
TEE ES UI EE EI EE ER EE
AT. Memo #40

op) CORRECTNESS OF A COMPILER FOR ARITHMETIC EXPRESSIONS
oN

Je BY
N@ JOHN McCARTHY and JAMES PAINTER

=

=

TECHNICAL REPORT NO, CS38

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences

STANFORD UNIVERSITY

STANFORD ARTIFICIAL INTELLIGENCE PROJECT April 1k, 1966
Memo No. 40

CORRECTNESS OF A COMPILER FOR ARITHMETIC EXPRESSIONS

by John McCarthy and James Painter

Abstract: This is a preprint of a peper given at
the Symposium on Mathematical Aspects
of Computer Science of theAmerican
Mathematical Society held April 6 and
7, 1966. It contains a proof of the
correctness of a compiler for arithmetic
expressions.

The research reported here was supported in part by the Advanced
Research Projects Agency of the Office of the Secretary of Defense

CORRECTNESS OFA COMPILER FOR ARITHMETIC EXPRESSIONS

by John McCarthy and James Painter*, Stanford University

1. Introduction.

~This paper contains a proof of the correctness of a simple compiling

algorithm for compiling arithmetic expressions into machine language.

The definition of correctness, the formalism used to express the description

of source language, object language and compiler, and the methods of proof

are all intended to serve as prototypes for the more complicated task of

proving the correctness of usable compilers. The ultimate goal, &s outlined

in references [1], [2], [3] and [4] is to make it possible to use a computer

to check proofs that compilers are correct.

The concepts of abstract syntax, state vecior, the use of an interpreter

for defining the semantics of a programming language, and the definition of

correctness of a compiler are all the same as in [3]. The present paper,

however, is the first in which the correciness of a compiler is proved.

The expressions dealt with in this paper are formed from constants and

variables. The only operation allowed is & binary + although no change in

method would be required to include any other binary operations. An example

of an expression that can be compiled is

(x43 J+(x+(y+2))

although, because we use abstract syntax, no commitment to a particular form

is made.

The computer language into which these expressions are compiled is

a single address computer with an accumulator, called ac, and four instructions:

—eee

*IBM Resident Graduate Student, IBM Corp.

1

11 (load immediate), load, sto (store) and add. Note that there are no

Jump instructions. Needless to say, this is a severe restriction on the

generality of our results which we shall overcome in future work.

The compiler produces code that computes the value of the expression being
compiled and leaves this value in the accumulator. The above expression is

compiled into code which in assembly language might look as follows:

load x

sto t

11 3

add t

sto t | E

load x

sto t+l

load y

sto t+2

11 2

add t+2

add t+l

add t

Again because we are using abstract syntax there is no committment to
& precise form for the object code.

2. The source language. |
The abstract analytic syntax of the source expressions is given by

the table: |

2

AI ko

Predicate Associated Funciions

isconst(e)

isvar(e)

issum(e) sl(e) s2(e)

which asserts that the expressions comprise constants, variables and binary

sums, that the predicates isconst, isvar, and issum enable one to

classify each expression and that each sum e has summands sl{e) and

s2(e).

The semantics is given by the formula

(2.1) value(e,t) = if isconst(e) thenvalle)else if isvar(e) then cle,t)

else if issum(e) thenvalue(si(e),t) + value(s2(e),t)

where val(e) gives the numerical value of an expression e representing a

constant, c(e,t) gives the value of the variable e in the state vector E

and + is some binary operation. (Naturally, usually + will be interpreted

as an operation that resembles addition of real numbers, but our results

do not depend on this.)

For our present purposeswe do not have to give a synthetic syntax for

the source language expressions since both the interpreter and the compiler

use only the analytic syntax. However, we shall need the following in-

duction principle for expressions:

Suppose ® is a predicate applicable to expressions, and suppose

that for all expressions e we have

isconst(e) © ®#(e) and

isvar(e) © ®(e) and

issum(e) A ®(sl(e)) A @(s2(e)) > oe).

Then we may conclude that ®(e) is true for all expressions e.

>

AI LO

5. The object language.

We must give both the analytic and synthetic syntaxes for the object

language because the interpreter defining its semantics uses the analytic

syntax and the compiler uses the synthetic syntax. We may write the analytic

and synthetic syntaxes for instructions in the following table.

operation predicate gnalytic operation synthetic operation

1i a isli(s) arg(s) mk1i (a)

load x isload(s) adr(s) mkload(x)

sto x issto(s) adr(s) mksto(x)

add x isadd(s) adr(s) mkadd(x)

A progrem is a list of instructions end null(p) dsserts that p is

the null list. If the program p is not null then first(p) gives the

first instruction end rest(p) gives the list of remaining instructions. We

shall use the operation pf*p2 to denote the program obtained by appending

p2 onto the end of pj). Since we have only one level of list we can identify

8 single instruction with a program that has just one instruction.

The synthetic and analytic syntaxes of instructions are related by

the following:

(3.1) isli(mkili(a))

a = arg(mkli(a))

isli(s) os = mkli(arg(s))

null(rest(mkii(ca)))

isli(s) DO first(s) = s

(2,2) islosd(mkload(x))

x = adr(mkload(x))

isloesd(x) © x = mkload(adr(x))

null{rest(mkload(x)))

isload(s) DO first(s) = s

L

AI 40

(3.3) issto{mksto(x))

x = adr{mksto(x))

issto(x) © x = mksto(adr(x))

null(rest(mksto(x)))

issto(s) OD first(s) = s

(3.4) isadd(mkadd(x))

x = adr(mkadd{x))

isadd(x) © x = mkedd(adr(x))

mull{rest(mkadd(x)))

isadd(x) © first(s) = s

(3.5) = null(p) Dp = first(p)*rest(p)

(3.6) = null(pi) A null(rest(p])) = pl= first(p]*p2)

(3.7) null{pi*p2) = null(p]) A null(p2)

The * operation is associative.

(The somewhat awkward form of these relations comes from having a general

concatenation operation rather than just an operation that prefixes a single

instruction onto a program).

A state vector for a machine gives, for each register in the machine,

its contents. We include the accumulator denoted by ac es a register.

There ere two functions of state vectors as introduced in [3], namely

1. c{x,m) denotes the value of the contents of register x in

machine state 1.

2. a(x,x,n) denotes the state vector that is obtained from the state

vector 1 by changing the contents of register x to a leaving the other

registers unaffected.

2

AI 40

These functions catisfy the following relations:

(3.8) e(x,a(y,x,n)) = if x=y then a else c(x,n) |

(3.9) a(x,a,a(y,B,1)) = if x=y then a(x,a,n) else a(y,B,a(x,a,n))

(3.10) a(x,c(x,n),m) = 0

Now we can define the semantics of the object language by

(3.11) step(s,n) = if isli(s) then a(ac,arg(s),n) else if

isload(s) then a(ac,c(adr(s),n),n) else if

issto(s) then a(adr(s),c(ac,n),n) else if

isadd(s) then a(ac,c(adr(s),n)+c(ac,n),n)

which gives the state vector that results from executing an instruction and

(3.12) outcome(p,n) = if null(p) then n else outcome(rest(p),step(first(p),n))

which gives the state vector that results from executing the program p with

state vector 1.

The following lemma is easily proved.

(3.13) outcome(p1*p2,n) = outcome(p2,outcome(p,n))

4, The compiler.

We shall assume that there is a map giving for each variable in the

expression a location in the main memory of the machine. loc(v,map) gives

this location and we shall assume

(4.1) c¢(loc(v,map),n) = c(v,§)

as a relation between the state vector 17 before the compiled program starts

to act and the initial state vector § of the source program.

Now we can write the compiler. It is

(.2) compile(e,t) = if isconst(e) then mkli(val(e)) else if

isvar(e) then mkload(loc(e,map)) else if

issum(e) then compile(si(e),t)*mksto(t)*compile(s2(e),t+])*mkadd(t)

Here t is the number of a register such that all variables are stored

6

AI Lo

in registers numbered less than t, so that registers t and above are

available for temporary storage.

Before we can state our definition of correctness of the compiler, we

need a notion of partisl equality for state vectors.

& =a 52

where 51 and Cs are state vectors end A is a set of variables means
that corresponding components of tq and Cs are equal except possibly

for values of variables in A. Symbolically, x € AD clx,8q) = c(x,8,’-

Partial equaiity satisfies the following relations.

(4.3) Y% " 6 is equivalent to & = ts where |} denotes the empty set.
(4.4) if ACB and 4 =4 £, then Cs = Co

(4.5) if el =p §, then alx,®,00) =p 4x) a(x,2,8,)
(4.6) if xeA then al(x,a,t) =4 §

(8.7) if Gg =, C, and L, =p 8, then §4 = gC,
In our case we need a specialization of this notation and will use

5 = ts to denote “4 “{x]x > t} Co
and

Ce =o Gp to demote Lg =r Ep
and

The correctness of the compiler is stated in

(4.8) Theorem 4 - If n and ¢ are machine and source language stale

vectors respectively such that c{ioc{v,map},n) = c(v,£)

then outcome(compile(e,t),n) = a(ac,value(e,t),1)
It states that the result of running the compiied program is to put

the value of the expression compiled into the accumulator. No registers

except the accumulator and those with addressess > t are affected.

5. Proof of Theorem 4:

The proof is accomplished by an induction on the expression e being

compiled. We prove it first for constants, then for variables, and then

~

AI 40

for sums on the induction hypothesis that it is true for the summands.

Thus we have three cases. .

I. isconst(e). We have ¥ Justification

outcome(compile(e,t),n) = outcome(mk1i(vaile)),n) 4,2

= step(mkli(vai(e)),n) 5.12, 3.1

= a(ac,arg(mkli(valle))),n) | 3.1, 3.11
= alac,val(e),n) 3.1

= a(ac,value(e,t),n) 2.3

=. alac,value(e,t),n) bh.%, 4.4
II. isvar(e). We have

outcome (compile(e,t),n) = outcome(mkload(loc(e,map)),n) 4,2

= a(ac,c(adr(mkload(loc(e,map))),n),N) 2.12, 3.2, 3.11

= alac,c(loc(e,map),1),n) 3.2

1 = alac,cle,8),n) k.1
= a{ac,value(e,t),n) 2.1

Lm a(ac,value(e,t),n) 5.5, 4.4
III. issum(e). In this case we first write

i outcome(compilele,t),n) =WA

y = outcome! compile(sile),t)*mksto(t)*compile(s2(e),t+1)*mkadd(t),n) 4.2

= outcome (mkadd(t),outcome(compile(s2(e),t+1), outcome(mksto(t),

outcome (compile(si{e),t),n)))) 3.1%

using the relation between concatenating programs and composing the

a functions they represent. Now we introduce some notation. Let

8 j

AT 40

v = value(e,t)

vy = vaiue(sl(e),t)

V, = value(s2(e),t)

sO that v = i Vo Furtrer let

Sq = outcome(compile(si(e),t),n)

Co = outcome (mksto(t),8,)

Cs = outcome(compile(s2(e),t+1),5,)

9) = outcome(mkadd(t),0,)

so thet §), = outcome(compile(e,t),n) end we want to prove that

Cy =¢ g(ac,v,n)
We have

Cy = outcome(compile(sd(e),t),n)
= a(ac,vy,n) and Induction Hypothesis

c{ac,q) = ¥y 2,8
Now

Co = outcome (mksto(t),t,)

= a(t,clac,by),6,) 3,12, 3.3, 3.11

= a(t,v,,8,) Substitution

=r a(t,vy,elac,vy,n), L.5

| fn alt,vy,n) h.€, 3.9
and

e(t,0,) = 3.8
Next

Cs = outcome(compile(s2(e),t+2),¢,)
= rq a(ac,v,,8,) Induction hypothesis(see note, p.13)

"eed a(ac,v,,a(t,vq,m)) 5.9, 4.5
and

9

AI 40

clac,t,) = v, and e(t,85) = vg 2.8
Finally,

ty = outcome (mkadd(t),t,)

= alac,c(t,l,)+elac,t;),8,) 3.12, 3.4, 3,11

| a(ac,v,t;) Definition of v, substitution

= ay alac,v,alac,v,,a(t,vy,1))) 4.5

“41 a(ac,v,a(t,v ,1)) 3.9

= alac,v,n) 3.9, 4.6, h.7

This concludes the proof.

6. Remarks

The problem of the relations between source language and object

language arithmetic is dealt with here by assuming that the + signs in

formulas 2.1 and 3.11 which define the semantics of the source and

object languages represent the same operation. Theorem] does not

depend on any properties of this operation, not even commutativity or

associativity.

The proof is entirely straightforward once the necessary machinery

has been created. Additional operations such as subtraction, multipli-

cetion and division could be added without essential change in the

proof.

For example, to put multiplication into the system the following

chenges would be required.

1. Add isprod(e), and pl(e), and p2(e) to the abstract syntax of

the source language.

2. Add a term

10

AI 40

if isprod(e) then value(p)e),t)x value(p2(e),t) to

equation 2.1.

3. Add

isprod(e) A ®(pile)) A ®(p2(e)) >¥(e)

to the hypotheses of the source language induction principle.

4. Add an instruction mul Xx and the three syntactical functions

ismul(s), adr(s), mkmul(x) to the abstract syntax of the object

language together with the necessary relations among them. |

5. Add to the definition 3.11 of step a term

elseif ismul(s) then alac,c(adr(s),n) x c(ac,n),n)

6. Add to the compiler a term

ifisprod(e)then compile(pl(e),t)*mksto(t)*

compile(p2(e),t+1) *mkmul(t)

7. Add to the proof a case isprod(e) which parallels the case

issum(e) exactly.

The following other extensions are contemplated.

1. Variable length sums.

2. Sequences of assignment statements.

3. Conditional expressions.

4. go to statements in the source language.

In order to make these extensions & complete revision of the formalism

will be required. |

11

AI 40

REFERENCES

1. McCarthy, J., Computer Programs for Checking Mathematical Proofs in

Recursive Punction Theory, Proceedings of Symposia in Pure

Mathematics, Vol. 5, American Mathematical Society (1962).

2. McCarthy, J., A Basis for a Mathematical Theory of Computation in

Computer Programming and Formal Systems, Edited by P. Braffort

and D. Hershberg, North-Holland, Amsterdam (1963).

3. McCarthy, J., Towards a Mathematical Theory of Computation. Proceedings

of 1962 International Congress on Information Processing.

4, McCarthy, J., A Formal Description of a Subset of Algol, to be published

in the proceedings of e& conference on Formal Language Description

Languages held in Vienna in 1964,

12

Al 40

NOTE:

To apply the induction hypothesis requires showing

¢(loc(v,map),t,) = clv,t)
It has been previously proven that

$2 “t+1,ac a(t,)
By the definition of t, loc(v,map) < t. Then by the

definition of partisl equality and 3.8,

c(loc(v,map),8,) = c(loc(v,mep),a(t,v,,1))
= ¢(loc(v,map),n)

= c(v,t)

The last equality comes from the hypothesis of theorem].

13

