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1. The problem.

Let A be a hermitian square matrix of complex elements and order n.
Let b be a known n-vector of complex numbers. For each complex n-vector

x, the nonhomogeneous quadratic expression

(1.1) 8(x) = (x-b)MA(x-b)

(H denotes complex conjugate transpose) is a real number. The problem,
suggested to us by C. R. Rao of the Indian Statistical Institute, Calcutta,
is to maximize (or minimize) ®(x) for complex x on the unit sphere

S ={x: xHx =1). Since ® is a continuous function on the compact set S,
such maxima and minima always exist.

In summary, our problem is:

]
)

(1.2) maximize or minimize @(x) subject to xﬂx

The purpose of this note is to reduce the problem (1.2) to the deter-
mination of a certain finite real point set which we shall call the spectrum
of the system (A,b) (defined at end of Sec. 1), and show that a unique
number M in the spectrum determines the one or more x = xh which maximize
®(x) for given b. Theorem (4.1) is the main result. The development is an
extension to general b of the familiar theory for the homogeneous case when
b = 6, the zero vector. No consideration to a practical computer algorithm
is given here.

In Sec. T we show that determining the least-squares solution of an

arbitrary system of linear equations Cy = f, subject to the quadratic




constraint yHy =1, 1is a special case of problem (1.2).

Phillips (9.2) and Twomey (9.3) begin the actual numerical solution
of certain integral equations by approximating them with algebraic problems
very closely related to the minimum problem (1.2).

Let xl < xe P e e e s xn be the (necessarily real) eigenvalues of A,
and let [ul,...,un] be a corresponding real orthonormal set of eigenvectors,
with Au; = Mu, (i=1,...,n).

Let a given b be written

(1.3) b= b.u

(1.4) Theorem. If x is any vector in S for which ®(x) is stationary

with respect to S, then there exists a real number A = X(x) such that

(1.5) A(x-Db)

Xx ,

(1.6) xx =1

Conversely, if any real M and vector x satisfy (1.5, 1.6), then

X renders ©®(x) stationary.

Proof. Let xo be a point of S. Now, as shown in lemma (8.7),
®(x) is stationary at X, with respect to x in S, if and only if there
exists a real Lagrange multiplier A such that y(x) = (x-b)HA(x-b) - X%
is stationary at X, with respect to all neighboring complex vectors x.

Since

0 = & grad W(xo) = A(xo—b) - Axg o

the theorem is proved.




To see what conditions are satisfied by the A of theorem (1.4), we

note that the system (1.5,1.6) is equivalent to the system

(2.7) (A-MI)x = Ab ,
(1.8) xx =1
Let
n
X = Z X.u.
=0
Then (1.7) is equivalent to
n n
(1.9) .gl (Xi-X )xiu:.L = igl Mbiuy

Definition. By the spectrum of the pair (A,b) we mean the set of all
real M for which there exists an x such that (1.7) and (1.8) are satisfied.
Given any M, x satisfying (1.7) and (1.8), we shall say that x

belongs to A, and frequently write x in the form x)V

Note that the spectrum of (A,8) is the ordinary spectrum {Xi} of

2. Special case:_no Aby

1
o

Assume for the present section that )»ibi;é 0 (all i). This implies
that all Xi# 0, i.e., that A is nonsingular. If M is in the spectrum

of (A,b), (1.9) implies that \ # A, for all i, and also that




i .
(2-1) Xl=)\.—-i (1;1,...,1'1)
i
Then the requirement that
n
H 2
(2.2) xx—.2|xl| =1
i=1
is equivalent to the condition
n x? lbi}2
(2.3) g(A) = 3 = 1.

i=1 |x,-x|2
1

Although all M corresponding to stationary values of ®(x) are
known by theorem (1.4) to be real, it is useful to define g(\) Dby (2.3)
for all complex M not in [Xi].

Let G be the set of complex numbers A such that g(X) = 1.

For small enough || b, G is the union of n simple closed curves in

1|’
i=1
the complex plane, the k-th of which surrounds Xk. As the |b1| grov ,

adjacent curves first coalesce in double points, and then merge into single

curves.  For very large values of all Ibil, G is one simple closed curve
including all {)»i] in its interior. The family of sets G resembles the
n
family of lemniscates | | |A-A; | = const.
i=1

Note, moreover, that g(X) > 1 for M inside any component curve
GJ. of G, while g(X) < 1 in the exterior of all components 9 of G.
Now'we shall show for the special case of Sec. 2 that each M in

G determines a unique x)‘ which satisfies (1.7, 1.8). For that x)\




(2.4) o(x*) = £(n) ,

where we define f Dby

2
n A.ib.
(2.5) () = M7 1

i1 )

Fix A, and drop the superscript A on x. To prove (2.4), note that

(1.7) says ()»i-)»)xi = Mb.. Thus

(xi-x)(xi-bi) Mby - bi(xi-x)

= Ab,
1
Hence
ADs
Xy - by =y v
1
and
& 2
3(x) = 1§£ Mg |40y
2
2 & Mlvyl
- M 21 - ?
B i
= f()\,) b}

proving (2.4).
Since the Lagrange multipliers M must be real, the spectrum of

(A,b) 1is the intersection of G with the real axis. This consists of from
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2 to 2n distinct real numbers. How many numbers are actually in the
spectrum depends on b; this will be discussed in Sec. 5 for n = 2.

We wish to determine which A in the spectrum corresponds to the

maximum [minimum] value of f(\). Let G.J be any component curve of the set

G

(2.6 ) Theorem. The maximum and minimum real parts of A, for A in any

A on the real axis.

one Gj’ both occur for

Proof. Let A =o¢ + i1, with o,T real. Then

2 2
n M 1biJ

2

g(r) = g,(0,7) = 2 (c-xi)e .

Hence, for T > 0 and fixed o, g(\) strictly decreases as T increases.
Then-in the upper half plane T > 0, any line o = constant intersects Gj

in exactly one point. The theorem follows from this.

Definition. Let AR{AL] denote the unique real value of M of

maximum [minimum] real part in the set G.

(2:7) Theorem, Under the assumptions that A is reqular HH.e., M #0

for all 1 ) and bi # 0 (i=1,2,...,n), for all A in G such that

A £ Mgy M # A we have

f(AL) < f(\) < f(AR).

2

Proof. Let a; = xi |bi Introduce two independent

12 (i=1,...,n).

complex variables A,u, where pu will later be set equal to X. In order
to study the gradients of the functions g, f, and h (defined below) for




complex A, we shall use the tools of Sec. 8. This requires extending

these functions into the space of M and u.

Let M =0 + it (0,T real). For all complex M # M;» define the

functions 8y and %Eby

g(r) =g (0,7) = g,(\,%)

where
n a
1

M) =
0) = B TG

(This definition is consistent with (2.3).) Then

~ [dg og 3
% (Eal + i S?E) = [352]“=x , by lemma (8.1)

(2.8) = i

For all complex M f xi, define f£(X) by (2.5). We then define

the functions fl and f2 by

£(1) = £,(0,7) = £,(0,))

where




i=1 "ivi i
Then
L (S + 4 oty . i by lemma (8.1)
2 \3o ST S _—_—— '
H=A :
=2 —_— N
=1 A, h ) 121 nL (A ) (L R )P
1" 1 1" 1 1
n a, -
=\ = s |1+ wl
1=l h [N, -0 PR
1 1 1
n WH
=\ 5 —
1= g - T -A)
%,
=\ mmuv _ by (2.8) .
K=A
Teeo,
0 o
(2.9) 2 2]
H=N AEEATEN

While it is possible to use (2.9) to study the behavior of f(\A) on
the set G where g(\A) - 1 =0, it is more convenient here and in Sec.
3 to introduce a new function h(\), which agrees with f(A) on G. For

all complex A\ # VH“ define



(2.10) h(x) = £(X) + 2‘1)1[1 g(M)],

and note that
(2.11) h(x) = £(\), for M€ G .

As with f and g, we introduce functions hl and h2 so that

n(A) = b (6,7) = hy(hu)

where
By(Moi) = £,(0m) + 23 [1-gy(0yu))
-Then
oh of a
(2.12) Bu—g - 5?12 + 3[1- SQ(X,u)] _ a_
d
=)"—;E5;2+ 3(1-g,(0p)] 5, vy (2.9)
Hence 3 5 3
Jol h h,
3 (El + i BT]:) = [gf ]U,:X' , by (8.1)
(2.13)

+ %[l-gE(X,X)]

o, dg
<5-— + i E—) + 1[1-g(n)]



Now any component Gj of the set G where g(h) = 1 encloses a
region where g(x) > 1. On G the gradient vector of g,

Og; . Og,
& fim o

is non-zero, is normal to Gb' and points to the interior of Gﬁ' Then,

by (2.12), the gradient vector of h on Gj’ namely

Oh, . Shy . %8, Y o8,
S tige=it\gtis) o

iz non-zero for =T # O and points along the tangent to GU in the direction

of increasing o. Hence

'

h(X) is strictly increasing, as A traces 5 in

(2.14)

the direction of increasing o.

From (2.14) it follows that h(h) assumes its maximum value, for each
separate camponent curve 9. of G, at the point ?; on G.J of maximum
real part. By theorem (2.6), Bj is on the axis of real A.

Note that setting p = » = A in (2.12) yields the result that
(2.15) h'(X) =1 -g(X), for real M\

To complete the proof of the present theorem, we much show that £ (X)

is larger at the point aj of least real part on the component f. of G

10




than it is at the right-most point Bj—l of the component G.J 1 of
immediately to the left of GU'
Note that g 1is continuous for A\ € [6j_l,aj],amjtl1at

g(BJ- 1) = g(aj) = 1 but g(h) <1 for By ) <\ < . Then

h(Otj) = h(Bj_l) +jj3 n'())ar
3-1

]

%3
ey )+ [ el by (225)
3-1

> h(Bj_l), since g(M) < 1

Thus

(2.16) h(By_1) <hlay)

as was to be proved.

We conclude that h(X) increases, as A increases along the real

G

axis between adjacent components of G. Since h(h) = £(X) on G, we

see from (2.14) and (2.16) that

f)")‘:f ) )
>LmaexG( (Ag

min f(h) = f£(A )
M EG AL

11




It follows trivially from theorem (2.7) that the maximum and minimum
values of f(A) over the real numbers in G (i.e., over the spectrum of
(A,b) in the present case) are also f(AR) and f(AL), respectively.

By (1.9), our condition that no )”ibi = 0 implies that A ;E Xi for
all 1 and for all M in G. Hence AL and AR are not eigenvalues of
A, and so neither A - ALI nor A - A'RI is a singular matrix. Therefore

we can solve equation (1.7) uniquely for X ax and X int

>
Il

xAR _ (A—ARI )'lAb

max

A -
X o= ox B, = (a-a )b

min '
These equations give unique solutions to the problem of minimizing and
maximizing @(x) = (x-b)HA(x-b), for nonsingular A and b such that
no by = 0.
It would be desirable to be able to prove that h(otj) < h(BJ.), in
the notation of theorem (2.7),without analyzing h(X) and g(h) for complex

values of A.

3. General case: Some )»ibi = 0.

We now study the general case where one or more )"ibi = 0. To be
explicit, let C = {a: Xaba = 0}, a set of integers. We wish to examine
the spectrum of (A,b).

Define z as the set {)‘oc: a e Cy.




First, given one a € C, if A ;é )”oc and A is in the spectrum

of (A,b) with corresponding vector x)‘, then (1.9) shows that xé: = 0.

Thus, if A is in the spectrum but not in the set 08 , then xg =0

for all @ € C and, just as in the derivation of (2.3), A will satisfy
the equation

M Ie |7
(3.1) =

}—I.
ng i

l)»i—)\.]g

Conversely, any real solution M of (3.1) -which is not in the set P
will be in the spectrum of (A,b), and its corresponding vector x)‘ will

have xk = 0 for all @ € C . If we interpret 0/0 in (3.1) as O,

[0
then it is possible that some eigenvalue A in ¢C will also satisfy (3.1).
If so, we will show that this )“k is also in the spectrum of (A,b). How-
ever, the spectrum may also contain eigenvalues )“k in aﬁ which do not
satisfy (3.1), as we shall now show. No eigenvalue M, not in L can
be in the spectrum, because A = )”k would make the left side of (3.1)
equal to o .

Fix attention on one )»k for k ¢ 6 We wish to examine the

possibility that this A,_ is in the spectrum of (A,b). Let m be the

k
multiplicity of)»k as an eigenvalue of A. Let /~9k = {1i: )”i = )»k] Ye)

that card (&k) =m. If Xk is in the spectrum, then (1.9) shows that

AMb, = 0 for all @ in /\9 . Moreover, if A is in the spectrum, then

Qo k k

the corresponding vector x = x)”k has the properties

A, Db,

x=i (ié&k)’

i xi-xk

13




and, by(2.1), also

2
. |b.
(3.2) Ekg lxile i I 1! <1

2
X |

1R,

Conversely, 1if (3.2) holds then we can always define Xg for all

i € ﬁgk in such a way that

2
2 ry 1oy

(3.3) =1 - B
P ER yn P

i;a"&k X.|

Hence, by (3.2) and (3.3), equation (1.8) holds and, since (1.7) is
satisfied, M is in the spectrum of (A,b).

If equality holds in (3.2)i then x; must be 0for all i € &k;
i.e., Xk satisfies (3.1), and x k is unique. But if inequality <
holds in (3.2), then there is an (m-1)-dimensional sphere U/ of values
of {xi}, for 1 € ﬁgk, which satisfy (3.3). For, if a point
(x

yeeesXy ) is in U, then so are all points of form

il m

191 iem
. ) (all 9i real) ,

since 23. |x.|2 is constant for all of these. 1In this case
i€ lSk i

A
. k . . .
uniqueness of x is lost. The sphere is analogous to (in fact is a

generalization of) the sphere of unit eigenvectors of a hermitian matrix

A belonging to an eigenvalue of multiplicity m.

1k



Note that an inequality < in (3.2) states that Xk is in the

exterior of the graph

1 M I, 1
G=i>\, : . ﬁzgk_——l)‘i_)\‘z’ —l} »

i.e., hk can be joined to » by an arc not cutting G. Thus, in brief,

the spectrum of (A,b) consists of the union of all real numbers in the set

) r)» . i )\.i lbile _ .
(3.4) G_JL L o 2 =1

where we interpret 0O/0 as 0, with those numbers Xk which are exterior
to the graph G. (If G is the null set, then b = 6 and the spectrum
of (A,8) consists of all eigenvalues Xk-)

We must now examine ®(x>‘) for M in the spectrum of (A,b). The

study of <I>(x)”), for real M € G in (3.4) is the same as in Sec. 2,

and yields the same results (2.4) and (2.5): First, for M € G,

\ o & A
o(x~ ) = £(X) = l)»l Z — where 0/0 = 0. Second, letuR;
L P

uy, be the right-most [resp. left-most] points of G. Then f(uR) maximizes
[resp. f(p.L) minimizes] f(X) for M€ G. It remains to consider

o(x k), for eigenvalues M outside G.

15




(3.5) Theorem. For any M in the spectrum of (A,b) we have

(3.6) o(x*) = h(x) = 1(x)+ r[1-gA)],

where f(X) is given by (2.5), with 0/0 intepreted as 0.
Proof. Take any M in the spectrum of (4,b).

If N # M (k=1,...,n), then A € G, and everything proceeds as
in the proof of (2.4), showing that ¢(x)‘) = f(X). Since g(X) = 1, we
have proved (3.6) when \ # Mo

If A =2y,
of any x>\'k which satisfies (1.5) and (1.6) (and hence (3.2) and (3.3)).

an eigenvalue of A, let Xy denote the i-th coordinate

Since M. 1is in the spectrum of (A,b), we have Moy = 0 for all

i€ /gk’ where @k is defined above after (3.1), and as

2 2 2 .
)“i|xi_bi| = Xilxil = )»klxil , for all i € Sk' Then, by (3.3),

(3.7)

= |1- ) —2 , where o/o =0

Moreover, like (2.4) we can prove

16




| -2 7 ; Ioyl?
A lx,-Db, = A _—
i k 2
i E Bk o4 i ﬁ &k ()"i-kk) :
(3.8)
2
n A, |b |
= )»2 1 = ; Wwhere O/O =0

Adding (3.7) to (3.8), we get

n
A 2
o(x~) = 3 A, |x.-b,|
RN T e

2 2

SR R W

(3'9) _ )\-k z ——-—-—2- + Xk l - ——2
i=1 (xi-xk) i=1 ("1”‘1;)

£(h) *+ A [1-g(r )]

h(xk) .

This proves (3.6) when A = Mo

It is property (3.6) of h which motivated our use of h in Sec. 2.

Note. It is easily shown from (3.6) or (3.9) that, for all A in

the spectrum of (A,b),

2

n >‘i ‘bi\
(3.10) h(h) =X+ A ) —=— where 0/0 = 0
i

i=1

If M is in the spectrum of (A,b), but is not an eigenvalue of A,

we can derive (3.10) as follows. Let x belong to A. Then

17



2(x) = (x-b)PA(x-b)

H

= (x-b)"Ax , by (1.5)

=\ xx - A bix

=N — A be ’ by (1.6)

= h - nBR(A-AI) AL , by (1.7)
n oA, Ib.|2

Y 1
L XX

We shall not make use of (3.10) here.

We now use formula (3.6) to extend the domain of h to all real X\
where g(X) < 00, i.e., to all M except where, for some i, M = xi
and Mby # O.

As stated before (3.5), we know that the largest value of ¢(Xx) = h(X)
for M in G occurs at the right-most point up of G. It remains to
see whether h(xk) may be still larger for any M in the spectrum of
(A,0), if wg < M-

The answer is furnished by formula (2.15L which is valid for the
general case of Sec. 3 with the understanding that 0/0 = 0. Thus h is
increasing on all segments of the real axis between or exterior to components
of the curve G. It follows that h(h) takes its maximum at the rightmost
point AR of the spectrum of (A,b) and its minimum value at the left-
most peint AL of the spectrum of (A,b), whether or not these are

eigenvaluee of A.

18



eigenvalue of A of multiplicity m,

points of an

From the considerations following (3.3), we see that the maximizing

is unique if AR € G. If, however, AR is not in G

when b # 6.

then the maximizing include all

(m-1) -sphere of nonzero radius, whose center is not at 6

The above result about A_, and AL for the case where some kibi

R

can be obtained by continuity from the case where

clear that we could use continuity to deduce the nature of the maximizing

and minimizing vectors, for multiple roots

4. The main result.

It is not

In Secs. 2 and 3 we have proved our result:

Theorem. Given A, hermitian with eigenvalues

(»;}, and b,

arbitrary, define {b,} as in (1.3). Then the spectrum of

1

consists of all real A such that

together with each eigenvalue A

2

n Xi lbil2
gM) = Y ——% =1 (o/o
1=l | A

k

For each M in the spectrum with g(X) =

there exists an (m—1)-sphere of xk

of A for which g(hk) < 1.

1, a Unique x" is

found by solving (1.7, 1.8). For each M in the spectrum with g(h)

satisfying (1.7, 1.8),

d (X.: M. =\ _}.
card ( 50 A k}

19



Each xx so found renders Q(x) stationary on S. Let

AR= max{A : A € spectrum); let AL = min{A : N € spectrum). Let X a0

= . — 0} o
any x ; let X ax any x . Then (Xmin) minimizes (x) on S,

and ®(x ) maximizes ®(x) on S.

5. The number of points in the spectrum.

As we noted in Sec. 2, if A is of order n, then the spectrum of
(A,b) contains anywhere from 2 to 2n real numbers. When does it have
the full amount 2n? If any Xibi = 0, then the discussion of Sec. 3
showed that the spectrum necessarily has fewer than 2n points. So we
are limited to the case where all A.b, # 0. But then, as shown in Sec.
2, we know that the spectrum is the intersection of the graph of
n 25 b, |?

(5.1) Ho= —
SN

for real M with the line p = 1.

The graph of (5.1) for real M\ consists of n + 1 branches between
the n vertical asymptotes A = X, (i=1,...,n). Since u >0 for all
Ay, and p >0 as A ->w and A - - w, the right-most and left-most
branches necessarily cut p = 1. The spectrum has the full number 2n of
points if and only if each of the n - 2 interior branches of the curve
reaches its minimum with p < 1. For general n a condition for this is
probably too complicated to derive. For n = 2, however, we can answer

the question, as follows:

20




(5.2) Theorem.

(5.3) Let n = 2, and assume A is in diagonal form with Xl < XE'

If the spectrum of (A,b) consists of 4 distinct numbers, then

(5.4) 0< [bl)»l and O < |b2x2] s
and also

2 2 2
(5.5) o |3+ [ hy |3 < (Ap-rp )3

(5.6) Conversely, if (5.4) and (5.5) hold, then the spectrum of

(A,b) consists of 4 distinct numbers.

2
Proof of (5.3). Let a; = Ihibil (i=1,2). If either a, or a,
were zero, then the development in Sec. 3 shows that the spectrum would con-
sists of at most 3 points. Hence al > 0 and a2 > 0; i.e., (5.&) holds.
_ 1/3 .
Let M = (a2/al) . Now the development in Sec. 2 shows that the

spectrum of (A,b) consists precisely of the real roots M\ of the equation

1 + 2 5 = 1
(X'XE)

(5.7) g(r) =

Since (5.7) has 4 real roots, we know that two roots must ]ie in the internal

(Xl,ke). Now let p be the unique real root of

-2al 2a2

= - =0
(X'Xl)j (>"‘)"2)3

g'(M)

21




Then, because there are two roots of (5.7) in (kl,xe),

(5.8) glp) < 1

We now show that (5.8) implies (5.L4).

Solving g'(n) = 0 shows that

X2-u
s oM
B
whence
1
Ho=h = 1+M(>‘2')‘1) ’
M
Motk = T (i)
Hence

glp) =

22




Thus g(p) < 1 implies

11 2
(5’9) 8.:?_ + aSé <()"2">"l)3 b

which implies (5.5). Thus (5.3) is proved.

Proof of (5.6).wehave a, > 0, a, > 0,and (5.9). The above Steps

are reversable, and so g(u) < 1,

whence there are 4 real roots of g(p) = 1.

Thus theorem (5.2) is completely proved.

Condition (5.4) says that neither )»l_ nor x2 is 0, and that the
point b = (bl’b2) does not lie on an axis of the (Xl:xe)-plane- Condition

(5.5) requires that (bl'bz) be inside a curve I which depends only on

the ratio )"2/)"1' If )»2/)»1 = 2, for example, the curve I' is

Jbl|2/3 + Jev, 12/3 2 1,

2
(0, 2/3) ®
o] o n
(-2,0) © (2,0)
(0, -2/3)
Figure 1

23



In Figure 1 the number of points in the spectrum of (4,b) is
indicated for different b in the first quadrant by integers in circles.
If|k2/xll > 2, the curve ' includes values [o,|> 1. But

lxe/xll > 1 implies that, on P,|b2| < 1.

6. Geometrical interpretation.

Thesurfaces ®(x) = k are similar conic surfaces with center b in
the euclidean n-space 85 of vectors x. The maximum problem (1.2) is to
find the conic surface with maximum k which touches the constraint sur-
face S, the unit sphere in 8”. The rotation of A to diagonal form is
a rotation of 6n (leaving S "invariant, of course) which causes principal

axes of the conic surfaces to coincide with the axes of gg.

The vector Ax - b is half the gradient of ¢(x), and x 1is the
radius vector. Condition (1.5) merely states that at a point where ®(x)
is stationary, for x on S, the surface ®(x) = k is tangent to S.

Fix x at a solution of (1.5), and let t be real. If the constant
L of (1.5) is positive, the value of ®(tx) increases as t increases
from 1; if M 1is negative, ©®(tx) decreases as t increases from 1.

The main result of Secs. 2 and 3 is that the maximum problem of Sec.
1 is solved for the largest value: of A satisfying (1.5), for x on S.
The authors see no obvious geometrical reason why this should be so.

If all bixi # 0, then Sec. 2 shows that any vector x = xx which
makes @(x) stationary on S is uniquely determined by A\.

Figure 2 shows, for n =2 and 0 < xl < x2, a case where there are

2L




L distinct points of tangency of an ellipse with the unit circle. All

ellipses have center b and common value of xe/xl > 2. Since

Figure 2

XE/Xl > 2, it was shown in Sec. 5 that 4 distinct tangencies were possible
for certain b outside S.

Whenever some bk = 0, then, provided that (3.2) holds with the
inequality sign <, we get more than one x belonging to a given \. That
is illustrated in Fig. 3, where n = 2 and k = 1. What is not obvious to

the authors is a geometrical reason why necessarily A\ = Xk in this case.

another x

Figure 3
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T. A constrained least squares problem.

Let C be an m X n matrix (m 3 n) and f an m-vector, both

over the complex field. We wish to study the set of complex n-vectors y

of euclidean length |yl = (yHy)l/2 = 1 such that
(7.1) ||Cy-f..||2 - (cy-£)*(cy-£) = min.
The consgraint is

(7.2) kIl = ¥y =1

Because euclidean length is invariant under unitary transformations,
it is useful to rotate coordinates in both the space of y and the space

of f. To do this, let r = rank(C), and write
(7.3) c =t ,

where U, V are unitary, and where the only non-zero elements of D are

the first r elements of the leading diagonal, which we may arrange so

that

o -
d; >d, > _*e>dr>0

Now let Vy = x and Uf = g. Then
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Cy - £ = UDvy - Ulus

I
=
7
&

Hence

2 12
ley-£ | = [px-g]|

(7.4)

}r: 2 )‘:“: 2
= ld.x -g. |7 + le. |
i+ + 7 i=p+l T

The problem (7.1,7.2) is to minimize
r T
2 2 2
2 ordgxges|” = a7 Ixg-ey/a |
i=l i=1l

-subject to the constraint

3 2
(1.5) Xt =1 .
i=
0 (i = l,2,...,n-r)
Now let A, =
i
d2
n+tl-i (i = n-r+l,...,n) ,
0 (i = 1,2;,.00yn-r)
and let bi =
g+ -
EE—E—E (i = n-r+l,...,n)
n+l-1

We then have changed our problem to one of minimizing
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I

(7.6) Z Xilxi'biﬁ >
i=1

subject to the constraint (7.5), where

(7.7) T AL I S

This is precisely the minimum problem (1.2) of Sec. 1. The special role of
the n - r zero eigenvalues of CHC becomes-evident.
Thus the general problem of the least-squares solution of Cy = f

with constraint (7.2) is a special case of our minimum problem (1.2).

8. Lemmas from complex function theory.

In this final section we state and prove three lemmas relating partial
derivatives of certain regular analytic functions of several complex
variables to gradients of real-valued functions of vector variables. This
technique is common in the study of second-order partial differential
equations; for example, see (9.1). We include the material mainly to
keep our treatment self-contained, and partly to call explicit attention to
the fact that the Lagrange multiplier X\ must be real even though complex

variables are used.

(8@)_Lemma. Let ¢(Xﬁﬂ be a regular analytic function of two complex

variables A, o such that, for all real x, y,
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(8'2) F(X)Y) = ¢(X+iy, x-1y)

is real-valued. Then

+ i =2
Sx Sy I A=x+iy
p=x-1y
Proof. Differentiate (8.2);
0 oo o0
(8.3) Sexclty L
OF o0 . o0 .
(8.4) e R

Add (8.3) to (8.4) x 1i:

(8.5)_Lemma. Let F and G be real-valued differentiable functions of real

variables xl,yl,...,xn,yn. For abbreviation, let 2 = X + iyk, and let

z = (zl,...,zn). Then, for F(z) to be stationary at z = a with respect

to all neighboring z such that G(z) = G(a), it is necessary and

sufficient that there exist a real Lagrange constant A such that

OF . OF oG . oG ) _
(8'6) yk"'la'ﬂ-)\.(ykﬁ-lsy—k)—o
for z = a and k = 1,...,n.
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Proof. Condition (8.6) is nothing but the usual condition that the

real gradient vector

(aF dF OF OF . OF aF)
axl ? éyl ’ 6k2 6y2 ? &; gﬁ

be parallel Yo the vector

(BG oG oG oG oG oG
axl’ayl’.8x2’ay2’ ’gx_n-’g;)—r; *

The use of the complex variables Zy is unessential.

Given any vector z = (Zl"' ..,zn), we let z denote the vector of

complex conjugates (zl,...,zn).

(8,7) Lemma . Let ®(z,w) and ¥(z,w) be regular analytic functions of the

two complex vector variables z = (zl,...,zn) and w = (wl,...,wn) with

the property that ®(z,z) and ¥(z,z) are real. Then ®(z,z) is

stationary at z = a with respect to all z such that ¥(z,z) = ¥(a,a),

if and only if there exists a real Lagrange constant A such that

o0 oy
Er-
for z = a and w =a and k = 1,2,...,n.

Proof. Let z = x + iy. Then %(z,z)= F(x,y), Vv(z,z) = G(x,¥). By

lemma 8.1 applied to each variable 2y
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for z = a, w=a,and k = 1,...,n.

Then lemma (8,7) follows from lemma (8.5) .
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