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A FAST DIRECT SOLUTION OF POISSON'S EQUATION
USING FOURIER ANALYSIS*
by
R. W. Hockney
Abstract.

The demand for rapid procedures to solve Poisson's equation has lead
to the development of a direct method of solution involving Fourier analysis
which can solve Poisson's equation in a square region covered by a 48 x 48
mesh in 0.9 seconds on the IBM 7090. This compares favorably with the best
iterative methods which would require about 10 seconds to solve the same
problem.

The method is applicable to rectangular regions with simple boundary
conditions and the maximum observed error in the potential for several
random charge distributions is 5 X 10'7 of the maximum potential change in
the region.

1. Introduction.

In many engineering problems concerning plasmas, electron tubes and
ion guns, it is desired to follow the motion of numerous electrostatically
interacting charged particles in two dimensions. If the region involved is
divided into a large number -of cells, and the velocity and position of each
charged particle is recorded, then this simulation of space charge flow may

be performed stepwise in time as follows:

*First presented to the Denver meeting of the A.C.M. August 1963.
Applications of the method to the Computer Simulation of Plasma phenomina
have been reported tothe San Diego meeting of the A.P.S. November 1963 and
to the Plasma Instabilities meeting at Berkeley April 1964




1.  The charge distribution;

At the beginning of each time step the position of each particle
is examined and the charge of each particle is associated with the center
of the cell in which the particle resides.

2. The potential;

The charge distribution found in step 1 is used as the source
term or right-hand side of Poisson% equation, the solution of which gives
the electrostatic potential in the region,

3.  The acceleration,

The potential distribution found in step 2 is differenced to
give an approximation to the electrostatic field acting on each particle,
This field is then allowed to accelerate each particle individually for a
short time interval. The new position and velocity of each particle is
recorded and the cycle repeats at step 1. The description is thus analogous
to the projection of a motion picture.

For such a simulation to be useful it is necessary to follow
several thousand particles through several hundred time-steps and this
means that the overall cycle time must be reduced to a few seconds or less.

The acceleration of all the particles is a simple calculation
and can be performed in about-a second on the IBM 7090%. The solution
of Poisson's partial differential equation in step 2 is more difficult but
it is clear that the solution must be obtained in about the same time if

the simulation is to be useful.

* Computation times given in this paper will be for this machine except

where specified,




Hithertoo the tendency has been to use iterative methods to
solve such an elliptic equation. Theoretical estimates of the computing
time for the best iterative methods,namely the two line cyclic Chebyshev
(2LCC) and Alternating Direction Implicite (ADI) methods, have been made which
compare well with the experimental results of Hageman [1] and Price and
Varga [2].

These lead to solution times of 10 secs, 30 secs and 60 secs for
respectively ADI, 2LCC and SOR methods when applied to a 48 x W8 square
mesh and an error reduction of 10'6.

These solution times are thus roughly 10 times too slow for this
application.

The iterative methods of solution named above are very general
and can be used to solve Poisson's equation in systems with complicated
electrode shapes and boundary conditions. In Plasma applications however,
where the behavior of the space charge distribution is of primary
importance, it is often permissible to simplify the boundary conditions in
order to obtain a faster solution.

In this paper we describe an alternative direct method of
solution which takes advantage of this simplification,is applicable to
a certain class of important problems,and is 10 times faster than the best
iterative methods so far reported.,

2. Motivation and Discussion.

The problem to be discussed is the solution of Poisson's equation in
a rectangular domain where the boundary conditions are given on the
perimeter of the domain only. The boundary conditions may be Dirichlet,
.Neumann or periodic (combination being permitted provided that the same

type of condition pertains along the total length of any side). The




method shows to best advantage in (x,y) cordinates and we shall consider
this case and take the boundary conditions to be zero potential around the
perimeter.

We have
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d §(§,y) ! g(g:Y) _dx,y) o0<x<z (1)
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o(x,y) =0 for x =0, a ory=20,m

2.1 , Fourier Analysis.

The boundary conditions allow ¢(x,y)to be expanded in a Fourier
series in either the x direction, vy direction or as a double Fourier
series in both directions A double Fourier expansion was suggested as
long ago as 1952 by Hyman [7] and is essentially the method of Tensor

~ Products reported recently by Lynch et al [8]. However the determination
of Fourier coefficients is a time consuming job on a computer and we have
found that the fastest computer programme is obtained if we expand in
only one direction and choose this to be shortest. Let this be the x
direction then the expansion is
=k . KX
?(x,y) = z: 9 (y) Sin - (2)
k
=k . . .
and similarly for p(x,y) where ¢ (y) is the Fourier amplitude of the
kth harmonic.

On substituting (2) into the partial differential equation (1) and

using the orthogonal properties of the Sine functions we obtain a set of

ordinary differential equations relating the Fourier amplitudes of

o(x,y) and e(x,y)
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In the continuous case an infinite number of harmonic amplitudes
are required in the representation of ¢(x,y). However when we perform
the finite analogue of the expansion (2) to express the value of ¢(x,y)
at a discrete number of mesh points only,we find the number of harmonics
required for the exact representation of the mesh function is equal to the
numberof mesh points (see for example Jeffreys and Jeffreys [6] paragraph
14.01).

Due to the fact that the Sine functions satisfy the boundary cond-
itions and are the eigenfunctions of the differential operator in equation
(1), the ordinary differential equations (3) for each harmonic are
independent of each other. This change of a partial differential equation
into a set of independent ordinary differential equations is the first
crucial simplification of the method. It can only be carried out in
certain simple geometrical situations when,for example,the external
boundaries are parallel to the coordinate axes and the boundary conditions
are of the type mentioned above. The presence of any internal conductors
for example immediately couples the harmonics in equation (3) and makes
the method as it stands impractical. However a modification of this
direct method is being investigated which will allow the inclusion of
interior boundaries and is suitable for cases where Poisson's equation is
to be solved repeatedly for different space charge distributions but with
fixed interior electrode surfaces. Some preliminary calculation, done
once only, is required after which it is expected that the solution time
will be no more than doubled.

2.2 Tridiagonal systems.

The ordinary differential equations (3), which in the finite

analogue become a tridiagonal matrix equation, can be solved in a variety




of ways. Our experience has been that the best technique depends on the
boundary conditions imposed.

In the case that the potential and therefore 6kﬁﬁ has prescribed
values at y = 0, m the method of Gauss Elimination in the neat form as
given by Varga [9] and others is suitable and may be used for any number
of mesh points. Gauss elimination is an inefficient method to use if the
boundary conditions are periodic and a new technique of 'recursive cyclic
reduction' has been developed for this case which is particularly neat if
the number of mesh points is of the form 2P or 3x 2P (see section 6).
This does not seem a severe restriction considering the resulting increase
in computing speed. 1Indeed 'recursive cyclic reduction' may be applied to
the Dirichlet boundary conditions for these special numbers of mesh
points and has the advantage over Gauss Elimination that it does not
require the precomputation and storage of the auxiliary vector o (see
varga [9] p. 195).

An interesting and quick method of solution has been suggested by
0. Buneman for the case that 5k(0) is given and we have an open ended
Neumann condition that

—x
%=Fﬁk=o at y = o (%)

In this case the equations (3) or their finite difference analogue may

be factorized as follows,

A R R CO N ¢ (5)

introducing the auxiliary function ﬁk (y) defined by




we have
d k =k -
=+ <;—>} T ) = ¥ W) ™

Applying the condition (4) to (7) we see that Jk(w)= 0.
Integrating equation (6) inwards from infinity we see that ﬁk (y) =0
until the first charge is encountered, at y = § say. In practice therefore
(6) is integrated only from y = § to y = 0 yielding ?k(ﬁﬁ to ﬁk (0) .
Knowing the right hand side, equation (-7) may be integrated from y = 0
to y= s starting with the known value of 5k (0). This technique is
known as the 'marching method' and if the march is performed in the
directions given with the factorisation shown there is no build upoferror
due to the homogenous solutions of equations (6) and (7).

Having obtained ak (y) as the solution of equation (4) the potential
®(y) is obtained by Fourier synthesis from equation (2).

Due to the reciprocity of the Finite Fourier analysis and synthesis
the program for Fourier synthesis will have much in common if not all in
common with the program for Fourier analysis.

Summarizing we see that the solution is obtained in three stages.

1. Fourier analysis of the charge distribution

o(x,5) » B (¥)

2. Solution of k independent sets of ordinary differential

equations or the corresponding tridiagonal matrix equations

Ey) - 3 (y)




3. Fourier synthesis of the potential distribution

5 (v) - 9(x,y)

2.3 Computer time.

If we examine the number of computer operations* required to perform
this calculation the method does not, at first sight, seem particularly
attractive. This is mainly due to the time required to perform the

Analysis and Synthesis,as may be seen if we consider the domain of the
. of the n
solution to be spanned by an (n X n) mesh. For stage 1,on each/linesof

constant y we must compute n Fourier components each of which require
n operations giving a total of nd operations for the whole mesh. The

solution of the n equations for one harmonic in stage 2 may be completed

in the order of n operations giving a total of approximately n

3

operations for stage 2. Stage 3 of course also takes n” operations, As
the conventional iterative methods will require of the order of n2
operations per iterations it seems that the Fourier technique will only
pay off if the number of iterations required is considerably larger than
n . In a step by step simulation, when a good guess for the potential is
available from the last time step,it seems quite likely that satisfactory
convergence can be obtained in less than n iterations (n is typically 50
to 100). In this case no advantage has been obtained by the Fourier

transformation and we have unnecessarilly restricted ourselves to certain

simple types of boundary conditions,

*¥ Here we mean a multiplication and the addition that usually

accompanies it,




2.4 simplifications.

Two further simplifications are, however, available in the Fourier
method which completely reverse the above assessment. In the first
place if a suitable number is chosen for n (such as 12, 24,48) there is
a tremendous symmetry in the Sine functions which may be used to reduce
the computing time for analysis and synthesis to about a tenth of the
original estimate (see section 9b). Furthermore the two-cyclic nature of

the finite difference equations allows one to replace the original n2
2

equations involving all the points in the mesh to a set ofIE? slightly
more complex equations involving only the points on the even lines of the
mesh. This process known as cyclic-reduction may be done at the start

and fortunately gives a set of revised equations which may also be solved

by the Fourier method. The Fourier analysis and synthesis is then performed
on only half the number of lines and computing time is reduced. The
solution is completed by solving for the potential on the odd lines of

the mesh directly from the known solution on the even lines. We have

called this process odd/even reduction (see section 4).

2.5 Repeated reduction.

The revised equations on the even lines are themselves two-cyclic and
it is attractive to consider whether it pays off to do another stage of
cyclic reduction or even to perform cyclic reduction repeatedly until only
a few lines of the mesh are left. The number of mesh points involved in
each finite difference equation increases rapidly as the reduction process
is continued and this means that 5 diagonal, 9 diagonal equation systems
and worse must be solved when recovering the solutions on the omitted lines.

These band equations can be solved by Fourier analysis and synthesis as




well as by Gauss elimination or similar methods, and we have estimated
that, is the case n = 48, systems wider than 5-diagonal are solved
faster by Fourier analysis, If Fourier analysis is used to solve these
equations it is easy to see that cyclic reduction has not significantly
changed the process and the computing time will be unchanged. Our
experience with the n = U8 case is that nothing is to be gained by more
than one stage of cyclic reduction, This conclusion will be reversed for
n large enough because the number of operations in the Gauss process is
proportional to n compared with n2 for solution by Fourier analysis.

The Fourier method as described above applied to (x,y) geometry
can solve Poisson's equation of a (48 X 48) mesh in 0.9 sec with an error
of about 10'6. This time corresponds to about 10 computer operations per
mesh point and if we estimate that an iterative will require at least 2
operations per point per iteration, we can see that an iterative method
would have to converge in § iterations or less for it to be faster. It
is hardly credible that any iterative method can achieve this.

Throughout the calculation new results may overwrite old and the
storage required is very little more than the original mesh at n2 points.
With the aid of the results of section 9 we can extend the comparison made
by Lynch in [8] of the total-number of arithmetic operations required to

solve Poisson's equation on an (N X N) mesh:

SOR | Tensor Product AD1 Fourier
3
14N° logl e LON® 1og™N g—s- + 9.5
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On the basis of these estimates the Fourier method when applicable isalways
superior to SOR and the Tensor product methods and is superior to ADI for
N < 2500 which includes all practical cases that can be solved on present
day machines.

2.6 Other geometries.

(x,¥) geometry is not always very realistic as it implies the
existence of an infinite system in the z dimension., For many applications
axially symmetric geometry on (r,z) coordinates is more appropriate,
The Fourier method may be applied in these coordinates as described above
if the Fourier analysis is performed in the =z direction and the only
change is that the tridiagonal system of equations in stage 2 now has
variable coefficients. The cyclic reduction method is not suitable for
such equations but the Gauss elimination method is as efficient in radial
coordinates as in the x-coordinates. Thus if the z direction is the
shortest there is no change in computing speed due to the change in the
coordinate system. However if the z direction is the largest, as it
frequently will be in electron tube work, the computing time will be
increased and the alternative must be considered of performing a Bessel
analysis and synthesis in the shorter r-direction. The Fourier method
with Bessel analysis procedes in 3 stages as before however there is no
symmetry in the Bessel analysis and the reduction of the number of operations
by a factor of about 10 cannot be achieved as it could in the case of
Fourier analysis. The odd/even reduction, however, may be performed as
before. For z 1long enough a Bessel analysis in the shorter r-direction
will be beneficial. Preliminary estimates suggest that Bessel analysis

should only be performed if (z/r) is greater than about 8.
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2.7 Generalization.

The basic principle of the Fourier method is the expansion of the
solution in terms of the eigenfunctions of the Laplace operator for the
problem. This principle can be used as a technique for solving certain
types of matrix equations (see section 11.1) as well as a method for solving
other types of linear differential equations (see section 11.2). The fact
that there may be no analytic form for the eigenfunctions does not matter
because these may be precomputed and stored in the computer. It is
important however that the eigenfunctions have a large amount of symmetry.
In the plasma problem considered in sections 3 to 10 the arithmetic
operations are reduced by a factor of about 10 due to symmetrices in the
Sine and Cosine functions which are the eigenfunctions. In the general
case with the absense of this symmetry the computation time would be
increased about 5 fold and the best iterative methods will probably be
competitive.

Next we consider,in detail, the application of the Fourier method
to a particular situation arising in a plasma study which uses a (48 x 48)
mesh and report on the measured speed and accuracy of the solution. The
boundary conditions being periodic are slightly different from the problem
discussed above but the principle of the method is unchanged.

The Fourier method has also been successfully used in the Transient
study of the Magnetron by Yu and Kooyers [10] using a (48 x 96) mesh with
a solution time for Poisson% equation of 4 1/2 secs, and by Buneman and
Wadhwa, [11] in an ion gun problem using a (24 X 100) mesh with a solution
time of 2 secs. Both the above programs are in Fortran and could be

speeded up significantly by writing in machine code.




3. The (48 x 48) Plasma Problem.

Consider a square region in (x,y) geometry covered by a square

48 x 48 mesh, with the boundary condition that the solution be periodically
repeated in both the x and y directions,*
Using the usual 5-point difference approximation, Poisson's equation

may be written in finite difference form as

Pi1,5 * Pael,g * o,y T Pa e TPy 5 Yy (8)

for i,j = 0,1, «o., (n-1) n =148

Y
4

id
is the charge associated with the (i,3j) node of the mesh. The mesh

where Qtj is the potential at the (i,j) node of the mesh and q,

numbering and interaction module for this approximation is shown in

figure la.
The boundary conditions are

Pi+kn, j+kn = P

. (9)
Y+kn, g+kn T Yy,

where %k is any integer,

A convenient way of including these boundary conditions is to state
that all indices are to be interpreted modulo n, and this will be
assumed in the rest of this paper,

The equations (8) with boundary conditions (9) may be written in

block matrix form as follows

* In order for the potential to be doubly periodic it is necessary for
the total charge in the repeat square to be zero, We assume this to
be the case.
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A I (ORN 0 I \ 90 ’%o
T A T : 91 g
B = : 0 - (10)
I A I
I 00 I A 1)\ a1
cpOJ- qu
= Pq s _ .
where gj = }J and a% q%J (11)
Pn-1, 91,
and -4 1 O+« 0 é
1 -4 1 .
A= © Y (12)
0 1 b1
1020 1 -4
4, 0dd/Even reduction.
The first step in the solution of equation (10) for the unknown

potential on 48 lines of the mesh is the reduction of the problem to the

solution of 24 more complicated equations for the unknown potential on

the even numbered lines of the mesh only.
on the even lines the potential on the odd
interpolation as described in section 8.

Consider three neighboring equations

Ly F ALt

D51 T AR 4 By
8+ A%+ e

14

After solving for the potential

lines 1is obtained by exact

from the matrix equation (10)

%5-1

q. (13)

~

Ly




for j =2, 4, ..., n with the indices interpreted modulo 48.

By multiplying the second equation on the left by -A and adding we obtain

2
Dyop T 2L AT) By Dun = 4y mAYy 4 gy (14)

for j =0, 2, «.., n-2
The equations (14) are 24 equations for the even lines with a 7
point interaction module as shown in FIG lb. In expanded form they are
.o - Q. .t . .- . . T . . = 9. . ..
CPI, -2 7 P15 8 ®i-1, 5 16 i, 8 Pi+1, (P1+2, ] ¥ ®i, 542

LSRR O 4 G744, Y

5. Fourier Analysis.

To solve equation (14) we first form a modified charge distribution

on the even lines defined by

* - ] =
%'j 291 A q. . q.j+1 J OI 2/ M 4 46 (15)

~J- ~J ~

which in expanded form is

* = - -
4, PRI PR TS S R TS TR R PO (16)
for i =0, 1, . . . .47, 3 =20, 2, ..., 46.

From the point of view of machine storage the modified charge
density on the even lines may overwrite the original charge density as
it is formed.

Next the potential and charge distribution are expanded in Fourier

components as follows:
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) .

_1 1= _yi 2nki | —s 2nki
55 %%, 5% 5 P (-1) +k§l{ Py, 3 COs g~ *+ P ;5 Sin —Eg-} (17)
where

47 )
o . = 5 ¢ cos ZmKL
K,J ) izo t2 8
and ) (18)

L7 .
—S 2 2nki
cPk,J - I8 E cPl, Sin L8

i=0

—C —s

with analogous expressions for gq¥ *. and *..
g p ql‘,,j, qk,,j qk,

The Sine and Cosine functions satisfy the orthogonality relations

47 , .
E cos 2—%%- cos 2—%]; =5 4
i=0 2

(19)
47 : ;
2nki . 2ngi _
Sin TB_ Sin -m— 8k2 @_ k, a = 1, 2, ) 23

1=0 2

7 , .
Esln%‘&}gic_c;g’&,—fl=o K=1, 2, «ouy 23
i=0

Substituting the expansion (17) into (14) and using the orthogonality

relations (19) we get the finite Fourier transform of equation (1%)

P52 " M B,5 R, T K (20)

where @ and g*¥ refer to either the sine or cosine harmonic and

N = -2(8 - 8 Cos '21?8}5 + Cos %‘8}5) (21)
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We note that, because the chosen sines and cosines are the eigen
functions of the matrix A, the equations (20) are 48 independent sets of
24 equations, one set for each of the 48 harmonic amplitudes.

The fourier transform of the modified charge distribution on the
even lines, ai,j’ may overwrite the modified charge density on these
lines. The storage layout and resulting interaction module is shown in
FIG lc.

6. Recursive cyclic reduction.

The set of 24 equations for any of the 48 harmonic amplitudes may

be written

L, t AP, ., =4, 22
P2 Pyt Pypp = 9y (22)

j=0, 2, «.., 46
where the bar, star and constant subscript k have been dropped for
brevity. These equations form a tridiagonal system with periodic boundary
conditions and a particularly efficient method of solution has been devised
in collaboration with Dr. G. Golub. This involves the recursive application
of the process of cyclic reduction as follows.

Equation (22) is identical in form to equation (10) except that the
matrix A is replaced by the scalar M and the subscript advances in
steps of 2 instead of 1.

The process of reducing the number of equations by half as described
in equations (13) and (14%) may now be similarly applied, leading to 12

equations linking every fourth line, namely:

2 2
P02 ¥ A(2) Py + Pypp2 =qg ) (23)

3 =0, 4, ..., 44
17




where

and (24)
3., 3

The 12 equations (23) are of identical form to the equations (22)

but with a modified right-hand side, qj, and central coefficient, A,

as given by equation (24). The quantity qgg) may, for storage economy,
overwrite the 4p» 9> 98 - - - SN while %> Ags 99 . -+ Qg 3T kept

unchanged in their location.
The process of reduction may therefore be carried out recursively
until a small number of equations are obtained which are solved directly.
If we let 't' ©Dbe the depth of the recursion the recurrence

formulae become

P ot ¥ 2 Py Pyt —q(t) (25)
for j = 0, Et,..., h8-2t)

where X(t+l) =2 -(x(t)
(26)

t+1 1) (t) .

qg+)= (32'“”(? J+2
with V1) o
— 27
3" - 3

Three applications of the reduction process leave us with 3 equations

for @o, ¢l6 and @52 which cannot be further reduced, namely:
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1 1 ?q (¥
Ce= |1 A “16 | = qgg) -3

The eigen-values, p.i, and vectors, u.1 of

% = (1, 1, 1,) with b= 2+ ()
5'2 -1, -2, 1) oy WH)
u5 = (1, 0, -1) ny = NG

where the prime denotes transpose.

Expanding the solution in terms of the eigen-vectors.

2-9Y + %% 0

then R=a=0q b 0 T H Oy Ty
and ys NI (0
E w’eu 3% 4 )
e e
2T u2’ u, ) 6(>\(h) - 1) ’
By g - qég) /
% " u{ ‘U ConM )
substituting equations (32) into (30)we get the solution
Py = O+ O+ oay
q)l6 . -2a2 + Ay
P2 s T
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the matrix C are known:

(30)

(31)




In order to find the other values of ® we interpolate intermediate
values recursively. First determining Pgs Py ¢ho then Dys Pps @20,

¢28’ ¢56’ mhh’ etc. from the relation

1 (t) }
NG - -9, 3L
. t , t
for t =3, 2, 1 and for j = 2 step 2t+l until (48 - 27)

where all the quantities on the right hand side are known.
The process of cyclic reduction described here is essentially a

()

floating point algorithm due to the fact that the magnitude of can
grow very quickly particularly for the higher harmonics. Consider for

example the harmonic with k = 24, when

(1) _ \

*2u = -34

(2) _

Moy = - 1154 >

W) = o133 x 106 (35)
el = o177 x 10 12

This might be thought of as a disadvantage, bringing as it does the
danger of machine overflow. In fact the phenomonon may be turned to
advantage on a floating point machine-by noticing that 1f,at any level of
the reduction, x(t) > 10" and we are only interested in computing with a

precision of 1 part in 1on, then equation (25) may be written

(t) , _ (%)
A Qj- a; (36)

for j = 0 step 2t until (48 -2t)
where the first and third terms of the left hand side have been neglected

in comparison with the second.

20




Thus the solution QJ at the tth level can be determined by

simple division from equation (37)

NG (37)

and interpolation of intermediate values started immediately.

An alternative scaling of the cyclic reduction method can be made
in which numbers decrease in magnitude and which is therefore suitable for
a fixed point machine. However it appears that an extra multiplication is
introduced.

T. Solution on the Even lines.

The solution of the equations (22) by the technique of recursive
cyclic reduction has determined the values of all 48 harmonic amplitudes
on the 24 'even' lines of the mesh. The solution on the even lines is
found by the process of Fourier synthesis using equation (17), and the
stage indicated by FIG 1ld is reached.

8. Solution on the 0Odd lines.

The solution for the potential on the odd lines can be found from

equation (13).

A9y=% "% 1" % (38)

for j = 1 step 2 until 47
where the potential vectors on the right hand side are the known values
on the even lines.

The equation (38) is a tridiagonal system with periodic boundary
conditions and again is most conveniently solved by recursive cyclic

reduction, starting from the expanded form of equation (38)
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Piar,y " F L P Pa T8 9507 % (39)

for j = 1 step 2 until 47, for 1 = 0 step 1 until 47

9. Operation Count and Speed

In order to get more general formulae for the number of operations
we shall consider an (n X m) mesh where the Fourier analysis is performed
in the 'n' direction. The number of operations for the different stages
of the calculation are as follows:

a) Form modified charge density on even lines,

According to equation (16) this takes 5 additions per point¥.

There are n points per line and m/2 lines therefore a total of

g X 5 = 2 12 nm additions
(k0)

and zero multiplications

n X

b) Fourier analysis of the modified charge on even lines,

According to equation (18) Fourier analysis would require n
multiplications and n additions per harmonic per line, There are n

harmonics and m/2 lines therefore without any simplification we get a

total of
" m n2
nXnxXszs=-=m additions
2 2
2 (41)
and S n multiplications

If however we make use of the symmetry of the sines and cosines, grouping
and adding together all terms multiplied by the same factor, before
performing the multiplication, the number of operations can be drastically

reduced, See for example Whittaker and Robinson [3].

*The multiplication by 4 is an addition to the exponent of a floating

point number.
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For the case n = U8 which has been programmed we find that all

48 harmonics on a given line can be found with 325 additions and 89
2
multiplications. For this spot case of n = 48 this corresponds to &-
o) l
additions and gg multiplications to determine all the harmonics on one

line, giving a total with grouping of

2 2
m_n n L
5 X'ﬁ- =1L m additions
5 ) (42)
m_n n - .
5 X 5 = EE m multiplications

c) Solution of harmonic amplitudes of potential on even lines.

For a line of points 48 long equations (27) and (34) show the

operational counts for the process of cyclic reduction to be

(1)
(2)
(3)

2 X 24 additions and 24 multiplications to find q(e) from g
2 x 12 additions and 12 multiplications to find q(” from q
2 X 6 additions and 6 multiplications to find q(u) from g

8 additions and 7 multiplications to find @0, @16’ @52
2 X 3 additions and 3 multiplications to find @8, @24, @40
2 X 6 additions and 6 multiplications to find Py Pyps coes D)
2 X 12 additions and 12 multiplications to find P55 ¢6, ceey ¢h6
2 X 24 additions and 24 multiplications to find ¢1,¢3, R “m@¢h7
2 X 95 additions and 94 multiplications in total

In general we may say for a line g points long cyclic reduction takes

L x g additions and 2 X g multiplications (43)

In the determination of the harmonic amplitudes at this stage there are

m

n tridiagonal systems to be solved each 3

long. The total count is
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2 nm additions

therefore b xn x
(44)

nlg g

and 2 Xn X n m multiplications

d) Fourier synthesis.

The Fourier synthesis required to obtain the potential from the

harmonic amplitudes of potential via equation (17) can be simplified by

grouping of terms to the same number of operations as for Fourier analysis
in step b) giving a further

2
%E m additions
(45)

[N

and 55 m multiplications

e) Solution on 0Odd lines.

First we form the right hand side of equation (38) for all points

on the odd lines. There are n X g such points giving 2 x %? = nm additions,

Next the tridiagonal system of equation (38) is solved by recursive

cyclic reduction. There are g such systems each n equation long,

Using the results of c) we have for the solution of these equations

b on o g = 2 nm additions
m (46)
and 2 omn -° 5 = n m multiplications
The total operations for stage e) is therefore
3 n m additions
(47)

and n m multiplications
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Total operations and storage,

The number of operations for the solution of Poisson's equation given

a right-hand side is therefore

nm 1 CL nm N .
(—7- +7 5 n m additions and (155 + 2 n m) multiplications
n2m L (48)
or in total (g—g + 95 nm arithmetic operations

where it must be remembered that the reduction factors of 7 and 26 appearing
in the n2 terms are known to be true only if n = 48. In general these
reduction factor may well be functions of n.

Throughout the process new results may overwrite old and we need
basically only one mesh of (n X m) storage locations, These originally
contain the charge distribution which is overwritten by the Fourier transform
of the charge, which is overwritten by the Fourier transform of the potential,
which is finally overwritten by the potential solution.

The only other storage required is for the Fourier harmonics themselves.
In general there would be (n X n) numbers describing the shape of the n
harmonics however due to the symmetry of the sines and cosines only E
distinct numbers occur.

The total date storage is therefore (n X m + E),

Pables 2 and 3 show the estimated times for each stage in the process using
the operation counts above for the IBM 7090 and 7094, together with the
measured time on the 7090,

For the purpose of estimation we have used the following speeds for

the floating point operations
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Machine addition multiplication

IBM 7090 15us 25us

IBM 7094 bus 10us
TABLE 1.

The measured time is taken from a floating point symbolic FAP program,
Due to the large number of additions some increased in speed could be

obtained by programming in fixed point.

IBM 7090
stage additions e§t1mated mlts e§t1mated Total e§t1— mea§ured
time secs time secs mated time time
a 2 1/2 n|m 00086 0 0 00086
2 0.319
n'm
b T 0.118 ?2‘? 0.053 0.171
c 2nm 0. 069 n m 0.058 0.127 0.168
n"m 2
d 1L 00118 g 0.058 00171 0.230
e nm 0.103 n m 0.058 0.161 0.189
Solution of Poissons equation on 48 X 48 mesh|= 0.716 0.906

TABLE 2.
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IBM 7094

. _ estimated estimated Total esti-
Stage additions time milts time nated time time
a 21/2nm 0.035 0 0 0.035
n"m 2
b g 0.047 nn 0,021 0.068
c 2nm 0.028 n m 0.023 0.051
n"m 2
d T 0.047 rgz | 00021 00068
e 3nm 0.041 n m 0.023 0.064
Solution of Poissons equation on 48 x 48 mesh|= 0.286 0.358
TABLE 3.

The difference between the measured and estimated times of about 25%
is accounted for by computer 'housekeeping' operations. Using this factor
on the 7094 estimated figure we obtain 0.358 seecs as a realistic estimate
for the time of solution on the 7094%. It is interesting to note from
Table 2 that two frequently repeated generalizations are untrue. It is
not even approximately true, for example, that additions may be neglected
compared with multiplications, because in each stage of the process the
time spent on additions is in fact greater than the time spend on multipli-
cations. It is also untrue that it is satisfactory to consider only the
highest power of 'nm' for in this case the time spend computing the
stages with operations proportional to n2m is less than the time spent

on stages with operations proportional to n m.

27




10. Accuracy

The accuracy of the method has been examined by testing its ability
to reproduce a given random distribution of potential.

We start by generating a random distribution of potential, ©¢*, on
the points of the mesh. Next the charge distribution, g, which corre-

sponds exactly to ©* is computed from equation (8) namely

G,0 T L) H P r 0 g On m R L, (50)

The Fourier technique was then used to derive a potential distribution,
®, from the charge distribution qib’ and the exact distribution ¥
and the solution @ were examined,

The random distribution generated varied between -1/2 and +1/2 and

the largest value of the error, (9* - ), obtained with 7 different

distributions was 3.3 X 10'7.

11. Generalization

11.1 Solution of matrix equations

Consider the general matrix equations

Be=g (51)

where B is partitioned into (m X m) square blocks B.. of size
19
(n xN0)o @ are g are partitioned into (m X 1) vectors Qﬁ of length

(n X 1).

By Bip ¢ oo By 2 4
B. B

- |21 P v =122, o=l 2| (52
Bml B gm gm
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Such a system of partitioned equations naturally arises in the finite
difference form of a two-dimensional partial differential equations, when
the mesh is confined to a -rectangular region with m lines each containing
n mesh points.

The Fourier technique can be applied to the solution of equation (51)
provided each block matrix Bij can be diagonalised by the same gimilarity
transformation.

If this is the case let the (p x n) transformation matrix pe Q

and the resulting (n X n) diagonal matrices be
1]

then _
S Q‘Dij (53)

We can also define the transformed vectors

@ =qtes
and ~ . (54)
=0 23

2 =Qi
and
_ 55
aj = Q ] (33)
where

-1

-2

"2 _ %
g3 2= . (56)

’ -n

nj ¢j

and j = 1 step 1 until m.
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The operation Q-l can be seen to correspond to the step of Fourier
analysis and Q to Fourier synthesis in the example given earlier in this
paper. In general we shall refer to the operation Q‘l on the vector cp,
as the analysis of the vector into harmonic components 5? and the
operation Q is the synthesis of the harmonic components @E into the

J
actual vector components ¢i,J of Eh. This process becomes Fourier
analysis and synthesis in the special case that the vectors comprising the

transformation matrix Q are sines and cosines.

Consider the ith row of equation (51)

J
(57)
m — —
L B..QQ.=Q4q,
PR 3 i
multiplying through by Q_l we have
m
-1 - -
Y Q QP, = g
& ij Y43 T A
(58)
m — —
or Y, D.. 9. =g,
P

writing equation (58) in full and writing the diagonal elements of D, . a5
iJ
—ij we have:
=1 =1 =1
Dy, o @) 9
m 5 o N
L o o= (59)
=1 0 . . .
1 -
TIARE 4
for i = 1 step 1 until m.
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The equations for different harmonic numbers are independent and the
equations (59) may be reordered to give n jndependent sets of m

equations, one set for each of the harmonic numbers.

&k =k =k —k -k

Djp Dppoe e e D ¢y a4y

=k =k =k —k -k

D ..

%21 Dos Do ®s - 4 (60)
=k =k -k -k

Dnl o o ° o o D ¢m %

for k= 1 step 1 until n.

The Fourier technique of solution of the equations (51) would proceed
as follows:
a) analyse each line into harmonics by the operation Q'l as in
equation (54). In the absence of any symmetry in the matrix Q this
leads to
2 .
nm additions
and n°m multiplications

b) Solution of the sets of equations (60) for each harmonic number.

Solution by a direct method would require of the order p° multiplications

per harmonic or a total of

n w multiplications

c) Synthesis on each line by the operation Q as in equation (55).

As in step a) this leads at worst to

nem additions

and n2m multiplications
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In total the set of n X m equations (51) can be solvedbythe Fourier method

2 . .
3 + 2 nm operations. A direct method such as gauss

with about n m
elimination applied directly to (51) would require of the order
(n m)5 = n3m3 operations.

A Block Gauss—Seidel iteration on equation (51) would require the
order of ngi operations per iteration. The iterative method would be
faster if the number of iterations required was less than 'm', which is
a plausible situation.

The Fourier method is much more likely to be faster for problems in
which the transformation matrix (Q and Q_1 have symmetry, so that
the number of operations required in forming the product Q'Lq in step

3

a) and Q 9 1in step c) can be reduced to %; s where F is some factor
of reduction. In the special case discussed earlier when Sines and
Cosines are the components of Q, F is about 10.

The Fourier method will benefit further if special direct methods
are available for the solution of equation (60) in step b). In the case
that the matrix operator in equation (60) can be diagonalised by the same
similarity transformation for every value of %k then equation (60) can
itself be solved by the Fourier technique. This would require of the
worst of the order n(m? + m} instead of n w3, Also if (60) is
tridiagonal then (60) may be solved in the order of m operations for
every k or a total of the order n m operations. Furthermore if the
Block form of the matrix B is tridiagonal it is likely to be worth-

while to perform at least one step of Odd/Even reduction before intro-

ducing harmonic analysis, as described earlier in section L.
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11.2 Solution of Differential equations

An important class of differential equations which lead to matrices

of the form that can be solved by the Fourier method are those of the form

( L(x) +My)}o(x,y) - s(x,y) (61)

‘ where L(x) is a linear operator which may be a function of x only

‘ and M(y) a function of y only. The boundary conditions must be

specified on the surface of the rectangle,  « x < zl’ 0<yc< zg and

be of the form

Il
o

)
'—J
11
+
o’
S
It

cl(y) along x

’—J

(62)

Il
>

|
)
no
e
+
o’
S
|

= cz(y) along x

or the periodic condition @(x,y) = @(x + zl,y) where 815 85, b

1 b2
are constants ¢1» ¢, may be functions of y  and the form
%P
a5(x) g§-+b5(x) Q = 05(x) along y = 0
. (63)
au(x) 5 F bu(x)¢ - cu(x) along y = £,

or the periodic condition o(x,y) = ¢(x,y + 22) where all a, b, c may

depend on x.
Examples of equations satisfying these conditions are Laplaces, Poissons,

and Helmhotz equation in a rectangle where all parameters occuring in the

equation and boundary conditions are either constant, or depend on only one
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variable. The coordinate system may be any pair of coordinates from
Cartesian, polar, or spherical systems.

These are

<]

S V)
S S
! 1

(@)

=P

k? P =s

<

N
S
+

- It is interesting to note that in the case of Laplace's equation there
is no change in the complexity of the calculation if the nine point finite
difference module is used instead of the more common five point formula.

The biharmonic equation, §74 ® = 0, 1in the rectangle may also be
solved with the 25 point difference module [4].
If the index, i, corresponds to the variable x and, j, to the

variable y then the finite difference form of equation (61) will be

{I& + Mj]¢i3= S..

- (64)

where L.l and N% are difference operators acting on the indices i and
J respectively. Any finite difference mesh may be taken within the
rectangle and we suppose i=1,2, . . . .n and j=1,2, ..) m

The matrix form of equation (64) is of the form of equation (51) with
Bij a multiple of the identity matrix if i # j. The restricted form of
boundary‘conditions (62) ensures that Bll = B22 = cce = Bmm and the
condition is satisfied that all B.l:J can be diagonalized by the same
similarity transformation. The transformation matrix Q is the matrix

formed by all the eigenvectors of Bll which can be precalculated.

34




If the boundary conditions at y = 0, ze are also of the restricted
kind of equation (62) then x and y can be interchanged and the
transformation matrix can be formed from the eigenvectors of the matrix
equivalent of the operator Mb. Which choice is the better depends on a
balance between the symmetry of the eigenvectors and the length of the
eigenvector. The greater the symmetry the larger will be the reduction

factor F in the analysis and synthesis steps. 0On the other hand the
2

number of operations is EFQ and increases rapidly with the length of

the vector, that is to say the number of mesh points in the direction of
the analysis. To increase the value of F it will be advantageous to
have a uniform mesh spacing in the direction of the harmonic analysis.
If we are concerned with second order equations it appears that the
greatest amount of symmetry in the matrix Q occurs if its component
eigenvectors are sines and cosines which have zero slope or value or are

periodic at the boundaries. This implies that the operator in the chosen

2
. . . . 2
direction of analysis is simply {-95 + k) and the boundary conditions

dx
(62) are further restricted to be of the form

either =0 or = 0 along x = 0
(65)

either =0 or ¢ = 0 along x = ¢

e Y

1

or the periodic condition @(x,y) = ®(x + Zl,y)-

In certain cases it may be worthwhile performing a transformation
on the whole problem to achieve this simple form. FIG 2 shows
diagramatically the types of problems most suitable for solution by the

Fourier method.
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The Fourier method, providing as it does a fast method for the solution
of Poissons equation over a rectangle, can be used as the basis for various
block iterative schemes for more complex regions that can be divided up
into rectangles. One could consider for example a block 48-line iteration
analogous to the block 1-line and 2-line methods [5].

Conclusion

For the special problems involving (x,y) geometry in the rectangle
for which the Fourier method is well suited there seems little doubt that
it is a faster method of calculation than any direct or iterative method so
far suggested.

For other problems where the method can be applied but is not well
suited the position is less clear and we will have to await the results
of practical numerical experiments before the fastest method can be chosen.
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