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ON THE APPROXIMATION OF WEAK SOLUTIONS OF LINEAR PARABOLIC

EQUATIONS BY A CLASS OF MULTISTEP DIFFERENCE METHODS

BY

Pierre Arnaud Raviart

We consider evolution equations of the form

(1) Bb + A(t)u(t) = £(t) , 0<t<T, f given,

with the initial condition

(2) u(o) = au , u, given ,

where each A(t) 1s an unbounded linear operator in a Hilbert space H,

which 1s in practice an elliptic partial differential operator subject

to appropriate boundary conditions.

Let vy be & Hilbert space which depends on the parameter h.

Let k be the time-step such that m = : 1s an integer. We approxi-
mate the solution u of (1), (2) by the solution CE2

= rk) e V,, r = O,1,e00.,m=1 of the multistep difference(uy, (oy, ) h’ sLy ’ 1), p
—scheme

wo (rk) - wo ((r-1)k)
6) SE 1 7 AER) yy (e)

D

— PN 74 th, ((r=2)k) bj r = Pjyoooyl-1

L 0), .n. ((p-1)k) given( ) Wy, )s Yh, k P ) ’
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where each a, (rk) is a linear continuous operator from V, into V,,

fy, x (7K) (r = 0,1,...,m-1) are given, and 7,(4=0,...,D) are given
complex numbers,

Our paper 1s mainly concerned by the study of the stability of the

approximation. The methods used here are very closely related to those

developed in Raviart[7] and we shall refer to [7] frequently, In §1,

2, we define the continuous and approximate problems in precise terms,

In §4, we find sufficient conditions for Wk to satisfy some
a priori estimates. The definition of the stability is given in §5

and we use the a priori estimates for proving a general stability theorem.

In 56 we prove that the stability conditions may be weakened when A(t)

is a self-adjoint operator ( or when only the principal part of A(t)

is self-adjoint), We give in §] a weak convergence theorem. $8 is

concerned by regularity properties., We apply our abstract analysis to

a class of parabolic partial differential equations with variable coeffi-

cients in §9.

| Strong convergence theorems can be obtained as in Raviart[7]

(via compactness arguments) or as in Aubin [1]. We do not study here

the discretization error (see [1]).

For the study of the stability of multistep difference methods 1n

the case of the Cauchy problem for parabolic differential operators,

we refer to Kreiss [3], Widlund [8].
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1. The continuous problem. |

We are given two separable Hilbert spaces V and H such that V C H,

the inclusion mapping of V into H 'is continuous, and V is dense in H.

If X 1s a Banach space with norm | | x’ we denote by 12(0,T;X) the
space of (classes:'of)’ functions: f which are 1? over [0,T] with

bo values in X, provided with the usual norm (1 < p< 0):

T p 1/p

(J le Ce), «)0

and the usual modification 1n case p = ®

For every t € [0,T], we are given a continuous sesquilinear form

on V X V:

u, v = a(t;u,v) , (u,v € V) .

We assume that:

i) t = a(t;u,v) is measurable (u,v € V),

ii) there exists a constant XK such that

(1.1) la(t;u,v) | <K fully, Illy, (u,v € V, tec[0,T])

iii) there exist constants A, &@ (@> 0) such that

(102) Re a(t;v,v) + Mls > ol vil (v € Vv, t €[0,T]) .

Then we have the following result (cf. Lions [4])

Theorem 1.1:

(1.3) fe 1°(0,T;H) ,

(1.4) u, € H .



2 ®

(1.5) ue lL (0,T;v) N L (0,T;H)

T Co. T
| , |

(1.6) JI (a(t; u(t), ®(t)) - (u(t), @'(t)) lat - | (£(t), o(t)), at

for every function ¢ satisfying

2 / 2

(1.7) ® ¢ L(0,T;V), ¢'¢ L(0,T;H), -9(T) = O.

Remarks:

1) The derivatives are teken nthesense of distributions.

[i) We may assume that A= 0 In Hypothesis (1.2) (Replace u(t)

by u(t)exp(Xt),X a real number chosen sufficiently large).

111) We define Vv! to bethe antidual of V.Since v = a(t;u,v)

is a continuous conjugate linear form onV, we may write:

) a(tiu,v) = <A(t)u,v> for all ve V, /

/ / 2 /
where A(t) € Avy ). Then u e L (0,T3V’) 8o that u is equal a.e.
to a continuous function from [0,7] to H (cf. Lions [5]) end

equation (1.6) may be replaced by

(1.8) u'(t) + At) ult) = £(t), for a.e. te [0,T],

(1.9) u(0) = uy.



In the following, we shall assume that the function t - a(t;u,v)

1s once continuously differentiable for every u, v € V. Then, pecause

of the uniform boundedness principle, -there exists a constant L such
that

(1.10) 2 altsuv) |< Tl, lvlki) SU, V < ally vil, (u,v ev, te [0,T]).

For the study of the approximation of the solution u of equation (1.6)

when the function t = a(t;u,v) 1s only measurable, we refer to Raviart (71,

2. The approached problem.

Let (v, } be a family of Hilbert spaces where the parameter
| n

h = (hyseeesh ) is a strictly positive vector of R~ such that

— Inl =n, h<h |,

h,> 0 being a fixed number. We provide each Hilbert space V, with

two scalar products denoted by ( , hy and (( , hy respectively.

* We assume that the corresponding norms 1, and | I are equivalent
and verify

2.1 h <(2.1) cm) lw lp < loll < cn) Jul (uw €V.) ,

where C(h) may tend towards + ® when h tends towards O.

Let Op be an operator belonging to ZL (857, ) with

lO, ul
h" h C

2.2 = Ln

(2.2) o.l sup wv < 7,
u€H H

where C, 1s a constant independent of h.
3



For every t € [0,T], we are given a family of continuous sequilinear

forms on Vi, X Vy

Ye Vy —> ay (t5u, 5v,.) = (u,v € v) °

We assume that:

n (1) t - a (tu ,v, ) is once continuously differentiable (57 € v,) :

(11) there exist constants M, P independent of h such that

~1 4d ]

(2.4) | 2, a, (t5u ,v) | <2 lw ll, lv, II, :

(111)

112

(2.5) Re a, (£3v,57,) > (i (v,, € v,) o

where @ 1s the constant involved in inequality (1.2).

From (2.1), (2.3) and (2.4) we deduce that

. (2.6) la (bs,) |< mn) lw ly lvl,

(2.7) la (b50,v) |< wen) Ihe ll Iw |,

(2.8) |S a (tsu,0)] < Pp) lol |v |gt n\ UV = Yh'n Vln oo

Where M(h), N(h) and P(h) may tend towards +® when h —= 0.

Moreover M(h), (v(n))?, P(h) have the same order of magnitude when

h -0. We denote by u(h) and v (h) respectively the principal parts

of M(h) and N(h) when h = O.

4



Let us introduce now a set of consecutive integers COglyenesly. . om}
| JE _ n — T '

and the "time-step" k m We define E (rk, rk; V,) to be the
space of sequences f the £
p q Yk 0 e form

“ok T oy, (3%), r= Teer, = 1

where each uy, (7k) belongs to V,. We provide E _(0,T;V, ) with the
two following sequences of equivalent norms:

dA (1< p< +)

defined by

| | m-1 p \ 1/p"n,k h,k,p = k L u, (7K) ly (1 < p< +2)

m-1 1/p

boy Jb o = (kB ly Golf“h,k 'h,k,p Lo rk) {l, (L< p< +2),

ly I su rk),
Y dln,» - crm 1 Lo ol,

If Ux © E (rk, rk; v,) , we may define

Vu, x = (Vu (I) T= 141 eel, 1, = 1) E ((r; + 1)k, 1 k,V, )’ ’ | 1 1 > 727 hn

by

5



— | 1
2. ; = -— -—(2.9) View, i (rk) 2 [oy (7) = wy ((e-1))]

For every t € [sk, TI (s > 0), we define for all Uy pV € Y S

— 1 )
(2.10) (Vy, ad (u,v) «5 [y(t ,v) - a (t-sksuvp )]

n We introduce now fo x € E (0,T;V,) by

1 (r+1)k
(2.11) fy (7K) = | 0, f(t) dt.

rk

The following inequality 1s easily verified:

te, | I ol a)(2.12) tk nk,2 = 9 0 lee) at J.

Let us consider now the "approached" problem

Problem I:

Find Ux € E (0,T;V, ) satisfying

- Fo, (5 (DK), vi. or o=pee., mel
Pars J h k h’h

for all vy © Vy ,

2. L LITE - i i eo oa

are chosen complex numbers.

6



Theorem 2.1:

Assume that 7o is a real number > 0. Then Problem I has a unique

solution.

Proof:

Note that the theorem 1s trivial for 70 = 0. Let us assume 75 > 0,

Then equation (2.13) may be written

A

(2.15) a x (rks, (TK), vy) = (Fk (7K); Vy)

A

where CARNE. SLID 1s a continuous sequilinear form on Vy Vv,

which verifies for all vi, ev,

c F | 2 22.1 : . +(2.16) nk) | 2 Re ay (Fkgv ov) > ly + 0 ll,
2

>2 nly

and Flic 7) 1s an element of Vy which does not depend on uy (7K).
| Then (2.16) is a sufficient condition for equation (2.15) to have a

unique solution.

In the following, we shall always assume that 7s is > 0.
Remarks:

(1) We could slightly generalize by choosing other complex constants

than Tor eens? pp in the left-hand side of equation (2.13).

(11) Let A, (t) € L(V, sv, ) be the operator defined by

(A, (Bus vp) = ay (tu ,v) (u,v, € Vv)

Then equation (2.13) may be written on the equivalent form

]



2. V + & - 2)k - 4)(2.17) Vig) + 27, Afr = du (r= 2k)

RE (Cy A TE

3. Some Lemmas.

Lemma 3.1:

We denote by E a linear space and by b(.,.) 8 sequilinear

hermitian form on E X E. Let 9 be a mapping from Zk into E. Then

(3.1) V. b(@(rk), o(rk)] = 2Re b(®(rk), V, ®(rk)) - k b(V 9(rk),V, o(rk))

= 2Re b(®((r-1)k),V @(rk)) * k b(V, 0 (rk) V,@ (x1)

Lemma 3.2:

. Let @ be any scalar function defined on Zk, Then

To _

(3.2) cL VV, e(sk) = e(rpk) - ork)k 2 1
s=r, +1

1

Lemma 3.3:

Let @ be any real function defined on {r k, (r,*1)k,...,rok}. We

assume that the following inequality holds _for all integer r (ry <rg r,)

K r-1
(3.3) P(rk) + ark) C+ = YX ®(sk) >» ark) > O,

0 s=r,

where C > 0 and ko > 0 are given.constahts. Then

, T-T] (r-r Jk
(3.h) ?(rk) + ark) < C(1 + 1) < C exp ( Thy )0

8



If we replace_for all r inequality (3.3) by

Kk r
(3.5) ?(rk) + ark) < C t Di P(sk), a(rk) > 0,

oO s=r, +1

Then , for, k < ky ’

(3.6) P(rk) + ark) < cl - £)  < ¢ exp (—=—)I — k — k
0 0

All these lemmas are obvious.

bh, A priori estimates for the solution of Problem I.

Before establishing an energy 4nequality for the solution Uy of
9

Problem I, we shall put equation (2.13) into a more convenient form.

a) Another form for equation (2.13)

Equation (2.17) may be replaced by

— N
(b.1) Vi(x) + ( £70) A (rk) w (rk)

+ -f+ ~L+K L By Vo IA (=),| ((z-141)k]

h = - Cowhere By ) 7, , { = 1,00 p
1

Assume that the operator A(t) is consistent with the operator A(t)

in a certain sense which will be precised later in §7. Then the operator

1D 7 A, (t-Lk) 1s consistent with A(t) if and only if
L=1

9



(k.2) 3 7, =1 .
£=0 |

In the following, we shall assume that equality (4.2) 1s always verified.

Then equation (4.1) may be written: )

(4.3) Vi (x) + A (rk) [oy(x) +k ho By Vi uy g(r)

+ hy By A ((r-241)k) - A(rk)} wp, ((r-2+1)k)

: > py (A,(rk) = A ((e=)ic} uw ,((r-0)k)

hi { 'h Kk
We define

(RS vy(TE) = wy (7k) +X h By Vy uy ((r-241)k)

= > 7, uy, (7-2 Jk) I — pg osoym=-1 .

Hence another form for equation (2.13) 1s given by

10



+ Te

- k > (i-1) B, V o1)x a J (rk; uy, ((7-241)k), vi.)

+k hy {B, (Vv, a} (rk; up ((z-2)k, vy)

= > 04 (f r-f Kk) \'s r = coasM=1 .

b) The energy-inequality.

In the following, DysDys ee will be positive constants 1ndependent

of h and k.

We replace Yy in equation (4.5) by Vi (TK). We obtain9

| V, V w Vv -1+(4.6) (V, Uy i k), uy (FED) « £ # (Va, (7), kn, x (CF 1)k)),

+ .
a, (rk; Vp, i (TK) Vp, x (FX)

- k r (£-1) 8, (Vy (xs up ((7-2+1)k), Vi, x (TK)

+ k L £8, { V,. a } (rk; uy, (r= )k), i,k (FE)

i Lr, (5,(=), vy (BK),s  ToPs @ i

Taking real parts and applying lemma 3.1 gives:

11



= 2 y 2

(b.7) Vil, NC] Ha k| Vi, (6),

van nel £ py (Ty(oi, Vn (Geto) )

+ 2Re ay (ris (rk), vy x (7K)

to = 2 el § (1-08, {Vga 3) (sm(ets) (0)

ox rel te, (Vp, a) Gigu (((-0)6), v,(6)

+ ore 2 7 (fy ((x-2)5), 'n, x (7%) } ’ P = Pyossyl=1

Note that B, = 74 - 1 ig g real number. Then it follows from the
Cauchy-Schwarz inequality and Hypotheses (2.5), (2.8) that

5 2 CT 2

8) Vi luGl + res [Vi (6)
_ _ 2

ca $ Ie, 1) Voy 01 1 Vy (tl + 2a ly, ol: [=2 °. ;

| corm Ble] lo,(Gr, v0,

+ 2k P(h) L tig, | logy (r=) [Vi(7)

+ 2 L 7, | i {Cel |v, kT) 3 rT = DPreooym=1l

12



2 2

We deduce from the inequality 2ab < a + Db (asb real numbers):

v : Ris, xl Vo (ol(4.9) Up, (FEL (3 6) - LIP ANCOR

— D 2

- k L 8, | Vy (Ce=tr)) | + 2alv, (zl

<oyxp(n) +2) lay (000 + 2s EERIE
I = Pressyl=1

Multiplying equation (4.9) by k and summing from Tr=p to r = S

(p < s < m-1) gives:

: +2 > § R37 |V (ex)| _ r

120) Jy (Calo (en2 2 ley 1) 3 LIV ny G0,

S 2

+ 20k Iv (1=p

-1

< 1k) +k 8 | | (rk) |A INE MI TR SR COIN
p-1 2

+ (D.kP(h) + D.)k (rk)|1 (5) 2 L z “hk h

FF le ol+ D.k f rk

& s-4 D+ (DkP(h) + D,) k Lz Lo lw (ely= r=p

13



Let us assume that there exist two constants Ks K, independent of
h and k such that

< —

cl 5 2

: (v.12) EF Vu ml? <x
r=1 h

We consider now two different cases according to the sign of

Crees32 £olgl
- f=2

(1) 1%% Case: 1 +28, 2 $ 8, > 0 .
£=2

Let us assume that

2

(4.13) k(v(n))” < po

where p is an arbitrary > 0 constant independent of h and k.

Note that (4.13) is equivalent to

. / ; ,
(4.13) k P(h) < p , p > 0 arbitrary constant independent

of h and k. Then, because of (2.12), we obtain:

2 oO S = 2b.1h sk) + (1 +2 2 § k V.. rk(hab) hoy p(s] + Qvoey -2 0 ley) Py [Vio 0)
ES 2 S 2

+ 2¢ k } bv Cr) < Dy + Dok )) CAMCOIN )
r=p r=p

S = Pressey m—1

14



By applying lemma 5,5, we find for kD; < 1 and for every s (p < s < m-1)

the following energy 1nequality

| 2 'S ) 0
(4.15) uy, kL + 20k Z bv, MCL < Dy, exp(D (s-p+l)k)

< D-4 exp(Dg(T - pk))

. nd

(11) 2 Case: 1 +28 -2 > lg. | < 0 .EE 1 [4
L=2

= 2

We give an estimate for | Vy uw, | x) | 3 T =Psesey m=1, which is
’ We ———

obtained as follows: We replace wv, in equation (4.5) by Via, (rk).h k h,k

Applying inequalities (2.7) and (2.8) gives:

V
(4.16) Von (0 <0 wn) Ie, y CL

+ k P(h) 3 (¢ - Vl lu, ((r- 2+ 1)x)]J h,k.£=2 h

. fk pm) Pl r-£ )k +R HE r-1)k o

Then _ ; 5 5
(4.17) Vio, (G0l < im)” (1 + 8) bry, (rly

D 2 2 5+ (p, + —L ) x (P(n)) > lw. ((r-2 )k) |Ds * 3 Sr h

Dy F | ©ANE f -k+ (Dg + 5 yn, ) ) hn J’
where © > 0 may be chosen as small as we please. Assume that Hypothesis (4.13)

1s verified. Hence we deduce from (4.10) and 4.17):

15



2

(4.18) uy, (sk) i

> Ss 2
¢ @a-@% ls, | - 28-1) km))2 (WON lv, (vi) |A 1 hk h

A=2 - . I'=Pp

S k< Diy + Dyk) hy OLN
r=p

: Let us assume now that

2 a
(4.19) k(N(h) )°< ——— (1 - 3) .

> £ ls,| - 28, - 1
“= 2 1

Then

© ves? xf §+ 200

(4.20) [iy (5K) +208 k L by i (IN

S | | B
S Dot Ppg “Ll Uy, (7) _

By applying lemma 5.3, we find for k D,, < 1 and for every

s (p < s<m- 1) the energy inequality

(v.21) io, (0° +20 x 2 le (moll21 u sk +200 Vv. rkhy k H- k L hek h

-o+ - ]< Dy, exp(D,(s-p+l)k) < D, exp(D,, (T-pk))

Note that (4.19) implies (4.13). When k 1s small enough, we may replace

condition (4.19) by

16



2 lo} /
(4.22) k(v(n) )° < - 8

§ By 28,- 1
L=2

where 8 > 0 is arbitrarily small.

Thus, under some appropriate assumptions, we have obtained an

energy inequality for any value of 1 + B; - $f ls, | . Let us assume
£=2

that there exists a positive constant Kz independent of h and k such
that

} Tl, ml(k.23) k Uy i (7) < Ks.r=0 h

We define nk € EB. (0,T3V,) by

(4.2k) Yh, k = lu, (eK), r = Oy envoy p—1, Vi, ic (2) Y = DPyreecoay m-1} .
Then we have proved the following result:

Theorem 4.1:

Assume Hypotheses

Ly, = soe -(4.11) Ju, (7) |< K, r=0,.0e, p-1 ,

2 Pl = 2

(¥.12) co ro IV el < ksr=1

p-1 2
4.2 k rk < K, .

There exist positive constants EE independentof h and k such

that

17



| < E26) beho Bs

in the two following cases

1ST 1 +2 2 $ le,| > o(i) 1 Case: By - pl 2 Ys
L=2

2

(k.13) k(v(h))” < p

G1) 2% Cae. 1 + 2B,- > le,| < 0.
L=2

2 20 /

(4.2) k(v(h))" < ——————————-0°  %%0 arbitrarily
5 >] EA BE

L=2

small, Kk small enough,

Remarks:

(1) It is easy to determine ta, (TK), r=0,..., p-13 ; verifying (4.11),
- (4.12) and (4.23) by two-level difference schemes: S€€ Raviart [7].

(ii) If the operator A(t) 1s 1ndependent of t, P(h) = 0 and

Hypothesis (4.13) may be suppressed.

18



oF The Stability Theorem.

Let X be a Banach space with norm \ I. For every {h,x}
[vo]

(In <hys k < k,) let Prk be an operator of  (E_ (0,T3V, ); L (0,T;X))
such that Pk Up (1) is defined in X for all t € [0,T] and all

Uy € E, (0,T;V,) : Py K is called a prolongation operator.J 9

Definition 5.1:

Let Uk be Fog Uputipn of PgoblemsI. a 1 d t oo Db e
0

IL {0,T;X)-stable if there_exists a constant C > 0 independent of h

and k such that:

2, wy (0) <C , for all t € [0,T],
for all {h,k} ([n] < hk < ko)

Let F be a Hilbert space such that H 1s a closed subspace of F.

Let n denote the projection operator from F onto H. For every

ee}

{n,x}, 1et Pk be a prolongation operator of ZL (E, (0,T3V,);L (0,T;F))

Then Qh,k = mo P is a prolongation operator of K(E, (0,137, ); L(0,T;H)).h,k h

We assume that

(5.1) |» | <C lw lhe2 - 72 k 9h,k"h,k 12(0,7:F) h, yk,

(5.2) sup || WI. < c; | | ;
tel0,T] "n,k “nk H > “nk hooky ®

for all Uh, x € E (0,T;V, ) » where C, and Cz are positive constants
independent of h and k.

Then the following result-can be deduced from theorem 4.1.

19



Theorem 5.1:

Assume Hypotheses (4,11), (4.12), (4.23), (5.1) (5.2). Let Uy x be
loo

helut ion of Problem I. Then UW, xn, k is L (0,T;H)-stable and
~ 2 :

P -V. remains 11 & bounded set of- L (0,T;F) 1n the Lwo followinghyk h,k "m== SCA ICT L abt

cases:

(1) 15% Case: 1 + 2B 5 By > 0 9
1 L=2

2

(4.13) k(v(n))” < p (No restriction if A(t) is independent of t),
nd {(ii) 2Case: ea, 2) ltl <0,

£=2

2 Pa a
(4,22) k(v(h)) < ==————m—m—m————— . ©, 0 > 0 arbitrarily

> § lB, - 28,- 1
small, k small enough,

0. The Hermitian Case:

Let us assume now that for every t € [0,T] the sesquillnear

form a(t;u,v) is hermitian (i.e. a(tsu,v) = a(t;v,u)). 50 we

" choose the family of sequilinear forms a, (tsu 57) such that

(6.1) a, (bsw 57) = ay (B5v ou) (u, ,v, € Vp» t €l0,T])

Then 1t 1s possible to weaken condition (4.22) in case

1 +28) -2 LZ, le, < 0

20



Ss  — 2

First we give a new estimate for k L Vi, (01 |
p <s< ml. We replace Vy in equation (4.35) by Vip (rk):

v i Vy (75))(6.2) | Via, (ed + a (ry (rk), Vio(rk)

} + x i by =(rk; Vi ((e-t4006), T(r)

a— . _ rm k
CSA

+ 3H lg, (Vv, a } (rk; uy ((r-2)k), Vy, (rk)

I A II

From (2.1) and (6.1), it follows that

(6.3) 2Re a, (rk; COE Vi, (rk) )

= V. a (rk; uy (Tk), uy (rk)

| tok oar Vn (ek), Vi (rk)

- (Ve } (rk; uy ((z-1)k), uy  ((r-1)K)) :

Taking real parts in equation (6.2) and applying identity (6.3) gives:
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»

2 —

(6.4) IV (ol + 3 Via (sky Gk), ow(rk) )

+ z (1428) a, (rk; Vir, 1 (75), Vt, (7)

+ k Re 95 8, a (rk; Vi, ((r-241)5), Vir, (76)

+ - 1 (Veal (mx up (106), wy ((2-1)K))

< k P(h) h (2-1) [8] uy ((e-tr1)) | | Vig (0)

oral tel le (00 Ty G0)

L 7,0 Igy, (e001 [VG]

Hypotheses (2.5) and (6.1) -imply that

(6.5) Ja (t5u vy) < (a, (3, uw)? (a, (63%, )) y (u,v, eV).

Hence

(6.6) 2]a (tsu,,v, | < a, (tu u ) + a, (tv) .

By using (6.6), (6.4) becomes:
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EE

(6.7) 2 Vig (edly + Via (os w(K), wy(rk)

ewes, = Fle) ates Vn (0, Tin (50)

ce Bey ates Tnpts Tin (e-0200)

- (Va) (rk; wo ((r-1)k), uy((#-1)k))

= 2 Dip 2 2 2
< WV ol + 2 @Em) Flu, (00)

D 2

.2 r oy(Gr 0) r=op,..., m1

where € > 0 may be chosen as small as we please.

Using (2.6), multiplying (6.7) by k and summing from r = p to r = s

(p €£ 5s < m1) gives:

Ss = 2

(6.8) . (2-kM(n) (2 > le, | - 28, - 1) - ek Lp Vig, (m1

+ a(sk; uy (sk) uy (5K)

- k i (Ve) (ru( ((2-1)K), wy, ((r-1)k)
r=p
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< a((p-1)k5 wy ((p-1)x)5 wy( (p-1)k)

p-1 = 2

+ Dy), kM()k L | Vig, x (#1r=1

D 2 S 2

+ 22 (pn) x $ r lu, ((r-£)K)]
€ I=1 r=p ? h

D S 2
15

+ —= k ££ ((r=2)k)] :€ z z h,k h
Let us assume that

2

(6.9) k M(h) < Flr (L-8) ,2) I8,| -28,-1
f=2 4 1

where © > 0 is arbitrarily small

We can choose € = 8, Then equation (6.8) becomes

2

6.10) k 5° | Vu (rk) + La (sk; (sk) (sk))(©. - T=p k h,k h T “n Yn, k > Yh,k

< § a (ek wy ((p-1)K), wy( (p-1)K)
~1 — 2

+0. xk | V (rk) |15 2 kh k N
oq S —
+ 5 k J (Va ] (rk3uy o ((r-1)k), uy ((r-1)K))

r=p

Tole wl? + ok Bn ml+ D k rk + k r 9
16 L Yn, k Nn 17 © & hk .

where Dis Dg: D,- depend on © ,
ol



We deduce now from (4.10) and 6.10):

Ll, olS + 2 Qk V. rk
(6.11) oy, (SE = Te

< (e > 8,| - 2, -1)k k ay ((p-1)k5uy, ((p-1)k), Wy 5 ((p-1)k))1=2

pk IVa (0) + Ek 5S AVa Mrkge ((e-1)K)yu  ((r-1)k))
+ Disk Kh, k no BE on VTE ye Yh,k

s-1 5 S 2

+ Dig kT ly, (e) + Dy, < L 2), (7k) :
2 o p-1 5 i 2tol, ((e-1)x)] +k hy 8, | RN | Vin,(=) |

TRCN+ (D, kP(h) + Dy) Lo L ECON

s=1 2

f (rk)i gx I Li hk hn

s=-1 2

| + (D, kP(h) + D,) k hy Lz oy(x)
But ,

ap ( (0-105 wy((p-1)K), wy, ((p-1)k)) < M(p) fw,( (2-10) |,

— 2

{Vadsu (0-106), wy ((r-2)6))] < p(n) lu, \((r-1)0)]
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Thus because of Hypotheses (4.11), (4.12), (6.9), we may write:

2 = 2
ug(5)| + 2 fly (ri)

(6.12) r=p

S To
SDig4 Dg k Yu yw), pzszm-1 .

TI=p

Hence for Dyg k<1l

’ 2 ~ lv. (mE < (D, o(s-p+1)k)| | < e S-p+

(6.13) ACO) + Ga vy, (Fl, S Y1g SEPP g\ ETP

< Dg exp(D,o(T-pk))

Note that we may replace condition (6.9) by

2 ¥,

(6.14) k u(h) SS- ® ,

: y, IPyl- 28-1I=

where 6' > 0 1s arbitrarily small and k is small enough. Then we

have proved the following result

Theorem 6.1:

Assume Hypotheses of Theorem 5.1 and, _in_addition, Hypothesis (6.1).
P

Assume that 1 + 28, - 2 2, ls, | <o. Then a sufficient condition=
=) ’ '

for Qn yk'n ,k ta beL (0,T;H) - stable aPy 3 V3L to t © ma 1 n
in a bounded_set of 12(0,T;F) is given by

(6.14) kx ph) < ——M—2_ 8’, 8 >0 arbitrarily small,

2 fo 8, | ” Bq ~ 1 k small enough
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Remark:

We could slightly generalize by replacing a(tju,v) by a(t,u,v)

+ a (tu, v) where at (tzu, v) is a continuous sesquilinear form on

V xH and the function t - a (t;u,v) 1s once continuously differentiable.

It 1s easy to see that the results given above remain valid in this case

(cf. RAVIART [7]).

7. A weak convergence theorem.

We examine now the convergence of the solution UW x of Problembd

I towards the solution of equation (1.6) when h and k tend towards

0. We shall only prove a weak convergence theorem.

Let © be an operator of [(V3;F). Let 1¥ denote a dense subspace

of V and let Ty be a linear mapping from 1 into UX Under the
assumptions of Theorem5.1 or Theorem 6.1, we may extract a subsequence

oy x] from (oy, such that
2

(7.1) Py Vy , —U weakly in L (0,T;F) ,
1°71 1°71

0) Q kly in L (0,T;H)(7 — u weakly 1n , Ts 5fy K) hk

when h and k tend towards O.

2

Now clearly PB, —U weakly in L (0,T;F) and u =n. U. Then we
1'1

assume that:

2

(7.3) u e L°(0,T;V) , U=1mu .
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Let Y(t) be a scalar function once continuously differentiable in

[0,T] with ¥(T) = O. We assume the following consistency Hypotheses:

If P —- Tu weakly in L=(0 T;F) thenh,k hk 223505

"ro T

(7.4) k J. a, (rk ; uw (rk), ¥((r+r-1)k)r,w) - | a(t;u(t),v(t)w)dtr=r ’ 0

where ry and r, are positive arbitrary integers independent

of k; ((7.4) means that A(t) is consistent with A(t). Then a
D

necessary and sufficient condition for )} 4 A (t-1x) to be consistent
p £1=0 :

with A(t) is § 7, =1)
[=

0

If Ux, x —» u weakly in L (0, T;H), then

(7.5)

To — T )
k 2. (uy, (xk), Vo ((r+1)x)r, wv), - [ (u(t ) Wt Jw)r=r 0

1

to T

(71.6) x 2 (fy( (rrrp-1)k), ¥lrk)r wv), i (£0), ¥(t)w) at;r= 0
1

; (p-1)k), V(pk)r, w), = (u_,¥(o)w), »

for all w € 2%

Theorem 7. 1:

Assume Hypotheses (7.1),...,(7.7). Then Pn, xh , — Ou weakly in
2 : © :
L(0,T;F), Sy, xh, k —» u weakly in L (0,T;H), 'where Up x denotes
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the solution of Problem I and u denotes the solution 4 equation (1.6).

Proof:

We deduce from (2.13):

m-1

(7.8) k R) (View, 1 (75), ¥ (rk) TW), +

v § (2-1)+ k Y r-f)k r-2)k), V(rk)r.wPINPIRIIE a, ( (e=0)k), ¥(ex)r,w)

TF (6 ( (eet)=k vy, (f,( (r-0k),¥(rk)r w). .RP) A ! \'hk h"/h

It 1s easy to see that

m-1 m-1 J

(7.9) x z (Vie,x (76), ¥ (dm w), = z (1, (zk), Vv((2+1)k)z,w),

(yy (0-10), ¥(ER)TW),

"Then (7.8) may be written

m-1 —

(7.10) - k Lz (3 (7) Vb (+1) ) x oe),
P m-£-1 |

+ k Y (rk; rk), V((r+l)k

je m-£-1

27 Lz, ( h, x (FE) V((r+2)k) ry w), + (a) 5 (p-1)%),¥ (pk) ry ¥), .
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If h and k -0, P uw — Tu weakly in L°(0,T;F) andBy,ky hy, ky

Q Uy, —-u weakly in 1 (0,T,H). So u satisfiesh ,k ’K :
171 171

T ) T

(7.11) | [= (ae), b(t) + alt 5 ult), w(t)w)lat = | (£4), ¥(t)w), dt0) 0)

. + (u,,¥)y ¥(o) ’

for all Ww € V. It follows from the density of / in V that (7.11)

is true for all we V. Moreover the space of functions £ VQW

(£ denotes a finite sum), V € ¢t(o,T) with V(T) = o, We V, is

dense in the space of functions ¢@ satisfying (1.7) provided with the

T 2 / 2 1/2
norm ( (le (eI + lo (el dt) (cf. Lions [4]). Then u satis-

nN

fies (1.06). We deduce from the uniqueness of the solution u of (1.6)

— 2
that Ph, xh, k —» Tu weakly in L (0,T;F) and Uk", k — u weakly

(0)

in L (0,T;H).

8. Regularity theorems:

a) The Hermitian Case:

For every t e¢ [0,T], we are given a continuous sesquilinear form

a(t;u,v) on V X V with the following hypotheses:

(i) t - a(tju,v) is once continuously differentiable in [0,T](u,v € Vv);

(ii)  a(t;u,v) = a(t;v,u) (u,v e V);
2 2

(iii) a(t;v,v) + Mivilg 2 allvil, a >0,vevVv.

Then we have the following regularity theorem (LIONS [4])
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Theorem 8.1:

Given:

2

(8.1) f e L (0,T;H) ,

(8.2) uv ev

There exists a unique function u satisfying

o0

(8.3) u € L (o,T;V) ,

- 5
(8. 4) u' e¢ L(0,T;H) ,

(8.5) u' (t) + A(t)u(t)= f(t) , for a.e. te [0,T],

(8.6) u(0) = u,

Remark:

For a slight generalization see the remark following Theorem 6.1.

} For everyt ¢ [0,T], we are given a family of continuous ses-

quilinear forms ay (Tsu, vy) onVy x V, as in 86 (i.e. satisfying

Hypotheses (i), (ii), (iii) of §2 and Hypothesis (6.1)). Let

SHE E _(0,T;V, ) be the solution of Problem I and let us assume now
2

that there exist two positive constants K) Ks; independent ofh and
k such that

(8.7) uy, (7%) ls hay, 3 (0), < XK)» Y = Ojeeceee,p-1 &
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p-1 — 0

(8.8) EL Vig09) ly < Xs,

Theorem 8.2: |

Assume Hypotheses (i), (ii), (iii)_of §2 andHypotheses(6.1), (8.7),

(8.8). There exist two positive constants Ej E, independentof h- 4

. and k such that

< E(8.9) hoylhe 0 Tonxh,S Bs

m-1 = 5
(8.10) I) |View, (7%) lL <E, ,

r=1

in the two following cases

st

(1) 1 Case: 12-23 lg, 20,
L=2

(4.13) k(v(h))* < p (No restriction if A (t) is independent of t),

nd £

(ii) 2 Case: 1 + °B, - 2 2 IB, I< o ,

(6.14)  kp(h) <rg- 8’, ©®> 0 arbitrarily small,
2 , le, |-28,-1I= k small enough .

Proof:

st 4 .

(i) 1°" Case: 1 + 2p) - 2 pi ls, [>0 :

Theorem 4.1 gives:
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(4.25) ON PR < EB.

Inequation (6.4) is true and we deduce for p <s<m-1:

So |

11) x Yi, (zk) Io + = a (sk ; uy (sk), uy (sk)
r=p ’

P S — f—

¥ : (1 +28, - 2 IB, |x Lon 5 Vig, x (76) Vi, 1 (7K)
P S — —

- 2 pa 8, |x L a, (rk ; Vin, (r-4+1)k), Via, (r-2+1)k) )

cla (Gis a (100), uy (0-1) + Bk 3 hy, (G1)
’ d r=p ’

+ k P(h) 3 (2) 1B, k > lu,  ((r-2+1)k) l, IV,u, (Tk) l,= r=p °’ ’

+ k P(h) 5 tle,le 3 fw, ((r-2)K) |, | Vit, i (0) |= r=p ?

Pp 8 =

+ p2 7,0 X18 (=D) [Vin (0)I=0 | r=p ¢ ’

But

a (rk 5 Vow, ((e-241)), Vw 3((-£41)K))

= a, ((r-24+1)k Vi, (r-2+1)k), Vit 1 (2=2+1)K))

+ (£-1)k { Viro1)eon) (rk ; Vigo io rim), Vio, ((-242)0)),
and
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Ew, | “ye
< P(h) [Vici i ( (m= 241)8) | .

Hence we deduce from (8:11), Hypotheses (4.13), (8.7), (8.8) and (4.25)

:. that for p <s<m~ 1 and k small enough.

S= 2 2

(8.12) k z | Viet,1 (73) |, + ally, (silly
s-1 >

~ <D; + Dk > ay, (Fl -
r=p

Then applying lemma 3.3 gives the first part of the theorem.

P

(11) ond Case: 1 + By = 2 2, 1Byl< ON.I=

The second part 'of the theorem can be easily deduced from inequality

(6.10).

. Remark:

It is easy to determine {uy (TK), r — Oyeee,p-1} verifying (8.7)
J

and (8.8) when u eV. See RAVIART [7].

Let us assume now that (cf. $5):

(8.13) sup ||P, (lp < cyl, Wh +oCE La FS uMxl

m-1
d 2 2

(8.1k) l= q I <cxky |V (rk) |S,
dt ,kx h,k 2(0,msm) © 9 21 kh, k h

3h



for all YY x © E (0,T3V, ), where Cy, and Cy are positive constants,

independent of h and k.

Theorem 8.3:

Loe t Yn.x be the solution of Problem I. Under the assumptions of
J

Theorem 8.2 _and,_in addition, HypotheseP, (8.13), (byl), x is_nheorem o.< dnd, in dadaition, HYPOTLNES: _ ,
d 2

L (0,T;F)-stable and er % x" x remains in a bounded set of IL (0,T;H)
in the two following cases:

P
st

(1) L Casey, 1 +28, - 2 2, le,|>0 |

(4.13) k(v(h))” <p No restriction if A(t) is independent of t)

P

(ii) 27% Case: 1 + 28, -2 2 8, | <0

(6.14) N-44 NS - 8, 8' > arbitrarily small,
2 PN |B, 1-28,-1 k small enough .

) If, in addition, the assumptions of Theorem T7.l are verified, then

Py, xh, —» Tu weakly in L (0,T;F) ,

3 Q ou = weakly in 1°(0,T;H)it “h,k h,k Jr —==t=d = ’

in cases (1), (11).

b) A general regularity theorem.

For every t € [0,T], we are given a continuous sesquilinear form

a(t;u, v) on V xV with the following hypotheses:
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(1) t — a(tju,v) is once continuously differentiable in [0,T] (u,v e V);

(ii) there exist constants A, @ such that .

Re a(t;v,v) + Av > o|v|| a > o V EV2) H = V / ’

Let A(t) € L(V;V') be defined by

) a(tyu,v) = < A(t)u,v > (u,v eV) .

We denote by D(A(t)) the set of all u in V such that A(t)u € H.

We provide D(A(t)) with the norm

Js} ~ Cl + lace)ul5)?Ppa) ) = H H

Theorem 8.4:

Lea be given satisfying

2 2;
(8.15) f e L°(0,T;H), f' e L (0,T;H) ,

(8.16) ue D(A(0)) .

There exists a unique function u which verifies:

[ow]

(8.17) ue L (0,T3V) ,

5 ©

(8:18) v'e IL (0,T;V) N IL (0,T;H)

(8.19) u' (t) + A(t)u(t) = £(t) , for a.e. t €[0,T],

(8.20) u(o) = uo.

For every t e€ [0,T], we are given a family of continuous ses-

quilinear forms a, (t3u,v,) on V, X V, as in §2 (i.e., satisfying
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Hypotheses (1), (ii), (iii) of §2). Let Uy x € E (0,T;V,) denote the
solution of Problem I and let us assume that there exist five positive

constants Kgs eeesKig independent of h and k such that:

(8.21) oy 1(75) Lys lly ((lly <Kg, 1.0.0 @ODO

p-1 J 2

(8.24) k Z Vie, ll; < xg
-1

2 RB 2 2

(8.25) k 2, \V. uy (FR) by < Kyr=

Moreover let us assume that:

if bry, yell, k, 2 1s bounded by a constant independent of
(8.26) h and k (v,, , defined by (4.4) and (4.24)), then2

(1)
LE has the same property.

; Theorem 8.5:

Assume Hypotheses  (i),_(§i), (iii) of 8 _and_ Hypotheses (8.21),...,(8.26).

‘There exist four positive constants Boyeeeess By independentof h and
k such that

(1) Hypothesis (8.26) is trivially verified when Theorem 7.1 may be

applied and |jw,_ || < cil ow | , for all
/ : ‘

Vy © E,(0,T;V,), where C, 1s a constant independent of h and
k.
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(8.27) LN ’ hoy ell, x, ? 1, ell, x, oo = £5 ?

(8.28) EC IMPED) Mw < Eg»

(8.29) | Vict, x (75) l, < 5 / r = lyocse «yM=1 ’

m-1 5
& (8.30) k L IV 5 (FEI S Bg os

in the two following cases:

st D

(i) 1 Case: ~ 1+2B, -2 PN IB, >0 y
2

(4.13) k(v(h))" <p

nd D
(ii) 2 Case: 1 +28. -2 |B | <0 ,
EE 1 P= !

(h.22)  k(v(n))*< —2=% 8! 6' > 0 arbitraril 11
o < 5 - 9, arbitrarily small,

‘ PN By 1-28,-1 k small enough.

Proof:

First, we may apply Theorem 4.1 and, in cases (i), (ii), we obtain:

(8.31) A FA < By

(8.32) vs, ely, po SB

We deduce from (8.26) and (8.32):

(8.33) hoy, ge lby 0 SB
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Then a "discrete" differentiation of equation (2.13) with respect to t

gives:

(8.34) (View,x (xk),vy) + PN 7p ap ((r=0)k 5 wo ((r-2)k), vy)
D —

PN 7p (Vien) (Or=20k5 uy (2-241),vy)
D oo

a PN 7, (Vif, x ((e=2)6), 7) y r=p+ lyiee..,m-1

le put (8.34) into a more convenient form as in §4.b.

—5 —

8.35) (Vy wy(mR)v)y + a(x 5 Vv (1%),w)

1S — —

<x $02) By (pt) (5 Tim(r-83)6),,)

D _ — |

p —

+ vr, (Vea) (=k 5 wo((r-2-1)k),v,)=e ’

Pp —

= 2 7, (Vin, x (7-108), vy oT =D + lyceess,m=1 ,

We replace vy in equation (8.35) by Vv x (TE) We obtain:
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(8.36) Vil Vie, (0 1 + (1 +28, - PN 18,1) kV; uy (ek)

2 w° 2 r= 2
- k PN |e, Vy up, (2-241) |, + 20 IV, vx TE,

D pe p) = 2

< (D;kP(h) + D) )} Vw, ((r-0)6) | + ll Viv, i (10,
| £=0 a |

+ Dye) hy ly 4 (Ce=2-23)ly, + Dg T Vif (000

Yr = ptlyeseso,M=1, where ¢ > 0 may be chosen as small as 'we please,

Multiplying equation (8.36) by k and summing from r = ptl to r = s

(p+l < s < m-1) gives:

— D D0 5 S02 2

(8.37) [Vio i (55) I +(1 +2 -2 PN 8, Dk oo Vip (7%) lL

+ (20-¢) k Ry: | Vi, eC)
-— oO >» DP 1 -— 0 0

< [Vict ic (01) +k PN lg, | Ls Vio, (1)
D 1 — 2

kKP( rk

+ (DgkP(n) + Dk x lr Vi,x (0) |

D = 5 | f ((r-2)k)|° + D.(e)k S 5"6 = L ohio & r=p+l

[CHE]

FTNTp (015D, )k u rk o

+ (D;xP(h) + Dy 2 Zo) Vin x h
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It is very easy to prove (cf. RAVIART [7]):

m-1 0 5 I 0

(8.36) SN AENNCOT PL A SO!r=

2 2 aran2 To 2

(8.39) Ig, ly caf | £3) at + | le (eli; at) .

| . Then, it follows from the inequalities (4.13), (8.21), (8.23), (8.25)
(8.33) and (8.38) that

= \2 D Ww? oe SP 2

(8.50) |Vug (6), + (1 +28) - 2 PAL 2 Vi, (x) ly

eS 2

+ (20-€)k RA Vin, x (7)

<2 |Vi,0) + pan Ty i, 8) 1; + Dg

> 1 (01+ Dk rk , S = prlyeeces,m-1 |SL k ‘n,k h p

| Now,

| BITE wy012 < 21 Ty, E+ AT, ((-061]

An estimate for V0, (0K) l, is obtained as follows, Equation (2.13)
gives for r = p:

Vic, 5 P| < - 7, Re a (pk 5 uy (pk), Vict, (2K)
DP | Pb

+ oN 7, 1a (Ce-2))yy( ((o-2)6) |, + PN 7,118, ((o-2)x) |, ]

IV, 1 (9) lh
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But

a (ks (06), Vy(0K) = a (ks (020K), Vig,3 (2K)

+xay, (ok; Vig, 4 (pk), Vio, (pe)
and

-Re ay (pk;, (pk), Viet, 1 (7) < |A, ((p-1)x wy , ((p-1)k) lo! View, (8) 1,

oo ~~ +k Ph) ly oC (o-2)klly | View, ( (5),
Hence,

(8.41) | Vit (Pk) <7 1a,(m1)wy) ((p-1)%) |
D

+ NA 4, ((p-1)x) wy ((p-2)x) | * PN [7,1 [£5 (=D) |

+k Pn) Ju, ((-1)6)Il, B

Then the inequalities (8.21),(8.22), (8.39) imply that [Vio 1 (0) |,
is-bounded independently of h and k. So (8.40) becomes:

(8.42) |View, i (1) + (1428-2 2 lg,|x Zo WV. wy, (TR) |
SS 2 pe 2

+ (20-e)k Zo IV,x (FM, < Dy + Dy X RS |Vio,(76) 1

S = Pptlyeoce,li~l' |
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st P

(1) 1° case:, 1 +28, - 2 2 le,>0

By applying lemma 3.3, we find for kD 4 < 1 and for p+1<s<m-1

2 a 2
| 8.53) |View, (sk) + (2o-e) x TV (ly

Ff r=p+l

< Dip exp (Dy (T-((p*1)k))) .

But

al|V v, x)||° < Re ag ( k; v, , (pk) Vv (pk) < M(h) V ( x) |2k hk‘Pl SF Sp APES VV iV PRS Vienk - k'hok2 ln

<D men) (| er) 2+ 5 | © (rk) 9= "11 Viet,i (#5) Lr Vie x wk) |, ) -

2

Thus, because of Hypothesis (4.13), x| Vv, (ee), is boundedb

independently of h and Xk.

Then we find

) — 2

(8.44) Vit, x (7k) lL, <Dyp r= l,ee.,m-1 .

r=1

(11) ond Case: 1 + 28, = 2 Tv |B |< 0SCA 1 g -

We deduce from (2.4) that

d

(8.46) lz (soy,vp) <n) lhaylly Ivy ly (u,v, € V,)
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where Q(h) has the same order of magnitude as N(h) when h — 0. To
= 2 2

f rk r = ptlyco.,m=1 e replaceobtain an estimate for WV Uy, ge ) ys pt+l, ’ 3 W Po
=

vi, in equation (8.35) by Vi wy, (7k) and apply inequalities (2.7),
(2.8), (8.46):

=2 — | . E = \| Vi wy7), < 0@) [IVywy, (ll, +k Bn) hi} (2-1)|B, | Vu, ((m-21)5)|
Pp — | Pp |

+x Bm) HL 18,1 Tp,C=),+ Am) [7] Ile, yo ((r=2-1))|

%

+ PN 7 Vict i (C200) | °

Using Hypothesis (4.22) and by the same device as in §4.b,(ii), this

gives (8.44) and (8.45).

Now, we have:

- Tr

Vp, x (7K) = wy, 5 ((P-1)k) + k LZ Vin, x(k) o

This 1dentity implies that

. EB

'because of the inequalities (8.32),(8.45) and (8.21).

It remains to show the inequality (8.28). This is a trivial con-

sequence of equation (2.17) and inequalities (8.22), (8.39), (8.44).

This completes the proof of the theorem,

Lh



Remark:

It 1s easy to determine (wy, (7k), r = Oyeee,p-1} verifying . .,
(8.21),. . ., (8.25) by two level difference schemes when u, € D(A(0):

We choose uy, (0) = Qu, with low oo 0T wo

RE {of wl» lof] 1 lls 14; (0) On uly, < Cy pra (oy ’ |
and apply Theorem.8.5, with p = l.

Let us assume now that

(8.47) sup [By on 1 (Olp < Cllwy, ol
¢ oor] BEBE S YEkinKk,

~ m-1 1/2d 2

(8.48) IE 2 uw | <c (x5 Vw IF)",at “nh, kh, K12 00 m.p) (EAN kh, k h

4 —

(8.49) sw l= (t)ll; <c sup [Vw (6)¢ [0,0] Ob hk hk /'H = "8 1, on khk" In

for all Ux © E _(0,T5V,), where Cg; Cos Cg are positive constants
independent of h and k.

Theorem 8.6:

Let Wy be the solution of Probidem tHe assumptions of=et , —_— coll Of

Theorem 8.5 and, in addition, Hypotheses (8.47), (8.48), (8.49),
. own oo)

Up, xh, x is IL (0,T;H)-stable, Pr, kh, X is L (0,T;F)-stable,
d : oo d oo
7 Yih SL (0,T;H)-stable, = Py 9xVh, Lemains inva bounded

set of 12(0,T;F) in_the two following cases:

(1)1°° Case: 1+ 2B 2) J >

> ”
(4.13) ’ k(v(h)) < P
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nd 2

(11) 2 case Lop m2) IByl<o,I=

e 20! y /
(4.22) x(v(h)) <= BH, © > 0 arbitrarily small,

: PN |B, [-26,-1 k small enough.

. If, in addition, the assumptions of Theorem 7.1 are yerified, then, in

cases P,), xn x is L (0,T;F)-stable a =n d
oo]

P — Tu weakly in L (O,T;F) ,h,k h,k weary == at

a ; du Can : .
TT On,xn,kx VS aE wwebkly in L (O,T;H) ,

d | -—_f_ = du «cA. Mm3% Pn, xh x = Ogg weakly in T7(0,T;F)

Proof:

The first part of the theorem 1s trivial. We deduce, as in Theorem

Co

.1l, that P —»®1 weakly in L (0,T;F) ,Tol, h,k h,k Y ss

. d / : oo
T hn, xhn,x OU weakly in L (O,T;H) .

dp L @ weakly in I°(0,T;F)
| dt “h,k h,k EES

ns i 1°(0,7;F) and =PThen Bs Kp, x remains in a bounded set of > 13 and 3 h,k"h,k
remains in a bounded set of 1°(0,T;F). But it is easy to see that

| 2 1 12(8.50) sup ||P (+) <D | {||P (tllte [0,1] h,k hk NE = 1k Fo h,k h,k
| | d 2

+ lig Pt,x (Bp at]
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, ==]

Thus, Pr, xh, k is L (0,T;F)-stable.

9. Applications to parabolic partial differential equations.

We shall study here a simple example. For other examples see Lions

+ [4]. Let © be a bounded set in v7 We choose

2

H=1L(q),

2 o 2
v = B(0) = {ul uel(a),& ¢ 180), i = 1,...,n} ,

n

ats,v) =), / 2 5(%s%) pn) Rue) axi,J=1 4Q J il

n 3 _
+ > / a. (x, t) u(x) v(x) dxi= Q 1 X.i

of a (x,t) u(x) v(x) dx ,Q

where a a, a e€ L(g x (0,T)).
igri 0

. We assume that

n _ n 5

1,J=1 i=

Then we may apply Theorem 1.1. There exists a unique function u which

satisfies:

ou 5 a ou 2 ou- ) = (a, .(x,t) ) a, (x,t) +a (x,t)u = £ ,Jt i, 39% i,J ox & i ox, o'"’

a. e. in @ Xx ]JO,T[, with the initial condition

4]



u(x,0) = u(x) ’

and the (formal) boundary condition

ou

Bp) a; 5 (x,t) cos (n,x;) Ss = 0 for x eT = oN, t € J0,T[ .
ES 1,3=1 J

where n denotes the exterior normal to I' in x. This boundary

condition makes sense when I is smooth enough, see Lions-Magenes [6].

We examine now the approximation of the solution u.

a) The spaces Vy:

Let <. denote the set of points M e€&" such that

M = (eh, ceese h)

where the e's are 1ntegers. Let 0, (M, 0) be the set of points

X ek," such that

By hy
x, (M) - 5= < x, <x (M) + 57.

W., denotes the characteristic function of a, (M,0). Let a, (M,1) be
9

defined by

n h,
0, (M,1) = U 0, (M + = 0)

i=1
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fy/2

[ )
275 ree --

| Ze1 RE 2

hy

| 2, (M,0) °,(M,1)

We define: a = {M | M EW 0,(M1) Na # Bp},

oc R(h) =U 0. (Mo) .
Me @,

Then Vy 1s the space of functions uy, ot the form

mE

If uy belongs to Vio we may define Oy Uy by

] h, h,
byim(x) = = [uy x + 5) - w(x - =)] a.e. in Q ,

We set:

(aps vy Soo uy (x) v(x) ax
n

(Cw vy) )y, -f u, (x) v(x) ax + PN J 5, wy (x) 5, vy (x) dx .

ko



We choose:

~ 2

Qu = —— y (f Lu ax JW, yw for all ue L (0),1 n Me 0, (M,0)

where 0 = (u in ©

. 0 elsewhere.

2 +

Let F = [L°(a)]" Y.o1fuU = (wyuyyeee,u) belongs to [1°(a)1% we
set: u = nU ¢ 17(q).

1
If u belongs to V = H(Q), we set:

— ou Ju oO |

du = (u, 3%; yee Se) [17 (a)| n

Now, we define the prolongation operator Pp, . (cf. §5). If Uy x
belongs to E, (0,T5V,), we may define:

t) = rk) + -rk r+l)k) , rk< t < (r+l)k ,wx (8) = wy p(k) + (eork) Vow (((e41)K) | rk << (p41)

t) = Lo ({m-1)k T-k<t<T .wy, (8) = uy 4 ((m-1)k) , <t<

Then,

+) _ | n C2 in+1

The verification of our Hypotheses 1s trivial and left to the reader.,

/

For other examples of spaces V,, see CEA [2], RAVIART [7].

b) The forms a, (ts ,v, ):

Let us assume that each a 3 (resp. as 5 a) has one continuous
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derivative in t which is bounded in © Xx (0,T) together with a.
1]

(resp. ay, a.) itself. We choose:

n

(9.1) ay (t50, vy) = 2. [ a; (x,t) F u, (x) 6, vy (%) dx1,J=17Q

| + Zl / a. (x,t) ®; w, (x) vy (x) dx

f a (x,t) w(x) v, (x) dx |
We assume that Hypothesis (2.5) is verified (cf. Remark (ii) §1).Now,

we compute N(h) and v(h):

ytst) |< 20 3 BYE [1on00 Fac) TalEAN I L (2 x (0,T)) & nS & Q ih
n n

2 1/2 2_\1/2(2 lag WH te, (9) 2a) 2& 7 1%(ax(o,T)) PN o ib uly

+ lll o 2.11/2°'17(ax(0,1)) J hay Go) Pax)? = Ivy

Where a(x,t) is the euclidean norm of the matrix (a; 505%); 51, Con
Then,

| 1/2| n n 5 0

(9.2) N(n) <<[2|lall >) + ( a. oe bid

2 1/2

+ lla J, 2
L (2x(0,T))
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| noo 1/2
o 2 ila — o

(9.5) ezon(EG 2 )
We compute M(h) and u(h):

su, Lia R 3 Lu \) Cesml < bel (EE) bab te
+ 2 ; a. c 1/2 3 = 1/2 \2
’ (& | oxo.) ® 2) RLY

+ LEA lo |, lvls

(9.5) M(x) < ull GEOR OI 6) Ly"Sh Bh L (ax(6,T)) 71 1  N=1A {=1 nS

+ LI.—

. h Lila 1 .
(9:2) (8) 5 | | =ax(),m)) 2 in
When

(9.6) a; 5 (x,t) = ay; (x,t) ’

the principal part of a, (tsa, ,vy) 1s hermitian (see the remark

following Theorem 6.1).
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c) The initial values Wy, (TED, r = 0,1,...,p=-1:

We define vy, x (0) by

/

2.1 wy, (0) Bh Od

a where oy 1s a linear continuous mapping from 1°(q) (resp. HY (0),
D(A(0))) into V, such that

(9.8) lou fy < Clu
ho 'h 0) 12 (0)

!

(resp. (9.9) lo/u |, lou |, < Clju, | 1 ’
H(Q)

7 ’ /

(9.10) [00lo 1078,Ilys 14,(000gu,1 < Clluglip agoyy)

2

where CC is a positive constant independent of h. If u € L (Q), we
set

/ 1 ~

(9.11) Opt, = hh Rn [ (1 0) us dx JW M. n € Qy a, (M,

and (9.8) is true with C = 1,

If Ug € HH (Q) and 1f the boundary TI of © 1s smooth enough, there
exists an operator P eX (H (2); 1 (AM) such that

Pu =u in (cf. Lions [4]) .
oO ©

Then we set

1

(9.12) Ou = ——— )) gl Pu dx)W ,ho hey Byye Q 0, (M,0) © h, M
and (9.9) is true (cf. [7]).

PY,



Let vusexamine now the case ue D(A(0)). Generallywe do not know

how to choose Oh such that (9.10) is true for all u_ € D(A(0)).

However when u_'belongs to an appropriate subspace W of D(A(0)),
it is possible to find Oh such that

/ / / il

ora1s loflls 14,00) au ly < lag

For example, let 5 (0) be the space of functions u such that

2
du do u 2 os

“Sx, Se che) 1, = lyceoynl. wh wl.

We provide H (¢) with the following norm

2 1/22 = ou < du 2

| = (J oot 2 Isle, +2 sess ) :i (0) 17(0) &£=1 %% 17() id=l “Fi%%5 17a)

We define i (a) to be the closure in i (q) of the smooth functions
: 2

with compact support in ©. Then if A(t) = =A, H (2) Cbp(-A) and

we can prove:

/ /.. /

lou |, lou Il,» la, Ou | <cllull 5 ,
H (a)

where oy is defined by (9.11) (see [T]).

Then we define Wy (Ds oes ((p-1)K) by one step difference
methods (ef. [7]). Now we can easily see that the consistency hypotheses

are verified,

It 1s very simple to state the stability theorems and the convergence

theorems corresponding to our example: this 1s left to the reader.
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