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Eigenvectors of a Real Matrix by Inverse Iteration

J. M. Varah

1. = Theoretical Background

Calculation of the Eigenvectors

We are given a real nXn matrix A. We first reduce A to upper

Hessenberg form, and find approximations to its eigenvalues. Then each

eigenvector 1s calculated by inverse iteration on the upper Hessenberg

form using an approximation to the corresponding eigenvalue.

For a real eigenvalue A, the iteration 1s defined by

(A-nT)y KE) = x (E-1)
(6) (x)

€, mex 17! |
oo 1<i<n

(k) (k) (k)
where € _ sgn(y. ) 5 V. = max ys | .

k = Jjmax Jjmax 1<j<n y

kThus the largest component of o{ ) in modulus 1s 1. The iteration
01s started with a given initial vector 2 )

For a complex eigenvalue AM = & , in, the iteration is defined

by

- k-1

(AAI) (a-x1)y KE) = x )

Wy gE) (k)  ()
€ max |yt) Lo5p(0),

«LE omer®) CoE)
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Eigenvectors of a Real Matrix by Inverse Iteration

| where again SY is +1 , chosen so that a largest component of
o (8) + ey in modulus 1s 1 + O01. The iteration 1s started with a

given initial vector 2 (0) and with 2(0) = 0 ,

The iteration here 1s such that all computations can be done 1n

real arithmetic, For a complete description of inverse iteration, see

Wilkinson [1]. The iteration above for a complex eigenvalue is his

method (iv), page 630.

2.= Applicability

The algorithm will accept any real matrix. However, the accuracy

of the results will depend on the condition of the eigenvalues and

eigenvectors, so that no a priori estimate of the accuracy can be given.

3,.,= Formal Parameter List

N order of matrix A

A given matrix. On output, the upper Hessenberg form 1s stored

in A, with the transformations used in the lower sub-tri-

angle,

RTR, RTI real and imaginary parts of the eigenvalues, respectively,

with complex conjugate pairs consecutive,,

U matrix of column eigenvectors, stored by columns. If My is

complex, with Ney = A then columns k and k+l of U

contain the real and imaginary parts, respectively, of the

eigenvector corresponding to eigenvalue Mee The eigenvector

corresponding to Mert 1s then the complex conjugate of this.



| Eigenvectors of a Real Matrix by Inverse Iteration

MACHEPS machine precision, i.e. the smallest floating point number 5

such that 1+3>1 .

EXPLIMIT largest floating point number represented in the machine .

4. - Algol Program (see next page)

3 (Corrected page 3)
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PROCEDURE EIGENVALUESANDEIGENVECTORS(N,A»RTRsRTILU,MACHEPS,EXPLIMIT)}

VALUE NsMACHEPS,EXPLIMIT;

INTEGER N J REAL MACHEPS,EXPLIMITI ARRAY AsRTR)RTI»U}

BEGIN

COMMENT THIS PROCEDURE FINDS ALLEIGENVALUES AND COLUMNEIGENVECTORS

OF THENXN MATRIX A, THE EIGENVALUES ARESTORED INC(RTRLKI+RTI[KIxI)

| wiTH COMPLEXCONJUGATEPAIR S CONSECUTIVE. THeEIGENVECTORSARE

STORED BY COLUMNS IN U, IFTHEK=THEIGENVALUEIS COMPLEX, COLUMN

KIS THEREAL PART ANDCOLUMNK#1THE IMAGINARY PARTOF TH EEIGEN®

VECTOR CORRESPONDING TO EIGENVALUE Ke MACHEPSIS THEMACHINE

PRECISION, ANDEXPLIMIT THE LARGEST FLOATING POINT NUMBER CARRIED’

BY THE MACHINE}

“COMMENT FIRST DECLARE OTHER PROCEDURES;

REAL PROCEDURE WAX(A,B)}

VALUE A,B;

REAL A»sBj;

MAX$=1F A>BTHENA EL S EB}

REAL PROCEOURE 4INCA,B)}

VALUE A»B;

REAL A»B3

MINI=IF AcBTHEN A E LSE B}

REAL PROCEDURE ABSC(A»B)}

VALUE A,B}

REAL A»Bj

in



| COMMENT GIVESMODULUS OF COMPLEX NUMBER A+B1I3

BEGIN

At=ABS(A); Bt=ABS(B);

ABSC:=1FA<B THENBXSQRT(1+(A/B)T2)ELSE

IFA>BTHENAXSQRT(1+(B/AIt2) ELSE

Ax1,414213562373 COMMENT SQRT(2);

END ABSC;

REAL PROCEDURE INNERPRODUCTCI»MsNs»A»BsC);

VALUE MsN» CJ

INTEGER I,Ms\3 MEBLCS

BEGIN COMMENTBJIDY OF PROCEDURE SHOULD BE REPLACED BY

DOUBLE PRECISION MACHINE CODE}

FORI3=MSTE®| UNTIL N DO Ct=C+AxB}

INNERPRODUCT=C

END INNERPRODUCT}

PROCEDURE HESSENBERG(N,A»INT);

VALUE Nj;

INTEGER N3 AIRAYAJ INTEGER ARRAY INT]

BEGIN COMMENT HEZSSENBERGREDUCESATO UPPEK HESSENBERG FORM USING

ELEMENTARY RIN AND COLUMN’ OPERATIONS WITH INTERCHANGES, THE

INTERCHANGES ARE STORED INTHE INTEGER ARRAY INT INSUCH A WAY

THAT» ON EXIT FROMMHESSENBERG, INTLIJIS THEINDEX OF THE RON OF

THE ORIGINAL MATRIX NOW IN THE I=*TH ROW. PROCEDURE HESSENBERG

IS ASLIGHTLY MODIFIED VERSION OF PROCEDURE TRINGLE, GIVEN BY

Bo.PARLETT I N (11)

INTEGEK lsJp<sL;REALS»THLEPSS

p,



EPS$=SQRT(MACHEPS);

FOR I:=1 STE1 UNTIL N DDINTII)s=1}

FORJ:=NSTE®>=1UNT IL 200

BEGIN

S1=ABS(AlJU»J=1])3 Limy=1}

FORX$=J"2STEP={UNTIL1DO

BE GIN COMMENTFIND ELEMENT OF LARGEST MAGNITUDE IN J=THROW}

Te=ABS(A[JsK])}

IFT>STHEN

BEGIN

S1=T7; Lti=K

END

END;

IFL#J=1 THEN

BEGIN COMMENT INTERCHANGE COLUMNS AND ROWS J=1ANDL

Te=INTOJ=132 INTLJU=13¢=INTIL)} INTCL)!=TS

FORKI={ STEPI1 UNTIL N DO

Te=A[K,J"133 ALK,J=118=ALKsL)} ALK»L)S=T

END;

FORKEIs1I STEP 1 UNTIL N DO

BEGIN

Tt=ALJ=1,K15 ALJ=1,K13=ALL,KI} ACLsKIE=T

END

END OF CONDITIONAL

IF SSEPSXMINCABS(ALJU»J))2ABSCALJI=1,U=1]))THEN

BEGIN

FORKI=1ISTEP1 UNTIL. J-1D0ALJ»K]E=20
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_END, ELSE

FORK$=1 STEP 1 UNTIL J-2 DOACLJ»KI12ALJ»KI/ALY»J=133

FOR TtaN STEP - 1 UNTIL 1 DO

BEGIN COMMENT CHANGEROW J=13}

Te=IFALJ,J=11=0 THENO ELSEINNERPRODUCT(Ks1sJd=2,A0JrK]»"

ACK»I1,0);

A(J=1,1)8==INNERPRODUCT(KsMAX(Jp I+2)sNsALJU=1oK=11rA[K,I]>»

“AL J=1,11=T)

ENDI

END J

END MESSENBERGS

PROCEDURE TRANSFORM(NsX»A» INT)

VALUE

| NT EGE RNRAYXsAJ INTEGER _ARRAY INT},

BEGINCOMMENT THIS PROCEDURE TRANSFORMS A N EIGENVECTORXOF THE
HESSENBERG MATQIX INTO AN EIGENVECTOR OF THE ORIGINAL MATRIX}

INTEGER I,J5 AQRAY Y[1IN1}

FORI$=1STE®1 UNTILN -1 DO

YCIJt==INNERPRODUCTCU»1 1=1,A01+1,U)sY(J)s=X{1))}

YIN)Y3=XIN];

FORI$*=1STEP| UNTIL NDO XLINTLIJ)s=Y(I])}

END TRANSFORM}

PROCEDURE EIGENVALUES(NSTART,NFINISH,A»RTR,RTI)}

NSLART» NFINISH;

INTEGER NSTART,NFINISH3ARRAY ‘AsRTR,RTIS

BEGINCOMMENT THE BODY OF PROCEDURE EIGENVALUES IS LEFT UNDEFINED,

T



IT IS ASSUMEDEIGENVALUES FINDS ALL THE EIGENVALUES OF THE

PRINCIPAL SUSMATRIXOF THE UPPERHESSENBERGMATRIX A CONSISTING

O FELEMENTSAINSTARTsNSTART),eees AUNFINISH)NFINISHIANDPLACES

THE EIGENVALJES IN RTRINSTARTI+RTIINSTARTIXIssees RTRINFINISH]

+RTIINFINISHIXI,WITHCOMPLEX CONJUGATE PAIRS CONSECUTIVE),

, ENDEIGENVALUESS

PROCEDURE NORMRZAL(N»V»VNORM);

VALUE NJ;

INTEGERN; ARRAYV iREAL VNORM;

BEGINCOMMENTTHIS PROCEDURE NORMALIZES THE REAL VECTOR VOFDIMENSION

Nso THATITS COMPONENT OF LARGEST MAGNITUDE IS 140» AND SETS

VNORM EQuaAL TO THE MAGNITUDE OF THE LARGEST COMPONENT BEFORE

NORMALIZATION

REALS»S1,VI3 INTEGERI»Jj}

St1=0/

FORIt=1S@TEU NT| LN DO

BEGIN

S1:=ABS(VII]);

1 FS1>s THEN

REGIN

S3=81s Ji=l

END

END

VNORM$=S3;

IF VNORM 7 0. THEN

BEGIN

Vii=viJls VvIiJli=1;

8



FORIt=1STEPI1 UNTILJ=1,J+1STEP1 UNTILNDOD,

vilis=v(Il/Vvi

END

END NORMREAL

PROCEDURE NORMCIMPLEX(N,U»Vy VNQORM)}

VALUE NJ

INTEGERN ; ARRAY U,V; BEDRMS

BEGIN CDMYENT THIS PROCEDURE NORMALIZES THE COMPLEX VECTIRU®*VIOF

DIMENSION NSO THAT ITS COMPONENT OF LARGEST MAGNITUDE IS 1401»

AND SETS VNO3M EQUAL TO THE MAGNITUDE OF THE LARGEST COMPONENT

BEFORE NORMALIZATION;

INTEGERI»,JS REA LS»S1»U1,U2,V1»V2,R,DEN;

S:1=03;

FUR I3=1STE®| UNTILN DO

BEGIN

S1:=ABSCCULII,VIIY)}

IF $1>5 THEN

BEGIN

St1=S515 Ji=1

EYD

END;

VNORM:=S)

IF VNORMXD THEN

BEGIN

Utt=ulJgls V1i=VIJI;

UlJlei=1; vIiJI:=03

IF ABS(U1)2ABS(VII THEN

9
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BEGIN

R$=V1i/U15 DENI=UL1+RxV];

FORI#=1STEPI1I_UNTILJ=1»J+1STEPLIUNTIL N DO

u23=UllIl; V2i=V(I];

ULTI)e=(U2+RXV2)/DEN; VIIJi=(V2=RxU2)/DEN

END

END ELSE

Re=U1/v1s DEN$=VI+RxU1}

FORI$=1STEPIUNTILJ=1,J+1STEP 1 UNTIL N DO

BEGIN

u2:=UlI1l; Vv2i=VIiI];

ULI)s=(V2+RxU2)/DEN} VII)t=a(RxV2=U2)/DEN

END

END

ENDOF CONDITIONAL

END NORMCOMPLEX;

PROCEDURE GAUSSM(N»M»A»EPS,PIVOT)S

VALUE N»M, EPS;

INTE GER “MsN7ARRAY 4; REAL EPSSINTEGER AR RAY PIVOT;

BEGIN COMMENT THIS PROCEDURE REDUCES THE NXN MATRIX AsHAVINGM

SUB=DIAGONALS»TO LU FORM BY GAUSSIAN ELIMINATION WITH INTERCHANGES.

ANY ZERQPIVITAL ELEMENTS ARE REPLACED BY EPS;

INTEGERI, Jr<sIMAX3REAL T» SUM» QUOT;

FORK:=1STP®>1 UNTILN _O

BEGIN

10



SUM$=0; os SE

FORI$=K STEP 1 UNTIL MINCK#M,N) DOD

Ts=ABS(A[I»KI)} g

IF T>5JUM THEN

. SUM3I=T} IMAXt=]

END

END;

IF _SUM=0" THEN- | oo
BE GIN COMMENT K-TH COLUMN IS ZERO= REPLACE DIAGONAL ELEMENT

BY EPS; |

ALK,K)3s=EPS} IMAX$=K

PIVOTIK):=IMAXS CL oo

IF IMAX#KTHE N

FORJt=1 STEP 1_UNTILNDO

B E G IN COMMENT INTERCHANGEROWS IMAX ANDK3, |,

Te=AlK,J)} A[K,J)1=ALIMAX,J1 ACIMAX»J)s=T

CUENDS oo oo

FORTI:=K+15TEP 1 UNTIL MINCK+MsN) DO

BEGIN

AlI,K)i=QUOTs=ALI»KI/ALKLK])S

FOR J3=K+1 STEP 1 UNTIL N DO

ALI»J13=ALI»J)=QUOTXALK,J)

END

END K oo |

END GAUSSM}

11



PROCEDURE SOLVE(Ns»As Xs Y»PIVOT,FIRST)}

VALUE Ns FIRSTS

I NT EG FARRAY A,X, Y3 INTEGER ARRAY PIVOTS BOOLEAN FIRSTS

BEGIN COMMENT THISPROCEDURE SOL VE SAXYsX GIVEN AINL UFORM,

1 TDOESN o TMAKE U SE OF THE FA C TTYHATT H EORIGINAL A HAS ONLY

MWSUB=DIAGONALS»SO THAT THELOFLUIS SOMEWHAT SPARSE.

THE SOLUTION Y IS TESTED FOR OVERFLOW BEFORE BEINGCOMPUTED»

AND SCALED D3IWN IF OVERFLOW WOULO HAVE BCCURRED}

INTEGER I,Ki REAL T»SUMJ

COMMENT FORM (L=INVERSE)IXX UNLESS THISIS FIRST INVERSE ITERATIONS

IF — FIRST THEN

FOR ki=1 STE 1 UNTIL N 00

BEGIY

TeaX(PIVOTIA1)} X{PIVOTIKII¢=X[K]}

X[K)t==INVERPRODUCTCI, 1sK=1,ALKs TI,XE1)s=T)

COMMENT NOWSOLVE Uxy=X3}

FOR K:=N STH? NT1 LI 00

| BEGIN

COMMENT AVOID OVERFLOWI N INVERSE ITERATERYFIRSTCALCULATING

LNCABSCY[<1)) AND, IFYIKIWOULOBE TOOLARGE FOR MACHINE,

ScALING DIJNN THE'COMPONENTS OF Y BYMACHEPS UNTIL SMALLENOUGH.,

THIS SHOULD BEDONEBY EXAMINING eXPONENTS IN MACHINE CODE}

SCALE:

SUMi=(}

FORIt=K+1 STEP1 UNTIL N' DO

SUM =MAX (SUM, LNCMAX(1,ABSCALK,IIxY[I)))))}

12



IF LN(N=K+1)4SUM=| NCABSCALKs>KIII>INCEXPLIMIT) THEN

BEGIN

FORI$=K+1 STEP1 UNTIL N DOY[113=Y(I1)IxMACHEPS;

GO 10 SCALE

END;

Y(K)t==INNERPRODUCTC(I»K+1oNsAlKs1)» YLI)ro=X[KI)/ALK»K]

ENDK

END SOLVE;

PROCEDURE EIGENVECTORS(NSTARTSNFINISH»A,U)}

VALUE NSTART,NFINISH;

INTEGER NSTARTsNFINISH}ARRAY As U3

BEGINCOMMFENT Y4IS PROCEDURE FINDS THEEIGENVECTORS OF THEPRINCIPAL

SUBMATRIX Of THE UPPER HESSENBERG MATRIX ACONSISTIYG Of ELEMENTS

Al1,1)s000es AUNFINISH,NFINISH) CORRESPONDING TO THE EIGENVALUES

OF THEPRINCIPAL SUBMATRIX CONSISTING O f ELEMENTSAINSTART,NSTART]),

eee? ALNFINISAH» NFINISH]e IT. ASSUMES COMPLEX CONJUGATE EIGENVALUES

ARE CONSECUTIVE. THE EIGENVECTORS ARE STORED IN THE ARRAY U»sBY

COLUMNS, NON=LOCAL ARRAYSRTR AND RTI ARE USED}

INTEGER I,J24»L2oM»ITNS)

REAL ANORM,RABSQ, NORM, VNORM,RR,RI,EPS,NORMTOLERANCE, T}

BRRAMFINISHs1 SNFINISHI»XsUSs UT, VTLLSNFINISHYS

INTEGER ARRAY PIVOTL1tNFINISH13 BOOLEAN FIRST;

OWN BOOLEAN ASQCALC)

IF NFINISH=N THEN ASQCALCt=FALSES COMMENT THIS GIVES ASQCALC A VALUE
ON FIRST ENTRY;

COMMENT NOW FIND MAXIMUM ROW SUM OF SUBMATRIX OF AUSED)

ANORMS=0;

15



FORI$={1STE® | UNTIL NFINISH DO

BEGIN

T1=03

FORJ3=MAX(1,1=1)STEP 1 UNTIL NFINISH DO T#3T+ABS(ALI»J]1)}

ANORMt=MAX(ANORM»T)

END;

NORMTOLERANCES=1000xANORM/MACHEPS3 COMMENT SOMEWHAT ARBITRARY}

EPS1aMAX(ANORM»1)XMACHEPS} COMMENT USED IN GAUSSMINPLACEOF

ZERO PIVOT;

COMMENT NOW FIND EIGENVECTORS}

M$=13 COMMENT SO THE INCREMENT VARIABLE IN THE FOR LOOP HAS A

VALUE ON ENTRY}

FOR K$=aNSTART STEP M UNTIL NFINISH DO

BEGIN

COMMENT FIRST PERTURB EIGENVALUE I'F IDENTICAL TO SOMEPREVIOUSS

J330)

FORI$=NSTARTSTEP 1 UNTIL K=1 DO

IF RTRLII=RTRIK] A RTICI)=RTI(K)THEN JisJ+1}

RRI=RTREK]+3xJXMACHEPSXMAX(1s ABSCRTRLKI))S

RIS=RTI[K]} -. |

IF RI#0 a (—  ASQCALC) THEN

BEGIN COMMENT COMPUTE SUBMATRIX OF At 2REQUIRED WIEN FIRST’

COMPLEX EIGENVALUE ENCOUNTERED;

FORI$=1 STEP | UNTIL NFINISH Rp

FOR Jt=1 STEP 1 UNTIL NFINISH po

ASQLI»JIt=INNERPRODUCTCLsMAXCI®1,1)sMINCJ*1sNFINISH),

ACI»LY»ALLSJIS0)3

ASQCALEt=TRUE

1h



END;

COMMENT NIN GENERATE B» THE MATRIX TO S E REDUCED:

If RI=0 THEN

BEGIN COMMENT REAL EIGENVALUE=B=A~RRXIDENTITY]}

Mi=1,

FOR 13=1STEP1 UNTIL NFINISHDO

FORUJI=1STEP1 UNTIL I=2D00B(I,J)3=20;

FORJ3=MAX(I=1,1)STEP1 UNTILNFINISHDO

30I,J1t=A0T,J)=C1F J=I THEN RR ELSE 0)

END

END ELSE

BEGINCOMMENT COMPLEX EIGENVALUE =

B=(A=(IR+RIXIIXIDENTITY)X(A=(RR=RIXIIXIDENTITY)}

Mi=2; .3ABSQt=RRT2+RI1 2; |

FORI®=1STEP1 UNTIL NFINISH DO

BEGIN

FARJS=1STEP1 UNTILI-3008B(I»J)1=03

IF 123 THENBLI,I=2)8=ASQLI,1=2);

FORJ3=MAX(I=1,1) STEP1 UNTIL NFINISH 00

3(1,J13=ASQLI,JI=2XRRXA[1,J]+(IF y=IT H E NRABSQELSEO)

END

END GENERATIDN Of B3

COMMENT NDJNREDUCEBT OLUFORM »M GIVES THE' NUMBER Of

SUBDIAGONALSO {B3

GAUSSM(NFINISH»M»BR,EPS,PIVOT)}

ITNS:=0} FIRST$=TRUE; NORMI=1}

FORI®=1 STEP 1uU NT| LNFINISHDO

15



BEGIN

X{I)s=1; US[I)s=0

COMMENT INITIAL VECTORX IS SUCH THAT LXX=Es THE VECTOR AITH

EACH COMPONENT =1,0, NOW SOLVE BxUT=X}

RHS$

SOLVE(NFINISHsBsXsUT,PIVOT,FIRST)}

FIRST3=FALSE; ITNSS=ITNS+1}

- IF RI=0 THEN NORMREAL(NFINISHsUT,»VNORMIE L S E

BEGIN

COMMENT CALCULATE VT FROM (A=RRXIDENTITY)XUT+RIXVT=US}

FORI%=1STEP1 UNTILNFINISH 00

VILI)s==INNERPRODUCT(JsMAX(I=151),NFINISHsALLI»JI»UTLJI,

*RRXUTLIJI=USCI))/RI1;

NORMCOMPLEX(NFINISH»UT,»VT,» VNORM)

END;

COMMENT HERE ONE COULD ‘PRINT OUT THE HESSENBERG ITERATES

U TORJT+VTxI;

COMMENTNIW TEST NORM OF INVERSE ITERATE-FIRST TEST FOR OVERFLOW}

LF LNCNORMI+ NCVNORMI> NCEXPLIMIT) THE NNODRMI=NORMTOLERANCE

ELSE NIRM3=NORMXVNORM3 COMMENT TEST SHOULD BE MADE ON

EXPONENTSIN MACHINE CODES

IF NORM < NORMTOLERANGE A 1TNS<10 THEN.

BEGIN COMJENT CALCULATE NEXT RIGHT-HAND SIDE}

IF RI=3 THEN

BEGIN

FORI$=1 STEP I UNTIL NFINISH DOXCI)$=UT[I]

END ELSE

16



FOR 13=1 STEP1 UNTIL NFINISH DO

US{I)t=UTLII3 COMMENT SAVE OLD REAL PART Of ITERATE

COMMENT NOW CALCULATE NEW X=CA=RRXINDENTITY)IXUT*RIXYT;

XCI):=INNERPRODUCT(J»MAX(I=1,1)sNFINISH,ALI»JI»UTLJ]»

*RRAXUTLII=RIXVTL(11)3

END;

GO TO RHS

IF NORM2NIRMTOLERANCE THEN

BEGINCOMMENT ITERATE HAS CONVERGED=STORE IN U3

FORI$=1STEPIUNTIL NFINISH DOUCI»K)s=UTLI);

IFRIZO THEN

FORI1t=1STEP1 UNTILNFINISH DOUCLI»K+118=VT[]]

END ELSE’

BEGIN COMMENT ITERATE DID NOT CONVERGEIN 10ITERATIONS=SET

VECTOR =03;

FORI#=1STEP1UNTILNFINISHDOULI»KIt=0)

JFRIFDTHEN

FORI$=1 STEP 1 UNTIL NFINISH DO ULI,K+1)2=0

END

END K

END EIGENVECTORS;

COMMENT NOW BEGIN MAIN PROCEDURE EIGENVAL_UESANDEJIGENVECTORSS

INTEGERs NSTARTHNFINISHS

REAL VNORM; ARRAY UT,VTL1IN],ASQL1EN,12NJ3 INTEGERARRAY INTELEINDS

COMMENT FIRST REDUCE A TO UPPER HESSENBERG FORM,USINGPRICEDURE

17



HESSENBERGs WHICH KEEPS THE TRANSFORMATIONS USED | N THE

LOWERSUB=TRIANGLE Of A SO THAT PROCEDURE TRANSFORM,USING MATRIX As

WILL TRANSFOIM THE EIGENVECTORS FROM HESSENBERG BASIS TOORIGINAL

BASIS *"l.Ee! FHESS(A)=(S="INVERSE)IXAXS»T H E N TRANSFORM(N»A»UT)

CHANGES UT INTOSxUTS

HESSENBERG(N,A»INT)

cOMMENT NOWSEARICH sUB-DIA GONALS of HESSENBERG MATRIXFOR ZERO ELEMENTS

THUS FINDING A IN SpLIT FORM;

NSTARTI=N+1;

NEWBLOCK?

NFINISH$=NSTART=1;

FOR K3=NFINISH+1,K=1 WHILECIFKS1T H E NFALSEEL S EACKsK=13#0)DO Le=K)

NSTARTt=L"=1;

COMMENT NOWFINDEIGENVALUES OF PRINCIPAL SUBMATRIXDOF A CONSISTING

0) f ELEMENTS ACNSTARTSNSTART),a 0es AUNFINISHsNFINISH] USING

PROCEDURE EISENVALUESJ

EIGENVALUES(NSTART,NFINISH,As»RTR,RTI)}

COMMENTNOW FIN3 EIGENVECTORS Of PRINCIPAL, SUBMATRIX Of A CONSISTING

OF ELEMENTS ACL121)s,4e2 ACNFINISHoNFINISHICORRESPONDING TO THE SE

EIGENVALUES)

EIGENVECTORS(NSTARTANFINISH,A»U)S

COMMENT N Ow AUGMENT HESSENBERG VECTORS BY ZEROS INPOSITIONS

NFINISH+1,,042N AND TRANSFORM To ORIGINAL BASIS;

Li=17

FORK$=NSTART STEP L UNTILNFINISHDO

IF RTI[K1I=0 THEN

BEGIN

Li=1)

18



FOR It=1 STE?1 UNTIL NFINISH DO UTC1]s=Jl1,K]3

FORIS=NFINISH*1 STEP 1 UNTIL N DOUT(I13=0)

TRANSFORM(N»JT»A, INT}

NORMREAL(N,»UT» VNORM)

FOR I:=1STE®| UNTILN DO UCI,K)t=UTCI);

END ELSE

BEGIN

Li=2)

FORTIt=1STE®1U N T | LNFINISHDO

BEGIN

UTCIXt=UlY,K)3 VTLIIs=ULTI,K+1])

ENDS

FOR I$=NFINISH#1 STEP 1 UNTILNDO UTCI13=VT[118=20}

TRANSFORM(Ns»JT»A,INT) TRANSFORMCN,VT,A»INT)}

NORMCOMPLEX(Ns UT» VT,» VNORM)

FORI3=1STE®| UNTIL, N DO

BEGIN

UCI»A)s=sUTCIYS UCYI»K+1]18=VTLI)

END;

END TRANSFORMATION;

IF NSTART>1 THEN GO TO NEWBLOCK

END EIGENMVALUESANDEIGENVECTORSS

19



Eigenvectors of a Real Matrix by Inverse Iteration

5. = Organizational and Notational Details

The input matrix A 1s first reduced to a similar, upper Hessenberg

form by elementary row and column operations with interchanges using

procedure HESSENBERG, a modified version of procedure TRINGLE,given

by B. Parlett in [2]. Then the sub-diagonals of this Hessenberg matrix A

is examined for zeros, thus finding A split into smaller Hessenberg

submatrices.

For each Hessenberg submatrix, first the eigenvalues are found using

procedure EIGENVALUES. This 1s left undefined here, but the user must

insert some applicable eigenvalue procedure. See section 7 for further

information, Then the eigenvectors of the Hessenberg matrix corresponding

- to these eigenvalues are found using procedure EIGENVECTORS. Finally,

the eigenvectors are transformed from Hessenberg basis back to the basis

of the original matrix, using procedure TRANSFORM, and stored in the

columns of U.

6. = Discussion of Numerical Properties

Calculation of the Eigenvectors

On the iteration for the eigenvectors, the equations

(An )y 5) = x (EL) and (An) (ART )y = x (EL) are solved by

Gaussian elimination, decomposing the matrix into LU form, In both

real and complex cases, the initial vector (0) used 1s Le, where e
is the vector of all ones, Thus on the first iteration, we solve

gt) = e€ . To ensure that we can always solve these matrix equations,

any zero pivots in U are replaced by small numbers.
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The convergence criterion for the iterations is that the "norm"

of the inverse iterate be larger than some given tolerance, where

"norm' Re) = if max lv {™| in the real case, andms 1<j<n

"norm" (u) + iv (Ky =n _ Ly + 12"). in the complex case.
m=1 1<j<n

As Wilkinson shows in [1], this ensures that the residual lax) = a)
1s small, so that the eigenvector 1s accurate unless 1t 1s 1ll-conditioned.

Unless the eigenvalue approximation 1s very 1naccurate, this criterion

1s almost always met after two inverse iterations.

Within each Hessenberg submatrix, if any eigenvalues are calculated

as 1dentical, they are perturbed slightly so as to give convergence to

~ 1ndependent eigenvectors, 1f they exist. If the matrix has a double

eigenvalue with a quadratic elementary divisor, so that it has only one

eigenvector, the iterations for both eigenvalue approximations are found

by experience to converge to the eigenvector. Similarly, for eigenvalues

of higher multiplicities - i.e. the iterations will converge to a set of

vectors generating the eigenspace of that eigenvalue. Thus, no princi-

pal vectors can be determined by this method so that the whole invariant

subspace of the eigenvalue will not be found in the case of non-linear

elementary divisors. In this case, because of the ill-conditioning,

the eigenvalue approximations are likely to be inaccurate, so that three

or four 1nverse iterations may be neededto give convergence to the

eigenvectors, and the eigenvectors obtained will probably also be less

accurate than in the case of well-conditioned eigenvectors.
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T7T. = Use of the Program

As we have said, some eigenvalue procedure must be inserted, set

up so that it finds all eigenvalues of a given principal submatrix of

an upper Hessenberg matrix. The procedure used by the author was that

given by Parlett in [2] (with corrections in [3]), using Laguerre's

method, although it had to be modified slightly because 1t uses the ma-

trix reduced to lower, rather than upper, Hessenberg form. However,

the user may prefer to use the QR method to find the eigenvalues if

such a procedure 1s available to him, since 1t seems to be faster, in

general, than that of Laguerre.

Also, other methods could be used for reducing the matrix to upper

Hessenberg form, such as Householder transformations. If this 1s done,

of course, procedure transform must be changed accordingly, to give the

correct change of basis for the eigenvectors.

8. - Test Results

The program has been tested on dozens of matrices on the Burroughs

B5500 at Stanford University. One example is given here, a 6X6 matrix

with a double eigenvalue at .1 with a quadratic elementary divisor,

a double eigenvalue at 3 with linear divisors, and a complex eilgen-

value 2+i . In the computation, the inner product procedure was changed

to double precision code.

-9 21 -15 kh 2 0

=10 21 14 4 2 0

- 8 16 -11 4 2 0

-6 12 =-9 3 5 O0

- Uh 8 =6 oo 5 oo

- 2 h - 3 0 1 3
A =
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Note that for the double eigenvalue 1 with a quadratic elementary

divisor (so there 1s only one eigenvector), both eigenvector iterates

converged to the eigenvector, although the approximations obtained are

both only accurate to about 6 decimal digits. This accuracy is to be

expected, as 6 digits is about half of the machine precision for the

B5500. For the double eigenvalue 3 with linear divisors, the eigen-

space is a 2-space generated by the orthogonal vectors (1,1,1,1,1,0)"

and. (0,0,0,0,0,1)" . In this example, the iterates did converge to

these orthogonal eigenvectors, but in general, we cannot expect the

eigenvectors obtained to 'be orthogonal, although they will be linearly

independent.
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