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Abstract not utilized in subsequent scans, where the same time consuming
procedure has to be repeated all over again.

Optical acquisition devices often produce noisy and incomplete
data sets, due to occlusion, unfavorable surface reflectance prop- Our goal is to simplify the model creation process by exploiting
erties, or geometric restrictions in the scanner setup. We present a previous experience on shapes stored in a 3D model database. This
novel approach for obtaining a complete and consistent 3D model allows the generation of clean and complete 3D shape models even
representation from such incomplete surface scans, using a data- from highly incomplete scan data, reducing the complexity of the
base of 3D shapes to provide geometric priors for regions of miss- acquisition process significantly. The main idea is to mimic the
ing data. Our method retrieves suitable context models from the experienced-based human approach to shape perception and under-
database, warps the retrieved models to conform with the input standing. Humans have the intuitive capability to quickly grasp a
data, and consistently blends the warped models to obtain the fi- perceived 3D shape, even though only a fraction of the actual geo-
nal consolidated 3D shape. We define a shape matching penalty metric data 1s available to the eye. This is possible because we
function and corresponding optimization scheme for computing the make extensive use of prior knowledge about shapes, acquired over
non-rigid alignment of the context models with the input data. This years of experience. When seeing an object, we immediately put it
allows a quantitative evaluation and comparison of the quality of into context with other similar shapes that we have previously ob-
the shape extrapolation provided by each model. Our algorithms served and transfer information from those shapes to fill missing
are explicitly designed to accommodate uncertain data and can thus parts in the perceived object. In digital 3D shape acquisition, we
be applied directly to raw scanner output. We show on a variety of are faced with a similar problem: Most optical acquisition devices
real data sets how consistent models can be obtained from highly will produce incomplete and noisy data due to occlusions and phys-
incomplete input. The information gained during the shape com- ical limitations of the scanner. How can we obtain a complete and
pletion process can be utilized for future scans, thus continuously consistent representation of the 3D shape from this acquired data?
simplifying the creation of complex 3D models.

One approach is to apply low-level geometric operations, such as

CR Categories: 13.5 [Computer Graphics]: Computational noise and outlier removal filters [Taubin 1995], [Jones et al. 2003],
[Fleishman et al. 2003], [Weyrich et al. 2004] and hole-filling tech-

Geometry and Object Modeling—curve, surface, solid, and object : : :
niques based on smooth extrapolations, e.g., [Davis et al. 2002],

representations [Verdera et al. 2003], [Liepa 2003], [Clarenz et al. 2004]. These
methods are successful in repairing small deficiencies in the data,

Keywords: shape completion, non-rigid alignment, 3D acquisi- but have difficulties with complex holes or when large parts of the
tion, hole filling, surface reconstruction object are missing. In such cases, trying to infer the correct shape

by only looking at the acquired sample points quickly becomes in-

1 Introduction feasible. A common way to address this ill-posed problem is to use
an explicit prior in the form of a carefully designed template model.

a : : The prior is aligned with the acquired data and holes are filled by
3D shape acquisition has become a major source for the generation oo :

CL : transferring geometric information from the warped template. The
of complex digital 3D models. Numerous scanning systems have f desionine the template model is quickly amortized when a
been developed in recent years, including low-cost optical scanners co : : & bi pia divitized qd h d d
that allow 3D data acquisition on a large scale. Obtaining a com- whole set of simular objects 1s digitized, as has been emonstrate
lete and consistent 3D model representation from acquired surface successfully with human heads [Blanz and Vetter 1999], [Kahler

p con P at et al. 2002], [Blanz et al. 2004] and bodies [Allen et al. 2003].
samples is still a tedious process, however, that can easily take mul-

tiple hours, even for an experienced user. Significant manual assis- We extend this idea to arbitrary shapes by replacing a single, tailor-
tanceis often required for tasks such as scan path planning, data made template model with an entire database of 3D objects. This
cleaning, hole filling, alignment, and model extraction. Knowl- allows shape completion by combining geometric information from
edge about the acquired shape gained in this process is typically different context models. To successfully implement such a system,
OO however, we need to address the following issues: How can we

 Mmapauly @stanford.edu extract models from the database that provide a meaningful shape
niloy@stanford.com continuation in regions of missing data? How can we compute and
Stesen@int.ethz.ch consistently evaluate local shape deformations that align the context
 Luibas@cs.stanford.edu models with the acquired data? How can we select among multi-
grossm@inf.ethz.ch ple database models the ones that provide the most adequate shape

completion in different regions of the scan? And finally, how can
we blend geometric information from different models to obtain a
complete and consistent representation of the acquired object?

In this paper we mainly focus on the last three aspects, using a
database retrieval method that relies on existing techniques adapted
to our application. We define a shape similarity metric and corre-
sponding optimization scheme for aligning context models with the
acquired data set and present a method for segmenting and blend-
ing contributions from different models, while preserving appro-
priate continuity constraints. Our algorithms are designed to work
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Figure 1: High-level overview of our context-based shape completion pipeline.

with uncertain data and can thus be applied directly to raw scanner a priori knowledge of the underlying shape space, but try to infer
output. We show how these methods can be integrated to yield a automatically how to combine different context models that are re-
complete context-based shape completion pipeline. trieved from a database for the specific input data produced by the

scan.

1.1 Related Work A central component of our system is a method for computing
non-rigid alignments of database models with the acquired input

Spawned by a proliferation of commercially available 3D acqui- data. [Allen et al. 2003] and [Sumner and Popovic 2004] pre-
sition devices, surface reconstruction from point samples has be- sented alignment algorithms similar to ours that use an optimiza-
come an active area of research over the last few years. Early tion framework to compute a smooth warping function. We extend
methods based on signed distance field interpolation have been this scheme to allow a quantitative comparison of the quality of the
presented by [Hoppe et al. 1992] and [Curless and Levoy 1996]. alignment across different models, which has not been a concern in
Voronoi-based approaches with provable guarantees where intro- previous methods. An interesting alternative has been proposed by
duced by [Amenta et al. 1998] and [Dey and Goswami 2003], who [Anguelov et al. 2004], who introduced a probabilistic scheme for
extended their work in [Dey and Goswami 2004] to handle noisy unsupervised registration of non-rigid shapes.
input data. While these techniques can handle small holes and mod-
erately under-sampled regions in the input data, they are less suited Our system bears some resemblance to the shape modeling system
for data sets with large holes that often occur in 3D data acquisi- proposed by Funkhouser et al. [2004], where the user can create
tion. To address this problem, various methods for model repair new models by cutting and pasting rigid parts of existing shapes
based on smooth extrapolation have been proposed. [Carr et al. retrieved from a shape database. The focus of their work is on cre-
2001] and [Ohtake et al. 2003] use radial basis functions to ex- ative design and interaction, while we concentrate on model repair
tract manifold surfaces from incomplete point clouds. [Davis et al. and shape completion of surface scans.
2002] presented an algorithm that applies volumetric diffusion to
a signed distance field representation to effectively handle topo- 1.2 Overview
logically complex holes. An extension of this idea has been pro- oo
posed by [Verdera et al. 2003], who use partial differential equa- Figure 1 gives an overview of our shape completion pipeline. 3D
tions to evolve the distance field, similar to inpainting techniques acquisition devices typically produce a set P of possibly noisy point
used for images. [Sharf et al. 2004] presented a system that pre- samplesp; € IR that describe (parts of) a 2D boundary surface of
serves high-frequency detail by replicating local patches within the a 3D object. We assume that P 15 equipped with approximate nor-
acquired 3D data set, as an extension of the 2D method proposed mals, which are commonly provided by the scanner, or can be es-
in [Drori et al. 2003]. Other approaches for shape completion are timated directly from the point samples [Hoppe et al. 1992]. This
the triangulation-based method proposed by [Liepa 2003] and the input point cloud is pre-processed using multi-scale analysis to ob-
system based on finite elements presented in [Clarenz et al. 2004]. tain a scalar confidence estimate that quantifies the consistency of

each sample point with its neighboring samples. Subsequent stages
The underlying assumption in all of these methods is that an appro- of the pipeline will take these confidence weights into account to
priate shape continuation can be inferred from the acquired sample adapt the processing to the uncertainty in the acquired data. In the
points only, using generic smoothness or self-similarity priors for next stage, we retrieve a small set of candidate models from the
missing parts of the model. Since the surface reconstruction prob- database using a combination of multiple retrieval methods. The
lem is inherently ill-posed, the use of explicit template priors has candidate models are then warped to match the shape of the input
been proposed by various authors. [Ramamoorthi and Arvo 1999] point cloud. To compute this non-rigid alignment we use an op-
presented a method to recognize and fit a parametric spline surface timization process that balances geometric error, distortion of the
to acquired surface data. Template-based hole filling has also been deformation, and semantic consistency defined by a small set of
used in [Blanz and Vetter 1999], [Kihler et al. 2002], [Blanz et al. feature correspondences. We segment the warped models into parts
2004] and [Allen et al. 2003], where input data and morphable tem- that best correspond to the input data based on a local shape sim-
plate model were represented as triangle meshes. These methods larity metric. Context information is propagated into regions of
are well-suited for object classes with well-defined shape variabil- missing data, while continuously updating the alignment to ensure
ity, where a single template model can be adjusted to fit the entire consistency between different context models. The segments are
acquired data set. Our approach differs in that we are not assuming then combined using a geometric stitching technique that blends
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Figure 2: Left: Acquisition setup with Cyberware Desktop 3D Figure 3: Quality of fit estimate ct and local uniformity estimate
Scanner 15 and physical model, right: Raw point cloud obtained c? are combined to yield the final confidence estimate c;.
from six range images in a single rotational scan. The spiky out-
liers are artifacts caused by specular reflections.

survey). In our case the retrieval problem is particularly difficult,
since we are dealing with noisy, potentially highly incomplete data.

adjacent parts from different models to avoid visual discontinuities We thus rely on a combination of textual search and shape-based
along the seams. If a successful shape completion has been ob- signatures, similar to [Funkhouser et al. 2004]. We first confine the
tained, the final model 1s entered into the database for future use as search space using a few descriptive keywords provided by the user.
a context model. On this restricted set of models, we compute a similarity measure

based on point-wise squared distances. We use PCA to factor out
The following sections discuss these individual stages in more de- global scaling and estimate an initial pose. Then we apply the align-
tail, using the data set shown in Figure 2 to illustrate the complete ment method proposed in [Mitra et al. 2004] to optimize the rigid
shape completion pipeline. Note that in this model almost half of part R of the transform by minimizing the sum of squared distances
the surface geometry 1s missing due to occlusions, including the E(M, P) between acquired shape P and a database model M given
bottom and interior of the pot, as well as parts of the handle. Hole- as

filling techniques based on extrapolation would not be able to re- E(M,P) = > cil|Rp: — qi? (1)
cover the correct shape from this data, but would require a signif- icP

Loantly more complexpe procedure with multiple scans of where q; 1s the closest point on M from Rp;. Note that the squared
titerent poses of the object. distances are weighted by the confidence estimate c¢; to avoid false

alignments due to outliers or noisy samples. Equation 1 can by

2 Data Classification evaluated efficiently by pre-computing the signed distance field of
each database model as described in detail in [Mitra et al. 2004].

As illustrated in Figure 2, the acquired sample set P is inherently In our current system, database models are represented as triangle
unreliable and cannot be treated as ground truth. Noise and outliers meshes, though any other surface representation that allows closest
introduce uncertainty that needs to be considered when trying to re- point queries can be used also.

construct 4 consistent model. Ii available, we use confidence infor- The residual of the optimization is used to rank the retrieved context
mation provided by the scanning device to estimate the saliency of : : : : :

each sample point. We found it necessary, however, to include addi- models. Objects that align well with the acquired data are Iikely
: : : candidates for a successful shape completion and will thus be given

tional local consistency information to make the subsequent stages :
: : a high score. Figure 4 shows the results of the database retrieval for

more robust. We compute per-point confidence estimates as a com- the coffee creamer example
bination of two local geometry classifiers that analyze the distri- pic.
bution of samples within a small sphere centered at each sample

point. The first classifier ct € [0,1] measures the quality of fit of <
a local tangent plane estimate at p; € P, while the second classifier a" —c? € [0,1] analyzes the uniformity of the sampling pattern to detect § 3 Sulb f ohole boundaries (see Appendix). The combination of both classi- —
fiers yields the confidence estimate ¢; = ct -¢? € [0,1], which we h
evaluate at multiple scales by varying the size of the local neighbor- 1.93 1.71 1.46 1.27 1.0

hood spheres. Similar to [Pauly et al. 2003a], we look for distinct ) i -
local maxima of ¢; across the scale axis to automatically determine . —_— -—
the appropriate scale at each sample point (see also Lindeberg’s pa- Q (
per [1998] on automatic scale selection). For all examples in this \ Ng
paper we use ten discrete scale values, uniformly distributed be- h
tween 2h and 20h, where h 1s the minimum sample spacing of the
scanning device. Figure 3 shows the results of this multi-scale clas- Figure 4: Models retrieved by a combination of geometric and tex-
sification. tual query ordered from left to right according to decreasing relative

alignment error. The top row shows the original models, the bottom

. row shows the aligned models after re-scaling.
3 Database Retrieval

To transfer geometric information from the knowledge database to 4 Non-rigid Alignment
the acquired object, we need to identify a set of candidate models
My,...,M, that are suitable for completing the input data P. Data- The global similarity transform computed in the retrieval stage will
base retrieval of 3D objects has gained increasing attention in recent in general not align the extracted context models exactly with the
years and a variety of shape descriptors have been proposed to ad- acquired data. We thus need to deform each model M before trans-
dress this problem (see [Tangelder and Veltkamp 2004] for a recent ferring shape information from M to P. The goal is to find a
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Figure 6: Correspondence weights v; are determined using a bidi-
Figure 5: Measuring distortion for a continuous surface (a) and in rectional closest point search.
the discrete setting (b). The shaded region in (b) shows the area A ;
of the restricted Voronoi cell of v;.

Voronoi cell of v; restricted to M, hence the surface area of M is
given as Ay = >; 2Aji

smooth warping function 7 : M — IR? such that the deformed model
M’ = T(M) matches P. At the same time we want the distortion of 4.2 Geometric Error
M induced by T to be as small as possible. The idea is that if only
a small deformation is necessary to align a model with the acquired If P was a perfect sample, we would want to find the warping func-
data set, then this model is more likely to provide a meaningful tion T' that minimizes ®(M,T) under the constraint that T'(M) in-
continuation of the shape in regions of missing data. We capture terpolates P. However, since we are dealing with uncertain data ob-
this intuition by defining a shape matching penalty function ¥ that tained mn a physical measurement, enforcing interpolation can lead
combines the distortion of the transform and the geometric error be- to highly distorted context models that do not describe the acquired
tween warped model and input data. The optimal warping function shape adequately. We thus drop the interpolation constraint and in-
T can then be determined by minimizing this function [Allen et al. stead define a geometric penalty function €2 that measures the devi-
2003], [Sumner and Popovic 2004]. ation of the deformed model from the input sample. For two smooth

surfaces S1 and S$», we can define the squared geometric distance of
Similar to the rigid alignment computed in Section 3, we use the Si to S, as
residual of the optimization to evaluate the quality-of-fit of each BN >
database model. Hence the shape penalty function should be com- Q(S1,52) = IA d(x,S2)"dx, (4)
patible across different context models to allow a quantitative com- here d(x.S5) is the di f : S he cl
parison between the models. Additionally, we need to be able to do w o d(x. 2) 1s © anes otapomtx € oj oe ccoes Ponthis comparison locally, so that we can determine which model best In 52. lo discretize t 15 equation we epresent the surface op de-
describes the acquired shape in a certain region of the object fined by P as a collection of tangent disks attached to each sample

pi; € P. The orientation of the disk is given by the normal at p; and
. . its radius 1s determined from the size of a local k-neighborhood,

4.1 Distortion Measure similar to [Pauly et al. 2003b]. We can then approximate the geo-
To meet the above requirements and make the penalty function in- metric error by summing up the area-weighted squared distance of

: Ny each transformed vertex v; +t; of M to the closest compatible point
dependent of the specific discretization of a context model, we de- on Sp. leading t J
rive the distortion measure for discrete surfaces from the continuous 4; on op, leading to

setting (see also [Levy 2001]. Let S be a smooth 2-manifold sur- _ Allo Lt ell?

face. We can measure the distortion ®(S,T) on S induced by the QAPM.T) =2OjA vj +t = all” ©)
warping function T as

By compatible we mean that the normal of the tangent disk of q; de-
0 2 viates less than 90° from the normal of v; to avoid matching front-

OS, T) = | / 5 Ix(r0) | dodx, (2) and back-facing parts of both surfaces. ®; is an additional weight
Y defined as the product of two terms: The confidence estimate c;

where Tx (r, ¢) denotes a local parameterization of T at x using polar of the sample point in P associated with q;, and a correspondence
coordinates (r,@). The inner integral measures the local distortion weight v; that quantifies the validity of the correspondence between
of the mapping T at x by integrating the squared first derivative of vj and q;. Since P can be incomplete and M might contain parts
the warping function in each radial direction (see Figure 5 (a)). that do not match with the acquired object, we need to discard ver-

tices of M from contributing to the geometric error, if no valid cor-
Since we represent database models as triangle meshes, we approx- respondence with the samples of P can be established. We define
imate 7" as a piecewise linear function by specifying a displacement the correspondence weight using a simple, but effective heuristic:
vector t; for each vertex vJEM. The angular integral in Equation 2 Letrj be the closest point on the surface of model M from qji If
is discretized using a set of normal sections defined by the edges v; and r; are close, then we have a strong indication that the corre-

Ck n \ Ve where & €Ni(J) with N1 ) (he Ohc-1ing neighbor spondence is valid. We thus set v; = ells —1ilP/1* where h is the00d of vertex v;. We approximate the first derivative o using local 1 ; £p Fi 6
divided differences, which yields the discrete version of the distor- average local sample spacing of F* (see Figure 0).
tion measure ®(M,T) as 4.3 Optimization

2
ti —t We combine the distortion metric ®@ and the geometric error £2 to

OM, T) = 2. 2 Ajk ) (3) define the shape matching penalty function asJEM keN, (j) ei p gp y

a YPM, T)=0a-®M,T)+ (1-0) -QPM,T), (6)
As shown in Figure 5 (b), Aj; is the area of the triangle defined by
v; and the Voronoi edge dual to ej; in the Voronoi diagram of P where o 1s a parameter that allows to balance distortion and geo-
restricted to Ni(j). Note that A; = Yn, (j)Ajk 1s the area of the metric error. The warping function T is then computed iteratively
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dence are colored in gray in the images on the right. af ;
by minimizing ¥ with respect to the unknown displacement vec- input data warped context model
tors t;. This yields a sparse linear system of size 3n x 3n, where n

is the number of vertices in the mesh, that we solve using a sparse Figure 8: Incremental region growing for segmenting the context
matrix conjugate gradient solver. models.

We use a multi-level optimization scheme similar to the method

proposed by [Allen et al. 2003] and later adopted by [Sumner and
Popovic 2004]. There are a number of differences that we believe database models approximate the shape of the acquired object. We
are interesting to discuss. In the previous methods the deforma- first compute a segmentation of the context models into patches that
tion is represented by specifying an affine transform per vertex, cover the input point cloud in regions of high data confidence. In
whereas we approximate the warping function directly using dis- the next section we will describe how to extrapolate geometric in-
placement vectors. This leads to significant performance improve- formation from these patches to consistently fill in missing regions
ments, since linear system is reduced from 127 to 3n unknowns. and obtain a complete model representation.

More importantly, defining a compatible distortion metric directly The initial segmentation is computed using an incremental re-
on the unknowns is straightforward using the discretization of the gion growing process as shown in Figure 8. Starting from a seed
area integral of the local stretch measure (Equation 3). In the affine point p; € P, we determine which model best matches the acquired
case this 15 ore involved, since the same deformed mesh can be data in the vicinity of that point by evaluating the matching penalty
obtained via multiple different local transforms. On the other hand on a small patch around p;. The model M, with the smallest local
using aifine transforms has the advantage of better handling rota- penalty will be our candidate for this region. We then successively
tions and scaling. Since we factor out global rotations and scaling expand this patch by adding triangles adjacent to the patch bound-
during the initial alignment, we found this to be less critical, how- ary. The incremental growth is stopped wherever we encounter a
ever. Figure 7 shows the two warped context models for the coffee different model M; with a smaller matching penalty, indicating that
creamer example. this model provides a better representation of the acquired shape

in that region. To evaluate this criterion we require a mapping be-
Feature Correspondences. To avoid local minima in the opti- tween candidate models, which we establish using the correspon-
mization of Equation 6, we adapt the geometric penalty to include a dence computed in the alignment stage. For each new candidate
small set F C M of user-specified feature points. The user explicitly vertex v; € My adjacent to the current patch boundary, we look at
defines this set by selecting vertices of M together with correspond- the corresponding point q; € Sp used to compute the geometric er-
ing points on Sp. The influence of each feature vertex v; € F' can ror in Equation 5. We then find all vertices in M; that were mapped
be controlled by scaling the weight @; in Equation 5. Explicit fea- to points in the vicinity of q; and compare the matching penalty of
ture points are crucial for models for which the correct correspon- these vertices with the one at v;. If a vertex with a smaller value is
dence cannot be derived with the purely geometric approach of Sec- found, the triangle of v; will not be added to the patch. We also dis-
tion 4.2. An example is shown in Figure 10, where the semantics of card this triangle if the correspondence weight v; (see Section 4.2)
each part of the models is clearly defined and needs to be observed is low, indicating that we have reached a hole boundary in the data.
by the warping function. Feature points also provide a mechanism The growth of a patch terminates as soon as no more candidate ver-
for the user to control the non-rigid alignment for difficult partial tices can be added, as illustrated in Figure 8.
matches as shown in Figure 11. Similar to [Allen et al. 2003], we
start the optimization with high feature weights and strong empha- We seed the patch creation by maintaining a priority queue of all
sis on the smoothness term to obtain a valid initial alignment on a samples p; € P with high confidence (we use the top 5 percent of
low resolution model. At higher resolutions we decrease the influ- samples in all our examples) that have not yet been visited. The
ence of the feature points and steadily increase o to about 0.9 so queue is sorted according to decreasing confidence c¢; such that sam-
that the geometric error dominates in the final alignment. ples with high confidence will be used first to initiate a new patch.

The region growing is terminated once the queue 1s empty.

b Segmentation
6 Blending

After non-rigid alignment, we now need to determine how to com-
pose the final model from different parts of the warped context mod- The segmentation of the warped context models provides a suit-
els. In particular, we need to decide which model provides the most able representation of the scanned object in regions of high data
adequate shape continuation in regions of missing data. This de- confidence. To fill in parts where no reliable samples could be ac-
cision is based on the matching penalty ¥ computed during the quired, we need to extrapolate geometric information from the con-
alignment stage, as it provides a measure of how well the deformed text patches. Filling holes is straightforward if only one candidate
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between the two patches. We then use the stitching method of [Turk

—i 4 7 (E—. ~Wa= and Levoy 1994] to obtain a single manifold surface.

| J | : J 7 Results and Discussion
initial segmentation final segmentation We have tested our model completion pipeline on a number of ac-

quired data sets with significantly different shape characteristics.

All examples contain large, complex holes due to occlusions, graz-
Figure 9: Blending. Top row from left to right: Two patches from ing angles, or specular reflections. Repairing these models without
different models meet at a hole boundary, new sample points are context information from the database would require substantial
added from the model with lower shape matching penalty, both manual intervention using geometric modeling tools, since model
models are re-aligned with the enhanced point cloud and patches completion techniques based on smooth extrapolation would not be
are enlarged. The top image shows a 2D illustration of the warped able to create a consistent model.
context models, the bottom image shows the current patches. Bot-
tom row: segmentation before and after blending. Back-facing tri- Figure 14 shows the final reconstruction of the coffee creamer ex-
angles are colored. ample. Note how the characteristic features of the model are faith-

fully recovered and different parts of the two database models are
blended in a natural way without any visual seams. The deforma-

model covers the entire boundary of a hole. For example, the hole tion of the context models even captures the spout, which is not
on the top of the creamer’s handle 1s entirely enclosed by a single present initially in any of the two models. However, in regions
patch from the warped cup model (see Figure 8). We can thus sim- of insufficient input data, e.g., around the rim or at the top of the
ply copy and paste the corresponding surface part of that model. handle, the reconstructed model clearly exhibits characteristics of

the context models. Apart from specifying optimization parame-
The situation is more complicated when two or more models meet ters and keywords for the textual search, this example requires no
at a hole boundary. Copying and pasting parts of each model will further user interaction. In particular, no feature points need to be
not yield a consistent surface, since the candidate models do not specified to guide the alignment process. This leads to an overall
agree away from the input data. Even if a cut along an intersec- processing time of less than two minutes.
tion curve can be found, an unnatural crease might be created that

causes visual artifacts. To address this issue we propose an incre- gn, pe
mental blending method illustrated in Figure 9. Starting from the a Preis 3 <<
initial patch layout computed in the segmentation stage, we succes- Kk \ (
sively add samples to the input data by copying vertices from the : AS yr
patch boundaries of the segmented context models. These newly \ Q a
added sample points represent the continuation of the data surface N A |
at a hole boundary, as suggested by the best matching model in that

region. We then re-compute the warping function for all database Figure 14: Reconstructed coffee creamer, from left to right: Physi-
models to conform with this enhanced point set. Since the previous cal model, acquired data set, reconstructed model.
alignment provides a very good initial guess, only a few iterations

of the optimization are required. After updating the alignment, we On the other hand, precise matching of feature points is crucial in
enlarge the context patches using the region growling algorithm de- the example of Figure 10. Since the semantics of every part of the
scribed in the previous section. We repeat this procedure until the animals’ bodies are well defined, even slight misalignments would
patch growing terminates, indicating that all the holes have been be clearly noticeable. The acquired giraffe data set has been com-
closed. pleted with parts of the horse, camel, and lion. After computing
_ the non-rigid alignment using 40 manually specified feature cor-

Stitching. The patch layout now provides the necessary pieces to respondences, the automatic segmentation and blending methods
compose the final model. We enlarge each patch by adding triangles create a faithful reconstruction of the giraffe model. This example
along the patch boundary to create a smooth and seamless transition clearly demonstrates the advantages of combining context informa-
between adjacent patches. We achieve this blend by applying the tion from different models, since a satisfactory shape completion
same optimization as in the non-rigid alignment stage described in could not be obtained from any of the deformed context models
Section 4, except that we do not warp the models towards the input alone.
point cloud, but towards each other. Consider the example shown
in Figure 13. As shown on the left, the two patches from the vase Figure 15 illustrates how shape completion is continuously simpli-
and the cup do not match exactly in the region of overlap. We fied by enriching the database with already acquired and consol-
therefore compute a warping function 7; that aligns the vase with idated models. The two giraffes are completed using the model
the cup and a warping function 7> that aligns the cup with the vase, of Figure 10 as a context model. Even though the input data is
and apply half of each transform to the corresponding model. A noisy and consists of multiple, imperfectly aligned scans, a high-
few iterations of this process create a conforming overlap region quality reconstruction is obtained. Note that due to size restrictions



of the scanner, no data has been acquired for the head of the tall gi- present in any of the context models and the data set is incomplete
raffe, hence its orientation is not captured correctly. This example in this region. In such cases, the user either needs to acquire more
demonstrates how our system can be used in connection with low- data, enrich the database by providing more suitable context mod-
cost scanning devices to quickly create detailed 3D models that can els, or manually edit the final model.
readily be used in interactive applications such as games.

A more complex example is shown in Figure 11. The input data is a y X g

single range image that contains large, complex holes due to occlu- & i 4 du ¢ 1. x \

sion. The two pillars shown in 3 and 4 are used as context models to a D 0) EN \repair the highly incomplete lower sections of the wall. The panels aN
on the ceiling are completed successively using multiple iterations input data context model final model evaluation
of our pipeline. The first panel on the lower left is repaired using

a simple plane as a geometric prior. The consolidated panel is then Figure 16: Evaluating the final completed shape. The color-coding
used to fix the other panels in this arch. Once the whole arch is in the right image shows the shape matching penalty, where red
completed, it can be extracted to be used as a context model for the color indicates insufficient surface completion due to invalid corre-
right arch. Note that the panels are not exact copies of each other, spondence between input data and context models.
so simple copy and paste operations will not yield adequate results.
User assistance is required to select appropriate parts in the data

that can be used as context models for other regions, and to provide Co
an initial alignment for those parts using four feature correspon- Limitations. Our context model retrieval relies on textual
dences per piece. Interaction time for a trained user is less then queries, which requires a well annotated shape database. This is
half an hour, compared to multiple hours that would be required particularly important for models that only provide partial com-
with standard modeling tools. This example also illustrates how pletions in a certain region of the input data, but disagree greatly
large scale model acquisition can be significantly simplified if the in other parts. Pre-segmentation of database models can simplify
acquired scene contains repetitive structures. An element acquired the retrieval of partially matching shapes, but requires a substan-
with high accuracy can be used as a context model for similar parts, tially more involved database search. In our current implementa-
which can then be scanned at much lower resolution. tion, context models have to be manifold surfaces to ensure correct

front-propagation during segmentation. Many existing 3D shapes
’ available in public databases are non-manifold models that would

8 _— 4 require pre-processing to transform them into manifolds, e.g., using

“ the method proposed in [Shen et al. 2004].
At ) | Similar to [Allen et al. 2003] and [Sumner and Popovic 2004] we

ws! Sans.Vv. : p= control the distortion of the warping function when computing the
| yx. J FeV non-rigid alignment, not the shape of the deformed model. Thus8 i2 ny ; R11 we can make no guarantees that the warped model is free of self-

ae | Fah FF | intersections. We discard a context model when we detect such aae } 6 {fk \¢¥ Lr 4 oN case, yet constraining the deformation to prevent self-intersections
RS a, = a) — might be a more adequate solution.

Figure 15: Shape reconstruction from low-quality data, from left to The distortion measure that controls the SIOothness of the WAIDing
CS : : function is isotropic, i.e., penalizes distortion equally in all radial

right: Physical model, acquired data set, reconstructed model. Lo. : :
directions. If the acquired model has a high-frequency detail, e.g.,
a sharp crease, that is not present in the context model, the weight

Additional Constraints. The shape matching penalty defined in on the distortion measure needs to be low (i.e., o has to be close to
Section 4 only considers low-level geometric properties to deter- one in Equation 6), so that the warped context model can be aligned
mine the warping function for non-rigid alignment. However, many to this geometric feature. This, however, will also pick up noise
models have specific high-level semantics that are not considered present in the input data, as can be observed in Figure 11. A solu-
in this measure. For example, certain models exhibit symmetries tion could be to design an anisotropic shape matching penalty that
that should be preserved by the warping function. As shown in locally respects that characteristics of the input geometry, similar to
Figure 12, we can adapt the alignment by adding appropriate con- anisotropic low-pass filters used in data smoothing.

straints in the optimization. Another typical cxample is articulated The blending method of Section 6 requires consistent topology
models, where deformations that describe rotations around joints of the context models in regions where two or more models are
should be penalized significantly less than ones that result in a bend- bl g : : :: ny : ended. We detect topological mismatches from inconsistencies
ing of rigid parts of the skeletal structure. This can be achieved by :

: o in the correspondence between different models, and exclude the
using a full kinematic description of the context models to adjust del with hicher shape matchine penalty from the blending Stace
the matching penalty function accordingly. THOGET WITH Tel SHAPE MAChing penaity ro C DICNAINg SLig

in this region. We can give no guarantees, however, that this heuris-

Evaluation. A distinct advantage of our method is that it not only tic always produces the correct shap¢ topology. We thus also allow
: the user to manually discard individual models, if the topology is

provides a final consolidated surface mesh, but also allows a local hich 4 licit trol of th .
evaluation of the quality of the reconstructed model. We can easily inconsistent, which provides more explicit control of the semantics
) : : : of the consolidated shape.
identify regions where no adequate shape completion can be ob-
tained, either because no valid correspondence between input data
and context models can be established, or because the distortion 8 Conclusion and Future Work
of the warping function is too high to provide a meaningful shape
prior for the acquired data. The zoom of the giraffe’s head shown We have presented an example-based shape completion framework
in Figure 16 depicts a case where our method does not recover a for acquired 3D surface data. Central to our method is the abil-
semantically correct shape, since the horns of the giraffe are not ity to combine context information from different geometric priors
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Figure 10: Shape completion zoo. Horse, camel, and lion are deformed, segmented and blended to yield the final shape of the giraffe.

acquisition setup Ge | E } i iF !

(1) AP) i ge Lo tx BE hl
Me oo ts fel 4 igs oh i

i ped BES 2 by 3 final model

acquired data

Figure 11: Completion of a single range image acquired in the Galleria dell’ Accademia in Florence. Context models, shown in brown, are
either retrieved from the database or extracted by the user from already completed parts of the model. The David model has been added for
completeness.
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Figure 12: Symmetry constraints yield a semantically more adequate shape completion. The warping function for the model on the right has
been constrained to be symmetric with respect to the semi-transparent plane shown in the center.


