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Eigenvectors of a Real Matrix by Inverse Iteration

J. M. Varah

1. - Theoretical Background

Calculation of the Eigenvectors
We are given a real nXn matrix A.

Hessenberg form, and find approximations to its eigenvalues.

eigenvector is calculated by inverse iteration on the upper Hessenberg

form using an approximation to the corresponding eigenvalue.

For a real eigenvalue A, the iteration is defined by
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For a complex eigenvalue A
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We first reduce A to upper

Then each
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where again Ek is +1 , chosen so that a largest component of
u(k) + iv(k) in modulus is 1 + O0i. The iteration is started with a
given initial vector x(o) and with u(o) =0 .

The iteration here is such that all computations can be done in
real arithmetic, For a complete description of inverse iteration, see
Wilkinson [l]. The iteration above for a complex eigenvalue is his

method (iv), page 630.

2.= Applicability
The algorithm will accept any real matrix. However, the accuracy
of the results will depend on the condition of the eigenvalues and

eigenvectors, so that no a priori estimate of the accuracy can be given.

3.= Formal Parameter List

N order of matrix A

A given matrix. On output, the upper Hessenberg form is stored
in A, with the transformations used in the lower sub-tri-
angle,

RTR, RTI real and imaginary parts of the eigenvalues, respectively,
with complex conjugate pairs consecutive,,

U matrix of column eigenvectors, stored by columns. If A~ 1is
complex, with Hﬁl = 3}; then columns k and kt+l1 of U
contain the real and imaginary parts, respectively, of the
eigenvector corresponding to eigenvalue Kko The eigenvector

corresponding to A is then the complex conjugate of this.

kt+1
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MACHEPS machine precision, i.e. the smallest floating point number B

such that 1+&>1 .

EXPLIMIT largest floating point number represented in the machine .

4, - Algol Program (see next page)

3 (Corrected page 3)



PROCEDURE EIGENVALUESANDEIGENVECTORS(N,AsRTRsRTI»U,MACHEPS,EXPLIMIT)}
VALUE NsMACHEPS,EXPLIMIT;

INTEGER N JREA| MACHEPS,EXPLIMITIARRAY AsRTR,RTI,U3

BEGIN

COMMENT THIS PROCEDURE FINDS ALLEIGENVALUES AND COLUMNEIGENVECTORS
OF THENXN MATRIX A, THE EIGENVALUES ARESTORED INCRTRLKI+RTILKIxXI)
wiTHCOMPLEXCONJUGATEPAIR S CONSECUTIVE. THeEIGENVECTORS ARE
STORED BY CO_LUMNS IN U, IFTHEK=THEIGENVALUE IS COMPLEX, COLUMN
KIS THEREAL PART ANDCOLUMNK+#1 THE IMAGINARY PART OFTHEEIGEN-
VECTOR CORRESPONDING TO EIGENVALUE K¢ MACHEPS IS THEMACHINE
PRECISION,ANDEXPLIMIT THE LARGEST FLOATING POINT. NUMBER CARRIED’

BY THE MACHINE

—COMMENT FIRST DECLARE OTHER PROCEDURES;

REAL PROCEDURE MAX(A,B)3}

VALUE A,B3

REAL AsB3

MAXt=1F A>BTHENA EL S E B}

REAL PROGCEOURE YIN(A,B)}

VALUE A»B3
REAL A»Bj

MIN$I=1F A<BTHEN A E L S E B}

REAL PROCEDURE ABSC(A»B)3

VALUE A»83}

REAL A»Bj




COMMENT GIVESMQODULUS OF COMPLEX NUMBER A+BI}
BEGIN_
At=ABS(A); B:=ABS(B);
ABSC:=1FA<B THENBXSORT(1+(A/B)T2)ELSE
IFA>BTHENAXSQRT(1+(B/A)t2)ELSE

Ax1,414213562373 COMMENT SQRT(2);

REAL PROCEDURE INNERPRODUCTCI»MsNsA»BsC);

VALUE M»N,C3
INTEGER I,M»sN; MReBaC)

BEGIN COMMENTBJDY OF PROCEDURE SHOULD BE REPLACED BY

DOUBLE PRECISION MACHINE CODE}

FORI$=MSTE® | UNTIL N DO C$=C+AxB}

INNERPRODUCT3=C

END INNERPROOUCTS

PROCEDURE HESSENBERG(N,A»INT)

VALUE Nj

INTEGER Nj; AIRAYA3 INTEGER ARRAYINT]

BEGIN COMMENT HEZSSENBERGREDUCESATO UPPEK HESSENBERG FORM USING

ELEMENTARY RJIN AND COLUMN’ OPERATIONS WITH INTERCHANGES, THE
INTERCHANGES ARE STORED INTHE INTEGER ARRAY INT INSUCH A WAY
THAT» ONEXITFROMHESSENBERG, INTCIYIS THEINDE X OF THE ROWN OF
THE ORIGINAL MATRIX NOW IN THE I=*TH ROW. PROCEDURE HESSENBERG

IS ASLIGHTLY MODIFIED VERSION OF PROCEDURE TRINGLE, GIVEN BY
B.PARLETTI N (113

INTEGEK 1»Jp4»L;REALS»THEPS3



S31=SQRT(MACHEPS);
R

I:=18TE2 1 UNTIL N DOINTLI):=I3

FORJt=NSTE®=1U NT I L 200

E

GIN

S1=ABS(AlJU»J=11)} Li=Jy=1}

FORK$=J"2STEP=~1UNTIL1DO

BE GIN COMMENTFIND ELEMENT OF LARGEST MAGNITUDE IN J=THROW}

T1=ABSCALJ,K])}

IFT>»® THEN

-y

=

GIN

S1=T7; L[i=K

BEGIN COMMENT INTERCHANGE COLUMNS AND ROWS J=1AND 3

Te=INTCJU=133 INTOU=1)8=INTILIS INTLL)$=T)

RKI={STEP 1 UNTIL N DO

O
BEGIN

Ti=A[K,Jd=113 ALK,J=110=A[KsL]} ALK»L)3=T

m
o

N

.
14

F

O

RK$=1STEP 1 UNTIL N Eg

o

E

(4

IN

Te=AlJ=1,K1} ALJU=1,K)1=ALL,K]I} AlLsK]t=T

END

END OF CONDITIONAL

IF SSEPSXVINCABSC(ALJ,»JI)2ABSCALJU=1,J"1))) THEN

BEGIN

FORK!=1ISTEP I UNTIL.‘L1_QPA(JDK]t=0



_END. ELSE
FORKi1=1 STEP { UNTIL J-2 DOACJ»KI$2ALU»KI/ALJ»J™13}

FOR I3=N STEP _ | UNTIL 1 DO

BEGIN COMMENT CHANGE ROWJ=~13}

Te=IFALJr)JI=1I=0THENO ELSEINNERPRODUCT(Ks1sJ=25A0JsK]»"

ACK»I150);
A[J=1s]1)3==INNERPRODUCT(KsMAXC(JUrI+2)sNsALJU=1oK=1)0A(K»I]I>»

AL U=1,11=T)
END I

END J

END HESSENBERG/

PROCEDURE TRANSFORM(NsX»A» INT)}
NALUE

INTEGE RERAYXsA} INTEGER ARRAY INT},

BEGINCOMMENTTHIS PROCEDURE TRANSFORMS A NEIGENVECTORXOF THE

HESSENBERG MATQIX INTO AN EIGENVECTOR OF THE ORIGIN AL MATRIXS
INTEGER I,J5 AQRAY Y[1EN1}

FORIt=1STE® | UNTILN -1 DO

YCI)t==INNERPRODUCTCU»151=1,A0I+1,U),Y(J)s=X{1))}
YIN)s=XIN]I;

FORI$=1STEP 1 UNTIL NDO XCINTELIJ)s=Y(1))

END TRANSFORM;3

PROCEDURE EIGENVALUESC(NSTART,NFINISHsA»RTRSRTI)}
NRLART» NFINISH}
INTEGER NSTART,NFINISHIARRAY ‘AsRTR,RTI}

BEGINCOMMENT THE BODY OF PROCEDURE EIGENVALUES IS LEFT UNDEFINED,




IT ISASSUMEDETIGENVALUES FINDS ALL THE EIGENVALUES OF THE

PRINCIPAL SUSMATRIXOF THE UPPE RHESSENBERGMATRIX A CONSISTING
O FELEMENTSALNSTARTSNSTART),eeesr ALNFINISHINFINISHIAND PLACES
THEEIGENVALJES IN RTRINSTARTI+RTIINSTARTIXIssees RTRINFINISH]
+RTIINFINISHIXI,WITHCOMPLEX CONJUGATE PAIRS CONSECUTIVE),

, ENDEIGENVALUES)

PROCEDURE NORMRZAL(N»V,VNORM);
VALUE NJ

INTEGER N; ARRAYV iREAL VNORM;

BEGINCOMMENTTHIS PROCEDURE NORMALIZES THE REAL VECTOR VOFDIMENSION

Nso THATITS COMPONENT OF LARGEST MAGNITUDE IS 1405 AND SETS

VNDRM EQuAL TO THE MAGNITUDE OF THE LARGEST COMPONENT BEFORE

NORMALIZATION?

REALS»S1,V13 INTEGERI1»Jj}

FORI$t=1S8TE U N_T | LN DO

BEGIN
S13=ABSC(V[I));
1 _FS1>S THEN

REGIN
St1=S51; Ji=l

END

END
VNORM$ =83
IF VNORM 7 0 THEN

BEGIN

Vie¢=veJls vIJls=13




FORIS=1STEPI] UNTILJ=1»J+1STEP 1 JINTILNDO

VEIis=v(I)/Vl
END

END NORMREAL

PROCEDURE NORMCIOMPLEXC(N,UsV» VNORM) S
VALUE N}

INTEGER N ; ARRAYU»V3 \REBRM)

BEGIN CDMYENT THIS PROCEDURE NORMALIZES THE COMPLEX VECTJIRU®*VI OF

DIMENSION NSO THATITS COMPONENT OF LARGEST MAGNITUDE IS 1+401»
AND SETS VNDOIM EQUAL TO THE MAGNITUDE OF THE LARGEST COMPONENT
BEFORE NORMALIZATIONS

INTEGERI,JIR E A LS»S1,U1»U2,V1sV2,R,DEN}

FUR 1:=1STE® | UNTIL N DO

BEGIN
S1:=ABSC(ULII,V(IY)}
IF $1>5 TdEN
BEGIN.
S1=815 Jt=1I
EYD
ENDJ
VNORM:=S;
IF VNORMZ0 THEN

EGIN

Uts=ulyJls Vit=VIJ]);
UtJls=13 vIJIi=03

IFABS(UL1)2ABS(VI)YTHEN




BEGIN
R$=V1/U13 DEN$=UL+RxV1;

FORI%=1STEPI] UNTILJ=1sJ+1STEPLUNTIL N D

u2=UlIY; V2it=V(I]);
UC1)e=(U2+RxV2)/DEN} VIIJt=(v2=RxU2)/DEN

END
END ELSE
t=U1/v1s DENt=V1i+RxU1}

FORI 821 STEPIUNTILJ=1»J+1STEPI UNTILNQ_Q

BEGIN

u2t=Ul1l; v2:=VII];

ULI)s=(V2+RxJU2)/DEN} VIIlta(RxV2=U2)/DEN

END OF CONDITIONAL

END NORMCOMPLEX)

PROCEDURE GAUSSM(N»M»A»EPS,PIVOT)S

VALUE N»M,EPS;

INTE GER M»N’ARRAY o; REALEPSSINTEGER AR RAY PIVOT;

BEGINCOMMENTT4IS PROCEDURE REDUCES THE NXN MATRIX AsHAVINGM

SUB=DIAGONALS»TO LU FORM BY GAUSSIAN ELIMINATION WITH INTERCHANGES.

ANY ZEROPIVITAL ELEMENTS ARE REPLACED BY EPS;

INTEGER I, Jr<s IMAX3 REAL T» SUM»QUOT

FORK3=1STD® I UNTIL N _O

BEGIN

10




SUM:=0;

FORI$=K STEP 1 UNTIL MINCK+MsN) DO
Ti=ABSCALI»KI) S}
IF- T>SJM THEN

BEGIN

. SUMI=T; [MAX:=]
END
END;

CIF _SUMa0 THEN

BEGIN COMMENT K-TH COLUMN IS ZERO = REPLACE DIAGONAL ELEMENT

BY EPS3;
ACK,K1s=EPS; IMAX$=K

END3

PIVOTIK)S=IMAXS

IF IMAX#K T HEN

FORJs=t STEP 1 UMNTIL NDO

B E G IN COMMENT INTERCHANGE ROWS IMAX AND K},

Ti=ALK,J)3 ALK,J)t=ALIMAX,»J)3 ALIMAX,J)i=T

END;
FORIt=K+1STEP 1 UNTIL MINCK+MaN) Do

os)

E GIN

ATI,K):=QUOTs=ACI,KI/ALKSK])S .

FOR J¥=K+1] STEP 1 UNTIL N bo

ALI»JI=ALI,J)=QUOTXALK,J)

m™m

ND

END K

END GAUSSM;

11




PROCEDURE SOLVE(N»A»XsY,PIVOT,FIRST)}

VALUE NsFIRST3

I N T E G FAIRAY A,X,Y3 INTEGER ARRAY PIVOT) BOOLEAN  FIRSTS

BEGIN COMMENT THISPROCEDURE SO L VE SAXY=sXGIVEN AINL UFORMe

1 TDOESN o TMAKE U SE OF THE rFA C TYHAT T H EORIGINAL A HAS ONLY
MSUB=DIAGONALS,)SO THAT THELOFLUIS SOMEWHAT SPARSE.,.

THE SOLUTION Y IS TESTED FOR OVERFLOW BEFORE BEINGCOMPUTED»

AND SCALED DIWN IF OVERFLOW WOULO HAVE BCCURRED3S

INTEGER I,K3 REAL T»SUM3

— ———

COMMENT FORM (L=INVERSE)IXX UNLESS THISIS FIRST INVERSE ITERATIONS
IfF ™  FIRST THEN

FOR K#=1STE? | UNTIL N DO

BEGIY

Ti=X(PIVOTLKII} X{PIVOTLKIIt=X[K]}
X[K)1==TNVERPRODUCTCT,1sK=1,ALKs12,XEITs=T)
END;
COMMENT NDWSOLVE Uxy=X3

FORK =N STH?y N T I L1 DO

BEGIN

COMMENT AVOID OVERFLOWI N INVERSE ITERATERYFIRSTCALCULATING

LNCABSCY[<1)) AND, IFYIKIWNOULDBE TOOLARGE FOR MACHINE,

ScALING DINN THE'COMPONENTS OF Y BYMACHEPS UNTIL SMALLENOUGH.

THIS SHOULD BEDONEBY EXAMINING eXPONENTS IN MACHINE CODE3
SCALE:

SUM:=0;

FORI$=K+1 STEP 1 UNTILN'EQ

SUMEI=MAXC(SUM, LNCMAX(1,ABSCALK,TIXY(I))))3

12




IF LNIN=K+1)4SUM= NCABSCALKsKI)I>LNCEXPLIMIT) THEN
BEGIN
FORI®=K+1 STEP 1 UNTIL N DOY[113=YCIIxMACHEPS;
GO T0 SCALE
END3
YUK)3==INVERPRODUCTCI»K+1sNsALK»I)»YLI)s=X[K]I/ALK»K]
END K

END SOLVE;

PROCEDURE EIGENVECTORS(NSTARTANFINISHsA,U)}
VALUE NSTART,NFINISH;

INTEGER NSTART»NFINISH} ARRAY A»U3

BEGINCOMMFNTY4IS PROCEDURE FINDS THEEIGENVECTORS OF THEPRINCIPAL

SUBMATRIX Of THE UPPER HESSENBERG MATRIX ACONSISTIYG Of ELEMENTS
AC1,115000s ALNFINISH,NFINISH) CORRESPONDING TO THE EIGENVALUES

OF THEPRINCIPAL SUBMATRIX CONSISTING O f ELEMENTSALNSTART,NSTARTI,
eee? ALNFINISH»NFINISHI. IT. ASSUMES COMPLEX CONJUGATE EIGENVALUES
ARE CONSECUTIVE. THE EIGENVECTORS ARE STORED IN THE ARRAY UsBY
COLUMNS, NON=LOCAL ARRAYSRTRAND RTI ARE USED}

INTEGER I,Js4»LsMsITNSS

REAL ANORM,RABSQ,NORM, VNORM,RR,RI,EPS,NORMTOLERANCE, T3
BREANFINISHs 1 SNFINISHI»X»US»UT,VTLL1ENFINISHYS

INTEGER ARRAY PIVOT{1¢NFINISHIS BOOLEAN FIRST;

OWNN BODLEAN ASQCALC;
IF NFINISH=N THEN ASQCALC$=FALSES COMMENT THIS GIVES ASQCALC A VALUE

ON FIRST ENTRY;

COMMENT NOW FIND MAXIMUM ROW SUM OF SUBMATRIX OF AUSED)

ANORM$=0;

15



FORI!=1STE® | UNTIL NFINISH DO

EGIN

[o9)

T1=03

FORJ1=MAX(1,1=1) STEP | UNTIL NFINISH Q0 T#3T+ABS(ALT,J])}
ANORME=MAX(ANORM, T)
END;
NORMTOLERANCE$=1000xANORM/MACHEPS} COMMENT SOMEWHAT ARBITRARY}
EPSt=MAXCANORM»1)XMACHEPS} COMMENT USED IN GAUSSMIN PLACEOF
© ZERO P1VOT}
COMMENT NOW FIND EIGENVECTORSS
M$=13 COMMENT SO THE INCREMENT VARIABLE IN THE FOR _ODP HAS A
VALUE ON ENTRYS

FOR K$=NSTART _STEP M UNTI| NFINISH DO

BEGIN
COMMENT F.IRST PERTURB EIGENVALUEI'F IDENTICAL TO SOMEPREVIODUS}
J1=0J
FORI$=NSTART STEP 1 UNTIL K=1 DO

IF RTR{II=RTRLK] A RTICI)=RTI{K) THEN Ji=zJ+1}
RR3=RTRIKI+3xJIJXMACHEPSxMAX(1,ABSC(RTRIK]) )}
R1s=RTI[K])}

IF RI#0 A ¢ ASQCALC) THEN

BEGIN COMMENT COMPUTE SUBMATRIXOF At 2REQUIRED WHEN FIRST'

COMPLEX EIGENVALUE ENCOUNTERED;

FORI$=1 STEP I UNTIL NFINISH QQ

FO R Jt=1 STEP 1 UNTIL NFINISH Qg_
ASQUI»J]t=INNERPRODUCTC(LoMAXCI=151)sMINCJ+L1sNFINISH),

ACI»L)»ALL»JIL0))
ASQCALCt=TRUE

1k




END;

COMMENT NJIW GENERATE B» THE MATRIX TO S E REDUCED;
IF RI=0 THEN

BEGIN COMMENT REAL EIGENVALUE=B=A=RRAXIDENTITYS

Mi=1;

FOR 138=1STEP | UNTIL NFINISH DO

@

EGIN

FORJ!=1STEP1 UNTIL I=2D0B(I»J)3$=0}

ORJ1=MAX(I=1,1)STEP 1 UNTILNFINISH DO
3(IpJ]3=A[1pJ]'(!_FJ=I TH eN RR ELSE 0)
END

END ELSE

BEGINCOMMENT COMPLE X E}GENVALUE =

B=(A=(IR+RIXI)XIDENTITYIXCA=(RR=RIXI)XIDENTITY)}
Mi=23 .3ABSQs=RRT2+RI12;
FORI*=1STEP | UNTIL NFINISH DO

BEGIN

FORJ3=1 STEP1 UNTILI-3D0B(I»J]1=0}

—

_E123 MB[IJI'Q:H'ASQ[IDI'E:”
FORJ#=MAX(I=1,1) STEP | UNTIL NFINISH 00
301,J)3=ASQLI,J)=2xRRXALT,JI+(IF y=IT H E N RABSQELSE 0)

END

END GENERATIDN Of B3

COMMENT NJNREDUCE BT OLUFORM »M GIVES THE' NUMBER Of
SUBDIAGONALS O f B3

GAUSSM(NFINISHsMsBsEPS,PIVOT) S

ITNS3=0} FIRST$=TRUE; NORMi=1}

FORI#=1 STEP 31U N.T | L NFINISH DO

15



BEGIN.
X{I38=13 US[I):=0

END;

COMMENT INITIAL VECTOR X IS SUCH THAT LXX=Es THE VECTORWNITH
EACH CIMPONENT =1,0, NOW SOLVE BxUT=x}

RHS?®
SOLVE(NFINISHsB,XsUT,PIVOT,FIRST);
FIRST:=FALSE; ITNSI=ITNS+1;
- IFRI=0THEN NORMREAL(NFINISHsUT,VNORM)IE L S E

BEGIN
COMMENT CALCULATE VT FROM (A=RRXIDENTITY)XUT+RIXVT=US}
FORI#=1STEP | UNTILNFINISH DO

VILI13==INNERPRODUCTCJsMAXCTI=1,1)sNFINISHsALL»J)»UTLUI,
*RRXUTLII=USCI))/R13

NORMCOMPLEXCNFINISH»UT» VT, VNORM)

END;

COMMENT HERE ONECOULD PRINT OUT THE HESSENBERG ITERATES
U TORJT+VTxXI}

COMMENTNIW TEST NORM OF INVERSE ITERATE-FIRST TEST FOR OVERFLOW}

LF LNCNORMI+ NCVNORMI > NCEXPLIMIT) THENNORME=NORMTOLERANCE

ELSE NDRM3=NORMXVNORM} COMMENT TEST SHOULD BE MADE ON

EXPONENTS IN MACHINE CODEJ
IF NORM < NORMTOLERANCE A ITNS<10 THEN

BEGIN COMJENT CALCULATE NEXT RIGHT-HAND SIDE3?

IF RI=3 THEN

EGIN .

ORI$=1 STEP 1 UNTIL NFINISH DOXCI)#=UT(1]

END ELSE

16




FOR I3%=1 STEP 1 UNTIL NFINISH DO

EGIN

US{I)¢=UTLI1I} COMMENT SAVE OLD REAL PART Of ITERATE1
COMMENT NOW CALCULATE NEW X=(A=RRXINDENTITY)XUT=RIXVT}

XCI)t=INNERPRODUCTCJ»MAXCI=1,1) s NFINISH)ALI»J1»UTLJ],

*RRAIXUTLII=RIXVIC[I1)}

- ENDJ

IF NORM2NIRMTOLERANCE THEN

EGINCOMMENT ITERATE HAS CONVERGED=STORE IN U3

F

I$8=1STEP1UNTIL NFINISH DOULI,K)3=UTCI);

0R
IFRIZDOTHEN
(0]

RI8=1STEP I UNTILNFINISH DOUCLI»K+1)3=VT(I]

END ELSE’

BEGIN COMMENT ITERATEDID NOT CONVERGE IN 10ITERATIONS=SET

VECTOR =03

FORI$=1STEPJ{UNTILNFINISHDOULI»K)$=03

JFRIADTHEN

FORI$=1STEP 1 UNTIL NFINISH _D__oU[IpKﬂll-o

END
END K

END EIGENVECTORSS

COMMENT NOW BEGIN MAIN PROCEDURE EIGENVALUESANDEIGENVECTORS}

INTEGERs NSTARTHNFINISH;S

REAL VNORM} ARRAYUT,VTL13N),ASQLL18N,12N])S INTEGER ARRAY INTEL1EIN]S

COMMENT FIRST REDUCE A TO UPPER HESSENBERG FORM,USINGPRICEDURE

17



HESSENBERGs» WHICH KEEPS THE TRANSFORMATIONSUSED I N THE
LOWERSUB=TRIANGLE Of A SO THAT PROCEDURE TRANSFORM,USING MATRIX A»

WILLTRANSFO3IM THE EIGENVECTORS FROM HESSENBERG BASIS TOORIGINAL
BASIS *I1.Ee! FHESSCA)Y=(S="INVERSE)XAXS» T H E N TRANSFORM(NsA»UT)
CHANGES UT INTOSxUTS

HESSENBERG(N,A» INT)}

cOMMENT NOWSEARCH sUB-DIA GONALS of HESSENBERG MATRIXFOR ZERO ELEMENTS
THUS FINDING A IN SpLIT FORM;

NSTARTI=N+1;

NEWBLOCK?

NFINISHE=NSTART=1;
FOR K:=NFINISH+1,K=1 WHILECIFKSIT H E NFALSEE L S EALK»K=11#0) DO L#=K)

NSTARTt=L"=1;
COMMENT NOWFINDEIGENVALUESOF PRINCIPALSUBMATRIXOF A CONSISTING
(0] f ELEMENTS ALNSTARTSNSTART), a0 e ALNFINISHsNFINISH]) USING

PROCEDURE EISENVALUESJ

EIGENVALUESC(NSTART,NFINISH,A»RTR,RTI )}

COMMENTNOW FIN3 EIGENVECTORS Of PRINCIPAL SUBMATRIX Of A CONSISTING
OF ELEMENTS AL151)s,442 ACNFINISHoNFINISHICORRESPONDING TO THE S E
EIGENVALUES)

EIGENVECTORS(NSTART,NFINISH,A»U)}

COMMENT N Ow AUGMENT HESSENBERG VECTORS BY ZEROS INPOSITIONS

NFINISH+1,,¢¢2NAND TRANSFORM To ORIGINA| BASIS;

Li=1;
FORK3$=NSTARTSTEP L UNTILNFINISH DO
IF RTI[K1I=0 THEN
BEGIN
Li=1;

18



FOR It=1 STE® | UN'FILNFINISH.REUT[I]l=d[I'K]}
FORIS=NFINISH+¥1 STEP 1 UNTIL N DOUT(I13=0}

TRANSFORM(N» JT» A, INT)S

NORMREAL(N,UT»VNORM)}

FOR I:=1STEP 1 UNTIL N DO UCI»KI$=UT[I)}

END ELSE

BEGIN

Li=23
FOR 1121 STE® 1 U N T | LNFINISH DO

BEGIN
UTCIXs=UlI,K)3 VTLIIS=ULT,K+1]

ENDJ

FOR It=NFINISH+1 STEP I UNTILNEP_UT[I]!=VT[IJ!=O}

TRANSFORM(NsJT»A,INT)? TRANSFORMO(N,VT,A»INT)}
NORMCOMPLEX(N»UT»VT»VNORM) S

FORI3=1STE® | UNTIL, N DO

BEGIN

UCI»<)s=UTCIYS ULI»K+118=VTLI)
END;
END TRANSFORMATION;
IF NSTART>1 THEN GO TO NEWBLOCK

END EIGENVALUESANDEIGENVECTORSS

19



Eigenvectors of a Real Matrix by Inverse Iteration

5. = Organizational and Notational Details
The input matrix A is first reduced to a similar, upper Hessenberg
form by elementary row and column operations with interchanges using

procedure HESSENBERG, a modified version of procedure TRINGLE,given

by B. Parlett in [2]. Then the sub-diagonals of this Hessenberg matrix A

is examined for zeros, thus finding A split into smaller Hessenberg
submatrices.

For each Hessenberg submatrix, first the eigenvalues are found using
procedure EIGENVALUES. This is left undefined here, but the user must

insert some applicable eigenvalue procedure. See section 7 for further

information, Then the eigenvectors of the Hessenberg matrix corresponding

- to these eigenvalues are found using procedure EIGENVECTORS. Finally,

the eigenvectors are transformed from Hessenberg basis back to the basis
of the original matrix, using procedure TRANSFORM, and stored in the

columns of U,

6. = Discussion of Numerical Properties

Calculation of the Eigenvectors
On the iteration for the eigenvectors, the equations
Ko ‘ - k k=1
(A=xI)y(k) = x(K 1) and (AmXI)(A—XI)y( ) = x( ) are solved by
Gaussian elimination, decomposing the matrix into LU form, In both
- (0) . .
real and complex cases, the initial vector X used is Le, where e
is the vector of all ones, Thus on the first iteration, we solve
(1)

Uy = e . To ensure that we can always solve these matrix equations,

any zero pivots in U are replaced by small numbers.
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The convergence criterion for the iterations is that the "norm"
of the inverse iterate be larger than some given tolerance, where
k
"norm' (& % = max lygm)l in the real case, and
m=l 1<j<n
1)y (m) , 5,(m)
A

_ lyj + izj 1 in the complex case.
m=l 1<j<n

"norm" (u(k) + iv

(k) _ )\x(k)”

As Wilkinson shows in [1], this ensures that the residual ||Ax
is small, so that the eigenvector is accurate unless it is ill-conditioned.
Unless the eigenvalue approximation is very inaccurate, this criterion
is almost always met after two inverse iterations.

Within each Hessenberg submatrix, if any eigenvalues are calculated

as identical, they are perturbed slightly so as to give convergence to

~ independent eigenvectors, if they exist. If the matrix has a double

eigenvalue with a quadratic elementary divisor, so that it has only one
eigenvector, the iterations for both eigenvalue approximations are found
by experience to converge to the eigenvector. Similarly, for eigenvalues
of higher multiplicities - i.e. the iterations will converge to a set of
vectors generating the eigenspace of that eigenvalue. Thus, no princi-
pal vectors can be determined by this method so that the whole invariant
subspace of the eigenvalue will not be found in the case of non-linear
elementary divisors. In this case, because of the ill-conditioning,

the eigenvalue approximations are likely to be inaccurate, so that three
or four inverse iterations may be needed to give convergence to the
eigenvectors, and the eigenvectors obtained will probably also be less

accurate than in the case of well-conditioned eigenvectors.
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T. = Use of the Program

As we have said, some eigenvalue procedure must be inserted, set
up so that it finds all eigenvalues of a given principal submatrix of
an upper Hessenberg matrix. The procedure used by the author was that
given by Parlett in [2] (with corrections in [3]), using Laguerre's
method, although it had to be modified slightly because it uses the ma-
trix reduced to lower, rather than upper, Hessenberg form. However,
the user may prefer to use the QR method to find the eigenvalues if
such a procedure is available to him, since it seems to be faster, in
general, than that of Laguerre.

Also, other methods could be used for reducing the matrix to upper
Hessenberg form, such as Householder transformations. If this is done,
of course, procedure transform must be changed accordingly, to give the

correct change of basis for the eigenvectors.

8. - Test Results

The program has been tested on dozens of matrices on the Burroughs
B5500 at Stanford University. One example is given here, a 6X6 matrix
with a double eigenvalue at .1 with a quadratic elementary divisor,
a double eigenvalue at 3 with linear divisors, and a complex eigen=
value 2+i . 1In the computation, the inner product procedure was changed

to double precision code.

-9 21 -15 4 2 o0

=10 21 =14 k2 0

-8 16 -11 4% 2 o0

-6 12 =9 3 3 O

-4 8 =6 o 5

-2 L -3 0 1 3
A= L
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Eigenvectors of a Real Matrix by Inverse Iteration

Note that for the double eigenvalue 1 with a quadratic elementary
divisor (so there is only one eigenvector), both eigenvector iterates
converged to the eigenvector, although the approximations obtained are
both only accurate to about 6 decimal digits. This accuracy is to be
expected, as 6 digits is about half of the machine precision for the
B5500. For the double eigenvalue 3 with linear divisors, the eigen-
space is a 2-space generated by the orthogonal vectors (l,l,l,l,l,O)T
and. (O,O,O,O,O,l)To In this example, the iterates did converge to
these orthogonal eigenvectors, but in general, we cannot expect the
eigenvectors obtained to 'be orthogonal, although they will be linearly

independent.
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