q))) k.5
=41 a(ac,v,a(t,v ,1)) 3.9
= alac,v,n) 3.9, 4.6, 5.7

This concludes the proof.
6. Remarks

The problem of the relations between source language and object
languege arithmetic is dealt with here by assuming that the + signs in
formulas 2.1 and 3.1l which define the semantics of the source and
object languages represent the same operation. Theorem{ does not
depend on any properties of this operation, not even commutativity or
associativity.

The proof is entirely straightforward once the necessary machinery
has been created. Additional operations such as subtraction, multipli-
cetion and division could be added without essential change in the
proof.

For example, to put multiplication into the system the following

chenges would be reguired.

1. Add isprod(e), and pl(e), and p2(e) to the abstract syntax of

the source language.

2. Add & term

10

AT Lo

if isprod(e) then value(p)e),t) x value(p2(e),t) to
equation 2.1.
3. Add
isprod(e) A ®(pile)) A ®(p2(e)) o &(e)
to the hypotheses of the source language induction principle.

4, Add an instruction mul x and the three syntactical functions
ismul(s), adr(s), mkmul(x) to the abstract syntax of the object
language together with the necessary relations among them.

5. Add to the definition 3.11 of step a term
else if ismul(s) then a(ac,c(adr(s),n) x c(ac,n),n)

6. Add to the compiler a term

if isprod(e) then compile(pl(e),t)*mksto(t)*
compile(p2(e),t+ 1) *mkmul(t)

7. Add to the proof a case isprod(e) which parallels the case
issum(e) exactly.

The following other extensions are contemplated.

1. Variable length sums.

2. Sequences of assignment statements.

3. Conditional expressions.

L. go to statements in the source language.

In order to make these extensions a complete revision of the formalism

will be required.

i &

1.

2.

AI Lo

REFERENCES

McCarthy, J., Computer Programs for Checking Mathematical Proofs in

Recursive Function Theory, Proceedings of Symposia in Pure
Mathematics, Vol. 5, American Mathematical Society (1962).

McCarthy, J., A Basis for a Mathematical Theory of Computation in

Computer Programming and Formal Systems, Edited by P, Braffort
and D. Hershberg, North-Holland, Amsterdam (1963).

McCarthy, J., Towards a Mathematical Theory of Computation. Proceedings
of 1962 International Congress on Information Processing.

McCarthy, J., A Formal Description of a Subset of Algol, to be published

in the proceedings of a conference on Formal Langnage Description

Languages held in Vienna in 1964,

AI 40

NOTE:
To apply the induction hypothesis requires showing
c(loc(v,map),L) = clv,t)
It has been previously proven that
ga “t+1,ac ‘(t’vi M)
By the definition of t, loc(v,map) < t. Then by the
definition of partial equality and 3.8,
c(l.oc(v,map),ge) = c(loc(v,mp),a(t,vi,n))
= ¢(loc(v,map),n)
= c(v,t)

The last equality comes from the hypothesis of theorem].

i3

