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Abstract

Optical acquisition devices often produce noisy and incomplete
data sets, due to occlusion, unfavorable surface reflectance prop-
erties, or geometric restrictions in the scanner setup. We present a
novel approach for obtaining a complete and consistent 3D model
representation from such incomplete surface scans, using a data-
base of 3D shapes to provide geometric priors for regions of miss-
ing data. Our method retrieves suitable context models from the
database, warps the retrieved models to conform with the input
data, and consistently blends the warped models to obtain the fi-
nal consolidated 3D shape. We define a shape matching penalty
function and corresponding optimization scheme for computing the
non-rigid alignment of the context models with the input data. This
allows a quantitative evaluation and comparison of the quality of
the shape extrapolation provided by each model. Our algorithms
are explicitly designed to accommodate uncertain data and can thus
be applied directly to raw scanner output. We show on a variety of
real data sets how consistent models can be obtained from highly
incomplete input. The information gained during the shape com-
pletion process can be utilized for future scans, thus continuously
simplifying the creation of complex 3D models.

CR Categories:  1.3.5 [Computer Graphics]: Computational
Geometry and Object Modeling—curve, surface, solid, and object
representations

Keywords: shape completion, non-rigid alignment, 3D acquisi-
tion, hole filling, surface reconstruction

1 Introduction

3D shape acquisition has become a major source for the generation
of complex digital 3D models. Numerous scanning systems have
been developed in recent years, including low-cost optical scanners
that allow 3D data acquisition on a large scale. Obtaining a com-
plete and consistent 3D model representation from acquired surface
samples is still a tedious process, however, that can easily take mul-
tiple hours, even for an experienced user. Significant manual assis-
tance is often required for tasks such as scan path planning, data
cleaning, hole filling, alignment, and model extraction. Knowl-
edge about the acquired shape gained in this process is typically
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not utilized in subsequent scans, where the same time consuming
procedure has to be repeated all over again.

Our goal is to simplify the model creation process by exploiting
previous experience on shapes stored in a 3D model database. This
allows the generation of clean and complete 3D shape models even
from highly incomplete scan data, reducing the complexity of the
acquisition process significantly. The main idea is to mimic the
experienced-based human approach to shape perception and under-
standing. Humans have the intuitive capability to quickly grasp a
perceived 3D shape, even though only a fraction of the actual geo-
metric data is available to the eye. This is possible because we
make extensive use of prior knowledge about shapes, acquired over
years of experience. When seeing an object, we immediately put it
into context with other similar shapes that we have previously ob-
served and transfer information from those shapes to fill missing
parts in the perceived object. In digital 3D shape acquisition, we
are faced with a similar problem: Most optical acquisition devices
will produce incomplete and noisy data due to occlusions and phys-
ical limitations of the scanner. How can we obtain a complete and
consistent representation of the 3D shape from this acquired data?

One approach is to apply low-level geometric operations, such as
noise and outlier removal filters [Taubin 1995], [Jones et al. 2003],
[Fleishman et al. 2003], [Weyrich et al. 2004] and hole-filling tech-
niques based on smooth extrapolations, e.g., [Davis et al. 2002],
[Verdera et al. 2003], [Liepa 2003], [Clarenz et al. 2004]. These
methods are successful in repairing small deficiencies in the data,
but have difficulties with complex holes or when large parts of the
object are missing. In such cases, trying to infer the correct shape
by only looking at the acquired sample points quickly becomes in-
feasible. A common way to address this ill-posed problem is to use
an explicit prior in the form of a carefully designed template model.
The prior is aligned with the acquired data and holes are filled by
transferring geometric information from the warped template. The
cost of designing the template model is quickly amortized when a
whole set of similar objects is digitized, as has been demonstrated
successfully with human heads [Blanz and Vetter 1999], [Kéhler
et al. 2002], [Blanz et al. 2004] and bodies [Allen et al. 2003].

We extend this idea to arbitrary shapes by replacing a single, tailor-
made template model with an entire database of 3D objects. This
allows shape completion by combining geometric information from
different context models. To successfully implement such a system,
however, we need to address the following issues: How can we
extract models from the database that provide a meaningful shape
continuation in regions of missing data? How can we compute and
consistently evaluate local shape deformations that align the context
models with the acquired data? How can we select among multi-
ple database models the ones that provide the most adequate shape
completion in different regions of the scan? And finally, how can
we blend geometric information from different models to obtain a
complete and consistent representation of the acquired object?

In this paper we mainly focus on the last three aspects, using a
database retrieval method that relies on existing techniques adapted
to our application. We define a shape similarity metric and corre-
sponding optimization scheme for aligning context models with the
acquired data set and present a method for segmenting and blend-
ing contributions from different models, while preserving appro-
priate continuity constraints. Our algorithms are designed to work
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Figure 1: High-level overview of our context-based shape completion pipeline.

with uncertain data and can thus be applied directly to raw scanner
output. We show how these methods can be integrated to yield a
complete context-based shape completion pipeline.

1.1 Related Work

Spawned by a proliferation of commercially available 3D acqui-
sition devices, surface reconstruction from point samples has be-
come an active area of research over the last few years. Early
methods based on signed distance field interpolation have been
presented by [Hoppe et al. 1992] and [Curless and Levoy 1996].
Voronoi-based approaches with provable guarantees where intro-
duced by [Amenta et al. 1998] and [Dey and Goswami 2003], who
extended their work in [Dey and Goswami 2004] to handle noisy
input data. While these techniques can handle small holes and mod-
erately under-sampled regions in the input data, they are less suited
for data sets with large holes that often occur in 3D data acquisi-
tion. To address this problem, various methods for model repair
based on smooth extrapolation have been proposed. [Carr et al.
2001] and [Ohtake et al. 2003] use radial basis functions to ex-
tract manifold surfaces from incomplete point clouds. [Davis et al.
2002] presented an algorithm that applies volumetric diffusion to
a signed distance field representation to effectively handle topo-
logically complex holes. An extension of this idea has been pro-
posed by [Verdera et al. 2003], who use partial differential equa-
tions to evolve the distance field, similar to inpainting techniques
used for images. [Sharf et al. 2004] presented a system that pre-
serves high-frequency detail by replicating local patches within the
acquired 3D data set, as an extension of the 2D method proposed
in [Drori et al. 2003]. Other approaches for shape completion are
the triangulation-based method proposed by [Liepa 2003] and the
system based on finite elements presented in [Clarenz et al. 2004].

The underlying assumption in all of these methods is that an appro-
priate shape continuation can be inferred from the acquired sample
points only, using generic smoothness or self-similarity priors for
missing parts of the model. Since the surface reconstruction prob-
lem is inherently ill-posed, the use of explicit template priors has
been proposed by various authors. [Ramamoorthi and Arvo 1999]
presented a method to recognize and fit a parametric spline surface
to acquired surface data. Template-based hole filling has also been
used in [Blanz and Vetter 1999], [Kihler et al. 2002], [Blanz et al.
2004] and [Allen et al. 2003], where input data and morphable tem-
plate model were represented as triangle meshes. These methods
are well-suited for object classes with well-defined shape variabil-
ity, where a single template model can be adjusted to fit the entire
acquired data set. Our approach differs in that we are not assuming

a priori knowledge of the underlying shape space, but try to infer
automatically how to combine different context models that are re-
trieved from a database for the specific input data produced by the
scan.

A central component of our system is a method for computing
non-rigid alignments of database models with the acquired input
data. [Allen et al. 2003] and [Sumner and Popovic 2004] pre-
sented alignment algorithms similar to ours that use an optimiza-
tion framework to compute a smooth warping function. We extend
this scheme to allow a quantitative comparison of the quality of the
alignment across different models, which has not been a concern in
previous methods. An interesting alternative has been proposed by
[Anguelov et al. 2004], who introduced a probabilistic scheme for
unsupervised registration of non-rigid shapes.

Our system bears some resemblance to the shape modeling system
proposed by Funkhouser et al. [2004], where the user can create
new models by cutting and pasting rigid parts of existing shapes
retrieved from a shape database. The focus of their work is on cre-
ative design and interaction, while we concentrate on model repair
and shape completion of surface scans.

1.2 Overview

Figure 1 gives an overview of our shape completion pipeline. 3D
acquisition devices typically produce a set P of possibly noisy point
samples p; € IR3 that describe (parts of) a 2D boundary surface of
a 3D object. We assume that P is equipped with approximate nor-
mals, which are commonly provided by the scanner, or can be es-
timated directly from the point samples [Hoppe et al. 1992]. This
input point cloud is pre-processed using multi-scale analysis to ob-
tain a scalar confidence estimate that quantifies the consistency of
each sample point with its neighboring samples. Subsequent stages
of the pipeline will take these confidence weights into account to
adapt the processing to the uncertainty in the acquired data. In the
next stage, we retrieve a small set of candidate models from the
database using a combination of multiple retrieval methods. The
candidate models are then warped to match the shape of the input
point cloud. To compute this non-rigid alignment we use an op-
timization process that balances geometric error, distortion of the
deformation, and semantic consistency defined by a small set of
feature correspondences. We segment the warped models into parts
that best correspond to the input data based on a local shape sim-
ilarity metric. Context information is propagated into regions of
missing data, while continuously updating the alignment to ensure
consistency between different context models. The segments are
then combined using a geometric stitching technique that blends



Figure 2: Left: Acquisition setup with Cyberware Desktop 3D
Scanner 15 and physical model, right: Raw point cloud obtained
from six range images in a single rotational scan. The spiky out-
liers are artifacts caused by specular reflections.

adjacent parts from different models to avoid visual discontinuities
along the seams. If a successful shape completion has been ob-
tained, the final model is entered into the database for future use as
a context model.

The following sections discuss these individual stages in more de-
tail, using the data set shown in Figure 2 to illustrate the complete
shape completion pipeline. Note that in this model almost half of
the surface geometry is missing due to occlusions, including the
bottom and interior of the pot, as well as parts of the handle. Hole-
filling techniques based on extrapolation would not be able to re-
cover the correct shape from this data, but would require a signif-
icantly more complex scanning procedure with multiple scans of
different poses of the object.

2 Data Classification

As illustrated in Figure 2, the acquired sample set P is inherently
unreliable and cannot be treated as ground truth. Noise and outliers
introduce uncertainty that needs to be considered when trying to re-
construct a consistent model. If available, we use confidence infor-
mation provided by the scanning device to estimate the saliency of
each sample point. We found it necessary, however, to include addi-
tional local consistency information to make the subsequent stages
more robust. We compute per-point confidence estimates as a com-
bination of two local geometry classifiers that analyze the distri-
bution of samples within a small sphere centered at each sample
point. The first classifier clf1 € [0, 1] measures the quality of fit of
a local tangent plane estimate at p; € P, while the second classifier
¢ € [0, 1] analyzes the uniformity of the sampling pattern to detect
hole boundaries (see Appendix). The combination of both classi-
fiers yields the confidence estimate ¢; = clf1 -¢f €10,1], which we
evaluate at multiple scales by varying the size of the local neighbor-
hood spheres. Similar to [Pauly et al. 2003a], we look for distinct
local maxima of ¢; across the scale axis to automatically determine
the appropriate scale at each sample point (see also Lindeberg’s pa-
per [1998] on automatic scale selection). For all examples in this
paper we use ten discrete scale values, uniformly distributed be-
tween 24 and 20h, where & is the minimum sample spacing of the
scanning device. Figure 3 shows the results of this multi-scale clas-
sification.

3 Database Retrieval

To transfer geometric information from the knowledge database to
the acquired object, we need to identify a set of candidate models
My, ... ,M, that are suitable for completing the input data P. Data-
base retrieval of 3D objects has gained increasing attention in recent
years and a variety of shape descriptors have been proposed to ad-
dress this problem (see [Tangelder and Veltkamp 2004] for a recent

high

Figure 3: Quality of fit estimate c?” and local uniformity estimate
cf’ are combined to yield the final confidence estimate c;.

survey). In our case the retrieval problem is particularly difficult,
since we are dealing with noisy, potentially highly incomplete data.
We thus rely on a combination of textual search and shape-based
signatures, similar to [Funkhouser et al. 2004]. We first confine the
search space using a few descriptive keywords provided by the user.
On this restricted set of models, we compute a similarity measure
based on point-wise squared distances. We use PCA to factor out
global scaling and estimate an initial pose. Then we apply the align-
ment method proposed in [Mitra et al. 2004] to optimize the rigid
part R of the transform by minimizing the sum of squared distances
E(M,P) between acquired shape P and a database model M given

as )
Y cillRp; — qill*, 6]
icp

E(M,P)=

where q; is the closest point on M from Rp;. Note that the squared
distances are weighted by the confidence estimate ¢; to avoid false
alignments due to outliers or noisy samples. Equation 1 can by
evaluated efficiently by pre-computing the signed distance field of
each database model as described in detail in [Mitra et al. 2004].
In our current system, database models are represented as triangle
meshes, though any other surface representation that allows closest
point queries can be used also.

The residual of the optimization is used to rank the retrieved context
models. Objects that align well with the acquired data are likely
candidates for a successful shape completion and will thus be given
a high score. Figure 4 shows the results of the database retrieval for
the coffee creamer example.
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Figure 4: Models retrieved by a combination of geometric and tex-
tual query ordered from left to right according to decreasing relative
alignment error. The top row shows the original models, the bottom
row shows the aligned models after re-scaling.

4 Non-rigid Alignment

The global similarity transform computed in the retrieval stage will
in general not align the extracted context models exactly with the
acquired data. We thus need to deform each model M before trans-
ferring shape information from M to P. The goal is to find a



Figure 5: Measuring distortion for a continuous surface (a) and in
the discrete setting (b). The shaded region in (b) shows the area A
of the restricted Voronoi cell of v;.

smooth warping function T : M — IR such that the deformed model
M' = T(M) matches P. At the same time we want the distortion of
M induced by T to be as small as possible. The idea is that if only
a small deformation is necessary to align a model with the acquired
data set, then this model is more likely to provide a meaningful
continuation of the shape in regions of missing data. We capture
this intuition by defining a shape matching penalty function ¥ that
combines the distortion of the transform and the geometric error be-
tween warped model and input data. The optimal warping function
T can then be determined by minimizing this function [Allen et al.
2003], [Sumner and Popovic 2004].

Similar to the rigid alignment computed in Section 3, we use the
residual of the optimization to evaluate the quality-of-fit of each
database model. Hence the shape penalty function should be com-
patible across different context models to allow a quantitative com-
parison between the models. Additionally, we need to be able to do
this comparison locally, so that we can determine which model best
describes the acquired shape in a certain region of the object.

4.1 Distortion Measure

To meet the above requirements and make the penalty function in-
dependent of the specific discretization of a context model, we de-
rive the distortion measure for discrete surfaces from the continuous
setting (see also [Levy 2001]. Let S be a smooth 2-manifold sur-
face. We can measure the distortion ®(S,T) on S induced by the
warping function T as

os.1= [ [ (2nce) i @

where Tx(r, @) denotes a local parameterization of T at x using polar
coordinates (r, ). The inner integral measures the local distortion
of the mapping 7T at x by integrating the squared first derivative of
the warping function in each radial direction (see Figure 5 (a)).

Since we represent database models as triangle meshes, we approx-
imate T as a piecewise linear function by specifying a displacement
vector t; for each vertex v; € M. The angular integral in Equation 2
is discretized using a set of normal sections defined by the edges
€ = V; — Vi, where k € N1 (j) with Ny (/) the one-ring neighbor-
hood of vertex v;. We approximate the first derivative of 7 using
divided differences, which yields the discrete version of the distor-
tion measure ®(M,T) as

L 2
OM,T)= 3 Ay (M) . ©)
)
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As shown in Figure 5 (b), A j; is the area of the triangle defined by
v; and the Voronoi edge dual to ej; in the Voronoi diagram of P
restricted to N1 (j). Note that Aj = e, (j)Ajx is the area of the

high

low

Figure 6: Correspondence weights v; are determined using a bidi-
rectional closest point search.

input data

warped model

Voronoi cell of v; restricted to M, hence the surface area of M is
givenas Ay =X Sk Aji-

4.2 Geometric Error

If P was a perfect sample, we would want to find the warping func-
tion 7 that minimizes ®(M,T) under the constraint that 7' (M) in-
terpolates P. However, since we are dealing with uncertain data ob-
tained in a physical measurement, enforcing interpolation can lead
to highly distorted context models that do not describe the acquired
shape adequately. We thus drop the interpolation constraint and in-
stead define a geometric penalty function Q that measures the devi-
ation of the deformed model from the input sample. For two smooth
surfaces S; and S5, we can define the squared geometric distance of
S to S as

Q(51,52) = [ d(x.52)%x, @)

where d(x,S») is the distance of a point x € §; to the closest point
in . To discretize this equation we represent the surface Sp de-
fined by P as a collection of tangent disks attached to each sample
p; € P. The orientation of the disk is given by the normal at p; and
its radius is determined from the size of a local k-neighborhood,
similar to [Pauly et al. 2003b]. We can then approximate the geo-
metric error by summing up the area-weighted squared distance of
each transformed vertex v -+t; of M to the closest compatible point
q; on Sp, leading to

QPM,T) =Y wjAjlv;+t;—q;l*. )
jem

By compatible we mean that the normal of the tangent disk of q; de-
viates less than 90° from the normal of v; to avoid matching front-
and back-facing parts of both surfaces. ®; is an additional weight
defined as the product of two terms: The confidence estimate c;
of the sample point in P associated with q;, and a correspondence
weight v; that quantifies the validity of the correspondence between
v; and q;. Since P can be incomplete and M might contain parts
that do not match with the acquired object, we need to discard ver-
tices of M from contributing to the geometric error, if no valid cor-
respondence with the samples of P can be established. We define
the correspondence weight using a simple, but effective heuristic:
Let r; be the closest point on the surface of model M from q;. If
v; and r; are close, then we have a strong indication that the corre-

spondence is valid. We thus set v; = e~ IVi—rilP/7 | where h is the
average local sample spacing of P (see Figure 6).
4.3 Optimization

We combine the distortion metric ® and the geometric error Q to
define the shape matching penalty function ¥ as

where o is a parameter that allows to balance distortion and geo-
metric error. The warping function T is then computed iteratively
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Figure 7: Non-rigid alignment. Points without valid correspon-
dence are colored in gray in the images on the right.

context model

by minimizing ¥ with respect to the unknown displacement vec-
tors t;. This yields a sparse linear system of size 3n x 3n, where n
is the number of vertices in the mesh, that we solve using a sparse
matrix conjugate gradient solver.

We use a multi-level optimization scheme similar to the method
proposed by [Allen et al. 2003] and later adopted by [Sumner and
Popovic 2004]. There are a number of differences that we believe
are interesting to discuss. In the previous methods the deforma-
tion is represented by specifying an affine transform per vertex,
whereas we approximate the warping function directly using dis-
placement vectors. This leads to significant performance improve-
ments, since linear system is reduced from 12n to 3n unknowns.
More importantly, defining a compatible distortion metric directly
on the unknowns is straightforward using the discretization of the
area integral of the local stretch measure (Equation 3). In the affine
case this is more involved, since the same deformed mesh can be
obtained via multiple different local transforms. On the other hand
using affine transforms has the advantage of better handling rota-
tions and scaling. Since we factor out global rotations and scaling
during the initial alignment, we found this to be less critical, how-
ever. Figure 7 shows the two warped context models for the coffee
creamer example.

Feature Correspondences. To avoid local minima in the opti-
mization of Equation 6, we adapt the geometric penalty to include a
small set ' C M of user-specified feature points. The user explicitly
defines this set by selecting vertices of M together with correspond-
ing points on Sp. The influence of each feature vertex v; € F can
be controlled by scaling the weight w; in Equation 5. Explicit fea-
ture points are crucial for models for which the correct correspon-
dence cannot be derived with the purely geometric approach of Sec-
tion 4.2. An example is shown in Figure 10, where the semantics of
each part of the models is clearly defined and needs to be observed
by the warping function. Feature points also provide a mechanism
for the user to control the non-rigid alignment for difficult partial
matches as shown in Figure 11. Similar to [Allen et al. 2003], we
start the optimization with high feature weights and strong empha-
sis on the smoothness term to obtain a valid initial alignment on a
low resolution model. At higher resolutions we decrease the influ-
ence of the feature points and steadily increase o to about 0.9 so
that the geometric error dominates in the final alignment.

5 Segmentation

After non-rigid alignment, we now need to determine how to com-
pose the final model from different parts of the warped context mod-
els. In particular, we need to decide which model provides the most
adequate shape continuation in regions of missing data. This de-
cision is based on the matching penalty ¥ computed during the
alignment stage, as it provides a measure of how well the deformed
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Figure 8: Incremental region growing for segmenting the context
models.

database models approximate the shape of the acquired object. We
first compute a segmentation of the context models into patches that
cover the input point cloud in regions of high data confidence. In
the next section we will describe how to extrapolate geometric in-
formation from these patches to consistently fill in missing regions
and obtain a complete model representation.

The initial segmentation is computed using an incremental re-
gion growing process as shown in Figure 8. Starting from a seed
point p; € P, we determine which model best matches the acquired
data in the vicinity of that point by evaluating the matching penalty
on a small patch around p;. The model M} with the smallest local
penalty will be our candidate for this region. We then successively
expand this patch by adding triangles adjacent to the patch bound-
ary. The incremental growth is stopped wherever we encounter a
different model M; with a smaller matching penalty, indicating that
this model provides a better representation of the acquired shape
in that region. To evaluate this criterion we require a mapping be-
tween candidate models, which we establish using the correspon-
dence computed in the alignment stage. For each new candidate
vertex v; € My adjacent to the current patch boundary, we look at
the corresponding point q; € Sp used to compute the geometric er-
ror in Equation 5. We then find all vertices in M, that were mapped
to points in the vicinity of q; and compare the matching penalty of
these vertices with the one at v;. If a vertex with a smaller value is
found, the triangle of v; will not be added to the patch. We also dis-
card this triangle if the correspondence weight v; (see Section 4.2)
is low, indicating that we have reached a hole boundary in the data.
The growth of a patch terminates as soon as no more candidate ver-
tices can be added, as illustrated in Figure 8.

We seed the patch creation by maintaining a priority queue of all
samples p; € P with high confidence (we use the top 5 percent of
samples in all our examples) that have not yet been visited. The
queue is sorted according to decreasing confidence ¢; such that sam-
ples with high confidence will be used first to initiate a new patch.
The region growing is terminated once the queue is empty.

6 Blending

The segmentation of the warped context models provides a suit-
able representation of the scanned object in regions of high data
confidence. To fill in parts where no reliable samples could be ac-
quired, we need to extrapolate geometric information from the con-
text patches. Filling holes is straightforward if only one candidate
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Figure 9: Blending. Top row from left to right: Two patches from
different models meet at a hole boundary, new sample points are
added from the model with lower shape matching penalty, both
models are re-aligned with the enhanced point cloud and patches
are enlarged. The top image shows a 2D illustration of the warped
context models, the bottom image shows the current patches. Bot-
tom row: segmentation before and after blending. Back-facing tri-
angles are colored.

model covers the entire boundary of a hole. For example, the hole
on the top of the creamer’s handle is entirely enclosed by a single
patch from the warped cup model (see Figure 8). We can thus sim-
ply copy and paste the corresponding surface part of that model.

The situation is more complicated when two or more models meet
at a hole boundary. Copying and pasting parts of each model will
not yield a consistent surface, since the candidate models do not
agree away from the input data. Even if a cut along an intersec-
tion curve can be found, an unnatural crease might be created that
causes visual artifacts. To address this issue we propose an incre-
mental blending method illustrated in Figure 9. Starting from the
initial patch layout computed in the segmentation stage, we succes-
sively add samples to the input data by copying vertices from the
patch boundaries of the segmented context models. These newly
added sample points represent the continuation of the data surface
at a hole boundary, as suggested by the best matching model in that
region. We then re-compute the warping function for all database
models to conform with this enhanced point set. Since the previous
alignment provides a very good initial guess, only a few iterations
of the optimization are required. After updating the alignment, we
enlarge the context patches using the region growing algorithm de-
scribed in the previous section. We repeat this procedure until the
patch growing terminates, indicating that all the holes have been
closed.

Stitching. The patch layout now provides the necessary pieces to
compose the final model. We enlarge each patch by adding triangles
along the patch boundary to create a smooth and seamless transition
between adjacent patches. We achieve this blend by applying the
same optimization as in the non-rigid alignment stage described in
Section 4, except that we do not warp the models towards the input
point cloud, but towards each other. Consider the example shown
in Figure 13. As shown on the left, the two patches from the vase
and the cup do not match exactly in the region of overlap. We
therefore compute a warping function 77 that aligns the vase with
the cup and a warping function 75 that aligns the cup with the vase,
and apply half of each transform to the corresponding model. A
few iterations of this process create a conforming overlap region

y B

Figure 13: Stitching, from left to right: initial configuration, two
intermediate steps of alignment, final stitched model.

between the two patches. We then use the stitching method of [Turk
and Levoy 1994] to obtain a single manifold surface.

7 Results and Discussion

We have tested our model completion pipeline on a number of ac-
quired data sets with significantly different shape characteristics.
All examples contain large, complex holes due to occlusions, graz-
ing angles, or specular reflections. Repairing these models without
context information from the database would require substantial
manual intervention using geometric modeling tools, since model
completion techniques based on smooth extrapolation would not be
able to create a consistent model.

Figure 14 shows the final reconstruction of the coffee creamer ex-
ample. Note how the characteristic features of the model are faith-
fully recovered and different parts of the two database models are
blended in a natural way without any visual seams. The deforma-
tion of the context models even captures the spout, which is not
present initially in any of the two models. However, in regions
of insufficient input data, e.g., around the rim or at the top of the
handle, the reconstructed model clearly exhibits characteristics of
the context models. Apart from specifying optimization parame-
ters and keywords for the textual search, this example requires no
further user interaction. In particular, no feature points need to be
specified to guide the alignment process. This leads to an overall
processing time of less than two minutes.

Figure 14: Reconstructed coffee creamer, from left to right: Physi-
cal model, acquired data set, reconstructed model.

On the other hand, precise matching of feature points is crucial in
the example of Figure 10. Since the semantics of every part of the
animals’ bodies are well defined, even slight misalignments would
be clearly noticeable. The acquired giraffe data set has been com-
pleted with parts of the horse, camel, and lion. After computing
the non-rigid alignment using 40 manually specified feature cor-
respondences, the automatic segmentation and blending methods
create a faithful reconstruction of the giraffe model. This example
clearly demonstrates the advantages of combining context informa-
tion from different models, since a satisfactory shape completion
could not be obtained from any of the deformed context models
alone.

Figure 15 illustrates how shape completion is continuously simpli-
fied by enriching the database with already acquired and consol-
idated models. The two giraffes are completed using the model
of Figure 10 as a context model. Even though the input data is
noisy and consists of multiple, imperfectly aligned scans, a high-
quality reconstruction is obtained. Note that due to size restrictions



of the scanner, no data has been acquired for the head of the tall gi-
raffe, hence its orientation is not captured correctly. This example
demonstrates how our system can be used in connection with low-
cost scanning devices to quickly create detailed 3D models that can
readily be used in interactive applications such as games.

A more complex example is shown in Figure 11. The input data is a
single range image that contains large, complex holes due to occlu-
sion. The two pillars shown in 3 and 4 are used as context models to
repair the highly incomplete lower sections of the wall. The panels
on the ceiling are completed successively using multiple iterations
of our pipeline. The first panel on the lower left is repaired using
a simple plane as a geometric prior. The consolidated panel is then
used to fix the other panels in this arch. Once the whole arch is
completed, it can be extracted to be used as a context model for the
right arch. Note that the panels are not exact copies of each other,
so simple copy and paste operations will not yield adequate results.
User assistance is required to select appropriate parts in the data
that can be used as context models for other regions, and to provide
an initial alignment for those parts using four feature correspon-
dences per piece. Interaction time for a trained user is less then
half an hour, compared to multiple hours that would be required
with standard modeling tools. This example also illustrates how
large scale model acquisition can be significantly simplified if the
acquired scene contains repetitive structures. An element acquired
with high accuracy can be used as a context model for similar parts,
which can then be scanned at much lower resolution.

Figure 15: Shape reconstruction from low-quality data, from left to
right: Physical model, acquired data set, reconstructed model.

Additional Constraints. The shape matching penalty defined in
Section 4 only considers low-level geometric properties to deter-
mine the warping function for non-rigid alignment. However, many
models have specific high-level semantics that are not considered
in this measure. For example, certain models exhibit symmetries
that should be preserved by the warping function. As shown in
Figure 12, we can adapt the alignment by adding appropriate con-
straints in the optimization. Another typical example is articulated
models, where deformations that describe rotations around joints
should be penalized significantly less than ones that result in a bend-
ing of rigid parts of the skeletal structure. This can be achieved by
using a full kinematic description of the context models to adjust
the matching penalty function accordingly.

Evaluation. A distinct advantage of our method is that it not only
provides a final consolidated surface mesh, but also allows a local
evaluation of the quality of the reconstructed model. We can easily
identify regions where no adequate shape completion can be ob-
tained, either because no valid correspondence between input data
and context models can be established, or because the distortion
of the warping function is too high to provide a meaningful shape
prior for the acquired data. The zoom of the giraffe’s head shown
in Figure 16 depicts a case where our method does not recover a
semantically correct shape, since the horns of the giraffe are not

present in any of the context models and the data set is incomplete
in this region. In such cases, the user either needs to acquire more
data, enrich the database by providing more suitable context mod-
els, or manually edit the final model.

input data context model final model evaluation

Figure 16: Evaluating the final completed shape. The color-coding
in the right image shows the shape matching penalty, where red
color indicates insufficient surface completion due to invalid corre-
spondence between input data and context models.

Limitations. Our context model retrieval relies on textual
queries, which requires a well annotated shape database. This is
particularly important for models that only provide partial com-
pletions in a certain region of the input data, but disagree greatly
in other parts. Pre-segmentation of database models can simplify
the retrieval of partially matching shapes, but requires a substan-
tially more involved database search. In our current implementa-
tion, context models have to be manifold surfaces to ensure correct
front-propagation during segmentation. Many existing 3D shapes
available in public databases are non-manifold models that would
require pre-processing to transform them into manifolds, e.g., using
the method proposed in [Shen et al. 2004].

Similar to [Allen et al. 2003] and [Sumner and Popovic 2004] we
control the distortion of the warping function when computing the
non-rigid alignment, not the shape of the deformed model. Thus
we can make no guarantees that the warped model is free of self-
intersections. We discard a context model when we detect such a
case, yet constraining the deformation to prevent self-intersections
might be a more adequate solution.

The distortion measure that controls the smoothness of the warping
function is isotropic, i.e., penalizes distortion equally in all radial
directions. If the acquired model has a high-frequency detail, e.g.,
a sharp crease, that is not present in the context model, the weight
on the distortion measure needs to be low (i.e., o has to be close to
one in Equation 6), so that the warped context model can be aligned
to this geometric feature. This, however, will also pick up noise
present in the input data, as can be observed in Figure 11. A solu-
tion could be to design an anisotropic shape matching penalty that
locally respects that characteristics of the input geometry, similar to
anisotropic low-pass filters used in data smoothing.

The blending method of Section 6 requires consistent topology
of the context models in regions where two or more models are
blended. We detect topological mismatches from inconsistencies
in the correspondence between different models, and exclude the
model with higher shape matching penalty from the blending stage
in this region. We can give no guarantees, however, that this heuris-
tic always produces the correct shape topology. We thus also allow
the user to manually discard individual models, if the topology is
inconsistent, which provides more explicit control of the semantics
of the consolidated shape.

8 Conclusion and Future Work

We have presented an example-based shape completion framework
for acquired 3D surface data. Central to our method is the abil-
ity to combine context information from different geometric priors



retrieved from a 3D model database. For this purpose we have in-
troduced a normalized shape matching penalty function and corre-
sponding optimization scheme for non-rigid alignment that allow a
quantitative comparison between different context models. This fa-
cilitates an adaptive segmentation of the warped context models,
which can then be blended consistently using incremental patch
growing and continuous re-alignment, to yield the final consoli-
dated shape representation. Our method is robust against noise
and outliers and provides a quantitative evaluation of the quality
of the produced output model. We achieve efficient reconstruction
of complete and consistent surfaces from highly incomplete scans,
thus allowing digital 3D content creation with significantly simpli-
fied acquisition procedures.

Possible extensions of our system include more powerful,
anisotropic shape similarity measures, enhanced semantic con-
straints to control the deformation of context models, and the use of
additional model attributes such as surface texture to improve the
retrieval, alignment, and segmentation stages of our pipeline. Ulti-
mately, we want to minimize user intervention and completely au-
tomate the database retrieval and non-rigid alignment stages of the
pipeline. We believe that this poses interesting research challenges
in automatic feature extraction, semantic shape segmentation, inter-
model correspondence, and efficient encoding of shape variability.

A Appendix
The quality-of-fit estimate clf1 is derived from weighted covariance

matrix
Ci= Z(pj —pi) (P — )" 9ilpj —pill).
J

where the weight function ¢; is the compactly supported fourth or-
der polynomial

(r) = 1—6r2+8° —3r* r<i1

%=10 r>1

with r = (||p; — pi||)/hi. The support radius k; defines the geomet-
ric scale at which the data is analyzed. Comparable results are ob-
tained using truncated Gaussians, or similar positive, monotonously
decreasing weight functions.

Let 4! < A7 < A7 be the eigenvalues of C;. The normalized
weighted least squares error of the best tangent plane estimate can
be derived as A; = lil / (7Ll~l + liz + )Li3 ) [Pauly et al. 2004]. Since
A; = 0 indicates a perfect fit and A; = 1/3 denotes the worst possi-
ble distribution, we define clf1 =1-31.

We measure local sampling uniformity as the ratio ¢ = )Liz /)Lf.
c? = 0 means that all samples in the support of ¢; lie on a line (see
outliers in Figure 3), whereas cf’ = 1 indicates a uniform distribu-
tion of samples around p;. Points on the boundary will be assigned
intermediate values.
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Figure 10: Shape completion zoo. Horse, camel, and lion are deformed, segmented and blended to yield the final shape of the giraffe.
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Figure 11: Completion of a single range image acquired in the Galleria dell’ Accademia in Florence. Context models, shown in brown, are
either retrieved from the database or extracted by the user from already completed parts of the model. The David model has been added for

completeness.
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Figure 12: Symmetry constraints yield a semantically more adequate shape completion. The warping function for the model on the right has
been constrained to be symmetric with respect to the semi-transparent plane shown in the center.



