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CHAPTER 1

INTRODUCTION AND HISTORICAL REMARKS



Source of the Question.

Serious mathematicians as well as laymeﬂ from as far back as Plato
and Archimedes have concerned themselves with the study of polyhedra.
It is generally believed that the regular polyhedra (those whose faqes
are regular congruent polygons and whose solid angles are congruent) of
four, six, and eight faces were known to the Egyptians, but it remained
for the Pythagoreans of about 500 B.C. to discover the other two -~
those with twelve and twenty faces. Plato, in his metaphysical approach
to things, assoclated the tetrahedron with fire, the cube with earth,
the octahedron with air, the dodecahedron with the universe (possibly
because it was discovered last), and the icosahedron with water.

On a more scientific basis, we find references in Euler's work,
]?é] page 90, that indicate clearly that Euler thought about and posed,
though loosely, the general question with which we are here concerned,

Genera notabiliora, ad quae omnia solida figuris planis inclusa
sunt referenda, enumerare nominibusque idoneis denotare.

or,

Bmumerate the more important kinds of polyhedra and give them
appropriate names.

In response to this self-posed question he then lists certain
polyhedra of up to sixteen faces and makes comments about them. In
particular, [22] page 93, states:

The fourth genus hés only one species, which ig the triangular

prism. The subsequent genera usually have several species, but

we cannot go into their enumeration because, for the time being,

the other properties of the polyhedra here involved are not
sufficiently well knowm.



This indicates that Euler wondered about the general problem of
enumeration of polyhedra but, at that time, was unable to come to an&'
general conclusionsg

The nineteenth century mathematician, Jakob Steiner, compactly.
posed the question, [?j] page 227.

Le nombre des faces d'un polyddre &tant donns, on peut

demander, de quelle nature peuvent Stre ces faces. Queils

est la loi générale?

Other mathematicians who spent considerable time studying polyhedra
were The Reverend Thomas P, Kirkman, end Professors (swald Hermes and
Max Brickner. Hermes and Brickner, in particular spent decades erumen-
ating polyhedra by hand. Some of thelr results are discussed in
Chapter II.

In mehtioning polvhedra, both Buler and Steiner meant convex poly-
hedra; The aim of this dissertation is the enumeration ofvconvex polye—
hedra subject to a restriction which will be stated below (tri-linear

convex polyhedra), using a digital computer.

Representation of Polvhedra,

Aside from three-dimensional models, there are many useful ways
to represent polyhedra., Some of those which we will have occasion
to use later are the following:

1. Straight line nets in a plane, drawn by imagining one face
to be expanded until all the other lines of the polyhsdron,
when projected onto the plane of this face, fall into its
interior. For example, the triangular prism represented in

this way is shown in Fig., 1.

AN



Fig. 1.
2. Curvilinear nets in a plane, topologically equivalent te
the straight line nets, For example, the cube is shown in

Fig. 23 the diagram contains two concentric circles.

Figo 2e

3. Curvilinear nets on a sphere, which permit visualization of
polyhedra of many faces for which it is difficult to construct
an ordinary three-dimensional model.

b, A 1ist of the nelghboring faces of each face, in ecyclie order,
a. by name, For example, if the faces of the triangular

prism are labelled as shown in Fig, 3, the representation
of the polyhedron becomes the following set of "words,"
one for each face:

234
1459
1250
1352

2h3

It 1s understood that these five.consecutive “words"
correspond to the faces labeled 1, 2, 3, 4, and 5,

respectively.
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1
3

Pig. 3.

b. by edge-count. For example, the same triangular prism
would be represented by the following set of words, one
for each face, showing the mumber of edges possessed
by each of that face's neichbors, in cyclic order, but

without regard to the names of the faces:

Ly
3434
3434

3434
Ly
Abstract definition. A polyhedron is a system containing
three kinds of elements named as follows:
a, "O-dimensional element" or "vertex,"
b, "l-dimensional element” or *"edge,"
¢e "2-dimensional element" or "face."
There is a relation between unlike elements which we call
"incidence"s this‘relation is symmetric ;~ if x is incident
with y then v is incident with x. The system satisfies tﬁe
following axioms:.
(0) If an edge is incident with both a face and a vertex,
then the face is incident with the vertex.
(1) Each edgs is incident with two and only two

(2) vertices.

(b) faces.



(2) There can be no more than one edge incident with
both of any two given
(a) vertices,
(b) faces.
(32) Each vertex is incident with at least three edges,
{3b) Each face is incident with at least three edges,
(4) If each of two faces is incident with each of two
vertices, there is an edge incident with both faces
and both vertices.
Comments ¢
On (1) and (2). Two faces (vertices) incident with the
same edge are called neiphbors, and are sald to be contiguousg,
or adjoining to each other,
On (3a). If this axiom is changed to read "“exactly
three edges," then a speclal class of polyhedra 1s defined,

called tri.linear polvhedra,

On (4),, This axiom is not valild for non-convex polyhedra.

On the whole 1list of axioms (0), (1a), (1b), (2a), (2b),
(3a), (3b), (4). This list does not yield a complete character=
ization of the concept of polyhedron that we have in view.
"Topological® conditions must be addedé¢ the system must be
commected, simply connected, and ordentable, and each face
must be simply connected (the neighboring faces must form a
single cycle), We omit the axiomatic formulation of these
topological conditions ~- they are less prominent in our work
and we have nothing important to add to Stelnitz’® work [4,5]

in this respect., Yet these topological conditions are
6



essential. Thor rule out such systeins of faces, edges, and
vertices as we may Tind in a palr of discounnected polyhedra,
or in a torus-shaped polyhedron, or in a polyhedral Kleln

bottle, or in a polyhedron with some ring-shaped faces, etc.

Isomorphism,

Polyhedron A is sald to be isomorphic with polyhedron B if
a one~to-one correspondence can be established between:

a. the vertices of A and the vertices of B,

bs the edges of A and the edges of B, and

¢. the faces of A and the faces of B,
such that the incidence relations betwoen elements are preserved.
Even if polyhedron A is turmed "inside out" in the process of mapping
it on polyhedron B, (that is, if the cyclic order of the faces sur-
rounding each face is reversed), A and B are still considered to be
isomorphic. In particular, affine mappings with negative determinant
are permissible, Since the’representation of a polyhedron described
in ha of the preceding section (exhibiting the neighbors by name) lists
each face of the polyhedron and showsvthe identity of each of its neigh-
bors in cyclic order, each edge is completely identified by the two
faces which join to form it, and eacﬁ vertex is identified by a face
and two successive neighbors of that face. Hence it is obvious that two
polyhedra are isomorphic if and only if thelr faces can be so labelled -
(by a permutation of the given labels) that thelr representations in

the mammer of 4a are identical,






Foquilsurrounded.

Two polvhedra whose representations in the manner of paragraph

M above are identical will be called squistrrovnded. We shall see An

Chapter IV that equisurroundedness is a necessary but not sufficient

condition for isomorphism.

General Theorv.

Leonhard Fuler (1707-1783) was born in Basel. He was a student
of Johann Bernoulli and an associate of Bernoulli's two sons, Daniel
and Nicholas. He was a prolific writer and made significant contrie
butions to almost every field of mathematics. He is called the founder
of the morphology of polyhedra, having discovered the famous fundamental
law for convex polyhedra:

Ve RB+F=2

where V, E, and F, are the numbers of vertices, edges, and faces of
the polyhedron. Polyhedra which are not topological spheres alvays
have a value different from 2 on the rigﬁt side of BEuler's equation
above, but whatever that value might be, it is called the Euler character-
istic. The Buler characterdstic of a polyhedron is iptimately connected
with the topological nature of the polyvhedron. TFor instance, a polyhedron
which is a topological torus has Buler characteristic equal to zero,
(Imagine cutting the)torus at one place and closing the ends, If this
figure is then straightened out inte a cylindrical shape it becomes a
convex polyhedron, with Euler characterdstic equal to 2. If the cuﬁ
was made along existing edges of the originél polyhédron, then the
c¢ylinder has the same difference, vertices minus edges, but two more

faces than the original polyhedron.)
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One of the several proofs of Euler's theorem is as follows:
Consider the straight line projection of the polyhedron on a plane
(representation 1). Ignoring the base face, if we can show that the
remaining figure satisfies:

VeE+F=1
then, adding the base face we obtain Euler's formula. We proceed
by subdividing each face into triangles, by drawing diagonals, For
each diagonal added; E and F are increased by one, and V remains the
same, so the characteristic V - E + ' is unchanged. Finally the figure
consists of a set of triangles, some of which are on the outside
boundary of the figure and some of which are interior, Of those on
the boundary, some have two outside edges and some have only one, where
"outside édge" means an edge belonging to no other triangle. Choose any
boundary triangle and erase its outside edges. If it has only one, the
resulting figure has the same V, but both E and F are reduced by one,
hence the characteristic is unchanged. If, on the other hand, the
triangle has two outside edges, then we also erase the vertex at their
intersection. The result reduces V and F by 1, and E by 2, leaving the
characteristic unchanged.

Since there is only a finite number of triangles to start with,
we are assured of reaching a state wherein the figure contains only one
triangle, which obviously has:é

V=3, E=13, F=1, with V-I#F = 1,

i

We conclude that the figure with which we began had characteristic
equal to 1, so adding the base face we have Euler®s theorem:

V-E+F=2,



There are other proofsi, some of which involve very different ideas.
The above proof was not flawlessly presented. Withoult a more careful
elaboration of detalls, the method could admit an imprudent choice of
edges to be erased, by which the figure could be divided into two
disconnected nets, each of which has characteristic equal to 1, or lead

to other difficulties,

Steinitz® Theorem.

In a polyhedron satisfying axiom (4) every pair of vertices,
P and Q, which are each incident with both of two faces, a and B, are
joined by an edge PQ which is incident with both o and B. We call such

a polyhedron resularly connected, paraphrasing a term introduced by

Steinitz, who defines a K-polyhedron as a regularly connected polyhedron
with Buler characteristlc equal to 2. Steinitz' theorem states that |
every K-polyhedron is realizable as a convex polyhedron, See [}]

pages 227-229. 3teinitz' theorem is basically important to our work;

it enables us to represent convex polyhedra on a digital computer.

Splitting,

A polyhedron having F+1 faces can be derived from one having F
Taces by splitting one face into two. There are three types of splits,

or partitions of faces; see Fig. 4.

Type I Type II Type III

Fig. 4,

1See Co Lo Pdlya [8] page 54, exercise 9.

10



These three types are distinguished by the number of vertices lying on
the partition line. A split is accomplished by imagining the face to
be scored or creased along the partition line, and pushed outward to
form two faces while retaining the convexity of the figure. Steinitz Dﬂ
page 192, proved the following theorem.

Theorem 1, Anv convex polvhedron of T faces can be derived by

starting with the tetrahedron and makine partitions of Tvpe I, II,

and IIT,

Diophantine Relations,

By axioms (1b), (2b), and (3b), each face has as many different
neighbors as it has edges. No two of its edges can be incident with
the same neighbor, hence the maximum number of edges for any face of
an F-hedron is F-1. Designating as . the number of k-gon faces in
a polyhedron, we can add up the faces and edpges of the polyhedron and
get the following relationss

fB*fL“*eee*.fFul:F

Ji5 "~ =
R T (F1)fp 4 = 2B

We also have Euler's relation:

VeE+ F=2,
Since we are dealing with numbers of things, solutions (f3,fle coe ani)
of these equations must be in non-negative integers. In general, there
are several solutions, looking at the system from a strictly algebraic
point of view; however, not every solution of this diophantine system
is realizable as a convex polvhedron. FEach solution for which there is

at least one convex polyhedron defines a Tribe, a non-emply set of



convex polyhedré, containing, in general, several members., Regarding

the f, as successive digits, with f3 in the units position, we obtain

a tribe identification number to which we will refer repeatedly below.

For clarification, a few examples are shown here:

polyhedron tribe
tetrahedron L
triangular prism 32
cube 60
hexagonal prism 2060
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Definition.

A polyhedron having exclusively trihedral vertices will be called

a tri-ligggz‘polvhedron. When there is no danger of confusion, just the
word polvhedron will be used.

The theory of tri-linear polyhedra has a polar or dual counterpart
in the theory of polyhedra having exclusively triangular faces, We will

deal only with tri-linear polyhedra.

Fuler®s Theorenm,
AR

By Ealer®s theorem:
V-E+F=2
Then, since each vertex has three edges leading to it, and since each
edge 1s shared by two vertices, we have, for tri-linear polyhedras
3V = 2E,
Combining these.relations we get:
E= 3(F-2)
V= 2(F-2),
The cube, for instance, is a tri-linear polyhedron with F = 6, E = 12,

and V = 8,

Splitting,.

Partitions of Types I and II produce non-trilinear polyhedra.
Hence we must disallow ail but Type III partitions in the creation of
tri~linear polyhedra, Since a partition can never reduce the number of
edges incident with a given vertex, it follows from Steinitz® theorem
- (Theorem 1) that any tri-linear polyhedron can be obtained from the

tetrahedron by partitions of Type III. However, it is considerablyv



easier to prove this consequence than to prove Steinitz' entire theorem,
so we will give a new independent proof. First we must define the

inverse process to splitting.

Merging,
We have been talking about creating polyhedra of F+1 faces from

F-hedra by splitting faces, Consider the inverse process, which we will
call mergine. In the sketch, Fig. 5, consider merging faces #1 and #2

by erasing their common edge., The result will be labelled face #1,

Fig, 5.
If we denote the edge count of face j before merging by ej, and the
same after merging by 93, we can make the following general remarks:

ei = e, + e, - L

5 = 1

el = e
3
t - -

eu 94 1 .

Theorem 2, (Splitting Theorem) We can obtain QQK,COnvex tri-linear

polvhedron by starting with the tetrahedron and making face partitions

of Type IIT (i,e., partitions in which the partition line does not pass

through an existing Vertexz.
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In order to prcve the splitting theorem, we first need a lemma,

Lema. If, in a tri-linear polvhedron, there are two triangles

incident with the same edge, the polvhedron is, in fact, a tetrahedron.

Proof. Since each vertex of a tri-linear polyhedron is, by defini-
tion, a trihedral vertex, Fig. 6 represents the hypothesized pair of
adjacent tfiangles, Vertices C and D are already trihedral, and

vertices A and B need another line each,

C
e
A B
B
D
Fig., 6.

Now consider faces a and B, each of which is incident with both vertices
A and B, by axiom (0) of the abstract definition of a polyhedron., Then
by axiom (4) there must be an edge incident with both vertices, A and B,
and both faces, o and B, Hence a and 8 must be triangular, which proves
the lemma.

Proof of Theorem 2: Now, by induction, we can prove the main

theorem on splitting, We know that there is only one four-faced poly-
hedron, the tetrahedron, which happens to be tri—l;lnear° It is trivially
derivable from itsélf, by splittings whose number is zero,

Using the method of mathematical induction, wé assume that all
tri-linear F-hedra can be made from the tetrahedron by splitting, and
we must prove that the same is true for the (F+1)-hedra. For this
purpose, we divide the (M1)-hedra into two classes -~ those having

some triangular faces, and those having none.

16



Case I. Some triangles. By the lemma, triangles cannot be neigh-
bors, and so we can find a triangular face with a non-triangular neigh-
bor, and merge the two., Now we must check the axioms. Let us keep a
sketch of the situation before us (Fig. 7). We plan to merge faces. a

and Bo

Fige e

Axiom (0). Elges AB and BD become one edge AD after merging., No
change in incidence relations of the remaining vertices (different from
B and C) takes place. A similar argument holds for edge AE. There is
. no change in the incidence relations of the elements not emphasized by
Fig. 7.

Axiom (1a). The vertex common to both of two merged edges, for
instance edges AB and BD, is eliminated, leaving only two vertices
incident with the merged edge, AD.

Axiom (1b). On one side of a merged edge, e.g. consisting of AB
and BD, lies one face, On the other side lie two faces before merging,
and one afterwards. Hence the merged edge, AD, is incident with only
two faces,

Axiom (2a). The only way this axiom could be violated would be if
a biangle would be created by the merger. This could occur if either

By Y, or & were triangles. However, by the lemma, this is not possible.

w7



Axiom (2b). To violate this axiom, one must merge two faces which
bBelong to an arrangement we call a "belt" containing three faces. A |

"three-faced belt" is a set of three mutually contiguous faces which

do not have a common vertex; see Fig. 8.

Fig, 8.

Each of the three faces participating in the belt has at least four
vertices (P, P', Q and Q', for example); none of the three can be a
triangle, 4And so, in the case of Fig. 7, the faces a and B cannot form
a belt with any third face, since a is a triangle.
Axiom (3a), After the merger, vertices B and C in the eXample are
eliminated, and none of the other vertices is changed with regard to
its trihedral nature, as we have already mentioned above.
Axiom (3b)., The only faces affected by the merger are a, B, Y,
and &, For a face to be incident with less than three edges, a biangle
would have to be formed. This was ruled out while we examined axiom (2a).
Axiom (4)., The edge required by this axiom is, in the one case, the
composite edge ABD, and in the other, ACE, Faces ¥ and 06 have a common

edge emanating from vertex A, which is unaffected by the merger. They
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need not have; and indeed cannot have, any other, since face B cannot be
a triangle (hence D and E are distinct vertices).

Case II, No Triancgle, The only axioms which require special

attention in this case are (2b) and (3b). All others are proved

inviolate by the same arguments as in Case I. See Fig. 9.

Y

Axiom (3b). Fach of the four faces affected by the merger has
edge~-count greater than three, hence after the merger Yy and & will
have Jjust one less than before and the merged face, aB, will have
m+n -4, if @ and B had m and n, respectively. No edge-count will
be reduced to less than three, hence no bilangles will be formed by the
merger.

Axiom (2b). This axiom takes a little more discussion, so I left
it to the last. Pirst, note how merging can cause two faces to have more
than one edge in common, It must be that the two merged faces, a and B,
are both neighbors of a third face, ¢, so that a, B, and ¢ form a belt
around the polyhedron, aé defined above. Erasing the line common to
faces @ and B would result in the new face, uB, having two édges in
common with the base face, c.

Examples of three-faced belts are shown in Figs, 10 and 11, where
erasing the edge common to faces o and B will violate axiom (2b)., Note
that in the decahedron of Fig. 11 there exist two belts, aBe and abde »

-9



Fig. 10. Fig. 11.
What we want to be able to say is that even in a polyhedron not free
from belts we can find some édge to erase which will not result in a
violation of axiom (2b).

Consider that a belt divides the remaining elements of a net into
two parts -- call them the ingside and the outside of the belt. If we
disregard the outside, and examine just the belt and its inside, we
can conclude that there must be at least three faces on the inside.
For if'there were only one, it would have to be a triangle, and this
polyhedron contains no triangles. If there were two faces inside; then
one would have to be a triangle (see Fig., 12). Hence there must be at

least three faces inside.

Fig. 12,
Next we should state the obvious fact that no face from the inside‘
can form a belt with a face from the outside of a belt (our polyhedron
is simply connected),
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If we examine a belt and its inside, we may find that it contains
other belts, and they could involve one or two members of the preseﬁt
belt. For ease of communication, let us call the belt we start with B,
and such an alternate belt contained partly or totally inside B, B'.
(For instance in Fig. 11, a, B, and ¢ can be considered to form the belt
B, and @, 8, and ¢ to form B'.) Picking such a new belt, B', we can
drop the faces which are outside it (there will be at least one to
drop), and then proceed to examine B® and its inside. We note in

‘passing that if belt B had b faces iuside it, belt B' will have at most

b-1 faces inside it. If we continue this process we can be assured of

running out of belits ultimately, since we drop at least one face each
time. The final belt will contain at least three faces inside it, as we
have seen above, and so we can choose any two of them to merge, being
sure that they do not form a belt with any one other face.

This completes the proof of the Splitting Theorem for tri.linear

polyhedra,

Diophantine Relations for Tri.linear Polvhedra.

Theorem 3, Triansles, guadrilaterals, and pentagons cannot

simul taneously be absent from a tri-linear polvhedron,

Proof: Consider the relations below, where fJ. still represents the
number of j-gon faces of a polyhedrons

(1) £y £, % oot £y =F

(2) Iy Uy + el (P~1)fp , = 2B = 6(F-2) .

In equation (2), 2G = 6(F-2) because of Huler's relations for tri-

linear polyhedra. Now if we multiply equation (1) by 6 and subtract



equation (2) from it, we get:

(3) 3f3 *2f) ¥ g - (f7 *2fg tees t (Fﬁ)fp_i) = 12

or, since the fj are all non-negative, we arrive at the inequality:

(%) 3f3 *2f), + f = 12

5
which says that triangles, quadrilaterals, and pentagons camnot simul-
taneously be absent, The case of equality is attained in (4) if there
is no face with more than six sldes., We may also observe that the
well-known inequality (%) holds unrestricﬁedly for convex, not necessarily
tri-linear, polyhedra, and so do some of the consequences wé shall derive
from it.

Now for the special case of F= 6, I should like to investigate the
solution of the above diophantine equations, (1) and (2). If we multiply
the first equation by 5 and subtract the second, for F = 6, we get:

2f, + £), = 6 ,

3

This equation, taken together with

fB*f“‘"&*f5=6

vields f3 = f,59 and so the system has exactly four solutions in none
negative integers.

£

y

5 L 3
3 0 3
2 2 2
1 b 1
0 6 0

Only two of these are realizable as convex tri-linear polyhedra, namely

222 and 060 (see Figs. 13 and 14 respectively).

o
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The others canmmot be drawm in such a way as to satisfy the axioms,
This will follow from Theorems I and 5 Which will be stated here and
proved later in this chapter in the section on Kirkman polvhedra.

Theorem 4, In a tri-linear F.hedron containine as base an

(Fwl)=pgonal face, at least two of the remaining faces are triangular,

Theorem 5, In an Fohedron having an (F-1)wzonal face, where F > b

there can be no more than [%T(F‘mi)} trianeular faces (where [X] denotes

the greatest intecer contained in X).

Hach of the three solutions to the diophantine syvstem, 303, 222, and
141, contains an (F-1)~gon base, where F = 6, Hence, invoking Theorems 4
and 5 we have:
=il T
szBmZQ
That is, since a pentagon is present, the number of triangles must be

exactly two. This shows that the solutions 303 and 141 are not realizable

as convex tri-linear polyhedra.

Faces with Limited BEdee.Count,

It may be of interest to study polyhedra of a large number of faces,
none of which has more than, say, M edges. Let us define as the maximum
edge-count of a polyhedron the number of sides of the face with the most

sides, It would be convenlent if we could derive each polyhedron of the



subclass for which the maximum edge-count dogs not exceed a given number
M from the tetrahedron by successive splittings without using inter@ediaﬁe
polyhedra oﬁtside the subclass. It turned out, however, rather surpris-
ingly, that such a derivation is not always possible. The following
theorems, 6 and 7, yield substantial information about the cases M = 5

and M = 6, respectively,

Theorem 6, In a tri-linear polvhedron with F faces and maximum
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