

THE SOLUTION OF **LARGE SYSTEMS** OF ALGEBRAIC EQUATIONS

BY

JOHN M. PAVKOVICH

TECHNICAL REPORT NO. 33 (2)

DECEMBER 6, 1963

PREPARED UNDER CONTRACT Nonr-225(37)  
(NR-044-211)  
FOR  
OFFICE OF NAVAL RESEARCH

COMPUTER SCIENCE DIVISION  
School of Humanities and Sciences  
STANFORD UNIVERSITY





THE SOLUTION OF LARGE SYSTEMS OF ALGEBRAIC EQUATIONS

by

John M. Pavkovich

TECHNICAL REPORT NO. 33

December 6, 1963

PREPARED UNDER CONTRACT Nonr-225(37)

( NR-044-m )

OFFICE OF NAVAL RESEARCH

Reproduction in Whole or in Part is Permitted for  
any Purpose of the United States Government

COMPUTER SCIENCE DIVISION  
SCHOOL OF HUMANITIES AND SCIENCES  
STANFORD UNIVERSITY



THE SOLUTION OF LARGE SYSTEMS OF ALGEBRAIC EQUATIONS

by

John M. Pavkovich

The solution of a system of linear algebraic equations using a computer is not a difficult problem as long as the equations are not ill-conditioned and all of the coefficients can be stored in the computer. However, when the number of coefficients is so large that supplemental means of storage, such as magnetic tape, are required, the problem of solving the system in an efficient manner increases considerably. This paper describes a method of solution whereby such systems of equations can be solved in an efficient manner. The problems associated with ill-conditioned systems of equations are not discussed.

The method described on the following pages was implemented on the IBM 7090 at Stanford for equations with complex coefficients. Although all figures quoted related to tape movement and arithmetic speed are for this computer, the ideas behind the method are applicable to any computer which has the ability to read tape, write tape, and compute simultaneously.

Consider the system of equations

$$\begin{aligned} a_{11}x_1 + a_{12}x_2 + \dots + a_{1N}x_N &= y_1 \\ a_{21}x_1 + a_{22}x_2 + \dots + a_{2N}x_N &= y_2 \\ \cdot \\ \cdot \\ \cdot \\ a_{N1}x_1 + a_{N2}x_2 + \dots + a_{NN}x_N &= y_n \end{aligned} \tag{1}$$

The first step in the solution is to normalize the system, i.e., to multiply each equation by a factor which makes the magnitude of the largest coefficient in that equation approximately equal to 1. In the case of a binary machine, this factor should be a power of two so that no significant

figures are lost during this process. The reason for normalizing the system of equations is to increase the effectiveness of pivoting (interchanging equations during the solution process) and thus minimize the difficulties associated with roundoff error.

The method used to solve the system of equations is basically Gauss's method with partial pivoting. Briefly, this method is performed as follows. The first column of the system of equations is scanned to find the largest coefficient of  $x_1$  in absolute value. The equation containing this coefficient is then interchanged with the first equation (or row). A suitable multiple of this new first equation is then subtracted from each of the other equations in order to eliminate  $x_1$  from each of them. This process is then repeated using the coefficients of  $x_2$  and Eqs. 2 through N. Coefficients  $a_{22}$  through  $a_{N2}$  are examined to determine the largest in absolute value. The equation containing this coefficient is interchanged with the second equation and a suitable multiple is subtracted from each of the remaining equations. This same process of eliminating one variable at a time from all succeeding equations is repeated again and again until a system of equations is obtained in which the i-th equation contains only the unknowns  $x_1$  through  $x_N$ . Such a system of equations is

$$a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1N}x_N = y_1$$

$$a_{22}x_2 + a_{23}x_3 + \dots + a_{2N}x_N = y_2 \quad (2)$$

$$a_{N-1,N-1}x_{N-1} + a_{N-1,N}x_N = y_{N-1}$$

$$a_{NN}x_N = y_N$$

This so-called reduced system can now be solved by starting at the bottom and solving first for  $x_N$ , then  $x_{N-1}$  using Eq. (N-1) and the now known value of  $x_N$ . This process, known as backsolving, is continued until the entire solution is obtained.

Gauss's method as described above is inefficient when applied to a system of equations too large to fit in core storage. The reason is that

as each variable is eliminated from all subsequent equations, all the coefficients of these equations must be read from tape and the new coefficients written on tape. Moreover, while each coefficient is in core storage, it is used in only one arithmetic operation. What is needed is a method whereby numbers which must be read from tape and written on tape many times, are used in many arithmetic operations while they are in core storage. This can be accomplished by applying Gauss's method in a more subtle fashion in which successive columns of the reduced system are obtained rather than successive rows. This is achieved as follows.

Consider again the system of equations (1). Assume that it has been normalized. As with the ordinary form of Gauss's method, the first column of coefficients is examined to locate the first pivotal element, i.e., the numerically largest coefficient of  $x_1$ . The location of this element is recorded and this coefficient is interchanged with  $a_{11}$ . It is necessary to remember this interchange since this same interchange must be performed in all subsequent columns to accomplish the interchange of the first equation with the equation containing the largest coefficient of  $x_1$ . After the interchange has been performed,  $a_{11}$  is the first column of the reduced system of equations, and will not be involved in any more numerical operations until the backsolving is performed. The remaining elements in column 1, i.e.,  $a_{21}$  through  $a_{N1}$ , are now divided by  $a_{11}$ . The result of this operation will be denoted by  $b_{11}$  and these numbers will be referred to as multipliers since in terms of Gauss's method,  $b_{11}$  represents the factor by which the first equation is multiplied when it is used to eliminate  $x_1$  from the i-th equation.

Thus, we have

$$b_{11} := \frac{a_{11}}{a_{11}} \quad (i := 2, 3, \dots, N) \quad . \quad (3)$$

The  $b_{11}$ 's will be used in processing all of the remaining columns.

The reduction of the second column begins by performing the interchange associated with column 1. The coefficients  $a_{22}$  through  $a_{N2}$  are then processed using the relation

$$a_{12}^{\text{NEW}} := a_{12}^{\text{OLD}} - b_{11} a_{12} \quad (i := 2, \dots, N) \quad . \quad (4)$$

In terms of Gauss's method, these are the calculations which occur in the second column when  $x_1$  is eliminated from Eqs. 2 through N. The elements  $a_{22}$  through  $a_{N2}$  are now examined to find the second pivotal element. Its location is recorded and it is interchanged with  $a_{22}$ . Elements  $a_{12}$  and  $a_{22}$  are now the second column of the reduced system of equations. Elements  $a_{32}$  through  $a_{N2}$  are divided by  $a_{22}$  to obtain the second column of multipliers. The second set of multipliers will be used to process all remaining columns.

The pattern for obtaining the successive columns of the reduced systems of equations is now established. Each column is taken in order and reduced using the interchanges and multiplier columns associated with all of the previous columns. The operation reducing the k-th column with the j-th column of multipliers is

$$a_{ik}^{\text{NEW}} := a_{ik}^{\text{OLD}} - b_{ij} a_{jk} \quad (j < k; i := j + 1, j + 2, \dots, N) \quad (5)$$

Note that (4) is just a special case of (5) with  $j := 1$  and  $k := 2$ . After the k-th column has been processed using multiplier columns 1 through  $k - 1$ , elements  $a_{kk}$  through  $a_{Nk}$  are examined to find the k-th pivotal element. Its location is recorded and it is interchanged with  $a_{kk}$ . Elements  $a_{k+1,k}$  through  $a_{Nk}$  are then divided by  $a_{kk}$  to obtain the k-th column of multipliers.

To obtain the complete reduced system of equations, the operations indicated above are carried out until all the columns have been reduced. The right-hand side is reduced in exactly the same way that the N-th column is reduced. The result of these operations will be a reduced system of equations of structure (2). Note that columns of multipliers will form a lower triangular matrix:

$$\begin{matrix} b_{21} \\ b_{31} & b_{32} \\ b_{41} & b_{42} & b_{43} \\ \cdot & \cdot & \cdot \\ b_{N1} & b_{N2} & b_{N3} & \cdot & b_{N,N-1} \end{matrix}$$

Associated with each column of multipliers is an interchange which must be performed before that column of multipliers is applied.

It should be clear from the preceding discussion that the numbers which are used again and again in performing the reduction are the multipliers. Thus these numbers must be repeatedly read from tape if there is insufficient room for all of them in core storage. However, a little thought will show that it is permissible to process more than one column at a time with the same column of multipliers. This means that while a column of multipliers is in core storage, we should process enough columns with it to allow the next column of multipliers to be read from tape. With a judicious choice of the number of columns one chooses to reduce simultaneously, it is possible to overlap almost all tape movement with computing and still keep the amount of core storage required to a minimum.

For the IBM 7090, the number of columns,  $K$ , to be processed simultaneously can be arrived at as follows: The time required to perform arithmetic operations and to read or write tape are as follows:

|                                                                |                           |
|----------------------------------------------------------------|---------------------------|
| Floating Multiplication                                        | 24 $\mu$ s (microseconds) |
| Floating Addition or Subtraction                               | 14 $\mu$ s                |
| Read and Write Tape<br>(729-IV Tape Drive 556 Characters/Inch) | 100 $\mu$ s/word          |
| Pass a Record Gap                                              | 7300 $\mu$ s              |

From (5) it can be seen that it is necessary to perform one multiplication and one subtraction per multiplier element per column being processed. Here we are assuming the coefficients to be real. If each column of multipliers is written as one record, then the following relation is the criterion we wish to satisfy:

$$\text{Compute Time} \geq \text{Tape Read Time} \quad (7a)$$

$$K(M + 1) (24\mu\text{s} + 14\mu\text{s}) \geq M \cdot 100\mu\text{s} + 7300\mu\text{s} \quad , \quad (7b)$$

where  $K$  = numbers of columns being reduced simultaneously, and  $M$  = length of multiplier column being read. By solving for  $K$ , we find

$$K \geq 2.63 (M/M+1) + 192/(M+1) . \quad (8)$$

From the above relation, we see that  $K$  should certainly be 3 or larger.

A choice of 6 or 8 would probably be the most reasonable since the record gaps would introduce some lost time only when the length of multipliers became less than 30 or 40. In the case of complex coefficients the calculation is quite similar. For the program written at Stanford, 4 columns were used.

If the ideas put forth thus far are implemented in a program, it would proceed as follows. Three tapes are required which will be denoted as below:

IT = Input Tape. This tape contains the matrix describing the system of equations to be solved. It is assumed that the system of equations has been normalized and that the matrix is stored by columns on this tape.

MT = Multiplier Tape. This tape will contain all of the multipliers at the conclusion of the reduction process.

RST = Reduced System Tape. This tape will contain the columns of the reduced system at the conclusion of the reduction process.

It will be seen that the program as described below possesses one major difficulty, namely, that there may be some delay while the MT tape rewinds. A method of overcoming this difficulty will be described subsequently.

The program proceeds as follows:

- 1: Read the first K columns of the system of equations from IT into core storage.
- 2: Reduce these K columns until the first K columns of the reduced system and the first K columns of multipliers are obtained.
- 3: Write the K columns of multipliers on MT and rewind it.
- 4: Write the K columns of the reduced system on RST.
- 5: Read the next K columns of the system of equations from IT into core storage.
- 6: Reduce these K columns using the multipliers stored on MT. During this process, all of the multipliers which have been previously written on MT will be read.
- 7: Further reduce these K columns to obtain K more columns of the reduced system and K more columns of multipliers.

8: Write the K new columns of multipliers on MT and rewind it.

9: Write the K new columns of the reduced system on RST.

10: If more columns remain on IT, go to step 5.

To solve the system of equations for some particular right-hand side, one reduces this right-hand side by processing it with all of the multipliers on MT. The reduced system is then backsolved with this reduced RHS to obtain the solution. During the backsolution process it is necessary to backspace RST before reading each column since they are required in the reverse order from that on the tape. If one has to backsolve the system many times for many different right-hand sides, it is wise to write a tape of the reduced system matrix with the columns in the order in which they are required during backsolving. This can be done the first time the system is backsolved.

As stated previously, the program described above wastes considerable time waiting for the MT to rewind. However, this difficulty can be overcome by using extra multiplier tapes in such a fashion that a tape is always available with the correct column of multipliers ready to be read into core storage. One possible way of doing this using a total of three multiplier tapes will be described here. These three tapes are denoted MT, MT1, MT2. To be effective, this scheme requires two channels.

Tapes MT and MT1 are on Channel A and MT2 is on Channel B. Table I describes how the tapes are used. Here K, the number of columns reduced at one time, is 4. By studying Table I, it will be seen that MT contains approximately one-half of the multiplier columns. The remaining columns of multipliers are on either MT1 or MT2. Consider line 10 in Table I. At this point columns 1-12 have been reduced. Multiplier columns 1-8 are on MT and multiplier columns 9-12 are on MT1. Columns 13-16 are now read from the input tape and processed using multiplier columns 1-8. When this is complete, the rewinding of MT is initiated. Columns 13-16 are then further processed using multiplier columns 9-12. While each of these multiplier columns is in core storage, it is copied onto MT2. Since MT1 and MT2 are on different channels it is possible to read multipliers from MT1, write multipliers on MT2, and compute, all simultaneously. After multiplier columns 9-12 have been used, columns 13-16 are further processed to obtain columns 13-16 of the reduced system and

multiplier columns 13-16. The columns of the reduced system are written on RST and multiplier columns 13-16 are written on MT2. The MT1 and MT2 are now rewound. At this point, the configuration of the tapes is that shown on line 13 of Table I.

The program is now ready to begin processing columns 17-20. These 4 columns are read from IT and processed using multiplier columns 1-8 from MT. Multipliers from MT2 are now used to process the 4 columns in core. While each multiplier column 9, 10, 11, and 12 is in core, it is copied onto MT. Since MT and MT2 are on different channels, there is no delay in the program. As soon as multiplier 12 has been written on MT, it is rewound. While multiplier columns 13-16 are in core, they are written on MT1. Columns 17-20 are then further processed to obtain 4 more columns of the reduced system and 4 more columns of multipliers. The 4 columns of the reduced system are written on RST and the 4 columns of multipliers are written on MT1. Tapes MT1 and MT2 are then rewound and the tapes are in the configurations indicated on line 16 of Table I. The reader should now be able to make his way through Table I.

When all the columns on IT have been processed, it is necessary to copy the multipliers from MT1 or MT2 onto MT if one wants one tape with all of the multiplier columns on it. This will delay the program slightly, but the delay is of little significance when compared to the time required for the entire reduction process.

The program written at Stanford performs the reduction as described above. It also has the capability to compute residues using double precision and iterate the solution to obtain more accurate results. Timing experiments were performed using this program and some representative results are indicated in Table II. A millisecond core clock on the IBM 7090 was used to measure the elapsed time so the measurements are quite accurate. It must be confessed, however, that the results are not exactly reproducible. The reasons for this are related to tape. The start and stop times of various tapes are probably not reproducible from one experiment to another. Also, any tape error further introduces differences since the program is delayed while the tape error is corrected.

TABLE I

|    | Columns Being Processed | Channel A<br>MT | Channel A<br>MT1 |         | Channel B<br>MT2 |         |
|----|-------------------------|-----------------|------------------|---------|------------------|---------|
|    |                         |                 | Reading          | Writing | Reading          | Writing |
| 1  | 1-4                     |                 | ---              | ---     | ---              | ---     |
| 2  |                         |                 |                  |         |                  |         |
| 3  |                         | 1-4             |                  | ---     | ---              | ---     |
| 4  |                         | 1-4             | ---              |         |                  | ---     |
| 5  | 5-8                     |                 |                  |         |                  |         |
| 6  |                         | 1-4             | ---              |         |                  | 5-8     |
| 7  |                         | 1-4             |                  | ---     | 5-8              |         |
| 8  | 9-12                    |                 |                  |         |                  |         |
| 9  |                         | 1-8             |                  | 9-12    | 5-8              |         |
| 10 |                         | 1-8             | 9-12             |         |                  | ---     |
| 11 | 13-16                   |                 |                  |         |                  |         |
| 12 |                         | 1-8             | 9-12             |         |                  | 9-16    |
| 13 |                         | 1-8             |                  | ---     | 9-16             |         |
| 14 | 17-20                   |                 |                  |         |                  |         |
| 15 |                         | 1-12            |                  | 13-20   | 9-16             |         |
| 16 |                         | 1-12            | 13-16            |         |                  | ---     |
| 17 | 21-24                   |                 |                  |         |                  |         |
| 18 |                         | 1-12            | 13-16            |         |                  | 13-24   |
|    |                         | ETC.            |                  |         |                  |         |

## Arrangement of Tape Storage During the Reduction Process

TABLE II

| N   | Reduction and Solution<br>for 1 RHS (no Iterations) | Solution for 2nd<br>RHS (no Iteration) | Iteration |
|-----|-----------------------------------------------------|----------------------------------------|-----------|
| 40  | 11.9 sec                                            | 0.44 sec                               | 0.70 sec  |
| 80  | 52.8 sec                                            | 2.47 sec                               | 5.32 sec  |
| 120 | 149.6 sec                                           | 4.59 sec                               | 10.93 sec |
| 160 | 327.8 sec                                           | 7.33 sec                               | 18.60 sec |
| 320 | 2398.2 sec                                          | 24.57 sec                              | ---       |

From the results of the timing experiments, it was possible to construct polynomials which give reasonably good estimates of the running time for solving a system of  $N$  equations. These polynomials are as follows:

(1) Reduction and solution for 1 RHS with no iterations:

$$T = (0.000068)N^3 + (0.0012)N^2 + (0.125)N + (0.425) \quad (9a)$$

(2) Solution for a second RHS with no iterations:

$$T = (0.000195)N^2 + (0.0144)N + (0.078) \quad (9b)$$

(3) Each iteration:

$$T = (0.000629)N^2 + (0.015)N + (0.095) \quad (9c)$$

Using polynomial (9a), one estimates that the time required to solve 1000 simultaneous equations with complex coefficients would be about 19 hours. A program to solve equations with real coefficients would require about 30% of this time. Although the numerical operations would require only one-fourth as much time, there is no decrease in the amount of bookkeeping required.

In principle, the program written at Stanford is capable of solving 1000 or more simultaneous equations. However, the use of the present program to solve a system larger than about two or three hundred is rather risky, since the tape routines are not very sophisticated. In their present form, the tape routines make 10 attempts to correct writing errors and 10 attempts to correct reading errors. If the routines are unsuccessful in correcting the tape error, the program halts and the whole computation must be restarted from the beginning. It would be better if the program were able to salvage as much of the computation as possible after encountering bad tape. This could be accomplished by using an extra tape on which a copy of all multipliers and reduced columns was written, so that if any tape failures occurred, the program could continue after new tapes were mounted. This would increase the running time slightly, but it would be well justified by the increased reliability.

SUBROUTINE GAUSS and its associated subroutines are now described briefly and listed in either FORTRAN or FAP.

## SUBROUTINE GAUSS

(NSYS, ISOLVD, KITER, EPS, ANS1, ANS2, RHS1, RHS2,  
KCOEF, KCOPY, KMULT, KT1, KT2, KT3, ISING)

Subroutine Gauss solves a system of up to 500 simultaneous algebraic equations with complex coefficients. The limit of 500 is determined only by the array size in the subroutine and one could increase the maximum allowable size by simply changing the DIMENSION statement and the IF statement which checks to see that the array size is not exceeded.

The arguments of subroutine Gauss are as follows:

**NSYS** = size of the system to be solved. If NSYS exceeds the array size, a message is printed on-line to save the tape containing the system of equations. The subroutine then rewinds the tape containing the system of equations and then pauses before calling EXIT.

**ISOLVD** = an integer variable used to indicate whether the system has been previously solved and that only a new right side is to be considered. If ISOLVD is equal to 1, the reduction process is not performed and the program assumes that the reduced system of equations and the multiplier matrix are available on tapes KT1 and KMULT respectively. If any iterations are required, the program also assumes that a copy of the matrix is available on tape KCOPY. If ISOLVD is not equal to 1, the entire reduction process is performed.

**KITER** = the maximum number of times the program is permitted to iterate and correct the solution. During the iteration process, the error is measured by the maximum change in any unknown divided by the maximum of the unknowns, i.e.,

$$\text{error} = \frac{\text{maximum } |\Delta x_i|}{\text{maximum } |x_i|} .$$

The iteration process stops as soon as either (1) the error is less than EPS, the accuracy criteria, (2) the error for the last iteration is greater than for the previous iteration, or (3) KITER iterations have been performed.

**EPS** = accuracy criteria for the iteration process. See KITER .

**ANS1, ANS2** = one-dimensional arrays which represent the real and imaginary parts of the answer respectively.

**RHS1, RHS2** = one-dimensional arrays which represent the real and imaginary part of the right-hand side respectively.

The following 6 arguments of SUBROUTINE GAUSS are logical tape numbers and the purpose of each is described below. In order to perform the reduction efficiently, the program requires that tape KT1 be on a channel different from the channel to which KMULT, KT2, and KT3 are attached. The program also requires that KCOEF and KCOPY be on different channels. If these restrictions are not met, the program prints out a message (off-line) and returns with ISING equal to 4.

**KCOEF** = the logical tape which contains the matrix describing the system of equations to be solved. The program assumes that the matrix has been previously normalized and that the matrix is stored on this tape by columns. Each column is written as one logical record by a statement of the form

WRITE TAPE NCOEF, (A1(K),A2(K),K=1,NSYS,1)

where A1 and A2 are the real and imaginary parts respectively of one column of matrix elements.

**KCOPY** = a logical tape on which SUBROUTINE GAUSS writes a copy of the matrix contained on tape KCOEF. During the iteration process, the entire matrix must be used in computing the residues. In order to overlap the tape reading with computing, it is necessary to have a copy of the matrix written by the I/O routines used by SUBROUTINE GAUSS.

**KMUL**T = a logical tape used during the reduction process. At the conclusion of the reduction process, this tape will contain the multiplier matrix. This **lower** triangular matrix will have been written by the I/O routines used by GAUSS and thus this tape cannot be read by **FORTRAN** tape statements.

**KT1** = a logical tape used during the reduction process. At the conclusion of the reduction process and the initial backsolving, this tape will contain the reduced system matrix. Again, this tape has been written by the I/O routines associated with SUBROUTINE GAUSS.

**KT2, KT3** = logical tapes used by SUBROUTINE GAUSS. These tapes are used as scratch tapes during the reduction process.

**ISING** = an integer variable used to indicate the result achieved by SUBROUTINE GAUSS. **ISING** will normally be equal to 0. **However, if** during the reduction process a pivotal element is encountered which is less than  $1.0 \times 10^{-15}$  or greater than  $1.0 \times 10^{+15}$ , **ISING** is set **equal** to 1 or 2 respectively and control is returned to the calling program. Also, as indicated previously, **ISING** is set equal to 4 if the channel requirements for the tapes are not met.

Several subroutines are used by SUBROUTINE GAUSS in solving the system of equations. The function, name, and argument list of each is as follows:

### **SUBROUTINE SAVEIT**

This subroutine has no arguments and is called by GAUSS whenever an uncorrectable tape error occurs. The subroutine should be written by the user and could call EXIT or take any other action deemed appropriate.

## **SUBROUTINE RSTART (NRUN)**

Since SUBROUTINE GAUSS may **run** for a considerable length of time, it should possess the **capability** to be interrupted and restarted. This can be achieved by writing a routine called RSTART. If sense switch 6 is down, RSTART is called periodically by GAUSS. On returning to GAUSS, all tapes are repositioned if **NRUN** is equal to zero. If NRUN is positive, tapes are not repositioned before resuming the reduction process.

## **SUBROUTINE MDIVID (N, NA, IMAX, A1, A2)**

This subroutine performs the division necessary to compute a new column of multipliers. A1 and A2 are one-dimensional arrays, N elements in length, representing the real and imaginary parts respectively of one column of the matrix. MDIVID first interchanges element NA with element **IMAX**. Elements NA + 1 through N are then divided by element NA.

## **SUBROUTINE REDUCE (N, NA, IMAX, A1, A2, AM1, AM2)**

This subroutine is used to perform the reduction of one column of the matrix **with** the **NA<sup>th</sup>** column of multipliers. In the argument list above, N represents the order of the system, NA indicates which column of multipliers is being used, and **IMAX** indicates which element is to be interchanged with element NA before processing. A1 and A2 are one-dimensional arrays representing the real and imaginary parts of the matrix column respectively, and **AM1** and **AM2** are one-dimensional arrays representing the real and imaginary parts respectively of the column of multipliers.

## **SUBROUTINE DETER (D1, D2, DET1, DET2, NB2)**

As the system of equations is reduced, the determinant is computed by multiplying together the diagonal elements of the reduced system. This subroutine is used in performing this operation. **DET1** and **DET2** are the real and imaginary parts of the accumulated product and **D1** and **D2** are the real and imaginary parts of the next factor to be used. Because such an' extended product may exceed the range of floating point numbers the computer can handle, this subroutine carries the power of 2 separately as **NB2** in order to prevent any overflow or underflow.

## **SUBROUTINE BSOLVE (K, RHS1, RHS2, COL1, COL2, ANS1, ANS2)**

This subroutine is used during the backsolving operation. As with the reduction procedure, the backsolving is carried out by columns. **K** is an integer which indicates the particular element of the answer that is being obtained. **RHS1** and **RHS2** are one-dimensional arrays representing the real and imaginary parts respectively of the right-hand side. **COL1** and **COL2** are one-dimensional arrays representing the real and imaginary parts of column **K** of the reduced system. **ANS1** and **ANS2** are one-dimensional arrays representing the real and imaginary parts of the answer.

## **SUBROUTINE DPSET (NSYS, REMS, IMMS, RELS, IMLS)**

## **SUBROUTINE DPRES (RECOL, IMCOL, ANS1, ANS2)**

These two subroutines are the two entry points to the FAP coded subroutine used in the double precision calculation of the residues. As with the reduction and the backsolving, the residue calculation is performed by columns. The first entry point **DPSET** is used to indicate the size of the system, **NSYS**, and the location for the arrays for the most significant and least significant parts of the real and imaginary parts of the residue. The second entry **DPRES** is used during the calculation of the residues. **RECOL** and **IMCOL** are one-dimensional arrays containing the real and imaginary parts of one column of the matrix. **ANS1** and **ANS2** are the real and imaginary parts of the component of the answer associated with the column being processed.

## **CHAN (NT1, NT2, NOK)**

This FAP coded subroutine is used to check that the channel requirements for the tapes are satisfied. **NT1** and **NW** are two logical tape numbers. If these tapes are on different channels, **NOK** is set equal to 1. If they are on the same channel, **NOK** is set equal to zero.

## **BSET (NTAPE)**

### **BSPACE**

These two subroutines are two entry points to the FAP coded subroutine used to backspace logical tape NTAPE one physical record.

**BSET** is used to set up the backspace instruction for logical tape NTAPE, Thereafter, each time **BSpace** is called, tape NTAPE is backspaced one physical record.

## **RSETA (NTAPE, N, NRET, IQUIT)**

### **READA (NREAD, A1, A2)**

### **RCHKA**

These three subroutines are the three entry points to one of the tape reading routines used by GAUSS. A call to **RSETA** initializes the routine to read records from tape NTAPE. **N** is the size of the system being solved. **NRET** is obtained from an ASSIGN statement and is used to construct a transfer **instruction** which is later executed if an uncorrectable tape error is encountered. **QUIT** is an integer parameter which is used to indicate the nature of the trouble encountered if a return is made using **NRET**. A call to **READA** then initiates the tape reading. One physical record is read which should contain the last **NREAD** elements of each of the one-dimensional arrays **A1** and **A2**, i.e., elements **N-READ + 1** through **N**. A later call to **RCHKA** checks to see that the reading was completed satisfactorily. If an error has occurred, the tape is backspaced and the record is read again. Up to 5 attempts are made to read the tape correctly. If the routine is unsuccessful, **QUIT** is set equal to 2 to indicate an uncorrectable reading error and a return is made using the **NRET** transfer instruction.

**WSETA (NTAPE, N, NRET, IQUIT)**

**WRITEA (NWRITE, A1, A2)**

**WCHKA**

These three subroutines are the three entry points to one of the tape writing routines used by GAUSS. The arguments above are analogous to those for **RSETA**, **READA**, and **RCHKA** and the execution of the routine is similar except for the following: Before writing a record, the end of tape indicator is interrogated. If it is on, **QUIT** is set equal to 3 and a return is made using the **NRET** transfer instruction. If a tape redundancy check occurs, the tape is backspaced and blank tape is written before attempting to write the record again. Up to 10 attempts are **made** to write the record correctly. If the routine is **unsuccessful**, **QUIT** is set equal to 1 and a return is made using the **NRET** transfer instruction.

**RSETB (NTAPE, N, NRET, IQUIT)**

**READB (NREAD, A1, A2)**

**RCHKB**

**WSETB (NTAPE, N, NRET, IQUIT)**

**WRITEB (NWRITE, A1, A2)**

**WCHKB**

These subroutines are identical to the above routines ending in A-except for the name.

**RSETC (NTAPE, NRET, IQUIT)**

**READC (NREAD, A1, A2)**

**RCHKC**

**WSETC (NTAPE, NRET, IQUIT)**

**WRITEC (NWRITE, A1, A2)**

**WCHKC**

These subroutines are almost identical to the routines ending in A, the difference being that these routines read or write the first **NREAD** or **NWRITE** elements respectively of the arrays **A1** and **A2**.

```

SUBROUTINE GAUSS(NSYS,ISOLVD,KITER,EPS,ANS1,ANS2,RHS1,RHS2,
1      KCOEF,KCOPY,KMUL,T,KT1,KT2,KT3,ISING)*
C      THIS SUBROUTINE SOLVES A SYSTEM OF UP TO 500 SIMULTANEOUS
C      ALGEBRAIC EQUATIONS WITH COMPLEX COEFICIENTS USING GAUSS
C      REDUCTION. THE MATRIX ELEMENTS ARE STORED ON TAPE KCOEF
C      BY COLUMNS .
C      DIMENSION A1(500),A2(500),B1(500),B2(500),
1      C1(500),C2(500),D1(500),D2(500),
2      AM1(500),AM2(500),BM1(500),BM2(500),
3      RHS1(500),RHS2(500),ANS1(500),ANS2(500),IORDER(500)
N = NSYS
NCOEF = KCOEF
NCOPY = KCOPY
NMULT = KMUL
NT1 = KT1
NT2 = KT2
NT3 = KT3
IF (500 - N) 4,8,8
4      WRITE OUTPUT TAPE 6, 6, N
50      FORMAT(1H0,10X,29HARRAY SIZE EXCEEDED IN GAUSS./
1      1H0,10X,24HARRAY SIZE = 500 N = 14/
2      1H0,10X,21HEXECUTION TERMINATED.)
      PRINT 7, NCOEF
70      FORMAT(1H0,25H PLEASE SAVE LOGICAL TAPE 12,
1      42H. THIS PROGRAM WILL PAUSE WHEN COMPLETED.)
      REWIND NCOES
      PAUSE
      CALL EXIT
8      NITER = KITER
NTERR = 0
Rf-WIND NCOPY
REWIND YMUL
REWIND NT1
I F (ISOLVD - 1) 50,10,50
10      ITER = 0
      DO 20 K = 1,N,1
          C1(K) = RHS1(K)
          C2(K) = RHS2(K)
          ANS1(K) = 0 . 0
20      ANS2(K) = 0 . 0
      EHOLD1 = 1 . 0
      GO TO 3400
50      ISING = 0
EPSA = 1.0E-15
EPSB = 1.0E+15
NSAVE = NT1
C      CHECK COMPATABILITY OF TAPE ASSIGNMENTS.
      IQUIT = 0
      CALL CHAN(NT1,NMULT,NOK) .
      I F (NOK) 80,80,90
80      WRITE OUTPUT TAPE 6,160, NT1,NMULT
      IQUIT = 1
90      CALL CHAN(NT1,NT2,NOK)
      I F (NOK) 100,100,110
100     WRITE OUTPUT TAPE 6, 165, NT1,NT2
      IQUIT = 1
110     CALL CHAN(NT1,NT3,NOK)
      I F (NOK) 120,120,130
120     WRITE OUTPUT TAPE 6, 170, NT1,NT3
      IQUIT = 1
130     CALL CHAN(NCOEF,NCOPY,NOK)
      I F (NOK) 140,140,150
140     WRITE OUTPUT TAPE 6, 175, NCOEF,NCOPY

```

```

        IQUIT = 1
150      IF (IQUIT) 10000,200,155
155      ISING = 4
          WRITE OUTPUT TAPE 6, 180
          RETURN
1600FORMAT (1H0,25X,14HLOGICAL TAPE $12,5H AND I2,57H HAVE BEEN ASSIGNED
1ED TO KT1 AND KMULT RESPECTFULLY.  THESE/1H,35X,43HLOGICAL TAPE UNITS ARE ON THE SAME CHANNEL.)
1650FORMAT (1H0,25X,14HLOGICAL TAPE $12,5H AND I2,55H HAVE BEEN ASSIGNED
1ED TO KT1 AND KT2 RESPECTFULLY.. THESE/1H,35X,43HLOGICAL TAPE UNITS ARE ON THE SAME CHANNEL.)
1700FORMAT (1H0,25X,14HLOGICAL TAPE $12,5H AND I2,55H HAVE BEEN ASSIGNED
1ED TO KT1 AND KT3 RESPECTFULLY. THESE/1H,35X,43HLOGICAL TAPE UNITS ARE ON THE SAME CHANNEL.)
1750FORMAT (1H0,25X,14HLOGICAL TAPE $12,5H AND I2,59H HAVE BEEN ASSIGNED
1ED TO KCOEF AND KCOPY RESPECTFULLY. THESE/1H,35X,43HLOGICAL TAPE 2 UNITS ARE ON THE SAME CHANNEL.)
1800FORMAT (1H0,25X,79H THIS PROGRAM REQUIRES THAT TAPE KT1 BE ON A CHANNEL DIFFERENT FROM THAT USED BY/1H,35X,68HKMULT, YET 2, OR KT3. ALSO TAPES KCOEF AND KCOPY MUST BE ON DIFFERENT/1H,35X,9H CHANNELS.
3)
200      REWIND NCOEF
          REWIND NT2
          REWIND NT3
C      THE FOLLOWING STATEMENTS ARE NECESSARY TO MAKE THE
C      COMPILER HAPPY.
        IQUIT = 4
220      ASSIGN 6000 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
725      ASSIGN 6200 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
330      ASSIGN 6400 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
235      ASSIGN 6600 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
240      ASSIGN 6800 TO NRET
          GOT ON NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
245      ASSIGN 7000 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
250      ASSIGN 7200 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
255      ASSIGN 7400 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
260      ASSIGN 7600 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
265      ASSIGN 7800 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
270      ASSIGN 3300 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)
275      ASSIGN 8200 TO NRET
          GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
          | 7600,7800,8000,8200,8400,8600,8800)

```

```

280      ASSIGN 8400 TO NRET
        GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
1          7600,7800,8000,8200,8400,8600,8800)
785      ASSIGN 8600 TO NRET
        GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
1          7600,7800,8000,8200,8400,8600,8800)
290      ASSIGN 8800 TO NRET
        GO TO NRET, (6000,6200,6400,6600,6800,7000,7200,7400,
1          7600,7800,8000,8200,8400,8600,8800)
295      CONTINUE
C      'THE COMPUTATION AND REDUCTION CAN NOW BEGIN.
        NA = 1
        NB = 2
        NC = 3
        ND = 4
        DFT1 = 1.0
        DET2 = 2.0
        NB2 = 0
        DMAX = 0.0
        DMIN = 1.0
        WRITE TAPE NT3, (RHS1(K),RHS2(K),K = 1,N,1)

C      READ IN AND COPY ON TAPE NCOPY FOUR COLUMNS.  IF FEWER
C      THAN FOUR COLUMNS REMAIN, READ IN AND COPY THE REMAINING
C      COLUMNS.
400      ASSIGN 6000 TO NRET
        CALL WSETA(NCOPY,N,NRET,IQUIT)
        NWRITE = N
        IF (NA - N) 420,420,10000
          READ TAPE NCOEF, (A1(K),A2(K),K=1,N,1)
          NTEST = 1
          CALL WRITEA(NWRITE,A1,A2)
        IF (NB - N) 440,440,500
440      READ TAPE NCOEF, (B1(K),B2(K),K=1,N,1)
        CALL WCKHA
        NTEST = 2
        CALL WRITEA(NWRITE,B1,B2)
        IF (NC - N) 460,460,500
460      READ TAPE NCOFF, (C1(K),C2(K),K=1,N,1)
        CALL WCKHA
        NTEST = 3
        CALL WRITEA(NWRITE,C1,C2)
        IF (ND - N) 480,480,500
480      READ TAPE NCOEF, (D1(K),D2(K),K=1,N,1)
        CALL WCKHA
        NTEST = 4
        CALL WRITEA(NWRITE,D1,D2)
500      CALL WCKHA
        IF (NA - 1) 10000,2000,600
C      BEGIN REDUCTION OF COLUMNS USING MULTIPLIERS STORED
C      ON TAPE.
600      ASSIGN 6200 TO NRET
        CALL RSETA(NMULT,N,NRET,IQUIT)
        CALL WSETA(NMULT,N,NRET,IQUIT)
        ASSIGN 6400 TO NRET
        CALL RSETB(NT1,N,NRET,IQUIT)
        CALL WSETB(NT2,N,NRET,IQUIT)
        NREAD = N - 1
        M1 = 4*((NA - 4)/8) + 4
        M2 = 4*(NA/8) + 5
        MLAST = NA - 1
        CALL READA(NREAD,AM1,AM2)
        CALL RCKHA

```

```

NREAD = NREAD - 1
CALL READA(NREAD,BM1,BM2)
IMULT = 1
C 700      REDUCTION USING MULTIPLIERS IN AM1 AND AM2.
    IMAX = IORDER(IMULT)
    CALL REDUCE(N,IMULT,IMAX,A1,A2,AM1,AM2)
    IF (NB - N) 720,720,800
    720      CALL REDUCE(N,IMULT,IMAX,B1,B2,AM1,AM2)
    IF (NC - N) 740,740,800
    740      CALL REDUCE(N,IMULT,IMAX,C1,C2,AM1,AM2)
    IF (ND - N) 760,760,800
    760      CALL REDUCE(N,IMULT,IMAX,D1,D2,AM1,AM2)
C 800      INITIATE TAPE READING AND WRITING OF MULTIPLIER AND
C          REDUCTION TAPES
    IMULT = IYULT + 1
    NWRITE = NREAD
    NREAD = NREAD - 1
    IF (IMULT - M1) 820,840,880
    820      CALL RCKHA
    CALL READA(NREAD,AM1,AM2)
    GO TO 1200
    IF (IMULT - MLASTI 845,860,10000
    845      CALL RCKHA
    ~      C A L L READB(NREAD,AM1,AM2)
    GO TO 1200
    860      CALL RCKHA
    IF (ND - N) 870,1200,1200
    870      REWIND NYULT
    GO TO 1200
    IF (IMULT - MLAST) 880,980,1040
    880      CALL RCKKB
    IF (IMULT - M2) 900,940,970
    900      IF (IMULT - M1 - 1) 10000,905,920
    905      CALL WRITEA(NWRITE,BM1,BM2)
    CALL READB(NREAD,AM1,AM2)
    GO TO 1200
    920      CALL WCKHA
    CALL WRITEA(NWRITE,BM1,BM2)
    CALL READB(NREAD,AM1,AM2)
    GO TO 1200
    940      IF (M1 + 1 - M2) 945,950,10000
    945      CALL WCKHA
    950      IF (ND - N) 955,960,960
    955      REWIND NMULT
    960      CALL WRITEB(NWRITE,BM1,BM2)
    CALL RFADB(NREAD,AM1,AM2)
    GO TO 1200
    970      CALL WCKKB
    CALL WRITEB(NWRITE,BM1,BM2)
    CALL READB(NREAD,AM1,AM2)
    GO TO 1200
    980      CALL RCKKB
    REWIND NT1
    IF (MLAST - 8) 10000,1000,1020
    1000     CALL WCKHA
    CALL WRITEA(NWRITE,BM1,BM2)
    GO TO 1200
    1020     CALL WCKKB
    CALL WRITEB(NWRITE,BM1,BM2)
    GO TO 1200
    1040     IF (MLAST - 4) 10000,2000,1050
    1050     IF (MLAST - 8) 10000,1060,1100
    1060     CALL WCKHA

```

```

1080           IF (ND - N) 1080,2000,2000
               REWIND NMULT
               GO TO 2000
1100           CALL WCHKB
               GO TO 2000
C     REDUCTION USING MULTIPLIERS- IN BM1 AND BM2.
1200           IMAX = IORDER(IMULT)
               CALL REDUCE(N,IMULT,IMAX,A1,A2,BM1,BM2)
               IF (NB - N) 1220,1220,1400
1720           CALL REDUCE(N,IMULT,IMAX,B1,B2,BM1,BM2)
               IF (NC - N) 1240,1240,1400
1240           CALL REDUCE(N,IMULT,IMAX,C1,C2,BM1,BM2)
               IF (ND - N) 1260,1260,1400
1260           CALL REDUCE(N,IMULT,IMAX,D1,D2,BM1,BM2)
C     INITIATE TAPE READING AND WRITING OF MULTIPLIER ANC
C     REDUCTION TAPES.
1400           IMULT = IMULT + 1
               NWRITE = NREAD
               NREAD = NREAD - 1
               IF (IMULT - M1) 1420,1440,1480
1420           CALL RCHKA
               CALL READA(NREAD,BM1,BM2)
               GO TO 700
1444           IF (IMULT - MLAST) 1445,1460,10000
1445           CALL RCHKA
               CALL READB(NREAD,BM1,BM2)
               GO TO 700
1460           CALL RCHKA
               IF (ND - N) 1470,700,700
1470           REWIND NMULT
               GO TO 700
1480           IF (IMULT - MLAST) 1485,1580,1640
1485           CALL RCHKB
               IF (IMULT - M1 - 1) 1500,1540,1570
1500           IF (IMULT - M1 - 1) 10000,1505,1520
1505           CALL WRITEA(NWRITE,AM1,AM2)
               CALL READB(NREAD,BM1,BM2)
               GO TO 700
1520           CALL WCHKB
               CALL WRITEA(NWRITE,AM1,AM2)
               CALL READB(NREAD,BM1,BM2)
               GO TO 700
1540           IF (M1 + 1 - M2) 1545,1550,10000
1545           CALL WCHKB
               IF (ND - N) 1555,1560,1560
1555           REWIND NMULT
1560           CALL WRITEB(NWRITE,AM1,AM2)
               CALL READB(NREAD,BM1,BM2)
               GO TO 700
1570           CALL WCHKB
               CALL WRITEB(NWRITE,AM1,AM2)
               CALL READB(NREAD,BM1,BM2)
               GO TO 700
1580           CALL RCHKB
               REWIND NT1
               IF (MLAST - 8) 10000,1600,1620
1600           CALL WCHKB
               CALL WRITEA(NWRITE,AM1,AM2)
               GO TO 700
1620           CALL WCHKB
               CALL WRITEB(NWRITE,AM1,AM2)
               GO TO 700
1640           IF (MLAST - 4) 10000,2000,1650

```

```

1650      I F(MLAST - 8 1 10000,1660,1700
1660          CALL WCHKA
1670          IF (ND - N) 1680,2000,2000
1680              REWIND NMULT
1690              GO TO 2000
1700          CALL WCHKB
C  REDUCTION OF COLUMNS AFTER PROCESSING WITH MULTIPLIERS.
2000          IF (ND - N) 2010,2005,2005
2005          REWIND NT2
2010          ASSIGN 7000 TO NRET
2020          CALL WSETC(INT3,NRET,1CUT)
2030          PMAX = 0.0
2040          IMAX = NA
2050          DO 2040 K = NA,N,1
2060          COMP = ABSF(A1(K)) + ABSF(A2(K))
2070          I F(PMAX - COMP) 2020,2040,2040
2080          PMAX = COMP
2090          IMAX = K
2100          CONTINUE
2110          IORDER(NA) = IMAX
2120          NTEST = NA
2130          I F(EPSA - PMAX) 2060,2060,4000
2140          I F(PMAX - EPSB) 20709207094000
2150          CALL DETER(A1(IMAX),A2(IMAX),DET1,DET2,NB2)
2160          DMAX = MAX1F(DMAX,PMAX)
2170          DMIN = MIN1F(DMIN,PMAX)
2180          NWRITE = NA
2190          IF (NA - N) 2080,2400,10000
2200          CALL MDIVID(N,NA,IMAX,A1,A2)
2210          CALL WRITEC(NWRITE,A1,A2)
2220          CALL REDUCE(N,NA,IMAX,RHS1,RHS2,A1,A2)
2230          CALL REDUCE(N,NA,IMAX,B1,B2,A1,A2)
2240          CALL WCHKC
2250          PMAX = 0.0
2260          IMAX = NB
2270          DO 2140 K = NB,N,1
2280          COMP = ABSF(B1(K)) + ABSF(B2(K))
2290          I F(PMAX - COMP) 2120,2140,2140
2300          PMAX = COMP
2310          IMAX = K
2320          CONTINUE
2330          IORDER(NB) = IMAX
2340          NTEST = NB
2350          I F(EPSA - PMAX) 2160,2160,4000
2360          I F(PMAX - EPSB) 2170,2170,4000
2370          CALL DETER(B1(IMAX),B2(IMAX),DET1,DET2,NB2)
2380          DMAX = MAX1F(DMAX,PMAX)
2390          DMIN = MIN1F(DMIN,PMAX)
2400          NWRITE = NB
2410          IF (NB - N) 2180,2420,10000
2420          CALL MDIVID(N,NB,IMAX,B1,B2)
2430          CALL WRITEC(NWRITE,B1,B2)
2440          CALL REDUCE(N,NB,IMAX,RHS1,RHS2,B1,B2)
2450          CALL REDUCE(N,NA,IORDER(NA),C1,C2,A1,A2)
2460          CALL REDUCE(N,NB,IORDER(NB),C1,C2,B1,B2)
2470          CALL WCHKC
2480          PMAX = 0.0
2490          IMAX = NC
2500          DO 2240 K = NC,N,1
2510          COMP = ABSF(C1(K)) + ABSF(C2(K))
2520          I F(PMAX - COMP) 2220,2240,2240
2530          PMAX = COMP
2540          IMAX = K

```

```

2240          CC \TINUE
IORDER(NC) = IMAX
NTEST = NC
IF (FPSA - PMAX) 2260,2260,4000
I F(PMAX - FPSB) 2270,2270,4000
2270 CALL DETER(C1(IMAX),C2(IMAX),DET1,DET2,NB2)
DMAX = MAX1F(DMAX,PMAX)
DMIN = MIN1F(DMIN,PMAX)
NWRITE = NC
IF (NC - N) 2280,2440,10000
2280 CALL MDIVID(N,NC,IMAX,C1,C2)
CALL WRITFC(NWRITE,C1,C2)
CALL REDUCE(N,NC,IMAX,RHS1,RHS2,C1,C2)
CALL REDUCE(N,NA,IORDER(NA),D1,D2,A1,A2)
CALL REDUCE(N,NB,IORDER(NB),D1,D2,B1,B2)
CALL REDUCE(N,NC,IORDER(NC),D1,D2,C1,C2)
CALL WCHKC
PMAX = 0.0
IMAX = ND
DO 2340 K = ND,1
      COMP = ABSF(D1(K)) + ABSF(D2(K))
      I F(PMAX - COMP) 2320,2340,2340
      PMAX = COMP
      IMAX = K
2320      ~
CONTINUE
IORDER(ND) = IMAX
NTEST = ND
I F(FPSA - PMAX) 2360,2360,4000
I F(PMAX - EPSB) 2370,2370,4000
2360 CALL DETER(D1(IMAX),D2(IMAX),DET1,DET2,NB2)
DMAX = MAX1F(DMAX,PMAX)
DMIN = MIN1F(DMIN,PMAX)
NWRITE = ND
IF (ND - N) 2380,2460,10000
2380 CALL MDIVID(N,ND,IMAX,D1,D2)
CALL WRITEC(NWRITE,D1,D2)
CALL REDUCE(N,ND,IMAX,RHS1,RHS2,D1,D2)
CALL WCHKC
GO TO 2500
2400 CALL WRITEC(NWRITE,A1,A2)
CALL WCHKC
GO TO 2700
2420 CALL WRITEC(NWRITE,B1,B2)
CALL WCHKC
GO TO 2700
2440 CALL WRITEC(NWRITE,C1,C2)
CALL WCHKC
GO TO 2700
2460 CALL WRITEC(NWRITE,D1,D2)
CALL WCHKC
COTO 2700
C      WRITE NEW MULTIPLIERS ON TAPE.
2500      IF (NA - 1) 10000,2505,2520
2505      ASSIGN 6600 TO NRET
      CALL WSETA(NMULT,N,NRET,IQUIT)
      GO TO 2540
2520      ASSIGN 6800 TO NRET
      CALL WSETA(NT2,N,NRET,IQUIT)
2540      NWRITE = N - N A
      CALL WRITEA(NWRITE,A1,A2)
      CALL WCHKA
      NWRITE = N - M B
      CALL WRITEA(NWRITE,B1,B2)

```

```

        CALL WCHKA
        NWRITE = N - NC
        CALL WRITEA(NWRITE,C1,C2)
        CALL WCHKA
        NWRITE = N - ND
        CALL WRITEA(NWRITE,D1,D2)
        CALL WCHKA
C      CALL RSTART IF RESTART IS DESIRED.
2600      IF (SENSE SWITCH 6) 2610,2670
2610      CALL RSTART(NPUN)
2620      IF (NRUN) 10000,2620,2670
2620      REWIND NCOEF
2620      RE JIND NCOPY
2620      REWIND NMULT
2620      ASSIGN' 8600 TO NRET
2620      CALL RSETA(NCOPY,N,NRET,IQUIT)
2620      NREAD = N
2620      DO 2640 J = 1,ND,1
2620          CALL READA(NREAD,A1,A2)
2620          READ TAPE NCOEF,(B1(K),B2(K),K=1,N,1)
2620          CALL RCHKA
2620          READ TAPE NT3, (A1(K),A2(K),K = 1,N,1)

2640          ASSIGN 8800 TO NRET
2640          CALL RSFTC(NT3,NRET,IQUIT)
2640          NREAD = 0
2640          DO 2660 J = 1,ND,1
2640              NREAD = NREAD + 1
2640              CALL RFADC(NREAD,A1,A2)
2640              CALL RCHYC
2660          REWIND NT1
2660          REWIND NT2
2660          REWIND NMULT
2660          NTEMP = NT1
2660          NT1 = NT2
2660          NT2 = NTEMP
2660          NA = NA + 4
2660          NB = NA + 1
2660          NC = NB + 1
2660          ND = NC + 1
2660          GO TO 400
C      THE REDUCTION IS COMPLETE. PRINT THE VALUE OF THE DETERMINANT
C      AND THE MAXIMUM AND MINIYUM PIVOTAL ELEMENTS.
2700      TEMP = 1.0
2700      DO 2720 K = 1,N,1
2700          IF (IORDER(K) = K) 2715,2720,2715
2715          TEMP = -TEMP
2720          CONTINUE
2720          FN2 = FLOATF(NB2)
2720          KE1 = FN2/3.3219281
2720          KE2 = KE1
2720          EXPON = MODF(FN2,3.3219281)
2720          AMPL = TEMP*(2.0**EXPON)
2720          DET1 = AMPL*DET1
2720          DET2 = AMPL*DET2
2720          IF (DET1) 2745,2740,2745
2740          KE1 = 0
2740          GO TO 2755
2745          IF (ABS(DET1) - 1.0 1 27469275592750
2746          DET1 = 10.0*DET1
2746          KE1 = KE1 - 1
2746          GO TO 2745
2750          IF (10.0 - ABS(DET1)) 2751,2751,2755

```

```

2751           DET1 = DET1/10.0
2752           KE1 = KE1 + 1
2753           GO TO 2750
2755           I F(DET2) 2760,2756,2760
2756           KE2 = 0
2757           GO TO 2770
2760           I F(ABSF(DET2) - 1.0) 2761,2770,2765
2761           DET2 = 10.0*DET2
2762           KE2 = KE2 - 1
2763           GO TO 2760
2765           I F(10.0 - ABSF(DET2)) 2766,2770,2770
2766           DET2 = DET2/10.0
2767           KE2 = KE2 + 1
2768           GO TO 2765
2770           WRITE OUTPUT TAPE 6, 2775, DET1,KE1,DET2,KE2,DMAX,DMIN
27750FORMAT(1H0,25X,70HTHE GAUSSIAN REDUCTION IS COMPLETED. THE DETER
1MINANT OF THE MATRIX IS 1H,45X,18HREAL PART = F9.5,1HE,I4/
21H,45X,18HIMAGINARY PART = F9.5,1HE,14/1H0,25X,62HTHE MAGNITUDE
30F THE LARGEST PIVOTAL ELEMENT IS APPROXIMATELY 1PE9.2,1H./1H0,
425X,63HTHE MAGNITUDE OF THE SMALLEST PIVOTAL ELEMENT IS APPROXIMAT
5ELY 1PE9.2,1H.)
C           COPY ALL MULTIPLIERS ON TO THE MULTIPLIER TAPE.
2800           ASSIGN 7200 TO NRET
2801           CALL WSETA(NMULT,N,NRET,IQUIT)
2802           IF (N - 121 2860,2860,2820
2820           ASSIGN 7400 TO NRET
2821           CALL RSETB(NT2,N,NRET,IQUIT)
2822           IMULT = M2
2840           NWDS = N - IMULT
2841           CALL READB(NWDS,AM1,AM2)
2842           CALL RCHK
2843           CALL WRITEA(NWDS,AM1,AM2)
2844           CALL WCHKA
2845           IMULT = IMULT + 1
2846           I F(IMULT - NA) 2840,2860,2860
2860           NWRITE = N - NA
2861           I F(NWRITE) 10000,2940,2880
2880           CALL WRITEA(NWRITE,A1,A2)
2881           CALL WCHKA
2882           NWRITE = N - NB
2883           I F(NWRITE) 10000,2940,2900
2900           CALL WRITEA(NWRITE,B1,B2)
2901           CALL WCHKA
2902           NWRITE = N - NC
2903           I F(NWRITE) 10000,2940,2920
2920           CALL WRITEA(NWRITE,C1,C2)
2921           CALL WCHKA
2940           REWIND NT1
2941           REWIND NT2
2942           REWIND NMULT
2943           REWIND NCOEF
2944           REWIND NCOPY
2945           NT1 = NSAVE
C           BACKSOLVE THE REDUCED SYSTEM OF EQUATIONS. ALSO WRITE THE
C           REDUCED COLUMNS ON TAPE NT1 IN THE REQUIRED ORDER.
3000           CALL BSET(NT3)
3001           ASSIGN 7600 TO NRET
3002           CALL RSETC(NT3,NRET,IQUIT)
3003           ASSIGN 7800 TO NRET
3004           CALL WSETC(NT1,NRET,IQUIT)
3005           NREAD = N
3006           CALL BSPACE
3007           CALL READC(NREAD,AM1,AM2)

```

```

        CALL RCHKC
        CALL BSPACE
3040      NWDS = NREAD
        NREAD = NREAD - 1
        CALL WRITEC(NWDS,AM1,AM2)
        IF (NREAD) 10000,3080,3160
3060      CALL BSPACE
        CALL READC(NREAD,BM1,BM2)
3080      CALL BSOLVE(NWDS,RHS1,RHS2,AM1,AM2,ANS1,ANS2)
        CALL WCHKC
        IF (NREAD) 10000,3180,3100
3100      CALL RCHKC
        CALL BSPACE
        NWDS = NREAD
        NREAD = NREAD - 1
        CALL WRITEC(NWDS,BM1,BM2)
        IF (NREAD) 10000,3140,3120
3120      CALL BSPACE
        CALL READC(NREAD,AM1,AM2)
3140      CALL BSOLVE(NWDS,RHS1,RHS2,BM1,BM2,ANS1,ANS2)
        CALL WCHKC
        IF (NREAD) 10000~3180~3160
3160      CALL RCHKC
        CALL BSPACE
        GO TO 3040
3180      REWIND NT1
        REWIND NT3
        ITER = 0
        EHOLD1 = 1 . 0
        READ TAPE NT3,(C1(K),C2(K),K= 1,N,1)
        REWIND NT3
        IF (NITER) 3190,3190,3200
3190      RETURN
C      COMPUTE RFSIDUES USING DOUBLE PRECISION.
3300      ITER = ITER + 1
        ASSIGN 8000 TO NRET
        CALL RSETA(NCOPY,N,NRET,IQUIT)
        CALL DPSET(N,RHS1,RHS2,D1,D2)
        DO 3220  K=1,N,1
          RHS1(K) = C1(K)
          RHS2(K) = C2(K)
          D1(K) = 0.0
          D2(K) = 0.0
3220      NREAD = N
        CALL READA(NREAD,AM1,AM2)
        ICOL = 1
3240      IF (ICOL - N) 3260,3250,3320
3250      CALL RCHKA
        GO TO 3370
3260      CALL RCHKA
        CALL READA(NREAD,BM1,BM2)
3270      CALL DPRES(AM1,AM2,ANS1(ICOL),ANS2(ICOL))
        ICOL = ICOL + 1
        IF (ICOL - N) 3290,3280,3320
3280      CALL RCHKA
        GO TO 3300
3290      CALL RCHKA
        CALL READA(NREAD,AM1,AM2)
3300      CALL DPRES(BM1,BM2,ANS1(ICOL),ANS2(ICOL))
        ICOL = ICOL + 1
        GO TO 3240
3320      REWIND NCOPY
C      REDUCE THE NEWRIGHT HAND SIDE.

```

```

3400      ASSIGN 8200 TO NRET
          CALL RSETA(NMULT,N,NRET,IQUIT)
          NREAD = N - 1
          CALL READA(NREAD,AM1,AM2)
3420      IMULT = N - NREAD
          NREAC = NREAD - 1
          IF (NREAD) 3520,3440,3450
3440      CALL RCHKA
          GO TO 3460
3450      CALL RC 1KA
          CALL READA(NREAD,BM1,BM2)
3460      CALL REDUCE(N,IMULT,IORDER(IMULT),RHS1,RHS2,AM1,AM2)
          IMULT = N - NREAD
          NREAD = NREAD - 1
          IF (NREAD) 3520,3480,3490
3480      CALL RCHKA
          GO TO 3500
3490      CALL RCHKA
          CALL READA(NREAD,AM1,AM2)
3500      CALL REDUCE(N,IMULT,IORDER(IMULT),RHS1,RHS2,BM1,BM2)
          GO TO 3420
3520      REWIND NMULT
          BACK-SOLVE AND CORRECT SOLUTION.
3600      ASSIGN 8400 TO NRET
          CALL RSETC(NT1,NRET,IQUIT)
          NREPD = N
          CALL READC(NREAD,AM1,AM2)
3620      NWDS = NREAD
          NREAD = NREAD - 1
          IF (NREAD) 3720,3640,3650
3640      CALL RCHKC
          GO TO 3660
3650      CALL RCHKC
          CALL READC(NREAD,BM1,BM2)
3660      CALL BSOLVE(NWDS,RHS1,RHS2,AM1,AM2,A1,A2)
          NWDS = NREAD
          NREAD = NREAD - 1
          IF (NREAD) 3720,3680,3690
3680      CALL RCHKC
          GO TO 3700
3690      CALL RCHKC
          CALL READC(NREAD,AM1,AM2)
3700      CALL BSOLVE(NWDS,RHS1,RHS2,BM1,BM2,A1,A2)
          GO TO 3620
3720      REWIND NT1
          DO 3740 K = 1,N,1
              B1(K) = ANS1(K)
              B2(K) = ANS2(K)
              ANS1(K) = ANS1(K) + A1(K)
              ANS2(K) = ANS2(K) + A2(K)
3740      IF (NITER) 3760,3760,3780
3760      RETURN
3780      IF (ITER) 3760,3200,3800
3800      RMAX = 0.0
      EMAX = 0.0
      DO 3840 K = 1,N,1
          RMAX = MAX1F(RMAX,ABS(ANS1(K)),ABS(ANS2(K)))
          EMAX = MAX1F(EMAX,ABS(ANS1(K) - B1(K)),
                        ABS(ANS2(K) - B2(K)))
3840      1
          RERR = EMAX/RMAX
          IF (RERR-EPS) 3860,3860,3880
3860      WRITE OUTPUT TAPE 6, 3940, ITER,RERR,EPS
          RETURN

```

```

3880      I F(EHOLD1 - RERR) 3890,3890,3900
3890      WRITE OUTPUT TAPE 6, 3945,  ITER,RERR,EHOLD1,EPSS
3900      RETURN
3900      I F(NITER - ITER) 3910,3910,3920
3910      WRITE OUTPUT TAPE 6, 3950,  ITER,RERR,EPSS,EHOLD1
3920      RETURN
3920      EHOLD1 = RERR
3920      GO TO 3200
39400FORMAT(1H0,25X,48HTHF) ACCURACY DESIRED HAS BEEN ESTABLISHED AFTER
1 12,26H ITERATIONS. THE RELATIVE/1H,35X,9HERROR IS 1PE9.2,
234H. THE RELATIVE ERROR DESIRED WAS 1PE9.2,1H.)
39450FORMAT(1H0,25X,44HTHE) ITERATIVE PROCEDURE IS NOT CONVERGING. 12,
131H ITERATIONS HAVE BEEN COMPLETED/1H ,35X,38H BUT THE RELATIVE ERR
2QR INCREASED FROM 1PE9.2,4H TO 1PE9.2,7H DURING/1H,35X,52HTHE LAS
3T ITERATION. THE RELATIVE ERROR DESIRED WAS 1PE9.2,1H.)
39500FORMAT(1H0,25X,4HTHE) 12,65H ITERATIONS ALLOWED HAVE BEEN COMPLETE
1D BUT THE RELATIVE ERROR IS/1H ,35X,6H STILL 1PE9.2,24H WHILE THAT
2DESIRED WAS 1PE9.2,15H. THE RELATIVE/1H,35X,37HERROR FOR THE PRE
3VIOUS ITERATION WAS 1PE9.2,1H.)
4000      WRITE OUTPUT TAPE 6, 4040,  NTEST,PMAX,EPSS1,EPSSB
4000      ISING = 1
4000      I F(EPSS3 - PMAX) 4020,4020,4030
4020      ISING = 2
4030      RETURN
40400FORMAT(1H1,25X,68HTHE) BOUNDS FOR PIVOTAL ELEMENTS WERE EXCEEDED I
1N DETERMINING PIVOTAL/1H,35X,8HELEMENT 13,43H. THE MAGNITUDE OF
2THIS PIVOTAL ELEMENT IS/1H,35X,14H APPROXIMATELY 1PE9.2,33H. THIS
3 PROGRAM REQUIRES THAT ALL/1H,35X,29H PIVOTAL ELEMENTS LIE BETWEEN
4 1PE9.2,5H AND 1PE9.2,1H.)
C      PROCEDURES FOR CORRECTING TAPE ERRORS. IQUIT ASSUMES THE
C      VALUES 1,2, OR 3 ACCORDING TO THE DIFFICULTY ENCOUNTERED.
C          IQUIT = 1      UNCORRECTABLE WRITING ERROR
C          IQUIT = 2      UNCORRECTABLE READING ERROR
C          IQUIT = 3      SHORT TAPE
C      WRITING ERROR ON TAPE NCOPY DURING COPYING OF INPUT COLUMNS.
6000      NGO = IQUIT
6000      MTERP = NCOPY
6000      GO TO (9500,10000,9700,225),NGO
C      READING OR WRITING ERROR ON TAPE NMULT DURING REDUCTION.
6700      NGO = IQUIT
6700      MTERP = NMULT
6700      GO TO (9500,9600,9700,230),NGO
C      READING OR WRITING ERROR ON TAPE NT1 OR NT2 DURING REDUCTION.
6400      NGO = IQUIT
6400      MTERP = NT1
6400      NTERR = NT2
6400      GO TO (9500,9600,9700,235),NGO
C      WRITING ERROR ON TAPE NMULT DURING MULTIPLIER WRITING.
6600      NGO = IQUIT
6600      YTERR = NMULT
6600      GO TO (9500,10000,9700,240),NGO
C      WRITING ERROR ON TAPE NT2 DURING MULTIPLIER WRITING.
6800      NGO = IQUIT
6800      MTERP = NT2
6800      GO TO (9500,10000,9700,245),NGO
C      WRITING ERROR ON TAPE NT3 DURING REDUCEC COLUMN WRITING.
7000      NGO = IQUIT
7000      MTERP = NT3
7000      GO TO (9500,10000,9700,250),NGO
C      WRITING ERROR ON TAPE NMULT DURING MULTIPLIER COPYING.
7200      NGO = IQUIT
7200      MTERP = NMULT
7200      GO TO (9500,10000,9700,255),NGO

```

C 7400 READING ERROR ON TAPE NT2 DURING MULTIPLIER COPYING.  
 NGO = IQUIT  
 MTERR = NT2  
 GO TO (10000, 9600, 10000, 260), NGO  
 C 7600 READING ERROR ON TAPE NT3 DURING INITIAL BACKSOLVING.  
 NGO = IQUIT  
 MTERR = NT3  
 GO TO (10000, 9600, 10000, 265), NGO  
 C 7800 WRITING ERROR ON TAPE NT1 DURING INITIAL BACKSOLVING.  
 NGO = IQUIT  
 MTERR = NT1  
 GO TO (9500, 10000, 9700, 270), NGO  
 C 8000 READING ERROR ON TAPE NCOPY DURING ITERATION.  
 NGO = IQUIT  
 MTERR = NCOPY  
 GO TO (10000, 9600, 10000, 275), NGO  
 C 8300 READING ERROR ON TAPE NMUL DURING RHS REDUCTION.  
 NGO = IQUIT  
 MTERR = NMULT  
 GO TO (10000, 9600, 10000, 280), NGO  
 C 8400 READING ERROR ON TAPE NT1 DURING BACKSOLVING.  
 NGC = IQUIT  
 MTERR = NT1  
 GO TO (10000, 9600, 10000, 285), NGO  
 C 8600 READING ERROR ON TAPE NCOPY DURING RESTARTING.  
 NGO = IQUIT  
 MTERR = NCOPY  
 GO TO (10000, 9600, 10000, 290), NGO  
 C 8800 READING ERROR ON TAPE NT3 DURING RESTARTING.  
 NGO = IQUIT  
 MTERR = NT3  
 GO TO (10000, 9600, 10000, 295), NGO  
 9500 I F (NTERR) 9530, 9505, 9530  
 9505 WRITE C JTPUT TAPE 6, 9515, MTERR  
 PRINT 5515, MTERR  
 95150 FORMAT (1H0, 40H REPEATED REDUNDANCIES IN WRITING LOGICAL,  
 1 6H TAPE, I2, 1H.)  
 GO TO 9660  
 9530 WRITE OUTPUT TAPE 6, 9545, MTERR, NTERR  
 PRINT 9545, MTERR, NTERR  
 95450 FORMAT (1H0, 40H REPEATED REDUNDANCIES IN WRITING LOGICAL,  
 1 6H TAPE, I2, 21H AND/OR LOGICAL TAPE, I2, 1H.)  
 GO TO 9660  
 I F (NTERR) 9630, 9605, 9630  
 9605 WRITE OUTPUT TAPE 6, 9615, MTERR  
 PRINT 9615, MTERR  
 96150 FORMAT (1H0, 40H REPEATED REDUNDANCIES IN READING LOGICAL,  
 1 6H TAPE, I2, 1H.)  
 GO TO 9660  
 9630 WRITE OUTPUT TAPE 6, 9645, MTERR, NTERR  
 PRINT 9645, MTERR, NTERR  
 96450 FORMAT (1H0, 40H REPEATED REDUNDANCIES IN READING LOGICAL,  
 1 6H TAPE, I2, 21H AND/OR LOGICAL TAPE, I2, 1H.)  
 9660 PRINT 9675  
 9675 FORMAT (1H0, 28H INSPECT TAPE AND TAPE DRIVE.)  
 GO TO 9800  
 I F (NTERR) 9730, 9705, 9730  
 9705 WRITE OUTPUT TAPE 6, 9715, MTERR  
 PRINT 9715, MTERR  
 97150 FORMAT (1H0, 40H END OF TAPE ENCOUNTERED WHILE WRITING ON,  
 1 14H LOGICAL TAPE, I2, 1H.)  
 GO TO 9760  
 9730 WRITE OUTPUT TAPE 6, 9745, MTERR, NTERR

PRINT 9745, MTERR,NTERR  
97450  
1  
FORMAT(1H0,40HEND OF TAPE ENCOUNTERED WHILE WRITING ON,  
14H LOGICAL TAPE,I2,17H OR LOGICAL TAPE,I2,1H.)  
9760  
PRINT 9775  
9775  
FORMAT(1H0,34H MOUNT A LONGER TAPE ON THIS DRIVE.)  
9800  
PRINT 9815  
9815  
FORMAT(1H0,41H PRESS START TO RESUME PROCESSING THIS JOB)  
PAUSE  
REWIND NCOEF  
REWIND NMULT  
REWIND NCOPY  
REWIND NT1  
REWIND NT2  
REWIND NT3  
CALL SAVEIT  
10000  
WRITE OUTPUT TAPE 6, 10020  
REWIND NMULT  
REWIND NCOEF  
REWIND NCOPY  
REWIND NT1  
REWIND NT2  
REWIND NT3  
CALL DUMP  
100200FORMAT(1H1,123HEITHER A MACHINE ERROR HAS OCCURRED OR THERE IS AN  
1 ERROR IN SUBROUTINE GAUSS OR ITS ASSOCIATED SUBROUTINES. DUMP HA  
2S BEEN /1H,29H CALLED TO TERMINATE THIS JOB.)  
E N D

```

SUBROUTINE NE SAVE IT
    CALL CHAIN(3,B3)
    END

SUBROUTINE RSTART(NRUN)
    NRUN = 1
    RETURN
    END

SUBROUTINE MDIVIDE(N,NA,IMAX,A1,A2)
C     THIS SUBROUTINE PERFORMS THE DIVISION NECESSARY IN
C     COMPUTING A NEW COLUMN OF MULTIPLIERS.
    DIMENSION A1(500),A2(500)
    T1 = A1(IMAX)
    T2 = A2(IMAX)
    A1(IMAX) = A1(NA)
    A2(IMAX) = A2(NA)
    A1(NA) = T1
    A2(NA) = T2
    IF(ABSF(T1) - ABSF(T2)) 100,120,120
100    TEMP = T1/T2
        R2 = -1.0/(T2*(1.0 + TEMP**2))
        R1 = -TEMP*R2
        GO TO 140
120    TEMP = T2/T1
        R1 = 1.0/(T1*(1.0 + TEMP**2))
        R2 = -TEMP*R1
140    KS = NA + 1
        DO 160 K = KS,N,1
            TEMP = A1(K)
            A1(K) = R1*TEMP - R2*A2(K)
            A2(K) = R1*A2(K) + R2*TEMP
160    RETURN
    END

SUBROUTINE REDUCE(N,NA,IMAX,A1,A2,AM1,AM2)
C     THIS SUBROUTINE PERFORMS THE REDUCTION OF ONE COLUMN WITH
C     ONE COLUMN OF MULTIPLIERS.  THE NECESSARY INTERCHANGE IS
C     PERFORMED.
    DIMENSION A1(500),A2(500),AM1(500),AM2(500)
    KA = NA
    KMAX = IMAX
    T1 = A1(KMAX)
    T2 = A2(KMAX)
    A1(KMAX) = A1(KA)
    A2(KMAX) = A2(KA)
    A1(KA) = T1
    A2(KA) = T2
    KS = KA + 1
    DO 100 K = KS,N,1
        A1(K) = A1(K) - AM1(K)*T1 + AM2(K)*T2
        A2(K) = A2(K) - AM1(K)*T2 - AM2(K)*T1
100    RETURN
    END

```

```

SUBROUTINE DETER(D1,D2,DET1,DET2,NB2)
C   THIS SUBROUTINE  I  S  USED  I N COMPUTING THE DETERMINANT OF
C   THE MATRIX.
      T1 = DET1
      T2 = DET2
      DET1 = T1*D1 -      T2*D2
      DET2 = T1*D2 +      T2*D1 -
      COMP = MAX1F(ABSF(DET1),ABSF(DET2))
      NADD = LOGF(COMP)/0.69314718
      AYPL = 2.0**NADD
      DET1 = DET1/AMPL
      DET2 = DET2/AMPL
      NB2 = NB2 + NADD
      RETURN
END

```

```

SUBROUTINE BSOLVE(K,RHS1,RHS2,COL1,COL2,ANS1,ANS2)
C   THIS SUBROUTINE IS USED TO OBTAIN THE SOLUTION OF THE
C   REDUCED SYSTEM OF EQUATIONS.
      DIMENSION RHS1(500),RHS2(500),COL1(500),COL2(500),
1          ANS1(500),ANS2(500)
      N = K
      T1 = COL1(N)
      T2 = COL2(N)
      I  F(ABSF(T1) - ABSF(T2))  10,20,20
10      TEMP = T1/T2
      R2 = -1.0/(T2*(1.0 + TEMP**2))
      R1 = -TEMP*R2
      GO TO 30
2      0      TEMP = T2/T1
      R1 = 1.0/(T1*(1.0 + TEMP**2))
      R2 = -TEMP*R1
3      0      T1 = R1*RHS1(N) - R2*RHS2(N)
      T2 = R1*RHS2(N) + R2*RHS1(N)
      ANS1(N) = T1
      ANS2(N) = T2
      KS = N - 1
      I  F(KS)  50,50,60
5      0      RETURN
6      DO 80 K = 1,KS,1
      RHS1(K) = RHS1(K) - T1*COL1(K) + T2*COL2(K)
      RHS2(K) = RHS2(K) - T1*COL2(K) - T2*COL1(K)
80      RETURN
END

```

\* DOUBLE PRECISION SUBROUTINE  
LBL DPRES  
COUNT 100  
ENTRY DPSET (NSYS,REMS,IMMS,RELS,IMLS)  
ENTRY DPRS (RECOL,IMCOL,ANS1,ANS2)  
DPSET CLA\* 1,4  
STD NSYS  
CCA 2,4  
ADD =1  
STA REMS1  
STA REMS2  
STA REMS3  
STA REMS4  
CLA 3,4  
ADD =1  
STA IMMS1  
STA IMMS2  
STA IMMS3  
STA IMMS4  
CLA 4,4  
ADD =1  
STA RELS1  
STA RELS2  
STA RELS3  
STA RELS4  
CLA 5,4  
ADD =1  
STA IMLS1  
STA IMLS2  
STA IMLS3  
STA IMLS4  
TRA 6,4  
DPRS SXA X4,4  
CLA 1,4  
ADD =1  
STA RECOL1  
STA RECOL2  
CLA 2,4  
ADD =1  
STA IMCOL1  
STA IMCOL2  
CLA\* ? ,4  
STO ANS1  
CLA\* 4,4  
STO ANS2  
LXD =0C00001C000000,4  
RFPFAT LDQ ANS1  
RECOL1 FMP \*\*,4  
STQ PROD?  
CHS  
REMS1 FAD \*\*,4  
STO TEMP  
XCA  
RELS1 UFA \*\*,4  
UFS PROD2  
FAD TEMP  
REMS2 STO \*\*,4  
RELS2 STQ \*\*,4  
LDQ ANS2  
IMCOL1 FMP \*\*,4  
STQ PROD2  
REMS3 FAD \*\*,4  
STO TEMP

|                    |     |             |
|--------------------|-----|-------------|
| <b>RELS3</b>       | XCA |             |
|                    | UFA | **,*4       |
|                    | UFA | PROD?       |
|                    | FAD | TEMP        |
| REMS4              | STO | **,*4       |
| RELS4              | STQ | **,*4       |
|                    | LDQ | ANS1        |
| <b>IMCOL2</b>      | FMP | **,*4       |
|                    | STQ | PROD?       |
|                    | CHS |             |
| <b>IMMS1</b>       | FAD | **,*4       |
|                    | STO | TEMP        |
|                    | XCA |             |
| <b>IMLS1</b> U     | F A | **,*4       |
|                    | UFS | PROD2       |
|                    | FAD | TEMP        |
| <b>IMMS2</b>       | STO | **,*4       |
| <b>IMLS2</b>       | STQ | **,*4       |
|                    | LDQ | ANS2        |
| <b>RECOL2</b>      | FMP | **,*4       |
|                    | STQ | PROD2       |
|                    | CHS |             |
| <b>IMMS3</b> F A D |     | **,*4       |
|                    | STO | TEMP        |
|                    | XCA |             |
| <b>IMLS3</b> U F A |     | **,*4       |
|                    | UFS | PROD?       |
|                    | FAD | TEMP        |
| IMMS4              | STO | **,*4       |
| <b>IMLS4</b> S T Q |     | **,*4       |
|                    | TXI | *+1,4,1     |
| NSYS               | TXL | REPEAT,4,** |
| x 4                | AXT | ,4          |
|                    | TRA | 5,4         |
| <b>ANS1</b>        | PZE |             |
| <b>ANS2</b>        | PZE |             |
| <b>PROD1</b>       | PZE |             |
| <b>PROD2</b>       | PZE |             |
| TEMP               | PZE |             |
|                    | END |             |

\* CHANNEL COMPATABILITY SUBROUTINE  
 LBL CHAN  
 COUNT 20  
 ENTRY CHAN (NT1,NT2,NOK)  
 CHAN SXA X4,4  
 CLA\* 1,4  
 CALL (IOS)  
 CLA\* \$(ETT)  
 STO TEMP  
 LXA X4,4  
 CLA\* 2,4  
 CALL (IOS)  
 CLA\* \$(ETT)  
 SUB TEMP  
 x 4 AXT ,4  
 TZE OUT  
 CLA =0000001000000  
 STO\* 394  
 TRA 4,4  
 OUT STZ\* 3,4  
 TRA 4,4  
 TEMP PZE  
 END

\* TAPE BACKSPACE SUBROUTINE  
 LBL BSPACE  
 COUNT 13  
 ENTRY BSET (NTAPE)  
 ENTRY BSPACE  
 BSET SXA X4,4  
 CLA\* 1,4  
 ADM =020  
 CALL (IOS)  
 CAL\* \$(BSR)  
 STO BSPACE  
 x 4 AXT ,4  
 TRA 2,4  
 BSPACE PZE  
 TRA 1,4  
 END

|       |                  |                |
|-------|------------------|----------------|
| *     | SUBROUTINE READA |                |
|       | LBL              | READA          |
|       | COUNT            | 63             |
|       | ENTRY            | QSETA          |
|       | ENTRY            | READA          |
|       | ENTRY            | RCHKA          |
| RSETA | SXA              | X4,4           |
|       | CAL*             | 1,4            |
|       | ACL              | =020           |
|       | CALL             | (IOS)          |
|       | LDQ*             | \$(TRC)        |
|       | SLQ              | TRC            |
|       | LDQ*             | \$(TCO)        |
|       | SLQ              | TCO            |
|       | LDQ*             | \$(RCH)        |
|       | SLQ              | RCH            |
|       | CAL*             | \$(RDS)        |
|       | SLW              | RDS            |
| x 4   | STA              | BSR            |
|       | AXT              | ,4             |
|       | CLA*             | 2,4            |
|       | ARS              | 18             |
|       | SUB              | =1             |
|       | STO              | TEMP           |
|       | CLA*             | 3,4            |
|       | STA              | NRET           |
|       | CLA              | 4,4            |
|       | STA              | IQUIT          |
|       | TRA              | 5,4            |
| READA | CLA*             | 194            |
|       | STD              | RIO            |
|       | STD              | RIO+1          |
|       | CLA              | 2,4            |
|       | SUB              | TEMP           |
|       | STA              | RIO            |
|       | CLA              | 394            |
|       | SUR              | TEMP           |
|       | STA              | RIO+1          |
| RDS   | PZF              |                |
| RCH   | PZE              | RIO            |
|       | TRA              | 4,4            |
| RIO   | IOCP             | ***,***        |
|       | IOCD             | ***,***        |
| RCHKA | STZ              | NBAD           |
| TCO   | PZE              | *              |
| TRC   | PZF              | ERROR          |
|       | TRA              | 1,4            |
| ERROR | SXA              | S4,4           |
|       | LXD              | NREAD,4        |
|       | TXI              | *+1,4,1        |
|       | TXH              | QUIT,4,5       |
|       | SXD              | NBAD,4         |
| BSR   | BSR              | **             |
|       | XEC              | RDS            |
|       | XEC              | RCH            |
| S4    | AXT              | **,4           |
|       | TRA              | TCO            |
| QUIT  | CLA              | =0000002000000 |
| IQUIT | STO              | **             |
|       | CAL              | RDS            |
|       | STA              | **+1           |
|       | REW              | **             |
| NRET  | TRA              | **             |
| NBAD  | PZE              |                |
| TEMP  | PZE              |                |
|       | END              |                |

\* SUBROUTINE WRITEA  
 LBL WRITCA  
 COUNT 80  
 ENTRY WSETA  
 ENTRY WPITFA  
 ENTRY WCHKA  
 WSFTA SXA X4,4  
 CAL\* 1,4  
 ACL =020  
 CALL (ICS)  
 LDQ\* \$(TRC)  
 SLQ TRC  
 LDQ\* \$(TC0)  
 SLQ TCO  
 LDQ\* \$(RCH)  
 SLQ RCH  
 CAL\* \$(ETT)  
 SLW ETT  
 SLW ETTOFF  
 CAL\* \$(WRS)  
 SLW WRS  
 STA BSR  
 X4 AXT ,4  
 CLA\* 2,4  
 ARS 18  
 SUR =1  
 STO TEMP  
 CLA\* 3,4  
 STA NRET1  
 STA NRET2  
 CLA 4,4  
 STA IQUIT1  
 STA IQUIT2  
 ETTOFF PZF  
 NOP  
 TRA 5,4  
 WRITEA CLA\* 1,4  
 STD WIO  
 STD WIO+1  
 CLA 2,4  
 SUB TEMP  
 STA WIO  
 CLA 3,4  
 SUB TEMP  
 STA WIO+1  
 ETT PZE  
 TRA SHORT  
 WRS PZE  
 RCH PZF WIC  
 TRA 4,4  
 WIO IOCP \*\*, , \*\*  
 IOCD \*\*, , \*\*  
 SHORT CLA =00000030000000  
 IQUI T1 STG \*\*  
 CAL WRS  
 STA \*+1  
 REW \*\*  
 NRET1 TRA \*\*  
 WCHKA STZ NBAD  
 TCO PZE \*  
 TRC PZE FRROR  
 TRA 1,4  
 ERROR SXA S4,4

|             |                   |
|-------------|-------------------|
| LXD         | NBAD,4            |
| TXI         | *+1,4,1           |
| TXH         | QUIT,4,10         |
| SXD         | NBAD,4            |
| BSR         | **                |
| XFC         | WRS               |
| XFC         | WRS               |
| XEC         | WRS               |
| XEC         | RCH               |
| 54          | AXT **,4          |
|             | TRA TCO           |
| QUIT        | CLA =000001000000 |
| IQUI T2 STO | **                |
| CAL         | WRS               |
| STA         | *+1               |
| REW         | **                |
| NRET2       | TRA **            |
| NBAD        | PZE               |
| TEMP        | PZE               |
|             | END               |

|       |                  |                         |
|-------|------------------|-------------------------|
| *     | SUBROUTINE READB |                         |
|       | LBL              | READB                   |
|       | COUNT            | 63                      |
|       | ENTRY            | RSETB                   |
|       | ENTRY            | READB                   |
|       | ENTRY            | RCHKB                   |
| RSETB | SXA              | X4,4                    |
|       | CAL*             | 1,4                     |
|       | ACL              | =020                    |
|       | CALL             | (IOS)                   |
|       | LDQ*             | \$ (TRC)                |
|       | SLQ              | TRC                     |
|       | LDQ*             | \$ (TCO)                |
|       | SLQ              | TCO                     |
|       | LDQ*             | \$ (RCH)                |
|       | SLQ              | RCH                     |
|       | CAL*             | \$ (RDS)                |
|       | SLW              | RDS                     |
| x 4   | STA              | BSR                     |
|       | AXT              | 1,4                     |
|       | CLA*             | 2,4                     |
|       | ARS              | 18                      |
|       | SUB              | =1                      |
|       | STO              | TEMP                    |
|       | CLA*             | 3,4                     |
|       | STA              | NRET                    |
|       | CLA              | 4,4                     |
|       | STA              | IQUIT                   |
|       | TRA              | 5,4                     |
| READB | CLA*             | 1,4                     |
|       | STD              | RIO                     |
|       | STD              | RIO+1                   |
|       | CLA              | 2,4                     |
|       | SUB              | TEMP                    |
|       | STA              | RIO                     |
|       | CLA              | 3,4                     |
|       | SUB              | TEMP                    |
|       | STA              | RIO+1                   |
| RDS   | PZE              |                         |
| RCH   | PZF              | RIO                     |
|       | TRA              | 4,4                     |
| RIO   | IOCP             | **, , **                |
|       | IOCD             | **, , **                |
| RCHKB | STZ              | NBAD                    |
| TCO   | PZE              | *                       |
| TRC   | PZE              | ERROR                   |
|       | TRA              | 1,4                     |
| ERROR | SXA              | S4,4                    |
|       | LXD              | NBAD,4                  |
|       | TXT              | *+1,4,1                 |
|       | TXH              | QUIT,4,5                |
|       | SXD              | NBAD,4                  |
| BSR   | BSR              | **                      |
|       | XEC              | RDS                     |
|       | XEC              | RCH                     |
| 54    | AXT              | **,4                    |
|       | TRA              | TCO                     |
| QUIT  | CLA              | =00000C z 0 0 0 0 0 0 . |
| IQUIT | STO              | **                      |
|       | CAL              | RDS                     |
|       | STA              | *+1                     |
|       | REW              | **                      |
| NRFT  | TRA              | **                      |
| NBAD' | PZE              |                         |
| TEMP  | PZE              |                         |
|       | END              |                         |

|         | SUBROUTINE | WRITER         |
|---------|------------|----------------|
|         | LBL        | WRITFB         |
|         | COUNT      | 80             |
|         | ENTRY      | WSFTB          |
|         | ENTRY      | WRITFB         |
|         | ENTRY      | WCHKR          |
| WSETB   | SXA        | X4,4           |
|         | CAL *      | 1,4            |
|         | ACL        | =020           |
|         | CALL       | (IOS)          |
|         | LDQ*       | \$(TRC)        |
|         | SLQ        | TRC            |
|         | LDQ*       | \$(TC0)        |
|         | SLQ        | TC0            |
|         | LDQ*       | \$(RCH)        |
|         | SLQ        | RCH            |
|         | CAL *      | \$(ETT)        |
|         | SLW        | FTT            |
|         | SLW        | ETTOFF         |
|         | CAL *      | \$(WRS)        |
|         | SLW        | WRS            |
|         | STA        | RSR            |
| x 4     | AXT        | ,4             |
|         | CLA*       | 2,4            |
|         | ARS        | 18 ..          |
|         | SUR        | =1             |
|         | STO        | TEMP           |
|         | CLA*       | 3,4            |
|         | STA        | NRET 1         |
|         | STA        | NRET2          |
|         | CLA        | 4,4            |
|         | STA        | IQUIT1         |
|         | STA        | IQUIT2         |
| FTTOFF  | PZF        |                |
|         | NOP        |                |
|         | TRA        | 5,4            |
| WRITEB  | CLA*       | 1,4            |
|         | STD        | WI0            |
|         | STD        | WI0+1          |
|         | CLA        | 2,4            |
|         | SUB        | TEMP           |
|         | STA        | WI0            |
|         | CLA        | 3,4            |
|         | SUB        | TEMP           |
|         | STA        | WI0+1          |
| ETT     | PZF        |                |
|         | TRP        | SHORT          |
| WRS     | PZE        |                |
| RCH     | PZF        | WI0            |
|         | TRA        | 4,4            |
| WI0     | IOCP       | ****,***       |
|         | IOCD       | ****,***       |
| SHORT   | CLA        | =0000003000000 |
| IQUI T1 | STO        | **             |
|         | CAL        | WRS            |
|         | STA        | **+1           |
|         | REW        | **             |
| NRFT1   | TRA        | **             |
| WCHKB   | ST7        | NRAD           |
| TC0     | PZE        | *              |
| TRC     | PZF        | FRROR          |
|         | TRA        | 1,4            |
| ERROR   | SXA        | \$4,4          |

|        |     |                |
|--------|-----|----------------|
|        | LXD | NBAD,4         |
|        | TXI | *+1,4,1        |
|        | TXH | QUIT,4,10      |
|        | SXD | NBAD,4         |
| BSR    | BSR | **             |
|        | XEC | WRS            |
|        | XEC | WRS            |
|        | XEC | WRS            |
|        | XEC | RCH            |
| 5 4    | AXT | ** ,4          |
|        | TRA | TCO            |
| QUIT   | CLA | =0000001000000 |
| IQUIT2 | STO | **             |
|        | CAL | WRS            |
|        | STA | *+1            |
|        | REW | **             |
| NRFT2  | TRA | **             |
| NBAD   | PZF |                |
| TEMP   | PZE |                |
|        | END |                |

|       |                  |                |                    |
|-------|------------------|----------------|--------------------|
| *     | SUBROUTINE READC |                |                    |
|       | LBL              | READC          |                    |
|       | COUNT            | 62             |                    |
|       | ENTRY            | RSETC          |                    |
|       | ENTRY            | READC          | (NTAPE,NRET,IQUIT) |
|       | ENTRY            | RCHKC          |                    |
| RSETC | SXA              | X4,4           |                    |
|       | CAL*             | 1,4            |                    |
|       | ACL              | =020           |                    |
|       | CALL             | (IOS)          |                    |
|       | LDQ*             | \$(TRC)        |                    |
|       | SLQ              | TRC            |                    |
|       | LDQ*             | \$(TC0)        |                    |
|       | SLQ              | TC0            |                    |
|       | LDQ*             | \$(RCH)        |                    |
|       | SLQ              | RCH            |                    |
|       | CAL*             | \$(RDS)        |                    |
|       | SLW              | RDS            |                    |
|       | STA              | RSR            |                    |
| x 4   | AXT              | ,4             |                    |
|       | CLA*             | 2,4            |                    |
|       | STA              | NRET           |                    |
|       | CLA              | 3,4            |                    |
|       | STA              | IQUIT          |                    |
|       | TPA              | 4,4            |                    |
| READC | CLA*             | 1,4            |                    |
|       | STD              | RIO            |                    |
|       | STD              | RIO+1          |                    |
|       | ARS              | 18             |                    |
|       | SUB              | =1             |                    |
|       | STO              | TEMP           |                    |
|       | CLA              | 2,4            |                    |
|       | SUB              | TEMP           |                    |
|       | STA              | RIO            |                    |
|       | CLA              | 3,4            |                    |
|       | SUB              | TEYP           |                    |
|       | STA              | RIO+1          |                    |
| RDS   | PZE              |                |                    |
| RCH   | PZE              | RIO            |                    |
|       | TRA              | 4,4            |                    |
| RIO   | IOCP             | ****,***       |                    |
|       | IOCD             | ****,***       |                    |
| RCHKC | STZ              | NRAD           |                    |
| TCO   | PZF              | *              |                    |
| TRC   | PZE              | FRROR          |                    |
|       | TRA              | 1,4            |                    |
| ERROR | SXA              | S4,4           |                    |
|       | LXD              | NBAD,4         |                    |
|       | TXI              | *+1,4,1        |                    |
|       | TXH              | QUIT,4,5       |                    |
|       | SXD              | NBAD,4         |                    |
| BSR'  | BSR              | **             |                    |
|       | XEC              | RDS            |                    |
|       | XEC              | RCH            |                    |
| s 4   | AXT              | ***,4          |                    |
|       | TRA              | TCO            |                    |
| QUIT  | CLA              | =0000002000000 |                    |
| IQUIT | STO              | **             |                    |
|       | CAL              | RDS            |                    |
|       | STA              | *+1            |                    |
|       | REW              | **             |                    |
| NRET  | TRA              | **             |                    |
| NBAD  | PZE              |                |                    |
| TEMP  | PZE              |                |                    |
|       | END              |                |                    |

|        |                   |                |
|--------|-------------------|----------------|
| *      | SUBROUTINE WRITEC |                |
|        | LBI               | WRITFC         |
|        | COUNT             | 79             |
|        | ENTRY             | WSFTC          |
|        | ENTRY             | WRITEC         |
|        | ENTRY             | WCHKC          |
|        | WSETC             |                |
|        | SXA               | X4,4           |
|        | CAL"              | 1,4            |
|        | ACL               | =020           |
|        | CALL              | (IOS)          |
|        | LDQ*              | \$ (TRC)       |
|        | SLQ               | TRC            |
|        | LDQ*              | \$ (TC0)       |
|        | SLQ               | TC0            |
|        | LDQ*              | \$ (RCH)       |
|        | SLQ               | RCH            |
|        | CAL*              | \$ (ETT)       |
|        | SLW               | ETT            |
|        | SLW               | ET TOFF        |
|        | CAL*              | \$ (WRS)       |
|        | SLW               | WRS            |
|        | STA               | BSR            |
| x 4 -  | AXT               | ,4             |
|        | CLA*              | 2,4            |
|        | STA               | NPET1          |
|        | STA               | NRET2          |
|        | CLA               | 3,4            |
|        | STA               | IQUIT1         |
|        | STA               | IQUIT2         |
| ETTOFF | PZE               |                |
|        | NOP               |                |
|        | TRA               | 4,4            |
| WRITEC | CLA*              | 1,4            |
|        | STD               | WIO            |
|        | STD               | WIO+1          |
|        | ARS               | 18             |
|        | SUB               | =1             |
|        | STO               | TEMP           |
|        | CLA               | 2,4            |
|        | SUB               | TEMP           |
|        | STA               | WIO            |
|        | CLA               | 3,4            |
|        | SUB               | TEMP           |
|        | STA               | WIO+1          |
| ETT    | PZE               |                |
|        | TRA               | SHORT          |
| WRS    | PZE               |                |
| RCH    | PZE               | WIO            |
|        | TRA               | 4,4            |
| WIO    | IOCP              | ***,***        |
|        | IOCD              | ***,***        |
| SHORT  | CLA               | =0000003000000 |
| IQUIT1 | STO               | **             |
|        | CAL               | WRS            |
|        | STA               | *+1            |
|        | REW               | **             |
| NRET1  | TRA               | **             |
| WCHKC  | STZ               | NBAD           |
| TCO    | PZE               | *              |
| TRC    | PZF               | ERROR          |
|        | TRA               | 1,4            |
| ERROR  | SXA               | \$4,4          |
|        | LXD               | NBAD,4         |

TXI \*+1,4,1  
TXH QUIT,4,10  
SXD NBAD,4  
**BSR** \*\*  
XEC WPS  
XEC WRS  
XEC WPS  
XEC RCH  
**S4** AXT \*\*,4  
TRA TCC  
QUIT CLA =00000010000000  
**IQUI T2** STO \*\*  
CAL WRS  
STA \*\*1  
REW \*\*  
NRFT2 TRA \*\*  
NBPD PZE  
TEMP PZE  
END