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ON THE APPROXIMATION OF WEAK SOLUTIONS OF LINEAR PARABOLIC

EQUATIONS BY A CLASS OF MULTISTEP DIFFERENCE METHODS

BY

Pierre Arnaud Raviart

We consider evolution equations of the form

(1) ) 4 ae)a(t) = £(6) , 0<t< T, £ given,

with the initial condition
(2) u(o) = u, , u, given ,

where each A(t) 1is an unbounded linear operator in a Hilbert space H,
which is in practice an elliptic partial differential operator subject
to appropriate boundary conditions.

Let Vh be & Hilbert space which depends on the parameter h.
Let k be the time-step such that m = % is an integer. We approxi-
mate the solution u of (1), (2) by the solution uh,k
(uh,k = {uh,k(rk) eV, T = 0,1,+..,m-1}) of the multistep difference

-scheme

() - w ((e-)
() 2ET T mx ' ;Zo 7y AE-0K) 5 L (r-0)K)

Y

() uy (0),e sy ((p-1)K)  given






h into Vh,

£y k(rk)(r = 0,1,...,m-1) are given, and,7‘(£=0,...,p) are given
) n

where each Ah(rk) is a linear continuous operator from V

complex numbers,

Our paper is mainly concerned by the study of the stability of the
approximation. The methods used here are very closely related to those
developed in Raviart [7] and we shall refer to [7] frequently, In §1,
2, we define the continuous and approximate problems in precise terms,
In §4, we find sufficient conditions for 0, x to satisfy some
a priori estimates. The definition of the stability is given in §5
and we use the a priori estimates for proving a general stability theorem.
In 56 we prove that the stability conditions may be weakened when A(t)
is a self-adjoint operator ( or when only the principal part of A(t)
is self-adjoint), We give in §7 a weak convergence theorem. $8 is
concerned by regularity properties., We apply our abstract analysis to
a class of parabolic partial differential equations with variable coeffi-
cients in §9.

Strong convergence theorems can be obtained as in Raviart [7]
(via compactness arguments) or as in Aubin [1]. We do not study here
the discretization error (see [l]%

For the study of the stability of multistep difference methods in

the case of the Cauchy problem for parabolic differential operators,

we refer to Kreiss [3], Widlund [8].
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1. The continuous problem.

We are given two separable Hilbert spaces V and H such that vV C H,
the inclusion mapping of V into H 'is continuous, and V is dense in H.

If X is a Banach space with norm||”}a we denote by LP«LT;X)'the
space of (classes:of)’ functiéns: £ which are I? over [0,T] with

values in X, provided with the usual norm (1 <pc< ®):

<fT llf(t)lli at
0

and the usual modification in case p =
For every t € [0,T], we are given a continuous sesquilinear form
on V X V:

u, v = a(t;u,v) , (u,v e V) .

We assume that:
i) t - a(tju,v) is measurable (u,v € V),

ii) there exists a constant X such that

(1.1) la(tsu,v) | < X Jlully lIvlly (w,v € V, tec[0,T]) .

iii) there exist constants A, @ (@> 0) such that

(102) Re a(t;v,v) + >~||VII§ > a||V||§, (v ev, t elor]) .

Then we have the following result (cf. Lions [4])

Theorem 1.1:

Given:
(1.3) f e L2(0,T;H) ,
(1.%) u. € H

0



There exists a unigue function U satisfying

(1.5) u € Le(o,T;v) N L’(o,T;H)

T ~ T
(1.6) fo {a(t; u(t), 9(t)) - (u(t), @'(£)) Jat =j'o (£(t), o(t)), at

+ (uO’ CP(O).)H ’

for _every_function ¢ satisfying

(1.7) Q€ Le(o,T;-V), o'e L2(0,T;H), . @(T) = 0.

Remarks:

1) The derivatives are teken nthesense of distributions.

[i) We may assume that A= O In Hypothesis(1.2) (Replace u(t)
b yu(t)exp(Xt),X & real numberchosen sufficiently large).
111) We define V' to rethe antidual of V.Since v = a(tju,v)

is a continuous conjugate lincar form onV, we 'may write:
a(tiu,v) = <A(t)u,v> for allve V, .
/ / 2 / .
where A(t) € aC(V;V ). Then u e L (0,T3V') 8o that u is equal a.e.
to & continuous function from [0,T] to H (ef. Lions [5]) and

equetion (1.6) may be replaced by

(1.8) w'(t) + A(t) u(t) = £(t), for a.e. t € [0,T],

(1.9) u(0) = u



In the following, we shall assume that the function t - a(t;u,v)
is once continuously differentiable for every u, v € V. Thepn, Decause
of the uniform boundedness principle, -there exists a constant L such

that

d
(1.10) 5 ot swy) | <zl vl (w,v eV, telo,Tl).

For the study of the approximation of the solution u of equation (1.6)

when the function t - a(t;u,v) is only measurable, we refer to Raviart (71.

2. The approached problem.

Let {Vh] be a family of Hilbert spaces where the parameter

n
h = (hl"'”hh) is a strictly positive vector of R such that

Ih| =n, ++++ L <n
n-— o

1
prr

h > 0 being a fixed number. wWe provide each Hilbert space V, with

two scalar products denoted by ( , )h and (( , ))h respectively.

We assume that the corresponding norms llh and H‘k are equivalent

and verify

(2.1) e(n) luply < oyl < cm) lo |, (o, ev)

where C(h) may tend towards + ® when h tends towards O.

Let O

,, Dbe an operator belonging to J:(H;Vh) with

[0, ul
h” h _

(2.2) o, - = sup —2— \
Bn T T, )

ueH

where Cl is a constant independent of h.
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For every t € [0,T], we are given a family of continuous sequilinear

forms on Vh X Vh:
V. i ’(t§ ,V") N ( v, €V ) o
h B\ Ty Yy Yn’Vh h

We assume that:

(1) t - ah(t;uh,vh) is once continuously differentiable (uh,vh € Vh) ;

(ii) there exist constants M, P independent of h such that

(2.3) | (esww) | Il Il
(2.4) | &qt &, (t5u ,v, ) | < 2 Il “vh”h ;
(111)
2
(2.5) Re ah(t;vh,vh) > « “Vh“h (vh € Vh) 0

where & 1is the constant involved in inequality (1.2).

From (2.1), (2.3) and (2.4) we deduce that

. (2.6) |a-h(t;u-h,vh) | < M(n) IU,h|h |vh|h )
(2.7) loy (b50,v) | < ) Tyl vl s
(2.8) 12 e (su,v)l < p(0) fu v 1y, s

Where M(h), N(h) and P(h) may tend towards +® when h —= 0.
2
Moreover M(h), (N(h))~, P(h) have the same order of magnitude when
h - 0. We denote by u(h) and v (h) respectively the principal parts

of M(h) and N(h) when h - 0O,




Let us introduce now a set of consecutive integers
COglyeeasr, . .

T

and the "time-step" k = = . e define Ek(rlk, r k; Vh) to be the

B

2

space of sequences uh Kk of the form
3]

Uh:k = {uh,k(rk)’ r = rl,'-e,r2 - ]_}

where each u k(rk) belongs to Vh. We provide Ek(O,T;V ) with the
J

h

two following sequences of equivalent norms:

L || M (L<p <)
defined by
m-1 p \ 1/p
Iu'h)klh)k:P = .k rz—:o |uh gk(rk) |h (1 Sp< ) 4
| m-1 ) l/p
”uh,klh,k,p T \K \20 oy o) I l<p<),
r=
oy Lo = Orcm1 DGO

If U € Ek(rlk, r k; Vh) , we may define

Ve, = (Vo () = =Tl e T - 1) € B ((r) + 1)k, 1pk7,)

by



(2.9) vkuh,k(:rk? - & Doy () - oy ((r-10)]

For every t € [sk, TI (s > 0), we define for all WV o€ Y o

(2.10) {§7sk a ) (tsu,v) . é% [oy (t5u, 57, ) - &y (t-sksu ;v )]
We introduce now fh’k € Eh(O,T;Vh) by

(r+1)k
J

0, f(t) dt.

==

(2.11) £ (rk) =
b,k rk

The following inequality is easily verified:

: !
2.2 e = () e a)

Let us consider now the "approached" problem

Problem I:

Find Uy i © Ek(O’T;Vh) satisfying
(2.13) (V.w  (rk),v.). + y ((r-2)k; u,_ . ((r-2)k),v, )
k hik h'h zgé ¢ °n bk
R SRR N RN (CR R NP

for all w

h € Vh )

(@.2h)  wy (0)s wy y (6)see uy ( ((0-1)K) given im V75715 ees7)

are chosen complex numbers.




Theorem 2.1:

Assume that 7, is a real number > 0. Then Problem I has a unique

solution.

Proof:

Note that the theorem is trivial for 70 = 0. Let us assume 70 > 0.

Then equation (2.13) may be written

(2.15) ’éh,k (rk;uhg (k) v) = (Fh,k(rk)’ v )y

A
. | . 111 X
where ah,k(rk’uh’vh) is a continuous sequilinear form on Vh Vh

which verifies for all v, € Vh

h
2 2
A P
(2.16) Iah’k(rk,vh,vh) | > Re o (PR3 Vv ) > vl + w7, a el
2
2 lwyly

and Fh,k(rk) is an element of vy

Then (2.16) is a sufficient condition for equation (2.15) to have a

which does not depend on w k(rk).
J

unique solution.
In the following, we shall always assume that 70 is > 0.

Remarks:

(1) We could slightly generalize by choosing other complex constants

than 70,..,,7 o in the left-hand side of equation (2.13).

(ii) Let Ah(t) € °<?(Vh;Vh) be the operator defined by

(Ah(tOuh, Vh)h = ah(t;uh’vh) (uh:Vh € Vh)

Then equation (2.13) may be written on the equivalent form




(2.17) Vit 0+ 57y afr = O (G5 - 00
= li 7, fh,k((ru £)k), r - py. .om- 1.
3. Some Lemmas.
Lemma 3.1:

We denote by E & linear space and by b(.,.) & sequilinear

hermitian form on E XE. Let @ be a mapping from Zk into - E. Then

(3.1) V. b(@(rk), o(rk)]

2Re b(P(rk), V, P(rk)) - k b(_V_@(rk),kark))

2Re b(<p((r-l)k),vk¢(rk)) +k b(kap(rk):v-kcp(ik))

Lemma 3.2:

. Let ® be any scalar function defined on Zk, Then

r
2 —_
(3.2) k 2 Vk P(sk) = CP,(r2k) - (P(rlk) )

Lemma 3.3:

Let @ be any real function defined on {rlk, (rlffl)k,;..,rz.k}. We

assume that the following inequality holds for all _integer r (rl <r _<_. r2)

: r-1
(3.3) 9(xk) + ork) £C+ &= L ®(K) s a(rx) > 0,
0 s=r

1

L N

where C 2 0 and k, > 0 are given.constants. Then

0
r-r (r-r. )k
(5.4)  o(k) + alk) < C(L + ) T Cep (——) .
0 (¢}



1f we replace_for all r inequality (3.3) by

(3.5) P(rk) + alrk) < C  + fw Zr) o(sk), a(rk) > O,
0] s=r_+1

By
4

Then , for, k < ko,

LT -r_ )k,
(5.6) o(rk) + a(rk) < c( - }j-) < ¢ exp ((r;—l)>
0 0

All these lemmas are obvious.

4, A priori estimates for the solution of Problem I.

of

Before establishing an energy dnequality for the solution L
9

Problem I, we shall put equation (2.13) into a more convenient form.

a) Another form for equation (2.13)

Equation (2.17) may be replaced by

(k.1) Y7kuh9k(rk) + ( i& 7,) Ah(rk) uh,k(rk)

1=0

<+

k zga B, Y7k{Ah((r-z+1)k)uh‘k((r-£+1)k}

where Bz

]
1
e
d
[
~
-

2 = la.‘qo‘o p

Assume that the operator Ah(t) is consistent with the operator A(t)

in a certain sense which will be precised later in §7. Then the operator
fi 7, A (t-2k) is consistent with A(t) if and only if
=1

9




(4.2) £

In the following, we shall assume that equality (4.2) is always verified.

Then equation (4.1) may be written:

(13) Vi () + (k) oy, () + él B Vi oy ((-112)6)]
ﬁe B, (A ((r-142)k) - A (r)] w |\ ((z-241)K)

él. B, {A (vk) - A ((z-2)x] W, ((r=2)K)

- Py g (o)

£=0

We define

(b.4) vhgk(rk) = uh’k(rk) + k li B, Vk uh,k((r-l*-l)k)

éo 71 u}l:k((r-£ )k) I _ pgoseym=-1 .

Hence another form for equation (2.13) is given by

10




(4.5) (Vi vy 1 (KD )y + ey (ks vy L (KD, )

-k 2:2 (i-1) él-[V(z_l)k ah} (rk; uh,k((r-l-t-l)k), v‘:‘)
+ k ggl 151 {vlk ah} (rk; uhgk((r°£)k’ Vh)

= lio 7! (fhgk((r-t)k)) vh)hg r =p)0-o,m-l

b) The energy-inequality.

In the following, Dl’DE"" will be positive constants independent

of h and k.

We replace vh in equation (4.5) by Y k(rk). We obtain
9

18) (U, wy (1), (rD* K % o (Vw0 Vi  ((e-1r1))),
) 2 1= . 9 9

+ ah(rkj Vh’k(rk)g Vh,k(rk))
kB ey (V000 (e, g (00)

+k zg 1B, { Vlk ah} (rk; uh,k((r-l k), vh’k(rk))

= - Tr = “om-1 ®
S PECRRICTOAERNCIN e
Taking real parts and applying lemma 3.1 gives:

11



= 2 5 2
@y Vb ol v &l Vi, @l

+ 2k Re{lf: B, (vkuh (K, _v-kuh K (r-£+1)k) )h}
=1 ) 2

+ 2Re a (rk (rk), thk(rk))

sV
M,k

= 2k Re{}; (2-1)8, { v(z-l)k' o (k5w o ((r-241)6),v, ) () )}

- 2k Ref i I8, {vlk ah} (rk;uh k((r-ﬂ)k), vy k(rk))}
=1 9 9
+ 2Re{lito 7, (fhgk((r-l)k), vhg k(rk)})1 }, r=7pre..m-l

Note that Bl =75 " 1 is g real number. Then it follows from the

Cauchy-Schwarz inequality and Hypotheses (2.5), (2.8) that

& 2 S 2
.8  Vilu, GOl o+ @ +es)e [V )l

<7 = 2
2 1oy 11V, 01, 1Ty il v 22l (o)
<acem B alel (-0l by w0l
+ 2k P(h) f: t1gy |ty (=201 NG OIN

I=1

f -l k r‘k' = 000 —l °
+2 120 |72| I hgk((r ) lh !vh, k( )|h } r P s

12



2 2
We deduce from the inequality 2ab < a * Db (ayb real numbers):

2 = 2
(4.9) Vkluh,khk)lh +(L o+ 2B, - 2:2 EAPRN vkuh,k(rk)lh
kS 2 2
-k 232 B, |Vkuh’k((r—1+l)k)|h + 20wy, (=)
‘ 2 2
<(0,kB(n) + D??éo iy (=11 + D, éo E(C

r=P,-o-,m‘l .

Multiplying equation (4.9) by k and summing from r=p to r = s

(p £ s <m1) gives:

S = 2
(1:29) Ty (ol 4 o2 £ley 1) T Vo 0],

S 2
+ 20k ) ||vh’k(rk)||h

r=p

IN

-1
2 = 2
ERCSR NS 125,2 I8, | ? Vg () |

r=p-£+1 h

- 2
+ (DkP(h) + D,) k L rgp-z luh,k(rk)lh

s-4

2
+  Dik % rlg (k)|
5;Z:O r=P-l hgk h

s-4 2
+ (DkP(n) + D) k zf: Lo vy Ry

=0 r=p

13




Let us assume that there exist two constants Kl’ K2 independent of

h and k such that

(4.11) oy ()] < Ky r=0,..., p-1
(4.12) K2 pf:l |V ( k)l2 < K
' A U T 2 e

We consider now two different cases according to the sign of
1 +2p 32 § le.] .
1 o

(1) 1% case: 1+ 28, -2 § lg,l >0 .

1=2
Let us assume that

2
(4.13) k(v(n))" < o

where p is an arbitrary > 0 constant independent of h and k.

Note that (4.13) is equivalent to

. I
(4.13) k P(h) < p' ’ p’ > 0 arbitrary constant independent

of h and k. Then, because of (2.12), we obtain:

2 S = o)
) @0l s ey 2 B e DS Vo, 0,

_ S.. (o) ) 2
veexl vy (0l < oy +ogk ¥ oluy (),
r=p ) r=p 2

S = p,oo-, m—l

1k




By applying lemma 3,3, we find for sz < 1 and for every s (p < s < m-1)

the following energy inequality

2 s i 2
(4.5 lu k(w4 20 Ep by, )L < 2y, exp(Dg (s-p¥1)i)

< D-4 exp(Dg(T - pk))
.. nd
2 C : -
(ii) 2 ase 1+2p -2 gég Iﬁll < o .

= 2
We give an estiméte for IVk uh,lé k)lh 5 T =Dseeey m-1l, which 1is

obtained as follows: We replace vy

Applying inequalities (2.7) and (2.8) gives:

in equation (4.5) by vkuh,k(rk).

(4.16) Vit 0], < ma) (ol

fkrm B (- g, | loy, ((x- 2+ 1)K)]
L=2 2 h

e Eoeleyl (G0l + £l le, (il
Then _ )
0.17) Vo, 0]y < ) (14 ) I, ol

D 2 2 2
-—'Z u r=-
g+ ) KR Tl (0 |

D 2
9 3
+ (bg E—E!Jgh,k((r-!)k)lh )

where ® > 0 may be chosen as small as we please. Assume that Hypothesis (4.13)

is verified. Hence we deduce from (4.10) and 4.17):

15



| §
(4.18) u.h’k(sk) .

o ] 2
v (- @5 lg, | - 2p-1) k) ) (o] I, (e I
£=2 - . r-.-_'p 9

s 2
<Dy + 211 krgp |%,k( I")Ih

Let us assume now that

2 2o
(4.19) k(N(h) )™ < (1 - 3) .

2 ) lg,l 28, -1
=% ! 1

Then

2 o 8 2
(4.20) EME Ih +2a8° k r{:,p thgk(rk)nh

s 2
S Dot P kr=§ I“h,k(rk)lh .

By applying lemma 3.3, we find for k Dl < 1 and for every

1
s (p < s<m- 1) the energy inequality

_ 2 o s 2
(¥.21) oy, (s +2a8” & L Iy O

-t - .
< Dyo exp(Dy, (s-ptl)k) < D, exp(D,, (T-pk))

Note that (4.19) implies (4.13). When k is small enough, we may replace

condition (4.19) by

16




(4,22) k(v(h) )2 < 2 .8’

2§Z |5z|-eal-1
=2

where ©' > 0 is arbitrarily small.

Thus, under some appropriate assumptions, we have obtained an
energy inequality for any value of 1 + 261 - fi iBll . Let us assume
£=2
that there exists a positive constant K5 independent of h and k such

that
- P}i 2
(4.23) e L oy e < %

We define Y,k © E (O,T;Vh) by

(14’-2]4‘) vh,k = {U.h,k(rk), r = O,--o, p_l, Vh,k(rk) Y = DPjyeecoy m—l}

Then we have proved the following result:

Theorem 4.1:

Assume Hypotheses

(4.11) Iuhg k(rk)h|__< K, r=0y.0e, p-1 ,
2 p-1 = 2

(4.12) k r§l IV ] <
p-1 2

(4.23) kr§0 Huh,k(rk)uh < Ky .

There exist positive constants El’EE independent of h _and k such

that

17



(4.25) ol € B

(4.26) . vy sl e S B o

in the two following cases

(i) 15% case: 1 +28) -2 i IBII > Oy
1=2
2
(4.13) k(v(n))” < p -
(ii) 28 oase: 1+ 28 - ﬁ |B£| < 0O,
1=2
2 20 ;
(4.2 ) x(v(n))” < =% 80 arbitrarily
2%“5:'-251-1
=2
small, k small enough,
Remarks:
(1) It is easy to determine {U-hg k(l‘k): r=0, ..., p-13 ; verifying (k.11),

(4.12) and (4.23) by two-level difference schemes: S€€ Raviart [7].

(ii) If the operator Ah(‘b) is independent of t, P(h) = 0 and

Hypothesis (1}.,13) may be suppressed.

18




5. The Stability Theorem.

Let X be a Banach space with norm n HX For every {h,k}

(Il < hy » k < ky) let Py

such that Ph,k u‘h,k(t) is defined in X for all t € [O,T] and all

@
be an operator ofOC(Ek (O,T;Vh); L (0,T3X))

uh,k € Ek(O,T;V'.) : Phgk is called a prolongation operator.

Definition 5.1:

Let U,k be Pey _kuilgg_ojf PsoblemsI.a i d t oo Db e

9 9

=]
L {0,T;X)-stable if there_exists & constant C > 0 independent of h

and k such that:

”Ph,k uh,k(t)HX <C , for all t € [0,T],

for all {h,k} (Inl < n,k < %)

Let F be a Hilbert space such that H is a closed subspace of F.

Let n denote the projection operator from F onto H. For every

©
{n,k}, 1et be a prolongation operator of of (Ek(O,T;V'hA);L (0,T;F)) .

Phgk

Then Oh,k = % o P, . 1is a prolongation operator of X(Ek(O,T;V“ ); L7(0,T;H)).
J

We assume that

(51) ”Ph’kuh’k”L2(0 15F) < Cg Huhg k“h,k)Q 9
(5.2) tefgljﬂ “Q'n,k u'h,k(t)“H <G luh,klhgkg‘” ’

for all uh,k € Ek(O,T;Vh) » where C2 and C5 are positive constants
independent of h and k.

Then the following result-can be deduced from theorem 4.1.

19



Theorem 5.1:

Assume Hypotheses (4.11), (4.12), (4.23), (5.1) (5.2). Let u, ke

@
shelution of Problem I. Then Q 3V, 1S L (0,T;H)-stable and

~ 2 . .
P -V emans in & bounded set of- L (O}T;F) in th_e tW_O fOllOWlng
h,k” Vh,k enans 10 & ded s

cases:
(1) ISt Case: 1+ 2B, - zi IB!I > 0 o
1 L=2
(4.13) k(v(h))g <P (No restriction if Ah(t) is independent of t),
(ii) End Case: 1+ 261 -2 |Bz| < 0,
£=2

\-2 2& / /

(4.,22) k(v(n))~ < - 8,8 >0 arbitrarily

2 ¥ g, l-2p -1
£§2 t 1

small, k small enough,

6. The Hermitian Case:

Let us assume now that for every t € [O,T] the sesquiiinear
form a(t;u,v) is hermitian (i.e. a(tju,v) = a(t;v,u)). SO we

" choose the family of sequilinear forms %(t;uh"vh) such that

(6.1) oy (tsu vy ) = ey (85 w) (u, v, € Vp £ €l0,7])
Then it 1is possible to weaken condition (4.22) in case

1+ 2 -2 E: e | < 0

1=2 4

20




s — 2
First we give a new estimate for K rz-;p IVkuhg k(rk)lh’

p<s<ml. We replace Vh in equation (4.5) by vkuhgk(rk):

(6.2) lvkuh’k(rk)li + a.h(rk;uh’k(rk), —V-kuh’k(rk))

+ k E B, ah(rk; Vk“mk((r‘“l)k)’ V-kuh (7))
1=]1 ’

L=2
P ey 1V, ad (i (o000, Yy (%)
i1=1
o By (00, Ty, remm

From (2.1) and (6.1), it follows that

(6.3) 2Re a.h(rk; uh’k(rk), Vku.h,k(rk) ).

- T (s (7R 1y (5K)
+ k a.h(rk; vkuhg k(rk), vkuh’k(rk))

_ {Vkah} (g v, ((E-2)K), o ((r-1)K))

Taking real parts in equation (6.2) and applying identity (6.3) gives:
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2 —
60 IV ol + 3 Via Gigu, | Gk), | ()

+ % (l+251) a.h(rk; Vkuh,k(rk), vkuh,k(rk))

+ Xk Re {ZEE By a,h(rk; vkuh’k((r-£+l)k), vkuh,k(rk))}

- 3 V) G5y (D), (1K)

< B(n) zﬁe (1-2) 18y Juy o (G230 || Vi, (00

v ‘P‘htg”ﬂf‘ oy (et ) | 1V, )]

+ 2:0 l71| |fh, k((r‘l-)-k)lh Ivkuh, k(rk)lh

Hypotheses  (2.5) and (6.1)-imply that

(6.5) e (tsu,v )l < (ah(t;uh,uh))%

Hence

(o, (b3v,,% )% 5 (v € V) .

(6.6) 2lay (tsu v )l < e (5w 0 ) + ey (657 5v)

By using (6.6), (6.4) becomes:
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— 2 —
(6.7) 2| Vo 0y + Vi ek wy (1), (k)

o tveey - B ley D) myons Vo 0, Ty e

-k E: le, | &, (rk; _kuh k((I‘—!Hl)k), vkuh,k( (r-2+1)k))

- WV} (o wy  (-06), wy  ((2-1)K))

—_ D o)
< e 1T 0l ¢ 22 E iy, (@00l
D 2

+ _,15_’ z‘b EA(C: )k)}! , r=p,..., m-1.

where € > 0 may be chosen as small as we please.
Using (2.6), multiplying (6.7) by k and summing from r = p to r = s

(p £ s <m-1) gives:

i s v 2
(6.8) . (2-mu(n) (2 ) [By | - 28y - 1) - &) k T | k“h,k(rk)‘h

+ e (sk; uh’k(sk), “n,k(Sk))

- k i {_V-ka'h} (rk;uh’k((r-l)k), llh’k((r-l)k)
r=p
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< a((e-1)k5 w3 (=105 vy, o ( (p-1)K)

p-1 = 2
+ D kM(h)kr=El, | Vkuh,k(rk)l.}.l

¢ 22w« B D e (o0l

= r-—p

D 2
s By fj LMY

= r=p
Let us assume that
4 2
(6.9) k M(h) < (L-8) ,
2 §‘, lg,| - 2B -1
=2 t 1
where 8 > 0 is arbitrarily small
We can choose € = ® ., Then equation (608) becomes
2
rk 1
(6.10) r;pl Va, L o b e ek (500, 1,y (oR))

< § ay((e1)s wy L ((p-1)K); vy (p-10K)

D kf,| ku.hk(rk)l

e DUV et (rswy  ((r-1)6), w, o ((2-1)K))

r=p
T e ol 2 <k)|
+ D k rk + k f r
16 r=0 Uh’k h r=0 bk

where Dl5’ D16’ D17 depend on o .

oL




We deduce now from (4.10) and 6.10):

(6.11)

But

2 s 2
o)l + 2 0 Il (el

< el lg,| - 28, - 1)k [% a, ((p-1)i5wy  ((p-1)k), o, 5 ((p-1)K))
1=2

- — o S =
S N ENNCETRES e L (Vi )k, (20080, (2050

s-1 2
+ gk F o luy (W Dy

i o

2
3 ERRRCONN

2 D - 2
*lwy, (-2)e)] -+ K zée B, T . | Vigay, ()|

r:p-[ +

p-1 2
+ (D, kP(h) + D) k I (rk)]
1 2 zi:l rgp-luh 2

T e
+ Dk f: f rk
5ﬂ:O I‘=p-l h,k h

s-4 2
+ (b, kP(n) + D) k zi Lo oyl

=0 r=p

2
ap((p=1)ks w (1)), w  ((p-1)K)) < M() fy  ((p-10) |

HVkah}(rk;uh,k((r-l)k), u.h,k((r-l)k))l < P(h)luh,k((r'l)k)‘i .
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Thus because of Hypotheses (4.11), (¥.12), (6.9), we may write:

oy (5012 + 20k § [ (0
(6.12) o

s

2

<Dig Dk ¥ |uh’k(rk)l ) p<s<ma-1 .
r=p

Hence for D19 k<1l

. S 2 _
(6.13) I,uh,k(sk)lﬁ + Eakrgp vy, ()l < Dyg exp(Dyg(s-pi)ic)

< Dig exp(D o(T-pk)) .

Note that we may replace condition (6.9) by

(6.14) k u(h) < 2 . ,

D
2 lg,| - 28, -1

where 6' > 0 is arbitrarily small and k is small enough. Then we

have proved the following result

Theorem 6.1:

Assume Hypotheses of Theorem 5.1 and, _in _addition, _Hypothesis (6.1).

P
Assume that 1 + 28, - 2 Z; ‘5!\ <o. Then a sufficient condition
=
@ . .
for Uk ta be L (0,T;H) - stable aPy ,Vir o ;9, ’r'e madin
2 . .
in a bounded_set of L (0,T;F) is given by

7

5, 8’ > 0 arbitrarily small,

9 -
2 e Byl - 28, 1 k

(6.14) x u(h) <

small enough
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Remark:

We could slightly generalize by replacing a(tju,v) by a(t,u,v)

+ al(t;u,v) where al(t;u,v) is a continuous sesquilinear form on

V xH and the function t - a*(tju,v) is once continuously differentiable.
It is easy to see that the results given above remain valid in this case

(cf. RAVIART [7]).

7. A weak convergence theorem.

We examine now the convergence of the solution uh,k of Problem
I towards the solution of equation (1.6) when h and k tend towards
0. We shall only prove a weak convergence theorem.

Let ™ be an operator of L (V;F). Let 1¥ denote a dense subspace
of V and let r,_ be a linear mapping from 1f into Vh. Under the

h

assumptions of Theorem 5.1 or Theorem 6.1, we may extract a subsequence

{uhl,k

} from {uh k} such that
2

1
2
(7.1) Py vy 4 U weakly in L (0,T;F) ,
1’71 1L
(7 .2) Q x W o U weakly in Lw(O,T;H) s
1771 UL

when h and k tend towards O.

2
Now clearly B, —U weakly in L (0,T;F) and u = n. U. Then we
11

assume that:

(7.3) u € LE(O,T;V) , U=1u



Let y(t) be a scalar function once continuously differentiable in

[0,T] with ¥(T) = O. We assume the following consistency Hypotheses:

, 2
( If Ph,kuh,k - Tu weakly in. L (0,T;F), then

m-r
2 T
R N R (RO R RRCHORIOBE:
r=r
1
\
where r, and r, are positive arbitrary integers independent

of k; ((7.4) means that Ah(t) is consistent with A(t). Then a

necessary and sufficient condition for i 71Ah(t-2k) to be consistent
£=0

P
with A(t) is Y 7, =1)
éb l "

-]
If Qh,kuh,k > u weakly in L (0, T;H), then

(7.5)
o = T
k 2 (0, ,(rk), vk\lf((r+l)k)rhw)h —)L (u(t ) WLt Jw)yat
r=rl ’

T
( (rrp-1)k), ¥(rk)r W)y —>f (£(t),¥(t)w)ydt

m—r2
- (7.6) K Y (£, x
r=rl 0

(77) (uy, y ( (o=1)), Wlpi)zy )y = (ug,¥(0)w)y »

for all w € Zk

Theorem 7. 1:

Assume Hypotheses (7.1),...,(7.7). Then Ph,kuh , — ®u weakly in

2 . o
L7(0,T;F), Qh,kuh,k - u weakly in L (0,T;H), 'where U g denotes
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the solution of Problem I and u denotes the solution of equation (1.6).

Proof:

We deduce from (2.13):

m-1
(7.8) k3 (Vigw, (m%), ¥(zk) mw)y +
r=p 4
S RN R AT
=k Z ,k( (r-l)k),llf(rk)rhw)h
r=p =0

It is easy to see that
m-1 m-1 —
(7.9)  x T (Vym, ( () vy, = o § (o (), Vov(er)e)nw),
r=p r —p ’
- (uy  ((p-2)x), ¥(pk)r, W)y

Then (7.8) may be written

(7.10) -k Z (u, (%), V\l!((r+l)k)r w),

r=p

m-£-1

+ k gz% 7, rjéll ah(rk,uh k(rk), w((r+£)k)r W)
m-£-1
=k % 7, r_% , (£ (TR ¥ () )ryw), + (w3 C(p-101), ¥ (pk)r W), .
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If h and k -0, P w . -~ weakly in 12(0,T;F) and
bRy Thyoky

Q u »u weakly in L (0,T,H). So u satisfies
hy sk Tho ok :

T A T
1) [ e ¢ a5 s vemmle = [, v, a
+ (uo’w)H ¥(o) ,

for all w e 2% It follows from the density of 2%in V that (7.11)

is true for all W e V. Moreover the space of functions T VQ@W

(£ denotes a finite sum), ¥ e C(0,T) with ¥(I) = o, W e V, is

dense in the space of functions ¢ satisfying (1.7) provided with the
T 2 L2 aan1/2 .

norm  ( (“CP(’G)“V + [l (t)HH dt) (cf. Lions [4]). Then u satis-
N

fies (1.06). We deduce from the uniqueness of the solution u of (1.6)

— , 2 .
that Ph,kuh,k - Tu weakly in L (0,T;F) and Qh,ku'h,k - u weakly

in L (0,T;H).

8. Regularity theorems:

a) The Hermitian Case:

For every t e [0,T], we are given a continuous sesquilinear form

a(t;u,v) on V X V with the following hypotheses:

(1) t - a(tju,v) is once continuously differentiable in [0,T](u,v € v);
(i1) a(t§uyv) = a(tiv)u) (u)V € V);

2 2
(ii1) a(tsv,v) + Ml > allvil; a>o0,vev .
Then we have the following regularity theorem (LIONS [4])
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Theorem 8.1:

Given:
(8.1) f e LE(O,T;H) ,
(8.2) U eV

There exists a unique function u satisfying

(8.3) u e L (0,T;V) ,

(8. 4) ) u' e LQ(O,T;H) ,

(8.5) u'(t) + A(t)u(t) = f(t) , for a.e. te[0,T],
(8.6) u(0) = ug

Remark:

For a slight generalization see the remark following Theorem 6.1.

For every t € [0,T], we are given a family of continuous ses-

quilinear forms ah(t;uh,vh) on VX V, as in §6 (i.e. satisfying

Hypotheses (i), (ii), (iii) of §2 and Hypothesis (6.1)). Let
uh K € Ek(O,T;Vh) be the solution of Problem I and let us assume now
J
that there exist two positive constants Kh’ K5 independent of h and
k such that
. rk rk < K ' = O,000000 -1 .
(8.7) |U’h,k( ) lh’ ”uh,k( )“h S By s »P
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P"l — 2
(8.8) 2T | Tt [ < %5,

Theorem 8.2:

Assume Hypotheses (i), (ii), (iii)_of §2 and Hypotheses (6.1), (8.7),

(8.8) . There exist two positive constants E5 E, independent of h
14

and k such that

(8.9) Huh,kuh,k’m ) |U-h,klh’k’m5 % )
m-1 5

(8.10) -k 3 IV, () | < B
r=1 ?

in the two following cases

(i) 15 case: l+26—2f\6|20,
—_— 1 P ]

(4.13) k(v(h))2 < p (No restriction if Ah(t) is independent of t),

P
(ii) 279 Case; 1 +28 -2 |Ze |5,'|< o,
(6.14) kp(h) < o 2 -8, 5> 0 arbitrarily small,

2 22 I8, |-26,-1
1= k small enough

Proof:

p
(1) 15 case: 1+28 -2 ;Z; \Bl |>0

Theorem 4.1 gives:
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(4.25)

Inequation

N P -

(6.4) is true and we deduce for p < s <m - 1:

I
(8.11) k Yy lvku.h,k(rk) \i + % a, (sk ; uh,k(sk), w4 (sk))
r=p ’

.But

and

3 R A Lol sV ), Ty ()
z

S

P — —
;Z; |ﬁ!\k ah(rk ; ‘ZEuh,k( (r-2+1)k), ‘Zkuh k( (r-2+1)k) )
= rp 4

A S
< 7 oy @5y (@0, wy (e + 5 . [l y (20l

r=p

+ k P(h) i(t-l) B, | x ZS: |uh,k((r—l+l)k) |, \'ﬁkuh’k(rk) l,
= r=p

S —
e 5t T Ja () | | Ty (0,

S

5 _
' Izo 17l 18, (-0x)]y lvku“n,k(rk)lh '
= r=p

(e 3 Vi, ((e-242)), V(- £42)K))
= o, ((e-ts2) 5V (G-o1)i), Ty ((e-241)K) )

e (0% gy s Vo (o0, Vo (G,
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It v(}z-l)kah}(rk 5 \_7kuh,_k((rpt+1)k), vicuh,k( (r-2+1)x))|

< P(h) |vkuh,k((r-l+l)k)|.ﬁ .

Hence we deduce from (8:11), Hypotheses (4.13), (8.7), (8.8) and (k.25)

that for p <s<m ~ 1 and k small enough.
S 2 2
(8.12) k_;é; |§7kuh,k(rk)|h‘+ a”uh,k(SR)“h

s-1 o
~ <D +Dk r‘_l:p , Huh,k(rk)”h e

Then applying lemma 3.3 gives the first part of the theorem.
p
(ii) 2" case: 1+ 2B, -2 Za lg,|< o0
——=osc 1 &

The second part 'of the theorem can be easily deduced from inequality

(6.10).

. Remark:
It is easy to determine {uh k(rk), 2 = Oyees,p-1} verifying (8.7)
J

and (8.8) when u €V. See RAVIART [7].

Let us assume now that (cf. $5):

(8.13) Lo [O’T!IlPh,kuh,k(t)”F < Oyl il o, @
(8.14) [ & <c kmil lv ()2,
& %, k"n,k o,m) ~ 5 VEBETn
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for all u . s
h,k € Ek(O,T,Vh), where Cl; and 05 are positive constants

independent of h and k.

Theorem 8.3:

Loe t Y x be the solution of Problem I. Under the assumptions of
J

Theorem 8.2 and,_in addition, HypothesePhSB.li),_QJﬁ&l, X is

2

d . . 2
L°(0,T;F)-stable and = Qh,kuh,k remains in a bounded set_of L (0,T;H)

in the two following cases:

. st P
(1) 17" Case;, 1 +251-2 |z£ \ﬁt|20
2
(4.13) k(v(h))” < p (Norestriction if Ah(t) is independent of t)
P
(i) 2" cage: 1+ 28, -2 |Za l8,l <o ,
(6.14) N-44 < o 2 -85, 8' >0 arbitrarily small,
2 ;2 ‘6”-261—1 k small enough

If, in_addition, the assumptions of Theorem 7.l are verified, then

Ph,ku'h,k - @du weakly in L (O,T;F) ,

d . du . 2
—_— = — L (0,T;H
s Q’h,kuh,k - Uu s weakly in (0,T;H) ,

in cases (i), (ii).

b) A general regularity theorem.

For every t € [0,T], we are given a continuous sesquilinear form

a(t;u, v) on V xV with the following hypotheses:
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(1) t - a(tju,v) 1is once continuously differentiable in [0,T] (u,v e V);
)

(ii) there exist constants A, @ such that
Re a(t;v,v) + Mlv\l; > a“v\@ , @>0, Vev.
Let A(t) € o\C(V;V') be defined by
a(tiu,v) = < A(t)w,v > (u,v e V)

We denote by D(A(t)) the set of all u in V such that A(t)u e H.

We provide D(A(t)) with the norm

Telae yy = (e + llace)al®®

Theorem 8.4:

fleuo be given satisfying

. 2 2

(8.15) f ¢ 1°(0,T;H), f' e L7(0,T;H) ,
(8.16) u € D(A(0)) .

There exists a unique function u which verifies:

(8.17) u e 17(0,T3V) ,

(8:18) u'e 19(0,T3v) N LX(0,T;H)

(8.19) u' (t) + A(t)u(t) = £(t) , for a.e. t €[0,T],
(8.20) u(o) = u .

For every t e [0,T], we are given a family of continuous ses-

quilinear forms a.h(t;uh,vh)' on V, X V, as in §2 (i.e., satisfying
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Hypotheses (i), (ii), (iii) of §2). Let € 0,T;V, ) denote the
yp ¥ ' §2) W, g € B (0,T57)
solution of Problem I and let us assume that there exist five positive

constants K6""’K10 independent of h and k such that:

(8.21) oy, (75 |y lley, o GBI, <Kgy 200 @ODG
(8.22) |Ah(rk)uh,k(rk) ‘h < ](7, r=0,.00,p-1 ,
(8.23) \vkuh’k(rk) |h <Kg, r=1,..0,p-1 ,

p-l1 = 5
(8.24) kY IV (GRIE <%y

~r=1 ’

p-1 =

(8.25) © F IV w0l <6

Moreover let us assume that:

if “Vh,kuh, K 2 is bounded by a constant independent of

(8.26) h and k (vh . defined by (4.4) and (4.24)), then
J

(1)

“uh,kuh,k,Z has the same property.

Theorem 8.5:

Assume Hypotheses_ (i),_(ji), (iii) of §2 _and Hypotheses (8.21),...,(8.26).

There exist four positive constants E5"""’E8 independent of h and

k such that

(1)

Hypothesis (8.26) 1is trivially verified when Theorem 7.1 may be

applied and ”Wh,knh,k,Q < C2,|le,;kwh, kI‘JE(O T-F), for all
)=

1 . .
g € Ek(O,T;Vh), where C, 1s a constant independent of h and

k.
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(8.27) \uh,k‘h,k,“’ ) Huh,knh’k’g > \\Vh,kuh,k,w < E5 )

(8.28) |4, C oy 1 (D 0 < B s

(8.29) |vku.h’k(rk) l, < B, T=Dlwl,
m-1 o

(8.30) k Z;'H§7kvh,k(rk)uh <Eg

in the two following casess

. st 2
(1) 1~ Case: 1+251-2 ggg lBllZO s
(4.13) k(v(m) <o
(ii)End Case: 1+28 -2 3 \B | <0
_ Case: 172 2 1By ;

7

8, 6' > 0 arbitrarily small,

2
2 ¢ )
-28_-1
;g; lB!‘ Bl k small enough.

(r22)  k(v(n)® <

Proof:

First, we may apply Theorem 4.1 and, in cases (i), (ii), we obtain:

(8.51) A I
(8.32) v, sl 5 2 < Bo -
We deduce from (8.26) and (8.32):

(8.33) o, il 5,2 < B

38



Then a "discrete" differentiation of equation (2.13) with respect to t

gives:
— p . -~ —
(8.34) (Vi  (r),m)y, + & 7 ol s Ty ((mt),)
D —
+"l; 7[ {Vkah} ((I"I)ks uh’k((r"‘!"'l)k))vh)
b —
= IZO 71 (kah,k((r-l)k),vh)h } r=p+l,e..e. sm-1
We put (8.34) into a more convenient form as in §l.b.
.35 (Vo (k) v )y + ey (rk vkvh’k(rk),vh)

p ] —
-k I; (£-1) B, {v(l-l)kah} (rk ; vkuh,k((r-ul)k),vh)

+I:ZO7! (V2 (- s u,, i { (F-2-1)K), v, )
D =
= ;} 7y (kah,k((r-l)k),vh)h . T =D 4 lyeenen ,m-1

We replace v, in equation (8.35) by VQthJrkL We obtain:

h
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—_ - D —
(8.56) vk‘vkuh,k(rk)‘lel +(L+2p, - z‘:a I8, 1) x|V w1y (rk) n

b —_ -—
-k 3 ey | IV v, ((=2420) 2 4 20 |7, vk E

< (DgkP(n) + D) /z)Ij‘o |V, 1 (=08) |5 + el ey, o)
2 NN L 2
+ Dy (e) zgo Hu.h’k((r-!nl)k)uh + Dy zgo lkah,k((rwl)k)‘h )

r =DPtlyeeees ,m-1, where ¢ > 0 may be chosen as small as 'we please,
Multiplying equation (8.36) by k and summing from r = p+l to r = s

(pt1 < s < m-1) gives:

—_— P S — o
(8.37) \vkuh’k(sk) 1121 +(1+28 -2 IZ:‘? ls, 1)x” rgﬂ\vkuh’k(rk) 5,

S

—— ’ 2
+ (2am€) k r=§+l |\Vkvh,,k( k)“h_

= D D —
< ‘vkuh,k(pk)\i + 1 2; e, | . 2“2 lviuh,k(rk)li

r=p=

3

D

— 2
ECLIORIEIVED WD W AV}

S

D Y
t Dg k) Z \thk((’"’)k)‘h+D()k zgo r-.-gﬂ

=0 r=p+l

Huh’k((ru-lwl)k)\\i

2}

u..

+ (Dxp(n) + Dh)k Z Vit ()1, -




It is very easy to prove (cf. RAVIART [7]):

m-1

— T
(8.38) K )':l \vA fh,k(rk)‘i < o j; le’ (e)lE at |

r=
T 2 T 2
(8.39) g, B . <ec? j; B a6 4 f@ e N2 asy

Then, it follows from the inequalities (L4.13), (8.21), (8.23), (8.25)

(8.33) and (8.38) that

— D S =2 2
(8.40) lvkuh',k(sk‘) |§ + (1 + 6, -2 A\s‘\)kﬁ r=§+l\Vkuh,k(rk)‘h

S

+ (2a-¢)k _z l”Vkvh,k(rk)ni

— )Y a—
<D | Vi, i (P b+ % 1;2 |5,\\Vi uh,k(pk)\kel M

ST 2
+ ngr_%:ﬂ‘vk w () S = DHlyeeean ,m-1

Now,

k.el'vi uh,k(pk)‘lif1 <2 |vkuh;k(1pl‘:)lf1 + 2lvkuh,k((p-l)k) \i .

An estimate for \vku'h k(pk) \h is obtained as follows, Equation (2.13)
J

gives for r = p:
\vkuh,k(Pk)li <=7, Re ah(pk 3 u.h,k(pk), vkuh,k(pk))
& | D
+ [lgl 17,1 14, ((-))w o ((o-2)) |y, + z‘i:b 7,112, (e-0)) ]

‘ﬁkuh,k(Pk') b -
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But
ay (pkswy o (K, vkuh"k(pk) = a, (ks ((p-1)K), vkuh,k(pk))_

Tk aﬂgpk;vkuh,k(Pk)’ _vkuh,k(pk»"

and
-Re & (pksw | (pK), Vi, (76) < |8 (-10k w  ((0-1)6) |y | Ty, (o),

+ 1k P(0) Jhy o (Co-2)illy | Vo, y (o), -

Hence,

(8.41) ‘vku.h,k(pk) <7, 14, (1)) w ) ((p-1)K) |y

D
+ ziml |4, ((-)x) vy o ((p-2)x) ], + tgo 17,1 |2, 1 (=0)6) |

+ % P(h) Huh,k((p-l)k)\lh .

Then the inequalities (8.21),(8.22), (8.39) imply that ‘vku’h ‘k(pk)lh
J

is-bounded independently of h and k. So (8.40)becomes:

& 2 15 L2 e 52 12
(8.42) \vkuh,k(sk)lh + (1+2al_2 t;a |Bl|)k r_;l ]Vk u.h,k(rk)lh

s _ 5 5 - o)
LAY SYUN PERENE AL IR

S = p+l,...,m—l‘ °
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st P
(1) 1 case:, 1+28) -2 22 g, >0

By applying lemma 3.3, we find for kD_ <1 and for p+1<s<m-1

9

8.23) |V, ()7 + @ee) 1 T 1Ty, @0l

r=p+1
< Dy exp (Dg (T-((p*1)K))) .
But

a“vkvmk(pk)"i < Re ah(pl‘”vk"h9k(pk)’ k'h 9k(Pk) < M(n) |\7kvh9k(Pk) |i

= p-1
< Dy M) ( Ivkuh,k(pk) |121 * rgl l vkuh,k(rk) ‘i) ‘

2
Thus, because of Hypothesis (ll-.lﬁ), k”vkvh k(pk)Hh is bounded
2
independently of h and k.

Then we find

(8.44) | Vi, (%) [y <05 r=1l,..ml .
m-1 — o)
(8°,+5) k z ”vkvh k(rk)“h < D]j
r=1 ’
(i) 2™ case: 1+ 28 -2 [)i l8,|< o
We deduce from (2.4) that
6.46) g a(esu vl < o) Dl Il Gauwy e w)
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where Q(h) has the same order of magnitude as N(h) when h - 0. To
=2 2
i timate f rk r = ly.0.,m~-1, we replace
obtain an estimate for \vk uh,k( )lh’ ptl, ’ s P

v, in equation (8.35) by -v.i u.h’k(rk) and apply inequalities (2.7),
(2.8), (8.46):

Vs () |y < 1(2) IV, Gl + & 2(0) lfz (-2 |8, | Vi, o (G220} |y

+ k P(h) il I\Bzuvkuh,k((r-z)k)lh + Q(h) i:o |7, Hu.h,k((r-l-l)k)nh

D
+ ;o |7£Hkah’k((r-£)k)‘h .

Using Hypothesis (4.22) and by the same device as in §4.b,(ii), this

gives (8.44) and (8.45).

Now, we have:
N r -
vh’k(rk) = uh,k((p-l)k) +k sgpvkvh,k(sk) .

This identity implies that

. E
'because of the inequalities (8.32),(8.45) and (8.21).
It remains to show the inequality (8.28). This is a trivial con-

sequence of equation (2.17) and inequalities (8.22), (8.39), (8.k4k).

This completes the proof of the theorem,

Ly



Remark:

It is easy to determine {u.h k(rk), r =0,...,p-1} verifying . .,
J "

(8.21),. . ., (8.25) by two level difference schemes when u, € D(A(0):

’ : N v

We choose uhk(o) = Qu, with L T

oS o
10f wg ks og s (144000 0wl <0y Wigloacoy -
and apply Theorem.8.5, with. p = 1.

Let us assume now that

(8.47) s [O,T]HPh' kBl < Cgllw ylly y o

m-1 o\ 1/2
©.48) I %y, ol 2 2oy & 1 (0 T Wi dlf)

0,T;F)

(8.59) s o o (E)y<cs  sw [ Pw W),
t e [0,T] = r=1, . ..0-1 ?

for all U g € Ek(O,T;Vh), where C6, C,, C8 are positive constants
2

independent of h and k.

Theorem 8.6:

Let Wy be the solution of Probddem tHe assumptions of
2

Theorem 8.5 and, in addition, Hypotheses (8.47), (8.48), (8.49),

. . .
U,k is L (0,T;H)-stable, P v, . is L (0,T;F)-stable,

d . ® d . \
Qoxlnix 4S8 L (0,T;H)-stable, % P gxVn,x Lemains inva bounded
set of L2(O,T;F) in_the two following cases:
. st E
(1) 1°° case: 1+2Bl..22_; \Bll >0 )
-
2
(4.13) - k(v(n))
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P
d
(1) 227 case: l+2!31-22g2|52|<0 ’

(4.22) k(v(h))2 < 20 B; 8> 0 arbitrarily small,

> -
2 122 |52l-251-1 k small enough.

If, in addition, the assumptions of Theorem 7.1 are yerified, then, in

@
cases B ), Whe A2 L (0,T;F)-stable a n _d

©
Ph’kuh’k - Tu weakly in L (0,T;F) ,

% On xM.x u'=d-é-l€ WWeBKLy '1n Lm(O,T;H) ,
J 2 ’

d —/_ = du R~ -
= Ph, kub, o= ooae weakly ﬁf(O,TA,F)

Proof:

The first part of the theorem is trivial. We deduce, as in Theorem

«©
7.1, that B ,u , —® weakly in L (0,T;F) ,
b J
F Pth ok u’ weakly in L (0,T;H) .
b4 b
S , 2
5t Pyl @ & weakly in  L7(0,T;F)
J J

® d
Then Ph, h, remains in a bounded set of L (0,T3;F) and T Ph,kuh,k

2 CL
remains in a bounded set of L7(0,T;F). But it is easy to see that

(B50) e @IE <0, U (R W
¢ o fo,m)" mE R R S Tk h,k'h,k o/ llp

+ g P, () e
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. ©
Thus, Ph,kuh,k is L (0,T;F)-stable.

9. Applications to parabolic partial differential equations.

We shall study here a simple example. For other examples see Lions

[4]. Let © be a bounded set in /fn. We choose
2
H=1L (Q))

v = Hl(ﬂ) ={ulue Le(a), ?Tu € L2(Q), i = 1,...,n} ,

X.

N 1
n
. _ du(x) Jv(x)
a(t;u,v) = a,.(x,t) dx
i,?:l q i ij. Bxi

n
o -
+ Z ai(x, t) I}i X) ¥(x) dx
=1 4Q i

+-/; ao(xat) u(x) -‘;(;)- dx ,

where a a,, a e L7a x (0,T)).
iyr 17 o

We assume that

e n
— 2 )
Re i,JZ=laj_j (X’t)gjéi _>_ a i;L |§i| y a> O, gi ec , a.e. in 0 X (O,T).

Then we may apply Theorem 1.1. There exists a unique function u which

satisfies:
% 5 ou v du
5 -i,zj;la}i (ai:j(x’t) 5xj) +i=Zl a, (x,t) gx—l +a (xthu = £,

a.e. in @ x JO,T[, with the initial condition
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u(x,0) = uo(x> ’

and the (formal) boundary condition

n

Z aij(x,t) cos (n,xi)
i,3=1

=0 for x e’ = 9, t € 10,T[ .

Q/
u,i‘(l,;

where n denotes the exterior normal to I' in x. This boundary

condition makes sense when TI' is smooth enough, see Lions-Magenes [6].

We examine now the approximation of the solution u.

a) The spaces Vh:

Let 7€h denote the set of points M eﬂn such that
M = (elhl’yoo,enhn)

where the ei's are integers. Let Uh(M,o‘) be the set of points

x eén such that

hi h'l
xi(M) -5 < X, < x (M) +

E"‘ o

W, denotes the characteristic function of oh(M,o). Let ch(M,l) be
Ly
defined by
n hi
o, (M,1) = f_fh(M + = 0
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1Py
! " 4
—_d e ]y /'
22 e ]
h2[ AR _/- / M -{/.
-!//V ~
‘hl -
gh('M,O) Uh(M:l)

We define: 8, = {M | M eﬁh, o, (M,1) N o £ B},

R(h) = U ch(M,o)

Mth

Then Vh is the space of functions u, of the form

"n T MeQuhsg ,-,, uh(M)e:@-
If u belongs to Vh’ we may define Giu.h by

1 hi h,
Siuh(x)=ET[uh(x + 5—)-uh(x-—21-)] a.e. in @ ,

We set:

(v ), =f§2(h) u, (%) v (6] ax

n
)y - [ o0 GOT axs § [ o, (x) 0,70

kg



We choose:

LQhu = 1 z ( .1 d.X)W s for all u e LE(Q);
By by Wea Jo (M0) h,M
h h'™
where U = (u in @
IO elsewhere.
ret F = [17(2)1™ £ U - (w,u ,.40,u ) belongs to [17(2)1™, we
set: u = U ¢ L2(9)°

If u belongs to V = Hl«U, we set:

Tu = (u, %%I seoes %%;) e[L?(Q)]n+l

Now, we define the prolongation operator Ph, K (cf. §5). If uh,k

belongs to Ek(O’T;Vh)’ we may define:

v, i (8) = wy (k) 4 (t-rk) vkuh’k((rﬂ)k) , k<t < (pl)k
u, (1) = o ((m-1)k) , T-k<t<T
Then,

Py i (8 = Gy (8, By ((6),000 1 (4)) @ (2 (e) L,

The verification of our Hypotheses is trivial and left to the reader.,

[/
For other examples of spaces Vh, see CEA [2], RAVIART [7].
b) The forms ahﬁuuh,vhﬁ

Let us assume that each aij (resp. ai’ ao) has one continuous
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derivative in t which is bounded in @ x (0,T) together with a
1]

(resp. ay» ao) itself. We choose:

n
(9.1) a.h(t;u.h,vh)l= i§j:=1~]:'z aij(x,t) Sj u.h(x) Givhixi dx

n

+ igl ];z a, (x,t) 5, uh(x) W ix

+]; ao(x,t) u.h(x) W dx

We assume that Hypothesis (2.5) is verified (cf. Remark (ii) §1).Now,

we compute N(h) and v(h):

Lt <2l o fi% ( j|auh<x |de v,
(fl leslP oo T)))l/ 2(}2 f 843,00 )2 |

ol oo,y I Pe? I,

where a(x,t) is the euclidean norm of the matrix (a. (x,t))

, " J—l n.
Then,
( ' /2
oo n l 2 2
(9.2) N(h) < {[EIlallemx(o,T)) (lgl;lz + <1§1”a “L (ax(0,T) ))
+ llaJB, Ve,

L (ax(0,T))
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| . n 1 1/2
(9.3) v(h) < 2 | HL""(Qx(o,T)) <i}=:1 2 )

1

We compute M(h) and u(h):

Su v b llall > L) I v
sl < el (R h§> i b 15,

v2 (3 falf 2( § N2y,
: le | iHL°°(Q><(0,T))> <1=Zl h?) B

+ |l l\ xo.1)) oy by Ivly s
(9.4) M(n) < Ya] CE >+ EQZ oy 12, >1/2< 1NY/2
L (ax(0,T)) 17(ax(0,T)) =1 h
+ llell o L ax(0.1))
* (9.5) () < b .
10 < bl e ) & "
When
(9.6) a; 5 (%, ) = a.. (x,t) ,

J1

the principal part of ah(t;uh,vh) is hermitian (see the remark

following Theorem 6.1).
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c) The initial values u, k(rk), r = 0,1,...,p-1:
J

We defi 0 b
e define u‘h,k( ) by
9.7 W, (0) = O

2
where 0{1 is a linear continuous mapping from L (Q) (resp. Hl(Q),

D(A(0))) into V, such that

(9.8) lofu, |, < clluollLe(Q)

(resp. (9.9) ‘Oﬂuolh: ”01,’1‘10”11 < C“uo“Hl(Q) ’

(9.10) |0, by oIl 14,(0)0puty < cllagllyeagoyy)

2
where C is a positive constant independent of h. If u, € L(Q), we

set

~

7
(9.11) Ohuo T z (f uO d.X)Wh, M’
1 nMeQ ch(M,o

and (9.8) is true with C = 1,
if u € Hl(Q) and if the boundary T of @ is smooth enough, there
exists an operator P eX(Hl(Q); Hl(ﬁn)) such that
Pu =u in Q (cf. Lions [4]) .
o o

Then we set

1
(9.12) ofy = —+ Z (f Pu_ dx)W. s
L e Q, crh(M,o) © b, M

and (9.9) is true (cf. [7]).

o3




Let usexamine now the case uoe D(Aﬂn)oGenmaHywe do not know
how to choose Oh such that (9.10) is true for all u € D(A(0)).
However when u =~ 'belongs to an appropriate subspace W of D(A(0)),

it is possible to find Oh such that
lofu |y llopuglly, 18,(0) ayu ly < lhagliw

For example, let HE(Q) be the space of functions u such that

u,géll" TeL(), i’j=l’aoo,n

We provide H?(Q) with the following norm

1/2

- 2 + + 5%. O
PP (T = PR =t e

We define Hi(n) to be the closure in H?(Q) of the smooth functions
. 2

with compact support in Q. Then 1if A(t) = -4, Hoﬂl)(:IKqA) and

we can prove:

\O Yy \h’ HO “h’ IA Ollluo ‘ Sc”uou o s

H ()

where Oé is defined by (9.11) (see [7])-.

Then we define uh,k(k),ooe,uh’k((p_l)k) by one step difference
methods (cf. [7]). Now we can easily see that the consistency hypotheses
are verified,

It is very simple to state the stability theorems and the convergence

theorems corresponding to our example: this is left to the reader.
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