Rethinking Application Networking as Transactional Scripting

Behram F. T. Mistree, Jay Thomason, Gabriel Kho, Harrison Ho, Edric Kyauk, and Philip Levis

Stanford University

Abstract

We describe Waldo, a scripting language for applica-
tion networking. Waldo allows programmers to de-
scribe complex network interactions between many hosts
as transactional operations with atomicity, consistency,
and isolation. Waldo is able to provide these transac-
tional semantics starvation-free without assuming global
clocks, without centralized scheduling, and under ar-
bitrary transaction conflicts. This allows programmers
to write application networking as short transactional
scripts that will never starve. Waldo achieves these re-
sults with a novel distributed transaction scheduling al-
gorithm that combines the wound-wait algorithm and
Lamport clocks with two transaction priority levels. Ex-
perimental results show that using the primary algorithm
Waldo can perform up to 10,000 transctions per second
between two endpoints connected across the wide area
network.

1 Introduction

Driven by mobile devices and social networking, appli-
cations are increasingly networked. MagicPiano pairs
users, allowing them to play music together [45]. Using
Texas Hold Em, poker enthusiasts around the world can
wager against each other [24]. Networking is arguably
one of the hardest parts of an application, having to deal
with concurrency, failure, latency, and overload. Despite
this challenge, frameworks today provide little, if any,
support beyond sockets and data transfer. iOS and An-
droid, for example, provide APIs for HTTP operations,
handling cookies and other details, but, in practice, this
is just a data transport layer. The challenges of managing
connections, concurrency, fairness, and correctness still
lie with the programmer.

The success of web frameworks such as Ruby on Rails
and Django have demonstrated that the right level of
abstraction can greatly speed development. These and

other frameworks automate the simple but time consum-
ing parts of building web applications, by abstracting
the database and simplifying query-dispatch for common
queries. They make many services on the same machine,
such as databases, caches, and a web server all appear
like a single process.

There are also frameworks for distributed systems [41,
28, 13, 20], which help programmers build systems
such as distributed hash tables and content distribution
networks. To such programmers, and to systems re-
searchers, application networking might seem compara-
tively simple or easy to implement. But, based on our ex-
periences teaching an introductory networking course for
several years as well as two more controlled user studies,
discussed further in Section 2, we argue that networking
code is extremely challenging to most developers.

Four challenges dominate application networking de-
velopment time: handling failures, preventing or debug-
ging deadlock, managing event ordering and data consis-
tency, and handling data races. These challenges arise
from the execution model common to most networking
code: one or more endpoints exchange a series of mes-
sages, stepping through intermediate states in order to
enact a larger, stable state transition on nodes across a
network. For example, in a poker game, all players must
agree to play before the game can begin; to transition
from the closed to established states in TCP, an endpoint
typically goes through two intermediate states as part
of the three-way-handshake. In both cases, a failure in
the midst of the higher-level state transition (no game to
game initiated; closed to established) requires cleaning
up a variety of temporary and intermediate state. Under-
standing when this might happen, how it might happen,
and how to handle it is difficult.

This paper argues that application networking’s com-
mon challenges can be avoided or eased with a better
abstraction: transactions. Describing a multi-step state
transition as a transaction that provides atomicity, con-



sistency, and isolation! between two (or more endpoints)
simplifies application logic. If a failure occurs mid-
transaction, the system automatically restores to a con-
sistent state. Similarly, transaction isolation ensures that
executing concurrent transactions does not deadlock. Fi-
nally, writing an exchange as a single, atomic transaction
defines the set of valid interleavings within a transaction
and ensures that the inter-transaction interleavings main-
tain consistent state.

As we discuss in Section 4, standard centralized sys-
tems that provide these types of guarantees, such as
databases, require a network round-trip time for any op-
eration on guarded data, require setup and maintenance
costs, and interface poorly with local resources. Further,
existing distributed approaches such as [21] do not pro-
vide properties such as starvation prevention and/or fair
access to resources, which are important in a application-
networking context.

To address these issues, the key technical contribution
of this paper is a novel distributed transaction schedul-
ing algorithm. This algorithm enforces consistency,
atomicity, and isolation while ensuring that no transac-
tion starves and providing quality of service guarantees
across network endpoints.

Programming transactional distributed shared memory
over a wide area network may seem challenging. This
paper’s second contribution is Waldo, a high-level do-
main specific language for building application network
components on top of this memory model.

Waldo provides three principal abstractions: end-
points, sequences, and services. An endpoint is one half
of a reliable connection, coupled with application state
and code. A sequence is a piece of linear code that con-
trols switching execution between two endpoints. Fi-
nally, a service allows application logic to control, use,
and manage multiple endpoints. As a simple example, to
atomically send an update to a set of peers, a program-
mer connects an endpoint on each peer to a publisher.
To send an update, a service on the publisher iterates
through each of its endpoints, triggering a sequence on
each. If any update sequence fails, Waldo automatically
rolls back the transaction.

We evaluate Waldo by building several sample appli-
cations, focusing on two in Section 6: a networked game
and a network configuration tool. Waldo is able to sup-
port 13,000 transactions per second across two endpoints
connected by TCP on a single host and 10,000 transac-
tions per second on the wide area. Increasing network
latencies reduces transaction rates from this result when
there are read-write conflicts. This performance is or-
ders of magnitude greater than what most application
networking requires. Using Waldo, a programmer can

'We ignore durability in this context.

write application networking code using simple linear
programs that run transactionally and can handle thou-
sands of operations per second.

The rest of this paper is structured as follows. The
next section describes our observations on the common
problems programmers run into when writing network-
ing code, and how those problems motivate the need for
transactions. Section 3 describes the Waldo language and
its abstractions, walking through a toy publish-subscribe
system as an example. Section 4 describes how Waldo
schedules its transactions using a novel algorithm that
meets the needs of network protocols while remaining
efficient and allowing parallelism. Section 5 describes
a Waldo implementation that we evaluate in Section 6.
Section 7 describes related work that Waldo is similar to
and builds on, and Section 8 concludes.

2 Motivation

While teaching a quarter-long intermediate course on
computer networking, we observed patterns of mistakes
in students’ programming assignments. To analyze these
patterns in more controlled environments, we performed
two need-finding user studies. In the first, we observed
and worked with nine undergraduates for three months
as they developed networked applications for a 3D vir-
tual world [9] using a JavaScript derivative [33]. In the
second, 17 graduate and upperclass undergraduate sub-
jects wrote networked code for a simple bank-customer
application in Python and an early antecedent to Waldo.
Most subjects were unable to complete the application
after struggling with the challenges described below.

Handling failures — Subjects in the second study were
explicitly told they could ignore error conditions. In the
first study, we never observed subjects’ attempting to de-
tect errors, for instance by catching exceptions, nor at-
tempting to recover from them. In several cases, this led
to incorrect behavior. For example, a bug in a virtual
world bank left a flaw in which a transfer-like message
from a customer would credit the transferee’s account
and cause an error before deducting from the transferer’s.
Colluding customers could invent money.

Deadlock — Almost half of the Python subjects in the
second study encountered deadlock issues that they were
unable to recover from. These subjects spent well over
half their total study time (on average, over 30 minutes)
trying to debug this problem before giving up.

Event and data management — Event and data man-
agement errors include incorrectly constructing and in-
correctly handling edge cases in event orderings such
that code enters an undefined state. Subjects in the
second study generated their own message formats and



parsed messages in a large dispatch function using string-
splitting and/or regular expressions. Generally, this strat-
egy prevents type-checking when constructing and pars-
ing messages; as a result, many errors that could have
been caught by a type checker had to be debugged by
intuition at runtime.

Data races — Networking code responds both to ap-
plication calls and network events, and these often come
from different threads of control. Subjects found lock-
based concurrency management challenging. No sub-
jects in the Python condition of the second study cor-
rectly completed the task. Although half the subjects
passed all test cases, their code contained hidden, unex-
cercised data races.

The four challenges described above stem from a lack
of atomicity, isolation, and consistency.

A lack of atomicity leaves systems in inconsistent
states when programmers do not or incorrectly handle
failure. Because the programmer above’s transfer event
was not atomic, a failure meant that users could defraud
his application. More broadly, unless a programmer
catches, handles, and forwards exceptions to all nodes
processing an event, a system can get in an inconsistent
state, potentially with some nodes holding locks for or
awaiting responses from failed nodes.

A lack of isolation causes deadlock. Subject code
deadlocked because logically separate, but incorrectly
isolated events ran concurrently.

A lack of consistency causes the event and data man-
agement problems described above. Instead of higher-
level language support for composing sequences of mes-
sages across endpoints or for automatically construct-
ing messages, programmers were left to perform these
checks and operations themselves. Finally, a lack of iso-
lation and consistency also cause data races.

Many networked applications may benefit from man-
aging their own atomicity, isolation, and consistency re-
quirements. However, as demonstrated by the user stud-
ies above, code that correctly provides atomicity, isola-
tion, is difficult and error-prone to write and debug. And
therefore there is a large group of programmers and ap-
plications that benefit from abstracting away these oth-
erwise tricky-to-provide properties into reusable runtime
components.

3 Waldo language overview

Waldo is a language for writing the networking com-
ponents of applications. Programmers write the net-
work code for their applications in Waldo, compile into
whichever language their application uses (currently,
Waldo emits to Java and Python) and then instantiate
Waldo objects.
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(a) High-level decomposition of publish-subscribe
example. Dashed lines are network connections and
solid lines are function calls.

1 Endpoint PubSubClient {
2 List(element: Text) publications;

3}

4 Endpoint PubSubServer {

5 Number pushes_performed;

6 Public send data(Text data) {
7 Push(data);

8

9

}
}

10 Sequence Push (Text publication) {

11 PubSubServer.start_push {

12 publication = compress(publication);
13 pushes_performed += 1;

14 }

15 PubSubClient.receive push {

16 publications.append(

17 uncompress (publication));

18 }

19 }

20 Service Publisher {

21 List(element: Endpoint) connections;
22 Public publish(Text data) {

23 for (Endpoint conn in connections) {
24 conn.send_data(data);

25 }

26 }

27 }

(b) Simplified Waldo code from a single file. Code that runs on the
server is blue, on the client is red. Keywords are shown in bold.
Compress, uncompress, and a variety of helper functions are elided.
In the Push sequence, publication is a shared variable across the
client and server.

Server Client

Sequence Push (Text publication) {
PubSubServer.start_push {
publication = compress(publication); [#5:%

PubSubClient.receive_push {

1
2
3
4
5
6
7
8 uncompress (publication));
9

10 }

(c) Execution of the Push sequence. The Text publication starts on
the server, where it is compressed (shaded box). The Waldo runtime
automatically transfers the compressed Text to the client before in-
voking PubSubClient.receive_push().

Figure 1: Atomic publish/subscribe in Waldo.



Waldo provides three networking abstractions to pro-
grammers: endpoints, sequences, and services. Us-
ing these, programmers can compose transactions across
state on one or many hosts in the network. An endpoint
represents one side of a networking protocol between
two hosts, and couples half of a networking connection
with application state and logic. A sequence describes an
interaction between a pair of endpoints. Finally, a service
holds references to multiple endpoints and their shared
state, allowing a Waldo programmer to control and use
many connections in a single transaction.

Figure 1(b) shows a code listing for an expository
atomic publish-subscribe system built using Waldo. Sec-
tions 3.1, 3.2, and 3.3 step through this example, de-
scribing the role of endpoints, sequences, and services,
respectively. Section 3.5 follows with a more realistic
example.

3.1 Endpoints

At a high level, a Waldo endpoint is like a basic socket
in that it interfaces to a partner endpoint, presumably
running on a different host. Unlike a socket, an end-
point wraps application state and specifies valid se-
quences of operations between partner endpoints. As
shown by endpoints PubSubServer and PubSubClient
in Figure 1(b), an endpoint is written as an object com-
plete with methods (send_data for PubSubServer) and
internal variables (publications for PubSubClient;
pushes_performed for PubSubServer). Waldo end-
points use private data and methods by default and allow
explicit specification of Public methods to encourage
encapsulation.

When called from outside Waldo, invoking an end-
point’s Public method automatically begins a new
transaction. When called from within Waldo (e.g., by
a service or another endpoint), the method call is nested
within the current transaction. In Figure 1(b), for ex-
ample, the Publisher service calls PubSubServer’s
send_data method.

Currently, both endpoints and services can only be cre-
ated in external application code. The abstraction for cre-
ating endpoints is similar to that for creating sockets. A
programmer requests the Waldo runtime to bind an end-
point factory to listen for incoming connections on an
IP-port tuple. On receiving a new connection request, the
factory automatically creates a new endpoint, initializing
its state, and executing an optional callback. Similarly, a
programmer can request an endpoint factory to connect
directly to an IP-port tuple, where, presumably, another
factory is listening.

3.2 Sequences

Waldo has no notion of messages, packets, packet for-
mats, or packet parsing. Instead, endpoints implicitly ex-
change information through shared variables declared in
a sequence. The developer focuses on specifying what
the data is, which data should be private or shared, and
how that data is modified. They do not need to worry
about the details of getting the data over the network that
do not affect the core application logic.

A sequence represents a protocol exchange between
a pair of endpoints. Sequence syntax consists of three
parts: a declaration, a data section, and two or more
sequence steps. Like a function, a sequence declara-
tion specifies arguments and a return type, and is in-
voked in a similar manner. On line 10, in Figure 1(b),
the Push sequence for instance, takes a single argument,
publication, and returns no data. Following the se-
quence declaration, a programmer can also declare vari-
ables in the sequence’s data section. Not pictured in Fig-
ure 1(b), variables declared here, as well as the argu-
ments to the sequence are scoped to the lifetime of the
sequence and are shared by all sequence steps.

Finally sequence steps are program blocks that al-
ternate execution between two endpoints.  Execu-
tion “falls through” each step: when one step com-
pletes execution, the runtime updates sequence-local
data and begins executing the next block, giving the
impression of straight-line code. In Figure 1(b),
PubSubServer.start_push executes on the server’s
host, followed by ClientSubscriber.receive_push
on a client host. Figure 1(c) shows how this sequence
behaves as it executes.

As mentioned previously, variables declared at
the scope of the sequence, such as publication
are shared by all sequence steps. For exam-
ple, ~when PubSubServer.start_push assigns
to publication. This change is visible to
ClientSubscriber.receive_push. Further-
more, each sequence step can access the variables
and methods of its corresponding endpoint.  For
example, PubSubServer.start_push increments
pushes_performed and calls the elided compress
method. Because pushes_performed is local to one
endpoint, this change is not visible to the other endpoint.
However, because the sequence runs atomically, if
the client fails before completing the sequence the
PubSubServer will not see its variable incremented.

The advantage of using a single structure to specify
sequence logic is that it allows program structure to con-
cretely mirror program execution. As observed in Sec-
tion 2, programmers had difficulty reasoning about mes-
sage exchanges. Waldo’s sequences order message ex-
changes as straight-line code, interleaved between end-



points.

3.3 Services

Endpoints and sequences describe the relationship be-
tween a single pair of hosts. However, frequently, appli-
cations operate over many hosts: in the publish-subscribe
example, many hosts all receive the same pushed update;
on a file server many hosts should be able to read and
modify a shared group of files; BitTorrent avoids request-
ing the same chunk from many peers; HTTP clients open
multiple connections to reduce head-of-line blocking.

A Waldo service allows a programmer to group opera-
tions across multiple endpoints into a single transaction.
In the code listing in Figure 1(b), Publisher (lines 20-
27) is an example of a service. Similar to endpoints, non-
Waldo code can call a service’s Public methods. For
instance, non-Waldo code can publish a message across
all subscribers by calling publish (line 22).

Services and endpoints provide a well-defined inter-
face between application protocol code and other appli-
cation logic (e.g., GUI code) that might otherwise be in-
termixed. This allows programmers to independently test
the networked components of their system.

3.4 Error detection and handling

Waldo’s error handling system allows programmers to
recover from or propagate errors atomically. The sys-
tem in Waldo is based on a simple exception handling
model with termination semantics. Exceptions are de-
tected, raised by the runtime, and propagated back up
the call stack where the exceptions can be handled if the
throwing code is nested within a try-catch block. Error
handling in Waldo is similar to error handling in other
languages with one key distinction: the call stack may
be distributed over many hosts. When an exception is
raised on one endpoint, Waldo automatically serializes
and sends it to its calling endpoint or service, which may
handle the exception or continue propagating it back.

In languages without atomicity guarantees, if an er-
ror is not explicitly handled by the programmer then it
may result in the corruption of variables or state, making
it difficult or impossible for the program to continue run-
ning correctly. When an error is left unhandled in Waldo,
the runtime backs out of the transaction, and thus no state
within Waldo is affected.

Waldo makes a distinction between two classes
of exceptions: ApplicationExceptions and
NetworkExceptions. ApplicationExceptions
are automatically raised by the emitted Waldo code
during the execution of an event. For example, division
by zero results in an ApplicationException.

1 Service LogManager {

2 List(element: Endpoint) all_endpoints;

3 List (element: Text) log;

4

5 Public Function root_add_log_entry(Text entry)
6 returns TrueFalse {

7 Number num_endpts_responded = 0;

8 for (Endpoint endpt in all_endpoints) {
9 try {

10 endpt.add_log_entry(entry);

11 num_endpts_responded += 1;

12 } catch(NetworkException nex) {}

13 }

14

15 Number majority = len(all_endpoints)/2;
16 if (num_endpts_responded >= majority) {
17 log.append(entry) ;

18 return True;

19 }

20 abort();

21 }

22

23 Public Function leaf_add_log_entry(Text entry) {
24 log.append(entry) ;
}

Figure 2: Service for replicated logging.

Using a configurable TCP heartbeat between re-
mote partner endpoints, the Waldo runtime actively de-
tects NetworkExceptions. Once an endpoint detects
that its partner has become unreachable, it raises a
NetworkException in any events currently waiting on a
response from, or sending a message to, the partner end-
point. Further, once an endpoint’s partner becomes un-
reachable, any new event which attempts to contact the
partner will raise a NetworkException.

3.5 Log example

The previous publish-subscribe example illustrates
‘Waldo’s core features, but little of their motivation or
utility. To do so, consider instead extending this sim-
ple example from a 1) single publisher writing to a log
on 2) all its associated clients to an example in which 1)
multiple publishers maintain a consistent, replicated log
over 2) a majority of themselves.

Such an abstraction could be useful for an application-
level game to track players’ health or in-game account
balances. This problem is considered challenging [35].
Well-known core systems, such as Chubby [7] rely on
majority-endorsed, consistent replicated logs for fault
tolerance, usually using Paxos [31] to implement them.

Figure 2 shows the core Waldo service code to build
this. The core endpoint code is shorter, containing a sin-
gle Public method that calls a sequence, which simply
calls back into LogManager’s leaf_add_log_entry.
An extended version of both code listings, which also
handles bootstrapping and nodes’ rejoining the network
and fast-forwarding their logs is available online at
http://bcoli.stanford.edu/waldo_examples/.



Each server holding a copy of the replicated log runs
a LogManager service. To add an entry to a ma-
jority of all LogManagers’ logs, a programmer calls
root_add_log_entry (defined on line 5 of Figure 2)
on a LogManager instance. This method iterates over
all endpoints, requesting each to update its replicated
version of the log via an endpoint call. If an end-
point’s host has crashed, the endpoint call should throw a
NetworkException, which is caught and ignored (line
12). If an endpoint crashes after its endpoint call has
been invoked, but before the transaction completes, the
Waldo runtime automatically backs out the transaction
across all endpoints and passes a network exception back
to the non-Waldo code calling root_add_log_entry.
If a majority of nodes are able to append the update, the
LogManager appends to its own log and returns True.
Otherwise, it backs out all changes in its transaction.

3.6 TLS-like handshake example

Sequences are intended to encourage designing proto-
cols composed of linear, non-branching exchanges, mak-
ing endpoints’ interactions easier to reason about. Fig-
ure 3 shows an example TLS-like handshake to negotiate
and initialize a cipher between two endpoints to illustrate
this. Instead of writing such an exchange as separate
client and server handlers specified in distinct files, us-
ing sequences, such an exchange appears as straight-line
code operating on shared data.

4 Transaction Scheduling Algorithm

Transactions are at the core of Waldo’s event and mem-
ory model. A common way to provide transactions is
through a centralized service, such as a database or a
memory manager such as Sinfonia [1]. For Waldo to
follow such a model, each endpoint would communicate
with the centralized service to read, write, and commit
state changes. There are three major problems with a
centralized approach. First, one must set up and man-
age a centralized service, whose failure will halt all exe-
cution. Second, programs must interact with the service
over the network to modify local transactional state, lead-
ing to an extra round-trip time. Third, scaling such an
approach requires sharding or scaling this database, even
if most transactions are just between pairs of connected
hosts.

For these reasons, Waldo eschews a centralized ser-
vice and instead executes distributed transactions. These
transactions can modify state on multiple hosts that are
only transitively connected (i.e., A <> B and B < C but
A ¢ C). Distributed transactions mean that a program-
mer does not have to set up a centralized database and
a database failure will not halt the system. Second, an

1 Sequence Negotiation ()

2 returns TrueFalse cipher_initialized {

3 List<Text> srvr_ciphers;

4 Text sel_cipher, clnt_cipher_info;

5

6 Server.get_available_ciphers {

7 srvr_ciphers = available_ciphers.keys();
8

9 Client.select_cipher {

10 cipher_initialized = False;

11 Text accptbl_cipher;

12 for (accptbl_cipher in cipher_priorities) {
13 if (accptbl_cipher in srvr_ciphers) {
14 cipher_initialized = True;

15 sel_cipher = accptbl_cipher;

16 break;

17 }

18 }

19 if (not cipher_initialized)

20 return;

21}

22  Server.cipher_init_info {

23 srvr_cipher_info = cipher_info(sel_cipher);
24 local_cipher_info = srvr_cipher_info;

25 %

26 Client.recv_server_info_and_init {

27 clnt_cipher_info = cipher_info(sel_cipher);
28 local_cipher_info = client_cipher_info;
29 %

30 Server.recv_client_info {

31 partner_cipher_info = clnt_cipher_info;
32

33 }

Figure 3: Waldo source file for a cipher negotiation. End-
points and their associated state (e.g., available_ciphers)
and methods (e.g., cipher_info) are elided.

endpoint or service can modify its local state without
needing to communicate those modifications across the
network. Third, such an approach scales: the amount of
processing any given host performs depends on the num-
ber of endpoints involved in its transactions, not the total
number of endpoints in the system.

The major drawback of distributed transactions is that
wide area latencies, combined with isolation and atom-
icity, can lead to transaction rates too small for low-level
or high performance systems. Waldo, however, targets
application-level networking. For many applications,
such as updating a video game character heath or recon-
figuring an edge network, even a few tens of transactions
per second is sufficient.

4.1 Consistency and Execution Model

Waldo provides a strictly serializable consistency model.
All reads and writes within a transaction appear as
though they were completed in order. These reads and
writes operate as if there were no other transactions ex-
ecuting at the same time. Like any other transaction
processing system, the fundamental question the Waldo
runtime must answer is: when two or more transactions
want to operate on the same piece of data, what hap-
pens? To provide a useful abstraction for application net-



working, Waldo’s transaction execution behavior focuses
on three goals:

Meet networking assumptions — Networking proto-
cols and systems generally assume some level of fair-
ness, such that everyone competing for a shared resource
receives a non-zero share of it. For example, many com-
peting flows each receive some share of a link, and many
competing web clients receive some share of its process-
ing. While this might seem like an obvious design goal, it
is not traditionally a consideration in transaction process-
ing algorithms, which sacrifice fairness for performance.
In this way, networking introduces a novel requirement
for a transaction processing algorithm.

Support parallelism — A host might run multiple ap-
plications in parallel, or even multiple instances of an
application (e.g. BitTorrent swarms). While an individ-
ual application might require only a few hundred trans-
actions per second, Waldo should not limit its aggregate
system performance to these expectations. Transactions
that can run safely in parallel should do so.

Execute efficiently — On one hand, application net-
working often does not need high performance. How-
ever, as applications often run on battery-powered de-
vices (laptops, phones, tablets), it is important that the
code waste neither CPU cycles nor network capacity.

4.2 Candidate approaches

Transaction processing systems are generally structured
in two parts: 1) some algorithm schedules running trans-
actions on existing resources and 2) the system per-
forms a two-phase commit for committing transactions.
This section briefly overviews common scheduling ap-
proaches, describing why they do not meet one or more
of the requirements above. Readers familiar with (or
uninterested in) transaction processing implementations
may wish to skip to Section 4.3, which describes Waldo’s
scheduling algorithm. Section 5.1 explains how this al-
gorithm is integrated with two-phase commit in Waldo.

4.2.1 Static program analysis

Database query optimizers [26] and systems such as
Periscope [22] examine program text to schedule dis-
tributed tasks. The basic drawback in such approaches
is that their precision is limited to what static program
analysis can provide. In the case of data dependent ac-
cesses (such as looking up in a hashtable with a key from
a data load), the systems need to be conservative and so
limit parallelism. In the case of Waldo, for example, a
sequence that transfers a file passed as a parameter to a
sequence would need to read-lock the accessible file sys-
tem. It therefore greatly limits parallelism.

4.2.2 Optimistic Concurrency Control

Instead of acquiring object read and write locks be-
fore executing a transaction, optimistic concurrency con-
trol and commit-time validation execute transactions and
take locks only at commit time. If the system detects
that conflicting writes have been committed, it rolls back
the operation and tries again. Haskell’s atomic state-
ments, for example, use this approach by having each ob-
ject maintain a monotonically-increasing version num-
ber [23]. The key drawback of these approaches is that
they permit starvation. Repeated short transactions can
starve a long-running transaction which always sees val-
ues have changed when it tries to commit. In the pres-
ence of high contention, these approaches do not provide
the semantics and fairness that networking systems and
protocols expect.

4.2.3 Wound/wait

Static program analysis locks objects before a transac-
tion. Optimistic concurrency control locks them at the
end of a transaction. A final alternative acquires read
and write locks on objects as a transaction progresses.
The primary challenge with this approach is deadlock.
This third approach acquires locks in the order in which
a transaction encounters them, and so deadlock can oc-
cur. In these cases, the system detects the deadlock and
breaks it by aborting one of the transactions.

Wound/wait [42] is a standard database algorithm for
breaking deadlocks.” Wound/wait assigns every transac-
tion a timestamp. If an older transaction tries to take a
lock held by a younger one, the younger transaction rolls
back (it is wounded). If a younger transaction tries to
take a lock held by an older one, it waits. Because time
stamps are transitive, wound/wait breaks waits-for cycles
and therefore prevents deadlock. Furthermore, because
the oldest transaction in the system will always roll back
other transactions, no transaction will starve indefinite.

Wound/wait gives no fairness guarantees. If one client
issues one million transactions at time ¢, then another
client issuing a transaction at time ¢ + 1 must wait for
those million transactions to complete.

4.2.4 Fair queueing

Can a transaction scheduler provide fairness by applying
fair queueing algorithms [16]? For example, one could
assign timestamps in wound/wait based not only on the
arrival time of a transaction but also when the last trans-
action from that client completed. A modified version
of wound/wait using these timestamps would then allow

2Wait/die is another common algorithm. Wait/die may rollback
more transactions, but because it does so earlier than wound/wait, these
rollbacks may be less expensive [46].



transactions from endpoints with fewer transactions exe-
cuted to rollback transactions from other endpoints.

Unfortunately, fair queueing algorithms do not fit this
problem well. Fair queueing is designed to fairly share
a serialized resource, such as a communication channel.
It therefore does not satisfy the parallelism requirement.
For example, suppose that an endpoint submits 50 trans-
actions that can execute in parallel: how should times-
tamps be assigned to them? Assigning them the identical
timestamp can result in poor fairness as other transac-
tions have to wait for all 50 to commit. Furthermore,
the timestamp of each transaction needs to be consistent
across all endpoints that might execute it.

4.3 Waldo algorithm

To provide fairness while simultaneously allowing paral-
lelism, Waldo uses a novel transaction scheduling algo-
rithm consisting of four parts:

1. A “standard” transaction’s timestamp is the time
it was created in terms of a root endpoint’s local
Lamport clock [30]. Potential deadlocks between
standard transactions are avoided with wound/wait,
such that an older standard transaction preempts a
younger standard transaction.

2. Each endpoint assigns its oldest outstanding trans-
action to be its “primary” transaction. The times-
tamp of a primary transaction is the last local time a
primary transaction rooted at the endpoint commit-
ted.

3. A primary transaction always preempts a standard
transaction, regardless of timestamp.

4. After a primary transaction completes, a Waldo end-
point promotes its oldest standard transaction to be
its primary transaction. This may involve sending
messages across the network.

The end result is that Waldo uses a fairness algorithm
(in this case, round-robin) to resolve conflicts between
primary transactions, but allows other transactions to re-
solve conflicts using wound/wait. This provides each
endpoint a minimum quality of service, satisfying the
fairness requirement. It also allows many non-conflicting
transactions to execute in parallel, meeting the paral-
lelism requirement. Finally, as the evaluation in Sec-
tion 6 shows, the algorithm itself is efficient, such that
it does not consume many CPU cycles or send much ad-
ditional state.

4.3.1 Algorithm analysis

Because endpoints take turns having the oldest primary
transaction, Waldo’s primary transactions provide a min-
imum quality of service for each endpoint. However,
commits across standard transactions can still be unfair.
This section examines the worst case fairness bounds for
Waldo’s scheduling algorithm and shows it is starvation-
free.

Consider an idealized network of E endpoints with
O outstanding transactions per endpoint at some time
tg, and define T as the longest start-to-finish time for a
transaction, absent lock contention. After an endpoint
commits a primary transaction, its subsequent primary
transaction is given the lowest priority of primary trans-
actions. It must therefore wait at most (E — 1)T to start
executing. Therefore, each endpoint with an outstanding
transaction will commit at least every ET seconds.

Because transactions are made primary by age, no
transaction in the system submitted at fy waits longer
than (O — 1)ET to execute. This bound is guaranteed re-
gardless of how many additional transactions are added
after r9. Further, because transactions that do not conflict
with any other transactions are neither blocked nor pre-
empted, this algorithm ensures parallelism (when possi-
ble).

A fairness bound in the absence of lock contention is
not meaningful: if endpoint A submits a series of trans-
actions that must run serially, but endpoint B submits
100,000 transactions that do not conflict with each other
or A’s transactions, B should commit more transactions
than A. Limiting the ratio of their commit rates to ensure
fairness needlessly decreases utilization. In some ways,
this problem is similar to recent work on multi-resource
fairness [18], except that those algorithms require pre-
declaring all necessary resources.

The worst case fairness across conflicting transactions,
in terms of transaction execution time, occurs when one
endpoint dominates all standard transactions: all end-
points still receive a fair share of primary transaction
stream, but only one commits standard transactions. In
this case, if the fair share of transaction execution time
is %, the worst case fairness is that one endpoint receive
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S Implementation and extensions

Waldo compiles to both Python and Java. Excluding au-
tomatically generated code, unit tests, and external li-
braries, the Waldo compiler and runtime libraries con-
sist of 22,500 lines of code, measured using SLOC-
count [47]. This section describes several features and
details of their implementation.



5.1 Two-phase commit

Waldo provides consistency, atomicity, and isolation for
its transactions using two mechanisms. The first is
through the algorithm described in Section 4.3, which
schedules lock acquisition across executing transactions.
The second is a standard two-phase commit protocol,
across all state touched by a committing transaction. Be-
tween the first and second phases of its commit, regard-
less of priority, no other transaction may preempt it.

This adds some complexity to the implementation:
when a primary transaction attempts to write to an object
read locked by many standard transactions, it must first
atomically ensure that all readers have not yet reached
their commit phase before preempting them.

5.2 Message format and compression

Waldo’s sequences abstract away the notion of messages.
However, to provide this abstraction, the underlying run-
time still exchanges a host of messages between commu-
nicating endpoints.

Waldo’s messages are specified using protocol
buffers [19]. Both the Java and Python Waldo imple-
mentations use the code autogenerated from these spec-
ifications to serialize and deserialize messages between
endpoints. Unlike the ad-hoc string-based solutions we
observed programmers employing in the studies in Sec-
tion 2, protocol buffers’ serialization methods automat-
ically compresses data sent between endpoints, poten-
tially saving bandwidth. Additionally, Waldo only trans-
mits dirty data: if a programmer does not write to a
shared variable, the runtime does not transmit it. Finally,
Waldo only transmits variable deltas: if a programmer
writes to a single element in a shared map, the runtime
only sends data relevant for that single element.

5.3 Security

Unlike applications running on a single host, distributed
applications may transmit data over networks where ad-
versaries can listen and inject packets. There is a sub-
stantial body of work devoted to providing high-level
confidentiality, integrity, and authentication guarantees
in such environments. Waldo’s goal is not to provide any
new primitives on top of this work, but rather to incorpo-
rate it in a way that makes it as usable as possible.

By default, Waldo applications run over SSL with self-
signed certificates. Further, just a single Waldo API call
allows a developer to instantiate a certificate authority,
which they can interface to as if it were a general Waldo
service to add authentication to their projects.

6 Evaluation

The core claims of this paper are:

1. Waldo and its consistency provide atomicity, con-
sistency, and isolation at a reasonable transaction
rate;

2. Leveraging transactional semantics may simplify
many networked applications; and

3. The abstractions that Waldo provides are flexible
enough to support such applications.

We demonstrate the first claim through a series of mi-
crobenchmarks and the following two by building several
applications using Waldo, and describing them.

6.1 Microbenchmarks

Waldo is not targeted for all networked applications.
Applications that require ultra-low latency or ultra-high
throughput should use alternate tools. The goal of this
section is to demonstrate that Waldo performs reasonably
well enough to make it usable for many basic desktop ap-
plications, mobile games, etc. To this end, we measure
the latency, throughput, and bandwidth consumption for
a pair of endpoints connected over TCP, with its no delay
flag set. All numbers are from the Java implementation
of Waldo, running with encryption off. To simulate the
effect of a long-running connection and reduce the bot-
tleneck of slow start, we take our measurements after a
warmup period.

Recognizing the diversity of networked applications,
we present benchmarks for four target environments: a
Nexus 4 mobile phone, an Amazon Kindle Fire HD, a
Macbook Pro, and a Dell Studio XPS connected over a
wide area network to an EC2 node with an average 74.7
ms round trip ping time. The specifications for each are
shown in Table 1.

For all tests, endpoints run a simple two step sequence
that touches no endpoint data and contains no sequence
data. We turn runtime optimizations off to ensure that,
despite not touching any state, both endpoints still go
through a full two-phase commit. To characterize imple-
mentation overhead and provide a best-case throughput
and latency bound, we benchmark the phone, Kindle, and
Macbook by running each endpoint locally (connected
via TCP). The last condition, between the Dell desktop
and EC2 node runs over the wide area network.

6.1.1 Latency

To measure latency, we run 3000 transactions serially
for each condition, except the local Macbook (because
transactions complete more quickly on the Macbook, we



Machine 0S Processor RAM Machine Min (tps) Max (tps) Avg (tps)
Nexus 4 Android  Krait Quad 2GB Phone 183.54 190.03 185.93
4.3 Core 1500 MHz Kindle 198.82 211.62 204.24
Kindle Fire HD  Android Dual Core TI 1GB Macbook 12,938 13,325 13,105
4.03 OMAP4 1.5GHz WAN 9,430.5 10,420 10,047
Macbook Pro 0SX Intel Core i7 16GB
10.8.4 2.4GHz
Dell XPS 8100  Ubuntu  Intel Core i7 38GB Table 3: Throughput benchmarks, across ten runs for
12.04 2.8GHz each condition. Results are in transactions per second
EC2 ml.xlarge  Ubuntu  Intel Xeon 15GB (tps).
12.04 E5-2650 2.00GHz

Table 1: Hardware specifications for conditions.

Machine Min (ms) Max (ms) Avg (ms)
Phone 6.8264 7.8196 7.5118
Kindle 4.7254 5.0296 4.8982
Macbook 0.17309 0.17520 0.17437
WAN 150.23 150.68 150.47

Table 2: Latency microbenchmarks, across ten runs for
each condition.

run 30,000 transactions serially), and compute the time
it takes to complete a single transaction as the average of
the total time it takes to complete a single transaction.

Table 2 shows the results of these experiments. Trans-
actions in all conditions take fractions of a second to pro-
cess. Recalling the 74.7 ms ping round trip time men-
tioned above, as expected, network latency dominates the
transaction execution time for the WAN condition.

The phone and Kindle take more than an order of mag-
nitude longer to process a transaction than the Macbook.
Running Waldo in a profiler on the Macbook demon-
strates that this slowdown is likely not due to memory
backpressure: across 30,000 transactions, resident mem-
ory never exceeds 95MB. This suggests that the slow-
down is likely attributable to 1) different JVM and OS
characteristics and/or 2) fundamental processor differ-
ences. We cannot interchange the JVM and OS of a Kin-
dle and a Macbook to directly quantify these differences.
However, running an older Macbook with OSX 10.6.8
and Java 1.6.033 installed through OSX’s default soft-
ware update mechanism ran approximately 30% faster
than running the identical benchmark on the same hard-
ware running Ubuntu 12.04 and openjdk-6.

6.1.2 Throughput

Table 3 shows throughput results for each condition,
across ten runs. For the phone, laptop, and WAN cases,
in order to saturate throughput, application code shares
a Waldo endpoint object between many threads that in-
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voke it. In the Kindle’s case, running additional threads
decreases aggregate throughput, perhaps from the over-
head of context switching, and we only run one invok-
ing thread. The WAN condition shows slightly higher
variation than the other conditions, likely due to network
effects.

6.1.3 Bandwidth

To perform 3000 transactions across the WAN, Waldo
sends approximately 25,000 packets with a cumulative
payload of 1.5MB, including ACKs and heartbeat mes-
sages. Amortized, this corresponds to roughly 500B of
data per transaction. The vast majority of these data
(70%) are from transmitting long event UUID strings be-
tween endpoints, which are used to map incoming mes-
sages to the transaction that they are intended for. We are
exploring alternate encodings for these data.

6.2 Applications

The replicated server log example in Section 3.5 provides
a focused example of Waldo’s potential utility. To eval-
uate Waldo’s effectiveness in complete end-to-end appli-
cations, we built several network applications. These in-
clude a distributed hash table (DHT), document server,
distributed bank, leader election system, highscore score-
board for a mobile game, a cloud image processing sys-
tem for biomedical data, a network configuration system,
and a game with game lobby. For brevity, we only fo-
cus on the last two of these, but note that for very sim-
ple client-server oriented applications, such as the high-
score scoreboard, Waldo’s primary utility was in provid-
ing an RPC frontend on a finely-grained synchronized
data structure.

6.2.1 WaldoConf

In an effort to test Waldo on real-world problems, we
asked a network administrator at our host institution
about his day-to-day challenges. He reported that script-
ing an update for virtual LAN settings across dozens of
switches took over forty hours of work. Much of this



time was spent physically restarting nodes that got into
strange states when scripts failed [14].

To explore these problems, we built WaldoConf, a
network administrative application. Without the abil-
ity to modify network device firmware directly, Waldo-
Conf instead runs a single service per device on sepa-
rate hosts and extend the service’s internal state so that
on commit, WaldoConf pushes changes via SNMP [8]
to the associated network device. Using Waldo’s dis-
tributed transactions, either all network devices transition
to updated state, or none do. Additionally, we extended
WaldoConf to perform trial transactions. Using trial
transactions, each WaldoConf service pushes changes to
network devices and automatically roll them back after
a pre-specified period of time. Because configuration
changes can affect the connection between a device and
its controlling WaldoConf service, WaldoConf does not
eradicate the need to manually reset devices, but may re-
duce it.

6.2.2 Anagrams and game lobby

Game play for Anagrams is simple and mimics popular
mobile word scramble games [4, 6]. Several players are
presented with the same set of letters. During a set time
interval, each player constructs as many words as possi-
ble from the set of letters, and is assigned a score for each
word based on 1) the length of the word and 2) whether
the player is the first, second, third, etc. to have found
the word in the scrambled letters.

Anagrams leverages the fairness and starvation guar-
antees of Waldo’s scheduling algorithm. In Anagrams,
even if all a player’s opponents collude, attaching auto-
mated robots that perform literal dictionary attacks (sub-
mitting guesses for every word in an English dictionary
to the game server), the player still receives a meaningful
quality of service to submit his/her own found words.

As initially structured, Anagrams focused on steady-
state operation: how to receive, process, and score
guesses. But it ignored edge cases associated with start-
ing and stopping the game. Players could join after a
game began and submit guesses after a game ended; once
a game service started, it persisted in memory, even after
the game ended.

Extending Anagrams with a game lobby?® was simple
using Waldo’s distributed transactions. A lobby service
runs on a server, holding references to endpoints con-
nected to players. When a new player joins, the player
registers with the lobby service. As part of this registra-
tion, the lobby service checks if there are enough waiting
players to begin a new game. If there are, the lobby cre-

3Game lobbies assemble a quorum of players and automatically
spawn a new game populated with them.
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ates a new Anagram service, composed of the new play-
ers.

Either all players begin a game or none do. On error
when starting a new game, Waldo automatically resets
affected state (e.g., each player’s list of opponents) as
well as cleaning up state associated with the new Ana-
gram service on the game server. Similarly using trans-
actions, the game is either atomically, across all players,
in a started state or in a completed state.

7 Related Work

This paper touches on two substantial bodies of work,
network programming and transaction processing. We
start by highlighting several canonical systems and lan-
guages at the intersection of these topics and then expand
outwards.

7.1 Programming with transactions

Recent experiments demonstrate that software transac-
tional memory on single node systems can speed devel-
opment time for applications that do not require high per-
formance and anecdotally reinforce many of the observa-
tions presented in Section 2 [37].

Languages such as Haskell [23] and Clojure [10] pro-
vide explicit linguistic support for software transactions
on single nodes. Additionally, experimental compilers
that support software transactional memory on a sin-
gle node for other languages such as Python [38] and
C++ [34] are also being considered or complete.

Argus first proposed a limited form of distributed
transactions over 30 years ago [32], which provided
atomicity, consistency, and durability, but required users
to manually lock state for isolation. Similarly, Orca [5]
allowed programmers to make transactional changes to
shared, synchronized data objects, but disallowed nested
transactions across two or more such objects.

More modern languages also are incorporating or
have incorporated some form of distributed transactions.
Chapel, a language developed by Cray, Inc. for the
high-performance computing community, is considering
adding support for distributed transactions [15], however,
its current reference manual does not include any infor-
mation about them [12].

Immutant [25] an application server framework for
Clojure recently incorporated the Open XA standard [21]
to perform distributed transactions. Java’s transaction
API [36] also uses Open XA to commit across multiple
hosts. Unlike Waldo’s scheduling algorithm, Open XA
provides no client starvation or fairness guarantees.



7.2 Transaction and resource scheduling

Section 4.2 already described directly related approaches
for scheduling transactions. Waldo’s use of Lamport
clocks for its primary transactions mirrors Rajwar and
Goodman’s similar use with wound/wait for transaction
processing on a single multi-processor node [39].

Ghodsi et al. propose the Dominant Resource Fairness
algorithm (DRF) [18] to schedule competing cluster jobs
while providing attractive system-wide guarantees (e.g.,
Pareto optimality, strategy-proofness, etc.). Like DRE,
Waldo’s scheduling algorithm mediates access to many
different resources (individual Waldo objects to operate
on) across multiple actors. Unlike DRF, the Waldo’s
algorithm is distributed: no node has a view of all re-
sources, nor of all jobs in the system. Additionally, pri-
mary transactions are not required to pre-declare all re-
sources they require to execute.

‘Waldo provides transactional access across distributed
memory. Most work from the distributed software trans-
action community (e.g., [11, 29]) focuses on distributed
transactional memory replicated at each node in the net-
work, and attempts to manage consistency across repli-
cas.

7.3 Network programming

Thrift [44], CORBA’s object request brokers [43], and
Java’s RMI API [17] are all examples of systems that al-
low a local program to execute a procedure on a remote
host. Like Waldo’s sequences, these simplify data seri-
alization and message dispatch. However, RPC frame-
works are isolated from application data.

Actor-model based languages, such as Erlang [2] and
E [40], map naturally into a distributed programming
paradigm. They enforce message passing share-nothing
architectures, simplifying error recovery [3]. However,
without higher-level primitives for coordination pro-
grammers must build their own state consistency proto-
cols and reason about edge cases caused by event inter-
leaving on their own.

MACE [28] addresses the challenge of edge cases
by making a protocol’s state space more visible. A
MACE programmer explicitly specifies a state machine
for his/her protocol, and may use additional tools to
validate it [27]. A MACE programmer still explicitly
manages state him/herself and audit it to ensure it will
not lead to read-write conflicts. Like MACE, Waldo
transcompiles the networking components of an appli-
cation to that application’s target language.
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8 Discussion and conclusion

The challenges identified in Section 2 arise because the
tools that subjects used were designed to support an exe-
cution model that strictly isolates data and logic between
separate hosts. Such a programming model can create
systems that are powerful, scalable, and fast. But it also
requires a level of discipline that can be a tremendous
impediment.

This paper argues instead that such problems can be
avoided or eased with a better abstraction — transac-
tions. Its core contributions supporting this thesis are a
novel distributed scheduling algorithm and Waldo, a do-
main specific language composed of services, endpoints,
and sequences.

Because sequences are always between a pair of end-
points, more complex control structures across a single
sequence are almost never needed. The one exception
is that very occasionally a protocol may want a form of
conditional loop. We have found that in practice, the
common needs for such control flows, such as send-N-
packets, do not appear in Waldo as it automatically han-
dles such fragmentation. In the case of sending a large
block of data, a sequence simply assigns the data to a
shared variable. When the next sequence step executes
on the other endpoint, the data will have arrived. More
complex cases, such as tree iterations (e.g., DNS) or con-
ditional operations (e.g., HTTP redirects) can be handled
as multiple sequences through a service.

Such approaches work reasonably when each se-
quence depends on the result of a previous sequence, but
can needlessly slow a transaction in cases where a pro-
grammer initiates sequences across otherwise isolated
endpoint pairs. For instance, in the publish-subscribe ex-
ample described in Section 3, it is unnecessary for the
publisher service to wait for one endpoint’s Push se-
quence to complete before starting another’s.

Ongoing and future work on Waldo explores this issue:
we are currently considering adding runtime support for
optimistic parallelization within a single transaction. Us-
ing such a mechanism, the Waldo runtime decides which
code within a transaction to attempt to execute in paral-
lel based on program analysis and current resource uti-
lization. Upon execution, if the runtime detects that its
schedule violates causality, it automatically rollsback the
change, thereby preserving Waldo’s otherwise linear in-
terface for the programmer.

In addition to optimistic parallelization, we are also
actively trying to improve Waldo’s interface and tools for
writing secure applications. This branch of research asks
such basic questions as, should a programmer need to
know what a key is to maintain integrity in his/her appli-
cation? and what would the Waldo runtime look like if
two, connected endpoints do not trust each other?
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