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Abstract

We present a combination result for many-sorted first-order the-

ories whose signatures may share common symbols (i.e. overlapping

or non-disjoint signatures), extending the recent results by Ghilardi
for the unsorted case. Furthermore, we give practical conditions un-

der which the combination method becomes a semi-decision procedure,

and additional sufficient conditions which turn it into a decision pro-
cedure.

Several theories which are practically useful in formal verification

have overlapping signatures (e.g. linear arithmetic and bit-vectors).
We demonstrate how their decision procedures can be combined using

our results. In addition, we obtain a many-sorted version of the Nelson-

Oppen method as a special case of our combination result.
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1 Introduction

Decision procedures are becoming increasingly important in formal verifica-

tion and related areas. As a result, many efficient decision procedures have

been developed for various theories like linear arithmetic, theory of equality,

uninterpreted functions etc. However, practical verification problems often

yield formulas which span over several theories, and it is very desirable to

have a decision procedure for the combination of these theories.
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A naive approach is to build a monolithic decision procedure for the

union of a chosen set of theories. A more systematic and modular approach

is to combine existing decision procedures for the individual theories into a

decision procedure for the combined theory. Modular combinations allow one

to take existing off-the-shelf decision procedures (either as an implementation
or as an algorithm) and add it to the combination framework as a component,
without having to re-implement the rest of the decision procedure for the

combined theory.

The most well-known combination approaches to date for unsorted first-

order logic (FOL) are the Nelson-Oppen |[NO79| and Shostak |Sho84, RS01|
methods and their variations |Bar03| which enable one to combine decision
procedures for quantifier-free first-order theories with disjoint signatures.

Various extensions have been studied in [BT97, Ghi03].
Many tools have been built based on Nelson-Oppen and Shostak combi-

nation methods for FOL. Examples include ICS |[FORSO01]|, Simplify [DNS],
Verifun [FJOS03|, etc.

However, it is our belief that many verification problems are naturally

expressed in many-sorted first-order logic (MSL) [Man96|, since hardware and
software systems are usually written in typed languages. Consequently, we

believe that it is natural for the users to expect support for many-sorted input

languages in verification tools. Moreover, individual decision procedures are

usually written for theories with specific models in mind, for instance, finite

strings over {0,1} and integers. The FOL combination of the individual
theories over these models will have a model whose elements behave both

as strings and integers, which may be unnatural and confusing both to the

developers and the users. For instance, FOL formulas in the union theory

may have perfectly valid but ill-sorted behaviors. This could confuse the

users, thus lowering the utility of the combination. These considerations were

the primary motivation for us in deciding upon MSL as the input language

of CVC [SBDO02| and its successor CVC Lite |[BB03|.
Since any MSL formula can be translated into an equivalent FOL formula

using relativization (i.e. introduction of unary sort predicates), one possible
implementation of such an input language is to translate MSL theories into

FOL theories and use an existing FOL combination algorithm. However,
Such a translation of MSL theories into FOL theories results in theories

whose signatures share the unary predicates corresponding to the sorts of

MSL, i.e. we have overlapping signatures (Note: we assume sharing of sort
symbols between the signatures of the individual MSL theories. This is a nec-

3



essary assumption, for otherwise the combination is uninteresting). The FOL
Nelson-Oppen method is no longer applicable and one has to use combination

results for FOL theories with overlapping signatures (such as |Ghi03]), which
are much more involved and do not guarantee decidability. Therefore, the

existing combination results for FOL become inadequate. This provides us

with the motivation to consider the MSL Nelson-Oppen combination result.

There are added benefits to considering MSL Nelson-Oppen Combinations.

It usually is easier to prove that a sorted theory is stably infinite over a

certain set of sorts, than it is to prove that its unsorted version is stably

infinite as a whole. Also, one can now combine theories with sorts admitting

only finite interpretations, as long as these sorts are not shared between the
theories.

There are practical settings in which MSL theories may have overlapping

signatures (not just sorts but constant, function and relation symbols), thus
motivating us go beyond MSL Nelson-Oppen Combinations, and to consider

combination results for MSL theories with overlapping signatures. For exam-

ple, it is natural to implement the theory of linear arithmetic and the theory

of bit-vectors as two separate theories within the combination framework

(here the sorts for the theory of linear arithmetic are R, Z and the sorts
for the theory of fixed bitvectors are Z and bit-vectors of length n for each

n € N). However, these two theories share integer constants and the ‘+’
operator, which implies that the MSL Nelson-Oppen method is inapplica-

ble. We have to establish a combination result for theories with overlapping

signatures to cover this case. In fact, in this paper we first establish such

a combination result, and then subsequently derive the MSL Nelson-Oppen
combination result from it.

A cursory knowledge of MSL might prompt one to ask “don’t the com-

bination results for MSL follow automatically from the results for FOL?”.

Logicians have noticed long ago that MSL is a quite different logic compared

to FOL. Although MSL can be translated into FOL, some properties of MSL

do not directly follow from their FOL counterparts |Fef68, Fef74, Man96|.
In particular, MSL combination results cannot be derived from the cor-

responding results for FOL. For instance, extending the FOL Nelson-Oppen

method to MSL yields a method in which only well-sorted arrangements are

considered. Thus, only a subset of all possible arrangements (relative to
the FOL case) are taken into account, and consequently, the completeness
for the MSL Nelson-Oppen combination method does not follow from the

completeness of the FOL Nelson-Oppen method. Similarly, the combination

4



results for MSL theories with overlapping signatures do not follow directly

from the corresponding FOL results by Ghilardi [Ghi03]. In particular, the
theorems regarding the combination method in Section 7 differ from their

FOL counterparts in important ways.
There has been almost no work done in the area of combination results for

MSL. The only work we are aware are the unpublished results by Tinelli &

Zarba. In their work they consider only theories with disjoint signatures, but

have some results for order sorted logic (MSL with subsorts). We have not
considered order sorted logic in this work, but we believe that our methods

are more general, amenable to extensions and consequently can be extended

to theories in order sorted logic with overlapping signatures. Our work is

a non-trivial extension of Ghilardi’s combination results for FOL |Ghi03| to
many-sorted logic.

We now provide an overview of the paper. In Section 2 we present a

syntax and semantics for MSL. The logic in the rest of the paper is MSL

unless we specify otherwise. In Section 3 we provide a bird’s eye-view of how

the combination results for MSL have been derived from first principles and

give a high-level structure of the proofs of important results. In Section 4 we

provide some basic model theoretic notions for MSL and prove many useful

theorems that will be used in subsequent sections. In Section 5 we state

Feferman’s Interpolation Theorem |Fef74, Fef68| for MSL, which is one of
key ingredients for establishing the MSL combination results just as Craig’s

Interpolation Lemma |[CK98| is for the FOL case and derive the many-sorted
version of Robinson’s Joint Consistency Theorem. In Section 6 we define the

all important notion of model-completion and the notion of Tj-compatible

theories. In Subsection 6.1 we show that a theory which admits elimination

of quantifiers is also submodel-complete. In Subsection 6.2 we use the idea

of submodel-completeness to establish that if two theories 17 and 715 are Tp-

compatible then so is their union 7; U 75, and furthermore, we show that if

both 7} and 75 are individually consistent then the union 77 UT5 is consistent

provided 7; and 75 have models M; and My with a common submodel.

In Section 7 we finally state and prove the combination result for MSL

theories with overlapping signatures. In Section 8 we derive the MSL Nelson-

Oppen method from the results in the previous sections. In Section 9 we

provide a list of decidability conditions under which the combination is ren-

dered decidable. In Section 10 we present some instances where the results

are directly applicable to CVC Lite. Finally, we conclude in Section 11.
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2 Preliminaries

This section describes the syntax and semantics of a first-order many-sorted

logic (MSL) and gives various basic model-theoretic definitions. For conve-
nience and clarity of definitions, we use a notion of decorated symbols, that

is, symbols which carry a sort declaration explicitly in them. While deco-

rated symbols are cumbersome to write in practice, at the theoretical level

they dramatically simplify or eliminate a number of problems that vex more

standard definitions of sorted logics. With decorated symbols sort inference

is trivial, terms have a unique sort, set operations on signatures are straight-

forward and ad-hoc overloading is a non-issue.

2.1 Syntax

We assume that there exist fixed, infinite and pairwise disjoint sets of sorts S,

function symbols JF, constant symbols C, predicate symbols P, and variables

V. A decorated function symbol fs; is a tuple (f, 5, s,) € F x ST x §, and
intuitively, it means that f expects arguments of the sorts 5 = (sy, ..., sp),
and returns the result of the sort s,. Similarly, a decorated predicate symbol

ps is a tuple (p, 5) € P x §* (i.e. the predicate p takes n arguments of sorts
§=1(s1,..., Sy), and is true or false when n = 0). Finally, decorated constant
symbols and variables cs and x, are pairs {(c, s) € C x § and (x, s) € V x §,
respectively. Here S* (similarly, S*) denotes a set of tuples (non-empty
tuples) of elements of S.

For the rest of the paper, we assume that each symbol and variable is

uniquely decorated. Since every symbol is decorated uniquely, we will often

omit the decorations (subindices) when it is convenient, and will also omit
the word “decorated” when referring to variables and function, constant and

predicate symbols.

A first-order many-sorted signature is a tuple ¥ = (P, F, C, S), where
S C § is a set of sort symbols, P C P x S* is a set of decorated predicate

symbols, FF C F x ST x S is a set of decorated function symbols, and C' C
C x S is a set of decorated constant symbols. For two signatures X; =

(Py, Fi, Ch, S1) and D9 = (Ps, Fs, CY, S9), we define:

YU, = (PUR, TUF, C;UC;, S;US))

Y1NYy, = (PNP, FINE, Cincy, SNS)

Yip CY il PCR, FI CF, Cp CC 5C05.
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Definition. For a signature ¥ = (P, F, C, S) we define Y-terms, Y-atoms,
and Y-formulas.

d-term t:

t n=x|el| f(t, th)

where x € V is a variable and ¢;,...,t, are X-terms, c€ C, f € F.

Y-atom a:

a =p(ty,...,t,) |t1 = ty | false | true

where t1, ..,t,, are 2-terms, and p € P. false is the universally false atom

and true is the universally true atom. In our logic, the equality predicate

symbol = is a logical symbol, and is not a part of any signature.

Y-formula ¢:

p = al npr [1 Apa | (3s)

where 1, po are X-formulas, a is a X-atom, x, is a variable whose sort is

s, and dis the existential quantifier. We will also use logical connectives

—, +, <>, VV and the universal quantifier V as the usual shorthands built

out of =, A and 4.

Definition. We define the notions of the sort of X-terms and well-formedness

of Y-terms and X-formulas.

Sort of Y-term: A term tis well-formed and has a sort s (denoted by t : s),
if £ : s can be derived by the following rules:

Ts:S Cs:8 fos str, .ytn):s

Well-formed Y-formula: A formula ¢ is well-formed (denoted by ¢ : wff
for well-formed formula) if © : wff can be derived by the following rules:

tq: coe ty Sy tq: to: : wif

Deyo, (try coos ty) swift tg: wif =: wif

wy: wif oy : wif © : wif

01 NA po : WEF (Jxs)p : wif

7



The set of all such well-formed formulas is referred to as the first-order many-

sorted language L.
We have the usual notion of free and bound variables. A X-literal is a

Y-atom or its negation. A Y-clause is a disjunction of X-literals. A Y-term

or a X-literal is called ground if it does not have any variables. A Y-formula

is called closed if it does not contain any free variables. Closed Y-formulas

are also called Y-sentences. A sentence is called universal (existential) if its
prenex normal form has only universal (existential) quantifiers.

Definition. Theory: A X-theory 1 is a non-empty set of X-sentences.

Notation 1. A formula with free variables xq, ..., x, is typically denoted as

o(x1, ..., x,). Formulas with free variables are also called open formulas.
Henceforth, we will drop the “XY” from X-formula, >-atom etc., if it is clear
from context.

2.2 Semantics

Following are definitions of a model, model of theory etc. These definitions

have some differences from their first-order counterpart. Most of these def-

initions are many-sorted versions of the definitions given in the Chang &

Keisler book on model theory [CK98|.

Definition. Model A, varable interpretation «, term and formula evaluation

©, model of a theory A |= T, consistent theory, complete theory.
Model A: For a signature ¥ = (P, F, C, S), a ¥-model is a pair:

A= (4, I),

where A = {A;|s € S} is an S-indexed family of non-empty sets, called
sort-domains, and I is a mapping of symbols from X» to the corresponding

constants, functions and predicates over the sort-domains. Namely, a func-

tion symbol fs, 5, € F is interpreted as I(f,,. s,s) = f*, where f* is a
total function from A;, x --- xX A; to Aj; a constant symbol cs € C' is inter-

preted as I(c,) = ¢* € Ay, and a predicate symbol p,,, € P is interpreted
as a relation I(ps,, )=pt€ A, x --- x A,.

For any Y>-model, we also say that symbols of X are interpreted in A, or

A interprets the symbols.
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Variable Interpretation: Let VV C VV be a set of variables. Let V, C

V denote the set of all variables whose sort is s. A variable interpreta-

tion « of V over a X-model A is an S-indexed family of functions a =

fa, : Vy — Ay | s € S}, where S is the set of sorts of ¥. For any z, € Vi,
a(xs) denotes a,(xs). For any a € A,, x, € Vs and s € S, we denote by
alr, — a] a new variable interpretation over A that maps x, to a and is
otherwise identical to a. We call the pair (A, a) a Y-interpretation over V.
A Y-interpretation (A, a) over V induces a mapping (¢)* over X-terms into
elements of A (also referred to as evaluation of terms in A). This mapping
can be further extended to evaluate >-formulas to {true, false} in the model
A, as defined below.

Evaluation of terms and formulas (Satisfaction of formulas): For a
Y-model A and a variable interpretation «, we denote the evauation of a

term in A as t4* € A, , where t is of sort s, and denote the evaluation of
formulas in the model A as + € {true, false}. If o*® = true, then we say
that A satisfies © under the variable interpretation a or (A, a) satisfies
(also denoted as A, a = ¢). We define the evaluation of terms and formulas
inductively in Figure 1.

For ground terms t (similarily, closed formulas, or sentences () it is easy to
see that the variable interpretation « is irrelevant in determining the value

of t+4¢ (similarily for ¢*%), and hence, we just write t*(¢*) to denote their
evaluation in the model A. We say that a X-sentence ¢ is true in a model A

(alternatively A satisfies ¢ or Ais a model of ©, written as A = ¢) iff every
Y.-interpretation (A, a) satisfies ¢.
Model of a theory: If all sentences of a theory 71" are true in a model A

then we say A is a model of T and write A = T.
Entailment: We say that a theory entails a sentence ¢ (or ¢ is a consequence
of T), written as TE ¢, iff every model of T is also a model of ¢. In
particular, ©» = ¢ denotes that the sentence v¢ entails ¢. Similarly, T = T
for a set of sentences I' denotes that T' |= ¢ for every ¢ € I.
Consistent theory: A theory is inconsistent if for every X-sentence ¢ we

have T' = , and in particular, T' |= false. A theory is consistent otherwise.
It can be easily shown that a consistent theory always has a model.

Complete Theory: A theory is complete if for all sentences either T' =
or T' = =p but not both.
Axioms of a theory: We say that a subset Ary of sentences of 1" are the

axioms of T' if for every ¢ € T we have Axr = ©.
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zh = ar)
Ae _ cA

A,Flt, ot) = fA eh)

(t= t,)Ae — true if tie ~ tg! : false otherwise

ot pyre = | true if gh LL thee pAbeen tn false otherwise

false®® = false

true™® = true

(~ Ao _ true if o® € false14 false otherwise

(01 A g)he — true if pro € true and op c truePLAY? false otherwise

true if there exists a € A,

((Fz,) )b = such that ee = true
false otherwise

Figure 1: Evaluation of a formula
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Subtheory: We say that 1" is a subtheory of T', written as 1" CT, if every

sentence 1" is entailed by T.

Closure of a theory: Let T' be a Y-theory and let Az be its axioms. The

set of all X-sentences which are entailed by Ax is called the closure of the

theory T' or the clsosure of the set Ax.

Union Theory (Combination theory, Combination of theories): Given
two theory 1; and 15, we say that the >; UXs-theory obtained by the closure

of the set Axy, U Axp, (the usual set union of the axioms of 77 and T5),
denoted by 17 U 15, is called the union theory, or the union of 1; and Ts.

The >; UXs-theory 1 UT5 is also sometimes referred to as the combination

of theories T7 and T5.

Equivalence: We say that two Y-sentences ¢ and 1 are equivalent if the

evaluation of ¢ and v is the same in all models.

Equisatisfiability: We say that two X-sentences ¢ and vy are equisatisfiable

if © is satisfiable iff so is .

Decidable Theories: We say that a >-theory T is (semi)-decidable if there
is a (semi)-decision procedure which determines whether a Y-sentence ¢ is
entailed by T. We also say that the problem T |= ¢ is (semi)-decidable.
The set of all universal Y-sentences entailed by a X-theory 7" is called the

universal fragment of T. We say that a Y-theory T is universally (semi)-
decidable if there is a (semi)-decision procedure D which determines whether
a universal Y-sentence is entailed by 7. We also call D a (semi)-decision
procedure for the universal fragment of 7.

Notation 2. Unless we explicitly specify, the terms models, theories, formulas

etc. refer to X-models, X-theories, X-formulas etc.

3 Overview of the Results

The problem that we are trying to solve in this paper is the following:

Suppose there is a X;-theory 717 and a Xs-theory 715 with overlapping

signatures (i.e. ¥y = ¥; NX, is non-empty and there is common subtheory
T, DO Ty C13), and an arbitrary ¥; UYs-sentence ¢. The problem we want to
solve is “can we determine if T} UT; = ¢, provided that for any ¥;-sentence
©; we can determine whether T; = ¢; where ¢ € {1,2}”. We call this the
entailment problem for the theory 7; U T5.

The entailment problem for 77 U 715 can be further divided into two sub-

problems:
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Figure 2: Use of Robinson’s Consistency Theorem in Ghilardi’s approach.

1. It T7 and 15 are both individually consistent, then is their union 7; U5

consistent as well? Clearly if either of them is inconsistent, then so is
the union.

2. Is there a method to determine whether T7 UT; = ¢, provided we have
methods to solve the entailment problem for each T;.

The naivest approach to solving the first subproblem is to check if 7} and

T5 have models M; and M,; respectively, such that the >y-reduct of M; is

elementarily equivalent to the Xy-reduct of My. Clearly, such an approach

is not very effective and infeasible in general. On the other hand, if certain

restrictions are placed on the common subtheory 1; such that the Xg-reducts

of the models of T} and T5 (and hence the models of Tj) are elementarily
equivalent, then the consistency of the union is easily established.

Abraham Robinson proposed one such restriction in his now famous the-

orem called the Robinson’s Joint Consistency Theorem |Rob56, CK98|, re-
garding the consistency of the union of two consistent first-order (unsorted)
theories. In order for the union theory 77 UT5 to be consistent for two in-

dividually consistent theories 7; and 75, Robinson’s Theorem requires the

existence of a theory 17 OD 1, C T5, such that Tj; is complete. Theorem 10

(in Section 5) is our many-sorted version of Robinson’s Theorem, which re-
lies on Feferman’s Interpolation Lemma |Fef68, Fef74| for many-sorted logics
(Lemma 9 in Section 5 as well). However, the completeness condition in The-
orem 10 is the same as in the FOL case and is too strong for most theories
of interest.

12



Following Ghilardi’s work [Ghi03|, we introduce a different and more prac-
tical set of conditions on the consistent many-sorted theories 7; and 15 so

as to render the union 7; U 75 consistent. Namely, both 77 and 75 must

be Ty-compatible for some theory Tj (see Definition 13 in Section 6), where
Ty DO Ty C Ty, and there must exist two models M; ET; and My E Ts that
share a common substructure for the shared signature.

The idea here is that, if 77 and 75 are Ty-compatible theories then one

can extend them suitably to 7] and 7, respectively, such that there is a
complete common subtheory T7 O Tj (Theorem 15 in Section 6, illustrated
in Figure 2). Hence, by our many-sorted version of Robinson’s Theorem their
union 77 UT, is consistent, which in turn implies the consistency of T7 U Ts.

Furthermore, we provide a mathematical construction (based on Ghi-
lardi’s approach |Ghi0O3|) for reducing the problem T; UT, = © to the entail-
ment problems 77 = ¢; and T; = gy for the individual theories T and 75
(Theorem 19 in Section 7), where ¢ is a universal XJ; U ¥o-sentence, ¢; is a
universal ¥;-sentence for + € {1,2}. The completeness of this construction is
guaranteed by the Finite Residue Chain Theorem (Theorem 20 in Section 7).

Following the approach pioneered by Nelson and Oppen [NOT9|, this
method can be described in two high-level steps:

1. Purify —p into equisatisfiable sets of pure ground formulas I'; and I'y

over the signatures X{ and XS respectively, where a is a finite set of
fresh constant symbols. The idea is that once the formulas are purified

then we can easily check if T; UT; are individually consistent, i € {1,2}.
Note that not all formulas can be purified, but universal sentences can

always be purified.

2. Check if T; UT; are individually consistent by exchanging information

between the decision procedures for the respective theories. If false is

exchanged at any point, then conclude that T} UT; = ¢ (by the Finite
Residue Chain Theorem).

An immediate application of Theorems 15 and 20 (Sections 6 and 7) is the ex-
tension of the Nelson-Oppen combination result to many-sorted logic, when

the shared signature is empty (i.e. the only shared predicate symbol is equal-
ity (since it is infact a logical symbol), but there may be shared sorts). The
common subtheory in this case is the theory of pure equality T— over the
shared sorts.
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In the unsorted case, the Nelson-Oppen method requires that two quantifier-

free theories T and 15 be stably-infinite INOT9| for the union theory 17 U Ts
to be consistent, provided that 7; and 75 are individually consistent.

In our many-sorted extension of the Nelson-Oppen method (Theorem 29
in Subsection 8.3), we require (a) stably-infiniteness of 1; and T5 over the
shared sorts (see Definition 22 in section 8) and (b) the existence of models
M; = T7 and My, ET, such that the domains for the shared sorts are the
same in both models.

To establish the consistency of the union theory 717 UT in the many-

sorted Nelson-Oppen method we use Theorem 15. This theorem requires

that the individual theories 7} and 15 satisfy two conditions, namely the T_-

compatibility condition and the common submodel property. To satisfy the

T_-compatibility, we show that staby-infinteness (above condition (a)) im-
plies T_-compatibility (Lemma 27 in Subsection 8.2). Condition (b) provides
the common submodel property. Hence, the consistency of 17 UT, follows

from the above conditions (a) and (b) by Theorem 15.
The proof of Lemma 27 relies on the fact that the theory of infinite

sorts Ts is the model completion of T_ (see Definition 22 in Section 8 and
Definition 13 in Section 6), which in turn follows from the fact that Ts admits
elimination of quantifiers (Theorem 24 in Subsection 8.1).

A non-deterministic decision procedure for the consistency of T1UT,U{¢},
for any universal >; U Xo-sentence ¢, consists of the following steps: purifi-

cation of terms in ¢ by introducing a finite set of fresh shared constants

¢ = {cy, ..., cp}, translating ¢ into an equisatisfiable set of pure ground
formulas I'; U I'y (that is, I'; and I's are over the signatures X¢ and XS,
respectively), picking an arrangement A (see Definition 22) over these con-
stants, and checking that 77 UT'y U{A} and T, UT'y U {A} are individually
consistent. Since the number of different arrangements A is finite, the ter-

mination of this procedure is obvious.

Notice, that we only consider the well-sorted arrangements, and there-

fore, the completeness of this algorithm does not immediately follow from

the completeness of the unsorted Nelson-Oppen procedure, since the latter

requires all the arrangements to be considered, even those that would be
ill-sorted in our case.

We show completeness of our many-sorted version of the Nelson-Oppen

method in Theorem 29 in Section 8.3. Namely, we show that if (T7UI'y)U (TU
I'y) is consistent, then there exists an arrangement A such that TUT, U{A}
and To, UT; U {A} are individually consistent. This fact follows from the
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existence of the common substructure guaranteed by Theorems 19 and 20,

and this substructure effectively provides the arrangement A.

In Section 9 we list several decidability conditions and in Section 10 we

provide some concrete applications of our results.

4 Some Basic Notions from Model Theory

Let ¥ = (P, F,C,S) and ¥ = (P,F',C",S") be two first-order many-
sorted signatures such that > C ¥'. We describe important notions such as

isomorphism between models, elementarily equivalent models etc. below.

Definition. Domain Mapping, Isomorphism, Elementarily equivalent, Sub-

model, Elementary submodel.

Domain mapping: Given two sets of S-indexed families of sort-domains

A={A;|s eS} and B = {Bs|s € S}, an S-indexed family of functions
H = {hs : As — B,|s € St}is called a domain mapping. We write H (a) for
a € As to denote hg(a). Similarly, for a variable interpretation a over A,
8 = H o «) is a variable interpretation over B such that f(z) = H o a(x).
Notice that we allow for overlapping sort-domains, although we do not limit

the universe of models to those with specific relationships over the sort-

domains (that would be order-sorted logic or MSL with subsorts). Even
in the presence of overlapping sort-domains the following definitions should

work fine provided the functions in the domain mappings behave identically
over the elements in the intersection of the sort-domains.

Isomorphism: A Y-isomorphism between Y-model A and and >'-model

B is a domain mapping H = {hs : A, — B,|s € S} where each hy is a
bijection from the sort-domain A; into the sort-domain Bj, and the following
conditions are satisfied:

1. For every predicate symbol pg, € P we have

pan, ... an) iff pP(H (a), ..., H(ay))

for all tuples (aq, ..., ap) € Ag, X +++ xX A, .

2. For every function symbol fs,5 5 € FF we have

H(f*aq, ..., an) = fP(H(ar), ..., H(ay))

for all tuples (aq, ..., ap) € Ag, X +++ xX A, .
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3. For each constant ¢* € A, the corresponding constant ¢® € B; is such
that H(c*) = cP.

Isomorphic models: A Y-model A and a >'-model B are X-isomorphic

(written as A = B) if there exists a Y-isomorphism between A and B.
Equivalence of models: Y-model A and YX'-model A’ are said to be X-

equivalent (written as A ~ A’) whenever for any quantifier-free Y-sentence
o (i.e. quantifier-free ground Y-formulas) we have

AEcifA =o

Elementary equivalence of models: Y-model A and Y>'-model A’ are

said to be elementarily Y-equivalent (written as A = A’) whenever for any
Y.-sentence 0 we have

AEcifA =o

Submodel: A Y»-model A is called a X-submodel of a >X'-model B, or B a

Y'-extension of A (written as A C B), iff A, C By for each sort s € S, and
the following conditions hold:

eo For each predicate symbol p,, ,. € P, we have pt = pP Nn (4, x «++ x
Ag).

e For each function symbol fs,; s € F and every tuple (ai, ..., a,) €
Ay xox A, we have fA(ar,...,a,) = fB(a1,...,a,).

e For each constant symbol c € C, we have ¢* = 5.

Elementary Submodel: We say that a >-model A is an elementary X-

submodel of ¥'-model B (written as A < B), if A C B and for all ¥-formulas
¢(x1, ..., xn) and all variable interpretations a over A, we have o*® <=
oP. We also say that B is an elementary Y'-extension of A.
Embedding: An (elementary) -embedding H : A — B from ¥-model
A into X'-model B is an isomorphism between A and C, where C is some

(elementary) Y-submodel of B.
We say that A is (elementarily) X-embedded into B (written as A — B)

if there exists an (elementary) Y-embedding from A to B. In other words,
there exists a >-model C such that A 2 C C B (or A = C < B for the
elementary case); that is, there is a ¥-model C isomorphic to A, such that C
is an (elementary) submodel of B.
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Proposition 3. A domain mapping H = {hs : A; — By|s € S} is an
(elementary) Y-embedding from a YX-model A into a ¥'-model B iff for any
(3-formula) quantifier free X-formula o(x1, ..., x,) and every variable in-
terpretation a over A, we have

Aa piff B.Hoa Eo.

Proof. An easy induction over the (3-formulas) quantifier free Y-formulas,
similar to the proof of Theorem 2.2.16 in [CK98| for FOL. []

5 Robinson’s Joint Consistency Theorem

Many of the well known theorems from model theory for FOL like the Com-

pactness Theorem and Substitution Lemma also hold for many-sorted first-

order logic [Man96|. We shall use these theorems in the subsequent sections
without proof. In this section, we state the Feferman’s Interpolation Lemma

and prove the many-sorted analog of the Robinson’s Joint Consistency Theo-

rem (also known as Robinson’s Consistency Theorem). These theorems form
the basis for our combination result.

Definition. Expansion (reduction) of a model: Let ¥ = (P, F, C, 5)
and >’ = (P', F', C', 5") be two first-order many-sorted signatures such that
Y, C ¥'. Let M' be a ¥-model. The X-reduct of M' (written as M' |x )
is the Y-model whose sort-domains are the same as the sort-domains of M’

over the sorts in S, for any p € P we have pM'= = pM’ for any f € F we
have fMle = fM for any ¢ € C we have cM® = MM. We also call the
Y/-model M'" a ¥'-expansion of the Y-model M' |s.

Notation 4. We denote by ¢(aq,..., ay) the ¥-formula obtained by substitut-
ing a; for x1,...,a, for x, in the open X-formula p(x, ...,z,), where a, ..., a,
are decorated constant symbols of the appropriate sort in >. Note that Sub-

stitution Lemma holds for MSL |[Man96|.

Definition. Ay, the canonical ¥y-expansion of A.

Signature Yi: For a signature ¥ = (P, F, C, S), let A = (A, I) be a X-
model. Let XY = {X; C A;|s € S} be an S-indexed family of non-empty
subsets of sort-domains of A. We define Xx = (P, F, Cy, S) to be the
signature such that Cy = CU{a, € X, |X; € X'} (that is, we expand the set
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of constants C' with the (appropriately decorated) elements of all X; € X).
For reasons of convenience, we may denote, Xx, the expansion of 3, as (3) x
(this notation is convenient when the signatures are already subscripted).
Canonical ¥ y-expansion of A: The ¥y-model Ay = (A, Ix) is the canon-
ical Yx-expansion of A such that Iy(w) = I(w) for all symbols w € CUFUP,
and Iy(a) = a for all a € X,, X; € X. We often have the case that X = A,
in which case the expanded signature is denoted by >4, and the correspond-

ing canonical X4-expansion is denoted by A4. Note that there may be other

>y-models which extend A by interpreting the symbols from X as something

other than themselves. Such models are termed non-canonical Xx-expansions
of A.

Definition. Diagram A(.A), elementary diagram FA(A), theory of a model
Th(A).

(Elementary) Diagram: The diagram A(A) of a ¥-model A is the set of
all quantifier-free ground X4-formulas true in A4. The elementary diagram

EA(A) of a ¥-model A is the set of all ¥ 4-sentences true in A 4.
Theory of a model: The theory Th(A) is the set of all Y-sentences true
in A.

Theorem 5. Let A and B be Y-models, where ¥ = (P, F, C, S). For each
Y-formula (xq, ..., x,) and every variable interpretation a over A the fol-
lowing statements hold:

1. AafEe Hf AdE pla), ,..., alz,))

2. Let M = {ms : A; — Bs|s € S} be a domain mapping from the
sort-domains of A to the corresponding sort-domains of B. Then

BMoa iff BEpa(z),..., az),

where B' is a ¥4-expansion of B such that the constant symbols a € C4

in ¥ 4 corresponding to the elements of A are interpreted as M (a) in
5B.

Proof. The proof is straightforward by a structural induction over ¢. []
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5.1 Robinson’s Diagram Lemmas

Theorem 6. (Robinson’s Diagram Lemma). Let A = (A, 14) and B =
(B, Ig) be X-models. Then the following statements hold:

1. Ais embedded in B iff the X-model B can be expanded to a >4-model

of A(A), the diagram of A.

2. A is elementarily embedded in B iff B can be expanded to a X4-model

of Th(A,), the theory of the ¥4-model A 4 (Note: Th(Ay) is the same
as the FA(A)).

Proof. We first give the proof of statement 1.

(=) Let M : A — B be an embedding from A into B. We expand B to a
>4-model B' by interpreting all constant symbols from X4 that correspond

to a € A; as M(a). For every quantifier-free ¥4-formula o(x4, ..., z,) and
a variable interpretation a over A we have:

As E ola(zy), ..., alz,)) iff AaE by thm 5(1)
iff B,M(a) Eg by prop3
iff B'E= olay), ..., a(x,)). by thm (2)

This immediately implies that B' = A(A).
(<=) Suppose that the ¥-model B can be expanded to a >4-model B' of

A(A). Then we define a domain mapping M to be M (a) = of forall a € A;,
where A; € A, and show that M is an embedding from A into B. For any

quantifier-free ¥4-formula (xq, ..., x,) and a variable interpretation « over
A we have:

B, Ma) Ee iff BE oplalz),..., alz,)) by thm 5(2)
iff Ay FE p(a(x), ..., a(z,)) by assump. B' = A(A)
iff A aE. by thm 5(1)

Thus, BM) «— 4 By proposition 3, M is an embedding from A to
B.

The proof of statement 2 is identical to the proof of statement 1, except

that A(A) is replaced by Th(A,). ]

Theorem 7. A Y-theory IT" is complete iff any two models of T' are elemen-

tarily equivalent.
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Proof. Follows directly from the definitions of a complete theory and elemen-

tary equivalence of models. [1

Theorem 8. Let A,B be two YX-models. Then the following claims hold:

o If AC B then A~ B (a model is equivalent to its submodel)

o If A =< B then A= B (a model is elementary equivalent to its elemen-
tary submodel)

o If A= B then A= B (isomorphic models are elementarily equivalent)

oe If A= Band B =C, then A = C (transitivity of elementary equiva-
lence).

eo If A= B and B= C then A = C (transitivity of isomorphism).

Proof. The first two claims follow directly from the definition of submodel

and elementary submodel. The third claim is proven by a straightforward

induction over the structure of formulas, and the fourth claim follows from

the definition of elementary equivalence. The fifth claim follows easily from

the definition of isomorphism. []

5.2 Feferman’s Interpolation Lemma and Robinson’s

Consistency Theorem

We state the Feferman’s interpolation Lemma |Fef68, Fef74| and we use it
prove the many-sorted version of the Robinson’s Consistency Theorem.

Definition. Let ¢ be the negation normal form of a Y-sentence ¢ (i.e. all the
negations in ¢ are applied only to the atomic formulas). Define Un(y) C S
and Ex(p) C S to be sets of sorts such that s € Un(p) (s € Ex(yp)) iff ©
contains a universal (existential) quantifier over a variable of the sort s. Let
Sort(yp) be the set of sorts of all the terms in ¢. We write Const(y), Fun(y)
and Pred(y) respectively for the sets of constant, function and predicate
symbols in ©.

Given functions Fi, ..., F,, over arbitrary X-sentences to sets, we say

that 6 is an interpolant for (¢ =v) w.r.t Fi, ..., F,, if (i) 0 is a ¥-sentence,
(ii) ¢ = 6 and 0 = ¢ and (iii) F;(0) C F;(¢)NF;(y) foreach ofi = 1, ..., m.
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Lemma 9. Feferman’s Interpolation Lemma: Suppose © = 1 for Y-sentences
© and 1. Then there is an interpolant 6 w.r.t the functions Const, Fun, Sort

and Pred, and in addition, Un(8) C Un(¢) and Ex(f) C Fx (1).

Next, we use Feferman’s interpolation Lemma and compactness to prove

the many-sorted version of the Robinson Consistency Theorem.

Theorem 10. Robinson Joint Consistency Theorem (many-sorted version):
Let X31 and Yobe two signatures and let > = X21 NXo. Suppose 1 1s a complete

Y.-theory such that T7 2 T C T5, where I and 15 are consistent theories in

Yi29, respectively. Then IT U Ts is a consistent X21 U Xig-theory.

Proof. Suppose 17 U Ty is inconsistent. Then by compactness (also refer
IMan96|), there exist finite subtheories Ly C T; and Ly C T5 such that
L, U Ly is inconsistent. Let 0; be the conjunction of the sentences in L;,

and 09 be the conjunction of sentences in Ly. It follows that 0; = —oy. By
the Feferman Interpolation Lemma, we have an interpolant such that o; = 0
and 0 |= —o, where 0 is a Y-sentence. Since T) = 0; we have that T} = 6.
Since 17 is consistent, T7 = —6, and hence T (= —6. Moreover, T, = —6 and
by consistency of T, we have Ty = 6, hence T' (= 6. But this contradicts the
hypothesis that 7" is a complete >-theory. []

6 Compatibility and Consistency of the Union

Theory

Although Robinson’s Joint Consistency Theorem is a classic result which

allows one to establish the consistency of the union theory 77 UT, of the

theories 17 and 75, the conditions it requires of 17 and 1, are too strong.

In order for the union theory 77 UT, to be consistent for two individually

consistent theories 7; and 75, Robinson’s Theorem requires the existence of a

theory 17 © Ty C 15, such that Tj is complete. Theories of practical interest

usually do not have common subtheories which are complete. Following

Ghilardi [Ghi0O3|, our goal is to weaken this condition so as to allow larger
classes of theories to be combined.

Specifically, instead of requiring that the common subtheory 7g be com-

plete, we require that 7; and 15 be Ty-compatible, and that there are models

Mi ET; and My = T; with a common Yy-submodel A.
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Ty-compatibility of T; essentially translates into two ideas. First, Tj; has

model-completion 77, which implies that 7; admits elimination of quan-
tifiers. This in turn implies that Tj is submodel-complete, i.e. if A is a
submodel of a model of 17 then T] U A(A) is a complete theory. Second, if
A is a submodel of a model of 7; then it is also a submodel of a model of 7}.

Hence, the idea here is that, it 7} and 75 are Ty-compatible theories then

one can extend them suitably to 7] and 7; respectively, such that there is a
complete common subtheory Tj U A(A) DO Ty (Theorem 15 in this section,
illustrated in Figure 2). By Robinson’s Consistency Theorem in the previous
section, T{ UT; is consistent, which trivially implies the consistency of T1 UT.

6.1 Submodel Completeness and Quantifier Elimination

We begin by defining the notions of quantifier elimination (QE), submodel-
completeness of a theory and subsequently show that QE implies the sub-

model completeness of a theory. We use the notion of QE, in fact the notion

of submodel-completeness of a theory, in Theorem 14 and Theorem 15 from

Section 6 to establish that the union of two individually 7y-compatible the-

ories is 1y-compatible.

Definition. Quantifier Elimination, Submodel-Completeness.

Quantifier Elimination: A Y-theory 71 is said to admit elimination of

quantifiers whenever for each ¥-formula ¢(x1,...,x,) there is a quantifier
free Y-formula (x4, ...,x,) such that:

T =Vry.. Ve,(ox, x0) <> P(x... 2).

We assume that >. has at least one constant symbol or n > 0.

Submodel Completeness: A Y-theory T' is said to be submodel-complete

whenever T'U A(A) is a complete ¥ 4-theory for every Y-submodel A of any
Y:-model of T'.

Lemma 11. (Embedding-Submodel Lemma) Assume there is an embedding
from a X-model A into a X-model B, where ¥ = (P, F, C, S). Then there
exists a Y-model D = B such that A C D.

Proof. Let A" C B be the submodel of B such that A’ = A, by the definition

of embedding. Let H = {hy : A; = A, | s € S} be the isomorphism from A
to A’, and H' = H~'. The model D = (D, Ip) is constructed by replacing the
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elements from the sort-domains of A’ in B with the corresponding elements

of A, and constructing the interpretation Ip as follows:

H'(cB), if cP ec A
Ip(cs) = (es), ite 7, where ¢, € C

od otherwise.

Ip(fsi...6n,s) (a1, cy Op) = Hf , (M(a), oo, M(ay)))
for all {a,...,a,) € As, X +++ x A, ,and f € F

Ip(Psy..sn)(@1, yan) = Pe sn (H(a1),..., H(an))
for all {ay,...,a,) € As, X +--+ x As;andp € P

Next we show that B = D and A C D. Define a domain mapping

N ={ns: B; = Dy | s € S} between B and D as follows:

hi (es) ife, € A

Es otherwise.

It is easy to see that IV is indeed an isomorphism between B and D, and

A C D is by construction of N and D. []

Now, we show that if 7" admits quantifier elimination then it is submodel-

complete.

Theorem 12. (QFE-Submodel-Completeness Theorem) Let T be a Y-theory
for a signature 3 = (P, F, C, S). Then statement 1 below implies statement
2 which wn turn implies statement 3.

1. T" admits elimination of quantifiers.

2. Whenever A C G, A C H for X-models A, G and H of T', there exists a

Y:-model D of T" such that both G4 and H4 are elementarily embedded

in D4 (here the existence of D4 implicitly requires that the domain of
D contains all the elements from the domain of A), where A4, G4, Ha
and D4 are the corresponding canonical >4-expansions.

3. T' 1s submodel-complete.

The proof of this theorem follows the ideas presented in [WDO04].
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Proof. (1 = 2) Without loss of generality we can assume that ¥gNYy = XY4.
Given that T" admits elimination of quantifiers, and for ¥-models A, G, H of

T such that A C G, A C H, we have to show the existence of a >X-model D

such that both G4 and H4 elementarily embed into D4.

We construct a -model D by first finding a ¥g,%-model D’ of the theory

Th(Gg) UTh(H«) and then building the Y-reduct D of D'. We assume that
the constant symbols corresponding to the elements of A are interpreted as

themselves in D' (otherwise we can always find another model D” isomorphic
to D’ that satisfies this condition by Lemma 11). We then construct the
>4-reduct of D' which, by the above assumption, is exactly the canonical

>.g4-expansion D4 of D. Then we show that G4 and H4 elementarily embed

into D4, which completes the proof of (1 = 2) .
To show that such a D’ exists we simply need to show that Th(Gg) U

Th(H4) is consistent, where we know trivially that Th(Gg) and Th(Hy)
are individually consistent. By the Robinson Joint Consistency Theorem

(Theorem 10), it suffices to show that there is no ¥4-sentence ¢ such that

Th(Gg) Eo and Th(Hy) E —o.

Suppose o is a YX 4-sentence such that Th(Gg) = 0 and Th(H«) FE —o. Let
a, ..., a, € C4 be the set of YX 4-constant symbols appearing in 0, added to

Y, from sort-domains of A. Let (x1, ...,z,) be obtained from o by replacing
each a; for a new variable x;. Since 1" admits elimination of quantifiers, there

exists a quantifier free Y-formula (x4, ...,z,) such that:

T =v... Vr, (p< 9).

Let ¢* be ¥(aq, ..., a,) (i.e. the result of substituting a; for each x; in v).
Note that * is also quantifier free.

Since Gg = 0 we have that 9“ = true for a variable interpretation a
over A such that a(x;) = a; for i € {1...n} (by construction of ¢ and
Substitution Lemma). We are given that G |= T and, therefore, 19% = true
for the same «. Hence we conclude that G4 = ¢*. Since ¥* is quantifier free
and A4 C G4, we have A4 = ¢* by Theorem 8; similarily, since Ay C Hu,
A, EE ¥* and ¢* is quantifier-free, we have H4 = ¢*. Hence, we conclude
that ** = true, and since H = T, we have ©’* = true. This implies
that H4 = o, and consequently, Hy, = o. That is, Th(Hy) = o, which is
a contradiction. Therefore Th(Gg) U Th(Hs) is consistent establishing the
existence of the model D’.
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Next we show that the Y-reduct of D’ is the requisite model D. First,

observe that D4, the canonical XY4-expansion of D, is exactly the X4-reduct

of D' (this is shown in the first paragraph of the proof). Another observation

is that EA(Gg) = Th(Gg) and EA(Hy) = Th(Hy), because £g, = Xg and
39, = Sy. It follows that D’ is a model of FA(Gg), and similarly, a model
of EA(Hy). Since A C G, it trivially follows that D' is a model of EFA(G 4).
Similarly, D’ is a model of EA(H4). Hence, the ¥4-reduct Dy of D’ is
also a model of both FA(G4) and EA(H 4). This implies that G4 and H 4
elementarily embed into D4 by the Robinson’s Diagram Lemma (Theorem 6,
the elementary version).

(2 = 3) Let G = T be any model of T" and A C G be any submodel of
G; we show that the ¥4-model T'U A(A) is complete. First observe that
Ga ET UA(A). By Theorem 7, it suffices to show that G4 = £ for each
Y 4-model £€ where £& = T U A(A). Note that G4 and £ may interpret
the constant symbols corresponding to the elements of A differently. In

particular, G4 interprets constant symbols from the sort-domains of A as

themselves, while £ might not.

Let £& be any X 4-model such that £€ ET UA(A). Since £& = A(A) we
conclude that A embeds into £, by Robinson’s Diagram Lemma. Without

loss of generality, we assume that A C Ey (if it is not, then we can always
find £& = £ such that A C &'|x, by Lemma 11). For each such ¥ 4-model &,
define H = &£|x (the Y-reduct of £). Since H is a Y-reduct of &, it follows
thatH =T and A C H.

It is easy to construct an isomorphism between H4 (the canonical 34-
expansion of H) and &, hence H4 = £. We started out with the assumption
that G = T and A C G. We have constructed a ¥-model H, different from
G, such that H =T and A C H. We apply (2) to conclude that there is a
>:4-model D4 into which both G4 and H4 embed elementarily.

By Theorem 8, H 4 = £& impliesH 4 = £, and Hy =X D4 impliesH 4 = D4.

Similarily we conclude that G4 = D4. By transitivity of =, we conclude that

E=Hy4=Dy=Gy, and hence £€ = G4. []

6.2 Compatibility and Consistency

One of the most important notions that we use in this paper is Ty-compatibility

of a theory Tj, where Ty; C 17. The idea of Tj-compatibility relies on the

notion of model completion of the theory Tj. As explained in the begining of

Section 6, Ty-compatibility is a sufficient condition on two individually con-
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Figure 3: Diagram for the proof of Theorem 14 (Ty-compatibility of T7 UT5)

sistent theories 77 and 75 in order for the union 75 U15 to be Ty-compatible.

Here we present a many-sorted version of the definition of model-completion,

Ty-compatibility, and prove that the union 7; UT5 is Ty-compatible and con-

sistent, provided the individual theories are.

Definition 13. Model Completion, Compatibility, Stably Infinite theory

Model Completion: Let T be a universal theory (i.e. its axioms are all
universal sentences) and T' C T* for some Y-theory T*. We say that T* is a
model-completion of T iff

1. Every model of T" has an embedding into a model of T™ and

2. T™ admits elimination of quantifiers.

Note. The standard definition of model completion is quite different from the

one given here. We refer the reader to the appendix where we show that the

standard definition and the defintion presented here are equivalent for MSL.

Compatibility: Let T" be a Y-theory and let 7; be a universal theory in a

subsignature >y C XJ. We say that T' is Tj-compatible iff
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® Ty C 1,

e / has a model completion 1; ,

e every model of T" embeds into a model of T'U 7}.

We now prove two major results of this paper, namely, Union Compat-

ibility Theorem and the Union Consistency Theorem. The proofs are very
similar for both theorems.

Theorem 14. (Union Compatibility Theorem) Let T} be a X1-theory and Ty
be a Xio-theory; suppose that they are both individually compatible with respect

to a unwversalXig-theory Ty, where Xo = 21 N Xo. Then the X21 U Xg-theory

17 UT5 1s Ty-compatible.

Proof. We only need to show that every model of 7} U T5 embeds into a

model of 77 UT, UT], since the other conditions for 7y-compatibility are
automatically satisfied. If T7 UT; is inconsistent, then the conclusion follows

trivially.

Suppose 17 U Ts is consistent and M is a >; U Xo-model of 77 UT5. We

need to show that M embeds into some >; U Ys-model N of the 3; U Yo-

theory 77 UT, UTS (The construction is depicted in Figure 3).

First we construct a suitable model for T7 U Ts UT}.

Observe that since M = T7 UT; we can conclude M |= T; and M = Ts.
By the definition of Tj-compatibility, we have that M embeds into some

Y;-model M? = T, UT{, for i € {1,2}. In other words, M = M! C M}.
By the Embedding-Submodel Lemma (Lemma 11), the isomorphisms

M = M| and M = M, imply that there exist NJ and N isomorphic
to M7 and M3 respectively, satisfying the following two conditions:

oe MCN; and M C NS and

e the sort-domains of M} and N* are the same except possibly for ele-
ments belonging to the submodels M’ and M respectively.

Since M C N}, it follows that A(M) C EAN)UEA(NS). It is easy to see
that TF C FAN) U EA(NS) and consequently Tg U A(M) C EAN) U
EA(NS) (Note that trivially Ty UT, UTE C EAN) U EA(NS)).
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Observe that M is trivially a submodel of some model of Tj (in fact,
M C NF where N¥ E Tf). Since Tf admits elimination of quantifiers, it
follows that 7 is submodel-complete by QE Submodel-Completeness Theo-

rem (Theorem 12). By the definition of submodel-completeness, we conclude
that 75° U A(M) is a complete theory.

Since Tg U A(M) is a complete theory and Tg U A(M) C EA(N) and
TE UA(M) C EA(NS), we conclude that EAN) U EA(NS) is consistent,
by the many-sorted version of Robinson’s Joint Consistency Theorem (The-

orem 10). Let N' be a (1)n+ U (32) a;-model of FANT) U EAN). We
have established that 717 UT, UI is consistent.

We now show that M embeds into N' = N’ |5, us,.

Let H; be the embedding from M into M3, for i € {1,2}. Let J; be the em-
bedding from M} into N.*(in fact J; are isomorphisms which automatically
implies that they are embeddings as well) and K; be the embedding from A;
into N// (The existence of K; follows from the Robinson Diagram Lemma).

Observe that for all elements m, of any sort-domain M, of M we have

Ki(ms) = Ks(mg). (Recall that M = (M, In) where M = {M; | s € S} is
an S-indexed family of sort-domains.) The reasoning is as follows: Assume
that Ki(my) # Ko(my) and let Ky(mg) = as, Ko(mg) = bs, as # bs, where
as, bs are distinct elements of sort-domain NN, of N/. Note that NV’ is a model

for EAN) U EA(NS) and that my, is a constant symbols in the signature

(31) U (E2)a. By the defintion of embeddings K; and Ko, it follows that
mV|= a, mV' = b, which implies a; = b,. This is a contradiction and hence
Ki(mg) = Ky(my).

Having established that K; behave the same for elements of M, it is easy

to see that the Hy o J; o Ki; U Hy 0 Jy 0 K5 is an embedding from M into

N — N/ 5, us, - Ll

Theorem 15. (Union Consistency Theorem). Let Ni be a X1-model of T}
and let Ny be a Ya-model of Ts, where Ty, Ts are Ty-compatible theories
for the Yo-theory T, DO Ty C Ty and Xo = 1 N Xa; suppose also that N;

and Ny share a common Yg-submodel A. Then there is a (31 U Xo) 4-model
M = TUT and two (X;) 4-embeddings N; — M (i = 1,2).

Proof. We are given that 1; and 15 are Ty-compatible and consequently we

can assume that A; is a submodel of a model M; of T7} UTy and N; is a
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submodel of a model My of T, UT (by Lemma 11), where T is the model-
completion of T;,. We can also assume that the sort-domains of M; and M,

corresponding to the non-shared sorts are pairwise disjoint. Also, it is easy

to see that A is a submodel of M; and M5. Our first goal is to show that

the elementary diagrams FA(M;) and EA(M;) of M; and Mj respectively
are jointly consistent as a (31), U (2X2) a,-theory.

Since Ty C 1} and T, C T5 it follows that A is a Xp-submodel of some

model of Tj (in fact, M; = Ty, and A C M,; for i: € {1,2}). Since every
model of Ty embeds into a model of I, we have that A is a Yy-submodel of
some model of Tj (by Lemma 11).

Since T§ admits elimination of quantifiers (by definition of model com-
pletion), 7 is submodel-complete by QE Submodel-Completeness Theorem
(Theorem 12). Consequently, we have that Tj; U A(A) is a complete 3g
theory. Since A is a submodel of M; and M5, and both are models of Tf,
it follows that FA(M;) and FA(M,y) are (31)a, and (29)aq,-extensions
of the theory Tj U A(A), respectively. By the Robinson Joint Consistency
Theorem (Theorem 10) EA(M;)U EA(Ms) is a consistent theory, and any
model M of EA(M{)UFEA(My) is also a model of T} UT;. The existence of
embeddings from M; and Ms into M follows directly from the Robinson’s

Diagram Lemma (Lemma 6). []

7 The Combination Method

We now have all the tools necessary to build a complete combination pro-

cedure for the ¥; U Ys-theory T; UT5, i.e. a (semi)-decision procedure to
determine whether 77 U Ts = for any universal ¥; U Y-sentence ¢, where
T; is a X1-theory, T; is a Yo-theory and X41, 35 may overlap (i.e 3g = 31 Ns
may have constant, function, predicate and sort symbols common to >; and

9). We first describe a mathematical method which under certain sufficiency
conditions can be turned into a semi-decision procedure. In Subsection 7.2 &

Subsection 7.3, we prove the most important theorems of this work, namely

the Generated Common Submodel Theorem, Finite Residue Chain Theorem

and the Union Completeness Theorem. Although some of the theorems and

proofs are similar to the FOL case |Ghi03|, there are significant differences.
We use these theorems to establish that the combination procedure is com-

plete.
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7.1 The Combination Procedure

We present a mathematical construction, which under certain sufficiency

conditions can be turned into a (semi)-decision procedure. Let T} and 75
be Ty-compatible where Tj is a universal Yy-theory and 7; © Ty C 15. The

following definitions are needed to describe this construction.

Notation 16. For better readability we shall denote the signature (3;); as
>? the signature obtained by extending 3; with constant symbols a =
{ay, cee ap }-

Definition. Positive residue chain, saturated set of clauses, generated model.

Positive residue chain. A finite list of positive ground Xj-clauses

Ch, RR Ch,

is called a positive residue chain (or finite residue chain) if for every k =
1,...,n either

TyU{Cy,...,Cr_1} EC

or

ToU{C,...,Cr_1} EC

Saturated set of clauses. A set Ig of positive ground X¢-clauses is satu-
rated iff it is closed under the following two rules:

for all positive ground ¥¢-clauses C. Here a = {aq, ..., a,} is a finite set of
constant symbols not occuring in >; U Xs and decorated by the sorts from

Yo, the signatures bM are the extensions of XJ; with constant symbols a for
7 €40,1,2}, and T'; are sets of X¢-sentences, © € {1,2}.

Generated model. Let A = (A, I4) be a ¥-model, ¥ = (P, F, C, S), and
let X ={X;|X; C A, s € S} be an S-indexed family of sets, an element-
wise subset of A. We say that the Y-submodel B = (B, 14) of A is generated
by X if for every sort s € S we have

B, = {t(zy, ..., 2.) | a(zy) € Xy for all zy € {x1,...,2,}},
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for all 3-terms t(xy, ..., x,), where xy denotes a variable of sort '.
Note that such a submodel B does not always exist, since it is possible for

a sort-domain B, to be empty if constructed as above. Therefore, care must

be taken to ensure that every sort-domain in B is non-empty for each sort in

¥.. For example, it is sufficient (although too strong in practice) to require
that if X; = () for some sort s € 5, then there exists a constant symbol ¢, € C.

We now describe the mathematical construction for converting the problem

T, UT; = into a problem of checking whether false € I' for a set of ground
formulas I'y (whose construction is described below), where ¢ is a universal
>; UYs-sentence, and theories 17 and 715 are To-compatible for 17 2 Ty C Ts,

a universal Xj-theory.

Formally, we define the combination method D for solving the entailment

problem T; UT; = ¢ as follows:

1. Purify the negation of the given >; U Xs-sentence —p into I'y and I'y

(the sets of ground >¢ and %-formulas, respectively), which is always
possible whenever ¢ is a universal sentence.

2. Check whether false € I'y, where ['g is the set of all positive ground >¢-
clauses from all the residue chains of 77 UI; and T5, UT',. If false € Ty,

then conclude that T; UT; = ¢. Otherwise conclude that 17 UT # o.

The correctness and completeness of this method follows from the Finite

Residue Chain Theorem (20 below) and the fact that I'y is saturated (shown
below).

Step 2 is the only non-trivial step from the decidability point of view.

It is obvious that if I'y is recursively enumerable, then D is a semi-decision

procedure; 1.e. it will always terminate with the correct answer when 77 U

Ty = , but might not terminate otherwise. Similarly, D becomes a decision
procedure whenever Ij is recursive.

Theorem 17. I'y 1s saturated.

Proof. We prove this by showing that for every positive ground¥3-clause C
such that T, UT; UT |= C, for i = 1 or i = 2, we have a positive residue
chain for C', and hence, by construction of I'y, we have that C' € I'y thus

satisfying the conditions required of a saturated set.

Given T; UT; UT, = C, it follows that there is a finite subset I’ of I’,
such that T; UT; U F' = C, by compactness. By construction of I'y, each
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element of F' has a positive residue chain. To get a positive residue chain

for C', we simply chain the residue chains of F', and this works because for

any two positive residue chains FR; and Rs it is easily proved that R;, Ry or

Rs, Ry 1s also a positive residue chain. []

7.1.1 Semi-Decision Procedure for 7) UT5

Under the following additional conditions, the above mathematical construc-

tion can be turned into a semi-decision procedure D:

1. There is an algorithm to construct finite sets I'; and I's, such that

Ty UT, U{-p} = false iff Ty UT, UT; UT'y [= false, where I'; are
finite sets of ground X¢-formulas, a is a finite set of fresh uninterpreted
constant symbols not present in >; U Xs (new Skolem, or purification
constants), and ¢ is a universal ¥; U Ys-sentence.

2. There are algorithms D;, i = 1, 2 for recursive enumeration of the sets

of positive ground ¥¢-clauses A;(I') = {¢ | T; UT = ¢} for a finite set
of ground X¢-formulas I' and a finite set of constant symbols a.

It is easy to see that the procedure D is correct, that is, whenever D ter-

minates, it reports the correct answer. The completeness of the procedure

D (i.e. if Ty UT, FE ¢, then D is garunteed to terminate and return true)
follows from the recursive enumerability of I'y (shown below) and the Finite
Residue Chain Theorem.

The proof for the recursive enumerability of I'y is essentially as follows:

Each positive ground ¥3-clauses @ € I'y is the last clause of a positive residue
chain, by construction of I';. We map each positive residue chain to a tuple

of positive numbers. Conversely, each tuple of positive numbers corresponds

to only a finite number of positive residue chains. It is known that the set

of tuples of positive numbers is recursively enumerable. To recursively enu-

merate Ig, we enumerate tuples of positive numbers, and hence the positive

residue chains and consequently the formulas in I'y.

Theorem 18. Under the above conditions, 1'y is recursively enumerable.

Proof. Given the sets of sentences 17, 15 and sets of ground formulas I';, I's

satisfying the above conditons, we construct a recursive enumeration of a set

of positive ground X§-clauses, and prove that it is indeed an enumeration of
I.
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Let A;(I', k) denote the k-th sentence in the recursive enumeration of
A(T) (thus, A;(T, k) is a recursive function). For a tuple of integers

(ki, ..., ky) € NT,

define A({ky, ..., kn)) to be 6, which is the last element in the sequence
0p C 6, C..-C #0, such that:

0, — 0)
kit+1

Oiv1 = 0; U J Aj mod 2(Li mod2 U 05, J).
j=1

Here I'; and I's are the given finite sets of ground Y8-formulas obtained from
purification of ¢ in step 1. Notice, that 6,, is finite and computable from

(ki, ..., kn), hence, A((kq, ..., k,)) is a recursive function. Since the set

of all finite tuples of integers N'" is recursively enumerable, the set A =
Usen+ A(k) is also recursively enumerable.

Now we claim that A = I'y. The fact that A C I'y is obvious by con-

struction of A and definition of I'y. For the other direction, I'y C A, consider

an arbitrary clause ¢ € I'y and show that © € A. From definition of I'y, it

follows that there is a finite residue chain 1, ..., ¢, such that ¢,, = ¢. This

residue chain can be partitioned into m subsequences ©¢,@s - «+ @,, such that

TLhulhyaUgr = @9

1 mod 2 UI’ mod 2 U ©1 U-.-- U @Qm—1 = Om

Notice, that since A(T") is recursively enumerable, there exists k; > 1
such that

k1

p1 C0 = J A(T, J).
j=1

Similarly, there exists k, > 1 such that

ko

p2 C Oy = 61 U J Ay(Tp Ub, j),
j=1
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and so on. Effectively, we have constructed a tuple of natural numbers

(ki, ..., kn) and a sequence of sets of clauses 04, ..., 0, such that ¢; C 0,
and 0; = A((ky, ..., k;)). In particular, ¢ = ¢, € 6,,, and hence, p € A.
The proot is complete. []

7.2 Generated Common SubModel Theorem

The Generated Common Submodel Theorem (Theorem 19 below) states that
if there is a saturated set of clauses I'y and false &€ I'y, then there exist models

Mi E TU’Uy and My |= TUT, Ug which share a common Yg-submodel
A generated by a. The proof of this theorem is essentially the construction

of A(A), the diagram of the common ¥y-submodel A generated by a, from
the premise that a saturated I'y exists and false & I.

Note. The Theorem 19 does not require that 77 and 15 be Ty-compatible.

This assumption is needed for Finite Residue Chain Theorem (Theorem 20
below), its corollaries, and the Union Consistency and Compatibility Theo-
rems.

The existence of the gernerated common sub-model is one of the crucial

assumptions used in establishing the consistency of the union theory 77 U

Ts for two Ty-compatible theories 77 © 1 C T5 in the Union Consistency

Theorem (Theorem 15 of Subsection 6.2).
Although the statement of Theorem 19 and its proof are similar to the

FOL case |Ghi03|, there are some significant differences. In the corresponding
theorem for FOL, Ghilardi |[Ghi03| allows for the possibility that 32 may not
have any constant symbols, and in particular @ may be empty. Also, Ghilardi

allows for models with empty universes whereas we disallow that.

In the FOL case, if the signature ¥§ has no constant symbols then clearly
the domain of the common 3j-submodel A generated by a is empty (A
with empty universe is also a model according to Ghilardi’s definition of a

model). Moreover, if a is empty it means that no purification of the input
>: Uig-sentence ¢ is necessary. In other words, ¢ is a Boolean combination

of some X;-sentence ; and Ys-sentence oy, e.g. © = 1; Ao. In this case,

we can determine whether 7) UT, = ¢, by simply determining whether
T, FE piand Ty = ¢o. Hence, the combination problem in such cases is
trivial, and we don’t need to consider the combination procedure (or invoke
the associated theorems) to determine if 77 U Ty |= ¢. The existence of a
common submodel generated by a with empty universe is irrelevant and the
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corresponding theorems hold trivially.

Consider a similar scenario for MSL. Suppose that 8 has no constant
symbols of a particular sort s € S, where S is the set of shared sorts, and a

is otherwise non-empty. This leads us to the possibility that the submodel

A generated by a is such that A,, the sort-domain of sort s in the submodel

A, is emtpy. By definition of a model, we do not allow such possibilities.

For the sake of argument, assume that models can have empty sort-domains.

Since a is non-empty we have a non-trivial combination problem. An empty

sort domain A, implies that terms of sort s maybe non-denoting. Taking

into account non-denoting terms may require considerable alterations to the

existing framework that we have developed, not to mention altering the defi-

nition of a model to allow for empty sort-domains. Consequently, we assume

that the signature >{ is such that the common X3-submodel A generated by
a may not have any emtpy sort-domains.

Theorem 19. (Generated Common Sub-model Theorem): Given 3i-theory
T, and Yo-theory Ts, and sets of ground ¥¢ and ¥5-formulas I'y and T's,
respectively, for a finite set of fresh constants a = {aq, ..., ay}. Assume
that X29 = 21 MN Xo 18 such that any Xg-model has a Xg-submodel generated by
a.

Suppose that the set of positive X8-clauses Ty is saturated and does not
contain the empty clause (i.e the atom false). Then there are X¢-models M;
(t =1,2) such that

M; E Thul'yuly

My, E TUT, Ul,

and moreover, the models My and My have a common Yy-submodel.

Note that the assumption about the existence of a >y-submodel generated

by a for any Xj-model is necessary for the theorem to hold. The following

counterexample satisfies all the conditions in the theorem except this one,
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violating the theorem.

2 = (0, {fs} {cs ci} {s, s'})

2g = (0, {fos} {dj, ds}, {s, s'})
220 — (0, {fs.s} 0, {s, s'})
a = (ay)

Az(T;) = {Fvs3ws.v Ew, Ve,VyVes. ox yVaerzVy=xz}

I = {c'#c, fic) =e, fc?) =~}

= {d'#d, [(d) ~ d, f(d) ~ d')

Both theories 17 and 75 restrict the sort-domain for s to contain exactly two

elements. The clauses in I'y are the ones constructed from the single literal

a ~ a. In particular, I'y does not contain false. The theories 77 UI'y UT

and T5 UT's UT'y are individually consistent, and therefore, have models M;

and M5. However, these models cannot have a common submodel for the

following reason. Mj must interpret the sort s over M! = {m, ms} and
fMi(my;) = my, for i € {1,2}. However, in My we have M? = {m, my} and
fM2(m;) # m;. Therefore, there is no common submodel of M; and M,.

Observe that if a contains a constant symbol ay of sort s (which guarantees
the existence of a ¥g-submodel generated by a for any Yy-model), then I’;
has both f(as) =~ as and f(as) % ay derived from T; UI’; and T, U I's,
respectively, and hence, contains false as well.

Proof. (of Theorem 19) First we prove (by contradiction) that T; UT; UT is
consistent for + = 1,2. Suppose 17; UI; UI, is inconsistent. Then it follows

that all ground Y2-formulas are entailed by T; UT; U Ty including the empty
clause false. Since I'j is saturated it follows that false must be in I'y, which
is a contradiction.

The theorem requires us to show the existence of two X%-models (i = 1, 2)
M; ETiUl UTLy and My EE To UT'y UT such that they share the same
Yg-submodel generated by the elements corresponding to @. To show this we

construct an exhaustive set of ground X¢-literals A, i.e. for every ground 34-
literal ¢ either it or its negation is in A, and A is consistent with 7; UI’; UT,

for © = 1,2. Then we show how to construct the required Xj-submodel from
A.

In order to satisfy all clauses in I'y, it is sufficient to satisfy at least one

literal in each clause of I'y. Intuitively, A will provide a minimal assignment

to the literals in I'y to satisfy all the the clauses.
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We choose a strict total terminating order > over the ¥$-atoms and ex-
tend it to Xg-clauses (treated as sets of atoms) as follows (the extension is
also a strict total terminating order). Let S; and S; be two sets of atoms.
We say that S; > S55 if for every atom as € S5 there is some atom a; € 5;

such that a; > a».

First, we define a T'p-indexed family of sets of atoms Af by transfinite
induction. A clause C = AV A; V ---V A, from I'y is called productive iff

Ai, An & AZ, where A is the largest atom in C, and AY, = J,» A}.
(For convenience, we assume that the leftmost atom in a clause C' is always

the largest w.r.t. >). If C is productive, then we define AL = {A} UAT,
and otherwise AL = AZ.

Next, let A™ = Uger, Af and A = ATU{-A | A & At} where A is
a ground X¢-atom. It is easy to see that A |= I'y (since A" = I'g), and we
simply need to show that 7; UI; UA is consistent for : = 1, 2.

Observe that if the clause C = AV A; Vv ---V A, is productive, and A is

the maximum atom in C, then A,,... A, &€ AT.
Suppose now that 77 UI'y U A is not consistent. By compactness, this

implies that there is a finite set {=By, ..., =B,,, Ay, ..., A,} C A of ground
Y.2-literals which is inconsistent with 77 U I'y:

1 U I'4 U {=By, cee -B,,, Aj, Cee A} = false,

or, equivalently:

Tul uU{A,...,A,} EB V---V By. (1)

By construction of A we know that By, ..., B,, € AT, and there are pro-
ductive clauses in I'y:

C, = AVALV:---V A,

corresponding to the finite set of ground ¥%-atoms {A;,..., A,} in AT. By
simple boolean manipulations of (1) we have:

Tul, u{C,...,C,} =\/ 4; VBI VV By.
t,J
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Since C', ..., C, are clauses in I'y, and I'y is saturated, it follows that the
clause

1,]

is also in I'y. By the construction of AT it follows that some of the atoms

that Aq1,..., Aye, are not in A™, implying that some of By, ..., B,, are in
AT. Contradiction.

The consistency of 75 UT's U A is proven similarly. Thus, we have con-

structed an exhaustive set of atoms A consistent with 7; UI’; for + = 1, 2.

This implies that there exist models M; and Mj such that:

M; = TUT UTZ UA

My E Thuyuly UA.

Next, we show that these have a common >j-submodel generated by a.

Let M, sa be the X¢-reduct of M; for i = 1,2. For i = 1,2, let MY
denote the ¥§-submodel of M; |x generated by @ (such submodel exists by
the assumption on ¥y and a). We show that MJ is ¥y-isomorphic to M3.

First observe that M’ |szf= A, since A is a set of ground ¥-literals.
Since MY C M! sa, we can apply proposition 3 to conclude that M? E A.

Let @ be the set of all ground X2-terms. Consider two arbitrary terms
t,t € @. Since ML E A and A is exhastive, if ML E t; = t,, then
the atom #; = #, must be in A, and since M4 E A, we also have that
MAL E ti = ty. Similarly, M% E t; = ty implies that My EE # = ts.

1 1

Thus, for any two terms ti, to, € () we have that pa = A if and only
2 2

if ga = Ay This, in turn, implies that there exists a bijective domain
mapping R between ML and MX such that R(tMa) = tMA for any t € Q,
due to the fact that M’, are submodels generated by a.!

We show that for any constant symbol ¢, function symbol f, predicate

symbol p in 3¢, and any variable interpretation a over MX we have:

R(cMa) = Ma

R(f(z1, ..., 2) = fz, ..., z,) 2H
1 2

p(x, ..., eo) = p(x, ..., z,) MRE,

1A precise way to construct such bijective domain mapping R is the following: for any
a; from a sort-domain of MY find a term t € Q s.t. ta = q;, and define R(a;) = tMa.
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The first equality holds by construction of R, since ¢ € (). Since MJ} is
1

generated by a, there exist terms tq, ..., t, € Q such that a(z;) = $a for
each + = 1...n. Hence, we have:

R(f(z1, ..., z,)Ma®) = R(f(t1, ..., t,)2) by subst. lemma
= f(t, te) MA since f(t1,...,t,)€ Q
= f(xy, ..., z,)M2R@) by subst. lemma

The property p(z1, ..., xn)Ma% = p(y, ..., 2,)M2R@) is proven similarly.
[]

7.3 Finite Residue Chain Theorem

The Finite Residue Chain Theorem (Theorem 20 below) states that 7; U
I'y UT, UT, is inconsistent iff there exists a positive residue chain which

ends in false. A sketch of the proof of the contrapositive of Theorem 20 is

as follows. From the assumption that no positive residue chains end in false,

a saturated I'y is constructed such that false € I'y. Applying the Generated

Common Submodel Theorem we conclude the existence of M; = TiUIl'; UT,
and My = To, UT's UT'y which share a common Yy-submodel A generated
by a. Now applying the Union Consistency Theorem we can conclude that

Ty Ul'y Ul15 Ul, 1s consistent.

We now state some assumption needed to prove the next few theorems.

1. For a finite set of constant symbols @ = {aq, ..., a,} not occuring in
1 UX, let I'y and I's be finite sets of ground formulas over ¥¢ and
¥.%, respectively.

2. There 1s a universal Xg-theory 1g such that both 7; and 15 are 1j-

compatible where 7} is a X;-theory and 75 is a Xo-theory and > =

RAPS

3. Xp and a are such that every Xp-model has a Xj-submodel generated

by a.

Theorem 20. (Finite Residue Chain Theorem) In the above assumptions,
(Th UT) U (Ty, UT) is inconsistent iff there is a positive residue chain
C4,...,C, such that C,, is the false.
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Proof. If there is a positive residue chain ending with false, then it is easy

to show that (77 UT'1) U (1; U Ty) EE false. Suppose there is no positive
residue chain ending up with false. Let I'y be the set of all positive ground

Ye-clauses from all finite residue chains. Clearly, I'g is saturated and does
not contain false, hence, Theorem 19 applies. This means that there are

models M; = TUT’; and My |= To, UT’; which have a common Yg-submodel
A generated by a. By Theorem 15, there is a model M [= T; UT; which
embeds both M; and M5. Since M; = I';, we also have M = T';, and thus,
METIUT UT, UT.

Following is an easy corollary. []

Theorem 21. (Union Completeness Theorem) In the above assumptions,
(Ty UT) U (To UTy) is inconsistent iff there is a quantifier-free ground 38-
formula © such that

Proof. If (IT; UT'1) U (To, UT'y) is inconsistent, then by Finite Residue Chain
Theorem (Theorem 20) there exists a finite positive residue chain C1, ..., C,
such that C,, = false. Let Cj be an i-residue (i = 1,2), that is, T; UT; U
{C4,...,Ck_1) E Ck. Let oy be the quantifier-free ground ¥2-formula =C4 V
+o V CL_1 VC} and let ¢ be the conjunction of all vy, such that C} is a

1-residue. Clearly, TUT"; |= ¢. Moreover, by induction, it is easy to see that
ToUul'yU{p} EC; forallj =1,...,n, and in particular, ToUI'yU{¢} [= false
for j =n. Thus, To UT FE op.

The other direction is trivial. []

8 The Many-Sorted Nelson-Oppen Method

One of the most interesting application of the results in the previous sec-

tions is the many-sorted version of the Nelson-Oppen combination result.

As always, we start this section with some useful definitions, followed by

theorems needed to establish the MSL Nelson-Oppen method and finally its

statement and proof. First, we establish that the theory of infinite sorts Tg

is the model completion of the theory of pure equality Tr. Next, we show

that the notion of stably-infiniteness of a theory T' follows from the notion

of T..-compatibility of 17", where Ty, C T" and 1, is the theory of pure equal-

ity. We then proceed to derive the MSL Nelson-Oppen method from these
theorems and the combination results from section 7.
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Definition 22. Empty Signature, Empty theory, infinite model, theory of

Infinite sorts, T-equivalent formulas, Arrangement.

Empty Signature: By empty signature >, we mean a signature with

no constant, function and relation symbols. The set of sort symbols S of

Y.~ may not be empty (there could be infinitely many (countably so) sort
symbols). As always, the predicate symbol ~ is part of the signature by
default.

Empty Theory: Also called the theory of pure equality Ts. It is the theory

over the empty signature X, with an empty set of axioms. The literals

are well-formed equalities and disequalities over sorted variables. Sentences

belonging to the empty theory are built out of these literals in the usual way.

Infinite Model: We say that a Y-model is infinite in the sorts S = {sq,...},
where S' is a subset of the set of sorts of X, if each sort-domain corresponding

to the sorts in S is at least countably infinite. Such models are sometimes
referred to as S-infinite model.

Theory of the Infinite sorts Ts: The YX-theory of the infinite sorts has

only those sentences which assert that “there are at least n distinct elements

of the sort s;” for each n € N and for each s; € S , where S is the set of

sorts of X,. A model for such a theory is an infinite model in the sorts of

S (This follows from the well-known fact that for FOL, i.e., any theory that
has arbitrarily large finite models has an infinite model. Apply this fact on

a per sort basis to derive the above conclusion).
Stably Infinite Theories: Let 1" be a X-theory. Let S denote the set of

sorts in YJ. We say that a theory 1" is stably infinite over S if any quantifier
free Y-formula is satisfiable in some X-model of T' iff it is satisfiable in a

Y:-model of 7" infinite in the sorts in S.

T-equivalent formulas: Given a X-theory T', two X-formulas p(x, ..., x,)
and (x1, ..., x,) are T-equivalent iff T' = (Vx, ...Vr,)p <> 1.
Partition: A set P C 2" is called a partition of a set of variables V if P is
the set of equivalent classes of some equivalence relation R over VV. Notice,

that a partition PP completely specifies its equivalence relation RK.

Arrangement: An arrangement ar(V’) of a finite set of decorated variables
V = {wv,...,v,} given by a partition P is the maximal set of well-formed
(w.r.t. sorts) equalities and disequalities consistent with the equivalence
relation R corresponding to P:

ar(V) = A{vi=wv;|v,v; €V and v; Rv, for v;, v, of sort s}

U{v; % vj | v;,v; € V and not v; Rv; for v;, v; of sort s}
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for alli,7 € {1,...,n}. Forinstance, ifV := {vg, v1, v9, v3} and the partition
is P := {{wg,v1,v2},{vs}} (Note: vg,v1,v9,03 1 must be of the same sort),
then

ar(V) = {vg = v1, = v9, v1 XR Ug,Vy % V3,U1 % U3, V2 FE V3}.

The conjunction of formulas in ar(V') is also referred to as an arrangement
of V.

Basic Formulas Over >: For basic formulas we take all the well formed

equalities and well formed disequalities.

Inconsistent Formula: We say a formula is inconsistent if it is logically

equivalent to false.

Assignment: Any function from propositional variables to {true, false} is
called an assignment.

8.1 QE and the Theory of Infinite Sorts

In this subsection we establish that the theory of the infinite sorts admits

elimination of quantifiers. This coupled with the theorems in the previous

section allow us to conclude that the theory of infinite sorts Ts is submodel-

complete and also that Tg is the model completion of the theory of pure

equality T,. In general the method of elimination of quantifiers is as follows:

First, depending on the theory 1’, we pick out an appropriate set of formulas,

called basic formulas. Then we show that every XY-formula is T5-equivalent

to a boolean combination (i.e formulas built out of basic formulas and logical
connectives =, A, V) of basic formulas.

Lemma 23. Every quantifier-free Sy -formula o(vy,...,v,) is either incon-
sistent (i.e. logically equivalent to false) or is equivalent to a disjunction of
finitely many arrangements over V.= {vy,...,v,} where V is the set of free
variables of (vi, ...,v,).

Proof. Any quantifier-free ¥-formula (x1, ...,x,) is a boolean combination
of Y-literals (¥y-atoms and their negations, in particular Y-atoms are
equalities and false). Consider the set A of all arrangements over V' (there are
only finitely many). Construct a disjunction D of all those arrangements a €
A which are consistent with ¢ (i.e. the conjunction of every such arrangement
a with © has an ¥-model). We now show that this disjunction D of finitely
many arrangements over 1 is equivalent to o.
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Let p. be a propositional variable corresponding to any X.-equality e

occuring in ¢ and —p, be the propositional literal corresponding to any X-

disequality —d, where —d occurs in ¢, and let () denote the set of all such

propositional literals. Construct ¢,,., by replacing each equality in ¢ by
the corresponding propositional variable in ¢) and replacing each disequality

by the corresponding literal in (). For any arrangement a over V construct

aprop Similarly. Let D be a disjunction of arrangements and D,,,, denote the
disjunction obtained by replacing the arrangements a in D with a,

(Oprop = Dprop): SUPPOSE pp is true under some assignment f. We
show that there is an arrangement a such that a,,,, is true under f. We con-
struct a partition P over the set {v,...,v,} as follows. For every equation
e =v; = v; in @ to which f assigns true, add the set {v;,v;} to P. For every
disequation d = v; % v; in to which f assigns false, add the set {v;,v,} to
P. For every e = v; = v; in ¢ to which f assigns false, add two sets {v;}, {v,}
to P. For every disequation d = v; % v; in ¢ to which f assigns true, add
the two sets {v;}, {v;} to P. Merge those sets in P which have variables in
common. We have the requisite partition in P to construct a. Construct an

arrangement a over the variables in V' given by P and clearly ayo, 1s true
under f. Add aprep to Dprop. It is easy to see that both ,.,, and aprep
are true under f. Repeat this for every assignment (there are only finitely
many) which makes ¢,,,, true and add the resulting a,,,, as a disjunct to the
disjunction D,,.p. It is easy to check that D,,,, logically follows from @,;p.

(Dprop = ©prop): Let f be any assignment under which D,,,, is true. This
implies that at least one disjunct, say aprep, 1s true under f. It follows from
the construction of D,.,, that both a,.,, and ¢,.,, are true under f. This
implies that Dyrop = ©prop-

It is easy to show that if @,0p © Dprop then pp & D. It D4, 1s empty
then it follows that ¢ is inconsistent. [1

Theorem 24. Every YX-formula ¢ is Ts-equivalent to a boolean combination

Vv of basic formulas. Moreover, if all the free variables of © are among V =

{vi,...,v,} then © may be chosen so that all its free variables are among
V1, ...,0U,. In particular, if © 1s a sentence, then so is 1.

Proof. We prove a slightly stronger statement, that every ¢ is Tg-equivalent

to a disjunction of arrangements of VV. The proof is by induction over the

structure of ¢.

The base case is trivial, since an atomic formula is already an arrange-
ment.
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For the Boolean connectives, the theorem follows directly from Lemma 23.

The only non-trivial case is the existential quantifier; that is, © = 3((vg)s,) (vo, --., Vpn).
By inductive hypothesis, ¥(vy, ..., v,) is equivalent to a disjunction of ar-
rangements over V' = {vo} UV:

(voy -vvy Up) = Yo VV.

Replacing ©) with this disjunction in ¢ yields an equivalent formula:

© = 3((v0) so) (vo, J Un)
= ((vo)so) (ho V +++ V 1p)

= (3(v0)se) to) V +++ V (I(v0)se) 1p)

Now we only need to show that a formula of the form J(vs)p(v, V) is
equivalent to the disjunction of arrangements over V, where ¢ itself is an

arrangement over {v} UV.
Procedure: remove all the (dis)equalities from ¢ which have v, and turn

that into a disjunction of arrangements by Lemma 23. To prove: this reduc-

tion is Ts-equivalent to J(vs) ¢.
Let ¥ (vy, ...,v,) be an arbitrary boolean combination of basic formulas.

First, by inductive hypothesis it follows that 1 is equivalent to a formula of

the form (in disjunctive normal form)

(A Vo. V (I

where each 1); is an open formula. Also, it is easy to see that 3(v, : s,) ¥ is
logically equivalent to

(3((vn)s,) to) V = + V (I(vn)s,) Pp)

Using Lemma 23, we conclude that each v;, © € {0,..., p}, is either equivalent
to false or else a disjunction of finitely many arrangements 1;; over V given
by some partition Pj; where 7 € {0,...,k} is an index over the finitely
many arrangments which occur in v;. Assume without any loss of generality

that all ¢;, i € {0,...,p}, are equivalent to a disjunction of finitely many

arrangements over V'. For each arrangement 1;;, construct ¢;; by deleting all
equations and disequations in which v, occurs. Then 17; is an arrangement
over the remaining variables vy,...,v,1 given by the partition P] where
Pj is obtained by deleting all occurences of v,, from F;;. It is easy to check
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that each 1);; asserts the existence of r;; many equivalence classes of over the
variables of type s,, in V. Then it is easy to see that 3((v,)s,) ¥i; is equivalent

to Ope —1 A 7; (The reason is that eliminating the quantifier over v, leaves
one fewer variable of type s, and thus the number of equivalence classes over

variables of type s, goes down by at most 1. The remaining equivalence

classes are captured by the arrangement over the variables vq,...,v,_1 i.e.

Vi). Let ¢7 represent the finite disjunction of all the arrangements v);; where
j € {0,...,k}. Let oy"; represent the sigma formula which asserts the
existence of the largest number of elements of type s,, among all the finitely

many sentences 0,”_;. It follows that Jv, is equivalent to (o77_; A 9g) V
+ V (0,71 Ay). Clearly, the formulas 04,1, ...,0,,-1 are Ts-equivalent to
true. The resulting formula ¢g V ---V ¢] is indeed a boolean combination of
basic formulas (in fact arrangements over vy, ...,v,) and all its free variables
are among vq, ...,v,. We are done. []

From Theorem 24 we can immediately conclude that the theory Ts admits

elmination of quantifiers.

8.2 Compatibility and Stably Infinite Theories

In this subsection we show that if a theory T' is stably-infinite over the sorts

in XY, then it is 7T,-compatible. The converse is true as well. To show this we

first have to show that the theory of infinite sorts T's is the model completion

of the theory of pure equality 1, using the results in the previous subsection.

Lemma 25. The theory of infinite sorts Ts is the model completion of the

theory of pure equality T..

Proof. Recall that a theory 177 is a model completion of a universal theory 7’

if the following two conditions are satisfied. First, 7 must admit elimination

of quantifiers and secondly every model of T' must embed into a model of T™.

From Theorem 24 we can conclude that Ts admits elimination of quantifiers

thus satisfying the first condition. To see that every model of T, embeds in

some model of T's consider this. From Lemma 23 we have that any quantifier

free Yr -formula ¢ is either false or equivalent to a disjunction of finitely many

arrangements and let us say (x1, ..., x,) denotes this disjunction equivalent
to ¢. Let A FE Ty, BE Ts and let A = ¢|ay,...,a,] for some ay,...,a,
in the appropriate sort-domains of A. By the pigeon-hole principle a finite

arrangement (or disjunction thereof) can only assert the existence of only

45



finitely many elements of any sort in the set S. But B is infinite in all the

sorts in S and it follows that B |= ¢]aq,...,a,]. Simply apply proposition 3
to conclude that there is an embedding from A into B. []

Lemma 26. Let S be a subset of the set of sorts in the signature >. A

Y:-theory T' is stably infnite over the sorts in S iff every model of T' embeds

into an S-infinite model of T.

Proof. (=) Consider the set @) of all sentences which assert that for each
natural number n there are at least n elements in each sort-domains of the

sorts in S (i.e. asserting that each sort-domain in S has infinite cardinality).
Let M be any model of T'. We show that T'UQUA(M) is consistent. If not,
we have T'U Q = —p(ay,...,a,), where ©(aq,...,a,) is a finite conjunction
of formulas from A(M). This means that there is a quantifier-free 3-formula
©(x1,...,T,), a finite set of elements ay, ..., a, from the sort-domains of M,
such that ¢(aq,...,a,) is true in M. As the constants ay,...,a, do not
belong to the signature 3, we have that TU Q = Vay ---Va,—p(x1,...,T,).
But ¢(x1,...,x,) is a quantifier-free formula satisfiable in a model of T" and,
by hypothesis, there is a model of T'U @ (i.e. an S-infinite model of T')
in which o(x,...,x,) is satisfiable too, contrary to the fact that TU @ =
Fry xpe(X1, Ty).

(«) Easily follows from definition of stably-infiniteness and embedding.
[1

Lemma 27. Let 1; be a X;-theory and let Ty be a Xr -theory such that Xi, C

>; and Ty C T;. Then 1; is stably infinite over S if and only if T; 1s Tj-

compatible.

Proof. (=) Suppose T; is stably infinite over the sorts in S. From Lemma 26
we have that every model of T; embeds into a model of 7; which is infinite

over S. We are given that Tj, C T;. Also, from Lemma 25 we know that Tj

has a model completion Ts (recall that sentences in Tg simply assert that
there are n elements for each sort in S, for all n € N. It easily follows that

all models of Ts are models infinite over the sorts in 5, also referred to as

S-infinite models). It is easy to see that T; U Ts is a consistent theory since
T; has models which is infinite over the sorts in S. From the assumption that

T; is stably-infinite in the sorts over S and the fact that 1; UT is consistent

and its models are precisely the models of I; which are infinite over the sorts

in 5, it follows that every model of 7; should embed in a model of 7; U Ts.

We have shown that 7; satisfies all three conditions of Ty-compatibility.
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(«<=) If T; is Ty-compatible then we have that every model of T; embeds
into a model of 1; U Ts where Ts is the model completion of the X-theory

To from Lemma 25 (Note: we can assume that 7; U Ts is consistent without
loss of generality). Our goal is to show that every model of T; embeds into an
S-infinite model of 7;. Recall that sentences in T's simply assert that there

are n elements for each sort in S, for all n € N. It easily follows that all

models of T's are models infinite over the sorts in 5, also referred to as S-

infinite models. This implies that all models of T; UT are necessarily infinite

over the sorts in S and hence by Tj-compatibility every model of 1; embeds

into an S-infinite model of 1; U Ts and hence into an S-infinite model of T;.

Therefore T; is stably-infinite. []

Lemma 28. Let T be a stably-infinite X-theory over the sorts S' CS, where

S 1s the set of sorts in XY. Let 1" be a set of quantifier-free ground X-formulas

consistent with IT’. Then T UT is stably-infinite over S'.

Proof. By definition of stably-infiniteness, for any model M = T there exists
an S’-infinite model M* = T such that M embeds in M* (by Lemma 26).
Since I' is consistent with T', there is a model A = T UT’, and hence, there
is an S’-infinite model A> = T such that A embeds into A>. Since em-
bedding preserves the interpretation of quantifier-free formulas, we conclude

that A> =I". Thus, we have shown that any model of TUT" embeds into an
S’'-infinite model of TUT", and by Lemma 26, TUT is also stably-infinite. [1

We are now ready to state and prove the MSL Nelson-Oppen combination
result.

8.3 Many-Sorted Nelson-Oppen Theorem

Theorem 29. (Many-Sorted Nelson-Oppen combination). Given two con-
sistent theories 11 and I5 over the signatures Yq, and Xo, such that

1. 3g = X11 NX, is the empty signature Yn (i.e. the signatures are disjoint
but they may share sort symbols);

2. 17 and Ty are stably-infinite theories over the shared sorts S € Yq;

3. The universal fragment of the theories 1 and Ts are individually decid-

able (i.e. T; = @; is decidable for any universal X;-sentence ;, where
ie {1,2}).
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Then the following hold:

1. 17 U 15 1s consistent,

2. Ty UT; is decidable; that is, Th U'ly = @ is decidable for any universal
> U Xg-sentence ©.

Proof. We construct a nondeterministic algorithm for deciding the problem

T) UT; = ¢ and establish that the algorithm is sound, complete and termi-
nating. This algorithm closely follows the semi-decision procedure given in
Section 7.

First, notice that the problem T° = ¢ for some >; U Ys-theory T is
equivalent to the problem of determining T'U {—¢} [= false.

['y UT, [= false), where I'; are the sets of ground >¢-formulas, and ¢
is a finite set of fresh uninterpreted constant symbols (not present in
¥1 Us); It is easy to show that for quantifier-free 3; U ¥,-formulas
efficient purification algorithms exist |Bar03].

2. If there is a X§-arrangement A such that both TUT U{A} and To,Ul,U
{A}are consistent, then we conclude that T} UI"; UT; UT's is consistent
(or equivalently T7 UT, U{p} is consistent). The reasoning for this step
is as follows: First, observe that an arrangement is a saturated set of

clauses (in fact a positive residuce chain which does not contain false)
and by definition of arrangement it does not contain false. Hence, we

can apply the Generated Common Submodel Theorem (Theorem 7.2)
to conclude that there exist two models M; = T; UT; U {A} and
My EE To, UT'y U {A} such that they have a common submodel A
generated by ¢. Also, since 1} and 15 are stably-infinite, it follows that

so are Ty UT, U{A} and T, UT's U {A} by Lemma 28, and hence, they
are Tr,-compatible as well (Lemma 27). Now we can apply the Union
Consistency Theorem (Theorem 15) to conclude that the T} UT’; UT, U
I'y U A is consistent and hence T} UT, = ¢.

3. Otherwise (if there is no such arrangement A) the sentence ¢ is inconsis-
tent with 77 UT5. Since there are no arrangements we can only conclude

that there exist positive residue chain with false in them. Consequently

(TU) U(T5UT,) is inconsistent implying that T} UT; (= ¢, by the Fi-
nite Residue Chain Theorem (Theorem 20) or the Union Completeness
Theorem (Theorem 21).
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The termination of the algorithm follows from the fact that the number

of arrangements is finite, and the problem T; UT; U {A} [= false is decidable
by assumption, for + € {1,2}. The soundness follows from the fact that each
step is sound (supported by the theorems). The completeness follows from
the fact that if 77 UT, |= ¢ then algorithm terminates with the conclusion
TUT =, by step 2; (and alternatively if 77 UT, = ¢ then the algorithm
concludes that 77 UT; |= ¢ in step 3).

9 Decidability Conditions

There are certain sufficient conditions under which the semi-decision proce-

dure presented in Section 7 can be turned into a decision procedure for the

universal fragment of the >; U Xs-theory 17 U 15, where 1} and 15 are uni-

versally decidable X; and Xs-theories, respectively, satisfying the conditions

of the Finite Residue Chain Theorem (Theorem 20). Assume that ¢ is a
>; UXo-sentence, and I'y and I's are sets of ground formulas over signatures

Y.¢ and Xg respectively, obtained by purifying ¢, where a is a set of fresh
Skolem constants.

Let D be a semi-decision procedure for the universal fragment of theory

T7 U Ty satistying the sufficient conditions given in Section 7, and D; be a

decision procedure for the universal fragment of theory T;, for ¢ € {1,2}.

Local Finiteness.

We adapt the definition of local finiteness from Ghilardi’s paper |Ghi03]| as
follows.

Definition 30. A Y-theory T' is called locally finite w.r.t. a finite set of

constant symbols a (not necessarily in YJ), if ¥ is finite, and there exists a
finite set of ground X%terms 7 = {ti, ..., t,} such that for every ground
Yo term q we have T = t; = ¢ for some t; € T. We call the set of terms T
the canonical terms of T w.r.t. a.

Theory T' is effectively locally finite if the set T is computable for any

a, and there is an algorithm to compute the canonical term ¢; € 7 for any

Y%-term gq.
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The proof of the fact that effective local finiteness of the common sub-

theory 1, implies the universal decidability of the union theory 7; UT5 is a

straightforward extension of the corresponding result by Ghilardi [Ghi03].

One-way Communication between Theories

Another scenario under which the problem 7; UT; = ¢ becomes univer-
sally decidable, provided the theories 7} and 15 are universally decidable, is

described below in an intuitive and procedural way.

First, recall the steps of the semi-decision procedure D from Section 7 for

the problem T7 UT = . In step 2, the set I'y is recursively enumerable, and
if false € I'y, then we have already shown that D will terminate and establish

that 77 U Ty = @. On the other hand, if 7} UT; UT, UT, is consistent,
then D may not terminate. Intuitively, DD enumerates I'y by exchanging

positive ground Yg-clauses between D; and Dy (semi-decision procedures
for the problem T; = ¢; where ; is a universal ¥;-sentence, for i = 1,2
respectively), and in general this exchange may go on forever. However, if
at any point in this exchange one of the decision procedures, e.g. D;, starts

producing only those clauses which Ds can deduce from 75 UT; UII, where
II, is the set of clauses exchanged so far (i.e. D; does not produce any
new information), then the problem T; UT, = ¢ is equivalent to checking
T, UT'y UII; [= false, which is decidable. We refer to this scenario as one-
way communication from Dy to Dy. Formally, this idea is captured by the

following definitions and the subsequent theorem.

Definition 31. For a set of ground ¥?%-formulas I'; let A be the set of all
Y.8-clauses such that T; UT = A, for © € {1,2}. Assume that there is an
algorithm to construct a finite set of X3-clauses 6 such that 7; UT" = 6 and
the set of all 3¢-clauses entailed by T; U8 is exactly A. We say that 6 finitely
characterizes A. We denote by &;(I') the recursive functions which construct
6 for a given TI.

We always assume that the finite characterization functions &; are mono-

tonic, that is, &(I'1) C &(I'y) whenever I'; C I's.

Definition 32. For every finite set of ground X¢-formulas A; for + € {1,2},
let IT, 15 and II3 be the sets of all ¥{-clauses such that

TUN E=1L To UA UTIL = 11 TT, UA UI, = 11s.
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If II3 = 115, we say that there is one way communication from theory Tj to

Ts.

In other words, the saturated set I'y is reached in one step, and is equal

to 11.

Theorem 33. Assume there is one way communication from theory Ti to

Ty. Also, for every set of ground ¥X¢-formulas A, let there be a finite charac-
terization 0 = &(A). Under the above conditions the problem Ty UT, = © is
universally decidable for any universal X21 U Xo-sentence ©.

Proof. Let I'y and I'y be the sets of ground ¥¢ and Y3-formulas from the
purification of ¢, which are already known to be computable for any universal

©. By the one way communication condition, we know that the set 11, of all

clauses entailed by Tp U I'y U &(I';) is saturated. Hence, checking whether
false € I'y is equivalent to checking whether T, U I'y U &(I'y) [= false, which
is decidable. []

Strictly Decreasing Measure on Clauses

Assume there is a well-founded measure p over positive ground Y§-clauses,
and T;,A;, D and the notion of finite characterization are as described above.

Consider a sequence of sets of positive ground ¥4-clauses ) = II, C II; C ---
such that 7; UT; UII, = 11,4; for some i € {1,2} and every j > 0. Let A,
be the set of newly added ¥}-clauses at the j-th step: A; = II; — II;_;, and
let p(A,) be the measure of the maximum clause in A; w.r.t. p. If p(4A))
is strictly decreasing after a finite number of steps, i.e. p(Aj;1) < p(A;) for
every 7 > k for some natural number £ > 1, then there is n > k such that

I1,, = II, for every m > n (since p is well-founded). If every II; is recursive,
II, = I'y is also recursive, and hence, the original problem T; UT, = ¢ is
decidable. We formalize this idea in the following definitions and theorem.

1. There is a well-founded complexity measure p over positive ground X2-
clauses.

2. For finite sets of ground X¢-formulas A and positive ground ¥?-clauses
0, let v= &;(A) and § = &;(A U0) be the finite characterizations of all

?The reasoning for II,, = Ig is as follows: II,, is the set of all positive ground X.2-clauses
from all finite residue chains of 73 UI'y and 715 U I's, by construction. This is precisely Ig,

the saturated set that we enumerate in our semi-decision procedure D.
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clauses entailed by T; UA and T; U AU #, respectively, where i € {1,2}.
We assume that the functions &; are monotonic, that is, &(A1) C &(As)
whenever A; C Ay. If p(d — (YUH) < p(0), then we say that the finite
characterizations entailed by the theory I; monotonically decrease w.r.t

p.

Theorem 34. Let p denote a well-founded measure over positive ground 38-
clauses, and assume that the finite characterizations entailed by theory T;

monotonically decrease w.r.t p, for1 € {1,2}. Under the above conditions
the union theory 17 U 15 1s universally decidable.

Proof. We establish the decidability of the problem T} UT; = ¢ for a universal
sentence ¢ by constructing an algorithm.

1. Purity ¢ into sets I'; and I's.

2. Construct a sequence of finite characterizations:

11, — 0

[Ligh = & UL) Ug Ully)

for 5 > 1. This construction is algorithmically possible due to the

existence of finite characterization (Definition 31).

By Condition 2 and the well-foundedness of the measure p, there is n > 1

such that II, = II,,. This II, is a finite characterization of I'y. Since each

II; is finitely characterizable and hence recursive, I'g is also recursive. This
converts D into a decision procedure. []

10 Practical Applications

Our work on combination results for many-sorted theories with overlapping

signatures has primarily been motivated by the need to develop a theoreti-

cal foundation for our validity checking tools, Cooperating Validity Checker

(CVC |SBDO02]|) and its successor CVC Lite |BB04|. These tools have been
based on a presumed extension of unsorted combination methods [Bar0O3|
(similar to Nelson-Oppen) to sorted quantifier-free first-order theories. The
combination result in Section 7 reduces in a relatively straightforward way

52



to the many-sorted version of the Nelson-Oppen method, providing a formal
basis for the correctness of such an extension.

In the case of CVC Lite, there is a demand for combining theories with

overlapping signatures. For example, consider a theory of bit-vectors: finite

strings of bits with concatenation and substring extraction operators. Bit-

vectors also represent integers (in binary encoding) which can be added, sub-
tracted, and compared for equality and inequality. Thus, the signature of the

bit-vector theory must include arithmetic operators and integer constants,

making it overlap with the theory of linear arithmetic already implemented
in CVC Lite.

The bit-vector theory and linear arithmetic happen to satisfy the Ty-com-

patibility condition for their common subtheory 7}, the universal fragment

of Presburger arithmetic. More precisely, the signature > of Tj is

Yo =(<z.2, tzx2-2 (Zm)z.2, Cu, ZL),

where C' is the set of all integer constants, Z is the sort of integer numbers,

and =, is a family of congruences modulo m for all natural numbers m > 1.

The theory of linear arithmetic extends XJ; with the sort of real num-

bers R, the set of real constants Cg, and the operators +ryr_r, <gg, and
int2real;_.r (the conversion of integers to reals). Bit-vector theory adds a sort
B, of bit-vectors of length n for every integer n > 1 (so, its signature has

infinitely many sorts), a family of concatenation Qp, ,p, p,,, and extraction
subg’ Lp operators for every 7,7, n,u,l > 1, where 0 < [ < u < n, and
conversion operators bv2intg _.7 from bit-vectors to integers.

The model completion of Tj in this case is Presburger arithmetic (since
Presburger arithmetic admits elimination of quantifiers). It is easy to see
that both bit-vector and linear arithmetic theories are Ty-compatible. We

have already established the first two conditions of Ty-compatibility (i.e. Tj
is a subtheory of both, and Tj has a model completion Tj). The third
condition also holds simply because Presburger arithmetic is a subtheory of

both bit-vectors (77) and linear arithmetic (73); that is, T; U TF = T;, since
Ty CT,

Finally, every ground bit-vector formula can be equivalently translated

into a ground Yy-formula, and therefore, the combination of bit-vectors and

linear arithmetic satisfies the one-way communication decidability condition
stated in Section 9. This makes the combination of the two theories decidable.

Similar arguments can be made for a theory of lists with the length operator,

which also shares symbols with the theory of linear arithmetic.
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11 Conclusions

We have presented a new combination result for many-sorted first-order

theories with overlapping signature, a non-trivial extension of Ghilardi’s

work |Ghi03]. Besides the completeness results, we have also given new prac-
tical decidability conditions and illustrated their use by examples of theories

relevant to CVC Lite [BB04|. As a bonus, the many-sorted version of the
Nelson-Oppen combination directly follows from our results.

The combination conditions imposed on the individual theories (in par-
ticular, Tyo-compatibility) are still too strong for many practical theories, and
also quite involved for most tool developers. There is a lot of work to be

done to make these conditions more practical and easier to check. We intend

to use these results to combine theories with overlapping signatures in CVC

Lite. Extensions to order-sorted logics (many-sorted logics with subsorts)
combining the results presented here and in |TZ04| is another interesting
direction of research.
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12 Appendix A

We establish the equivalence between standard definition of model-completion

|CK98| and the one used in this paper for universal theories.

Definition 35. Let 1" be a Y-theory and let 7% DO T' be a Y-theory as well;

we say that T™ is a model-completion of T' iff (i) every model of T can be
embedded into a model of T* and (ii) for every ¥-model M of T', we have
that T* U A(M) is a complete (3)-theory.

First, we prove the following lemma.

Lemma 36. Let I" be a X-theory and let T* DOT be a X-theory as well; we

have that T* is a model completion of T in case (a) every model of T can be
embedded into a model of T* and (b) T* admits elimination of quantifiers.

Proof. Suppose T™ satisifies the conditions above. We show that for every

Y-model M of T', we have that T* U A(M) is a complete theory. Consider
two models Ny, Ny of T* U A(M), a X-formula ¢(z1,...,x,) and a tuple of
elements (aq, ...,a,) from the appropriate sort-domains of M.We show that
the (3)-sentence (aq, ...,a,) is true in A iff it is true in Ns. This shows
that the theory T* UA(M) is complete since the models of a complete theory
are elementarily equivalent.

By the Robinson’s Diagram Lemma M is a common substructure of N;

and Ny; moreover ¢ is T*-equivalent to a quatifier-free formula ¢' (x1, ..., x,),
hence if M7 FE p(ay,...,a,) then MN = ¢'(ay,...,a,). Consequently M =
o'(ay,...,a,) and Ny = ¢'(ay,...,a,) thus establishing that (aq, ...,a,) is
true in No.

If T" is universal then the converse is easy to show. []
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