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Abstract other frameworks automate the simple but time consum-
oo ing parts of building web applications, by abstracting

We describe Waldo, a scripting language for applica the database and simplifying query-dispatch for common
tion networking. Waldo allows programmers to de- queries. They make many services on the same machine,
scribe complex network Interactions between any hosts such as databases, caches, and a web server all appear
as transactional operations with atomicity, consistency, like a single process.
and isolation. Waldo is able to provide these transac-

tional semantics starvation-free without assuming global There are also frameworks for distributed systems [41,
clocks, without centralized scheduling, and under ar- 28, 13, 20], which help programmers build systems
bitrary transaction conflicts. This allows programmers such as distributed hash tables and content distribution
to write application networking as short transactional ~~ networks. To such programmers, and to systems re-
scripts that will never starve. Waldo achieves these re- searchers, application networking might seem compara-
sults with a novel distributed transaction scheduling al- tively simple or easy to implement. But, based on our ex-
gorithm that combines the wound-wait algorithm and ~~ Periences teaching an introductory networking course for
Lamport clocks with two transaction priority levels. Ex- ~~ several years as well as two more controlled user studies,
perimental results show that using the primary algorithm ~~ discussed further in Section 2, we argue that networking
Waldo can perform up to 10,000 transctions per second ~~ code is extremely challenging to most developers.

between two endpoints connected across the wide area Four challenges dominate application networking de-
network. velopment time: handling failures, preventing or debug-

ging deadlock, managing event ordering and data consis-

1 Introduction tency, and handling data races. These challenges arise
from the execution model common to most networking

Driven by mobile devices and social networking, appli- Goede: one Of More endpomts exchange a SCHES of mes-
cations are increasingly networked. MagicPiano pairs sages, stepping through intermediate Sales in order 1o
users, allowing them to play music together [45]. Using enact a larger, stable state transition on nodes across a
Texas Hold Em, poker enthusiasts around the world can network. For example, in a poker game, all players must
wager against each other [24]. Networking is arguably agree to play before the same can begin; to transition
one of the hardest parts of an application, having to deal from the closed to established states mn TCP, an endpoin
with concurrency, failure, latency, and overload. Despite iypically goes through two inermediaie stale apart
this challenge, frameworks today provide little, if any, of the three-way-handshake. In both Cases, a failure in

: the midst of the higher-level state transition (no game to
support beyond sockets and data transfer. 10S and An- haa

droid, for example, provide APIs for HTTP operations, game initiated; closed to established) requires cleaning
handling cookies and other details, but, in practice, this upd variety of temporary and intermediate state. Under-
1s just a data transport layer. The challenges of managing standing when this might happen, how it might happen,
connections, concurrency, fairness, and correctness still and how to handle it is difficult.
lie with the programmer. This paper argues that application networking’s com-

The success of web frameworks such as Ruby on Rails mon challenges can be avoided or eased with a better

and Django have demonstrated that the right level of abstraction: transactions. Describing a multi-step state

abstraction can greatly speed development. These and transition as a transaction that provides atomicity, con-



sistency, and isolation! between two (or more endpoints) write application networking code using simple linear
simplifies application logic. If a failure occurs mid- programs that run transactionally and can handle thou-

transaction, the system automatically restores to a con- sands of operations per second.

sistent state. Similarly, transaction isolation ensures that The rest of this paper is structured as follows. The
executing concurrent transactions does not deadlock. Fi- next section describes our observations on the common

nally, writing an exchange as a single, atomic transaction ~~ problems programmers run into when writing network-
defines the set of valid interleavings within a transaction ing code, and how those problems motivate the need for
and ensures that the inter-transaction interleavings main- transactions. Section 3 describes the Waldo language and
tain consistent state. its abstractions, walking through a toy publish-subscribe
As we discuss in Section 4, standard centralized sys- system as an example. Section 4 describes how Waldo

tems that provide these types of guarantees, such as schedules its transactions using a novel algorithm that

databases, require a network round-trip time for any op- meets the needs of network protocols while remaining

eration on guarded data, require setup and maintenance efficient and allowing parallelism. Section 5 describes

costs, and interface poorly with local resources. Further, a Waldo implementation that we evaluate in Section 6.

existing distributed approaches such as [21] do not pro- Section 7 describes related work that Waldo is similar to

vide properties such as starvation prevention and/or fair and builds on, and Section 8 concludes.

access to resources, which are important in a application-

networking context.

To address these issues, the key technical contribution 2 Motivation
of this paper is a novel distributed transaction schedul-

ing algorithm. This algorithm enforces consistency, While teaching a quarter-long intermediate course on
atomicity, and isolation while ensuring that no transac- computer networking, we observed patterns of mistakes
tion starves and providing quality of service guarantees in students’ programming assignments. To analyze these
across network endpoints. patterns in more controlled environments, we performed
Programming transactional distributed shared memory two need-finding user studies. In the first, we observed

over a wide area network may seem challenging. This and worked with nine undergraduates for three months
paper’s second contribution is Waldo, a high-level do- as they developed networked applications for a 3D vir-
main specific language for building application network tual world [9] using a JavaScript derivative [33]. In the
components on top of this memory model. second, 17 graduate and upperclass undergraduate sub-
Waldo provides three principal abstractions: end- Jects wrote networked code for a simple bank-customer

points, sequences, and services. An endpoint is one half application in Python and an early antecedent to Waldo.
of a reliable connection, coupled with application state Most subjects were unable to complete the application
and code. A sequence is a piece of linear code that con- after struggling with the challenges described below.
trols switching execution between two endpoints. Fi- Handling failures — Subjects in the second study were
nally, a service allows application logic to control, use, explicitly told they could ignore error conditions. In the
and manage multiple endpoints. As a simple example, to first study, we never observed subjects’ attempting to de-
atomically send an update to a set of peers, a program- tect errors, for instance by catching exceptions, nor at-
mer connects an endpoint on each peer to a publisher. tempting to recover from them. In several cases, this led
To send an update, a service on the publisher iterates to incorrect behavior. For example, a bug in a virtual
through each of its endpoints, triggering a sequence on world bank left a flaw in which a transfer-like message
each. If any update sequence fails, Waldo automatically ~~ from a customer would credit the transferee’s account

rolls back the transaction. and cause an error before deducting from the transferer’s.
We evaluate Waldo by building several sample appli- Colluding customers could invent money.

cations, focusing on two in Section 6: a networked game Deadlock — Almost half of the Python subjects in the
and a network configuration tool. Waldo is able to sup- :

) : second study encountered deadlock issues that they were
port 13,000 transactions per second across two endpoints ble to recover from. These subjects spent well over
connected by TCP on a single host and 10,000 transac- bor . J p :: : alf their total study time (on average, over 30 minutes)
tions per second on the wide area. Increasing network LL

; : : trying to debug this problem before giving up.
latencies reduces transaction rates from this result when

there are read-write conflicts. This performance is or- Event and data management — Event and data man-
ders of magnitude greater than what most application agement errors include incorrectly constructing and in-
networking requires. Using Waldo, a programmer can correctly handling edge cases in event orderings such

that code enters an undefined state. Subjects in the

We ignore durability in this context. second study generated their own message formats and
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parsed messages in a large dispatch function using string-

splitting and/or regular expressions. Generally, this strat-

egy prevents type-checking when constructing and pars- Publisher Service

ing messages; as a result, many errors that could have
PubSubServer | |PubSubServer | | PubSubServer

been caught by a type checker had to be debugged by
tuition at runtime. : H

| |

Data races — Networking code responds both to ap-

plication calls and network events, and these often come Endpoint Endpoint

from different threads of control. Subjects found lock-

based concurrency management challenging. No sub- (a) High-level decomposition of publish-subscribe

jects in the Python condition of the second study cor- example. Dashed lines are network connections and
rectly completed the task. Although half the subjects solid lines are function calls.
passed all test cases, their code contained hidden, unex- 1 Endpoint PubSubClient {

: 3

The four challenges described above stem from a lack ;
of atomicity, isolation, and consistency. 4 Endpoint PubSubServer {

A lack of atomicity leaves systems in inconsistent > Number pushes_pertformed;
. 6 Public send data (Text data) {

states when programmers do not or incorrectly handle : push (data);
failure. Because the programmer above’s transfer event 8 }
was not atomic, a failure meant that users could defraud 0}

his application. More broadly, unless a programmer 10 Sequence Push (Text publication) {
catches, handles, and forwards exceptions to all nodes 11 PubSubServer.start_push {

processing an event, a system can get in an inconsistent 12 publication = compress (publication);
. . . 13 pushes performed += 1;

state, potentially with some nodes holding locks for or 14 }
awaiting responses from failed nodes. 15 PubSubClient.receive push {

A lack of isolation causes deadlock. Subject code a publications.append(
. . 17 uncompress (publication));

deadlocked because logically separate, but incorrectly 18 }
isolated events ran concurrently. 19 }

A lack of consistency causes the event and data man- 20 Service Publisher {
agement problems described above. Instead of higher- 21 List (element: Endpoint) connections;

level language support for composing sequences of mes- 22 Public publish(Text data) {
dpoint £ t ticall truct 23 for (Endpoint conn in connections) {

sages across endpoints or for automatically construct- conn.send data(data);
ing messages, programmers were left to perform these 25 }

checks and operations themselves. Finally, a lack of iso- i }: 7

lation and consistency also cause data races. b
Many networked applications may benefit from man- (b) Simplified Waldo code from a single file. Code that runs on the

. Compress, uncompress, and a variety of helper functions are elided.
quirements. However, as demonstrated by the user stud- CL :
) i ST In the Push sequence, publication is a shared variable across the
ies above, code that correctly provides atomicity, isola- client and server.

tion, is difficult and error-prone to write and debug. And Server Client
therefore there is a large group of programmers and ap-

. . . 1 Sequence Push (Text publication) { |Text|
plications that benefit from abstracting away these oth- 2 pubSubServer.startpush {

erwise tricky-to-provide properties into reusable runtime > publication = compress(publication);
components. 5} ~~

6 PubSubClient.receivepush { 5
7

8 uncompress (publication) );

3 Waldo language overview 20
. . . (¢) Execution of the Push sequence. The Text publication starts on

Waldo 1s a language for writing the networking com- the server, where it is compressed (shaded box). The Waldo runtime
ponents of applications. Programmers write the net- automatically transfers the compressed Text to the client before in-
work code for their applications in Waldo, compile into voking PubSubClient.receive_push().

whichever language their application uses (currently,

Waldo emits to Java and Python) and then instantiate Figure 1: Atomic publish/subscribe in Waldo.

Waldo objects.
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Waldo provides three networking abstractions to pro- 3.2 Sequences
grammers: endpoints, sequences, and services. Us-

ing these, programmers can compose transactions across Waldo has no notion of messages, packets, packet for-
state on one or many hosts in the network. An endpoint ~~ mats, or packet parsing. Instead, endpoints implicitly ex-
represents one side of a networking protocol between change information through shared variables declared in
two hosts, and couples half of a networking connection a sequence. The developer focuses on specifying what
with application state and logic. A sequence describes an the data is, which data should be private or shared, and
interaction between a pair of endpoints. Finally, a service ~~ how that data is modified. They do not need to worry
holds references to multiple endpoints and their shared ~~ about the details of getting the data over the network that
state, allowing a Waldo programmer to control and use do not affect the core application logic.
many connections in a single transaction. A sequence represents a protocol exchange between

Figure 1(b) shows a code listing for an expository a pair of endpoints. Sequence syntax consists of three
atomic publish-subscribe system built using Waldo. Sec- parts: a declaration, a data section, and two or more
tions 3.1, 3.2, and 3.3 step through this example, de- sequence stepS. Like a function, a sequence declara-
scribing the role of endpoints, sequences, and services, tion specifies arguments and a return type, and 15 1h
respectively. Section 3.5 follows with a more realistic voked in a similar Tanner. On line 10, in Figure 1(b),
example. the Push sequence for instance, takes a single argument,

publication, and returns no data. Following the se-

quence declaration, a programmer can also declare vari-

ables in the sequence’s data section. Not pictured in Fig-

31 Endpoints ure 1(b), variables declared here, as well as the argu-
ments to the sequence are scoped to the lifetime of the

sequence and are shared by all sequence steps.

Al a high level, a Waldo endpoint is like a basic socket Finally sequence steps are program blocks that al-
mn that it interfaces to a partner endpont, presumably ternate execution between two endpoints.  Execu-
funning on a different host. Unlike a socket, an end- tion “falls through” each step: when one step com-
point wraps application state and specifies valid 5 pletes execution, the runtime updates sequence-local
quences of operations between partner endpoints. As data and begins executing the next block, giving the
shown by endpoints PubSubServer and PubSubClient impression of straight-line code. In Figure 1(b),
mn Figure 1(b). an endpoint is writien as an object com- PubSubServer.start_push executes on the server’s
Plete with methods (send_data for Pubfubferver) and host, followed by ClientSubscriber.receive_push
internal variables (publications for PubSubClient; on a client host. Figure 1(c) shows how this sequence
pushes_pert ormed for PubSubServer). Waldo end- behaves as it executes.
points use private data and methods by default and allow : : :

. : As mentioned previously, variables declared at
explicit specification of Public methods to encourage

encapsulation. the scope of the sequence, such as publication
are shared by all sequence steps. For exam-

When called from outside Waldo, invoking an end- ple, when PubSubServer.start_push assigns
point’s Public method automatically begins a new to publication. This change is visible to
transaction. When called from within Waldo (e.g., by ClientSubscriber.receive_push. Further-
a service or another endpoint), the method call is nested ~~ more, each sequence step can access the variables
within the current transaction. In Figure 1(b), for ex- and methods of its corresponding endpoint. For
ample, the Publisher service calls PubSubServer’s example, PubSubServer.start_push increments
send_data method. pushes _performed and calls the elided compress

Currently, both endpoints and services can only be cre- ~~ method. Because pushes_performed is local to one
ated in external application code. The abstraction for cre- endpoint, this change is not visible to the other endpoint.
ating endpoints is similar to that for creating sockets. A However, because the sequence runs atomically, if
programmer requests the Waldo runtime to bind an end- the client fails before completing the sequence the
point factory to listen for incoming connections on an PubSubServer will not see its variable incremented.
IP-port tuple. On receiving a new connection request, the The advantage of using a single structure to specify

factory automatically creates a new endpoint, initializing sequence logic is that it allows program structure to con-

its state, and executing an optional callback. Similarly, a cretely mirror program execution. As observed in Sec-

programmer can request an endpoint factory to connect tion 2, programmers had difficulty reasoning about mes-

directly to an IP-port tuple, where, presumably, another sage exchanges. Waldo’s sequences order message ex-

factory is listening. changes as straight-line code, interleaved between end-
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points. > Be foint] all_endpoints;
2 List (element: Text) log;

3.3 Services ° Public Function root add log entry (Text entry)
7 Number num_endpts_responded = 0;

Endpoints and sequences describe the relationship be- : ToT point endpt in all_endpoints) {
tween a single pair of hosts. However, frequently, appli- 10 endpt .add_log_entry (entry) ;
cations operate over many hosts: in the publish-subscribe ~~ 11 num_endpts_responded += 1;

} 12 } catch(NetworkException nex) {}
example, many hosts all receive the same pushed update; 13 }

on a file server many hosts should be able to read and 14
) ) } 15 Number majority = len(all_endpoints)/2;

modify a shared group of files; BitTorrent avoids request- 16 if (num_endpts._responded >= majority) {
ing the same chunk from many peers; HTTP clients open ~~ 17 log.append (entry);

. . ) ) 18 return True;

multiple connections to reduce head-of-line blocking. 19 }

A Waldo service allows a programmer to group opera- o) 3 abort (J ;
tions across multiple endpoints into a single transaction. 22

In the code listing in Figure 1(b), Publisher (lines 20- os PL eeryt. 10g etry (Tent entry) 1
277) 1s an example of a service. Similar to endpoints, non- 25 3}
Waldo code can call a service’s Public methods. For 26

instance, non-Waldo code can publish a message across

all subscribers by calling publish (line 22). Figure 2: Service for replicated logging.
Services and endpoints provide a well-defined inter-

face between application protocol code and other appli- Using a configurable TCP heartbeat between re-
cation logic (e. 8.» GUI code) that might otherwise be in- mote partner endpoints, the Waldo runtime actively de-
termixed. This allows programmers to independently test tects NetworkExceptions. Once an endpoint detects
the networked components of their system. that its partner has become unreachable, it raises a

NetworkException in any events currently waiting on a

3.4 Error detection and handling response from, or sending a message to, the partner end-
point. Further, once an endpoint’s partner becomes un-

Waldo’s error handling system allows programmers to reachable, any new event which attempts to contact the
recover from or propagate errors atomically. The sys- partner will raise a NetworkException.
tem in Waldo is based on a simple exception handling

model with termination semantics. Exceptions are de- 3.5 Log example
tected, raised by the runtime, and propagated back up

the call stack where the exceptions can be handled if the ~~ The previous publish-subscribe example illustrates
throwing code is nested within a try-catch block. Error ~~ Waldo’s core features, but little of their motivation or

handling in Waldo is similar to error handling in other utility. To do so, consider instead extending this sim-
languages with one key distinction: the call stack may ple example from a 1) single publisher writing to a log
be distributed over many hosts. When an exception is on 2) all its associated clients to an example in which 1)
raised on one endpoint, Waldo automatically serializes ~~ multiple publishers maintain a consistent, replicated log
and sends it to its calling endpoint or service, which may over 2) a majority of themselves.

handle the exception or continue propagating it back. Such an abstraction could be useful for an application-
In languages without atomicity guarantees, if an er- level game to track players’ health or in-game account

ror 1s not explicitly handled by the programmer then it ~~ balances. This problem is considered challenging [35].

may result in the corruption of variables or state, making Well-known core systems, such as Chubby [7] rely on

it difficult or impossible for the program to continue run- majority-endorsed, consistent replicated logs for fault

ning correctly. When an error is left unhandled in Waldo, tolerance, usually using Paxos [31] to implement them.

the runtime backs out of the transaction, and thus no state Figure 2 shows the core Waldo service code to build
within Waldo is affected. this. The core endpoint code is shorter, containing a sin-
Waldo makes a distinction between two classes gle Public method that calls a sequence, which simply

of exceptions: ApplicationExceptions and calls back into LogManager’s leaf_add_log_entry.

NetworkExceptions. ApplicationExceptions An extended version of both code listings, which also
are automatically raised by the emitted Waldo code handles bootstrapping and nodes’ rejoining the network

during the execution of an event. For example, division and fast-forwarding their logs is available online at

by zero results in an ApplicationException. http://bcoli.stanford.edu/waldo_examples/.
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. . 1 Sequence Negotiation ()
Each server holding a copy of the replicated log runs 5 returns TrueFalse cipher initialized {

a LogManager service. To add an entry to a ma- 3 List<Text> srvr_ciphers;
jority of all LogManagers’ logs, a programmer calls : Text sel_cipher, clnt_cipher_info;
root_add_log_entry (defined on line 5 of Figure 2) 6 Server.get_available_ciphers{
on a LogManager instance. This method iterates over : 3 srvr_ciphers = available_ciphers.keys();
all endpoints, requesting each to update its replicated 9  Client.select_cipher {

. . . 10 cipher_initialized = False;

version of the log via an endpoint call. If an end- 11 Text accptblcipher;
point’s host has crashed, the endpoint call should throw a 12 for (accptbl_cipher in cipher_priorities) {

NetworkException, which is caught and ignored (line ~~ 13 Hena TV ppoophers)
12). If an endpoint crashes after its endpoint call has 15 sel_cipher = accptbl_cipher;

been invoked, but before the transaction completes, the 2 ) break;
Waldo runtime automatically backs out the transaction 18 } Co

across all endpoints and passes a network exception back = Ln per.initialized)
to the non-Waldo code calling root_add_log_entry. 21}

“oe 22 Server.cipher_init_info {
If a majority of nodes are able to append the update, the 3 sTvr_cipher.info = cipher_info(sel_cipher);
LogManager appends to its own log and returns True. 24 local_cipher_info = srvr_cipher_info;

. . “oo. . 25 }

Otherwise, it backs out all changes in its transaction. 26  Client.recv server. info andinit {
27 clnt_cipher_info = cipher_info(sel_cipher);

. 28 local_cipher_info = client_cipher_info;
3.6 TLS-like handshake example 29}

30 Server.recv_client_info {

Sequences are intended to encourage designing proto- > 3 partner_cipher_info = clnt_cipher_info;
cols composed of linear, non-branching exchanges, mak- 33 }

ing endpoints’ interactions easier to reason about. Fig-

ure 3 shows an example TLS-like handshake to negotiate | flo f - ooand initialize a cipher between two endpoints to illustrate Figure3: Wa do source Lie tora cipher negotiation. End-
this. Instead of writing such an exchange as separate points and their associated state (e. 8: available_ciphers)
client and server handlers specified in distinct files, us- and methods (e.g., cipher-info) are elided.
ing sequences, such an exchange appears as straight-line

code operating on shared data. endpoint or service can modify its local state without
needing to communicate those modifications across the

4 ] oA ] network. Third, such an approach scales: the amount ofTransaction Scheduling Algorithm processing any given host performs depends on the num-
ber of endpoints involved in its transactions, not the total

Transactions are at the core of Waldo’s event and mem- Co.
: : : number of endpoints in the system.

ory model. A common way to provide transactions is : Co : :
: The major drawback of distributed transactions is that

through a centralized service, such as a database or a CL.
wide area latencies, combined with isolation and atom-

memory manager such as Sinfonia [1]. For Waldo to CL.
: : icity, can lead to transaction rates too small for low-level

follow such a model, each endpoint would communicate
: ) : : : or high performance systems. Waldo, however, targets

with the centralized service to read, write, and commit So . : Co
: application-level networking. For many applications,

state changes. There are three major problems with a :
: such as updating a video game character heath or recon-

centralized approach. First, one must set up and man- :
: : figuring an edge network, even a few tens of transactions

age a centralized service, whose failure will halt all exe-
: : : : per second is sufficient.

cution. Second, programs must interact with the service

over the network to modify local transactional state, lead-

ing to an extra round-trip time. Third, scaling such an 4.1 Consistency and Execution Model
approach requires sharding or scaling this database, even

if most transactions are just between pairs of connected Waldo provides a strictly serializable consistency model.

hosts. All reads and writes within a transaction appear as
For these reasons, Waldo eschews a centralized ser- though they were completed in order. These reads and

vice and instead executes distributed transactions. These writes operate as if there were no other transactions ex-

transactions can modify state on multiple hosts that are ecuting at the same time. Like any other transaction

only transitively connected (i.e., A <> B and B <» C but processing system, the fundamental question the Waldo

A +» C). Distributed transactions mean that a program- runtime must answer is: when two or more transactions

mer does not have to set up a centralized database and want to operate on the same piece of data, what hap-

a database failure will not halt the system. Second, an pens? To provide a useful abstraction for application net-
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working, Waldo’s transaction execution behavior focuses 4.2.2 Optimistic Concurrency Control

on three goals: Instead of acquiring object read and write locks be-
Meet networking assumptions — Networking proto- fore executing a transaction, optimistic concurrency con-
cols and systems generally assume some level of fair- trol and commit-time validation execute transactions and

ness, such that everyone competing for a shared resource take locks only at commit time. If the system detects
receives a non-zero share of it. For example, many com- that conflicting writes have been committed, it rolls back
peting flows each receive some share of a link, and many the operation and tries again. Haskell’s atomic state-
competing web clients receive some share of its process- ments, for example, use this approach by having each ob-
ing. While this might seem like an obvious design goal, it ject maintain a monotonically-increasing version num-
1s not traditionally a consideration in transaction process- ber [23]. The key drawback of these approaches is that
ing algorithms, which sacrifice fairness for performance. they permit starvation. Repeated short transactions can
In this way, networking introduces a novel requirement starve a long-running transaction which always sees val-
for a transaction processing algorithm. ues have changed when it tries to commit. In the pres-

Support parallelism — A host might run multiple ap- ence of high contention, these approaches do not provide
plications in parallel, or even multiple instances of an the semantics and fairness that networking systems and
application (e.g. BitTorrent swarms). While an individ- protocols expect.
ual application might require only a few hundred trans-

actions per second, Waldo should not limit its aggregate 4.2.3 Wound/wait

system performance to these expectations. Transactions

that can run safely in parallel should do so. Static program analysis locks objects before a transac-
tion. Optimistic concurrency control locks them at the

Execute efficiently — On one hand, application net- end of a transaction. A final alternative acquires read
working often does not need high performance. How- and write locks on objects as a transaction progresses.
ever, as applications often run on battery-powered de- The primary challenge with this approach is deadlock.
vices (laptops, phones, tablets), it is important that the This third approach acquires locks in the order in which
code waste neither CPU cycles nor network capacity. a transaction encounters them, and so deadlock can oc-

cur. In these cases, the system detects the deadlock and

. breaks it by aborting one of the transactions.

4.2 Candidate approaches Wound/wait [42] is a standard database algorithm for
Transaction processing systems are generally structured breaking deadlocks.” Wound/wait assigns every transac-
in two parts: 1) some algorithm schedules running trans- tion a timestamp. If an older transaction tries to take a
actions on existing resources and 2) the system per- lock held by a younger one, the younger transaction rolls
forms a two-phase commit for committing transactions. ~~ back (it is wounded). If a younger transaction tries to
This section briefly overviews common scheduling ap- take a lock held by an older one, it waits. Because time
proaches, describing why they do not meet one or more stamps are transitive, wound/wait breaks waits-for cycles
of the requirements above. Readers familiar with (or and therefore prevents deadlock. Furthermore, because
uninterested in) transaction processing implementations the oldest transaction in the system will always roll back
may wish to skip to Section 4.3, which describes Waldo’s other transactions, no transaction will starve indefinite.
scheduling algorithm. Section 5.1 explains how this al- Wound/wait gives no fairness guarantees. If one client
gorithm is integrated with two-phase commit in Waldo. 1ssues one million transactions at time ¢, then another

client issuing a transaction at time # + 1 must wait for

4.2.1 Static program analysis those million transactions to complete.

Database query optimizers [26] and systems such as 4.2.4 Fair queueing
Periscope [22] examine program text to schedule dis-

tributed tasks. The basic drawback in such approaches Can a transaction scheduler provide fairness by applying
is that their precision is limited to what static program fair queueing algorithms [16]? For example, one could
analysis can provide. In the case of data dependent ac- assign timestamps in wound/wait based not only on the
cesses (such as looking up in a hashtable with a key from arrival time of a transaction but also when the last trans-
a data load), the systems need to be conservative and so action from that client completed. A modified version
limit parallelism. In the case of Waldo, for example, a of wound/wait using these timestamps would then allow

sequence that transfers a file passed as a parameter toa common algorithm, Wait/die may rollback
sequence would need to read-lock the accessible file sys- more transactions, but because it does so earlier than wound/wait, these
tem. It therefore greatly limits parallelism. rollbacks may be less expensive [46].
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transactions from endpoints with fewer transactions exe- 4.3.1 Algorithm analysis

cuted to rollback transactions from other endpoints.

Unfortunately, fair queueing algorithms do not fit this Because endpoints take turns having the oldest Pfimaty
problem well. Fair queueing is designed to fairly share transaction, Waldo’s primary transactions provide a min-
a serialized resource, such as a communication channel. imum Quality of service for each endpoInt. However,
It therefore does not satisfy the parallelism requirement. commits ACTOS standard transactions can still be unfair.
For example, suppose that an endpoint submits 50 trans- This section examines the worst case fairness bounds for
actions that can execute in parallel: how should times- Waldo’s scheduling algorithm and shows it is starvation-
tamps be assigned to them? Assigning them the identical free. Co
timestamp can result in poor fairness as other transac- Consider an idealized network of E' endpoints with
tions have to wait for all 50 to commit. Furthermore, © outstanding transactions per endpoint at some time
the timestamp of each transaction needs to be consistent ~~ 0. and define 7" as the longest start-to-finish time for d
across all endpoints that might execute it. transaction, absent lock contention. After an endpoint

commits a primary transaction, its subsequent primary

transaction is given the lowest priority of primary trans-

4.3 Waldo algorithm actions. It must therefore wait at most (E — 1)T to start
executing. Therefore, each endpoint with an outstanding

To provide fairness while simultaneously allowing paral- transaction will commit at least every ET seconds.
lelism, Waldo uses a novel transaction scheduling algo- Because transactions are made primary by age, no
rithm consisting of four parts: transaction in the system submitted at zy waits longer

than (O — 1)ET to execute. This bound is guaranteed re-

I. A “standard” transaction’s timestamp is the time gardless of how many additional transactions are added
it was created in terms of a root endpoints local after to. Further, because transactions that do not conflict
Lamport clock [30]. Potential deadlocks between with any other transactions are neither blocked nor pre-
standard transactions are avoided with wound/wait empted, this algorithm ensures parallelism (when possi-

ble).
such that an older standard transaction preempts a o

younger standard transaction, A fairness bound in the absence of lock contention 18
not meaningful: if endpoint A submits a series of trans-

2. Each endpoint assigns its oldest outstanding trans- actions that must run serially, but endpontB submits
NR ., 100,000 transactions that do not conflict with each other

action to be Its “primary transaction. The times- or A’s transactions, B should commit more transactions
tamp of a primary transaction is the last local time a Co . : : :

: than A. Limiting the ratio of their commit rates to ensure
primary transaction rooted at the endpoint commit- fai dlessly d Glizati Iairness needlessly decreases utilization. In some ways,

ted. this problem is similar to recent work on multi-resource
fairness [18], except that those algorithms require pre-

3. A primary transaction always preempts a standard declaring all necessary resources.
transaction, regardless of timestamp. The worst case fairness across conflicting transactions,

in terms of transaction execution time, occurs when one

4. After a primary transaction completes, a Waldoend- endpoint dominates all standard transactions: all end-
point promotes its oldest standard transaction to be points still receive a fair share of primary transaction
its primary transaction. This may involve sending stream, but only one commits standard transactions. In
messages across the network. this case, if the fair share of transaction execution time

1S x, the worst case fairness is that one endpoint receive
The end result is that Waldo uses a fairness algorithm ~~ 5% and all other endpoints receive 5r.

(in this case, round-robin) to resolve conflicts between

primary transactions, but allows other transactions to re-

solve conflicts using wound/wait. This provides each ~~ S5 Implementation and extensions
endpoint a minimum quality of service, satisfying the

fairness requirement. It also allows many non-conflicting Waldo compiles to both Python and Java. Excluding au-

transactions to execute in parallel, meeting the paral- tomatically generated code, unit tests, and external li-

lelism requirement. Finally, as the evaluation in Sec- braries, the Waldo compiler and runtime libraries con-

tion 6 shows, the algorithm itself is efficient, such that sist of 22,500 lines of code, measured using SLOC-

it does not consume many CPU cycles or send much ad- count [47]. This section describes several features and

ditional state. details of their implementation.
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5.1 Two-phase commit 6 Evaluation

Waldo provides consistency, atomicity, and isolation for The core claims of this paper are:

its transactions using two mechanisms. The first is

through the algorithm described in Section 4.3, which 1. Waldo and its consistency provide atomicity, con-
schedules lock acquisition across executing transactions. sistency, and isolation at a reasonable transaction
The second is a standard two-phase commit protocol, rate;

across all state touched by a committing transaction. Be- 2. Leveraging transactional semantics may simplify
tween the first and second phases of its commit, regard- many networked applications; and
less of priority, no other transaction may preempt it.

This adds some complexity to the implementation: 3. The abstractions that Waldo provides are flexible
when a primary transaction attempts to write to an object enough to support such applications.
read locked by many standard transactions, it must first

atomically ensure that all readers have not yet reached We demonstrate the first claim through a series of mi-
their commit phase before preempting them. crobenchmarks and the following two by building several

applications using Waldo, and describing them.

5.2 Message format and compression 6.1 Microbenchmarks

Waldo’s sequences abstract away the notion of messages. Waldo 1 not targeted for all networked applications.
However. to provide this abstraction. the underlvine run- Applications that require ultra-low latency or ultra-high
time stillbe es a host of messa osbrea throughput should use alternate tools. The goal of this
nicating enroe 2 section is to demonstrate that Waldo performs reasonably

: well enough to make it usable for many basic desktop ap-

Waldo's ‘messages are specified using protocol plications, mobile games, etc. To this end, we measure
buffers [19]. Both the Java and Python Waldo imple- the latency, throughput, and bandwidth consumption for
mentations use the code autogenerated from these spec- a pair of endpoints connected over TCP, with its no delay
ifications to serialize and deserialize messages between flag set. All numbers are from the Tava implementation
endpoints. Unlike the ad-hoc string-based solutions we of Waldo, running with encryption off. To simulate the
observed programmers employing in the studies in Sec- effect of 2 long-running connection and reduce the bot-
tion 2, protocol buffers’ serialization methods automat- tleneck of slow start. we take our measurements after a
ically compresses data sent between endpoints, poten- warmup period.
tially saving bandwidth. Additionally, Waldo only trans- Recognizing the diversity of networked applications,
mits dirty data: if a programmer does not write to a we present benchmarks for four target environments: a
shared variable, the runtime does not transmit it. Finally, Nexus 4 mobile phone, an Amazon Kindle Fire HD, a
Waldo only transmits variable deltas: if a programmer 0+ poo, Dell Studio XPS connected over N
writes to a single element in a shared map, the runtime wide area network to an EC2 node with an average 74.7
only sends data relevant for that single element. ms round trip ping time. The specifications for each are

shown in Table 1.

. For all tests, endpoints run a simple two step sequence
5.3 Security that touches no endpoint data and contains no sequence

oo oo data. We turn runtime optimizations off to ensure that,

Unlike applications running on a single host, distributed despite not touching any state, both endpoints still 20
applications may transmit data over networks where ad- through a full two-phase commit. To characterize imple-
Versaries can listen and inject packets. ‘There 15 a sub- mentation overhead and provide a best-case throughput
stantial body of work devoted to providing high-level and latency bound, we benchmark the phone, Kindle, and
confidentiality, integrity, and authentication guarantees Macbook by running each endpoint locally (connected
in such environments. Waldo’s goal is not to provide any via TCP). The last condition, between the Dell desktop
new primitives on top of this work, but rather to incorpo- and EC? node runs over the wide area network.
rate it in a way that makes it as usable as possible.

By default, Waldo applications run over SSL with self- 6.1.1 Latency
signed certificates. Further, just a single Waldo API call

allows a developer to instantiate a certificate authority, To measure latency, we run 3000 transactions serially

which they can interface to as if it were a general Waldo for each condition, except the local Macbook (because

service to add authentication to their projects. transactions complete more quickly on the Macbook, we
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Machine OS Processor RAM Machine Min (tps) Max (tps) Avg (tps)

Nexus 4 Android  Krait Quad 2GB Phone 183.54 190.03 185.93

4.3 Core 1500 MHz Kindle 198.82 211.62 204.24

Kindle Fire HD Android Dual Core TI 1GB Macbook 12,938 13,325 13,105

4.0.3 OMAP4 1.5GHz WAN 9,430.5 10,420 10,047

Macbook Pro OSX Intel Core 17 16GB =.

10.8.4 2.4GHz

Dell XPS 8100 Ubuntu Intel Core i7 RGB Table 3: Throughput benchmarks, across ten runs for

12.04 2 8GHz each condition. Results are in transactions per second

EC2 ml.xlarge Ubuntu Intel Xeon 15GB (tps).
12.04 E5-2650 2.00GHz

- sss voke it. In the Kindle’s case, running additional threads
Table 1: Hardware specifications for conditions. decreases aggregate throughput, perhaps from the over-

head of context switching, and we only run one invok-

Machine Min (ms) Max (ms) Avg (ms) ing thread. The WAN condition shows slightly higher
-_— variation than the other conditions, likely due to network
Phone 6.8264 7.8196 7.5118 effects.
Kindle 4.7254 5.0296 4.8982

Macbook 0.17309 0.17520 0.17437

WAN 150.23 150.68 150.47 6.1.3 Bandwidth

To perform 3000 transactions across the WAN, Waldo

Table 2: Latency microbenchmarks, across ten runs for ~~ sends approximately 25,000 packets with a cumulative
each condition. payload of 1.5MB, including ACKs and heartbeat mes-

sages. Amortized, this corresponds to roughly 500B of

run 30,000 transactions serially), and compute the time data per transaction. The vast majority of these data

it takes to complete a single transaction as the average of ~~ (70%) are from transmitting long event UUID strings be-

the total time it takes to complete a single transaction. tween endpoints, which are used to map incoming mes-

Table 2 shows the results of these experiments. Trans- sages to the transaction that they are intended for. We are

actions in all conditions take fractions of a second to pro- exploring alternate encodings for these data.
cess. Recalling the 74.7 ms ping round trip time men-

tioned above, as expected, network latency dominates the 6.2 Applications
transaction execution time for the WAN condition.

The phone and Kindle take more than an order of mag- The replicated server log example in Section 3.5 provides

nitude longer to process a transaction than the Macbook. a focused example of Waldo’s potential utility. To eval-

Running Waldo in a profiler on the Macbook demon- uate Waldo’s effectiveness in complete end-to-end appli-

strates that this slowdown is likely not due to memory cations, we built several network applications. These in-

backpressure: across 30,000 transactions, resident mem- clude a distributed hash table (DHT), document server,

ory never exceeds 95SMB. This suggests that the slow- distributed bank, leader election system, highscore score-

down is likely attributable to 1) different JVM and OS board for a mobile game, a cloud image processing sys-

characteristics and/or 2) fundamental processor differ- tem for biomedical data, a network configuration system,

ences. We cannot interchange the JVM and OS of a Kin- and a game with game lobby. For brevity, we only fo-

dle and a Macbook to directly quantify these differences. cus on the last two of these, but note that for very sim-

However, running an older Macbook with OSX 10.6.8 ple client-server oriented applications, such as the high-

and Java 1.6.033 installed through OSX’s default soft- score scoreboard, Waldo’s primary utility was in provid-

ware update mechanism ran approximately 30% faster ~~ ing an RPC frontend on a finely-grained synchronized

than running the identical benchmark on the same hard- data structure.

ware running Ubuntu 12.04 and openjdk-6.

6.2.1 WaldoConf

6.1.2 Throughput In an effort to test Waldo on real-world problems, we
Table 3 shows throughput results for each condition, asked a network administrator at our host institution

across ten runs. For the phone, laptop, and WAN cases, about his day-to-day challenges. He reported that script-

in order to saturate throughput, application code shares ing an update for virtual LAN settings across dozens of

a Waldo endpoint object between many threads that in- switches took over forty hours of work. Much of this
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time was spent physically restarting nodes that got into ates a new Anagram service, composed of the new play-

strange states when scripts failed [14]. ers.

To explore these problems, we built WaldoConf, a Either all players begin a game or none do. On error
network administrative application. Without the abil- when starting a new game, Waldo automatically resets
ity to modify network device firmware directly, Waldo- affected state (e.g., each player’s list of opponents) as
Conf instead runs a single service per device on sepa- ~~ well as cleaning up state associated with the new Ana-
rate hosts and extend the service’s internal state so that ~~ gram service on the game server. Similarly using trans-
on commit, WaldoConf pushes changes via SNMP [8] actions, the game is either atomically, across all players,
to the associated network device. Using Waldo’s dis- in a started state or in a completed state.
tributed transactions, either all network devices transition

to updated state, or none do. Additionally, we extended

WaldoCont to perform trial transactions. Using trial 7 Related Work
transactions, each WaldoConf service pushes changes to

network devices and automatically roll them back after : : :
: : : : This paper touches on two substantial bodies of work,

a pre-specified period of time. Because configuration
: network programming and transaction processing. We

changes can affect the connection between a device and . Co
) start by highlighting several canonical systems and lan-
its controlling WaldoConf service, WaldoConf does not

: guages at the intersection of these topics and then expand
eradicate the need to manually reset devices, but may re-

: outwards.
duce it.

6.2.2 Anagrams and game lobby 7.1 Programming with transactions

Game play for Anagrams is simple and mimics popular Recent experiments demonstrate that software transac-
mobile word scramble games [4, 6]. Several players are tional memory on single node systems can speed devel-
presented with the same set of letters. During a set time opment time for applications that do not require high per-
interval, each player constructs as many words as possi- formance and anecdotally reinforce many of the observa-
ble from the set of letters, and is assigned a score for each tions presented in Section 2 [37].
word based on 1) the length of the word and 2) whether Languages such as Haskell [23] and Clojure [10] pro-
the player is the first, second, third, etc. to have found OT _

vide explicit linguistic support for software transactions
the word in the scrambled letters. : » : :

on single nodes. Additionally, experimental compilers

Anagrams leverages the fairness and starvation guar- that support software transactional memory on a sin-
antees of Waldo’s scheduling algorithm. In Anagrams, gle node for other languages such as Python [38] and
even if all a player’s opponents collude, attaching auto- C++ [34] are also being considered or complete.
mated robots that perform literal dictionary attacks (sub- . CL
oo : : Argus first proposed a limited form of distributed

mitting guesses for every word in an English dictionary : :
: : : transactions over 30 years ago [32], which provided

to the game server), the player still receives a meaningful CL. : ol :
: atomicity, consistency, and durability, but required users

quality of service to submit his/her own found words. : .
to manually lock state for isolation. Similarly, Orca [5]

As initially structured, Anagrams focused on steady- :
Ch : d allowed programmers to make transactional changes to

state operation: OW to receive, process, an SCOTe shared, synchronized data objects, but disallowed nested
guesses. But it ignored edge cases associated with start- transactions across two or more such objects
ing and stopping the game. Players could join after a )

: More modern languages also are incorporating or
game began and submit guesses after a game ended; once : Co

: : have incorporated some form of distributed transactions.
a game service started, it persisted in memory, even after

the game ended Chapel, a language developed by Cray, Inc. for the
: : 3 : high-performance computing community, is considering

Extending Anagrams with a game lobby” was simple : Co
ge : adding support for distributed transactions [15], however,

using Waldo’s distributed transactions. A lobby service :
: : its current reference manual does not include any infor-

runs on a server, holding references to endpoints con- :
Co mation about them [12].

nected to players. When a new player joins, the player 28 isn ; ri
registers with the lobby service. As part of this registra- Cponmuant g an app on eeAta i.
tion, the lobby service checks if there are enough waiting fag fcer yLoorated t © pen stan ar 4players to begin a new game. If there are, the lobby cre- to perform distributed transactions. Java S transaction

API [36] also uses Open XA to commit across multiple

3Game lobbies assemble a quorum of players and automatically hosts. Unlike Waldo’s scheduling algorithm, Open XA
spawn a new game populated with them. provides no client starvation or fairness guarantees.
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7.2 Transaction and resource scheduling 8 Discussion and conclusion

Section 4.2 already described directly related approaches ~~ 1n€ challenges identified in Section 2 arise because the
for scheduling transactions. Waldo’s use of Lamport tools that subjects used were designed to support an exe-
clocks for its primary transactions mirrors Rajwar and cution model that strictly isolates data and logic between
Goodman'’s similar use with wound/wait for transaction ~~ S€Parate hosts. Such a programming model can create
processing on a single multi-processor node [39]. systems that are powerful, scalable, and fast. But it also

requires a level of discipline that can be a tremendous

Ghodsi et al. propose the Dominant Resource Fairness impediment
algorithm (DRF) [18] to schedule competing cluster jobs This paper argues instead that such problems can be
while providing attractive system-wide guarantees (e.g., : :

CS avoided or eased with a better abstraction — transac-
Pareto optimality, strategy-proofness, etc.). Like DRE, oo : : :

tions. Its core contributions supporting this thesis are a
Waldo’s scheduling algorithm mediates access to many CL :

A novel distributed scheduling algorithm and Waldo, a do-

different resources (individual Waldo objects to operate main specific language composed of services, endpoints
on) across multiple actors. Unlike DRF, the Waldo’s

: Ce : and sequences.
algorithm is distributed: no node has a view of all re- :

: : .. : Because sequences are always between a pair of end-
sources, nor of all jobs in the system. Additionally, pri- :

: points, more complex control structures across a single
mary transactions are not required to pre-declare all re-

: sequence are almost never needed. The one exception
sources they require to execute.

1s that very occasionally a protocol may want a form of

Waldo provides transactional access across distributed conditional loop. We have found that in practice, the
memory. Most work from the distributed software trans- common needs for such control flows, such as send-N-
action community (e.g., [11, 29]) focuses on distributed packets, do not appear in Waldo as it automatically han-
transactional memory replicated at each node in the net- dles such fragmentation. In the case of sending a large
work, and attempts to manage consistency across repli- block of data, a sequence simply assigns the data to a
cas. shared variable. When the next sequence step executes

on the other endpoint, the data will have arrived. More

complex cases, such as tree iterations (e.g., DNS) or con-

ditional operations (e.g., HTTP redirects) can be handled

7.3 Network programming as multiple sequences through a service.
Such approaches work reasonably when each se-

Thrift [44], CORBA’s object request brokers [43], and quence <Pends o the resul ° a PreviousIN but
Java’s RMI API [17] are all examples of systems that al- Cdn NEcAIEsSly SIOW a Lalsaclion Mm cases WHEIe d pro-

grammer initiates sequences across otherwise isolated
low a local program to execute a procedure on a remote

; SRT : endpoint pairs. For instance, in the publish-subscribe ex-
host. Like Waldo’s sequences, these simplify data seri- : oo
oo : ample described in Section 3, it is unnecessary for the

alization and message dispatch. However, RPC frame-
: Co publisher service to wait for one endpoint’s Push se-

works are isolated from application data.
quence to complete before starting another’s.

Actor-model based languages, such as Erlang [2] and Ongoing and future work on Waldo explores this issue:
b [40], map naturally into a distributed programming we are currently considering adding runtime support for
paradigm. They enforce message passing share-nothing  (imistic parallelization within a single transaction. Us-
architectures, simplifying error recovery [3]. However, no gych a mechanism, the Waldo runtime decides which
without higher-level primitives for coordination pro- ode within a transaction to attempt to execute in paral-
grammers must build their own state consistency proto- lel based on program analysis and current resource uti-
colsand reason about edge cases caused by event inter-  Jization. Upon execution, if the runtime detects that its
leaving on their own. schedule violates causality, it automatically rollsback the
MACE [28] addresses the challenge of edge cases change, thereby preserving Waldo’s otherwise linear in-

by making a protocol’s state space more visible. A terface for the programmer.
MACE programmer explicitly specifies a state machine In addition to optimistic parallelization, we are also

for his/her protocol, and may use additional tools to actively trying to improve Waldo’s interface and tools for

validate it [27]. A MACE programmer still explicitly writing secure applications. This branch of research asks

manages state him/herself and audit it to ensure it will such basic questions as, should a programmer need to

not lead to read-write conflicts. Like MACE, Waldo know what a key is to maintain integrity in his/her appli-

transcompiles the networking components of an appli- cation? and what would the Waldo runtime look like if

cation to that application’s target language. two, connected endpoints do not trust each other?
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