cs37

COGENT 1.2
OPERATIONS MANUAL

BY
JOHN C. REYNOLDS

TECHNICAL REPORT CS37
APRIL 22, 1966

COMPUTER SCIENCE DEPARTMENT
School of Humanities and Sciences
STANFORD UN IVERS ITY

COGENT 1.2

OPERATIONS MANUAL

John C. Reynolds
Computer Science Department, Stanford University
and

Applied Mathematics Division, Argonne National Laboratory

April 22, 1966

(Work performed partially under the auspices of the
U.S. Atomic Energy Commission, and partially under
the Computer Science Department, Stanford University.)

PREFACE

This document is an addendum to the COGENT Programming Manual (Argonne
National Laboratory, ANL-7022, March 1965, hereafter referred to as CPM)
which describes a specific implementation of the COGENT system, COGENT 1.2,
written for the Control Data 3600 Computer.

Chapters I and II describe a variety of features available in COGENT
1.2 which are not mentioned in CPM; these chapters parallel the material
in Chapters II and III of CPM. Chapter III of this report gives various
operational details concerning the assembly and loading of both COGENT-com-

piled programs and the compiler itself. Chapter IV describes system and
error messages.

Familiarity with the contents of CPM is assumed throughout this report.
In addition, a knowledge of the 3600 operating system SCOPE, and the as-
sembler COMPASS is assumed in Chapter III.

TABLE OF CONTENTS

CHAPTER I. EXTENSIONS TO THE COGENT LANGUAGE 1
A. Constants S
B. Expressions . . ¢ ¢« ¢ ¢ v v v v i v v v v e e e 3
C. Interjections L

CHAPTER II. ADDITIONAL PRIMITIVE GENERATORS AND INTERNAL
VARIABLES P
Internal Varlables 6
Testing Primitives 1
Marking Primitives 8
Arithmetic Primitives 8
Output Primitives 9
1. The Tape Table e e e e e e e e e .9
Paging . . . e e e e e e 9
. 10
10
10
11
11
12

H O Q@ P

2.

3. BCD-to-Binary Card Image Conver81on
L. Checksum Insertion e e e
5. Tape-Table Primitives
6. Running-Message Suppression

F. Tape-Control Primitives

G. Running-Status Primitives

CHAPTER III. OPERATING INFORMATION FOR COGENT 1.2 13
A. Subprogram Structure 13
B. Loading . . e &

1. Bank Allocatlon e)
2. Further Restrictions 1k
3. Additional Comments . . . R 1
L. Suggested Memory Allocatlons S)
C. Assembly Control Parameters16
N P i
2. VERSCOPE S
3. Storage Allocatlon Parameters R I
L, MINLIST v v v v v e v v v v v« .. <10
5. PAGESIZE . + v v v v e e e e e e e .19
6. DELBLANK, PSEOF, and EOFCODE 19
T, STACKLEN. . & « ¢« v ¢ v v v &« « « « « « . +19
D. The Compiler « « ¢ v ¢« v v v v o o o« . 20
1. Loading ¢« v v v v v v v v v v20
2. Input. ¢ v v v v 20
3. COMPASS Output . . . « +« « « ¢« « « « « . . . 20
4. Printed OQutput 21
5. Output Volume « .« « o ¢« o o o . . 22
E. The COGENT Master Tape . « « « « « o o o o « o . 22
F. Illustrative Job Decks 23

ii

TABLE OF CONTENTS

CHAPTER IV SYSTEM AND COMPILER ERROR MESSAGES
A. System Messages .
1. Initialization Message

2. Running Messages .

a. List Storage Recovery

b. Ambiguity-Mode Character Count

3. Normal Termination Message

4., Abnormal Termination Messages
a. Initialization Errors
b. Syntactic Errors ..
c. Storage Exhaustion Errors
d. TIllegal Argument Errors
e. Miscellaneous Errors

5. Dump Message

B. Compiler.Error Messages

iii

Page

CHAPTER I
EXTENSIONS TO THE COGENT LANGUAGE
All features described in Chapter II of CPM have been implemented
in COGENT 1.2. The following additional features have been added to the
language:
A, Constants
The format of constants in COGENT has been extended to allow a
much greater variety of list structures to be represented. The produc-
tions (CPM, p. 54)
(constant) ::= ((open phrase class name)/{object string))|
(positive integer)
should be replaced by
(constant) ::= ((open phrase class name)/ (object string)ﬂ
($IDENT, (positive integer)/ (identifier object string)))
(positive number)!-(positive numberH
$$ (object character representative)||
$CSB((template constant)({constant synthesis string))
(identifier object string) ::= (emptyﬂ
’
(identifier object string){object character representative)
(integer) ::= (positive integer)|-(positive integer)
(floating-point digit string) ::= *(digit string)| (digit string)*l
(digit string)*(digit string)
(positive floating-point number) ::= (floating-point digit string”
(floating-point digit string)B
(unscaled positive number) ::= (positive integer))
(positive floating-point number)

(scale factor) ::= E(integer)|Q{integer)

(positive number) ::= (unscaled positive number))

(positive number)(scale factor)
(template constant) ::= (mnmtantﬂ (name)
(constant synthesis string) ::= (empty)
(constant synthesis string),(constant synthesis item)

(constant synthesis item) ::= (empty)| (constant)) (name)

1. A constant of the form ((open phrase class name)/(object string))
denotes the 1list structure obtained by parsing the object string with
respect to the goal specified by the phrase class name (CPM, p. 54).

. 2. A constant of the form (SIDENT,n/s) where s is an identifier
object string, denotes an identifier element in table n containing a
string of the output codes for each character in s . The string s is
not parsed, and need not conform to the object language syntax.

3. Constants of the form (positive number) or -(positive number)
denote positive and negative number elements respectively. Within an
unscaled positive number, an asterisk indicates floating-point and acts
as a decimal point, while the letter B indicates an octal representation.
An unscaled positive number may be followed by one or more scale factors
of the form En (or QOn). These scale factors are interpreted from left
to right and cause the denoted value to be multiplied by 10" (or 2R)
without changing the mode. When the mode is integer, the denoted value
is truncated to an integer after each scale factor multiplication. For
example,

399Q-2E2 denotes the integer 990010
1*24BE2 denotes the floating-point number 151.2510
The use of scale factors is subject to the following restrictions:

a. Within each scale factor, the integer n must satisfy
-102510 < n < 102510.

b. If the mode is floating-point, then the initial unscaled
positive number, as well as the result of applying each scale factor,
must fall within the representable range of normalized double-precision
floating-point numbers in the 3600.

4. A constant of the form $${object character representative)
denotes an integer number element giving the output code for the object
character representative. For example, 1if the character description in
a program is

$CHARDEF ($EF) = (101)100.

then
$SA denotes 218

$$(() denotes 7h8

$$($EF) denotes lOO8

5. The constant ** denotes the dummy element.

6. The format $CSB((template constant)(constant synthesis string))
is provided to allow constants to denote list structures with mixed syntax.
Its effect is analogous to a synthetic assignment statement, but the indi-
cated synthesis is carried out when the COGENT program is compiled, in-
stead of when it is executed. Specifically, the list structure denoted
by a constant with this format is obtained by copying the structure de-
noted by the template constant and replacing each parameter element with
index i by the value of the 1ith constant synthesis item (numbered
from left to right). If the ith item is empty, or if the synthesis
string contains fewer than i items, then any parameter element with
index 1 will be copied without replacement.

In COGENT 1.2, when a constant synthesis item replaces a param-
eter element, the list structure denoted by the synthesis item is itself
copied. This situation, which prevents the $CSB-format from denoting list
structures with common sublists (except identifier elements), may be al-

tered in future versions of COGENT.

Within the S$CSB-format, either the template constant or any con-
stant synthesis item may be a name instead of a constant; in this case the
name must be a pseudo-constant.

B. Expressions

The following should be added to the productions describing com-
pound expressions (CPM, p. 6k)

(compound expression) ::= $SB((template expression)(synthesis string))
A compound expression with this format is evaluated as follows:

1. The template expression and all expressions in the synthesis
string are evaluated. The order of evaluation is undefined and will be
chosen to optimize code. If the evaluation of any of these expressions
fails, then the evaluation of the entire compound expression fails, without
evaluating further subexpressions or performing step 2.

2. An instantiated copy of the value of the template expression
is formed and taken as the value of the compound expression.

In effect, this type of compound expression is similar to a synthetic
assignment statement, 1i.e.

(name) = $SB((template expression) (synthesis string))

3

is completely equivalent to
(name)/=(template expression)(synthesis string).

The advantage of the $SB-expression is that it allows list synthesis to be
performed within a larger compound expression. For example,

OUTPUT ($SB ((TERM/ (FACTOR)* (FACTOR)), X, Y)) .

C. Interijections

The following productions should be added to the syntax of COGENT:

(comment character) ::= (normal character)|(])],
(comment string) ::= (empty)l (comment string)(comment character)
(interjection) ::= $COMMENT (comment string)ﬁ

$TITLE (comment string).
(COGENT program) ::= (interjection) (COGENT program)
(character definition sequence) ::=

(character definition sequence){interjection)
(primary production sequence) ::=

(primary production sequence) (interjection)
(secondary production sequence) ::=

(secondary production sequence) (interjection)

(declaration sequence) (declaration sequence)(interjection)

(generator definition) ::= (generator definition) (interjection)
(statement) ::= (statement)(interjection)
(statement label) ::= (statement label)({interjection)

Generally, an interjection may appear anywhere in a COGENT program
where a character definition, production, declaration, generator definition,
or statement may appear. One or more interjections may also appear at the
beginning of a COGENT program.

1. An interjection beginning with $COMMENT has no effect on the
compilation of a COGENT program.

2. An interjection beginning with $TITLE has no effect on the
program produced by the COGENT compiler, but affects the printed listing

4

produced by the compiler. In general, each page of printed output from the
compiler will be headed by a line giving a title, the current date, and a
page number. The title field in this heading will be the comment string
contained in the last-encountered STITLE-interjection, or if no $TITLE-
interjection has been encountered, the title field will be blank. When-

ever a STITLE-interjection is encountered, the next line printed by the
compiler will be ejected to a new page.

In deriving a title field from the comment string in a $TITLE-inter-
jection, blanks will be deleted, and if the string exceeds 87 (non-blank)
characters, it will be truncated to the first 87 characters.

CHAPTER II

ADDITIONAL PRIMITIVE GENERATORS AND INTERNAL VARIABLES

All of the primitive generators and internal variables described in
CPM are available in COGENT 1.2, except the dump primitives DUMPV, DUMP1,
and DUMPALL. These three primitives may be called in COGENT 1.2 programs,
but they will simply output a system comment and return the dummy element
as their result.

This chapter describes the additional primitives and internal vari-
ables which have been implemented in COGENT 1.2, as well as various generali-
zations of earlier primitives described in CPM.

A. Internal Variables (CPM, p. T1)

1. The following internal variables have been added to the system:

rdm (random number). This internal variable is reset whenever the primitive
generator RANDOM(X) is called. Successive calls of RANDOM will cause rdm
to cycle through its legal values in a pseudo-random manner,

Initial value: 1 Legal values: odd integers such that
Used by: RANDOM. 1< rdm < 2&7 -1
Reset by: RANDOM,

pct (point count). This internal variable is reset whenever a sequence of
character output codes contained in the character buffer is converted into
a number, either by the primitives DECCON, OCTCON, or FLOATCON, or by the
syntax analyzer when controlled by a $DEQ/ $OCT/, or $FLOAT/ special label.
If the character sequence in the buffer does not contain any non-digits,
then @Pct hsesetwtd the dummy elemest. s e t to the number
of digits following the last non-digit in the sequence.

Initial value: dummy element. Legal values: 0 < pet < 102510,

plus dummy element.
Reset by: DECCON, OCTCON, FLOATCON, syntax analyzer.

sno (S-medium logical unit number). This internal variable is provided to
allow the comments and error messages produced by various system routines

to be written on an output device different than the P-medium device (spe-
cified by the internal variable p_g) If the value of sno is the dummy
element, then system comments will be written on the output device whose
SCOPE logical unit number is given by pno. But if 1 < sno £ 8 0 then
the comments will be written on the output device whose unit number is given
by sno. If sno = 0, then all system comments will be suppressed.

Initial value: dummy element. Legal values: 0 £ sno £ 80lo ,

plus dummy element.
Used by: system routines which output messages.

6

dno (D-medium logical unit number). This internal variable is intended to
control the output of the dump primitives in the same manner that sno con-
trols system messages. Since the dump primitives are not implemented in
COGENT 1.2, dno has no effect in this version of the system, although its
standard setting and evaluating primitives are available.

Initial value: dummy element. Legal values: 0 < dno < 8010 ,

plus dummy element.
Used by: DUMPl, DUMPV, DUMPALL (eventually, but not in COGENT 1.2).

2. The following standard primitives (CPM, p. 77) are available
for setting and evaluating the new internal variables described above:

SETIVRDM (X) sets rdm.
SETIVPCT (X) sets .pct.
SETIVSNO (X) sets sno.
SETIVDNO (X) sets dno.

IVRDM() evaluates rdm.
IVPCT() evaluates pct.
IVSNO() evaluates sno.
IVDNO () evaluates dno.

3. Zero has been made a legal value for the internal variables
pnop o , and bno (CPM, pp. 74-76). When any of these variables has the
value zero, output produced for the corresponding output medium will be
suppressed. The various output primitives will still function in their
normal manner, but the actual records produced will be discarded rather
than sent to an output device.

B. Testing Primitives (CPM; p. 79)

PSLARGER(X, Y). X and Y may be arbitrary list elements. PSLARGER
fails unless X > Y according to an arbitrary but fixed ordering of all

list names; otherwise it returns the dummy element. The ordering defined
by PSLARGER satisfies:

1. If X>Y and Y > Z then X > 2

2. For any list names X and Y exactly one of the following
holds: X > Y, Y > X, or X = Y (where equality is defined
in the sense of the primitive EQLIT).

C. Marking Primitives

Two one-bit components called markl and mark2 have been added to
all normal list elements containing one or more name-components, i.e, to
all non-literal normal elements. These mark components have the following

properties:

1. All non-literal normal elements produced by the syntax analyzer,
as well as all such elements appearing in constant list structures have
both mark components set to zero.

2. When a non-literal normal element is created by an instantiated
copy (e.g., by a synthetic assignment statement), the mark components are
copied without alteration,,

3. When two non-literal normal elements are compared by an analytic
assignment statement, the comparison fails unless both mark components match.

The following primitive generators test and manipulate the markl
component :

TSTMARK1 (X) leaves markl unchanged.

SETMARK1 (X) sets markl to 1

CLRMARK1(X) sets markl to 0

CMPMARK1 (X) complements markl.
The argument of each of these primitives must be a non-literal normal
element. Each of these generators will return a dummy result if the
markl component of this element is 1, and will fail if it is 0
However, before returning or failing, the generators will reset the markl
component as shown above. These marking primitives must not be used to
reset elements which appear in constant list structures.

The following primitives test and manipulate the mark2 component:

TSTMARK2 (X) leaves mark2 unchanged.

SETMARK2 (X) sets mark2 to 1 .

CLRMARK2 (X) sets mark2 to 0

CMPMARK2 (X) complements mark2.

Their operation is similar to that described above.

D. Arithmetic Primitives (CPM, p. 81)

RANDOM(X) . X must be an integer or floating-point number element. RANDOM
first resets the value of the internal variable rdm to p(r&n% and then

8

returns the result (X-rdm)/zlL7 . This result is computed and returned in
the same mode as X

The function p 1is chosen so that E,J?zccessive values of rdm cycle
through the odd integers between 1 and 2 - 1 in a pseudo-random manner.
The currently-used definition of p is

p(rdm) = (515° rdm) mod 2h7

E. Output Primitives (CPM, p. 96)

To increase the flexibility of output operations, a number of fa-
cilities have been added to COGENT 1.2, including the insertion of page
headings in printed output, the conversion of BCD card images into equiva-
lent binary images, the insertion of checksums in binary card images, and
the suppression of certain system messages.

1. The Tape Table

To control these added facilities, a tape table has been introduced.
This table, which exists during the running of all COGENT programs, is in-
dexed by SCOPE logical unit number, and contains the following entries for
each unit number:

a. A paging flag.
b. An integer called the line count.
C. An integer called the page count.

d. A list name called the title,, which must be either an
identifier or the dummy element.

e. A C-medium conversion flag.

f. A B-medium checksum flag.

When program execution begins, all flags in the tape table are turned off,
all line and page counts are set to zero, and all titles are set to the
dummy element.

2. Paging

Whenever a P-medium record image, or a print-line image produced
by a system comment routine (or an image produced by a dump generator, when
these generators are implemented) is sent to an output unit with logical
unit number i, then if the paging flag for i is off, the record is
outputted without alteration. But if the paging flag is on, the following
occurs:

a. If the carriage-control character of the record image is

9

a blank (indicating single-spacing) the line count for unit i is de-
creased by one. If the carriage-control character is 0 (indicating double-
spacing) the line count is decreased by two.

b. If the line count is negative, or if the carriage-control
character is 1 (indicating page ejection), then:

(1) The page count for unit i is increased by one.

(2) A special print line containing a carriage-control
character of 1 (page ejection), the current date, and the page
count is written on unit i . If the title entry for unit i is
an identifier (rather than the dummy element), the character string
of this identifier will also appear in this print line.

(3) The line count for unit i is set to 56.

(4) The carriage-control character in the record image
is set to 0 (double-space).

c. The record image is written on unit i

If the title is an identifier with more than 87 characters, only
the first 87 characters will be printed. The title identifier should not
contain any output codes larger than 7&8.

-

3. BCD-to-Binary Card Image Conversion,

Whenever a C-medium record image is sent to logical-unit number i,
then if the C-medium conversion flag for unit i is off, the record is out-
putted without modification. But if the C-medium conversion flag is on,
then the record will be replaced by a binary record which is equivalent,
i.e., which will cause the same card to be punched.

4. Checksum Insertion

Whenever a B-medium record image is sent to logical unit number i,
then if the B-medium checksum flag for unit i is off, the record is out-
putted without modification. But if the checksum flag is on, a checksum
for the card image will be computed and inserted in bit positions 25-48,
corresponding to columns 3 and 4 of the card. This checksum is computed
according to the standard conventions for CDC 3600 binary cards.

5. Tape-Table Primitives

The following primitives set or reference entries in the tape table.
In all cases, the argument LUN must be an integer number element denoting
a SCOPE logical unit number. All of these primitives except PGCNT return
the dummy element.

10

PAGE(LUN, T). T must be an identifier element or the dummy element. The
paging flag for logical unit LUN is turned on, the title entry is set to
the value of T, and the line count is set to zero.

NOPAGE (LUN). The paging flag for unit LUN is turned off.

PGCNT(LUN). Returns an integer number element giving the page count for
unit LUN.

CLRPGCNT(LUN). Sets the page count for unit LUN to zero.
CMDCNV(LUN). The C-medium conversion flag is turned on.
NOCMDCNV (LUN) . The C-medium conversion flag is turned off.
BCHKSM(LUN) . The B-medium checksum flag is turned on.
NOBCHKSM(LUN). The B-medium checksum flag is turned off.
The argument LUN = (0 is allowed for all of the tape-table primi-
tives. When LUN = 0 the tape table is not altered, and the dummy element

is returned.

6. Running-Message Suppression

Most of the messages produced by system routines are produced gither
at the beginning of program execution or at program termination. However,
certain messages called running messages may occur at arbitrary points during
program execution. These include:

a. A comment whenever list storage recovery occurs.

b. A comment whenever 100 successive characters are read
in the ambiguity mode.

The output of these messages is now conditioned by a running-
message flag; if this flag is off, the running messages will be suppressed.

The running-message flag is-turned on when program execution begins,
and may be altered by the following primitives:

RUNMSS(). Turns the running-message flag on,
NORUNMSS (). Turns the running-message flag off.
Both of these no-argument primitives always return the dummy element.

F. Tape-Control Primitives (CPM, p. 103)

The following tape-control primitives have been added:

SKIPR(LUN). Skips one record on the tape denoted by LUN. The dummy element
is returned. '

11

MASTLUN(LUN). Returns an integer number element giving the master logical
unit number for the unit LUN. The master logical unit number is the unit
number to which unit LUN has been equivalenced by SCOPE control cards or
by SCOPE itself. 1In the absence of any equivalencing, the master number is
LUN itself.

All of the tape-control primitives now accept the argument LUN = 0;
when LUN = 0, the primitives perform no action and return the dummy element.
When LUN £ 0, the primitives act by means of appropriate calls of the rou-
tine IOP., which is now used for all input-output operations in COGENT.

This routine is described in the CDC 3600 FORTRAN Maintenance Manual.

Two characteristics of the tape-control primitives should be noted:

1. The tape-control primitives do not affect the tape table. Thus,
for example, if a tape which is being paged is rewound, appropriate tape-
table primitives should be called to reset the page and line counts.

2. The routine IOP. blocks records on SCOPE unit 61 when this
unit is magnetic tape. On this unit, the primitives BSPR and SKIPR will

move the tape by physical rather than logical records.

G. Running-Status Primitives

The following primitives are provided to furnish information about
the running status of a COGENT program:

DATE(). Returns an 8-character tableless identifier giving the date on
which program execution began in the format mm/dd/yy .

TIME(). Returns an 8-character tableless identifier giving the current
time of day in the format hhmmb-ss, where b indicates a blank. In

the character-string components of the identifiers returned by DATE and
TIME, standard output codes (CPM, p. 39) are always used, even when other-
wise overridden by character definitions.

CLOCK(). Returns an integer number element giving the number of milli-
seconds remaining before program termination, i.e., before the program will
be automatically terminated by SCOPE.

ICOUNT(). Returns an integer number element giving the number of calls
of the input editor which have occurred since program execution began.

FREELIST(). Returns an integer number element giving the number of ma-
chine words in free list storage, i.e., the number of words available for
creating list structures before the next list storage recovery.

COLLECT(). Similar to FREELIST(), except that a list storage recovery
is performed before free list storage is counted.

12

CHAPTER III
OPERATING INFORMATION FOR COGENT 1.2

A. Subprogram Structure

In relocatable binary form, a COGENT program always consists of
the following subprograms:

PROG BETADATA ANAGEN

STACK I0P. ARTTHMTC

LIST ALLOC. SCAN
INITIAL OUTPUT
INEDITOR IDENT
INRPEXIT MISCPRIM
SYNTAX DUMP
SUBGEN GARBCOLL

(Each of these subprograms contains an entry point whose name is the same
as the subprogram name.)

The three subprograms PROG, STACK, and LIST are produced by the
COGENT compiler. The remaining subprograms are the same for all COGENT
programs and are called the running deck. The two subprograms IOP. and
ALLOC. are an input-output buffering package taken from the CDC 3600
FORTRAN library; the remaining subprograms in the running deck are written
especially for COGENT. INITIAL is the main subprogram.

Two numbered common blocks occur. /1/ is a 1600g-word bit table
referred to by GARBCOLL. /2/ is one-word block referred to by INITIAL;
its only use is to insure that the loader will be overlaid (when the
STACK-bank is 0). -

It should be emphasized that since the COGENT compiler is written
in its own language and compiled by itself, it is merely a particular
case of a COGENT program. Thus in relocatable binary form, the compiler
consists of three subprograms PROG, LIST, and STACK, plus the same running
deck as would be used with any other COGENT program.

B. Loading

1. Bank Allocation

Tne four subprograms PROG, STACK, IOP., and ALLOC. may be placed
in arbitrary banks (except for a restriction on STACK described below);
we will refer to these banks as the PROG-bank, STACK-bank, etc. The
remaining subprograms are restricted as follows: BETADATA, LIST, INITIAL,
and common block /2/ must go into the STACK-bank; all other subprograms
and common block /1/ must go into the PROG-bank.

To insure proper bank allocation, all of the subprograms except
PROG, STACK, IOP., and ALLOC, contain (in COMPASS) bank pseudo-instructions

15

which allocate these subprograms (and also the two common blocks) to the
same bank as PROG or STACK. (Thus in binary- form these subprograms begin
with bank control cards rather than IDC cards.) Therefore to specify

bank allocations while loading a COGENT program, it is only necessary to
provide a bank control card which gives absolute allocations for PROG,
STACK, IOP., and ALLOC. Tnis card should preceed the first binary deck.

2. Further Restrictions

The following additional restrictions are imposed on the loading
of COGENT programs. Violations of these restrictions will cause program
termination immediately after loading.

a. Tne subprogram STACK must be the first-loaded (highest-
addressed) subprogram in the STACK-bank. Furthermore, either the STACK-
bank must be bank 0, or else no subprogram may be placed in a bank whose
bank address is larger than the STACK-bank. These restrictions are
necessary to allow the pushdown stack to be protected by the bounds register,
so that the exhaustion of the pushdown stack causes a bounds fault.

b. The subprogram INITIAL must be the last-loaded (lowest
addressed) subprogram in the STACK-bank, and must be immediately preceeded
by LIST (so that the lowest address in LIST is one larger than the highest
address in INITIAL). The routine INITIAL allocates a portion of available
_ memory in the STACK-bank, as well as the area occupied by INITIAL itself,
to be used for non-constant list storage. These restrictions insure that
these two areas are contiguous and that they are adjacent to the area in
LIST wnich contains constant list structures.

c¢. Tne entry point LISTCHCK in the subprogram LIST must have
an absolute address of less than or equal to 70000, This restriction °
assures that no list element will have an address within the range of
literal list names. (This restriction will not be violated as long as
the assembly control parameter STACKLEN in STACK is larger or equal to

4096, .)

3. Additional Comments

The restrictions discussed in-the preceeding sections still permit
a variety of memory allocations for a COGENT program. Normally, the optimum
choice of allocation will be determined by two goals: (i) The program
must fit within the total memory available; (ii) The available memory
(remaining after loading) in the STACK-bank should be as large as possible
to maximize the size of list storage. Maximizing list storage will increase
the speed of a COGENT program by reducing the frequency of list storage
recoveries.

To acheive these goals, the following should be noted:
a. The subprogram DUMP contains only the primitive generators

DUMPV, DUMP1, DUMPALL, SETIVDNO, and IVDNO. It may be omitted for any
COGENT program wnich does not call these primitives. (In COGENT 1.2

14

DUMPV, DUMPl, and DUMPALL are dummy routines which merely produce system
comments.)

b. Large COGENT programs contain a very large number of
entry points and external symbols. In the case Where the PROG-bank is
0 and the STACK-bank is not 0, the program size is limited by the collision
of program space with loader tables. To minimize this limitation, it is
advisable that the last-loaded subprogram should go into the PROG-bank
and should have reasonable size but only a small number of entry points
and external symbols. The best candidate for this position appears to
be GARBCOLL.

c. By means of assembly control parameters, the running deck
may be assembled in either a "safe" or a "fast” version (see section C.l).
The fast version is significantly Sshorter

4. suggested Memory Allocations

The following memory allocation for two banks has been used
extensively and is recommended for most programs. If the program (and/
or the SCOPE resident) is large enough to cause memory overflow in bank
0, then IOP. and ALLOC. should be moved to bank 1 and placed between
BETADATA and LIST.

Bank 0 Bank 1

I0P. (SCOPE drivers)
ALLOC. STACK

PROG BETADATA

INEDITOR LIST

INRPEXIT INITIAL

SYNTAX (available memory)
SUBGEN Common block /2/
ANAGEN

ARITHMTC

SCAN

OUTPUT N increasing
IDENT address
MISCPRIM

DUMP

GARBCOLL

(available memory)
Common block /1/
(SCOPE resident)

The following memory allocation is suggested for one-bank loading.

The COGENT compiler itself is too large to fit in one bank, but many
smaller COGENT programs can be run with one bank.

15

Bank 0

(SCOPE drivers)

STACK

BETADATA

I0P,

ALLOC,

PROG

INEDITOR

INRPEXIT

SYNTAX

SUBGEN

ANAGEN

ARITHMTC

SCAN t increasing
OUTPUT address
IDENT

MISCPRIM

DUMP

GARBCOLL

LIST

INITIAL

(available memory)

Common blocks /1/ and /2/
(SCOPE resident)

C. Assemblv Control Parameters

As written in assembly language, most of the subprograms comprising
a COGENT program contain one or more assembly symbols called assembly control

parameters. These symbols, which are defined by EQU pseudo-instructions
near the beginning of the subprograms, are provided to allow various charac-
teristics of the program to be modified easily. Tne following is a complete
list of the assembly control parameters in COGENT 1.2, giving the name of
each parameter, the value given to the parameter in the subprogram versions
on the COGENT 1.2 Master Tape, the names of the subprograms containing the
parameter, and for each subprogram the COSY line number of the card defining
the parameter;

Assembly Control Value on Subprograms Cosy Card
Parameter Master Tape Using Parameter Number

SAFE 1 ARITHMTC
SCAN
OUTPUT
IDENT
MISCPRIM

VERSCOPE P INRPEXIT
OUTPUT

=~ \n U1\t

cont.

16

Assembly Control

Value on

Subprograms

Parameter

MINBUFF1
MINSNSK1
MINLIST1
EXCSNSK1
EXCLIST1

MINBUFAZ2
MINSNSK2

MINBuFB2
MINLISTZ2
EXCSNSK2
EXCLIST2

MINLIST
PAGESIZE
DELBLANK
PSECF
EOFCODE

STACKLEN

1.

Master Tape

Using Parameter

0
1500
510
10
80

0
3000
0
510
0
100

500
29

1

1
101B

Lo96

INITIAL
INITIAL
INITIAL
INITIAL
INITIAL

INITIAL
INITIAL
INITIAL
INITIAL
INITIAL
INITIAL

GARBCOLL
OUTPUT

INEDITOR
INEDITOR
INEDITOR

STACK

\
11

12
13
1k
15
/

17)
18
19
20
21
22)

29

oo\ o)}

[N

—_—

"

Cosy Card
Number

Storage Allocation
Parameters for
One-bank Loading

Storage Allocation
Parameters for
Two-bank Loading

The parameter SAFE conditions the assembly of instructions which
test the wvalidity of arguments of primitive generators. When SAFE = 1,
a safe version of the subprogram is assembled in which the calling of
will cause abnormal

primitives with invalid arguments
program termination.

When SAFE = 0,

(in most cases)
a fast version is assembled which

is shorter and considerably faster than the safe version, but in which

invalid arguments will have unpredictable consequences.

2.

VERSCOPE

The parameter VERSCOPE should be set to 5 or 6, depending upon

= 6, code will be assembled
to select interrupt on abnormal termination in order to close (output
buffers for) logical unit 61 after an abnormal termination.

the version of SCOPE being used. Wnen VERSCOPE

3.

Storage Allocation Parameters

As soon as a COGENT program has been loaded, the routine INITIAL
will determine the extent of available storage (the storage areas between
subprograms and common blocks in each bank, plus the area occuppied by

INITIAL itself)
list storage,

the syntax stack,

and divide this storage into areas for three purposes:
and input-output buffers.

The amount

of storage used for each purpose is determined by the eleven assembly
control parameters called storage allocation parameters.

L7

(To avoid confusion, it should be noted that a COGENT program
contains two distinct storage areas called the stack (or pushdown stack)

and the syntax stack, The stack is located in the subprogram STACK,
and is used to store the local variables, input variables, and various

temporary quantities used by generators. The syntax stack is located
in available memory in the PROG-bank, and is used to store return

addresses for recognizers, i.e., syntax-analysis subroutines,)

Two cases are distinguished and controlled by separate sets of
parameters: one-bank loading, where the PROG- and STACK-banks are the
same, and two-bank loading, where the PROG- and STACK-banks are different,,
In both cases, the various storage areas are assigned minimum amounts
specified by the parameters named MINxxxxx, and then the excess storage
is divided among the areas according to percentages specified by the
parameters named EXCxxxxX.

The allocation formulas for one-bank loading are:

excess = available storage size - MINBUFFl- MINSNSK1l -~ MINLIST1
syntax stack size = MINSNSK1 + excess x EXCSNSK1 / 100

list storage size = MINLIST1 + excess x EXCLISTL / 100

buffer size = MINBUFFL + excess x (100 - EXCSNSK1 - EXCLISTL) / 100

If the excess is negative, an error message will be written and abnormal
termination will occur.

In two-bank loading, the syntax stack is allocated in the PROG-bank,
and list storage is allocated in the STACK-bank. 1I/0 buffers may be
allocated in either bank or both. The allocation formulas are:

PROG-bank excess = available storage in PROG-bank - MINBUFA2 - MINSNSK2
STACK-bank excess = available storage in STACK-bank - MINBUFB2 - MINLIST2

syntax stack size = MINSNSK2 + PROG-bank excess x EXCSNSK2 / 100

PROG-bank buffer size =
MINBUFA2 + PROG-bank excess x (100 - EXCSNSK2) / 100

. list storage size = MINLIST2 + STACK-bank excess x EXCLIST2 / 100

STACK-bank buffer size =

MINBUFB2 + STACK-bank excess x (100 - EXCLIST2) / 100
If either the PROG-bank or STACK-bank excess 1s negative, an error termin-
ation will occur. (For either one- or two-bank loading, slight deviations

from the above formulas will occur; e.g., the syntax stack will always
contain an even number of words.)

18

The storage allocation parameters must always satisfy the following
restrictions:

All parameters must be non-negative.
MINLIST1 > 510

EXCSNSK1 + EXCLIST1 < 100

MINLISTZ > 510

EXCSNSK2 < 100

EXCLIST2 < 100

In some cases there may be available storage in other banks
than the PROG- or STACK-bank; this storage will be used entirely for
I/0 buffers. Specifically, if a bank b is not the PROG- or STACK-bank,
and if either the STACK-bank = 0 or b < STACK-bank, then all available
storage in b will be allocated for I/0 buffers.

4., MINLIST

Tnis parameter determines the minimum size of free list storage.
If a list storage recovery produces less than MINLIST words, then the
program will terminate. MINLIST should always be at least 500,

5. PAGESIZE

This parameter appears in the routine which controls paging.
it gives the maximum number of print lines (including the heading line)

per page.

6. DELBLANK, PSEOF, and EOFCODE

These parameters control the assembly of the input editor., If
DELBLANK £ 0, the editor will delete blank characters., If PSEOF # O,
the editor will interpret a pseudo-end-of-file card (with asterisks in
columns 1 to 72) as an end-of-file, EOFCODE gives the input code to
be outputted by the editor for an end-of-file. The values DELBLANK = 1,
PSEOF = 1, and EOFCODE = 101B are used for the standard input editor,
i.e., the Version of the input editor which must be used with the COGENT
compiler itself.

T, STACKLEN

This parameter determines the number of words used for the
pushdown stack. When necessary it may be altered to provide a larger
stack, or to provide more list storage or I/O buffers at the expense
of the stack. However, a lower limit is imposed on STACKLEN by the
requirement that location LISTCHCK in the subprogram LIST must have
an absolute address less than or equal to 700008 (See section B.2.c. of

19

this chapter), The exact lower limit depends 'upon the particular program
and loading arrangement, but STACKLEN > 4096 will always be sufficient.

STACKLEN is the only assembly control parameter which appears
in a subprogram produced by the compiler rather than in the running deck,,
Thus, in addition to altering STACKLEN by a COSY correction, it is also
possible to alter the compiler itself to produce a different EQU for
STACKLEN, Tnis may be done by changing the large constant in the gener-
ator PROGEND (in the version of the compiler written in its own language),
and then recompiling the compiler.

DO The Compiler

As mentioned earlier, tne COGENT compiler is merely a specific
case of a COGENT program, consisting of the subprograms PROG, STACK, and
LIST. obtained by compiling the compiler, plus the usual running deck.
Specifically, the compiler 1s a program which reads input in the COGENT
language from SCOPE logical unit number 60, and produces COMPASS card
images on logical unit 1, plus an output listing on logical unit 6l.
(Note that logical unit 1 is a programmer-defined unit.)

1. Loading

Like all COGENT programs, the compiler is subject to the loading
restrictions discussed in section B of this chapter; since it is a very
large program, the comments in B.3 are especially pertinent. The sub-
program DUMP may be omitted, and the "fast" versions of ARITHMTC, SCAN,
OUTPUT, IDENT, and MISCPRIM should be used.

The memory allocation for two-bank loading given in section B.4
is recommended, (with DUMP omitted) although it may be necessary to place.
IOP. and ALLOC., in bank 1 rather than bank 0 if the SCOPE resident is
large. The compiler is too large for one-bank loading.

2. input

Tne input program to be translated by the compiler must appear
as a sequence of BCD card images on logical unit 60, Tnis program should
be immediately preceeded by the RUN-card which initiates execution of the
compiler, and immediately followed by either an end-of-file or a pseudo-
end-of-file card (asterisks in columns 1-72). 1If the compiler terminates
normally, it will leave tape 60 positioned immediately beyond the end-of-
file or pseudo-end-of-file card,

3. COMPASS Output

The primary output of the compiler is a sequence of BCD COMPASS
(not COSY) card images on logical unit 1. If the compiler terminates
normally, this tape will have the following format:

20

IDENT PROG

END
SCOPE
IDENT STACK

END
SCOPE
IDENT LIST

EM;
SCOPE
end-of-file

and the tape will be rewound by the compiler.

Tne COMPASS output will include REM cards indicating the beginning
of each generator, each recognizer (syntax analyzer subroutine), and
various tables. In addition, many machine instructions will have one or
more names, phrase class names, or statement numbers listed in their comment
fields; these comments are provided to identify various internally generated
assembly symbols: appearing in the corresponding instructions.

4, Printed Output

The compiler also produces printed output on logical unit 61.
This output includes an image of each card in the COMPASS output, plus

a. A table of all primary productions (with compound
productions reduced to sets of simple productions) along with their
production code numbers. This table appears at the beginning of the
printed output.

b. A similar table of all secondary productions, appear-
ing between the COMPASS-instruction listing of the syntax analyzer and
the listing of the production code number table.

C. Various system comments and error messages.

d. At the end of the printed output, a count of the number
of error messages.

Tne printed output does not include a listing of the input program.

21

5. Output Volume

Tne compiler frequently produces a very large valume of both
COMPASS and printed output. As an extreme example, when the compiler
is used to compile itself, it reads 1491 cards and produces about 28000
COMPASS card images plus 622 pages of printed output. Because of this
volume of output:

a. Tne COMPASS output should not be punched directly
onto cards. It is usually better to use the COMPASS assembler to
convert this output into COSY desks.

b, For large programs such as the compiler itself, the
COMPASS output may extend onto a continuation reel.

E. 'The COGENT Master Tape

Tne COGENT system i&normally distributed in the form of & COGENT
Master Tape. Tnis tape contains an 80-character (SCOPE 6.x-type) label
with the name (COGENTbl.2bMAS), followed by twd-files.

Tne first file consists of 21 binary COSY decks for the following
subprograms (in order):

STACK

BETADATA

IOP. . .

ALLOC} versions for use witn SCOPE 5.4
IOP,
ALLOC,
LIST
INITIAL
PROG
INEDITOR
INRPEXIT
SYNTAX
SUBGEN
ANAGEN
ARITHMTC
SCAN
OUTPUT
IDENT
MISCPRIM
DUMP
GARBCOLL

versions for use with SCOPE 6.0

The subprograms STACK, LIST, and PROG are specific to the COGENT compiler,
while the remaining subprograms constitute the running deck and are used
with all COGENT programs. Tne versions of IOP. and ALLOC. are taken from
the FORTRAN library of a particular 3600 installation (Argonne); at other
installations it may be necessary to replace these subprograms by local
versions.

22

Tne second file of the master tape contains BCD card images
giving the program for the COGENT compiler in its own language. Some

of the card images in this file contain sequence numbers in columns
77-80; these numbers pertain to an earlier version of the compiler and
should be ignored,

F. Illustrative Job Decks

Tne following sections give illustrative Jjob decks for the pre-
paration of a COGENT system from the Master Tape, and for the compilation,
assembly, and execution of a COGENT program. Numerous variations are
possible to meet the needs of particular installations, users, or programs,
In the following, the ‘symbol "?" is used to denote a 7-9 punch, and the
symbol "¢" is used to denote a 11-0-7-9 punch.

1. To prepare a load-and-go tape of the COGENT compiler to be
used with SCOPE 0.0 or o.l:

?J0B, charge number,id,20
?EQUIP,1=(COGENTb1.2bMAS), SV
?EQUIP,2=(COGENTb1.2bBIN), SV

?FILE,2 .
£BANK, (0) ,PROG, (1) ,STACK, (0), TOP.,ALLOC) OF T ... »(1),I0P, ,ALLOC.
?FILE END necessary
?COMPASS,Y=1,X=2,L,R,M
CcosSY STACK
Ccosy BETADATA
BYPASS 2 . BYPASS L
CosY I0P, or SCOPE
COSY ALLOC. 7FILE,2
Binary relocatable decks for local
versions of IOP. and ALLOC,
?FILE END
(?COMPASS,Y=1,X=2,L,R,M
Ccosy LIST
COsY INITIAL
COsY PROG
Ccosy INEDITOR
REPLACE 5
VERSCOPE EQU 6
COosY INRPEXIT
Ccosy SYNTAX
COsY SUBGEN
COSY ANAGEN
REPLACE 5
SAFE EQU 0
Cosy ARITHMTC
REPLACE 5
SAFE EQU 0
COSY SCAN
REPLACE 5
SAFE EQU 0

23

REPLACE T

VERSCOPE EQU 6
COsY OUTPUT
REPLACE 5

SAFE EQU 0
COsY IDENT
REPLACE 5

SAFE EQU 0
Ccosy MISCPRIM
BYPASS 1
COsY GARBCOLL
SCOPE

2, To produce a safe version of the running deck (on binary
relocatable cards) for use with SCOPE 6.0 or 6.1:

?JOB, charge number,id,10
?EQUIP, 1= (COGENTb1.2bMAS) ,SV
?COMPASS,Y=1,P,L,R,M

BYPASS 1
COSY BETADATA
BYPASS 2
COsY I10P, or if local versions of
COSY ALLOC.j IOP. and ALLOC. are to be used {?YPASS >
BYPASS 1
COSY INITIAL
BYPASS 1
COSY INEDITOR
REPLACE 5
VERSCOPE EQU b
COSY INRPEXIT
COSY SYNTAX
COSY SUBGEN
COoSY ANAGEN
CosyY ARITHMTC
COsY SCAN
REPLACE 7
VERSCOPE EQU 6
COsY OUTPUT
COSY IDENT
COsY MISCPRIM
COSY DUMP
COSsY GARBCOLL
SCOPE

3. To compile, assemble, and execute an COGENT program using
the two-bank allocation suggested in section B.4 of this chapter:

?J0B, charge number,id,total time limit

?EQUIP,2=(COGENTb1.2bBIN),SV

7EQUIP,1=SV (include to save compiler output)
?LOAD,2

2k

?RUN, ,compilation time limit,print limit,l (compilation)
COGENT Program to be compiled
Card with asterisks in columns 1-72

?COMPASS,I=1,X,P,L,R,M (assembly of PROG)
?COMPASS ,,I1=1,X,P,L,R,M (assembly of STACK)
?FILE,69

Binary relocatable deck for BETADATA
?FILE END

?COMPASS,I=1,X,P,L,R,M
£BANK, (0) ,PROG, (1) ,STACK, (0) ,IOP. ,ALLOC,
Binary relocatable decks for: IOP.
ALLOC,

(assembly of LIST)

?LOAD, 69
Binary relocatable decks for: INITIAL
INEDITOR
INRPEXIT
SYNTAX
SUBGEN
ANAGEN
ARITHMTC
SCAN
OUTPUT
IDENT
MISCPRIM
DUMP
GARBCOLL
?RUN, execution time limit,print limit,l (execution)
Data cards
With SCOPE 6.0 or 6.1, this type of job cannot be used if the program is
so large that the compiler output on logical unit 1 runs onto a continua-
tion reel. In this situation, compilation and assembly must be performed
as separate jobs,

25

CHAPTER IV
SYSTEM AND COMPILER ERROR MESSAGES

Two types of "messages" occur in COGENT: System messages are
produced by routines in the running deck., angd may appear during the
execution of any COGENT program, including the compiler, Some of these
messages indicate the cause of an error termination, while others may
occur during the operation of a correct program, Compiler error messages
are produced only by the COGENT compiler; these messages never cause
program termination,

A, System Messages

In general, system messages are outputted to the logical unit
specified by the internal variable sno_ (See II.A.l). During the
operation of the compiler these messages.appear on logical unit 61,

For each message described in this section, a reference by sub-
program name and COSY line number is given to the code within the running
deck which produces the message.

1. Initialization Message (INITIAL, 152)

As soon as a COGENT program begins execution, the subprogram
INITIAL will output a message giving the current time of day and a
description of the allocation of available memory:

EXECUTION STARTED AT hhmm -ss

ALLOCATION OF AVAILABLE MEMORY
b fffff LIST STORAGE sssss
b fffff SYNTAX STACK sssss
b fffff I/O BUFFERS sssss

The octal numbers b, f, and s are the bank, lowest address, and length
of each section of storage, 1If I/O buffers occur in more than one bank,
then a line will be written for each bank containing buffers,

If INITIAL causes an error termination because of improper loading
order or inadequate available memory, the initialization message will not
occur,

2. Running Messages

These messages may occur anytime during program execution. Their
output is conditioned by the primitives RUNMSS and NORUNMSS (See II.E.6).

a. List Storage Recovery (GARBCOLL, 38b)

The following message occurs at the completion of each
list storage recovery:

26

(LIST STORAGE RECOVERY, f WORDS RECOVERED. p WORDS IN ACTIVE PUSHDOWN
STACK. ELAPSED TIME t MS)

where f is the size of the recovered free list storage area, and t is the
time (in milliseconds) taken by the recovery routine. The quantity p

is the number of active words in the pushdown stack (excluding the sub-
stack) and represents the memory in use for the input variables, local
variables, and temporary storage of &ll generators in the calling chain
at the instant when recovery occurred. All numbers in this message are
decimal.

b. Ambiguity-Mode Character Count (SYNTAX, 430)

An ambiguity-mode character counter is initialized to zero
whenever the ambiguity mode is entered by the syntax analyzer, and is
incremented each time a character is read in the ambiguity mode. When-
ever this counter passes through a multiple of 100,,, its content is
printed,' along with the number of calls of the input editor which have
occurred since program execution began:

(c CHARACTERS HAVE BEEN READ IN AMBIGUITY MODE. INPUT EDITOR HAS BEEN
CALLED n TIMES)

where ¢ and n are decimal numbers.

3. Normal Termination Message (INRPEXIT, 79)

Whenever a program terminates normally, the current time is
printed:

NORMAL TERMINATION AT hhmm -ss

k, Abnormal Termination Messages

The running deck routines detect a variety of errors, all of
which cause abnormal termination, In all cases, a system message is
produced with the general form:

ABNORMAL TERMINATION AT thmm -ss AFTER n CALLS OF THE INPUT EDITOR
TERMINATION DUE TO specific error message

where n is decimal, The following are specific system error messages:

a. Initialization Errors

... IMPROPER ORDER OF LOADING

(INITIAL, 219). A violation of the loading restrictions discussed in
III.B.2.

i

oos INADEQUATE AVAILABLE MEMORY IN BANK b
(INITIAL, 224), & negative excess quantity, as discussed in III,C,3.

b, Syntactic Errors

oes ILL-FORMED INPUT STRING

(SYNTAX,488) . The string of characters produced by the input editor
cannot be parsed according to the primary productions.

«»o AMBIGUOUS INPUT STRING

(SYNTAX, 437) . Tne string of characters produced by the input editor
can be parsed according to the primary productions in more than one
way .. This error does not occur until an entire goal specifier has

been parsed,

c. Storage Exhaustion Errors

ooe LIST STORAGE EXHAUSTION

(GARBCOLL, 400). A list storage recovery has recovered less than MINLIST
words, (See III.C.4),

eeo LIST STORAGE EXHAUSTION BY COPYING n

(SUBGEN, 55). An attempt to Greate an instantiated copy of the list
structure named n has used all of free list storage. The name n is an
absolute octal list name, i.e., either the absolute address of a list
element, or a literal name. This error will occur if an attempt is made
to copy a cyclic list structure,

..o BOUNDS FAULT BY INSTRUCTION AT LOCATION n (PROBABLY SYNTAX STACK
EXHAUSTION)

(INREEXIT, 63). The execution of the instruction at the 18-bit absolute
octal address n has caused a bounds interrupt. Since the pushdown stack
is protected by the bounds register, this error will occur if the push-
down stack is exhausted, which will occur if an infinite recursion or a

recursion over a very large list structure is attempted. Note that this
error message 1is incorrect; it should indicate the probable exhaustion
of the pushdown stack, not the syntax stack.

«es SYNTAX STACK EXHAUSTION

(syntax, 60). The syntax stack has been exhaustdd by ~anrexcessivély
deep recursion within the syntax analyzer.

.+. CONVERSION BUFFER EXHAUSTION BY SYNTAX ANALYZER

(SYNTAX, 1bk). The syntax analyzer, under the control of a character-

28

packing special label, nas attempted to store an excessive number of
characters in the conversion buffer, The number of characters in this
buffer, plus the number of characters with output codes larger or equal
to T5g, must not exceed lOl6lo for identifiers or 1oehlo for numbers.

. .. CONVERSION BUFFER EXHAUSTION BY IDENT,CIDENT,DECCON,OCTCON,OR FLOATCON
(scan, 690).

+ s+ CONVERSION BUFFER EXHAUSTION BY IDENT OR CIDENT

(IDENT, 145). Both of these messages indicate that an identifier- or
numbercreating primitive has attempted to store an excessive number of

characters in the conversion buffer. The limits on the thuffer size are
given above.

d. Illegal Argument Errors

Within the subprograms ARITHMIC, SCAN, OUTPUT, IDENT,
and MISCPRIM there are a large number of checks for illegal arguments
of primitive generators, These checks, which are only assembled if the
assembly control-parameter SAFE = 1 (See III,C,1), lead to the following

error messages:
ILLEGAL VALUE n ASSIGNED TO name of one or more internal variables

if the primitive is a standard setting generator for an internal variable,
or

ILLEGAL ARGUMENT n GIVEN TO name of one or more primitive generators

for all other primitives, 1In either case, n is the illegal argument,
given as an absolute octal list name.

e, Miscellaneous Errors

«o. CALL OF ABEXIT FROM LOCATION n

(INRPEXIT, 86). The primitive generator ABEXIT has been called, The
absolute octal address n is the biased return address given to ABEXIT

by the calling generator,
oo ERROR IN READING LUN n

(OUTPUT, 871). An irrecoverable parity error has occurred in reading
logical unit number n (decimal), i.e., a READ CHECK BUFFER DECIMAL call
of IOP. has returned with bit 19 of the A-register set. This message
will be written on the system comment unit (logical unit 64) as well as
the unit specified by sno.

29

..o FAILURE OF GENERATOR CALLED BY SYNTAX ANALYZER FROM LINKAGE ADDRESS n

(SYNTAX, 188). A generator called by the syntax analyzer has failed;
n is the absolute octal address of the generator linkage (in PROG) from
which the generator was called.

eso ILLEGAL LIST ELEMENT FOUND DURING STORAGE RECOVERY AT LOCATION n

(GARBCOLL, 97). During the searcn over all active list elements performed
by the list storage recovery routine, a non-literal (absolute oévdl) 'li#t
name n has been found which is not the address of a valid list element.

eeo ILLEGAL LIST ELEMENT FOUND DURING ANALYSIS AT LOCATION n

(ANAGEN, 23). During the execution of an analytic assignment statement,
a non-literal (absolute octal) list name n has been found in the template
list structure which is not the address of a valid list element.

oeo ILLEGAL INSTRUCTION AT LOCATION n

(INRPEXIT, 50). An illegal instruction at the 18-bit absolute octal
address n has been executed. A few illegal instructions appear in the
running deck at program points which should not be reached except under
extraordinary circumstances,

« oo UNEXPECTED INTERRUPT

(INRPEXIT, 71). Tni§nwssage occurs (if the assembly control parameter
VERSCOPE = 6, see III.C.2) for all abnormal terminations which do not
produce other system messages. The most common cause 1s exceeding a
time or print limit set by SCOPE,,

5. Dump Message (DUMP, 8)

The dump primitives have not been implemented in COGENT 1.2.
A call of the primitives DUMPV, DUMPl, or DUMPALL will cause the system
message

(DUMP GENERATOR-CALLED FROM LOC r WITH ARG n. SORRY, BUT THESE GENERATORS
ARE NOT CODED YET)

to be written on the unit specified by sno. The absolute octal numbers
n and r are the argument of the dump generator (if any) and the biased
return address given to the dump generator by its calling generator,
The dump generator will return the dummy element.

B. Compiler Error Messages

Compiler error messages are produced by the COGENT compiler,
rather than by the running deck. Unlike system error messages, they
do not cause abnormal termination, so that a single compilation may
produce several error messages. These messages appear in the printed

30

output on logical unit 61, with the standard format
FHHHRKXH X XA XX XX¥ERROR TYPE k ERROR COURT IS n¥¥¥¥xx%,, ,,

followed by enough asterisks to fill out the print line. The numeral

k indicates the type of error, while n is the ordinal of the appearance
of the error message in the compiler output.

At the end of the compiler output, a message will appear giving
the total number of error messages. Since the compiler will give a
normal termination even when one or more compiler error messages ocCcur,
it is advisable to check this final error count before running a compiled
program. It 1s also advisable to check for error messages in the sub-
sequent assembly of & compiled program. Certain types of errors, such
as undefined or multiply-defined statement numbers, will not be detected
by the compiler but will lead to assembly errors.

The following is a list of all- error types by their numerals..
For each type a reference is made to the generator or generators in the
COGENT compiler (as written in COGENT, i.e., file II of the master tape)
which detect the error. Some error types, designated as unusual, indi-
cate that the compiler is behaving in an unforseen manner, either because
of faulty design of the compiler or because the input program Contains
some error for which specific checks have not been-built into the
compiler.

1. (SAL op EXEC). The compiler 'has attempted to compile code
to store into, or call as a generator, some quantity denoted by a com-
pound expression (unusual).

2. (MOVE). Either (i) a pseudo-constant appears in a position
in which only a variable is allowed (i.e., a position indicating assign-
ment to the variable). or (ii) a pseudo-constant which does not denote
a generator element appears in a position indicating a generator to
be called.

3. (GENEND)., Either (i) a generator is defined with a name
which has not been declared (even implicitly) as a generator name, or
(ii) more than one generator has been defined with same name (and under
the same declaration).

L, (PCON). A name which is not a pseudo-constant has been used
in a position where only a pseudo-constant is allowed.

5. (CANA). An analysis string contains more than 50 items.

6. (parsconN) . A constant has been encountered which cannot
be parsed according to the total set of productions.

7. (PARSCON). A constant has been encountered which has more
than one parsing according to the total set of productions. The compiler
will make an arbitrary choice of the parsing to be used.

8. ©Not used,

9. (TRANCON). In parsing a constant, a $NOR/ special label
has been found on a production with more than one phrase class name in
its construction string, The compiler will disregard the $Mﬁy special
label,

10. Not used,

11, (SETCON or CONDEFl). Within some constant, a parameter
has been found whose index 1s~zero -or larger’than 50. The index will
be replaced by 1. This error will be found when code is generated for
the constant, rather than when the constant is actually read,,

12. (OBSETA), A left-hand constant in an identifier declaration
does not denote an identifier element, The erroneous item in the
declaration will be ignored,

13. (PROGDEC). A local declaration has appeared in the main
declaration sequence.

14. (IDENTDEF). An identifier element within some constant
list structure contains too many characters. This error will be found
when code is generated for the constant, rather than when the constant
is actually read.

15. (uwper) . The entity on the left-hand side of a character
definition is not an object character representative. Tne definition
will be ignored.

16. (RECFLOW). A phrase class mentioned in the primary syntax
description is empty, i. e,, the primary productions give no method for
constructing any phrase of the class. This message is a warning rather
than an error; the compiler will generate a syntax analyzer which will
never recognize any phrase of the empty class.

Each empty phrase class gives rise to two error messages.: a
type 1o message when the flow graph of the recognizer for the phrase
class is being calculated, and a type 18 message when code for the
recognizer 1is actually generated. The location of the type 16 message
does not indicate the name of the corresponding empty phrase class, but
each type 18 message will appear immediately before the compiled recognizer
for the empty phrase class.

17. (CHRVEC). A member of a terminator sequence is not an
object character representative.,

18. (RECCOMP). A phrase class mentioned in the primary syntax
description is empty. This message 1s a warning rather than an error;
See 16.

32

19. (PRODCOMP). A primary production with a $NOP/ special label
nas more than one phrase class name in its econ$trutfion string.

20. (GOALCOMP). A goal in a goal specifier is not a phrase
class name.

21. (PROGBEG). The total set of productions, after the reduction
of compound to simple productions, contains more than 102410 productions.

22. (TRANCON). 1In parsing a constant, a parameter has been
found in a portion of-an object string which is to be converted into
a number or identifier element, i.e., which is parsed under the control
of a character-packing special label. This message i1s a warning rather
than an error; the parameter will be ignored in creating the number of
identifier.

23. (PROGOUTZ). The compiler-has attempted to output an instruction
which violates the format of COMPASS cards (unusual).

2.4. (PDCNTABG), While generating the production code number
table or the character scanning table, the compiler has been unable to
find any production with a given code number (unusual).

25. (GENLINK)., A production label contains an improperly
declared name, i.e., a name which is neither a generator name nor a
universal own variable. This message appears whenthe corresponding
generator linkage code 1is generated, not when the erroneous production
is read.

26, (CONDEF). An inconsistency has been found while generating
code for a constant (unusual).

2p. (OUTCODE). An ill-formed constant of the form $$< object
character representative > has been encountered,

28. (OBIDENT), A parameter has been found in an identifier
object string.

29. (CLANA). 1In an analysis statement whose template expression

is a constant, an analysis item appears which is not matched by any
parameter in the template.

33

