Hacking, Mashing, Gluing:
A Study of Opportunistic Design and Development

Bjorn Hartmann, Scott Doorley, Scott R. Klemmer
Stanford University HCI Group
Computer Science Department, Stanford, CA 94305-9035, USA
{bjoern, sdoorley, srk}@stanford.edu

ABSTRACT

This paper is about opportunistic practices in interactive
system design: about copying and pasting source code from
public online forums into one’s own scripts; about taking
apart consumer electronics and reappropriating their com-
ponents for design prototypes; about “Frankensteining”
software and hardware artifacts together by joining them
with physical and digital hot glue and duct tape. It is about
the hacks and prototypes of lowbrow experimentation, as
opposed to highbrow design and engineering from the
ground up. We combine these opportunistic practices under
the moniker of “mash-up design.” This paper presents re-
sults from an interview study with 14 professional and
hobbyist “mashers” from three different design disciplines:
Web 2.0 programmers, hardware hackers, and designers of
interactive ubicomp systems. The paper analyzes common-
alities and distills themes in opportunistic design through
three lenses: first, the way mash-ups modify and combine
pre-existing elements; second, the unique characteristics of
opportunistic design as an activity; and third, looking at
mash-ups as novel kinds of artifacts.

Author Keywords
Mash-ups, long tail, opportunistic programming, hacking

ACM Classification Keywords

D.2.11. [Software Engineering]: Software Architectures —
Patterns. K.6.3. [Management of Computing and Informa-
tion Systems]: Software Management — Software Process.
D.2.2 [Software Engineering]: Design Tools and Tech-
niques — Modules and Interfaces.

INTRODUCTION

This paper presents an investigation into a set of practices
that run as a common thread through the disparate enter-
prises of web developers, hardware hackers, and builders of
ubiquitous computing systems: opportunistic design and
development. This paper is also about the long tail [1] of
software (and hardware) in a networked world. The long
tail comprises the “non-hits” in a genre — books, music,
movies—that individually sell little, but collectively have a
large impact.

Software has always had a long tail—the shell scripts of
system administrators, the spreadsheets of financial workers
— but three recent web-based trends have conspired to
significantly fatten and lengthen the tail. The first is the

3 ability of web dissemination
S o to lower the distribution
zY costs for software. The
Su e i second is the ability of web
2 m PROTOTYPES search to lower the costs for
= finding compiled software,

source code snippets, and
problem solving tips. The
third is the rise of publicly
available web APIs, and the

#OF APPLICATIONS

Figure 1. Different kinds of
software systems call for
different development tools

and practices. opening of commercial
desktop applications
through integrated scripting
engines.

Physical sensing and actuation technologies have followed
a different yet parallel trajectory. Today, embedded elec-
tronics are programmed on the PC; and prototyping tools
have provided software abstractions to sensing and actua-
tion to experts and novices alike [2, 13, 14]. While hard-
ware itself cannot easily be copied and transmitted by digi-
tal means, common platforms and shared designs enable
people or machines to replicate and program hardware.

The goal of our group’s opportunistic programming re-
search project is to understand how opportunistic program-
ming is practiced today, how it differs from traditional
software engineering (see Figure 1), and to design tools that
both support existing practices and enable new ones. In this
paper, we study how mash-up programming of software
and hardware takes place in web development shops, design
studios, and research labs today. This paper contributes an
analysis of common themes in opportunistic design based
on an interview study. We describe how designers choose
between deep and surface-level integration of components;
how mash-ups have epistemic, pragmatic, and intrinsic
values for creators; how shopping becomes a central activ-
ity; and what user-experience challenges arise in mixed-
fidelity artifacts.

A Short Etymology of Mash-ups

The term mash-up first surfaced in the electronic music
community to denote the practice of taking elements of two
or more existing songs and creating a new piece by rear-
ranging, interspersing and superimposing samples from the
different source songs. Mash-ups represent an extension of
the remix, in which one producer takes a single track of

another producer and delivers a reinterpretation that bal-
ances the original work with elements specifically com-
posed to accompany the source material. Mash-ups differ
from remixes in that there are multiple sources and that the
artistic effort lies in the arrangement, the “gluing together”
of parts in novel ways, rather than the composition of addi-
tional new musical material.

Recently, computer science has adopted the term mash-up
to refer to pieces of software created by programming
against one or more public web APIs, also known as infra-
structure services [5]. The most popular of these are Google
Maps and Flickr. A typical mash-up—on programmable-
web.com for example — shows data relevant to a local
community, say coffee shops in San Francisco, using a
Google or Yahoo map navigation UL

We take a broad view on what constitutes mash-ups. We
look beyond the web to examine the process of recombina-
tion and ad-hoc design across a spectrum of ubiquitous
computing systems. Our working definition of a mash-up is
“a combination of pre-existing, integrated units of technol-
ogy, glued together to achieve new functionality, as op-
posed to creating that functionality from scratch.” To help
clarify the position of mash-ups in the design and engineer-
ing landscape, we contrast them briefly with traditional
software engineering.

Waterfall Development and Opportunistic Programming
Broadly speaking, classical software engineering has pri-
marily concerned itself with metrics such as performance,
reliability, defects, and lines of code needed to produce an
application [7]. And the domain of concern has largely been
“big software” — the relatively small number of heavy-
weight applications that dominate mainframes and desktop
computers. These large applications — operating systems,
databases, word processors and image editors— often take
years to develop and are generally created by dozens, if not
hundreds, of developers.

Big software engineering has traditionally been organized
around the waterfall method [24]—a development pipeline
beginning with requirements gathering, and moving
through design, implementation, verification, and mainte-
nance. Recently, some in the field have begun moving
toward more agile methods [3], which eschew the “big
design up front” approach of the waterfall, in favor of an
approach based on shorter plans, iteratively decided based
on the exigencies of the software artifact and customer
interactions with it. But really, even agile software is still
largely concerned with the big stuff. Small software doesn’t
really need to be studied or supported, does it? And does
small software provide much value anyway? Yes and yes.

Alan Kay, with Smalltalk [15], was the first to explicitly
design a language for non-expert programmers (in Small-
talk’s case, middle school students) and observe how that
community used the language. Perhaps the next major ad-
vance toward opportunistic programming languages was
introduced with the Tcl interpreted scripting language and

the Tk windowing system [23]. The Tcl work suggests that
developers are perhaps best served by distinguishing sys-
tems programming languages (such as C and its progeny)
from interface programming languages, as the high-level
scripting (such as Tcl) may be preferable for the latter.
Today, high-level scripting languages such as Python and
web-oriented languages such as PHP, JavaScript, and Ruby
have replaced low-level systems programming languages in
many contexts.

All Hype?

The long tail and mash-ups may both be a bit over-hyped
currently, and certainly some of the hype will pass. The
goal of this paper is not to be buzzword-compliant. Under
our broad definition, many existing practices could be rela-
beled mash-ups, and part of the project of our design space
analysis is to identify these precursors.

We suggest that two significant shifts from the traditional
model of software engineering are redefining how individu-
als build ubiquitous computing systems in practice. First,
the integration of bits and atoms in ubiquitous computing
has introduced novel hardware —and its relationship with
software—as domains of concern for interaction design and
development. Second, recent shifts in the production, dis-
semination, and retrieval of software are reorienting the
software development landscape itself towards opportunis-
tic design. Many aspects of mash-up software development
have diverged from the heavier-weight traditional develop-
ment.

This paper presents an investigation into opportunistic
design of ubiquitous computing systems through interviews
with practitioners in three areas. The paper is structured as
follows: we start with a brief review of related work, follow
with a segmentation of the mash-up design space into four
areas that will serve as a scaffold for our later discussion.
We then present our study data and analysis.

RELATED WORK

A small body of prior work in HCI has investigated appro-
priation in design. MacLean et al. provide an overview of
the challenges of end-user tailorability [19]. Moran’s DIS
2002 keynote on everyday adaptive design [21], as well as
workshops on design for hackability [11] and designing for
community appropriation [20] have addressed modification,
adaptation and appropriation of information technology by
end users. Moran in turn takes inspiration from Brand’s
examination of the post-deployment life of artifacts [4]. In
contrast, our work looks at the kinds of ad-hoc appropria-
tion by designers themselves.

The computer systems community seeks to find technical
means to enable combination of pre-existing technologies
through frameworks for component-based software. The
framing of development as comprising “components,
scripts and glue” [25] is compatible with our view of mash-
up programming. However, systems work still predomi-
nantly addresses large-scale development, and generally
presupposes that all components will adhere to a proposed

WEB 2.0 MASH-UPS

ONLINE
SERVICES APPS
(REMOTE (LOCAL.

CODE) || CODE)

ELECTRONICS

HAQDW

MECHANISMS
+ PHYSICAL
PHENOMENA

DESKTOP

UBICOMP MASH-UPS

o
d

Figure 2. Left. Four ingredients of ubicomp systems. Right:
Ubicomp mash-ups unite hardware and web practices.

architecture. We argue that, in practice, the parts chosen for
integration often do not play nice with each other. In addi-
tion, our focus is on the user experience of mash-up pro-
gramming, rather than the technological capabilities. In the
larger picture, then, this project is more aligned with studies
in the cognitive and psychological aspects of programming
[8, 9] and with investigations of values and beliefs of de-
signers (cf. [27]).

Papier-Maché [18] introduced the approach of using field-
work with developers as a means of finding opportunities
for design tools. We report on our fieldwork and point out
opportunities for tools support in this paper; we leave de-
velopment of tools based on this study to future work.

LOCATING UBICOMP MASH-UPS

We are most interested in the nascent area of ubicomp
mash-ups, which combine both software and hardware. As
ubiquitous computing is about the confluence of bits and
atoms—computing moving into the world—we look at the
physical as well as the digital ingredients of mash-ups.

Moving from the physical to the digital domain, we can
distinguish four types of components (see Figure 2). First, a
mash-up can contain built or repurposed mechanisms, such
as the movement mechanism of a toy doll. Second, sensors
and actuators can interface with these mechanisms and with
other physical phenomena; electronics such as analog cir-
cuits and embedded programmable microcontrollers pro-
vide the logic for sensors and actuators. Third, designers
can leverage off-the-shelf software on their personal com-
puters (be it a desktop, a PDA or a smart phone). These local
applications may or may not offer hooks for programmatic
automation through APIs or built-in scripting languages.
Fourth, mash-ups can make use of web infrastructure ser-
vices such as search and mapping APIs. At each of these
four levels, designers can adopt pre-existing solutions,
modify them, or build from scratch. As our study results
will show, modification is often the strategy of choice.

This Isn’t Totally New

Ubicomp mash-ups draw on different existing lineages of
opportunistic design (see Figures 2, 3). Shell scripts and
application macros have long been used as “glue” between
desktop applications. Ousterhout [22] provides a good
overview over the advantages of scripting languages for
connecting pre-existing software components. In the tangi-
ble world of mechanisms and electronics, hobbyists and

professional product designers alike take off-the-shelf
products and cannibalize or repurpose them to fit new
needs. The success of publications such as Make magazine
attests to a recent upsurge in popular interest in adapting
consumer electronics for daily living. More recently, the
advent of open APIs for web services has spurred develop-
ment of numerous services and sites that aggregate dispa-
rate data sets.

METHODOLOGY

We conducted semi-structured interviews with 14 practitio-
ners in three areas of mash-up design. Four participants
were involved in Web 2.0 development. Four participants
had a focus on “hardware hacking”—working with mecha-
nisms and embedded electronics: three were toy inventors,
the other a hobbyist and technology writer. Six participants
worked as ubicomp designers. Two of the ubicomp partici-
pants were academic researchers, two industry profession-
als, one a hobbyist electronic musician, and one an artist
who creates interactive installations. Ten interviews were
conducted individually, and two with pairs of participants.
Eleven interviews were conducted in person; one partici-
pant in the ubicomp group was interviewed by phone and
one pair in the Web 2.0 category was interviewed in writing
online.

Interviews lasted 45 to 90 minutes. In the interviews, we
began by asking participants to describe their work philoso-
phy and general approach to problem solving, and then to
focus on one particular recent project. To ground and struc-
ture the discussion, we asked participants to produce arti-
facts or visual representations (photographs or sketches) of
this project. Specifically, we asked participant to describe
the relationship between third party components they inte-
grated and their own code; to describe how they arrived at
the decision to include particular parts; and to reflect on
tradeoffs and challenges experienced.

Mechanisms

Hardware

Hardware
Electronics | Hacking,
DIY Electronics
Local (desktop) @ Mhac”ros+
Applications) S e
I Ublcomp Scripts
Software Web APIs& | Mash-ups Web 2.0
Services @: Mash-ups
c o x = S
2 £ |83 |80
o] T3 = g
>)
o
-
Hardware Software

Figure 3. A classification of mash-ups based on the com-
ponents they encompass

To become more familiar with the experience of working in
this domain, we also created several different ubicomp
mash-ups ourselves, and attended community events that
brought designers of technology mash-ups together. While
our personal experience is not the focus of this paper, we
draw on these experiences in explaining some of the data.

SAMPLING MASH-UPS: WHO, WHAT, WHY

Here we review the material collected: who our participants
are, what kinds of systems they build, and how and why
they build them. We describe commonalities within groups.

Web 2.0 Programmers

We contacted participants who are active members of the
Web 2.0 mash-up community. All four of these participants
were professional programmers or web developers. Because
of their background, they did not feel the technical aspects
of mash-up programming were a hurdle.

Our first participant (W1) owns a cell phone software com-
pany. In his spare time, he independently developed a
mash-up “to learn AJAX” (a client-server web technology).
His mash-up website overlays restaurant and bar informa-
tion on an interactive map (see Figure 4A). Users have the
ability to build a graphical path, from one bar to the next to
plan an evening out with friends. They can also send the
paths they created onto a compatible mobile phone for
mobile browsing. This mash-up combines three online
services: CitySearch for entertainment reviews, Google
Maps for mapping and navigation on the desktop, and Ya-
hoo maps for mapping on a mobile device.

A second mash-up, written by participant W4, also builds
on Google maps. For the past year, W4—who holds a mas-
ter’s degree in CS—has been developing a weather browser
that aggregates weather forecasts from national and re-
gional weather data providers and locates these forecasts on
a map (see Figure 1B). His website features geo-referenced
temperature readings for cities with microclimates (like San
Francisco), real-time fog visualizations, integrated display
of approximately 8,000 user-contributed webcam feeds and
weather histories that allow users to view seasonal changes
in weather for particular locales. He has recently branched
out from his original concept and created special interest
sites for winter sports enthusiasts, golf players, and camp-
ers. Together, these sites are generating enough traffic—
and ad revenue—for him to contemplate turning this former
side project into a full-time job.

Aiming solely at the emerging mobile market, two other
participants, W2 and W3, built a mash-up that delivers
relevant train schedules for three U.S. commuter rail sys-
tems to mobile phones through SMS or email (see Figure
4C). Users send a short message with a station name abbre-
viation to their system, which replies with upcoming train
times. The system combines a SMS/email gateway with
schedule data gathered from the individual rail companies.
The two developers started the service while working in the
same city and now maintain and update it through remote
collaboration. The service is not a profit-making enterprise.

Screen Scraping vs. Web APIs

One major concern for our Web 2.0 participants is access to
and strategies for getting data: “getting the data is the abso-
lute hardest part” (W2). The surveyed mash-ups derived
their value from integrating disparate data sets in ways not
previously available. While two of the three projects used
the open, documented infrastructure service of Google
maps, all three projects resorted to screen scraping to
gather at least part of their data. Screen scraping is a tech-
nique by which a program extracts text output meant for
human consumption from the user interface output of an-
other program. Two primary reasons were given for scrap-
ing: first, that APIs were simply not available for obtaining
the desired data. Second, that web APIs, still in their in-
fancy, are generally designed for smaller data requests, so
that it is still easier to obtain large data sets by scraping. W4
reported building his own scraping toolkit so that it now
takes him as much time to develop a scraper as it would to
integrate an available API.

Software Architectures

Common to all projects is that they dedicate a web server to
retrieve and cache large amounts of content from the differ-
ent data sources they use. Participants spent significant
effort building back-end architectures to scale to many
simultaneous users. The back-end architecture design was
the most structured, least ad hoc activity encountered in all
of our interviews. While the spirit of web mash-ups is free-
wheeling for obtaining data, the code written to serve the
mash-up pages in the successful sites we reviewed is care-
fully engineered. We caution that, while mash-ups are in
many ways the tail of software, there are still broad differ-
ences in engineering approaches within the mash-up field.

Business Models and Obstacles

All participants reported that their mash-ups started as side-
projects to their daytime jobs as consultants, startup owners,
and developers. However, two of the three projects ex-
pressed interest in turning the mash-up into a profitable
business. With mash-ups, shifting from the personal sphere
to the commercial sphere can be problematic for both legal
and technical reasons. W1 reported that making money off
“scraped” content is problematic because of licensing re-
strictions. W4 reported that he had to add redundant data
sources, as individual weather providers could alter the
format or withdraw their data stream at any point.

Hardware Hackers

In the physical / electronic design realm, we interviewed
three toy inventors at two design companies and a hobbyist
who refashions consumer goods into personalized tools and
publishes instructions for these projects online.

The toy inventors’ work consists of building prototypes that
illustrate new interaction design concepts. They do not
create finished products. The concepts are pitched for li-
censing or purchase to large toy company representatives
who then further develop and manufacture the toys. Project
schedules are very short, ranging from two days to less than
a month.

At the time of our visit, H3,
who holds a master’s degree in
product design, worked on a
toy that functioned as a flash-
light with sound effects. To
make the concept tangible, she
bought a pair of plastic mon-
keys from a toy store because
they had a similar opening
mechanism to the one she
envisioned for her toy (see
Figure 4D). She then embed-
ded a tactile switch into the
mechanism’s lever. This
switch was used to trigger light
and sound effects using exter-
nal electronics. She kept the
monkey’s form factor, even
though thefinal product would
have a radically different ap-
pearance. While the aesthetics
(the “toyness”) of the packag-
ing mattered, the fact that it
was not a flashlight was not
relevant for her client demon-
stration. A previous project prototype combined a toy car
body with plastic rocket engines from a model plane kit to
create a new flying car (see Figure 4E). A lever switch
underneath the chassis was added to detect when the car
was lifted from the ground and when it was put back down.
A circuit board inside the car triggered playback of sound
samples whenever the switch state changed.

At the second toy company, participants H1 and H2 de-
scribed how they prototyped a handheld wireless controller
for a TV game: the barrel of the controller was taken from a
soda bottle. The grip was built from a wireless mouse that
uses a gyroscope to sense tilt, transforming that tilt data into
cursor movement. The two pieces were integrated into one
unit through custom-made plastic molds. The cursor and
click stream from the wireless mouse was then used to
animate graphics on a laptop (used as a stand-in for a tele-
vision set) running Macromedia Flash.

In contrast to the rough-and-ready prototypes [28] of the
toy designers, participant H4 builds his hardware-based
mash-ups for long-term private use. A designer of 3D print-
ing technology, his self-professed strength is to “make a
machine that barely works in two to three weeks.” Many of
the artifacts he uses daily were created by modifying con-
sumer goods. He has documented his activity through more
than 50 project descriptions on a how-to web site. One
project he brought to the interview was a pair of jackham-
mer hearing protection earmuffs that he retrofitted with a
pair of free airline headphones to listen to audio books in
noisy environments (see Figure 4F). According to H4, this
design offers better noise reduction than commercial noise-
canceling headphones while being significantly cheaper.

Figure 4. Examples of participants’ mash-ups, with individual projects labeled by letter.

To Buy or Not to Buy

For all three toy inventors, an integral part of their core
practice was visiting large retail stores to purchase interest-
ing new toys; these would be later disassembled in their
shop. We identified three different strategies of reappropri-
ating store-bought toys: first, designers extract mechanisms
(“remember that freaky belly movement?”) and reuse them
in different skins; second, designers keep the shell of a toy
but embed new electronics into it (“because it immediately
looks like a toy”); third, designers fuse different shells (e.g.,
a metal toy car and plastic model plane rocket engines to
create a new flying car), then embed their own electronics.

H4 saw the tailoring of existing artifacts as a partial rejec-
tion of consumer culture. The self-sufficiency of ‘do it
yourself” offers a degree of personal satisfaction (it is in-
trinsically satisfying) as well as a level of personalization
and lasting novelty not available in mass-produced artifacts.
H4 reuses existing parts because “you don’t want to invent
the wheel—the wheel exists.” Also for him, the economies
of scale that mass produced consumer goods leverage are
incentives. Picking existing parts is cheap — “it’s never
cheaper to start from scratch to make your own.”

Ubicomp Designers

Our ubicomp developers used mash-ups as prototypes and
proof of concept deliverables, but also as a way to design
and implement site-specific tool for a single user or a small
community. For brevity, we only mention a subset here.

Participant Ul—one of two academics in our study—is a
PhD candidate in mechanical engineering and a self-taught
programmer. He worked on a system for design teams to
annotate their printed documents with short video mes-

sages. In his laptop-based functional prototype (see Figure
4G), users push a dedicated physical button to initiate video
message recording. After the recording completes, the sys-
tem prints a small self-stick label displaying a snapshot of
the video and a barcode. The user then attaches this barcode
to the document described in the video. If another user
wants to access the video, she waves the barcode in front of
the same camera. Using the barcode as a key, the system
plays back the specified video for the user. Ul relied heav-
ily on commercial off-the-shelf-software (COTS) since this
path offered the “easiest way to plug things together.” In his
working prototype, no less than five different COTS pack-
ages are controlled through AppleScript. For example, he
scripted QuickTime to record and play back video, and the
Excel spreadsheet software is used as a database. To convey
the complexity of this project, Figure 5 shows our redrawn
version of his system architecture sketch.

Mash-ups have also found their way into corporate work.
Participant U3 described a recent project where he designed
an indoor location system for smart shopping carts; the
client was his employer’s retail store group. This position-
ing system employed computer vision. To test the quality of
the vision data, he attached a custom-built optical rotation
sensor to the wheel of a shopping cart and soldered its con-
tacts to the left button of a gutted PC mouse, so that each
revolution yielded one click (see Figure 4I). By keeping
track of the total number of clicks on the PC, he was pro-
vided with reasonable ground truth data about the total
distance traveled. He estimates that using this mouse mash-
up, he completed testing in a quarter the time it would have
taken to build a distance tracker from scratch.

U4, “a software engineer by day and software artist by
night” has been developing his own musical programming
language and graphical environment for producing and
performing electronic music for the past decade. Since
2002, he has built audio installations that he shows at the
annual Burning Man festival. While spending years on
building his software from the ground up, his use of physi-
cal controllers is more opportunistic: “you can choose what
level of effort you want to put in—you can buy the next

Record

AppleScript |
oot
T “\

——
W
=

Screenshot
(JPG)

g

Evo
Barcode

s10930p

Q
R
&
N

apoo.

2

g g [Owncode

X i [cors

AN 3 smamp\avb“‘“ £Z Physical /O
- = Filel/O

Re-use
AppleScript

Figure 5. System diagram of U1’s project.

level of integration.” An important “bridge” he found was a
converter that allows him to connect controllers built for
proprietary game consoles to a PC USB port. Through this
adapter, he has connected multiple “Dance Pad” floor mats
to his synthesis program (see Figure 4H).

Screen Poking

As Web 2.0 programmers employ screen scraping — in-
strumenting the surface properties of web pages—to har-
vest information from online databases, ubicomp program-
mers use screen poking —generating mouse and keyboard
events by computational or electronic methods—as a means
to remote control software. In addition to U3’s appropria-
tion of a mouse button for counting turns of a measuring
wheel, U1 initially used the macro software Automate as a
means of controlling desktop applications by computation-
ally injecting synthetic mouse and keyboard events, and U4
purchased a hardware converter that transformed the output
of pressure-sensing dance pads into Windows platform
game controller events. These “glueware” techniques are
chosen for similar reasons as screen scraping: APIs are
sometime unavailable, other times do not yield the desired
information, and still other times are more time-consuming
that surface-level instrumentation.

How Choices are Made

What metrics do designers use to select the elements of a
mash-up? Our ubicomp participants reported three strate-
gies: relying on experience, searching online forums, and
the decree of a supervisor. We briefly discuss the first two.

Participants reported integrating technologies into their
project that they had experience with from prior work,
enabling them to leverage their proficiency in a medium
and hedge against unforeseen shortcomings. Communal
experience also proved valuable: for example, U1 reported
that he integrated a custom hardware-switch-to-USB inter-
face because other members of his research lab had previ-
ous success with them.

Participants also leveraged descriptions from online
sources, and this experience of “shopping” for preexisting
solutions yields a very different pattern of time usage than
developing systems from scratch. For example, U1 reported
that the time it took to search for appropriate components
exceeded the time it took to then write scripts to integrate
the found components into his project. For U4, the search
for the right USB adapter that would glue controllers to his
software took months: he reported doing research on at
least a dozen different models and then buying six different
models until he found a one that satisfied his requirements.

Caveats

We conclude our tour of mash-ups with two cautionary
tales from our participants. The first illustrates the potential
downsides of opportunistic design; the second reminds us
that mash-ups are not a one-size-fits-all solution.

For an interactive museum installation, U5, a professional
A/V systems developer, took a computer vision system
intended for industrial process monitoring to track visitor’s

hand movements over a projection display. Buying pack-
aged functionality and writing thin wrapper layers promised
significant time and cost savings over developing an in-
house solution. However, because of variations in lighting
conditions, the out-of-box system did not perform as ex-
pected. Trying to compensate for these problems proved
hard as the team had only limited access to internals of the
vision processing system. In the end, the group spent more
time and resources trying to patch up these problems than
development from scratch would have taken.

Finally, we talked to an independent artist who produces
large interactive public installations that involve combina-
tions of computer vision and projection, as well as sensing
and actuation. He was trained as both an artist and a com-
puter scientist and previously held an industrial research
position. This participant was the only person who followed
a top-down design approach that does not include any
mash-ups of existing technologies. This is an important
counterexample to our narrative. U6 consciously engi-
neered all his projects from the ground up. Having full
control over aesthetics and behavior is part of his concep-
tion of how interactive art should be created.

THEMES IN OPPORTUNISTIC PROGRAMMING

This section discusses three themes that emerged from our
interview data. First, we look at a different ways that mash-
ups modify and combine pre-existing elements. We then
consider the unique characteristics of mashing as an activ-
ity, and conclude with a look at mash-ups as novel artifacts.

Combinations: The Core of Mash-Ups

One of the broad shifts introduced in the mash-up paradigm
is that the designer’s effort and creativity are reallocated:
rather than building an application up from scratch, brick by
brick, much time and ingenuity becomes concerned with
finding and selecting components, and then creating and
shaping the “glueware” that interfaces them.

Dovetail Joints vs. Hot Glue

In our interviews, we saw two distinct
approaches to glue. In the first approach,
two components explicitly support
combination through a shared interface.
They are aware of each other. This allows
for tight integration. We use the metaphor
of the carpenter’s dovetail joint to label

these deep combinations. Dovetail joints are documented
extension and integration points provided in the system
architecture— APIs in software, breakout headers and con-
nectors in electronics, mounting holes in hardware. The use
of AppleScript (U1) and Web APIs (W1,4) are examples of
dovetail joints.

In contrast, “hot glue” combinations
adjoin components that are either in-
compatible, don’t know about each
other, or don’t support each other. Hot
glue can be applied to almost anything, but it has limited
adhesive power—all it can offer is surface-level integration.

Screen scraping and screen poking are examples of hot glue
joints. Importantly, the designer’s intent is not directly
visible in the code generated by hot glue: the record is the
trace of actions that reflect the intent, not the semantics
themselves.

The trade-offs between these two architectural approaches
are exemplified by U1’s experience. He designed two sepa-
rate versions of his document annotation system, and while
the core functionality was similar, all of the component
pieces were replaced. The first version was scripted using
Network Automation’s AutoMate 6 software. AutoMate
enables users to record human interaction with GUI widgets
and to parameterize and replay those actions programmati-
cally. While this system succeeded as an experience proto-
type, it was not robust enough for any unsupervised de-
ployment: the shallow glue provided by AutoMate’s screen-
based scripts proved to be too brittle.

Seeking a more robust system, U1 switched to a Macintosh
platform so that he could use AppleScript, and this platform
switch mandated an entirely different set of software appli-
cations. AppleScript allowed him to leverage application-
specific APIs. While the deeper glue that AppleScript pro-
vides is significantly cleaner for expressing logic than
Automate, it also has limited reach: for example, U1 found
no programmatic means for uploading the video clips to an
online media-sharing site.

Appropriation

The discussion of gluing approaches hinged largely on
technical considerations. Here, we turn more to the socio-
technical issue of the relationship between the designed
intent of the constitutive elements and that of the resulting
mash-up. At times, these intents are felicitous. However, at
other times, mash-ups appropriate technologies, repurpos-
ing them as building blocks toward a different goal.

In Eglash’s words, appropriation is the extent to which a
violation of a technology’s intended purpose occurs [10].
This violation is easy to see in toy hacking: toys were in-
tended for children to play with, not for designers to take
apart. Similarly, in the digital realm, screen scraping re-
appropriates output intended for human consumption as
program input. In contrast, using Web 2.0 APIs such as
Google Maps is not an act of appropriation because the
providers of the API give explicit permission to use the
service in new contexts. Similarly, applications written for
Apple’s operating system expose API hooks to AppleScript
to enable programmatic control by end-user automation
scripts.

It is notable that in the Web 2.0 space, where the general
trend has been to open up infrastructure services to allow
reuse without appropriation, all of our participants still
resorted to screen scraping techniques. There are valid
business reasons not to make all company data available for
automatic processing by others through APIs. Simultane-
ously, those same business reasons make capturing the data
valuable for third parties. We conclude that support for both
tight and loose coupling (hot glue and dovetail joints) is

needed—opportunistic design is based on integrating exist-
ing artifacts that best fulfill a functional or informational
need, regardless of their programming interface or licensing
agreement.

Mashing as a design activity

Next, we turn our attention to the activity of creating mash-
ups: when, how and why is mashing preferable to other
approaches of design and development; and what kind of
value do practitioners derive from it?

Epistemic, pragmatic, and intrinsic values

We found that mash-ups provided both pragmatic and epis-
temic value to our participants. An artifact is pragmatic to
the extent that it enables actual use, and epistemic [16] to
the extent that the artifact serves as a locus of communica-
tion with other stakeholders — clients, team members, and
users — and provides information that can drive future
design [17]. For some participants, creating mash-ups also
held intrinsic value generated by the activity itself, rather
than from the utilitarian or educational value of the out-
come.

Pragmatic decisions for mash-ups are made if mash-ups are
more efficient or effective to reach a known goal than other
techniques. We saw an example of this earlier, where par-
ticipant U3 estimated that by repurposing a mouse button to
fire a ‘click event’ with each revolution of a wheel, he was
able to complete the sensing part of his project in a quarter
of the expected time. Furthermore, incorporating existing
pieces allows designers to leverage functionality that they
could not build themselves — framed this way, the set of
existing technologies in the world can be thought of as a
vast library that can be used to lower the threshold for de-
velopment. For example, U4 did not have sufficient techni-
cal knowledge to build his own physical music controller,
and it was through adapters that he was able to leverage
commercially available game controllers.

Other times, mash-up design is employed as a means of
exploration, learning, or inspiration. This epistemic activity
was most prevalent among our toy inventors, who chose
mash-ups as effective means to illustrate new concepts.
What their clients paid for was the idea, prototyped through
the mash-up, not the implementation. Furthermore, rapidly
creating prototypes provides designers with concrete arti-
facts they can expand on, react against, modify, and trans-
form. This conversation with materials (as opposed think-
ing in the abstract) is an important strategy of successful
reflective practitioners [26].

In the intrinsic case, mash-ups are created purely as an end
in and of themselves. Intrinsic value is derived from the joy
of exercising a craft (“what a great way to spend an after-
noon”) or from a personal ideology (“recycling is my form
of protest against rampant consumer culture”). Our inter-
views suggest that intrinsic activity is most common among
hobbyists. The move towards community appropriation and
hackability by end-users falls, at least partially, in this cate-
gory. As Galloway writes, end-user mash-ups are valuable

because they are empowering, “DIY culture involves creat-
ing your own world amid the dominant culture, thereby
putting power back in the hands of individuals.” [11].

What is notable about this taxonomy is that the division is
based on the intended use of the artifact, the developer’s
motivation rather than an attribute of the artifact itself.

Shopping for functionality
“The most radical possible solution for constructing sofi-
ware is not to construct it at all.” —F. Brooks [6]

Brooks identified the drastic departure from existing prac-
tice that buying instead of building involves. But how ex-
actly does the activity of designing and developing change
when no “new” software is created? Glueware addresses the
integration aspect. However, before integrating parts, par-
ticipants reported spending significant time on finding and
acquiring their ingredients. In fact, some participants re-
ported that this was the most challenging or the most time
consuming part of their process. U1 described the processes
of searching for components and determining if and how
they could be integrated into his design as “the main part of
the whole thing.” Or, as U3 put it: “The real challenge is
finding the interface between the problem and commer-
cially available stuff.”

In a top-down, waterfall development paradigm, shopping
for functionality versus integrating existing solutions be-
comes a cost/benefit tradeoff. Given knowledge of those
tradeoffs, the unit selection decision of what to buy be-
comes merely a “small matter of purchasing.” In our study
though, we encountered more bottom-up driven design,
where searching and acquiring pieces were used as inspira-
tional and direction-giving activities that steered projects in
one direction or another. This suggests that shopping itself
can take on an epistemic function.

Our toy inventors reported frequent toy store trips without a
concrete shopping list for a current project in mind. U4 did
the same at electronics retail stores. We find three reasons
for shopping without a project. First, it builds awareness of
the state of the art, and allows designers to update their
mental map of what is available. Second, acquiring ahead
of time reduces the cost of search later. Like squirrels gath-
ering nuts before the winter, designers reported stockpiling
mechanisms to have them ready-to-hand later. “We collect
[mechanical] movements... [During a project, one of us
will say] ‘Remember that freaky belly movement?” ”
(H1&2). Third, designers browsed in search of inspiration
that may launch new projects: “I go on shopping trips and
think about repurposing objects... I’'ll walk around Wal-
greens and look at objects and think, ‘what could this be?”
(H3). The important epistemic and pragmatic aspects of
shopping for mash-up design suggest further investigation
into tools that support search and acquisition.

Searching for bridges

In multiple instances, participants reported finding crucial
connecting pieces for their mash-ups in fields only tangen-
tially related to their own. U4 discovered that a MIDI-to-

relay interface used by church organ builders was what he
needed to trigger lights based on music commands for his
Burning Man installations. In our own work, we have dis-
covered that the most straightforward way to interface dis-
crete digital inputs to PCs is to use hardware developed by
arcade game enthusiasts. This community builds their own
arcade cabinets with PCs replacing dedicated electronics.
Multiple vendors sell boards to interface arcade joysticks
and push buttons to the game software.

Adapters and bridges are well-known design patterns for
software engineers [12] and glueware often instantiates
these patterns in software or hardware. However, we want
to focus here on the social side: the bridges that allow these
connections to be found in the first place. While web search
was universally used, effective search requires prior knowl-
edge of the space of opportunity. Community sources play
an important role: Ul chose to integrate two different ex-
ternal button interfaces into his project because he was
peripherally aware that other researchers in his building had
used those particular models successfully. Scaling commu-
nity awareness to the internet is a factor behind the success
of how-to sites that chronicle DIY projects such as instruc-
tables.com.

Short timelines, small audiences

The activity of mashing is also often characterized by two
trends: it tends to happen on very short timelines, and the
artifacts created are intended for small audiences. Many
mash-ups we encountered were built quickly, and many
discarded as quickly afterwards. The emphasis on speed is a
good match for designers wanting to rapidly prototype
multiple ideas, consultants operating on compressed project
schedules, and hobbyists with limited leisure time. Simi-
larly, for these constituencies, the audience of users of a
mash-up is small: the design team, a single client, oneself.

Web mash-ups have a different set of traits: they operate
continuously and their success is measured in the number of
users they attract. If mash-ups are to scale, robustness and
maintenance have to be addressed — tracking how success-
ful web mash-ups grapple with these issues could provide
valuable lessons for guiding mash-ups design in other areas.

While it is certainly fast to get up and running with mash-
ups, completing the “last mile” — fine-tuning application
logic and interaction design — can be quite difficult as
desired functionality and of-
offered features of existing
components diverge (see
Figure 6). This trade-off is
exemplified by US’s
experience of working with a
shrink-wrapped computer
vision package: afterwards,
Ulis she felt that a custom-written
solution would have been
faster and more flexible. Ul
also reported getting stuck on
mundane details such as a

CODE FROM
SCRATCH

FUNCTIONALITY

Figure 6. Mash-ups pro-
vide more functionality up
front, but the “last mile”
may be slow.

missing hook for a print option that was not exposed in
AppleScript, stonewalling his efforts.

On the other hand, building from scratch incurs a large
initial cost as developers have to write their own tooling. In
exchange, flexibility is preserved and they can leverage
their own tools later in the project cycle. The “sweet spot”
for rapid, disposable mash-ups that our interviews found is
consistent with this analysis. It also suggests an opportunity
for design tools that leverage opportunistic development
early on while preserving more flexibility later on.

Mash-ups as mixed-fidelity artifacts

We conclude our analysis of themes by looking at the arti-
facts that opportunistic design produces. What kind of ob-
jects are mash-ups? And how do they differ from other
products?

Affordances of mixed-fidelity prototypes

Mash-ups are made of disparate, heterogeneous pieces, and
each individual component brings its own architecture,
functionality, and level of polish with it. Hence, they oper-
ate as mixed-fidelity artifacts. Fidelity is a slippery term,
and we distinguish two different perspectives that lead to
different sets of concerns here. From a designer’s perspec-
tive, the fidelity is an affordance of a design tool or me-
dium, in that it helps structure the conversation with the
material [26]. Low-fidelity media can only capture and
express the gestalt of a concept, while high-fidelity media
allow detailed insight into tradeoffs and alternatives.

From a user’s perspective however, fidelity is a property of
the designed artifact. It is the degree to which a prototype
exhibits the affordances (actionable properties between
artifact and actor) of the final object being designed. Mixed
fidelity here results in a potentially discontinuous user ex-
perience as imported functionality can offer either too many
or too few interactive properties. For example, using a
game controller for music synthesis can raise the expecta-
tion that all possible interaction opportunities on the con-
troller will have some effect, as they would in a game.
Similarly, by basing a web mash-up on Google maps, one
automatically imports all interaction techniques of that
application into the mash-up, even if some of them are not
felicitous with the intended application. The extent to which
a mismatch between perceived and offered functionality is
problematic in practice depends on whether the designer
can provide guidance. We speculate that large-scale, unsu-
pervised deployments are likely to be more problematic
than individual, designer-led demonstrations.

The semiotics of media

Distinct from the actionable properties are the perceived
values and meanings beaconed by an artifact. Mashing
enables designers to easily buy into a product or service
genre. Leveraging existing materials can scaffold user ex-
pectations, for better or for worse. Toy designer H3 pre-
ferred to cannibalize existing toys not just because of the
readily available functionality, but because these objects
already “look like a real toy.” Building from scratch in her

shop was technically feasible, but the aesthetics would not
be as convincing in client meetings. This automatic import
of the residual meanings of parts into a project also has a
downside—mixed messages are hard to avoid. This multi-
plicity of messages may be the reason that U6 ultimately
shunned any opportunistic design for top-down engineering
— for his artistic vision he required full control over the
communicative aspects of his works — something that
mash-ups cannot provide.

CONCLUSION

In this paper, we placed opportunistic design in a larger
software engineering context and presented a descriptive
account of how mash-ups are used in practice today in three
different areas: Web 2.0 development, hardware hacking,
and ubicomp system building. We analyzed three common
themes in mash-up design: how components are combined,
what the characteristics of the activity of opportunistic
design are, and how mash-ups are unique artifacts. Future
work consists of developing concrete intervention strategies
to probe how introduction of software and hardware tools
can support opportunistic design and mitigate against prob-
lems of scale, robustness, and communicative ambiguity.
We hope this paper will be a first step towards establishing
community interest in and support for opportunistic design
and development practices.

ACKNOWLEDGMENTS
We thank Intel for donating PCs for this research, and our
study participants for sharing their time and insight.

REFERENCES

1 Anderson, C., The Long Tail: Random House Business. 2006.

2 Ballagas, R., M. Ringel, M. Stone, and J. Borchers. iStuff: a
physical user interface toolkit for ubiquitous computing envi-
ronments. CHI: ACM Conference on Human Factors in
Computing Systems, CHI Letters 5(1). pp. 537-44, 2003.

3 Beck, K., Extreme Programming Explained - Embrace
Change. The XP Series: Addison Wesley. 190 pp. 1999.

4 Brand, S., How Buildings Learn: What Happens After
They're Built. Reprint ed: Penguin Non-Classics. 256 pp.
1995.

5 Brewer, E. A. Lessons from Giant-Scale Services. /[EEE
Internet Computing 5(4): IEEE Educational Activities De-
partment. pp. 46-55, 2001.

6 Brooks, F. P., The mythical man-month: essays on software
engineering. Anniversary ed. Reading, Mass: Addison-
Wesley. 322 pp. 1995.

7 Clements, P., R. Kazman, and M. Klein, Evaluating Sofiware
Architectures: Methods and Case Studies. SEI series in soft-
ware engineering. Boston: Addison-Wesley. 323 pp. 2002.

8 Détienne, F., Software Design - Cognitive Aspects. Practitio-
ner Series, R. Paul: Springer. 139 pp. 2001.

9 Ducheneaut, N. Socialization in an Open Source Software
Community: A Socio-Technical Analysis. Comput. Sup-
ported Coop. Work 14(4): Kluwer Academic Publishers. pp.
323-68, 2005.

10 Eglash, R., Appropriating Technology, in Appropriating
Technology: Vernacular science and social power, R. Eglash,
et al., Editors. University of Minnesota Press. p. 401, 2004.

11 Galloway, A., J. Brucker-Cohen, L. Gaye, E. Goodman, and
D. Hill, Design for hackability, in Proceedings of the 2004

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

conference on Designing interactive systems. processes,
practices, methods, and techniques. 2004, ACM Press: Cam-
bridge, MA, USA.

Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design
Patterns: Elements of Reusable Object-Oriented Software.
Professional Computing Series: Addison-Wesley. 395 pp.
1995.

Greenberg, S. and C. Fitchett. Phidgets: easy development of
physical interfaces through physical widgets. UIST: ACM
Symposium on User Interface Software and Technology, CHI
Letters 3(2). pp. 209-18, 2001.

Hartmann, B., S. R. Klemmer, ef al. Reflective physical
prototyping through integrated design, test, and analysis. In
Proceedings of UIST 2006: ACM Symposium on User Inter-
face Software and Technology. Montreux, Switzerland, 2006.
Kay, A. C. The early history of Smalltalk. In Proceedings of
The second ACM SIGPLAN conference on History of pro-
gramming languages Cambridge, MA: ACM Press. pp. 69-
95, 1993.

Kirsh, D. and P. Maglio. On distinguishing epistemic from
pragmatic action. Cognitive Science 18. pp. 513-49, 1994.
Klemmer, S. R., B. Hartmann, and L. Takayama. How Bod-
ies Matter: Five Themes for Interaction Design. In Proceed-
ings of Design of Interactive Systems. State College, PA,
2006.

Klemmer, S. R., J. Li, J. Lin, and J. A. Landay. Papier-
Maéché: Toolkit Support for Tangible Input. CHI: ACM Con-
ference on Human Factors in Computing Systems, CHI Let-
ters 6(1). pp. 399-406, 2004.

MacLean, A., K. Carter, L. Lovstrand, and T. Moran, User-
tailorable systems: pressing the issues with buttons, in Pro-
ceedings of the SIGCHI conference on Human factors in
computing systems: Empowering people. 1990, ACM Press:
Seattle, Washington, United States.

March, W., M. Jacobs, and T. Salvador, Designing technol-
ogy for community appropriation, in CHI '05 extended ab-
stracts on Human factors in computing systems. 2005, ACM
Press: Portland, OR, USA.

Moran, T. P., Everyday adaptive design, in Proceedings of
the conference on Designing interactive systems: processes,
practices, methods, and techniques. 2002, ACM Press: Lon-
don, England.

Ousterhout, J. K. Scripting: Higher Level Programming for
the 21st Century, IEEE Computer, March, 1998.

Ousterhout, J. K., Tc/ and the Tk toolkit: Addison-Wesley
Reading, Masspp. 1994.

Royce, W. W. Managing the development of large software
systems: Concepts and techniques. In Proceedings of IEEE
WESTCON. Los Angeles, CA: IEEE. pp. 1-9, 1970.
Schneider, J.-G. and O. Nierstrasz, Components, Scripts and
Glue, in Software Architectures — Advances and Applica-
tions, L. Barroca, J. Hall, and P. Hall, Editors. Springer. pp.
13-25, 1999.

Schén, D. A. and J. Bennett, Reflective Conversation with
Materials, in Bringing Design to Software, T. Winograd, Edi-
tor. ACM Press: New York, 1996.

Sharp, H., H. Robinson, and M. Woodman. Software Engi-
neering: Community and Culture. /[EEE Softw. 17(1): IEEE
Computer Society Press. pp. 40-47, 2000.

Wong, Y.-Y. Rough and ready prototypes: Lessons from
graphic design. In Proceedings of Extended Abstracts of CHI:
Conference on Human Factors in Computing Systems. Mon-
terey, CA: ACM Press. pp. 83-84, 1992.

