1

Efficient implementations of decision procedures for the equational theory of
fixed-width bit-vectors are crucial for the formal verification of hardware and
certain software systems. Also, users of formal verification tools want support
for an input language which has a rich mixture of word-level and bitwise op-
erations together with bit-vector linear arithmetic.
verification tend to span several theories, it is also very desirable to have the
decision procedure implemented as part of a combination tool such as CVC
Lite [BB04], a theorem prover based on combination of decision procedures in

Technical Report

A Decision Procedure for Fixed-Width
Bit-Vectors

Vijay Ganesh, Sergey Berezin and David L. Dill
Computer Science Department, Stanford University
{vganesh,berezin,dill}@stanford.edu

9th April 2005

Abstract

We report the design, implementation and performance of an efficient
decision procedure for the equational theory of fixed-width bit-vectors.
The input language supports word-level bit-vector operations (concatena-
tion and extraction), bit-vector arithmetic operations (addition, subtrac-
tion and constant multiplication), bitwise boolean operations (conjunc-
tion, disjunction, negation, bitwise XOR, etc.), multiplexors (if-then-else
operator) and predicates like comparators (“less than”). Other common
functions such as right shift, sign/zero extension can be easily supported
through suitable translation.

The decision procedure is implemented as part of the CVC Lite tool
[BB04], a theorem prover based on combination of decision procedures
in the Nelson-Oppen style. The design is novel, the decision procedure
complete, and the implementation is efficient for a large class of practical
examples. Our implementation also supports concrete counterexample
generation.

Introduction

the Nelson-Oppen style.

Since many problems in

The theory of fixed-width bit-vectors is an equational theory over finite non-
empty strings over {0, 1}, whose length is known and fixed a priori. The op-
erations are concatenation, extraction of bit strings, bitwise Boolean operations
(conjunction, disjunction, negation), bit-vector arithmetic operations (addition
and multiplication), and multiplezors (if-then-else expressions). The formulas
of this theory are Boolean combinations of equalities over bit-vector expressions.

The decision problem for this theory is known to be NP-hard [M6198]. Many
approaches for deciding various subsets of this theory have been proposed in the
past [Mo198, CMR97, BP98, FDK98, ZKC01, KM01, BDL98, MMZ"01]. They
can be broadly classified into three categories.

In the first category, the input formula is translated into a SAT problem
and/or linear arithmetic [FDK98, ZKC01, MMZ"01]. The primary drawback
of these approaches is that they destroy the original structure of the problem,
and often expand the word-level operations into individual bits, resulting in an
expensive search.

Approaches in the second category rely on canonizing bit-vector terms, thus
exploiting the original structure of the input. Many approaches in the sec-
ond category are based on the Shostak-style combination of decision proce-
dures [CMR97, BP98, BDL98|, which requires a complete canonizer and a solver.
Alternatively, efficient canonical data structures like BDDs or BMDs can be used
to represent bit-vector terms. However, for an input language as rich as ours,
computing canonical form for a bit-vector term is an NP-hard problem in itself,
and is impractical in most cases. Moreover, extending a theory with additional
operators becomes rather difficult, since a new canonical form and a new solver
algorithm need to be designed every time.

Another approach is based on automata representing bit-vector values. This
has been described in connection with the MONA tool [EKM98|, a decision pro-
cedure for WS1S or weak monadic second order logic with one successor [M6198,
KMO01]. Given a bit-vector equation, an equivalent WS1S-formula is generated,
and a corresponding correlated automata is constructed by MONA. If the au-
tomata accepts all strings over {0,1}, then the original bit-vector equation is
valid, otherwise it is invalid. It has been noted that this approach is infeasible
for real-world examples due to the high complexity of deciding WS1S [M&198].

In our experience, among the approaches mentioned above, translation to
SAT is still the most practical and efficient, both in generality of the input lan-
guage and performance. Therefore, the challenge for us is to demonstrate that
our decision procedure is competitive in the majority of cases, and significantly
better in some cases of interest, compared to the SAT-based method using the
state-of-the-art SAT solvers such as Chaff [MMZ*01].

The main contribution of this work is a collection of practical design prin-
ciples and a concrete implementation of a new efficient decision procedure for
a theory of fixed-width bit-vectors. Another contribution is that the decision
procedure is implemented as part of CVC Lite, a Nelson-Oppen combination
framework. It is important to emphasize that the decision procedure is efficient
and works on a very rich set of bit-vector operations (mixture of word-level,
bit-wise, and arithmetic operators).

2 Contributions

More specifically, the contributions of this paper are:

1. An efficient decision procedure is presented here, which is a SAT solver
based algorithm with additional preprocessing steps consisting of efficient
polynomial-time normalization and equality rewrites. The normalization
step helps to detect equalities among terms through the word-level alge-
braic properties of bit-vector operators. The normalizations are further
aided by propagation of bit-vector equalities derived from the input bit-
vector formula. This sometimes completely solves the original problem,
and in most other cases significantly simplifies the task of the SAT solver.
Notice that the normalizations do not always yield a canonical form (which
is NP-hard to compute for the input language we support), providing a
good balance between their efficiency and the amount of reduction they
achieve.

2. Another contribution is that the decision procedure has been added as
a component to CVC Lite, a Nelson-Oppen combination framework. It
allows us to support multiplexors (ITE terms), quantifiers over bit-vector
variables, generate proofs and concrete counter-examples, and decide for-
mulas over many theories. Being part of a Nelson-Oppen combination
additionally requires the decision procedure to detect and report all equali-
ties over certain terms (shared constants from the purification step) [NO79,
Bar03]. In particular, it explicitly has to constrain every bit of shared bit-
vector terms to be either 0 or 1. This requirement and the techniques to
satisfy the same are explained in more detail in section 4.6.1.

3 Preliminaries

This section describes the logic of the fixed-width bit-vector theory, its signature
Y, as well as well-formed terms and formulas over ¥. The logic of the theory
is many-sorted logic (MSL), and hence all symbols, terms and formulas are
decorated, i.e. carry their sorts.

The theory of fixed-width bit-vectors considered here is an equational theory
over finite non-empty strings of bits ({0, 1}) whose length is known and fixed a
priori. The rightmost bit of a bit-vector of length n is called the least significant
bit (LSB) and the leftmost bit is called the most significant bit (MSB). The bits
are ordered from the LSB to the MSB, with the index of the LSB being 0 and
the index of the MSB being n — 1.

3.1 Signature

The signature ¥ = (F, C,S) of the fixed-width bit-vector theory is as follows:

Sorts: S is the set {BV(1),BV(2)...} of sort symbols, where BV(n) is the sort
of a bit-vector of length n € NT.

Functions: F denotes the following family of function symbols:

F ={@py, [i : s +)s *n)> ~[) &) 1) BVLT, BVLE}

where the symbol @) stands for concatenation, [i : j]p,) for extraction, +, for
bit-vector addition, %, for bit-vector multiplication, ~f, for bitwise negation,
&y for bitwise conjunction and |, for bitwise disjunction. The symbols [i : j]},
and ~,) are unary, and *,) is binary and the rest are m-ary for m > 2. The
subscript n > 0 denotes the number of bits in the return sort of the function.
The subscript is dropped, if it is clear from the context. The symbols BVLT
and BVLE denote “bitvector less than” and “less than or equal to” predicates.
We also natively support BVXOR, BVXNOR, BVNAND, BVNOR, but drop
these functions from the discussion below.

Constants: C is the following set of finite non-empty strings over the alphabet

{0, 1},
{0,1,00,...}

where the rightmost bit is the least significant bit. For example, 1100 is a

4-bit bit-vector constant representing the positive integer 12. A n-bit string
containing only 0 (similarly 1) is written as O, (similarly 1p,).

3.2 Terms and formulas

Terms are usually denoted by #},], t[ln], t2m], <+ -q{m]» - - -, where the subscripts are
the lengths of the bit-vector term and the superscripts provide an enumeration
of the terms. Variables are denoted by (), ..., Y[, - - - and bit-vector constants

are denoted by ¢,

Term: A ¥-term t,) is one of the following

2= ety | gy | hlid] [thy @i @t | ~d,
ty & &ty 1t |ty
thy Tinl -+ I T ‘ Cfin] *in] i)
tia) ~ 100 Tia)| ~ T

where the following conditions hold: For the concatenation term n = iy + i2 +
...+ im. For the extraction term ¢{,[i : j], the length g of ¢{, must be greater
than n, the number of bits in the resultant bit-vector. Also, the indices must
be such that n > i > j > 0, given the right to left ordering of the bits, where
n=1—7+1

Atom: A Y-atom q is of the form
el g2 1 42 1,2

The binary symbol == is used for the logical equality over terms, where the left
hand side and right hand side bit-vector terms must be of the same length.

Formula: A Y-formula ¢ is one of the following:
pu=al-@ o1 A | o1V

Informally, an interpretation of a Y-formula ¢ can be defined as follows: The
symbols in ¥ are interpreted in the intuitive way, and each variable is mapped
to a suitable non-empty finite string of the appropriate length. A formula ¢ is
said to be walid, if it is true under all interpretations, and invalid otherwise.

4 The Decision Procedure

Our decision procedure is a SAT-solver based algorithm with additional pre-
processing steps consisting of efficient polynomial time normalization. These
normalizations are further aided by propagation of equalities. Such propagation
of equalities is referred to as equality rewrites in the rest of the paper.

This work is based on two observations. First, SAT based methods for decid-
ing bit-vector theories are still the most efficient and most general. This is due
to the fact that a lot of good research has been done in tuning SAT solvers, and
effective translations from bit-vector domain to the Boolean domain exist. The
second observation is that there is lot of structure in bit-vector terms that can
be exploited. Efficient normalization (preprocessing) of bit-vector terms over X,
if done right, can be very helpful in detecting validities cheaply. The normal-
ization step exploits the word-level algebraic properties of bit-vector operators.
This sometimes completely solves the original problem, and in most other cases
significantly simplifies the task of the SAT solver. Another key observation is
that propagating equalities during the normalization step can simplify terms
even further.

Computing canonical form is another way to exploit these algebraic prop-
erties. However, computing canonical forms for terms over X is known to be
not effective in practice [BDL98|. Moreover, an approach based on computing
canonical forms cannot be extended easily. In other words, if new functions or
predicates are added to ¥, then defining a new canonical form for the resultant
signature maybe difficult or impossible.

Normalization, as opposed to canonization, provides a good balance between
efficiency and the amount of simplification of terms.

Decision procedures in CVC Lite are required to be implemented in a proof-
rule style. Such a style requires that the procedure be composed of a strategy
and a set of proof rules. The proof rules are required to be in a variant of the
natural deduction style of proof system. The choice of proof rules is left to the

implementor. However, we recommed that the rules encode the simplest possi-
ble transformations, may not contain loops, and the soundness of the rules must
be easy to check. The strategy is a function which in turn calls these transfor-
mations (proof rules) depending on the form or type or top-level operator of the
formula input to the decision procedure. All the normalization transformations
are implemented as proof rules, and are described below.

4.1 Normal Form

For the sake of clarity and the ease of implementation, the bit-vector operators
from the signature ¥ are separated into two groups, with the arithmetic op-
erators in X, = {+n), *[n), C} and the remaining in ¥, = {[i : j][n], Qpnjs ~n)
s &[n)» l[n)» C}- Given normalizers for ¥, and ¥, terms, the normal form for an
arbitrary bit-vector formula ¢ is computed as follows. First, ¢ is purified into
3, and Y -formulas ¢, and ¢. respectively, similar to the purification step in
the Nelson-Oppen combination procedure [NO79, TH96]. Then the terms in ¢,
and ¢, are converted into normal form by the corresponding normalizers.

4.1.1 Concatenation Normal Form

The concatenation normal form for Y .-terms is our extension of a well-known
normal form to bit-wise operators. The original normal form for concatenation
and extraction was first reported in [BP9S|.

A ¥.-term ?[,) is in concatenation normal form if it is constructed in the
following way:

Qn) = C) | Tpny | T [i 2 7]
S 5= Q) [~ Gy | (gl 00 gfly)
tm) 5= S | (5[11'1] @-.-@ Sﬁ’m])

where o € {&, [} and qp,; < ¢f,) <+ < gy for some fixed strict total ordering
~< over bit-vector terms. The ordering ensures that if two bit-wise expressions
can be reduced to the same expression using only commutativity, associativity,
and idempotency (goq = ¢), then they will be normalized to the same expression.

All the terms qfn] are required to be different, and there may not be repeated
occurrences of the same variable in the term. Also, if a constant exists among

q[ln], -+, 4fy, then it must be q[ln], and q[ln]cannot be either of Of,) or 1p,).
The adjacent terms among 3[1¢I]a RN sﬁ.lm] in the concatenation must be such

that they cannot be merged. Intuitively, two adjacent terms s; and sz in $1 @ s
can be merged only if they are both constants, or they are merge-able extractions
over the same term, i.e. s1 = z[k : ¢ + 1] and s = z[i : j] for some variable
x, such that s; @ sy normalizes into z[k : j]. Otherwise s; and ss cannot be
merged.

It can be shown that computing the concatenation normal form is poly-time.

4.1.2 Proof Rules for Concatenation Normal Form

In this section we describe the normalizer o for concatenation normal form. It
takes a term as input and returns a term. The invariant assumed by o is that the
immediate subexpression of the top-level operator are already in concatenation

normal form.

e Base case rules:

olem) =)
o(zp)) = Ty

e Rules for extraction: In the following we assume n >4 > j >0

o(emliz)

U((t[n]@U[m])[i 1 g
o () Qupn)[i 2 j

o () Qupy))[i 2 j

o (b &ty i < 5
U&”ﬁﬂ[D
o tn] n]
((t [&n })i :

Oty Uy

])

Climjib1]

where c¢’isthe constant =

bits of ¢ from positionidown toj
oltm) '

U(t[n] [k‘ +7:1 +]])

if n>1>5>201—7+1>k>1>0
o(upm i+ j])

if m>i>j>0

U(t[n] [Z —m:j— m])

if n+m>1>53>m

U(t[n] [Z —m: 0])@0’(U[m] [m —1:]])
if i>m>j>0

o(thyli : 1) & ol li)
ot i<)

g t[’n][R fn][:])
o(tpyli = g]) "oti,li: 4])

e Rules for bitwise NEGATION: In the following we assume n > i > j > 0

a(~)

a(~ (t,Qt?

[n]

[m]

o~ (~ tpw)))

)

Cl
[n]
where c{n] is the bitwise neg of c[,]

o(~ t[ln])Qo (~ t[2m])
tn)

e Rules for bitwise AND:

((]bin()[n] & t[n]) = Obin(][n]
O'(Obl’nl[n] & t[n]) = 1ty
o (tpm & tpay) =t
O'(t[n] & ~ t[n]) = Ob’inO[n]
O’(ObZnO[n m]Oblnl[m] & t[n]) = Obin(][n m]@t[n] [m—1:0]
O’(Oblnl[n m]Oban[m] & t[n]) = t[n][—1: 0]@Obin0[n_m]
o (¢l &) = <y
where c% n) = bitwise AND of c[ln] and c[zn]
oty & t}) = ol et)
where t[]1s lexicographically smaller than t[]
o((t [Z]@ @t[z])&Q[k]) = (ot [,1]&q[k][—1l:k—di]) @...

@O’(tﬁ.lm] & qplim — 1 :0]))
wherek =i; +... +iy
similar rule for o(qp & (t[lil] Q..o)

e Rules for bitwise OR:

((]bin()[n] | t[n]) = t[n]
O'(Obl’nl[n] | t[n]) = Obi’nl[n]
ot | tm) =t
O'(t[n] |N t[n]) = Obi’nl[n]
O’(ObZnO[n m]Oblnl[m] | t[n]) =t [n—1: m]@Obinl[m]
O’(Oblnl[n m]Oban[m] | t[n]) = Obinl[n_m]@t[n] [m—1:0]
o (e |) =

1) = bitwise OR of c[ln] and c[2n]
ot | tha) = olty, | t[n])
where t[]1s lexicographically smaller than t[]
((i1]@ @t[z]) | Q[k]) = (o ([i1] | Q[k][—1: k—ll]) Q...

Qo | | glim —1:0))
wherek =iy + ... +in
similar rule for U(q[k] | (@@t)

e Rules for concatenation:

o (¢ @) = Clptm)
where ¢’ is the constant =
bits(c!) followed by bits(c?)

U(t[n] ¢ :j]@t[n] G—1:k]) = U(t[n] [i: k]
where n>:i>j>k>0

o(t!] @t[m]) = flatten(t [n]@t[m])
e Rules for the flatten function are:
flatten((t),,) @... @t) @
(W], @- - Qui)) = (t,)@ .. O | Quj; @ ... Q)

where tn)s q[m],t[lil] e w[ljl], ... are simple terms.
For all other well-formed terms not mentioned above, we have o(t) = .

4.1.3 Complexity

We show that the time complexity of ¢ is polynomial in the size of the input.
The size of a term is the sum of the following;:

e Total number of occurences of all function symbol in the term
e Total number of occurences of all variables in the term
e loga(n) for every occurence of an integer, n,

e the number of bits in every bit-vector constant that occurs in the term.

Recall that an invariant adhered to by the normalizer o is that the sub-terms
are already in normal form. Consequently, it is easy to check that the size of
the outputs of the above rules are polynomial in the input size, except for the
rule below:

0((t[1i1]@ . @tg‘m]) °qm) = (0<t[1i1] oqulk —1:k—d1]) Q...
@a(tﬁ.lm] o qp)[im — 1:0]))
wherek =iy +... + iy
similar rule for o(qpq o (t[lil]@ Qg)

For the rule mentioned here, the worst-case input is of the form illustrated
in figure 1. We show that the complexity is still poly time. Each row (long
rectangle in the figure) is a bitvector, and the bitvectors are vertically stacked
to illustrate the bitwise operations. Each solid line in a row is a concatenation
point, and the dotted lines indicate the extractions that need to be carried out
in the remaining bitvectors to do the bitwise operations.

It is easy to see that in the final normal form of such an input, each com-
ponent of the concatenation will have bitwise operations each of which will be
atmost n-ary (column demarcated by the dotted line represent a single compo-
nent of the final concatenation). The arity of the final concatenation will be the
maximum number of such columns, i.e. the largest number of concatenations
in any row in the input. Consequently, the size of the final output is atmost
quadratic in the size of the input.

However, care must be taken that in the process of computing this final
output, no step required exponential time. Recall that the sub-terms must
always be in normal form. It is easy to check that every application of the rule,
applied bottom-up, is polynomial. It follows that this rule is poly-time as well.

Figure 1: An illustration of n-ary bitwise operation over m-ary concatenations

10

4.1.4 Arithmetic Normal Form

Arithmetic normal form for a ¥,-term ¢, is defined as follows.

) ==] | T
Sl 5= dln) | Cn) *[n) T[n)
tn] = S | 8[1n] Fmn] - Fn) sz].

Here var(s[ln]) <= Var(sfz]), where var(s) denotes the variable in s, if there
is one. In other words, var(z) = x, var(c*[,)) = x, and var(c) = c. Intuitively,
t[n) 18 @ sum of monomials with all like terms combined, and the summands
ordered by their variables.

4.1.5 Proof rules for Arithmetic Normal Form

Following are the proof rules for reducing terms constructed out of arithmetic
operators into arithmetic normal form. The invariant assumed by the normalizer
~ is that the immediate subexpression of the top-level operator are already in
arithmetic normal form.

We define a function pad() as follows:

tin—1:01 i>n
pad(n,t[i]) = i) t=n
ObinOn_i@t[i] 1<n

e Rules for the BVMULT operator *[,:

”)/((]bin()[r]*[n] t[s]) = Obin(][n]
Y(0bin0 ... 01 %}, tg) = pad(n,t)

For the rules below, a,c,c’ denote constants, and we have a # 0binOf,| or
a # 0bin0...01.

YVt *m ty) = v(Pad(n,tf)) pad(n, 17, 1))
V@] #m) Cs) =
where ¢’ = int2bv(n, bv2int(a) - bv2int(c))

V() *¥n) ape) = V(A[n] *[n] Tn))
V(G[lnl *[n] (O[n] *[n) th])) Y(V(@fn) () bpn)) *(n))
V(@) *pn) (Epyy Fi) - Tl g)) =

V@) * (] Ep) il - -) V(@] *))
e Rules for BVPLUS:

'y(Obin(][r] F[n] t[ln] +n - T tfn]) = t[ln] +n - tfn]

11

e Making terms of equal length:
(o) i) L) Hiol - Hin) O *i) 277)
BVPLUSZ, y(pad(n, ap,) *[n) 2;,1))
— Adding constants

V(@ +in) - i) a{“n]) = int2bv(n, E%‘ZleQint(ai[n]))
— Flattening Rule:

’)/(t[ln] Fin] - (q[ln] Fmn] -t qun]) Fm] - Fn) tfz])
(t[ln] +n] - ..q[ln] Fn] - .qfﬁl] Fm] - Fn) tfz])

— Sorting the monomials: The monomials a; *[,,) z;; which are sub-
terms of a BVPLUS expression are arranged according to the ordering
over terms <.

— Combining like terms: After all the monomials are sorted w.r.t <,
monomials over the same variable appear next to each other in the
BVPLUS term. We combine them as follows. If a variable occurs
without any coefficient, then its coefficient is set to 1. If more than
one constant occurs then they are added up using the addition of
constants rule.

’7((a[1n] *[n] x[n]) Fm) - Fn (afn] *[n] m[n])) =

’)/((a[ln] Fn) - Fn) aﬁl]) *[n] :C[n])
e Rules for BVUMINUS

Y(=0p)) = Opy

Y(~tw) = (1) *p) V()

Y=cp) = (~¢p+m 1)
= tm

Y((—=Cn)) *[n] tn))

Y((—=Cm)) *[n] tn))

= Y(¥(=Cpy *1) tp) Tl -)
Y(=¢ny *ml tmp))

V(= (Cln] *n) tiny)
1 1 ’Y(C[%*[n] _fr[bn]
V(=€) *in] iy Tl =~ il) * 1l)

)
)
)
V(= (=)
)
)
)

e Extraction over BVPLUS

V(g -+ thlic5) = V([2 0] F i) -+ Ayt i OD)i = 4]
where n>i+1
e Extraction over BVMULT
Wy 2o Bl 3D = A(ehyli 0 sy 20 0 <
where n>i+1

For all other terms ¢ we have (t) = t.

12

4.1.6 Complexity

We show that the time complexity of 7y is polynomial in the size of the input.
The size of term is defined as in the section on concatenation normal form.

Notice that, the output terms of all rules have utmost as many variables,
functions and constants as in the input, except the padding rules and the fol-
lowing rule:

k k
V(@) #pn) Ea) Fn) -+ il) = V@) *))) - -+ Tl V(@) * o))

It is easy to see that, for each rule, the blow-up of the size of the output
as a function of the input size is polynomial. Also, note that each rule takes
only polynomial amount of time (i.e. polynomial in the size of the input) to
compute its output. It follows that the time complexity of the normalizer v is
polynomial.

4.2 Partial Solver

A Shostak-style decision procedure is a composition of a canonizer and solver.
A solver accepts a set of equations, and returns a set of equations in solved
form [Bar03]. In our decision procedure, this requirement is dropped. There is
a solver which solves in a lazy manner, i.e. solve for only those variables whose
coefficient are already 1 or -1. In particular, for an equation of the form

1 _ 42
b = tin]

we compute

1 2 ap
where, t[ln] —mn] t[2n] is further normalized using the normalizers described above.
Such a transformation generates further opportunities for normalizations. If
a variable x[, can be isolated into the form w,; = ?,), then such an isola-
tion is performed. Furthermore, all terms containing x|, are rewritten, thus
eliminating it from the system.

4.3 Bit-blasting Rules

In this section, we describe all the proof rules and the strategy for converting a
bit-vector fomula into an equivalent Boolean formula.

4.3.1 Proof rules for the Bit-blaster

Following is a set of proof rules to extract a single bit, as a boolean variable, from
an arbitrary bit-vector term. Below, ¢ € N. Side conditions are mentioned above
the line. These rules have no premises, and conclusion of the rule is below the
line. In the following, t[,)[i] : BV (n) — Bool is a shorthand for t[,[i : i] ~ 0binl.
If the i"" bit of ¢, is indeed 0binl then the formula t[,[i : i] ~ Obinl evaluates
to true, and otherwise it evaluates to false. Below, we deviate somewhat from

13

the standard proof rule structure used in CVCL. In particular, we don’t use
sequents for the conclusions, and write side conditions above the line.

0<i<n-—1,cp €C,i-thbitincis0
F c[i] & false

0<i<n-—1,c¢ €C,i-thbitincis1
F cli] < true

ittt im=n 0<i<j
kﬁ&@m@mm@@mm

n+...+jm=n it o+ i1 <i<j1+...+7Jk

F (g @ aty D] e @)= G+ k)]

0<j<k<n0<i<k—j
F (t [k 3D & tpgli + 4]

ila i2 > 0
(L, +m 3,)[0] & £1[0] @ £2[0]

0<t1<n—1
+ (t[ln] +n] t[Zn])[i] < 1] @ t2[i] @ c(tt, 12,1)

where

o c(t,t2,0) = t1[0] A t2[0] and

o c(th,t2,0) = (i —UA[i—1]) V (t i — 1 Ac(th, t2i— 1)) v (F[i—1] A
c(tt,t2,i — 1)) for i > 0.

0<i<n-1
F (~ t)[i] & ~(t[i])

0<i<n—1
il & (A AL [i])

m 1
F & ket

0<i<n-1
=Gy - Tl & Wl v vt i)

14

4.3.2 Recursive Function to Bit-blast Terms

The recursive function f(t[,),4) : (BV(n),N) — BOOL accepts two inputs,
namely a bit-vector term ff,) and a natural number, recursively (structural
recursion) applies the above bit-blasting rules, and returns a boolean formula ¢
over the variables in t[,, such that ¢[,[i] < .

4.3.3 Bit-blasting Equations

Following is a proof rule whose premise is a bit-vector equation and conclusion
is a boolean formula over the bits of the terms in the equation. Let the equation
in the premise be t! ~ t2, where both t!,¢? are terms of sort BV [n].

THt~¢?
LE AL] < 2[i]

4.3.4 Bit-blasting Inequations

Following are the bit-blasting rules for bitvector comparators.

FO<pl < true

F1<y 0 < false

F tn) <o) t[n) <= false

- c[ln] <[n] c[2n] = true

if bv2int(cf,) < bv2int(c?;)

- c[ln] <[n] c[zn] < false
if bv21nt(c[2n]) < bv2int(c[1n])

= b1 <[1] bz
F Bool(b1) <= false A Bool(bs) < true

where b1, by are single bit bit-vectors, and Bool(b;) is the corresponding bool
value.

15

-t <[n] t?

(#n— 1] <q 0 — 1)) v
([=1 = £2n — 1) A ([— 2] <py £2n —2)) v
L (=1 =2 — 1At [n—2 = 2[n—2]) A (tn— 3] <y 2[n —3))) v

((t'n =1 = =1 A~ A1) = 2[1]) A (£[0] <py) £2[0]))
Another rule which implements the rule given above in a more efficient way.
Ftt <in] t2

n (t'n —1] <pj n —1]) %
(t'n =1 =3 [n = 1)) A (t'[n — 2 : 0] <pp—q) t*[n —2:0]))

FO<p 1l < true

F1 <y 0 = false

- U] S[n) tn) <= true

[c[ln] <[] c[2n] < true

if bv2int(cf,) < bv2int(c?,)

[c[ln] <in] c[zn] <= false
if bv2int(c[2n]) < bv2int(c[1n])

F bt <[b?
F Bool(b1) <= false V Bool(by) < true

where b1, by are single bit bit-vectors, and Bool(b;) is the corresponding bool
value.

Ftt <pop t2

(tl[n —1] <[t2[n —1]) V
«ﬂW—UZRW—HWWﬂW—ﬂ<HﬁW—ﬂ»
(' — 1] = 2n— 1 At — 2] = 2ln— 2) A (£ — 3] < 20— 3))) v

<

|_

(ttn—1=n—-1A--- /\t'l[l] = t2[1]) A (¢1[0] < £2[0])) v
(ttn— 1] =tn — 1 A--- A1) = 2[1] A 0] = ¢2[0])

16

Another rule which implements the rule given above in a more efficient way.
Ftt <py t2

(tl[n —1] <[t2[n —1]) V
(t'n =1 =3 [n = 1)) A (t*[n =2 : 0] <ppy) 2 [n —2:0]))

4.4 Conjunctive Normal Form

In this section we present the proof rules to convert arbitrary boolean formulas
into conjunctive normal form (CNF), and the associated strategy. We denote
boolean variables by p,q,..., and [,l1,ls,... denote literals, c1,co,... denote
clauses, and arbitrary boolean formulas are denoted by ¢, v1, @2, We inter-
changeably use AND with A, OR with VvV, IMP with =, IFF with <.

4.4.1 The CNF proof rules

1. BoolVar Intro Rule:

'k @ isnot aliteral
F'F3vw A (v = ¢))

where v is a fresh boolean variable corresponding to the arbitrary boolean
formula denoted by ¢, and where ¢ is not a literal.

2. And-CNF Rule: Let ¢ denote the boolean formula AND(y1, ..., ¢,), and
let v be the fresh boolean variable corresponding to the boolean formula
denoted by .

I'v < AND(p1,...,¢n)
Ik 3vy...v,(CNFlv <= AND(vy,...,0)] AN, (i <= ¢i))

where v1,...,v, are boolean variables corresponding to the boolean for-
mulas denoted by ¢1,...,¢n, and CNF[v <= AND(vy,...,v,)] is a
macro denoting the cnf formula which is logically equivalent to the for-
mula v < AND(v1,...,v,). The intuition behind this rule is that the
immediate sub-formulas in ¢ are replaced by variables, and the result is
converted to CNF, and this process is repeated all the way to the level of
literals. The formula denoted by CNF[v <= AND(vy,...,v,)] is:

(v Vo) A(mo Vo) Ao A(mo Vo)AV o Vowg VeV -y,

3. Or-CNF Rule: Let ¢ denote the boolean formula OR(¢1,...,p,), and
let v be the fresh boolean variable corresponding to the boolean formula
denoted by .

kv < OR(¢1,..-,¢n)
I'F 3. 0,(CNFlo <= OR(v1,...,0)] AN (i <= 1))

where v1,...,v, are boolean variables corresponding to the boolean for-
mulas denoted by ¢1,...,¢,, and CNFjv <= OR(v1,...,v,)] is a

17

macro denoting the cnf formula which is logically equivalent to the for-
mula v <= OR(vy,...,v,). The intuition behind this rule is that the
immediate sub-formulas in ¢ are replaced by variables, and the result is
converted to CNF, and this process is repeated all the way to the level of
literals. The formula denoted by CNF[v <= OR(v1,...,v,)] is:

(v Vv)A V)AL AWV AU)A (U VoV o V.oV oy,

. IMP-CNF Rule: Let ¢ denote the boolean formula IMP(p1, ¢2) (usually
written as 1 = @2) , and let v be the fresh boolean variable corresponding
to the boolean formula denoted by .
kv < IMP(p1,p2)
['F30;...0,(CNFlo <= IMP(v1,09)] A A, (0 <= ¢1))

where v1, vy are boolean variables corresponding to the boolean formu-
las denoted by 1,2, and CNF[v <= IMP(v1,v2)] is a macro denot-
ing the cnf formula which is logically equivalent to the formula v <=
IMP(v1,v2). The intuition behind this rule is that the immediate sub-
formulas in ¢ are replaced by variables, and the result is converted to
CNF, and this process is repeated all the way to the level of literals. The
formula denoted by CNF[v <= IMP(vq,v2)] is:

(v Vv Vo) A (v Vo)A (v V—wg)

. IFF-CNF Rule: Let ¢ denote the boolean formula IFF(¢1,p2) (usually
written as 1 <= (9) , and let v be the fresh boolean variable corre-
sponding to the boolean formula denoted by ¢.
I'tv < IFF(p1,p2)
T'F301...0,(CNFlo <= IFF(v1,0)] AN (v; <= ©i))

where vy, v9 are boolean variables corresponding to the boolean formulas
denoted by ¢1, 2, and CNF[v <= IFF (v, v2)] is a macro denoting the
cnf formula which is logically equivalent to the formulav <= IFF(v1,v2).
The intuition behind this rule is that the immediate sub-formulas in ¢ are
replaced by variables, and the result is converted to CNF, and this process
is repeated all the way to the level of literals. The formula denoted by
CNF[v <= IFF(v1,v9)] is:

(v V=wr Vo) A0 Vo V-wg) Ao Voo Vo)A (v V- V—wg)
. ITE-CNF Rule: Let ¢ denote the boolean formula ITE(¢1, 2, ¢3), and

let v be the fresh boolean variable corresponding to the boolean formula
denoted by .

kv ITE(<P17<P2aQ03)
T'F3v;...0,(CNFlo <= ITE(v1,v9,03)] A A (v; <= ¢1))

18

where vy, vg, v3 are boolean variables corresponding to the boolean formu-
las denoted by @1, 2,3, and CNF[v <= ITE(vy,vs,v3)] is a macro
denoting the cnf formula which is logically equivalent to the formula
v <= ITE(vi,v9,v3). The intuition behind this rule is that the im-
mediate sub-formulas in ¢ are replaced by variables, and the result is
converted to CNF, and this process is repeated all the way to the level of
literals. The formula denoted by CNF[v <= ITE(vy,v2,vs)] is:

(v Vv Vo) Ao Vo Vog)A(v V- Vo) A(v Voo V—ws)

An important optimization employed in the above rules is that new variables
corresponding to ; are not introduced if ¢; is a literal.

4.4.2 The CNF strategy

Following is the strategy we employ to convert boolean formula into equiva-
lent CNF formulas. The strategy recursively applies the appropriate proof rules
given above to the appropriate boolean formula. Let the arbitrary input boolean
formula be 6 (Note 6 is a actually a theorem).

Theorem CNF(6) {

. ¢ = simplify(pushNegation(6)); // %

—_

2. if v is a literal, return F ¢;
3. Apply BoolVar Intro Rule; // ,_31)(4;

v A (v <= @))

. FIv (A
4. skolemize; //,_sk(l;g’/’\(sﬁ;ﬁ:f);)

5. andElimRule_1; // "Sk(”)A'EZi% =)

6. clauses.pushback(sk(v)); //v is the new variable corresponding to ¢

7. andElimRule_2; // '_Sk,g’(’ig((f}f &‘7 £)

8. applyCNFRules(sk(v) <= ¢, clauses);

9. apply andIntroRule(clauses);

Now we present the applyCNFRules function which applies the rules given
in the previous subsection. Let OP denote the toplevel operator of the formula
. OP can be one of AND, OR,IMP,ITE, IFF.

applyCNFRules(sk(v) <= ¢, clauses) {

sk OP(p1,....0m
1. OP-CNF Rule(sk(v) <= ¢); //I—Elul...vn(CNF[sk(sv)(li):ﬁP(vl(f.l.,vn)ﬁ/\)/\zgl(vi =)

19

F3v1...0, (CNF[v <= OP(v1,...,un)]AAL | (vi <= @i))
NF[sk(v) <= OP(sk(v1),...,sk(vn))]AAL_, (sk(vi) <= ¥4))

2. skolemize; // &

CNF[sk(v) <= OP(sk(v1),...,sk(vn))IAAT_; (sk(vi) <= ¢i))

3. andElimRule_1; // CNF[sk(v) <= OP(sk(v1),...,5k(vn))]

4. clauses.pushback(CNF (sk(v) <= op(p1,92,---,%n)));

9. // CNF[sk(v) <= OP(sk(v1),...,5k(vn))]IAAL_ (sk(v:) <= ¢i))

5. andElimRule _ AT, (s (vi) <= 94)

6. for(i=1l;i<=n;i++) {

(a) apply andElimRule_i; // 201 (sk() < ¢0)

)—sk‘(vi) < @i

(b) apply applyCNFRules(sk(v;) < ;,clauses);

}
}//end of applyCNFRules

4.5 Propagation of equalities

Propagation of new facts (or equality rewrites) allows for improved performance
by the normalizers. For example, suppose the input equality to the normalizer
is @01 = 1101. As is, this equality is already in normal form. However, now
suppose that by processing a different set of equalities in the same context, the
decision procedure learns that x = y and y = 10. Then, propagating z = v,
during the preprocessing step, generates a new equality y @ 01 = 1101. Further
propagation of y = 10 yields 10@01 = 1101. The normalizer now has an
opportunity to normalize this equality to 1001 = 1101, immediately detecting a
contradiction.

4.6 Architecture: Putting it all together

The Figure 2 illustrates the architecture of the tool. Conceptually, the decision
procedure is a preprocessor with a SAT solver as a back-end. The preprocessor
in turn has two boxes, a normalizer for X .-terms and a normalizer for ¥,-terms,
with an equalities database in a tight loop with the normalizers.

The input quantifier-free -formula ¢ is first equivalently purified into -
formula ¢! and ¥,-formula ©?. The terms in @' and ? are normalized into
concatenation normal form and arithmetic normal form by the respective nor-
malizers. All equalities input by the CVC Lite core and those learnt by the
decision procedure are stored in the equalities database (Figure 2). During
the process of normalization, these learnt equalities are propagated (equality
rewrites) thus creating new opportunities for normalization.

If there are no more opportunities for normalization and a contradiction
is detected then ¢ is declared unsatisfiable. Otherwise, the normalized formula
Ok orm and @2 are bit-blasted. The process of bit-blasting essentially converts
the conjunction ¢! . and ¢2 . into a logically equivalent boolean formula.

20

CVC Lite Core

Conversion to SAT

Boolean formula

SAT Solver

¥
o ittt
! 1
'
: _ !
i Bitvector DP I
I
'
' 2 H
1 0 I
i ¢ I
' i
'
I
'
I
'
' i
\ Concatenation normal form Arithmetic normal form !
'
I
'
! \ / i
'
I
'
I
'
I
'
I
'
I \ / :
' .
| Equality .
' .
I Rewrites !
i | 2 I
i Prorm nerm .
'
I
'
I
'
I
'
I
'
I
'
I
'
I
'
I
'
I
'
I
'
I
|
I
I
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
I
|
'

assignment or contradiction

back to CVC Lite Core

Figure 2: Architecture of the bit-vector Decision Procedure

The resultant boolean formula is fed to the SAT solver. If the SAT solver detects
a contradiction, then the original formula ¢ is declared unsatisfiable. Otherwise
it is satisfiable.

4.6.1 Requirements of the Nelson-Oppen Combination

An important contribution of this effort is showing how to integrate a bit-vector
decision procedure into a Nelson-Oppen style combination of decision proce-
dures. In particular, we have implemented this decision procedure as a part
of CVC Lite. Component decision procedures are required by CVC Lite to
be online, proof producing, and propagate all equalities implied by the current
logical context [NO79, Bar03]. This last condition is in fact imposed by the
Nelson-Oppen combination theory.

Online means that a new constraint can be added to the set of existing
constraints at any time during a run, and the algorithm must be able to take
this into account with only incremental amount of work. Proof production is
a useful feature for those users who want to check the work of CVC Lite using
external proof checkers.

Also, the Nelson-Oppen combination requires that each component theory

21

must be stably-infinite and the corresponding decision procedure must propagate
all equalities that are implied by the current logical context, in order for the
combination to be complete.

The theory of fixed-width bit-vectors presented here is in fact a many-sorted
theory [Man96]. The fact that the theory is many-sorted is not relevant for
the results in the previous sections. However, it becomes important for the
purposes of Nelson-Oppen combination, as implemented in CVC Lite.! In the
many-sorted version of the bit-vector theory, bit-vectors of length n comprise a
separate sort, for each n. Note that each sort corresponds to a finite domain,
the domain of all finite non-empty strings of length n, over the alphabet {0,1}.
This implies that the many-sorted version of the bit-vector theory is not stably-
infinite.

A Y-theory T is said to be stably-infinite over a set of sorts, if for every
Y-sentence ¢ satisfiable in some model of T, ¢ is satisfiable in a model of T'
infinite in every sort in this set [TZ04, GBTDO04].

The many-sorted theory of bit-vectors under obvious axiomatization, where
each bit must be either 0 or 1, is not stably-infinite, since all models of T are
necessarily finite in all the sorts. Therefore, the bit-vector theory Tgy is split
into two theories Tpy = 17 U 15, where T3 is a theory of finite strings over
integers (and is, therefore, stably-infinite), and 7% is an additional set of axioms
constraining each integer to be either 0 or 1. The formulas of the theory 15 are
referred to as type predicates.

The actual decision procedure implemented in CVC Lite is for the theory
Ty, and the necessary formulas from 75 (the type predicates for all the terms in
the original input) are being automatically added as part of the input formula.

The second Nelson-Oppen condition requires a decision procedure to prop-
agate all equalities implied by the current logic context. The need for the
propagation of all equalities is illustrated by the following example.

Let f : Bitvector[l] — Bool be an uninterpreted function, and let x,y,z
be 1-bit bit-vector variables. Consider the mixed formula ¢ = f(z) # f(y) #
f(2) # f(z). This formula implies that there exist some assignment to the
variables x,y, z such that 6 = x # y # z # x. Since single bit variables z,y, z
can only take values 0 or 1, it follows that # must be unsatisfiable. This implies
that ¢ is unsatisfiable.

However, the many-sorted Nelson-Oppen combination cannot detect the con-
tradiction from 77 alone. This situation can be remedied by propagating all
equalities implied by the current logical context, and in particular, the type
predicates from T5:

(x=0vz=1)AYy=0Vy=1)A(z=0Vvz=1)

Processing these type predicates leads to extra cost. However, for complete-
ness, it is sufficient to assert type predicates only for shared constants.

In the unsorted case, the stably-infiniteness condition is trivially satisfied.
However, one still needs to add to the input something similar to type predicates

1CVC Lite implements a many-sorted version of the Nelson-Oppen combination method.

22

(also called as type correctness conditions, in this context), which assert that
each variable has a fixed, known length. This has to be done since the variables
are unsorted, and these type correctness conditions are necessary to get mean-
ingful answers from the decision procedure. Also, the system has to somehow
account for the fact that each bit is constrained to be 0 or 1. Irrespective of
the method employed to constraint the bit values, it is easy to check that in
the worst case something similar to type predicates will need to be asserted for
shared terms in the first order case as well.

In other words, merely a transition from many-sorted to a first order com-
bination does not imply that issues like type correctness conditions and bit
constraints become unnecessary or trivial to deal with.

5 Experimental Results

The CVC Lite implementation of our bit-vector decision procedure has been
tested on two sets of examples: a collection of industrial scale real-world verifi-
cation problems? (figure 4), and a set of artificial examples parameterized by the
width of bit-vector variables (figure 3). The industrial scale examples consist of
very large bit-vector terms (64 bits or more), with hundreds of operators, and
a deeply nested mixture of word-level, bitwise and arithmetic operators.

The performance of our decision procedure is compared against a SAT-based
method using zChaff [MMZ101]. In figures 3 and 4, the total time (in seconds)
includes translation to DIMACS format, and the time in parentheses is the
actual time taken by zChaff. The real-life industrial examples (figure 4) are
also compared against the SAT-based method using the CVC Lite built-in SAT
solver (CVCL SAT column). This provides a better baseline comparison to the
optimized method (CVCL RW+SAT column) which uses the same built-in SAT
solver together with our normalizations and equality rewrites.

The experiments were run on an Intel Pentium 800 MHz processor with 384
Mb RAM under GNU /Linux 2.4 kernel. Both programs are compiled using gcc
3.3.2 with -O2 option.

5.1 Optimizing for Problem Domains

The decision problem for our bit-vector theory is known to be NP-hard [M619§],
and finding a decision procedure that is practically efficient in general is very
unlikely. Therefore, it is important to identify specific problem domains or
classes of formulas where a particular approach works well.

One of the important problem domains is program or circuit optimization,
when the user is interested in verifying that an optimized version of the code
fragment is functionally identical to the original code. These problems often
result in formulas of the form (¢! = t?) = ¢, which are ideal for our method.

2Due to intellectual property issues, the sources of these examples are not disclosed in this
paper.

23

Example zChaff CVCL RW+SAT
#bits | Time (zchaff) | Conflicts | Time | Conflicts

16 1.24 (0.06) 871 | 0.01 1
32 2.64 (0.12) 1,657 | 0.01 1
64 6.37 (0.54) 4,898 | 0.02 1
128 16.48 (1.52) 9,381 | 0.04 1
256 49.81 (6.59) 27,355 | 0.04 1
512 | 259.9 (117. 94) 67,459 | 0.09 1
1024 — | 0.17 1
2048 — — | 0.33 1
4096 — — | 0.69 1
8192 — — | 1.52 1

Figure 3: Example x = y = x + 2z = z + y parameterized by the number of bits
in z, y, and z.

Example zChaff CVCL SAT CVCL RW+SAT

Time (zchaff) | Conflicts | Time | Conflicts | Time | Conflicts
Valid 1 4.16 (0.01) 8| 36.26 3,652 | 0.09 1
Valid 2 10.22 (1.45) 6538 | 913.51 40,027 04 1
Valid 3 10. 88 (2.24) 8619 | 253.73 16,121 0.4 1
Valid 4 3(0.19) 732 | 65.94| 3,544 | 0.04 1
Tvalid 1 | 4. 06 (0.01) 6] 3.76 9] 12)
Invalid 2 7.44 (0.02) 6 4.87 71 3.02 13
Tovalid 3 | 7.42 (0.01) 9 535 51 2.64 3

Figure 4: Experimental results for industrial-scale verification problems.

In the best case, rewriting all occurrences of ¢! in ¢ to t2, and then normal-
izing all terms in ¢ proves the entire formula valid without having to invoke
the SAT solver. In figure 3 we demonstrate the scalability and effectiveness of
our method in this case on a trivial example parameterized by the size of the
bit-vectors.

Although the examples in figure 3 are obviously artificial, it is interesting
to note that all the valid industrial examples in figure 4 also fall into the same
category, and are completely solved by rewriting and normalization, despite the
large formula sizes and their seeming complexity.

In many other cases, even if the formula is invalid and cannot be completely
solved by these transformations, our method still shows a considerable reduction
in time, and the amount of work the SAT solver has to do (see figure 4, the
invalid examples).

In the worst case (for arbitrary formulas), when rewriting and normaliza-
tion steps do not significantly simplify the formula, our method reduces to the

24

direct translation to SAT. The additional overhead for these transformations is
insignificant (close to linear, and relatively low in practice), and therefore, our
approach is always at least as effective as the direct SAT-based method.

6 Conclusions

The main contribution of this work is a collection of practical design principles
and a concrete implementation of a new efficient decision procedure for a theory
of fixed-width bit-vectors. Another contribution is that the decision procedure
is implemented as part of CVC Lite, a Nelson-Oppen combination framework. It
is important to emphasize that the decision procedure is efficient and works on a
very rich set of bit-vector operations (mixture of word-level, bit-wise, and arith-
metic operators). The input language supports word-level bit-vector operations
(concatenation and extraction), bit-vector arithmetic operations (addition and
constant multiplication), bitwise boolean operations (conjunction, disjunction,
negation) and multiplexors (if-then-else operator). Other common functions
such as left and right shift, sign/zero extension, bit-vector subtraction, and
comparators (“less than”) can be easily supported through suitable translation.

The approach described here has many advantages. First, the method relies
on normalization, but only to the extent that it is useful. In the worst case
it falls back on SAT solvers which are known to be very effective for handling
NP-complete problems. Also, present-day SAT technology seems to improve
very quickly and this approach allows one to capitalize on the trend. Second,
if the input language needs extension, it may be done without having to alter
the design or implementation of . or ¥,-normalizers. It is sufficient to invent
a normal form for the new functions/predicates added to . In other words,
the input language can be as general as needed. Third, as new rewrites are
invented, they can be easily added to the preprocessing step. On the whole, this
approach is flexible, allows for a very expressive and extensible input language,
and is efficient.

Adding the decision procedure as a component to CVC Lite has many ad-
vantages. It allows us to support multiplexors (ITE terms), quantifiers over
bit-vector variables, generate proofs and concrete counterexamples, and decide
formulas over many theories.

An interesting area of future research is to explore the efficacy of using a
partial equation solver for bit-vector arithmetic which are similar to equation
solvers [BDL98|. Solvers take equations as input, and output equations in solved
form [BDL9S]. Partial solvers drop this last condition, and may solve only for
a subset of all variables in the input.

Extending the arithmetic normal form to support non-linear terms is another
area of future research. We also plan to natively support many other operations
like bitwise XOR, full bit-vector multiplication, bit-vector subtraction, right
shift, zero/sign extensions, and predicates like comparators. The advantage of
native support is that the structure is preserved, and one can take advantage of
the algebraic properties of these operators.

25

References

[Bar03]

[BBO4]

[BDLOS]

[BP9S]

[CMR97]

[EKMOS]

[FDK98]

[GBTDO4]

[KMOo1]

[Man96]

C. Barrett. Checking Validity of Quantifier-Free Formulas in Com-
binations of First -Order Theories. PhD thesis, Stanford University,
2003.

Clark Barret and Sergey Berezin. CVC Lite: A new implemen-
tation of the cooperating validity checker. In Rajeev Alur and
Doron A. Peled, editors, Computer-Aided Verification (CAV’04),
LNCS. Springer Verlag, July 2004. http://chicory.stanford.
edu/CVCL.

Clark W. Barrett, David L. Dill, and Jeremy R. Levitt. A decision
procedure for bit-vector arithmetic. In DAC ’98: Proceedings of the
35th annual conference on Design automation, pages 522-527. ACM
Press, 1998.

Nikolaj Bjgrner and Mark C. Pichora. Deiding fixed and non-fixed
size bit-vectors. In TACAS ’98: Proceedings of the Jth International
Conference on Tools and Algorithms for Construction and Analysis
of Systems, pages 376-392. Springer-Verlag, 1998.

David Cyrluk, M. Oliver Moller, and Harald Ruefl. An efficient
decision procedure for the theory of fixed-sized bit-vectors. In CAV
’97: Proceedings of the 9th International Conference on Computer
Aided Verification, pages 60-71. Springer-Verlag, 1997.

Jacob Elgaard, Nils Klarlund, and Anders Moller. Mona 1.x: new
techniques for wsls and ws2s. In Computer Aided Verification, CAV
’98, Proceedings, volume 1427 of LNCS. Springer Verlag, 1998.

Farzan Fallah, Srinivas Devadas, and Kurt Keutzer. Functional
vector generation for hdl models using linear programming and 3-
satisfiability. In DAC ’98: Proceedings of the 85th annual conference
on Design automation, pages 528-533. ACM Press, 1998.

V. Ganesh, S. Berezin, C. Tinelli, and D. L. Dill. Combination re-
sults for many sorted theories with overlapping signatures. Techni-
cal report, Stanford University, 2004. http://chicory.stanford.
edu/~berezin/cs12004/many-sorted-combination.ps.

Nils Klarlund and Anders Mgller. MONA Version 1.4 User Man-
ual. BRICS Notes Series NS-01-1, Department of Computer Science,
University of Aarhus, January 2001.

Maria Manzano. FEztensions of First Order Logic. Cambrige Uni-
versity Press, 1996.

26

[MMZ+01] M. Moskewicz, C. Madigan, Y. Zhaod, L. Zhang, and S. Malik.

[M5198]

[NO79]

[TH96]

[TZ04]

[ZKCO1]

Chaff: Engineering an Efficient SAT Solver. In 89th Design Au-
tomation Conference, 2001.

M. Oliver Moller. Solving bit-vector equations - a decision proce-
dure for hardware verification, 1998. Diploma Thesis, available at
http://www.informatik.uni-ulm.de/ki/Bitvector/.

G. Nelson and D. Oppen. Simplification by cooperating decision
procedures. ACM Transactions on Programming Languages and
Systems, 1(2):245-57, 1979.

Cesare Tinelli and Mehdi T. Harandi. A new correctness proof of
the Nelson—Oppen combination procedure. In F. Baader and K. U.
Schulz, editors, Frontiers of Combining Systems: Proceedings of
the 1st International Workshop (Munich, Germany), Applied Logic,
pages 103-120. Kluwer Academic Publishers, March 1996.

Cesare Tinelli and Calogero Zarba. Combining decision procedures
for theories in sorted logics. Technical Report 04-01, Department of
Computer Science, The University of Iowa, February 2004.

Z. Zeng, P. Kalla, and M. Ciesielski. Lpsat: a unified approach to
rtl satisfiability. In DATE ’01: Proceedings of the conference on
Design, automation and test in Furope, pages 398—402. IEEE Press,
2001.

27

