
Hacking, Mashing, Gluing:
A Study of Opportunistic Design and Development

Bjorn Hartmann, Scott Doorley, Scott R. Klemmer

Stanford University HCI Group

Computer Science Department, Stanford, CA 94305-9035, USA

{bjoern, sdoorley, srk} (@stanford.edu

N ability of web dissemination

ABSTRACT. oe SUI : a HO TOSHOR to ower the distribution
This paper is about opportunistic practices in interactive 0 ({— Msorree..
system design: about copying and pasting source code from i 0 costs for software. The
public online forums into one’s own scripts; about taking qo nicHEPROGRAVS second is the ability of web
apart consumer electronics and reappropriating their com- Zu PROTOTYPES search to lower the costs for
ponents for design prototypes; about “Frankensteining” * = finding compiled software,
software and hardware artifacts together by joining them # OF APPLICATIONS source code snippets, and

with physical and digital hot glue and duct tape. It is about Figure 1. Different kinds of problem Solving pps. Ihe
the hacks and prototypes of lowbrow experimentation, as software systems call for t Ira 1s the rise of publicly
opposed to highbrow design and engineering from the different development tools ~~ available web APIs, and the
ground up. We combine these opportunistic practices under and practices. opening of commercial
the moniker of “mash-up design.” This paper presents re- desktop applications
sults from an interview study with 14 professional and through integrated scripting
hobbyist “mashers” from three different design disciplines: engines.
Web 2.0 programmers, hardware hackers, and designers of Physical sensing and actuation technologies have followed
interactive ubicomp systems. The paper analyzes common- a different yet parallel trajectory. Today, embedded elec-
alities and distills themes in opportunistic design through tronics are programmed on the PC; and prototyping tools
three lenses: first, the way mash-ups modify and combine have provided software abstractions to sensing and actua-
pre-existing elements; second, the unique characteristics of tion to experts and novices alike [2, 13, 14]. While hard-
opportunistic design as an activity; and third, looking at ware itself cannot easily be copied and transmitted by digi-
mash-ups as novel kinds of artifacts. tal means, common platforms and shared designs enable

people or machines to replicate and program hardware.
Author Keywords : oo
Mash-ups, long tail, opportunistic programming, hacking The goal of our group's opportunistic programming re-

search project is to understand how opportunistic program-
ACM Classification Keywords ming is practiced today, how it differs from traditional

D.2.11. [Software Engineering]: Software Architectures — software engineering (see Figure 1), and to design tools that
Patterns. K.6.3. [Management of Computing and Informa- both support existing practices and enable new ones. In this

tion Systems]: Software Management — Software Process. paper, we study how mash-up programming of software
D.2.2 [Software Engineering]: Design Tools and Tech- and hardware takes place in web development shops, design
niques — Modules and Interfaces. studios, and research labs today. This paper contributes an

INTRODUCTION analysis of common themes in opportunistic design based
: : Co. : on an interview study. We describe how designers choose

This paper presents an investigation into a set of practices
) between deep and surface-level integration of components;

that run as a common thread through the disparate enter- : : : CL
: : how mash-ups have epistemic, pragmatic, and intrinsic

prises of web developers, hardware hackers, and builders of
oo) CL : values for creators; how shopping becomes a central activ-

ubiquitous computing systems: opportunistic design and oo : Co. :
: : ity; and what user-experience challenges arise in mixed-

development. This paper is also about the long tail [1] of fidelity artifacts
software (and hardware) in a networked world. The long

tail comprises the “non-hits” in a genre— books, music, A Short Etymology of Mash-ups

movies—that individually sell little, but collectively have a The term mash-up first surfaced in the electronic music
large impact. community to denote the practice of taking elements of two

Software has always had a long tail —the shell scripts of Or More existing SONgSs and creating a new piece by rear-
system administrators, the spreadsheets of financial workers ranging, interspersing and superimposing samples from the
— but three recent web-based trends have conspired to different source songs. Mash-ups represent an extension of
significantly fatten and lengthen the tail. The first is the the remix, in which one producer takes a single track of

1

another producer and delivers a reinterpretation that bal- the Tk windowing system [23]. The Tcl work suggests that
ances the original work with elements specifically com- developers are perhaps best served by distinguishing sys-
posed to accompany the source material. Mash-ups differ tems programming languages (such as C and its progeny)

from remixes in that there are multiple sources and that the from interface programming languages, as the high-level

artistic effort lies in the arrangement, the “gluing together” scripting (such as Tcl) may be preferable for the latter.

of parts in novel ways, rather than the composition of addi- Today, high-level scripting languages such as Python and
tional new musical material. web-oriented languages such as PHP, JavaScript, and Ruby

Recently, computer science has adopted the term mash-up have replaced low-level systems programming languages in
to refer to pieces of software created by programming many Contexts.
against one or more public web APIs, also known as infra- All Hype?
structure services [5]. The most popular of these are Google The long tail and mash-ups may both be a bit over-hyped
Maps and Flickr. A typical mash-up —on programmable- currently, and certainly some of the hype will pass. The
web.com for example — shows data relevant to a local goal of this paper is not to be buzzword-compliant. Under
community, say coffee shops in San Francisco, using a our broad definition, many existing practices could be rela-
Google or Yahoo map navigation UL beled mash-ups, and part of the project of our design space
We take a broad view on what constitutes mash-ups. We analysis is to identify these precursors.

look beyond the web to examine the process of recombina- We suggest that two significant shifts from the traditional
tion and ad-hoc design across a spectrum of ubiquitous model of software engineering are redefining how individu-
computing systems. Our working definition ofa mash-up is als build ubiquitous computing systems in practice. First,
“a combination of pre-existing, integrated units of technol- the integration of bits and atoms in ubiquitous computing
ogy, glued together to achieve new functionality, as op- has introduced novel hardware— and its relationship with
posed to creating that functionality from scratch.” To help software—as domains of concern for interaction design and
clarify the position of mash-ups in the design and engineer- development. Second, recent shifts in the production, dis-
ing landscape, we contrast them briefly with traditional semination, and retrieval of software are reorienting the
software engineering. software development landscape itself towards opportunis-

Waterfall Development and Opportunistic Programming tic design. Many aspects of mash-up software development
Broadly speaking, classical software engineering has pri- have diverged from the heavier-weight traditional develop-
marily concerned itself with metrics such as performance, ment.
reliability, defects, and lines of code needed to produce an This paper presents an investigation into opportunistic
application [7]. And the domain of concern has largely been design of ubiquitous computing systems through interviews
“big software” — the relatively small number of heavy- with practitioners in three areas. The paper is structured as

weight applications that dominate mainframes and desktop follows: we start with a brief review of related work, follow

computers. These large applications — operating systems, with a segmentation of the mash-up design space into four

databases, word processors and image editors— often take areas that will serve as a scaffold for our later discussion.
years to develop and are generally created by dozens, if not We then present our study data and analysis.
hundreds, of developers.

Ra RELATED WORK

Big software engineering has traditionally been organized A small body of prior work in HCI has investigated appro-
around the waterfall method [24] —a development pipeline priation in design. MacLean ef al. provide an overview of
beginning with requirements gathering, and moving the challenges of end-user tailorability [19]. Moran’s DIS
through design, implementation, verification, and mainte- 2002 keynote on everyday adaptive design [21], as well as
nance. Recently, some in the field have begun moving workshops on design for hackability [11] and designing for
toward more agile methods [3], which eschew the “big community appropriation [20] have addressed modification,
design up front” approach of the waterfall, in favor of an adaptation and appropriation of information technology by
approach based on shorter plans, iteratively decided based end users. Moran in turn takes inspiration from Brand’s
on the exigencies of the software artifact and customer examination of the post-deployment life of artifacts [4]. In
interactions with it. But really, even agile software is still contrast, our work looks at the kinds of ad-hoc appropria-
largely concerned with the big stuff. Small software doesn’t tion by designers themselves.
really need to be studied or supported, does it? And does

small software provide much value anyway? Yes and yes. The computer systems community seeks to find technical
means to enable combination of pre-existing technologies

Alan Kay, with Smalltalk [15], was the first to explicitly through frameworks for component-based software. The
design a language for non-expert programmers (in Small- framing of development as comprising “components,
talk’s case, middle school students) and observe how that scripts and glue” [25] is compatible with our view of mash-
community used the language. Perhaps the next major ad- up programming. However, systems work still predomi-
vance toward opportunistic programming languages was nantly addresses large-scale development, and generally
introduced with the Tcl interpreted scripting language and presupposes that all components will adhere to a proposed

WEB 2 OHS professional product designers alike take off-the-shelf

cemvicte\ DESKTOP oN products and cannibalize or repurpose them to fit newSeooe. obey ED usicompmasH-ups needs. The success of publications such as Make magazine

NN | ~~ attests to a recent upsurge in popular interest in adapting
ELECTRONICS 2 consumer electronics for daily living. More recently, the

/ HARDWARE HACKS Fr advent of open APIs for web services has spurred develop-
VECHANISMS CX ment of numerous services and sites that aggregate dispa-
PHENOMENA rate data sets.

Figure 2. Left: Four ingredients of ubicomp systems. Right: METHODOLOGY
Ubicomp mash-ups unite hardware and web practices. We conducted semi-structured interviews with 14 practitio-

architecture. We argue that, in practice, the parts chosen for a in threeJew of mash-updesign our icine
integration often do not play nice with each other. In addi- had a focus on “harAvare hacking working with NS
tion, our focus is on the user experience of mash-up pro- : . :

: : By. nisms and embedded electronics: three were toy inventors,

gramming, rather than the technological capabilities. In the the other 2 hobbyist and tedmology writer. Six paricipants
larger picture, then, this project is more aligned with studies worked as ubicomp designers. Two of the ubicomp partic
in the cognitive and psychological aspects of programming demi hers two industry profession.
[8, 9] and with investigations of values and beliefs of de- ornts NAAmic 3CSCArCiIcts, te pd b :
signers (cf. [27]). als, one a o! yist electronic musician, an one an artistwho creates interactive installations. Ten interviews were

Papier-Maché [18] introduced the approach of using field- conducted individually, and two with pairs of participants.
work with developers as a means of finding opportunities Eleven interviews were conducted in person; one partici-
for design tools. We report on our fieldwork and point out pant in the ubicomp group was interviewed by phone and
opportunities for tools support in this paper; we leave de- one pair in the Web 2.0 category was interviewed in writing
velopment of tools based on this study to future work. online.

LOCATING UBICOMP MASH-UPS Interviews lasted 45 to 90 minutes. In the interviews, we

We are most interested in the nascent area of ubicomp began by asking participants to describe their work philoso-
mash-ups, which combine both software and hardware. As phy and general approach to problem solving, and then to
ubiquitous computing is about the confluence of bits and focus on one particular recent project. To ground and struc-
atoms—computing moving into the world—we look at the ture the discussion, we asked participants to produce arti-
physical as well as the digital ingredients of mash-ups. facts or visual representations (photographs or sketches) of

Moving from the physical to the digital domain, we can this project. Specifically, we asked participant to describe
NE : : the relationship between third party components they inte-

distinguish four types of components (see Figure 2). First, a rated and their own code: to describe how they arrived at
mash-up can contain built or repurposed mechanisms, such 5 . ow » 1) CESLIDE NOW HlIey arfived a

: ’ the decision to include particular parts; and to reflect on

as the movement mechanism of a toy doll. Second, sensors wadeolls and challenges experienced
and actuators can interface with these mechanisms and with

other physical phenomena; electronics such as analog cir-

cuits and embedded programmable microcontrollers pro-

vide the logic for sensors and actuators. Third, designers Mechanisms
can leverage off-the-shelf software on their personal com-

puters (be it a desktop, a PDA or a smart phone). These local Hardware Hardware
applications may or may not offer hooks for programmatic Electronics | Hacking,
automation through APIs or built-in scripting languages. DIY Electronics

Fourth, mash-ups can make use of web infrastructure ser- Local (desktop) \ Macros+
vices such as search and mapping APIs. At each of these Applications . Shell
four levels, designers can adopt pre-existing solutions, Ubicomp [Scripts

modify them, or build from scratch. As our study results Software Web APIs& Mash-upsGiwill show, modification is often the strategy of choice. Services Mash-ups

This Isn’t Totally New £ 8 ec zg
Ubicomp mash-ups draw on different existing lineages of = 6 | X= < >
opportunistic design (see Figures 2, 3). Shell scripts and i. S 3S S| 2 %
application macros have long been used as “glue” between 5 Lu Ta <
desktop applications. Ousterhout [22] provides a good 9

overview over the advantages of scripting languages for Hardware Software

connecting pre-existing software components. In the tangi-

ble world of mechanisms and electronics, hobbyists and Figure 3. A classification of mash-ups based on the com-
ponents they encompass

3

To become more familiar with the experience of working in Screen Scraping vs. Web APIs
this domain, we also created several different ubicomp One major concern for our Web 2.0 participants is access to
mash-ups ourselves, and attended community events that and strategies for getting data: “getting the data is the abso-
brought designers of technology mash-ups together. While lute hardest part” (W2). The surveyed mash-ups derived
our personal experience is not the focus of this paper, we their value from integrating disparate data sets in ways not
draw on these experiences in explaining some of the data. previously available. While two of the three projects used

the open, documented infrastructure service of Google

SAMPLING MASH-UPS: WHO, WHAT, WHY maps, all three projects resorted to screen scraping to
Here we review the material collected: who our participants gather at least part of their data. Screen scraping is a tech-
are, what kinds of systems they build, and how and why nique by which a program extracts text output meant for
they build them. We describe commonalities within groups. human consumption from the user interface output of an-

Web 2.0 Programmers other program. Two primary reasons were given for scrap-
We contacted participants who are active members of the ng. first, that APIs were simply not available for obtaining
Web 2.0 mash-up community. All four of these participants the desired data. Second, that web APIs, still in their in-
were professional programmers or web developers. Because fancy, are generally designed for smaller data requests, 50
of their background, they did not feel the technical aspects that it is still casicr to obtain large data sets by scraping. w4
of mash-up programming were a hurdle. reported building his own scraping toolkit so that it now

takes him as much time to develop a scraper as it would to

Our first participant (W1) owns a cell phone software com- integrate an available API.
pany. In his spare time, he independently developed a

mash-up “to learn AJAX” (a client-server web technology). Software Architectures
His mash-up website overlays restaurant and bar informa- Common to all projects is that they dedicate a web server to
tion on an interactive map (see Figure 4A). Users have the retrieve and cache large amounts of content from the differ-
ability to build a graphical path, from one bar to the next to ent data sources they use. Participants spent significant
plan an evening out with friends. They can also send the effort building back-end architecturesto scale to many
paths they created onto a compatible mobile phone for simultaneous users. The back-end architecture design was
mobile browsing. This mash-up combines three online the most structured, least ad hoc activity encountered in all
services: CitySearch for entertainment reviews, Google of our interviews. While the spirit of web mash-ups is free-
Maps for mapping and navigation on the desktop, and Ya- wheeling for obtaining data, the code written to serve the
hoo maps for mapping on a mobile device. mash-up pages in the successful sites we reviewed is care-

fully engineered. We caution that, while mash-ups are in

A second mash-up, written by participant W4, also builds many ways the tail of software, there are still broad differ-
on Google maps. For the past year, W4—who holds a mas- ences in engineering approaches within the mash-up field.
ter’s degree in CS—has been developing a weather browser
that aggregates weather forecasts from national and re- Business Models and Obstacles
gional weather data providers and locates these forecasts on All participants reported that their mash-ups started as side-
a map (see Figure 1B). His website features geo-referenced projects to their daytime jobs as consultants, startup owners,
temperature readings for cities with microclimates (like San and developers. However, two of the three projects ex-
Francisco), real-time fog visualizations, integrated display pressed interest in turning the mash-up into a profitable
of approximately 8,000 user-contributed webcam feeds and business. With mash-ups, shifting from the personal sphere
weather histories that allow users to view seasonal changes to the commercial sphere can be problematic for both legal
in weather for particular locales. He has recently branched and technical reasons. W1 reported that making money off
out from his original concept and created special interest “scraped” content is problematic because of licensing re-
sites for winter sports enthusiasts, golf players, and camp- strictions. W4 reported that he had to add redundant data
ers. Together, these sites are generating enough traffic — sources, as individual weather providers could alter the
and ad revenue—for him to contemplate turning this former format or withdraw their data stream at any point.

side project into a full-time job. Hardware Hackers
Aiming solely at the emerging mobile market, two other In the physical / electronic design realm, we interviewed
participants, W2 and W3, built a mash-up that delivers three toy inventors at two design companies and a hobbyist
relevant train schedules for three U.S. commuter rail sys- who refashions consumer goods into personalized tools and
tems to mobile phones through SMS or email (see Figure publishes instructions for these projects online.

times. The system combines a SMS/email gateway with illustrate Jew interaction design concepts. They do not
schedule data gathered from the individual rail companies. create finished products. The concepts are pitched for li-
The two developers started the service while working in the censing or purchase to large toy company representativeS

: oo. : who then further develop and manufacture the toys. Project

same city and now maintain and update it through remote schedules are very short, ranging from two days to less than
collaboration. The service is not a profit-making enterprise. + month ’

At the time of our visit, H3, + — — = _ ——| SE B
who holds a master’s degree in = © io lS I Er IH ol (e—
product design, worked on a + _ w=. aul’ - | Ee == == = dl [-
toy that functioned as a flash- © yf ANNE : = ppa = [|
light with sound effects. To N° "1 irclaplails. ERT £ A+ ~
make the concept tangible, she | ' = \g% yeh nm |TREY day RE > \y
bought a pair of plastic mon- OF Fons ES I» (Cc) 4
keys from a toy store because “tw 1 lo BR sili EC (a
they had a similar opening we—— Rs ”- 3 . Po
mechanism to the one she CERES N -. JE | 2g
envisioned for her toy (see ey : 2. ——— a
Figure 4D). She then embed- AEN Ml) R Jo
ded a tactile switch into the ¥4 IA re. eT
mechanism’s lever. This _ % ya 2a) g ny . ¥ |
switch was used to trigger light CRN / (E) TE —_—— ® KF 6
and sound effects using exter- A a —— CT

nal electronics. She Kept the = 7k 3 I wan TTT HEATER (1) wil rE=monkey’s form factor, even rlI) F-= flHE es EP - De Jhon
though thefinal product would roa VOShe 1,08 | LH — = ay =
have a radically different ap- :GgSs Lirei 3 ls) hyrsi A = Ri PNpearance. While the aesthetics i 55as pg. ve Ba dil YY 2(the “toyness™) of the packag- (G) i = Lb +O Lphle a rn (a ow A
ing mattered, the fact that it [i Cop ~ Bist -r

was not a flashlight was not pigre 4. Examples of participants’ mash-ups, with individual projects labeled by letter.
relevant for her client demon-

stration. A previous project prototype combined a toy car To Buy or Not to Buy
body with plastic rocket engines from a model plane kit to For all three toy inventors, an integral part of their core
create a new flying car (see Figure 4E). A lever switch practice was visiting large retail stores to purchase interest-
underneath the chassis was added to detect when the car ing new toys; these would be later disassembled in their
was lifted from the ground and when it was put back down. shop. We identified three different strategies of reappropri-
A circuit board inside the car triggered playback of sound ating store-bought toys: first, designers extract mechanisms
samples whenever the switch state changed. (“remember that freaky belly movement?) and reuse them

At the second toy company, participants Hl and H2 de- in different skins; second, designers keep the shell of a toy
scribed how they prototyped a handheld wireless controller but embed new electronics into it (“because it immediately
for a TV game: the barrel of the controller was taken from a looks like a toy”); third, designers fuse different shells (e.g.,
soda bottle. The grip was built from a wireless mouse that a metal toy car and plastic model plane rocket engines to
uses a gyroscope to sense tilt, transforming that tilt data into create a new flying car), then embed their own electronics.
cursor movement. The two pieces were integrated into one H4 saw the tailoring of existing artifacts as a partial rejec-
unit through custom-made plastic molds. The cursor and tion of consumer culture. The self-sufficiency of ‘do it
click stream from the wireless mouse was then used to yourself” offers a degree of personal satisfaction (it is in-
animate graphics on a laptop (used as a stand-in for a tele- trinsically satisfying) as well as a level of personalization
vision set) running Macromedia Flash. and lasting novelty not available in mass-produced artifacts.

In contrast to the rough-and-ready prototypes [28] of the H4 reuses existing parts because “you don’t want to invent
toy designers, participant H4 builds his hardware-based the wheel—the wheel exists.” Also for him, the economies
mash-ups for long-term private use. A designer of 3D print- of scale that mass produced consumer goods leverage are
ing technology, his self-professed strength is to “make a incentives. Picking existing parts is cheap — “it’s never
machine that barely works in two to three weeks.” Many of cheaper to start from scratch to make your own.”

the artifacts he uses daily were created by modifying con- Ubicomp Designers
sumer goods. He has documented his activity through more Our ubicomp developers used mash-ups as prototypes and
than 50 project descriptions on a how-to web site. One proof of concept deliverables, but also as a way to design
project he broughi to the interview was a pair of jackham- and implement site-specific tool for a single user or a small
mer hearing protection earmuffs that he retrofitted with a community. For brevity, we only mention a subset here.
pair of free airline headphones to listen to audio books in Co oo
noisy environments (see Figure 4F). According to H4, this Participant Ul —one of two academics in our study —is a
design offers better noise reduction than commercial noise- PhD candidate in mechanical engineering and a self-taught
canceling headphones while being significantly cheaper. programmer. He worked on a system for design teams to

annotate their printed documents with short video mes-

5

sages. In his laptop-based functional prototype (see Figure level of integration.” An important “bridge” he found was a

4G), users push a dedicated physical button to initiate video converter that allows him to connect controllers built for

message recording. After the recording completes, the sys- proprietary game consoles to a PC USB port. Through this

tem prints a small self-stick label displaying a snapshot of adapter, he has connected multiple “Dance Pad” floor mats

the video and a barcode. The user then attaches this barcode to his synthesis program (see Figure 4H).
to the document described in the video. If another user :

: Screen Poking
wants to access the video, she waves the barcode in front of :

: As Web 2.0 programmers employ screen scraping— in-
the same camera. Using the barcode as a key, the system : :

: : : strumenting the surface properties of web pages —to har-
plays back the specified video for the user. Ul relied heav- : : :
; ; : vest information from online databases, ubicomp program-
ily on commercial off-the-shelf-software (COTS) since this : :

. : ., : mers use screen poking —generating mouse and keyboard
path offered the “easiest way to plug things together.” In his : :

: : events by computational or electronic methods—as a means
working prototype, no less than five different COTS pack- . , :

: to remote control software. In addition to U3’s appropria-
ages are controlled through AppleScript. For example, he) : :

: Cos : tion of a mouse button for counting turns of a measuring
scripted QuickTime to record and play back video, and the Cs

: wheel, Ul initially used the macro software Automate as a
Excel spreadsheet software is used as a database. To convey CL. :

: : : : means of controlling desktop applications by computation-
the complexity of this project, Figure 5 shows our redrawn Co. :
version of his svstem architecture sketch ally injecting synthetic mouse and keyboard events, and U4

4 purchased a hardware converter that transformed the output
Mash-ups have also found their way into corporate work. of pressure-sensing dance pads into Windows platform
Participant U3 described a recent project where he designed game controller events. These “glueware” techniques are
an indoor location system for smart shopping carts; the chosen for similar reasons as screen scraping: APIs are
client was his employer’s retail store group. This position- sometime unavailable, other times do not yield the desired
ing system employed computer vision. To test the quality of information, and still other times are more time-consuming
the vision data, he attached a custom-built optical rotation that surface-level instrumentation.

sensor to the wheel of a shopping cart and soldered its con- rout Cho y
tacts to the left button of a gutted PC mouse, so that each Wher oo oe lace to select the el s of
revolution yielded one click (see Figure 41). By keeping ne oO RAoo X oo cc N Fa Co a
track of the total number of clicks on the PC, he was pro- mas? py ur ublcomp pa PN CP f ree sta y
vided with reasonable ground truth data about the total oo re oe on SwPios on ooCe an
distance traveled. He estimates that using this mouse mash- © decree OF a SUpCTVISOL. We bHICHy discuss the HISLIWO.
up, he completed testing in a quarter the time it would have Participants reported integrating technologies into their
taken to build a distance tracker from scratch. project that they had experience with from prior work,

U4, “a software engineer by day and software artist by enabling them to jeverage heir proficiency Ce medium
night” has been developing his own musical programming and hedge on o ol Ce CaA
language and graphical environment for producing and +Se a oo by i. 0 oriN’ use©
performing electronic music for the past decade. Since R a N inJ a cusNm PRA I bhad tnter-
2002, he has built audio installations that he shows at the ace becallse ooo MEMbELs of Nis research 1ab had previ-
annual Burning Man festival. While spending years on OUS Success wi cm.
building his software from the ground up, his use of physi- Participants also leveraged descriptions from online
cal controllers is more opportunistic: “you can choose what sources, and this experience of “shopping” for preexisting
level of effort you want to put in—you can buy the next solutions yields a very different pattern of time usage than

fafa] poi Jn developing systems from scratch. For example, U1 reported
that the time it took to search for appropriate components

AppleScript 4
wn, exceeded the time it took to then write scripts to integrate

3 the found components into his project. For U4, the search
g “, for the right USB adapter that would glue controllers to his

NAS software took months: he reported doing research on at

%, J) eo least a dozen different models and then buying six different
TC « -— models until he found a one that satisfied his requirements.
=~

gs gS jie bo Caveats
gd $ o We conclude our tour of mash-ups with two cautionary

2 ¢ tales from our participants. The first illustrates the potential

=< downsides of opportunistic design; the second reminds us
H 5 - On code that mash-ups are not a one-size-fits-all solution.

sae >| Quicktime £7 Physical For an interactive museum installation, U5, a professional
Re-use B= Filel/O

A/V systems developer, took a computer vision system

Figure 5. System diagram of U1’s project. intended for industrial process monitoring to track visitor’s

hand movements over a projection display. Buying pack- Screen scraping and screen poking are examples of hot glue

aged functionality and writing thin wrapper layers promised joints. Importantly, the designer’s intent is not directly

significant time and cost savings over developing an in- visible in the code generated by hot glue: the record is the

house solution. However, because of variations in lighting trace of actions that reflect the intent, not the semantics

conditions, the out-of-box system did not perform as ex- themselves.

pected. Trying to compensate for these problems proved The trade-offs between these two architectural approaches
hard as the team had only limited access to internals of the are exemplified by U1’s experience. He designed two sepa-
vision processing system. In the end, the group spent more rate versions of his document annotation system, and while
time and resources trying to patch up these problems than the core functionality was similar, all of the component
development from scratch would have taken. pieces were replaced. The first version was scripted using
Finally, we talked to an independent artist who produces Network Automation’s AutoMate 6 software. AutoMate

large interactive public installations that involve combina- enables users to record human interaction with GUI widgets

tions of computer vision and projection, as well as sensing and to parameterize and replay those actions programmati-
and actuation. He was trained as both an artist and a com- cally. While this system succeeded as an experience proto-
puter scientist and previously held an industrial research type, it was not robust enough for any unsupervised de-
position. This participant was the only person who followed ployment: the shallow glue provided by AutoMate’s screen-

a top-down design approach that does not include any based scripts proved to be too brittle.

erable. to ur ae Ugoomsciouels nat Seeking a more robust system, U1 switched to a Macintosh
neered all his projects from the ground up. Having full platform so that he could oF AppleScript, and this platformoY) switch mandated an entirely different set of software appli-
control over aesthetics and behavior is part of his concep- cations. AppleScript allowed him to leverage application-
tion ofhow interactive art should be created. specific APIs. While the deeper glue that AppleScript pro-
THEMES IN OPPORTUNISTIC PROGRAMMING vides is significantly cleaner for expressing logic than
This section discusses three themes that emerged from our Automate, it also has limited reach: for example, Ul found
interview data. First, we look at a different ways that mash- no programmatic means for uploading the video clips to an
ups modify and combine pre-existing elements. We then online media-sharing site.
consider the unique characteristics of mashing as an activ- Appropriation
ity, and conclude with a look at mash-ups as novel artifacts. The discussion of gluing approaches hinged largely on

Combinations: The Core of Mash-Ups technical considerations. Here, we turn more to the socio-
One of the broad shifts introduced in the mash-up paradigm technical 1SSUC of the relationship between the designed
is that the designer’s effort and creativity are reallocated: intent of the constitutive elements and !hat of the resulting
rather than building an application up from scratch, brick by mash-up. At times, these intents are felicitous. However, at
brick, much time and ingenuity becomes concerned with other times, mash-ups appropriate technologies, Fepurpos-
finding and selecting components, and then creating and ing them as building blocks toward a different goal.
shaping the “glueware” that interfaces them. In Eglash’s words, appropriation 1S the extent to which a

Lo violation of a technology's intended purpose occurs [10].

Doveral Joints vs. Hot Glue _ This violation is easy to see in toy hacking: toys were in-
In our interviews, we saw two distinct tended for children to play with, not for designers to take
approaches to glue. In the first approach, N apart. Similarly, in the digital realm, screen scraping re-
two components explicitly support appropriates output intended for human consumption as
combination through a shared mnterface. program input. In contrast, using Web 2.0 APIs such as

Fo ro We ane the meansx Google Maps is not an act of appropriation because the
f the carpenter's dovetail joint to label providers of the API give explicit permission to use the

these deep combinations. Dovetail joints are documented SETVIeE hn NeW CONEXIS. Similarly, applications written for: : : : Apple’s operating system expose API hooks to AppleScript

extension and Integrdion points provided in the sysiem to enable programmatic control by end-user automation
architecture—APIs in software, breakout headers and con- scripts.
nectors in electronics, mounting holes in hardware. The use

of AppleScript (U1) and Web APIs (W1,4) are examples of It is notable that in the Web 2.0 space, where the general
dovetail joints. trend has been to open up infrastructure services to allow

« ’ CL. reuse without appropriation, all of our participants still

| § = n contrast, hot glue combinations resorted to screen scraping techniques. There are valid
ll : adjoin ¢omponents that ‘are either in- business reasons not to make all company data available for

- \, compatible, don’t know about each automatic processing by others through APIs. Simultane-
SCNT other, or don’t support each other Hot ously, those same business reasons make capturing the data
glue can be applied to almost anything, but it has limited valuable for third parties. We conclude that supportfor both
adhesive power—all it can offer is surface-level integration. tight and loose coupling (hot glue and dovetail joints) is

7

needed—opportunistic design is based on integrating exist- because they are empowering, “DIY culture involves creat-
ing artifacts that best fulfill a functional or informational ing your own world amid the dominant culture, thereby
need, regardless of their programming interface or licensing putting power back in the hands of individuals.” [11].

agreement. What is notable about this taxonomy is that the division is
Mashing as a design activity based on the intended use of the artifact, the developer’s
Next, we turn our attention to the activity of creating mash- motivation rather than an attribute of the artifact itself.
ups: when, how and why is mashing preferable to other Shopping for functionality
approaches of design and development; and what kind of “The most radical possible solution for constructing soft-
value do practitioners derive from it? ware is not to construct it at all.” —F. Brooks [6]

Epistemic, pragmatic, and intrinsic values Brooks identified the drastic departure from existing prac-

We found that mash-ups provided both pragmatic and epis- tice that buying instead of building involves. But how ex-
temic value to our participants. An artifact is pragmatic to actly does the activity of designing and developing change
the extent that it enables actual use, and epistemic [16] to when no “new” software is created? Glueware addresses the

the extent that the artifact serves as a locus of communica- integration aspect. However, before integrating parts, par-
tion with other stakeholders — clients, team members, and ticipants reported spending significant time on finding and
users — and provides information that can drive future acquiring their ingredients. In fact, some participants re-
design [17]. For some participants, creating mash-ups also ported that this was the most challenging or the most time
held intrinsic value generated by the activity itself, rather consuming part of their process. U1 described the processes
than from the utilitarian or educational value of the out- of searching for components and determining if and how
come. they could be integrated into his design as “the main part of

Pragmatic decisions for mash-ups are made if mash-ups are the whole thing.” Or, as U3 put it: “The real challenge is
more efficient or effective to reach a known goal than other finding the interface between the problem and commer-
techniques. We saw an example of this earlier, where par- cially available stuff.”
ticipant U3 estimated that by repurposing a mouse button to In a top-down, waterfall development paradigm, shopping
fire a ‘click event’ with each revolution of a wheel, he was for functionality versus integrating existing solutions be-
able to complete the sensing part of his project in a quarter comes a cost/benefit tradeoff. Given knowledge of those
of the expected time. Furthermore, incorporating existing tradeoffs, the unit selection decision of what to buy be-
pieces allows designers to leverage functionality that they comes merely a “small matter of purchasing.” In our study
could not build themselves — framed this way, the set of though, we encountered more bottom-up driven design,
existing technologies in the world can be thought of as a where searching and acquiring pieces were used as inspira-
vast library that can be used to lower the threshold for de- tional and direction-giving activities that steered projects in
velopment. For example, U4 did not have sufficient techni- one direction or another. This suggests that shopping itself
cal knowledge to build his own physical music controller, can take on an epistemic function.

and it was through adapters that he was able to leverage Our toy inventors reported frequent toy store trips without a
commercially available game controllers. concrete shopping list for a current project in mind. U4 did
Other times, mash-up design is employed as a means of the same at electronics retail stores. We find three reasons

exploration, learning, or inspiration. This epistemic activity for shopping without a project. First, it builds awareness of
was most prevalent among our toy inventors, who chose the state of the art, and allows designers to update their
mash-ups as effective means to illustrate new concepts. mental map of what is available. Second, acquiring ahead
What their clients paid for was the idea, prototyped through of time reduces the cost of search later. Like squirrels gath-
the mash-up, not the implementation. Furthermore, rapidly ering nuts before the winter, designers reported stockpiling
creating prototypes provides designers with concrete arti- mechanisms to have them ready-to-hand later. “We collect
facts they can expand on, react against, modify, and trans- [mechanical] movements... [During a project, one of us
form. This conversation with materials (as opposed think- will say] ‘Remember that freaky belly movement?’ ”
ing in the abstract) is an important strategy of successful (H1&2). Third, designers browsed in search of inspiration
reflective practitioners [26]. that may launch new projects: “I go on shopping trips and

In the intrinsic case, mash-ups are created purely as an end think about repurposing objects... I'll walk around Wal-
in and of themselves. Intrinsic value is derived from the joy greens and look at objects and think, “what could this be?”
of exercising a craft (“what a great way to spend an after- (H3). The important epistemic and pragmatic aspects of
noon”) or from a personal ideology (“recycling is my form shopping for mash-up design suggest further investigation
of protest against rampant consumer culture”). Our inter- into tools that support search and acquisition.
views suggest that intrinsic activity is most common among Searching for bridges
hobbyists. The move towards community appropriation and In multiple instances, participants reported finding crucial
hackability by end-users falls, at least partially, in this cate- connecting pieces for their mash-ups in fields only tangen-
gory. As Galloway writes, end-user mash-ups are valuable tially related to their own. U4 discovered that a MIDI-to-

relay interface used by church organ builders was what he missing hook for a print option that was not exposed in
needed to trigger lights based on music commands for his AppleScript, stonewalling his efforts.

Burning Man installations. In our own work, we have dis- On the other hand, building from scratch incurs a large
covered that the most straightforward way to interface dis- initial cost as developers have to write their own tooling. In
crete digital inputs to PCs is to use hardware developed by exchange, flexibility is preserved and they can leverage
arcade game enthusiasts. This community builds their own their own tools later in the project cycle. The “sweet spot”
arcade cabinets with PCs replacing dedicated electronics. for rapid, disposable mash-ups that our interviews found is
Multiple vendors sell boards to interface arcade joysticks consistent with this analysis. It also suggests an opportunity
and push buttons to the game software. for design tools that leverage opportunistic development
Adapters and bridges are well-known design patterns for early on while preserving more flexibility later on.
software engineers [12] and glueware often instantiates oo
these patterns in software or hardware. However, we want Mash-ups as mixed-fidelity artifacts
to focus here on the social side: the bridges that allow these We conclude our analysis of themes by looking at the arti-
connections to be found in the first place. While web search facts that opportunistic design produces. What kind of ob-
was universally used, effective search requires prior knowl- Jets are mash-ups? And how do they differ from other
edge of the space of opportunity. Community sources play products?
an important role: Ul chose to integrate two different ex- Affordances of mixed-fidelity prototypes
ternal button interfaces into his project because he was Mash-ups are made of disparate, heterogeneous pieces, and
peripherally aware that other researchers in his building had each individual component brings its own architecture,
used those particular models successfully. Scaling commu- functionality, and level of polish with it. Hence, they oper-
nity awareness to the internet is a factor behind the success ate as mixed-fidelity artifacts. Fidelity is a slippery term,
of how-to sites that chronicle DIY projects such as instruc- and we distinguish two different perspectives that lead to
tables.com. different sets of concerns here. From a designer’s perspec-

Short timelines, small audiences tive, the fidelity is an affordance of a design tool or me-
The activity of mashing is also often characterized by two dium, in that it helps structure the conversation with the
trends: it tends to happen on very short timelines, and the material [26]. Low-fidelity media can only capture and
artifacts created are intended for small audiences. Many CXPIESS the gestalt of a concept, while high-fidelity media
mash-ups we encountered were built quickly, and many allow detailed insight into tradeoffs and alternatives.
discarded as quickly afterwards. The emphasis on speed is a From a user’s perspective however, fidelity is a property of
good match for designers wanting to rapidly prototype the designed artifact. It is the degree to which a prototype
multiple ideas, consultants operating on compressed project exhibits the affordances (actionable properties between
schedules, and hobbyists with limited leisure time. Simi- artifact and actor) of the final object being designed. Mixed
larly, for these constituencies, the audience of users of a fidelity here results in a potentially discontinuous user ex-
mash-up is small: the design team, a single client, oneself. perience as imported functionality can offer either too many

Web mash-ups have a different set of traits: they operate or too few interactive properties. For example, using a
continuously and their success is measured in the number of ~~ Same controller for music synthesis can raise the expecta-
users they attract. If mash-ups are to scale, robustness and tion that all possible interaction opportunities on the con-
maintenance have to be addressed— tracking how success- troller will have Some effect, as they would in a game.
ful web mash-ups grapple with these issues could provide Similarly, by basing a web mash-up on Google Maps, one
valuable lessons for guiding mash-ups design in other areas. automatically imports all interaction techniques of that

application into the mash-up, even if some of them are not
While it is certainly fast to get up and running with mash- felicitous with the intended application. The extent to which
ups, completing the “last mile” — fine-tuning application a mismatch between perceived and offered functionality is
logic and interaction design — can be quite difficult as problematic in practice depends on whether the designer

desired functionality and of- can provide guidance. We speculate that large-scale, unsu-
§ offered features of existing pervised deployments are likely to be more problematic
= components diverge (see than individual, designer-led demonstrations.
3 Figure 6). This trade-off is

= exemplified by US’s The semiotics of media
= cope FROM experience of working with a Distinct from the actionable properties are the perceived
Z SCRATCH shrink-wrapped computer values and meanings beaconed by an artifact. Mashing
= vision package: afterwards, enables designers to easily buy into a product or service

TIME she felt that a custom-written genre. Leveraging existing materials can scaffold user ex-

Figure 6. Mash-ups pro- solution would have been pectations for better or for morse. Loy designer H3 Pre
vide more functionality up faster and more flexible. Ul erred to cannibalize existing toys not just because of the
front. but the “last mile” also reported getting stuck on readily available functionality, but because these objects
may be slow. mundane details such as a already “look like a real toy.” Building from scratch in her

9

shop was technically feasible, but the aesthetics would not conference on Designing interactive systems: processes,

be as convincing in client meetings. This automatic import practices, methods, and techniques. 2004, ACM Press: Cam-
of the residual meanings of parts into a project also has a bridge, MA, USA. oo
downside—mixed messages are hard to avoid. This multi- 12° Gamma, E., R. Helm, R. Johnson, and J. Vlissides, Design

. : Patterns: Elements ofReusable Object-Oriented Software.

plicity of messages may be the reason that U6 ultimately Professional Computing Series: Addison-Wesley. 395 pp.
shunned any opportunistic design for top-down engineering 1995.
— for his artistic vision he required full control over the 13 Greenberg, S. and C. Fitchett. Phidgets: easy development of
communicative aspects of his works — something that physical interfaces through physical widgets. UIST: ACM
mash-ups cannot provide. Symposium on User Interface Software and Technology, CHI

Letters 3(2). pp. 209-18, 2001.

CONCLUSION 14 Hartmann, B., S. R. Klemmer, ef al. Reflective physical
In this paper, we placed opportunistic design in a larger prototyping through integrated design, test, and analysis. In
software engineering context and presented a descriptive Proceedings of UIST 2006: ACMSymposium on User Inter-

account of how mash-ups are used in practice today in three Jace Software and Technology. Montreux, Switzerland, 2006.
different areas: Web 2.0 development, hardware hacking, 15 Kay, A. C. The early history of Smalltalk. In Proceedings of
and ubicomp system building. We analyzed three common The secondACMSIGPLAN conference on History ofpro-
themes in mash-up design: how components are combined, gramming languages Cambridge, MA: ACM Press. pp. 69-
what the characteristics of the activity of opportunistic 93, 1993.

: ty pp 16 Kirsh, D. and P. Maglio. On distinguishing epistemic from
design are, and how mash-ups are unique artifacts. Future pragmatic action. Cognitive Science 18. pp. 513-49, 1994.
work consists of developing concrete intervention strategies 17 Klemmer, S. R., B. Hartmann, and L. Takayama. How Bod-
to probe how introduction of software and hardware tools ies Matter: Five Themes for Interaction Design. In Proceed-
can support opportunistic design and mitigate against prob- ings ofDesign ofInteractive Systems. State College, PA,
lems of scale, robustness, and communicative ambiguity. 2006.

We hope this paper will be a first step towards establishing 18 Klemmer, 8. R., J. Li, J. Lin, and J. A. Landay. Papier-

community interest in and support for opportunistic design Hache: Loot Support for fangible Input hlAomerence on Human Factors in Computing Systems, et-

and development practices. ters 6(1). pp. 399-406, 2004.
ACKNOWLEDGMENTS 19 MacLean, A., K. Carter, L. Lovstrand, and T. Moran, User-

We thank Intel for donating PCs for this research, and our tarlotableSo oe issues nthJ in Pro-. or Lo ceedings of the conference on Human factors in

study participants for sharing their time and insight. computing systems: Empowering people. 1990. ACM Press:
REFERENCES Seattle, Washington, United States.

1 Anderson, C., The Long Tail: Random House Business. 2006. 20 March, W., M. Jacobs, and T. Salvador, Designing technol-
2 Ballagas, R., M. Ringel, M. Stone, and J. Borchers. iStuff: a ogy for community appropriation, in CHI '05 extended ab-

physical user interface toolkit for ubiquitous computing envi- stracts on Humanfactors in computing systems. 2005, ACM
ronments. CHI: ACM Conference on Human Factors in Press: Portland, OR, USA.
Computing Systems, CHI Letters S(1). pp. 537-44, 2003. 21 Moran, T. P., Everyday adaptive design, in Proceedings of

3 Beck, K., Extreme Programming Explained - Embrace the conference on Designing interactive systems: processes,
Change. The XP Series: Addison Wesley. 190 pp. 1999. practices, methods, and techniques. 2002, ACM Press: Lon-

4 Brand, S., How Buildings Learn: What Happens After don, England.
They're Built. Reprint ed: Penguin Non-Classics. 256 pp. 22 Ousterhout, J. K. Scripting: Higher Level Programming for
1995. the 21st Century, IEEE Computer, March, 1998.

5 Brewer, E. A. Lessons from Giant-Scale Services. [EEE 23 Ousterhout, J. K., Tcl and the Tk toolkit: Addison-Wesley
Internet Computing 5(4): IEEE Educational Activities De- Reading, Masspp. 1994.
partment. pp. 46-55, 2001. 24 Royce, W. W. Managing the development of large software

6 Brooks, F. P., The mythical man-month: essays on software systems: Concepts and techniques. In Proceedings ofIEEE
engineering. Anniversary ed. Reading, Mass: Addison- WESTCON. Los Angeles, CA: IEEE. pp. 1-9, 1970.
Wesley. 322 pp. 1995. 25 Schneider, J.-G. and O. Nierstrasz, Components, Scripts and

7 Clements, P., R. Kazman, and M. Klein, Evaluating Software Glue, in Software Architectures — Advances and Applica-
Architectures: Methods and Case Studies. SEI series in soft- tions, L. Barroca, J. Hall, and P. Hall, Editors. Springer. pp.
ware engineering. Boston: Addison-Wesley. 323 pp. 2002. 13-25, 1999.

8 Détienne, F., Software Design - Cognitive Aspects. Practitio- 26 Schon, D. A. and J. Bennett, Reflective Conversation with
ner Series, R. Paul: Springer. 139 pp. 2001. Materials, in Bringing Design to Software, T. Winograd, Edi-

9 Ducheneaut, N. Socialization in an Open Source Software tor. ACM Press: New York, 1996.
Community: A Socio-Technical Analysis. Comput. Sup- 27 Sharp, H., H. Robinson, and M. Woodman. Software Engi-
ported Coop. Work 14(4): Kluwer Academic Publishers. PP. neering: Community and Culture. IEEE Softw. 17(1): IEEE
323-68, 2005. Computer Society Press. pp. 40-47, 2000.

10 Eglash, R., Appropriating Technology, in Appropriating 28 Wong, Y.-Y. Rough and ready prototypes: Lessons from
Technology: Vernacular science and socialpower, R. Eglash, graphic design. In Proceedings ofExtendedAbstracts ofCHI:
et al., Editors. University of Minnesota Press. p. 401, 2004. Conference on Human Factors in Computing Systems. Mon-

11 Galloway, A., J. Brucker-Cohen, L. Gaye, E. Goodman, and terey, CA: ACM Press. pp. 83-84, 1992.
D. Hill, Design for hackability, in Proceedings ofthe 2004

