
MicroDoz™

The Microcomputer Disk Operating System for Z80™ Microprocessors

Developed for

users of the North Star™ Horizon™

and other Z80-based computers

by

Micro Mike's, Inc.
3915 Plains Blvd.

Amarillo, Texas 79102 USA

telephone 806/372-3633

manual release 1

October 17, 1980

making technology uncomplicated ••• for People

l

COPYRIGHT NOTICE

Copyright (c) 1980 by Micro Mike's, Incorporated. All rights
reserved. No part of this publication or associated programs may
be reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written
permission of Micro Mike's, Inc., 3015 Plains Blvd., Amarillo,
Texas 79102. This program package is licensed for use on one (1)
CPU only.

DISCLAIMER

Micro Mike's, Inc. makes no representation or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any particular
purpose. Further, Micro Mike's, Inc. reserves the right to revise
this publication and to make changes from time to time in the
content hereof without obligation of Micro Mike's, Inc. to notify
any persons of such revision or changes.

TRADEMARK NOTICES

This documentation package will mention several names and products
that have been granted trademarks. It is the intent of Micro
Mike's, Inc. to acknowledge and respect these trademarks of these
companies so that all the rights and privileges of these companies
are preserved.

baZic™ and MicroDoz™ are registered trademarks of Micro Mike's,
Inc.

North Star™ and Horizon™ are registered trademarks of North Star
Computers, Inc.

za0™ is a registered trademark of Zilog, Inc.

COPYRIGHT 1981 MICRO MIKE'S, INC.

... l

MicroDoZ, Release 1 TABLE OF CONTENTS

1

2

3

TABLE OF CONTENTS

INTRODUCTION •
1.1 Mnemonics • . . . • • •
COMMANDS • • •• • • . . .
2.1
2.2
2.3
2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16

List the directory • • • • • • • • • •
INitialize a disk •••••••••••••••••
WRite disk or Read Disk • • • • ••••••••••
Save File or Load File • • • • • • • • • • • • • •
Jump Program • • • • • • • • • • • • • • •
GO program. . ••... · · · ·
CReate a file • • • • • • • • • ••••••
TYpe a file
DElete a file • • • • • • • • • • • • •••••••
Output Device or Input Device • • • • • • • • • • •
CLear the screen • • • • • • • • • • • • • • •
Define Drive • • • • • • • • • • • • • • • ••
REname a file • • • • • • • ••••••
Read Only or Write Enable • • •••••••••
Set System or Non System • • • • • • • • • • • • •
Attribute Field ••••••••••••••••••

MACHINE LANGUAGE INTERFACE •
3.1 I/O Commands (0-6)

3.1.1 INPUT (0) and OUTPUT (1) . . . • . . . • . •
3.1.2 CONTROL c (2) •
3.1.3 INSTATUS (3) . . • • .
3.1.4 OUTSTATUS (4) • . . . • . • • . . . • . • .
3.1.5 CLEARSCREEN (5) . • • • • • • • . . • • • •
3.1.6 GOTOXY (6) •

3 .2 I/O Commands (7-13) ••
3.3 MicroDoZ Non-Disk Routines (14-23)

3.3.1 CRLF (14)
3.3.2 PRINT MESSAGE (15) • . . .
3.3.3 PRINT 16 BIT HEX NUMBER (16) • . . • . •
3.3.4 PRINT 8 BIT HEX NUMBER (17) • . • • . • . •
3.3.5 PRINT 16 BIT DECIMAL NUMBER (18) • . • • • .
3.3.6 PRINT 8 BIT DECIMAL NUMBER (19) • . . • . . .
3.3.7 CONVERT DECIMAL STRING TO BINARY (20) . . .
3.3.8 CONVERT HEX STRING TO BINARY (21)
3.3.9 OUTPUT SPACES (22) • . . • .
3.3.10 EXECUTE JOOS COMMAND (23) • • •

1

1

2

2
3
4
4
4
5
5
6
6
6
6
7
7
7
7
8

9

10

10
10
11
11
11
12

12

12

13
13
13
13
14
14
14
14
14
15

COPYRIGHT 1981 MICRO MIKE'S, INC.

'

j

. -.

l_

MicroDoZ, Release 1 TABLE OF CONTENTS

4

5

6

7

3.4 MicroDoZ Disk Routines (24-29)
3.4.1
3.4.2
3.4.3
3.4.4
3.4.5
3.4.6
3.4.7

SELECT DRIVE AND DENSITY (24) • • • • • • •
DCOM (25) • • • • • • • • • • • • • • • ••
DLOOK (26) • • • • • • • • • • • • •
DWRITE (27) • • • • • • • • • • • • • •
SAVE (2 8) • • • • • • • • • • • • • • •
LOAD (29) •••••••••••••••••
CREATE (33) • • • • • • • • • • • • • •

3.5 Miscellaneous Routines (30-32)

3.6

3.5.l
3.5.2
3.5.3

NEXT SEPARATOR BYTE (30) ••••••
MicroDoZ BOUNDARIES (31) • • • • • • • •
PRINTER RELEASE (32) • . • • • • • • • • • • •

Invalid Commands (34+) •• • •
DIRECTORY FORMAT • •
MICRODOZ STRUCTURE • •
5.1
5.2
5.3
5.4
5.5

Configure Block ••••••••••••••••••
Configure Block Source • • • •
I/O Block • • • • • • • • • • • • • • . . .
I/O Block Source • • • • • • • • • • • • • • • • •
Bootup Sequence • • • • • • • • •

DOS2000
6.1 Source Listing
MONITOR
7.1 Commands

7.1.1
7.1.2
7.1.3
7.1.4
7.1.5
7.1.6
7.1.7
7.1.8
7.1.9
7.1.10
7.1.11
7.1.12
7.1.13

Compare Memory • • • • • • • • • • • • • • •
Fill Memory • • • • • • •
Move Memory • • • • • • • • • • • • • • • •
Search Memory • • • • • •
Test Memory • • • • • • • • • • • • • • • •
Display memory Hexadecimal • • • • • • • • •
Display memory Ascii • • •
Display memory and Substitute •••••••
Jump Program • • • • • • • • • • • • • • • •
Operating System • • • • •
Initial Load ••••••• . .
INPut a byte from a port •
OUTput a byte to a port • • • •

.
. . . .

15

16
16
17
18
19
20
20

21

21
22
22

22

23

25

26
28
29
31
33

34

34

40

41

42
42
43
43
44
45
45
45
46
46
46
46
47

COPYRIGHT 1981 MICRO MIKE'S, INC.

MicroDoZ, Release 1 TABLE OF CONTENTS

7.2 Line Editor • • • • • • • • • 47

7.2.1 Control G • • • 48
7.2.2 Control N • 48
7.2.3 Control A • 48
7.2.4 Control Q • • • • • • • • 48
7.2.5 Control z • • • • 49
7.2.6 Control D • • • • • • • • • 49
7.2.7 Control y 49

7.3 Execute MicroDoZ Commands • 49
7.4 Source Listing • • • • • • 50

COPYRIGHT 1981 MICRO MIKE'S, INC.

MicroDoZ, Release 1 I-INTRODUCTION

INTRODUCTION

MicroDoZ was written and implemented by the staff of Micro
Mike's, Incorporated as a replacement for North Star DOS. Micro
Doz is completely compatible with DOS but has many enhancements
that make it more efficient to use and easier to interface to
machine language programs.

For OEMs, MicroDoZ can easily be changed to include drivers for
different computer systems and disk drives allowing all computers
to have the benefit of programs that run under North Star DOS.
MicroDoZ has been written with timesharing features so that users
can easily advance from single user to multiple user conf igura
tions.

MicroDoZ has been written to work without regard to disk size. A
two byte disk address lets MicroDoZ address over 33 million bytes
directly and in conjunction with JOEDOS (Micro Mike's, Incor
porated Hard Disk Operating System), millions of additional bytes
through segmentation.

baZ ic, Mier o Mike's, Incorporated Z 80 BASIC interpreter is
available to run under MicroDoZ as well as many application
programs.

In this documentation, a block refers to 256 bytes while a sector
can be many values but is generally 512 bytes.

1.1 Mnemonics

DEVICE#

DRIVE#

HEXADDR

The number of an input or output device. Must be
in the range of 0 to 7.

The number of a disk drive. Must be in the range
of 1 to 7.

A 16 bit Hexadecimal address.
range of 0000H to FFFFH.

Must be in the

BLOCKS Blocks are divisions of disk space that are equal
to 256 bytes.

DENSITY The density of a disk is either "D" for double or
"S" for single.

FILENAME The name of a disk file. Must be eight characters
or less. Can contain any letters, numbers, or
special characters except a space or comma.

DISKADDR A decimal address of a sector on a disk.

COPYRIGHT 1981 - 1 - MICRO MIKE'S, INC.

' __ ,o--_-J

MicroDoZ, Release 1 2-COMMANDS

COMMANDS

MicroDoZ contains all of the commands in the North Star DOS plus
several additional commands which allow the user to set input or
output default devices, define default drives, rename files, set
and reset write only files, set and reset system files, and to
assign up to 64 different attributes to a file.

Multiple MicroDoZ commands may be issued on the same line by
separating them with a "\" or a ":". As an example, if the user
wanted to list the directories of both drives in a two drive
system, the command would appear as follows:

l>LI \LI 2

The preceding example also shows the prompt character for Micro
Doz. The prompt is the default drive followed by the ">" charac
ter. The default drive can be changed by using the DD command,
but any drive can be accessed by the standard syntax no matter
which drive is the default drive.

2.1 List the directory

LI [#<DEVICE#>] [<DRIVE#>] [,<WILD CARD>]

The LI command is used to List the directory of a disk drive. If
no drive is specified, the default drive will be Listed. The
default drive is the drive shown in the prompt of MicroDoZ.

The LI command results in the following information being dis
played from left to right across the console device for each file
listed in the directory of the affected disk:

File Name (maximum of eight characters)
Starting Disk Address (Decimal)
Length of the File in Blocks (Decimal)
Density (Single or Double)
Type of File (0 to 127 Decimal)
GO Address (If Type 1 in Hex)
R/O if Read Only File
SYSTEM if System File
Attribute Field (0 to 63 Decimal)

A sample directory would appear as follows:

COPYRIGHT 1981 - 2 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 2-COMMANDS

l>LI

MICRODOZ 4 20 D 0 AF 0
M2D00M 14 10 D 1 2D00 AF 0
TEST 19 2 D 2 R/0 SYSTEM AF 0
BAZIC 20 54 D 1 0100 AF 0

Output can be directed to any of the eight user defined print
devices (0 through 7} if desired by using the optional device
specification. The device number should be entered after the
command, preceded by the number character ("#"}, and before the
drive number specification.

A "wild card" feature is included in MicroDoZ. If you want to
list only those files that have a certain letter in the third
position, place an asterisk ("*"} in each position where any
letter is to be listed. If you only enter three characters (i.e.
**L} MicroDoZ assumes all character positions past the last
letter to be wild card letters. All MicroDoZ commands using the
directory can take advantage of this feature as long as disk
calls are routed through the MicroDoZ command call (0005 Hex}.

Examples of the LI command are as follows:

LI
LI #2
LI 2
LI #2 2
LI,**X
LI#2 2,***J

(List drive one)
(List drive one on device two)
(List drive two)
(List drive two on device two)
(List files with third letter= X)
(List files with fourth letter=J)

2.2 INitialize a disk

IN [<DRIVE#>] [<DENSITY>) [,<CHARACTER>]

The IN command is used to INitialize diskettes to be used in the
system. If no disk drive number is entered the command works on
the default drive. The DENSITY argument is passed as an "S"or
"D" for single or double density. If the optional density argu
ment is omitted the command initializes the disk double density.
If the optional character is omitted the disk is initialized to
the ASCII space character (20 Hex). The optional character can
be used to initialize a disk to different characters such as ES.

This command writes the specified character to all blocks on the
disk. This command will destroy all information on the disk and
should be used with caution.

COPYRIGHT 1981 - 3 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 2-COMMANDS

2.3 WRite disk or Read Disk

WR OR RD <DISKADDR> [,<DRIVE#>) <HEXADDR> <BLOCKS> [<DENSITY>)

These commands are used to WRite {WR) or Read Disk {RD) directly
between the disk drive and internal RAM. The disk address is a
decimal address within the range of the drive being accessed. If
the optional drive number is not specified, the default drive is
used. The hex address is the RAM address where the information
is to be written to or from.

If the optional density argument is not specified then the read
or write will be double density.

The use of the WR and RD commands should be done with caution
since they are capable of destroying valuable information if the
wrong arguments are passed. However, these commands can be very
powerful when used for a disk to disk copy because the entire
free RAM can be used as a buffer resulting in very fast disk
copies.

2.4 Save File or Load File

SF OR LF <FILE NAME>[,<DRIVE#>) <HEX ADDRESS>

The Save File {SF) or Load File {LF) command is used to save or
load a specified file directly between RAM and the disk drive.
The file name must evaluate to a legal file name. If the option
al drive argument is not specified, the default drive will be
used. The hex address must be specified and is the RAM address
where you want the file to be saved from or loaded to.

2.5 Jump Program

JP <HEX ADDRESS>

The Jump to a machine language Program {JP) command is used to
directly execute a machine language program from MicroDoZ. Most
programs executed in this manner will set up their own stack upon
entry. However, MicroDoZ sets up a temporary stack directly
beneath itself when this command is entered.

Also MicroDoZ pushes a 0000 Hex address into the stack before
jumping to the program. This address is the return address to
MicroDoZ. This allows a machine language program to return to
MicroDoZ by simply executing a RETurn instruction when the pro
gram is finished.

COPYRIGHT 1981 - 4 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 2-COMMANDS

2.6 GO program

GO <FILE NAME>[,<DRIVE#>]

The GO command is very similar to the JP command. The GO command
causes a machine language program to be executed but there are
certain considerations that must be met. Upon receiving the GO
command MicroDoZ looks for the specified file name on the speci
fied drive. If no drive number is specified, MicroDoZ will use
the default drive.

Once the file is successfully found and it is a type 1 file, the
file is loaded into RAM at the GO address (specified in the
directory entry). MicroDoZ then sets up a stack directly beneath
MicroDoZ as in the JP command. After PUSHing the RETurn address
of MicroDoZ on the stack, MicroDoZ then jumps to the GO address
of the file and begins executing the program just loaded from the
disk.

MicroDoZ has provisions for executing an implied GO command. If
any word is entered in response to the prompt and the first two
letters are not MicroDoZ commands, then MicroDoZ assumes that a
GO command is to be executed. MicroDoZ looks for a file by the
same name on the specified drive and if the type is 1 the program
will be loaded and executed.

An example of the implied GO command would appear as follows:

2>BASIC

This command will attempt to GO BASIC,2 and would be the same
command as follows:

l>GO BASIC,2 or
2>GO BASIC

2.7 CReate a file

CR <FILE NAME> [,<DRIVE#>] <FILESIZE> [,<DISKADDR>] [<DENSITY>]

The CReate command (CR) is used to make an entry into the direc
tory of a disk for a new file and then assign space on the disk
to hold the file. The file name must be a legal file name. If
the optional drive number is not specified, MicroDoZ will use the
default drive number. The file size specification is in 256 byte
blocks.

The optional disk address can be used to cause the file to be
placed at the specified disk address on the disk or if this
address is not specified, MicroDoZ will "put" the file immediate
ly after the last file on the disk. The optional density is
either a "D" or "S" to signify Double or Single density. If the
optional density is not specified, the file will be created
double density.

COPYRIGHT 1981 - 5 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 2-COMMANDS

When a file is CReated, it assumes the attribute of the last
attribute (AF} command issued. The default is an attribute of 0
and the attribute must be 0 to be North Star compatible. The
attributes are stored by using the seventh (high order} bit of
each character of the file name.

2.8 TYpe a file

TY <FILE NAME> [,<DRIVE#>] <FILE TYPE> [<HEXADDR>]

The type command (TY} is used to set or change the type number of
the specified file. The file name must be a legal file on the
specified drive. If the optional drive argument is not passed,
the default drive is used. The file type can be any number from
0 to 64 but if the type is 1, the optional GO address must be
specified. The GO address (HEXADDR} is the RAM address where the
file is to be loaded and run.

2.9 DElete a file

DE <FILE NAME> [,<DRIVE#>]

The delete command (DE} is used to delete an entry from the
directory of the specified disk. The file name must be a file on
the disk. If the optional drive is not specified, the default
drive is used. This command takes no action on the file itself
but merely deletes the directory listing of the file.

The DElete command will not work on a file that is set as a Read
Only or System file.

2.18 Output Device or Input Device

OD or ID <DEVICE#>

The print device default commands are used to set the Output (OD}
or Input (ID} Device to the specified device number. The device
number must be in the range of 0 to 7. If no print device is
specified to the MicroDoZ print routines, the default device is
used.

The default print device can be used in a situation where all
printing should be output to the printer, or if a programmer
needs the output device changed for an entire program but doesn't
want to change the program itself.

2.11 CLear the screen

CL

The CLear command is used to clear the screen of the CRT. The
screen is cleared automatically by MicroDoZ when it is initially
booted. Any other time the programmer desires the screen clear
the CL command should be executed.

COPYRIGHT 1981 - 6 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 2-COMMANDS

2.12 Define Drive

DD <DRIVE#>

The Default Drive command (DD) is used to set the default drive
number. The default drive number is the number that will appear
in the MicroDoZ prompt. The range of acceptable drive numbers is
from 1 to 7. As an example, if the default drive is currently 1,
and the default command is given to change the default to drive 2
the sequence would appear as follows:

l>DD 2
2>

Drive numbers other than the default can still be accessed by all
commands if the optional drive number argument is used.

2.13 REname a file

RE <NEW FILENAME> <OLD FILENAME> [,<DRIVE#>]

The REname command (RE) is used to change the name of a file that
already exits on the specified drive to a new name. The new file
name must be a legal file name. If the optional drive number
argument is not given, the default drive is used. If the option
al drive number argument is given, the file will be renamed on
the same drive as specified.

2.14 Read Only or Write Enable

RO or WE <FILENAME> [,<DRIVE#>]

The Read Only (RO) and Write Enable (WE) commands are used to set
a file to a read only status or to reset a read only file so that
it may be written to. Any attempts to write to a file that is
marked as read only will result in an error being returned from
MicroDoZ to the program calling for the write.

Files set as Read Only can not be REnamed. To REname a Read Only
file, it must first be Write Enabled. For the files to remain
North Star compatible, all files on a disk must be Write Enabled
(WE).

2.15 Set System or Non System

SS or NS <FILENAME> [,<DRIVE#>]

The Set System file (SS) or reset to Non System file (NS) com
mands are used to specify system files. A system file is one
that cannot be read or written to, cannot be Load Filed (LF) or
Save Filed (SF), cannot be TYped, and cannot be DEleted or RE
named.

COPYRIGHT 1981 - 7 - MICRO MIKE'S, INC.

i

I

I

I

L

MicroDoZ, Release 1 2-COMMANDS

The only operations that can be performed on a system file is to
GO to the file. For the files to remain North Star compatible,

.all files on a disk must be a Non System file (NS).

2.16 Attribute Field

AF <ATTRIBUTE#>

If the Attribute is set to 0, all files on the directory are
listed when the user executes a LI command. If the attribute
number is set to any other value (1 to 63), only those files with
the proper attribute or the attribute of 0 will be shown when a
directory listing (LI) is called for. This command is to be used
in conjunction with timesharing and user lockouts.

The attributes of a file are set at the time the file is CReated
or REnamed. To set the Attribute Field for a file, first issue
the AF command to set the attribute you want. Now CReate the
file or REname it and the file will have the attribute you have
selected. For a file to be North Star compatible, the Attribute
Field must be set to 0.

The attributes of a file (including its write status and system
status) are stored using the eighth bit of each letter in the
file name. The first letter controls the read only status, the
second letter controls the system status, and the remaining
letters form the 64 attribute combinations that a file can have.

MicroDoZ allows multiple files with the same name but different
Attributes. Any attempts to access files with the same name will
result in MicroDoZ accessing the first file with the name. It is
recommended that files not be used which have the same name but
different attributes.

If the Attribute field is to be used for file lockout, a simple
procedure is followed. When a user wants to access a file and
lock that file so other users cannot access it, use the ATtribute
command to set an Attribute which is not common to any other user
(such as the user's bank number). The file in question should
now be REnamed to the same (or different) name. This procedure
will cause the attribute of the file to be changed to the select
ed attribute.

When the user is finished with the file the procedure is similar.
First set the ATtribute to 0 (so all users have access to the
file) and REname the file so that it's attribute is restored.

During the time the file attribute is changed, no other user will
be able to access the file. The reason for this is all other
users will not "see" the file in the directory unless they have
the same attribute as the user who set the attribute. If the
user number is used for the attribute, no other user will have
the same attribute and the file will be locked so only one user
can access the file at any one moment.

COPYRIGHT 1981 - 8 - MICRO MIKE'S, INC.

MicroDoz, Release 1 3-MACHINE LANGUAGE INTERFACE

MACHINE LANGUAGE INTERFACE

MicroDoZ is interfaced to other machine language programs by a
jump table located in low memory. At location 0000 Hex is a jump
that points to the entry point of MicroDoz. This is the "warm
boot" location when a program wants to return to MicroDoz. The
low address of MicroDoZ can be found by loading the two bytes
starting at address 0001 Hex {LHLD 1).

Following this jump is the I/O byte at location 0003 Hex. The
I/O byte is divided into two nybbles. The high order nybble
contains the current default input device and the low order
nybble contains the default output device.

Location 0004 Hex is a byte which contains the default drive
number.

At location 0005 Hex is a jump to the MicroDoZ interface command
location. By putting a command number in the C register and
calling location 5, any MicroDoZ command may be executed by
another program.

At 0080 Hex is a command buffer which is 127 bytes long. This
buff er may be used to pass commands between MicroDoZ and any
other program such as baZic.

The actual location of MicroDoZ will vary depending on the hard
ware configuration. MicroDoZ is located at the top {high) end of
memory. This leaves all memory from 0100 Hex to the bottom of
MicroDoZ for other programs to execute.

A summary of the 0000 Hex section is as follows:

ORG 0000H
0000H JMP
0003H DB
0004H DB
0005H JMP

MicroDoZ
I/O BYTE
DEFAULT DRIVE
MDOZCOMMAND

ORG 0080H
DOSBUFFER DS 127 *MicroDoZ INPUT AND TRANSIENT COMMAND

BUFFER

In the following sections that detail the use of the MDOZCOMMAND
routine, the number of the command is displayed in the section
title for each command detailed.

All commands use a stack that is local to MicroDoZ. Upon RETURN
ing from the command the stack is restored to the stack before
the command call.

COPYRIGHT 1981 - 9 - MICRO MIKE'S, INC.

- J

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

Remember that the C register contains the command number when
communicating with MicroDoZ. The routine should call 0005 Hex to
execute the command.

3.1 I/O Commands (9-6)

The I/O commands 0-6 should have the A register loaded with the
device number. These I/O commands differ from commands 7-13 in
that commands 7-13 use the I/0 byte to determine to which I/0
device they are to communicate.

3.1.1 INPUT (9) and OUTPUT (1)

.All input CALLS return the byte input in the A register. The
byte has had the eighth bit stripped by an ANI 7FH instruction.
All ouputs use the B register to pass the byte that is to be
output. When the routine returns, the B register will be equal
to the A register.

To call these routines, the C register should be equal to a "0"
for input and a "l" for output. A sample use of commands 0 and 1
to get a character and display the character is shown in the
following example:

C=0 INPUT
C=l OUPUT

LDA INPUTDEV
MVI C,0
CALL 5
MOV B,A
LDA OUTPUTDEV
MVI C,l
CALL 5

3.1.2 CONTROL C (2)

*Load A with the input device number
*Load C with the command number
*Call MicroDoZ to input a byte
*Move byte input to C
*Load A with the output device number
*Load C with the command number
*Call MicroDoZ to output the byte

This command is executed to determine if a control C has been
entered by the user. When this command is called, if the carry
is not set (i.e. equals 0) then no input was detected. If an
input was detected, the carry will be set (equals 1).

On the condition where a character has been input, if the z flag
is not set (equals 0), the character input was NOT a control C.
If the carry is set and the Z flag is set (equals 1) then the
character input WAS a control c.

An example of the use of the control C command is as follows:

C=2 CONTROL C

COPYRIGHT 1981 - 10 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

MVI C,2
LDA INPUTDEV
CALL 5
RNC
JZ CNTRLC

3.1.3 INSTA'l'US (3)

3-MACHINE LANGUAGE INTERFACE

*Load C with the command number
*Load A with the input device number
*Call MicroDoZ to check for control C
*Return if control C not detected
*Control C detected, branch to routine

The INSTATUS command is used to determine the status of an input
device (i.e. is the device ready to transmit another character
or not). If the routine returns with the Z flag NOT set (Z=0),
the device is NOT ready. If the z flag is true (Z=l), the device
IS ready for the next character. If the device is not a legally
implemented device, the A register will contain 0FF Hex.

An example of the use of this command appears as follows:

C=3 INSTATUS

MVI C,3
LDA INPUTDEV
CALL 5
JZ ROUTINE

3.1.4 OUTSTA'l'US (4)

*Load C with the command number
*Load A with the device number
*Call MicroDoZ to check status
*Character is ready to be input

The OUTSTATUS routine is the same as the INSTATUS except the
routine checks the status of the output device to determine if it
is ready or not. If the routine returns with the Z flag NOT set
(Z=0) then the device is NOT ready. If the Z flag is true (Z=l)
then the device IS ready for the next character. If the device
is not a legally implemented device the A register will contain
0FF Hex.

An example of the use of this command appears as follows:

C=4 OUTSTATUS

MVI C,4
LDA OUTPUTDEV
CALL 5
JZ ROUTINE

3.1.S CLEARSCREEN (5)

*Load C with the command number
*Load A with the output device number
*Call MicroDoZ to check status
*Device is ready for a character

The CLEARSCREEN command is used to clear the screen on the se
lected device number. An example of the use of this command
appears as follows:

C=S CLEARSCREEN

MVI C,5
LDA OUTPUTDEVICE
CALL 5

COPYRIGHT 1981

*Load C with command number
*Load A with output device number
*Call MicroDoZ to clear the screen

- 11 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACBINE LANGUAGE INTERFACE

3.1.6 GOTOXY (6)

This command is used to address the cursor to the X and Y coordi
nates of the device passed in the A register. The H register
contains the line and the L register contains the position on the
line of where the cursor is to be addressed. These routines are
defined in the I/O section of MicroDoZ and are specific to each
CRT. An example of the use of this command is as follows:

C=6 GOTOXY

MVI H,XPOSITION
MVI L,YPOSITION
MVI C,6
LDA OUTPUTDEVICE
CALL 5

3.2 I/O Commands (7-13)

*Load H with row
*Load L with column
*Load C with the command number
*Load A with the output device #
*Call MicroDoZ to position cursor

These commands are identical to the preceding commands except
there is no need to pass a device number in the A register
because these commands use the appropriate nybble at location
0003 Hex to determine the I/O device number. A summary of the
commands is listed with a sample input and output command call:

C=7 INPUT
C=8 OUTPUT

MVI C,7
CALL 5
MOV B,A
MVI C,8
CALL 5

*Load C with the command number
*Call MicroDoZ to do input
*Move the byte input from A to B
*Load C with the command number
*Call MicroDoZ to output the character

C=9 CONTROLC
C=l0 INSTATUS
C=ll OUTSTATUS
C=l2 CLEARSCREEN
C=l3 GOTOXY

3.3 MicroDoZ Non Disk Routines {14-23)

The following routines provide the programmer access to several
routines that are an integral part of MicroDoZ. Access is pro
vided to these routines so the programmer will not have to dupli
cate efforts if the routines are needed by another program. All
of the routines in this section use the default device (defined
by the I/O byte at 0003 Hex) for output. All routines that
output numbe~s, print a trailing space after the number.

COPYRIGHT 1981 - 12 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

3.3.1 CRLF (14)

This routine outputs a carriage return and a line feed to the
default output device.

C=l4 CRLF (CARRIAGE RETURN LINEFEED)

3.3.2 PRINT MESSAGE (15)

This command causes a message to be output to the default output
device. The H and L register pair should contain the address of
the beginning of the message to be printed. The string should
end with a 00 Hex to inform the routine that the message end has
been reached. A command summary and example follow:

C=lS PRINT MESSAGE POINTED TO BY HL ENDING WITH 00H

MESSAGE ASC HELLO *Define message "HELLO"
*End message with 0 DB 0

LXI H,MESSAGE
MVI C,15
CALL 5
JMP CONTINUE

*Load HL with message address
*Load C with command number
*Call MicroDoZ to output message
*Continue with program

3.3.3 PRINT 16 BIT HEX NUMBER (16)

This command is used to print a Hex number
a Binary number in the HL register pair.
as a four digit Hex number. No error
routine. A summary and example follow:

that is represented by
The number is printed

is returned from this

C=l6 PRINT 16 BIT HEX NUMBER IN BINARY HL

LHLD NUMBER
MVI C,16
CALL 5

*Load HL with number
*Load C with command number
*Call MicroDoZ to print number

3.3.4 PRINT 8 BIT HEX NUMBER (17)

This command prints an 8 bit Hex number that is contained in the
HL register pair as a Binary number. This routine assumes the H
register is set to 0 so that a two digit Hex number is printed.
This routine returns no errors. Leading zeros are not printed.
A summary and example follow:

C=l7 PRINT 8 BIT HEX NUMBER IN BINARY HL

MVI H,0
MVI L, NUMBER
MVI C,17
CALL 5

COPYRIGHT 1981

*Clear register H
*Load number into L
*Load C with command number
*Call MicroDoZ to print number

- 13 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

3.3.5 PRINT 16 BIT DECIMAL NUMBER (18)

This command prints the Binary number contained in the HL regis
ter pair as a Decimal number. The command is summarized as
follows:

C=l8 PRINT 16 BIT DECIMAL NUMBER BINARY IN HL

3.3.6 PRINT 8 BIT DECIMAL NUMBER (19)

This command prints the Binary number contained in the HL pair as
a Decimal number. The command is summarized as follows:

C=l9 PRINT 8 BIT DECIMAL NUMBER BINARY IN HL

3.3.7 CONVERT DECIMAL STRING TO BINARY (28)

This command is used to convert a string that is pointed to by
the Hand L register pair to a Binary number. The results will
be placed in the HL register pair when the operation is complete.
A summary and example are as follows:

C=20 CONVERT DECIMAL STRING POINTED TO BY HL TO BINARY IN HL

STRING DB I 1 , 1 1 , 1 I

DB I 1 I , I 2 I , I 3 I

LXI H,STRING
MVI C,20
CALL 5
JC ERROR

*Leading spaces allowed
*String of numbers
*Load HL with string address
*Load C with command number
*Call MicroDoZ to convert

*Saw a separator character
*before a valid digit or
*overflow error occured

3.3.8 CONVERT HEX STRING TO BINARY (21)

This command is the same as command 20 except a Hex string is
operated on by the routine rather than a Decimal string. The
command summary follows:

C=21 CONVERT HEX STRING POINTED TO BY HL TO BINARY IN HL

3.3.9 OUTPUT SPACES (22)

This command is used to ouput the desired number of spaces to the
default output device. The A register contains the number of
spaces to be output. The command summary and example follow:

C=22 OUTPUT A REGISTER NUMBER OF SPACES

MVI A,10
MVI C,22
CALL 5

COPYRIGHT 1981

*Load A with number of spaces to output
*Load C with command number
*Call MicroDoZ to output spaces

- 14 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACBINE LANGUAGE INTERFACE

3.3.lB EXECUTE MicroDoZ COMMAND (23)

This is a very powerful command because it lets any calling
program execute all the MicroDoZ commands. The general procedure
is to define a command or series of commands somewhere in RAM,
set the HL register pair to "point" to the address of the com
mand(s) and call MicroDoZ with command 23 in the C register. Each
command must end in one of the following separator characters:
"0DH" (carriage return), ":", or "\".

If a disk error occurs during the use of this command the carry
will be set to 1 and the A register will contain the number of
the error condition. The error numbers are defined in Section
3.4 (MicroDoZ Disk Routines).

The command summary and an example using baZic is as follows:

C=23 DOS COMMAND EXECUTE DOS COMMAND POINTED TO BY HL
COMMAND STRING MUST END WITH A CR, : 1 OR \

STRING ASC GO BAZIC,2\CHAIN CONTROL,2 *Define string
DB 0DH *Define carriage return
LXI H,STRING *Load HL with string address
MVI C,23 *Load C with command number
CALL 5 *Call MicroDoZ to execute
JC ERRORCK *Error detected
JMP CMDOK *Command was executed OK

ERRORCK ORA A *Set flags for condition of A
JZ FILEERROR *If Z flag set then file error
CPI 8 *Is it less than 8?

*This could be a CPI 7 to
*detect a write protect error

JNC FILEERROR *File error
JMP HARDDISKERROR *Hard disk error

3.4 MicroDoZ Disk Routines (24-29 and 33)

The following routines use the I/O byte at 0003 Hex for their
device numbers. All disk accessing can and should use these
commands. If all I/0 and disk accessing goes through the proper
commands, the programmer can expect his/her programs to work
without modification under timesharing conditions using JOESHARE
or HDSHARE. .

On RETURNing from the following disk routines, if the carry bit
is equal to 0, the command was executed properly and no problems
were detected by the routines. If the carry bit is set to 1, the
error message code will be contained in the A register and can be
determined by the following table:

COPYRIGHT 1981 - 15 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

CARRY=l ON ERROR CONDITION
AND A REGISTER EQUALS

0= FILE ERROR EXCEPT DLOOK AND SAVE
1= SYNC ERROR
2= CRC ERROR
3= VERIFY ERROR
4= INDEX ERROR
5= DENSITY MISMATCH ERROR
6= DISK HAS WRITE PROTECT TAB
7= WRITE PROTECT BIT SET IN DIRECTORY
8= FILE ERROR
9= NO ROOM IN DIRECTORY

3.4.1 SELECT DRIVE AIID DENSITY (24)

This command is used to select the correct drive and density
before every DCOM call. The routine is called with the appropri
ate value in the A register. This value should be defined such
that:

BIT 7 indicates the DENSITY (0=SINGLE !=DOUBLE)
BIT 6 is set to 0
BITS 0 •• 2 equal the DRIVE NUMBER

BIT 6 is reserved for the disk side information if your system
has double sided drives. This bit is reserved for th is purpose
and should be set to zero (0) by software calling this routine.
MicroDoZ will itself determine if the file to be accessed is on
the front or back side of the disk and set this bit accordingly.

This routine does no error checking and returns no error mes
sages.

3.4.2 DCOM (25)

This routine is similar to the North Star DCOM routine. DCOM is
used to read or write a file depending upon the command that is
issued. The MicroDoZ DCOM is not exactly equivalent to DOS and
cannot be called in exactly the same manner as North Star DCOM.
A program (DOS2000) is provided to appear the same as North Star
DOS so that programs will not have to be changed to run under
MicroDoZ.

To use command 25, first call command 24 to set the proper disk
drive and density. The command is called with the following
register conditions:

C=25 DCOM

COPYRIGHT 1981

HL=
DE=
A=
B=

DISKADDRESS
RAM ADDRESS
NUMBER OF SECTORS (hardware dependent)
COMMAND 0=WRITE l=READ

- 16 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

Upon RETURNing from the routine the carry bit will be 0 if no
errors were detected and the HL register pair will point to the
next RAM address. A sample call of this routine would appear as
follows:

LDA DISK
MOV C,A
LDA DENSITYSIDE

ORA C
MVI C,24
CALL 5
LHLD RAMADDRESS
XCHG
LHLD DISKADDRESS
LDA COMMAND

MOV B,A
MVI C,25
LDA SECTORS
CALL 5
RNC
ORA A
JZ FILEERROR
CPI 8
JNC FILEERROR
JMP HOERR

3.4.3 DLOOK (26)

*Load A with the drive number
*Save in C
*Load A with the density and
*side information
*Combine with C
*Load C with command number
*Call MicroDoZ to set drive
*Load HL with RAM address
*Save in DE
*Load HL with disk address
*Load A with command l=read
*0=write
*Save in B
*Load C with command number
*Load A with number of sectors
*Call MicroDoZ to execute
*Command was executed OK
*Set flags for condition of A
*Jump on file error
*Compare for less than 8
*No so file error
*Hard disk error

This command is normally used to look up an existing entry in the
directory of a disk. This routine can also be used to "look up"
an empty directory space when creating a file, but the normal
procedure would be to use the CREATE command (33) to create new
files. DLOOK retains the capability to look up empty directory
spaces in order to remain compatible with North Star DOS.

If DLOOK is being used to look up an existing entry in the
directory and the correct file name is found, the carry will be
cleared to 0 and HL points to the beginning of the directory
entry when the routine returns. The eighth bit of the A register
will contain the density of the directory (l=double, 0=single).

If the directory entry requested is not found, DLOOK will return
with the carry set to 1, and the first 7 bits of the A register
will be cleared to zero (0). If an error occurred during this
routine, the A register will contain the number of the error as
defined in Section 3.4. In all cases, the eighth bit of the A
register will contain the density of the directory (l=double,
0=single).

COPYRIGHT 1981 - 17 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

If DLOOK is being called and the specified file name does not
exist in the directory, the carry will be set to 1, the first
seven bits (0-6) of the A register will be cleared to 0, HL will
point to a free directory space, DE will contain the free disk
address, and BC will be equal to the maximum negative disksize
(space remaining on the disk) in sectors plus 1. If the carry
equals 1 and the first seven bits (0-6) of the A register are NOT
equal to 0 then an error occurred.

If the file type is 3 to 64 or 0, bytes 14, 15, and 16 are not
used.

C=26 DLOOK

HL POINTS TO <FILENAME>,<DRIVE>CR
ON RETURN
CARRY=0 HL POINTS TO lST BYTE OF DIRECTORY ENTRY
CARRY=l A=0 (BITS 0-6)

HL POINTS TO FREE DIRECTORY SPACE
DE= FREE DISK ADDRESS
BC= -(DISKSIZE IN BLOCKS+l)

CARRY=l A<>0 DISK ERROR A=9 THEN DIRECTORY FULL
FNAME ASC BASIC,3 *Define file name and drive

DLOOK

3.4.4 DWRITE (27)

DB 0DH *End with carriage return
LXI H,FNAME *Load HL with address of name
MVI C,26 *Load C with command number
CALL 5 *Call MicroDoZ to execute
PUSH PSW *Save A and flags
ANI 80H *Strip density bit
STA DIRECTORY *Store directory density
POP PSW *Recover A and flags
JNC FOUND *Carry not set so file found

ANI 7FH
ORA A
JZ NOTFOUND

CPI 9
JZ DIRECTORY
CPI 8
JNC FILEERROR
JMP HOERR

*HL points to 1st byte of
*directory buffer
*Strip 7th bit
*Set flags for A

*Empty space is available
*in directory
*Compare with 9
*Directory is full
*Compare with 8
*Jump if file error
*Hard disk error

This command writes an updated directory entry. This routine is
the equivalent of the North Star DWRITE routine. A command
summary and example of the command follows:

COPYRIGHT 1981 - 18 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

C=27 DWRITE WRITE DIRECTORY BUFFER TO DISK
(NOTE FILE ATTRIBUTES MUST BE SET BY USER)

MVI C,27
CALL 5
RNC
ORA A
JZ FILEERROR
CPI 8
JNC FILEERROR
JMP HDERR

*Load C with command number
*Call MicroDoZ to execute
*Carry not set so no error
*Set flags
*Jump on file error
*Compare with 8
*Jump on file error
*Hard disk error

3 .4 .S SAVE (28)

This command was designed to work with only a type 2 file (a
baZic program) and implemented so that baZic would not have to
duplicate routines already in MicroDoZ. The command is called
with the HL register pair pointing at the file name and drive
number. The DE register pair contain the address in RAM of the
program and B contains the number of 256 byte blocks to save.

Upon RETURN from the routine if the carry is clear (carry=0), the
operation was successful. If the carry is set (carry=l), an
error condition was encountered. If the A register is 0, the
program was too large to fit in the specified file and if the A
register is NOT equal to 0, a file or disk error occurred.

The command summary and an example follow:

C=28 SAVE (SAVE A baZic PROGRAM UPDATING PGMSIZE
BYTE OF DIRECTORY.

HL POINTS TO <FILE NAME>,<DRIVE>CR
DE = RAM ADDRESS
B= NUMBER OF 256 BYTE BLOCKS TO SAVE

ON RETURN
CARRY=0 SAVE OK (IGNORE A REGISTER)
CARRY=l A=0 PROGRAM TOO LARGE
CARRY=l A<>0 FILE OR DISK ERROR

SAVE

COPYRIGHT 1981

LHLD RAM
XCHG
LXI H,FNAME
LDA BLOCKS
MOV B,A
MVI C,28
CALL 5
RNC
ORA A
JZ PROGRAM
CPI 8
JNC FILEERROR
JMP HDERR

- 19 -

*Load HL with RAM address
*Save in DE
*Load HL with address of name
*Load A with number of blocks
*Save in B
*Load C with command number
*Call MicroDoZ to execute
*Carry not set so save OK
*Set flags
*Program was too large
*Compare with 8
*Jump on file error
*Hard disk error

MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

3.4.6 LOAD (29)

This command LOADs a baZic program from the disk into internal
memory. The command is passed with the HL pair pointing to the
file name and drive number. The DE pair point to the RAM address
of where the program is to be loaded in RAM. This command works
on type 2 files only.

Upon RETURNing from the routine, if the carry is clear (carry=0),
the load was executed without problems. If the carry is set
(carry=l), a file or disk error occurred.

The command summary and example follow:

C=29 LOAD (LOAD A BASIC PROGRAM USING PGMSIZE BYTE FOR SPEED

HL POINTS TO <FILE NAME>,<DRIVE>CR

3.4.7

DE= RAM ADDRESS

ON RETURN

CARRY=0 LOAD OK HL=NEXT DMA ADDRESS
CARRY=l FILE OR DISK ERROR

LOAD LHLD RAM *Load HL with RAM address
XCHG *Save in DE
LXI H,FNAME *Load HL with address of file
MVI C,29 *Load C with command number
CALL 5 *Call MicroDoZ to execute
RNC *Carry not set so load was OK

*HL=points to next RAM address
ORA A *Set flags
JZ FILE ERROR *Jump on file error
CPI 8 *Compare with 8
JNC FILEERROR *Jump on file error
JMP HDERR *Hard disk error

CREATE (33)

name

This command is used to create a file. The command is called
with the HL register pair pointing to the file name and drive
number, followed by an 0D Hex (carriage return). The file name
and drive must be separated by a comma. The DE register pair
should be the size of the file in blocks while the B register
should be the file type. The file is always created the same
density as the directory.

The command summary follows:

C=33 CREATE A FILE

HL POINTS TO <FILE NAME>,<DRIVE>CR
DE= SIZE OF FILE IN BLOCKS
B= FILE TYPE

COPYRIGHT 1981 - 20 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

ON RETURN

CARRY=l ON ERROR CONDITION
AND A REGISTER EQUALS

0= FILE ERROR EXCEPT DLOOK AND SAVE
l= SYNC ERROR
2= CRC ERROR
3= VERIFY ERROR
4= INDEX ERROR
5= DENSITY MISMATCH ERROR
6= DISK HAS WRITE PROTECT TAB
7= WRITE PROTECT BIT SET IN DIRECTORY
8= FILE ERROR
9= NO ROOM IN DIRECTORY

3.5 Miscellaneous Routines (30-32)

This section describes the miscellaneous commands.

3.5.l NEXT SEPARATOR BYTE (30)

No arguments are passed to this command. Upon RETURNing from the
routine, the HL register pair point to the next separator byte in
the MicroDoZ I/O buffer. The separators "found" by this command
are the carriage return (0DH),"\", and":". Commands 25, 26, 27,
and 28 should call Command 30 before they are executed to insure
that the commands are always pointing to a valid separator byte.

Command 30 (NEXT SEPARATOR BYTE) can be called at anytime to set
the pointers so that an assembly language program can have accces
to the Common Command Buffer. baZic uses a typical call of this
command to determine what baZic program is to be loaded and
executed when baZic is booted.

The command summary and example call of the command follow:

C=30 RE'IURN HL POINTS TO NEXT SEPARATOR BYTE IN DOS IO BUFFER

SEPARATORS ARE 0DH,\,:

MVI C,30
CALL 5
SHLD DOSPOINTER
MOV A,M
CPI 0DH
JZ

*Load C with command number
*Call MicroDoZ to execute
*Save the pointer
*Load A with byte
*Is it a carriage return?
*Yes so no command follows

- 21 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 3-MACHINE LANGUAGE INTERFACE

3.5.2 MicroDoZ BOUNDARIES (31)

This command is passed no argument. Upon RETURNing from the
call, the HL pair contain the starting address of MicroDoZ and
the DE pair contain the ending address of MicroDoZ. If the A
register is equal to zero, there is not a hard disk "on line".
If the A register is not equal to zero, a hard disk drive is "on
line." The command summary and example follow:

C=31 ON RETURN

HL= START ADDRESS OF MicroDoZ
DE= ENDING ADDRESS OF MicroDoZ

3.5.3 PRINTER RELEASE (32)

This command is reserved for use in timesharing systems. In a
non-timesharing environment, a call to this command will execute
a RETURN instruction only. This command is used to release
devices (usually printers) that are locked out by one user of the
system. As an example, baZic calls this routine upon executing a
CHAIN, READY, OR APPEND to release the printer so other users can
print. The command summary follows:

C=32 PRINTER RELEASE (RESERVED FOR TIMESHARE)

3.6 Invalid Commands (34+)

All commands from number 33 up are invalid commands and have no
meaning at the present time although commands 34 to 37 have been
defined but not fully implemented. If the MDOZCOMMAND location
is called with an invalid command, a file error will be returned.
The command summary is as follows:

C>37 RETURN FILE ERROR
INVAILD COMMAND

The reserved command numbers and there function are as follows:

C=34 Open a file.
C=35 Close a file.
C=36 Lock a file.
C=37 Unlock a file.

COPYRIGHT 1981 - 22 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 4-DIRECTORY FORMAT

DIRECTORY FORMAT

The first eight bytes in the directory is the file name. The
seventh bit (high bit} of each letter is used to determine the
Read Only (R/O} status, the System status, and the attributes of
the file. To remain North Star compatible, each file must not
have a Read Only, System, or Attribute bit set.

Bytes 9 through 16 of the directory carry the disk address, the
size of the file in sectors, the type of the file and other
information that is type dependent. Bytes 9 and 10 contain the
disk address of the file with byte 9 containing the low order
address and byte 10 containing the high order disk address.

Bytes 11 and 12 contain the size of the file in sectors. Byte 11
contains the least significant byte while byte 12 contains the
most significant byte of the file size.

Byte 13 holds the density, the side (if applicable}, and the type
of the file. Bit seven sets the density of the file (!=double,
0=single}, bit six sets the side (0=one, l=two}, and bits five to
zero contain the 64 file types available.

Bytes 14, 15, and 16 contain type dependent information. If the
file is a type 1 file, bytes 14 and 15 contain the low order and
high order GO address of the file. Byte 16 is unused.

If the file is a type 2 (baZic program}, byte 14 contains the
number of 256 byte blocks the program currently requires. This
byte is used to speed the LOADing or SAVEing of the file so that
if the file is actually much larger than the program, the entire
file is not loaded or saved. Only the sectors containing the
program are affected. Bytes 15 and 16 are not used if the file
is a type 2 file.

The LI command under MicroDoZ results in the following informa
tion being given for each file listed in the directory of the
affected disk:

File Name (maximum of eight characters}
Starting Disk Address (Decimal}
Length of the File in Blocks (Decimal}
Density (Single or Double}
Type of File (0 to 64 Decimal}
GO Address (If Type 1 in Hex}
R/O if Read Only File
SYSTEM if System File
Attribute Field (0 to 63 Decimal}

COPYRIGHT 1981 - 23 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 4-DIRECTORY FORMAT

A sample Listing of the directory under MicroDoZ would appear as
follows:

l>LI

MICRODOZ 4 20 D 0 AF 0
M2D00M 14 10 D 1 2D00 AF 0
TEST 19 2 D 2 R/O SYSTEM AF 0
BAZIC 20 54 D 1 0100 AF 0
l>

COPYRIGHT 1981 - 24 - MICRO MIKE'S, INC.

MicroDoz, Release 1 5-MICRODOZ STRUCTURE

MICRODOZ STRUC'l'URE

MicroDoZ is divided into four main sections. The first section
is the command processor section. This section is the lowest
(has the smallest address) of the sections and is always at the
beginning of MicroDoZ. This section is responsible for inter
preting input from the keyboard and if a command has been typed
to execute the appropriate command. The command section is 3K in
length.

Directly following the command processor is the I/O section. All
user written code in this section must be relocatable. This
section is divided into two parts, each part having 256 bytes.
The I/O section therefor is 1/2 K (512 bytes) in length. The
first half of this section is the configure block. This block
contains user written code that defines the following parameters:

CRT LINES PER PAGE
VERIFY FLAG
CONFIGURATION BYTE (QUAD DRIVES)
DISPLAY SYSTEM FILES FLAG
CLEAR SCREEN CODES
CURSOR ADDRESSING CODES
CURSOR ADDRESSING OFFSETS
TURNKEY FLAG
TURNKEY PROGRAM(S)
BACKSPACE SEQUENCE

The second block of the I/O section defines the I/O routines for
MicroDoZ to communicate with different hardware. The following
routines must be defined by the user in this section if the user
does not have a standard Horizon setup:

INPUT ROUTINES
OUTPUT ROUTINES
PANIC (CONTROL C) ROUTINES
INITIALIZATION ROUTINES
INPUT PORT STATUS ROUTINES
OUTPUT PORT STATUS ROUTINES
PRINTER RELEASE ROUTINE (TIMESHARING ONLY)

The next section is the MicroDoZ buffer region. The buff er
region is 1/2 K (512 bytes) and is used to buffer MicroDoZ disk
accesses such as disk initialization.

COPYRIGHT 1981 - 25 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

The last section of MicroDoZ is the disk primitive section. This
section contains the routines that are specific to a particular
disk drive and controller. The bootup sequence is also defined
here since the bootup sequence can be very different from one
system to another. In addition, the file lock out routines and
the hard disk patches are located in this section but are only
used in timesharing or hard disk computers.

At boot time, the boot routines are located in the sector im
mediately preceding the command processor section. These rou
tines are needed only for the boot and the space is available for
use by other programs as soon as the boot process is completed.

At bootup, MicroDoZ loads itself into the high memory of the
computer. The control bytes in low memory are written and
MicroDoZ begins operation. In a 48K system, MicroDoZ begins at
AA00H and ends at BFFFH, occupying about 5 1/2 K.

The image of MicroDoZ on the disk is different from the image
that operates in RAM. On the disk, the primitive section is
first, followed by the command processor section, followed by the
I/0 section. As MicroDoZ boots, each section is loaded into its
proper place.

Since the disk image is not the same as the working image, the
working image can never be saved back to the disk by the Save
File (SF) command. MicroDoZ may by "Load Filed" (LF), modified,
and then saved back on the disk using the Save File (SF) command.
Since the I/O section is exactly 512 bytes long, it can be
overlayed in the file by executing a Write Disk command with the
appropriate arguments.

5.1 Configure Block

The configure block is code that is specific to the users
hardware. The Configure Block Source should be consulted while
reading this section to clarify the position of the various flags
and routines in this block.

The first byte of this block is the PAGE byte. This byte deter
mines the number of lines to display upon the default I/O device
(console device) before the PRESS RETURN TO CONTINUE message is
output to the display of the device on a List of the disk direc
tory. The default value for this byte is 24 (lines per page).

The second byte of this block is the VERIFY flag byte. If this
byte is set to zero (0), MicroDoZ will not verify writes to disk
files. If the flag is set to one (1), all file writes will be
verified. The default for the verify flag is one (verify
enabled).

COPYRIGHT 1981 - 26 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

The third byte of this block is the CONFIGure byte. This byte is
set to "tell" MicroDoZ if any quad density five inch disk drives
are "on line". The high nybble of this byte determines if a quad
capacity is present while the low nybble determines which drives
have "fast stepping" capability. The bits from 7 to 4 control
drives 1 to 4 respectively with a bit being 1 indicating that a
quad drive is on line. Bits 0 to 3 control the fast stepping
capability of drives 1 to 4 respectively with a bit value of 1
representing fast stepping. The default value is zero (0).

The fourth byte of this block is the Display SYStem (DSYS) flag
byte. If this byte is a non zero value, all files classified as
SYSTEM files will not display when the directory is Listed. The
default value is zero (0).

The following two locations are both structured in a similar
manner. These two locations control the clear screen and cursor
addressing sequence for your CRT (CSCR and GOTO). If the first
byte of each of these locations is FFH, MicroDoZ will assume that
a machine language jump follows which jumps to the location of a
routine which accomplishes the clear screen and cursor addressing
for your CRT.

Any other value will be interpreted by MicroDoZ to be the number
of characters following which are to be output by the "built in"
clear screen and cursor addressing routines of Microooz. The
default for both of these locations is two (2) indicating that 2
bytes are to be output to the CRT to accomplish the clear screen
and cursor addressing pref ix.

The next two bytes following the cursor addressing codes location
are the row and column offset values (XOFF and YOPP). The de
fault for both these locations is 31.

The next byte is the turnkey flag byte (TKEY). This byte deter
mines if MicroDoZ is to continue booting other program(s) upon
bootup, or if MicroDoZ is to terminate bootup in its own command
mode. The default for this byte is zero (0) indicating MicroDoZ
is not in the turnkey mode. If a turnkey command is in the
buffer, the TKEY byte should be the number of characters in the
command.

Immediately following the turnkey byte is the turnkey buffer.
This buffer is 80 bytes long and is transferred upon bootup to
the common command buffer located at 80H. Multiple commands may
be "left" in the turnkey buffer as long as they are separated by
a separator character (\).

After the turnkey buffer is the backspace (BKSP) string. This
string is the sequence of bytes that are to be output when a
backspace is detected. The default sequence is to output a
backspace (ASCII 8) followed by a space (ASCII 32) followed by
another backspace. The backspace "message" must end with a zero.

COPYRIGHT 1981 - 27 - MICRO MIKE'S, INC.

MicroDoZ, Release l 5-MICRODOZ STRUCTURE

The last location defined in the configure block is the backspace
recognition key (BKSPSET) codes. These are the codes which
MicroDoZ is to recognize as a backspace. The default values are
ASCII 8 (backspace), 95 (rub or delete), and 17 (control Q).

In summary, the tags are listed, as well as the Hex and Decimal
address of where the byte or location may be found in relation to
the ORIGin of the configure block of MicroDoZ. The ORIGin for
this section in a 48K version of MicroDoZ would be B800H.

TAG NAME HEX OFFSET DECIMAL OFFSET DEFAULT VALUE

PAGE ORG + 0 ORG + 0 24
VERIFY ORG + 1 ORG + 1 1
CON FIG ORG + 2 ORG + 2 0
DSYS ORG + 3 ORG + 3 0
CSCR ORG + 4 ORG + 4 ESC + "E"
GOTO ORG + 14 ORG + 20 ESC + "Y"
XOFF ORG + 24 ORG + 36 31
YOFF ORG + 25 ORG + 37 31
TKEY ORG + 26 ORG + 38 13
(tkeybuffer) ORG + 27 ORG + 39 BAZIC\CSUB
BKSP ORG + 78 ORG + 120
BKSPSET ORG + 80 ORG + 128

5.2 Configure Block Source

B800
B80.0
B800
B800
B800 18
B801 01
B802 00

B803 00
B804
B804
B804 02
B805 lB
B806 45
B807 00
B808
B814 02
B815 lB
B816 59
B817 00
B818
B824

B824 lF
B825 lF

COPYRIGHT 1981

10 *MDOZIO
20 *
30 *NOTE THE IO SECTION MUST BE RELOCATABLE CODE
40 *TO REMAIN COMPATABLE WITH FUTURE PLANS
50 PAGE DEFB 24 *LINES PER CRT PAGE
60 VERIFY DEFB 1 *READ AFTER WRITE IF l
70 CONFIG DEFB 0 *CONFIGURATION BYTE FOR QUAD 5 INCH

*DRIVES
80 DSYS DEFB 0 *IF NON ZERO DON'T LIST SYSTEM FILES
90 *CSCR AND GOTO lST BYTE IS STRING LENGTH
100 *IF lST BYTE = 0FFH THEN MACHINE CODE MUST FOLLOW
110 CSCR DEFB 2 *CLEAR SCREEN
120 DEFB 27
130 DEFB "E"
140 DEFB 0
150 ORG CSCR+l6
160 GOTO DEFB 2 *POSITION CURSOR
170 DEFB 27
180 DEFB "Y"
190 DEFB 0
200 ORG GOTO+l6
210 *XOFF AND YOFF OFFSET ADDED TO VALUE TO POSITION

*CURSOR
220 XOFF DEFB 31
230 YOFF DEFB 31

- 28 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

Ba26
Ba26
Ba26
Ba26 00
Ba27
Ba77 0D
Ba7a
Ba7a 0a
Ba79 20
Ba7A 0a
Ba7B 00
Ba7C

Baa0

Baa0 FE 0a
Baa2 ca
Baa3 FE SF
Baas ca
Baa6 FE 11
Baaa ca
Baa9 FE 7F
BaaB C9

5.3 I/O Block

240 *TKEY TURNKEY TO DOS HERE
250 *lST BYTE IS LENGTH OF STRING
260 *MUST END WITH 0DH (CARRIAGE RETURN)
27 0 TKEY DEFB 0
2 a0 DEFS a0
290 DEFB 0DH
300 *BKSP THE STRING USED TO BACKSPACE ENDS WITH 0
310 BKSP DEFB a
320 DEFB 32
330 DEFB a
340 DEFB 0 *BACKSPACE MSG ENDS WITH ZERO
350 DEFS 4

360 *BKSPSET PARSE KEYBOARD CHARACTERS USED TO
*BACKSPACE

370 BKSPSET CP a
3a0 RET Z
390 CP 95
400 RET Z
410 CP llH
420 RET Z
430 CP 127
440 RET

The I/O block begins at the next page boundary immediately
following the Configure block. The two blocks together
constitute one 512 byte sector. The I/O block contains all of
the user written input and output routines as well as the control
C detect, initialization routines, the input and output status
routines and the printer release routine which are used in the
timesharing versions. All of the following routines must be
written in relocatable code.

At the beginning of this section is a jump table. The jumps are
defined with the following tags in the source listing:

INP
OUT
PANIC
TINT
IN STAT
OUTS TAT
PRINTREL

(input routines)
(output routines)
(control C detect)
(port initialization)
(input port status routines)
(output port status routines)
(printer release code)

For the INPut routines, the device number must be supplied in the
A register. The value input from the port must have the seventh
(high) bit stripped by an AN! 7FH instruction. Only the A regis
ter and the flags may be modified during this routine.

COPYRIGHT 19al - 29 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

The OUTput routines should be defined such that the character to
be output is in the B register and the device number is in the A
register. The character output should be in the A register upon
return. No registers may be modified except the A register and
the flags.

The PANIC or control C detect routine is used to determine if the
user has pressed a control c. The routine should first determine
if a character has been typed. If a character has not been typed
the routine should return with the A register clear and the carry
flag not set.

If a character has been typed, the carry flag should be set and
the routine should determine if the character was a control c.
The character should be input, stripped of the seventh (high)
bit, and compared with an ASCII 3. If the character is a control
C, the Z flag should be set and the routine return. The A
registers only can be modified during this routine.

The initialization routine (TINT) is normally used to initialize
USARTs but can be used to initialize any device that needs this
attention upon bootup. The initialization usually consists of
outputting the correct values to specific ports to set the USARTs
for proper working conditions. All registers may be used by this
routine. If your system requires no initialization, simply in
sert a RET for this routine.

The IRSTAT routines are used to determine if a particular input
device has a character ready to send to the computer. The device
number is passed in the A register. If the device passed is a
nonexistent device, the routine should return with the carry set
and a FFH in the A register. If the status is not ready, the
routine should RETurn with the Z flag clear (Z=0). If the status
is ready the should be set (Z=l).

The OUTSTAT routines are very similar to the INSTAT routines
except the OUTSTAT routines check to see if an output device is
ready to accept a character. The device number is passed in the
A register. If the device passed is not defined, the routine
should set the carry flag and return with a FFH in the A regis
ter. If the status is not ready, the routine should RETurn with
the z flag clear (Z=0). If the status is ready the should be set
(Z=l) •

The last routine to define is the printer release routine. This
routine should be only a RET for a non timesharing system.

COPYRIGHT 1981 - 30 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

5.4 I/O Block Source

B889
B900 18 0C
B902 18 15
B904 18 30
B906 18 3D
B908 18 6E
B90A 18 57
B90C 00
B90D C9

B90E DB 03
B910 E6 02
B912 28 FA
B914 DB 02
B916 E6 7F
B918 C9

B919 FE 01
B91B 28 0F
B91D FE 02
B91F CC 2C B9

B922 DB 03
B924 E6 01
B926 28 FA
B928 78
B929 D3 02
B92B C9

B92C DB 05
B92E E6 01
B930 28 FA
B932 78
B933 D3 04
B935 C9

COPYRIGHT 1981

*
*JUMP TABLE AT BEGINNING OF I/0 BLOCK
*

440 ORG IOORG
450 INP JR INPUT l *DEFINE THE JUMPS
460 OUT JR OUTPUT
470 PANIC JR PANICS
480 TINT JR TINTO
490 INSTAT JR INSTATS
500 OUTSTAT JR OUTSTATS
510 PRINTREL DEFB 0 *USED IN TIMESHARE SYSTEM
520 RET

*
*INPUT ROUTINE
*

530 INPUT! IN A,(3) *INPUT THROUGH STATUS PORT
540 AND 2 *AND WITH MASK
550 JR Z,INPUTl *LOOP UNTIL PORT READY
560 IN A,(2) *PORT READY SO GET CHARACTER
570 AND 7FH *STRIP HIGH BIT
580 RET *END ROUTINE

*OUTPUT ROUTINES
* 590 OUTPUT CP 1 *COMPARE OUTPUT DEVICE NUMBER

600 JR Z,PRINTER *PRINT #1 CASE
610 CP 2 *COMPARE WITH 2
620 CALL Z,PRINTER *PRINT ON CRT & PRINTER

*
*CRT OUTPUT
*

630 CRT IN A,(3) *INPUT STATUS OF CRT PORT
640 AND l *AND WITH MASK
650 JR Z,CRT *LOOP UNTIL PORT READY
660 LD A,B *READY SO PUT CHARACTER IN A
670 OUT (2),A *OUTPUT CHARACTER TO PORT
680 RET *RETURN UPON COMPLETION

*
*PRINTER OUTPUT
*

690 PRINTER IN A,(5) *INPUT STATUS OF PRINTER PORT
700 AND 1 *AND WITH MASK
710 JR Z,PRINTER *LOOP UNTIL PRINTER READY
720 LD A,B *READY SO PUT CHARACTER IN A
730 OUT (4) ,A *OUTPUT THE CHARACTER
740 RET *RETURN UPON COMPLETION

- 31 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

B936 DB 03
B938 E6 02
B93A EE 02
B93C C0
B93D DB 02
B93F E6 7F
B941 FE 03
B943 37
B944 C9

B945 AF
B946 D3 06
B948 D3 06
B94A D3 06
B94C D3 06
B94E 3E CE
B950 D3 03
B952 03 05
B954 3E 37
B956 D3 03
B958 D3 05
B95A DB 02
B95C DB 04
B95E 3E 30
B960 D3 06
B962 C9

B963 FE 01
B965 28 0C
B967 B7
B968 28 04
B96A 3E FF
B96C 37
B96D C9

B96E DB 03
B970 E6 01
B972 C9

B973 DB 05
B975 E6 01
B977 C9

COPYRIGHT 1981

*
*CONTROL C DETECT
* 750 PANICS IN A,(3) *INPUT THROUGH STATUS PORT

760 AND 2 *AND WITH MASK
770 XOR 2 *SET FLAGS
780 RET NZ *RETURN IF NO CHARACTER
790 IN A,(2) *CHARACTER READY SO INPUT IT
800 AND 7FH *MASK HIGH BIT
810 CP 3 *IS IS A CONTROL C
820 SCP *YES SO SET CARRY FLAG
830 RET *RE'IURN

*
*INITIALIZATION
* 840 TINTO XOR A *CLEAR A

850 OUT (6) ,A *SET UP PORTS
860 OUT (6),A *THESE EXAMPLES ARE FOR THE
870 OUT (6) ,A *STANDARD HORIZON PORTS
880 OUT (6),A
890 LD A,0CEH
900 OUT (3),A
910 OUT (5) ,A
920 LD A,037H
930 OUT (3) ,A
940 OUT (5),A
950 IN A,(2)
960 IN A,(4)
970 LD A,30H
980 OUT (6),A
990 RET

*
*OUTSTATUS ROUTINES
*

1000
1010
1020
1030
1040
1050
1060

OUTSTATS CP 1 *IS IT DEVICE ONE?
JR Z,OUTSTATSl *YES SO GO OUTSTATSl
OR A *SET FLAPS
JR Z,OUTSTATSO *DEVICE '!WO
LD A,-1 *DEVICE NOT IMPLEMENTED
SCF *SET CARRY FLAG
RET *RE'IURN TO CALLING ROUTINE

*
*OUTSTATUS FOR DEVICE 1
* 1070 OUTSTATS0 IN A,(3) *INPUT THE STATUS PORT

1080 AND 1 *MASK THE BIT
1090 RET *RE'IURN

* *OUTSTATUS FOR DEVICE 2
*

1100 OUTSTATSl IN A,(5) *INPUT STATUS PORT
1110 AND 1 *MASK BIT
1120 RET *RE'IURN

- 32 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 5-MICRODOZ STRUCTURE

*
*INSTATUS
*

B978 B7 1130 IN STATS OR A *CLEAR A
B979 28 04 1140 JR Z,INSTATS0 *DEVICE 0
B97B 3E FF 1150 LD A,-1 *DEVICE NOT DEFINED
B97D 37 1160 SCP *SET CARRY
B97E C9 1170 RET *RE'IURN

*
*STATUS OF DEVICE QI
*

B97F DB 03 1180 INST ATS QI IN A, (3) *INPUT STATUS PORT
B981 E6 02 1190 AND 2 *MASK
B983 0F 1200 RRCA *SET BIT
B984 C9 1210 RET *RETURN

5.5 Bootup Sequence

MicroDoZ boots by the following proceedure:

When the computer is turned on, reset, or a JPE800 is executed
from MicroDoZ or Monitor, control is transferred to the ROM
bootstrap program contained on the floppy disk controller. This
program causes sector 4 on the disk in drive 1 to be loaded into
the RAM of the computer. Control then passes to the code just
loaded which proceeds to load sectors 5 and 6 immediately after
itself.

The remaining sectors of MicroDoZ are then loaded below sector 4
(the first sector loaded). At this time the MicroDoZ jump is
written to bytes 0000H to 0002H, the I/O default byte is written
to byte 0003H, the default drive byte is written to byte 0004H,
and the MicroDoZ CALL jump is written to bytes 0005H to 0007H.

Once these actions are accomplished, control is passed to
MicroDoZ itself by jumping to the first byte of MicroDoz. At
this point, MicroDoZ checks the turnkey byte flag to determine if
MicroDoZ is to take some additional action. If the turnkey flag
is zero (0), no action is taken except to display the prompt and
MicroDoZ stops in the command mode waiting for a command.

If the turnkey flag is non zero, MicroDoZ transfers the number of
bytes represented by the turnkey flag from the bootup buffer to
the Common Command Buffer (CCB) located at 0080H. From this
point, MicroDoZ attempts to excecute the commands in the CCB.

COPYRIGHT 1981 - 33 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 6-DOS2000

oos2eee

DOS2000 is a short assembly language program that "imitates"
North Star DOS located at 2000H. The purpose of this program is
two fold: first, to demonstrate the use of the MicroDoZ machine
language interface, and second, to provide a program that allows
other programs written for North Star DOS to function under
MicroDoZ.

The anotated source is included in this section to allow
programmers to "see" how MicroDoZ is interfaced.

6.1 Source Listine

* INTERFACE TO OLD NORTH STAR DOS
DOSORG EQU 2000H *Origin of program
MICRODOZ EQU 5 *MicroDoZ CALL location

ORG DOSORG
JP DOZ *Jump to DOS intry
JP DOZl
DEFS 1
RET *Of ten routine
DEFW 0
JP DOS *Boot jump

COUT JP COUTl *Address of character out
CIN JP CINl *Address of character in
TINIT JP TINITl *Address of initialization
CONTC JP CONTCl *Address of control C
HDERR JP HDERRl *Address of hard disk error routine
DLOOK JP DLOOKl *Address of DLOOK routine
DWRIT JP DWRITl *Address of DWRITe routine
DCOM JP DCOMl *Address of DCOM routine
LIST JP LISTl *Address of LIST routine
DOS JP DOZ
RWCHK DEFB 0
DOSERR JP DOSERRl
DENSITY DEFB 0
AUTO DEFB 1
IBLOC DEFW IBUFF
PAGES DEFB 0
ZPOINT DEFW 80H
DOZl LD HL,80H

LD (ZPOINT) ,HL
LD A,E
OR A
JP Z ,DOSl
JP ZIPPO

COPYRIGHT 1981 - 34 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

COUTl PUSH BC
LD C,l *OUTPUT A CHARACTER
CALL MICRODOZ
POP BC
RET

CINl PUSH BC
LD C,0 *INPUT A CHARACTER
CALL MICRODOZ
POP BC
RET

TINITl RET *IO PORTS INITIALIZED BY MICRODOZ ALREADY
CONTCl PUSH BC

LD C,2 *MICRODOZ PANIC
CALL MICRODOZ
POP BC
RET

PROMPT! LD SP,STACK
LD HL,PROMPTl
PUSH HL
JP PROMPT

DOZ LD C,30 *GET COMMAND BUFFER POINTER IN HL
CALL MICRODOZ
LD (ZPOINT) ,HL

DOSl LD HL,PROMPTl
PUSH HL
LD SP,STACK
PUSH HL
LD HL,HDERRl
LD (HDERR+l) ,HL
LD HL,DOSERRl
LD (DOSERR+l) ,HL
LD HL,OD0
LD C,23 *EXECUTE COMMAND POINTED TO BY HL
CALL MICRODOZ

ZIPPO LD C,5 *CLEAR SCREEN
CALL MICRODOZ
LD HL, (ZPOINT)
LD A, (HL)
CP 0DH
JR Z,CKAUTO
INC HL
JP CRl

CKAUTO LD A,(AUTO)
OR A
JP Z ,AUTOS

PROMPT LD B,"+"
XOR A
CALL COUT *OUTPUT THE PROMPT
LD HL,IBUFF *!BUFF= THEN INPUT BUFFER
LD DE,79*256 *D=MAX LEN E=CHARACTER COUNT

6-DOS2000

COPYRIGHT 1981 - 35 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 6-DOS2000

!LOOP XOR A
CALL CIN *INPUT A CHARACTER
CP 32 *CHECK FOR LESS THAN 32 IE A CONTROL CHARACTER
JR C,CONTROLS *GO DO CONTROL CHARACTER
LD (HL),A *SAVE CHARACTER IN BUFFER
INC HL *BUMP THE BUFFER POINTER
INC E *BUMP THE CHARACTER COUNTER
LD B,A *PREPARE TO OUTPUT
XOR A
CALL COUT *OUTPUT THE CHARACTER
DEC D *SEE IF BUFFER OVERFLOW
JR NZ,ILOOP *IF NOT THEN MORE ELSE DROP THRU TO CARRIAGE RET

CR LD C,14 *DO A CARRIAGE RETURN LINE FEED
CALL MICRODOZ
LD (HL),0DH *PUT CARRIAGE RET ON END OF BUFFER
LD HL,IBUFF *POINT TO BEGINING OF BUFFER
LD (ZPOINT) ,HL *SET COMMAND POINTER TO BUFFER

CRl LD C,23 *EXECUTE THE DOS COMMAND POINTED TO BY HL
CALL MICRODOZ
JR NC,PROMPT *DO ANOTHER LINE
OR A *SET FLAGS FROM A
*PARSE FILE OR HARD DISK ERROR
JP Z,DOSERR
CP 7
JP NC,DOSERR
JP HDERR

*PARSE CONTROL CODES
CONTROLS CP 0DH

JR Z,CR
CP 8
JR Z,BKSP
CP SFH
JR Z,BKSP
CP 7FH
JR NZ,ILOOP

*DO A BACKSPACE
BKSP LD A,E

OR A
JR Z,ILOOP *IF CHAR COUNT=0 THEN DON'T BACKSPACE
PUSH HL *SAVE POINTER
LD HL,BKSPl *POINT HL TO BKSPACE MESSAGE
LD C,15 *OUTPUT THE MESSAGE
CALL MICRODOZ
POP HL *RESTORE BUFFER POINTER
DEC HL *DELETE THE CHARACTER
DEC E *DECREMENT THE CHAR COUNT
INC E *INCREMENT THE MAX LENGTH
JR !LOOP *DO MORE INPUT

BKSPl DEFB 8 *THE BACKSPACE MESSAGE
DEFB 32
DEFB 8
DEFB 0 *MESSAGES END WITH 0

COPYRIGHT 1981 - 36 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

LISTl PUSH HL *SAVE HL,DE,BC
PUSH BC
PUSH DE
ADD 30H *A=CHR$(A+ASC("0"))
LD (LIST2+5),A *FORM A DOSCMD STRING
LD A,L
ADD 30H
LD (LIST2+3) ,A
LD HL,LIST2 *POINT TO COMMAND JUST COMPILED
LD C,23 *EXECUTE DOZCMD POINTED TO BY HL
CALL MICRODOZ
POP DE *RESTORE REGISTERS
POP BC
POP HL
RET NC *NO PROBLEM IN LIST
OR A *PARSE FILE OR HARD DISK ERRORS
JP Z,DOSERR
CP 7
JP NC,DOSERR
JP HDERR

LIST2 "LI#f2l 1"
DEFB f2JDH

*
DCOMl PUSH AF

LD A,C
LD C,24 *SELECT THE DRIVE AND DENSITY
CALL MICRODOZ
POP AF
LD C,25 *EXECUTE THE DCOM CALL
CALL MICRODOZ
RET NC
OR A *PARSE FILE OR HARD DISK ERRORS
JP Z,DOSERR
CP 7
JP NC,DOSERR
JP HDERR

DEV DEFB 0

*
*DLOOK IS DIFFERENT FOR MIRCODOZ
DLOOK0 INC HL

LD A, (HL)
CP 32
JR Z,DLOOK0
CP II 1"
JP C,DOSERR
CP 35H
JP NC,DOSERR
SUB "0"
LD (DEV) ,A
JP DLOOPl

6-DOS2000

COPYRIGHT 1981 - 37 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

DLOOKl LD A,l
LD (DEV),A
LD A, (HL)
CP 32
JR Z,DLOOK4 *LOOKING FOR MT DIRECTORY SPACE
XOR A
LD (LFLAG) ,A
LD DE,FNAME
LD B,8

*MOVE FILENAME TO FNAME
DLOOP LD A, (HL)

CP 32
JR Z,DLOOPl
CP 0DH
JR Z,DLOOPl
CP ","
JR Z,DLOOK0
LD (DE),A
INC HL
INC DE
DJNZ DLOOP

DLOOPl EX DE,HL
LD (HL) ,0DH
LD A, (DEV)
ADD 30H
LD (DD) ,A
LD HL,DDl
LD C,23 *EXECUTE DOSCMD DEFAULT DRIVE
CALL MICRODOZ
LD HL,FNAME
LD C,26 *DODLOOK
CALL MICRODOZ
PUSH HL
PUSH DE
PUSH AF
LD HL,DDSET
LD C,23 *EXECUTE DOSCMD
CALL MICRODOZ
POP AF
POP DE
POP HL
PUSH AF
AND 80H *STRIP DIRECTORY DENSITY
LD (DENSITY),A
POP AF
JR C,DLOOK2
LD DE,8
ADD HL,DE
LD A, (DEV)
RET

6-DOS2000

COPYRIGHT 1981 - 38 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

HDERR2 "HARD II

"DISK II

"ERROR II

DEFB 0DH
DEFB 0AH
DEFB 0

OD0 "OD0"

DDl "DD"

DEFB SCH
II ID0 II
DEFB SCH
"DDl"
DEFB 0DH

DD DEFB l
DEFB 0DH

DDSET "DDl"
DEFB 0DH

COPYRIGHT 1981

6-DOS2000

- 40 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

DLOOK2 AND 3FH *STRIP OFF DIRECTORY DENSITY
OR A
JR Z,DLOOK3
CP 7 *PARSE FILE OR HARD DISK ERROR
JP C,HDERR
JP DOSERR

DLOOK3 LD (FREE),HL
EX DE,HL
LD A, (DEV)
SCF
RET

FNAME DEFS 9
LFLAG DEFB 1
FREE DEFW 0
DLOOK4 LD A,(LFLAG)

OR A
JP NZ,DOSERR
LD A,-1
LD (LFLAG) ,A
LD HL, (FREE)
LD DE,8
ADD HL,DE
LD A, (DEV)
RET

DWRITl LD C,27 *WRITE DIRECTORY BUFFER TO DISK
CALL MICRODOZ
RET NC
OR A *PARSE FILE OR HARD DISK ERRORS
JP Z,DOSERR
CP 7
JP NC,DOSERR
JP HDERR

!BUFF EQU 80H *DOS INPUT BUFFER LOCATION
DEFS 80

STACK DEFS 0
AUTOS LD HL,TKEY

JP CRl
TKEY "GOBASIC"

DEFB 0DH
DEFS 80
DEFB 0DH

DOSERRl LD HL,FILERR
LD C,15 *PRINT FILERR MESSAGE
JP MICRODOZ

HDERRl LD HL,HDERR2
LD C,15 *PRINT HARD DISKERROR MESSAGE
JP MICRODOZ

FILERR "FILE ERROR"
DEFB 0DH
DEFB 0AH
DEFB 0

COPYRIGHT 1981 - 39 -

6-DOS2000

MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

MONITOR

The Monitor is an assembly language program designed to provide
the user with liminted abilities to view, change, and manipulate
the internal memory of the computer. Provisions are made to
compare memory, fill memory, search memory, test memory, display
memory in various modes, jump to assembly language programs, as
well as the ability to input and output directly to Z80 ports.

As an added convience, the Monitor allows the execution of all
MicroDoZ commands without the need to exit to MicroDoZ. The
command syntax under the Monitor is similar to MicroDoZ.

7.1 Commands

This section details the Monitor commands and their proper usage.
Each command is followed by the command syntax, a description of
the command, and appropriate examples.

No action is taken on any command until the carriage return is
entered and the Monitor has validated the syntax of the command.
All commands may be edited using the standard editor as described
in the baZic manual.

All commands are two or three letter sequences, alternately
followed by one or more arguments. All commands must be in upper
case only. All arguments passed are separated by spaces.

The arguments to commands are expressed by the following "rules":

All numbers passed are assumed to be hexadecimal unless they are
followed by a "T" which means the number is decimal. Hex numbers
may have an "H" following them but it is not required.

An ADDRESS must be a number in the range of 0000H to FFFFH or 0
to 65535T (decimal).

A BLOCK can be defined in one of three ways:

An ADDRESS is a BLOCK that is one byte long.

Two ADDRESSes separated by a hyphen (-) form a BLOCK that
begins at the first ADDRESS and continues to the last
ADDRESS. The last ADDRESS should not be less than the
first.

An ADDRESS followed by a number separated by a comma. This
BLOCK begins at the first address and continues the number
of bytes specificed by the number.

COPYRIGHT 1981 - 41 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

A BYTE is any value which occupies a single byte of space. A
BYTE can be any number from 00H to FFH or 0 to 2SST. Alternate
ly, a BYTE can be any printable (non control) character that is
enclosed in quotes.

7.1.1 Compare Memory

CM <BLOCK> <ADDRESS>

This command causes the memory defined by BLOCK to be compared
with the memory starting at ADDRESS. The comparison is made on
the same number of bytes as the BLOCK beginning with the ADDRESS
location. When any pair of bytea at corresponding locations does
not compare, the address and value are displayed.

As an example, if we wanted to compare 4K of memory starting at
4000H with 4K of memory at F000, the command would be issued as
follows:

>CM 4000-4FFF F000
>

If the entire memory of the two regions specified was exactly
equivalent, the display would appear as demonstrated by the
previous example and the Monitor prompt would immediately follow
the command entered. If any memory locations were not equal,
the address and memory content would be listed immediately
following the command. An example of this condition follows:

>CM 4000,100T F000
404S ES 66 F04S
4046 ES 89 F046
>

The preceeding example indicates the Monitor found an ES at
address 404SH and found a 66 at address F04SH. Likewise, the
address 4046H contained an ES while the address F046H contained a
hexadecimal value of 89.

7.1.2 Fill Memory

FM <BLOCK> <BYTE>

This command causes the specified BLOCK to be filled by the
specified BYTE. Each byte within the range is filled by the
specified value. As an example, if we wanted the 4K region from
F000 to FFFF to be filled with a BYTE value of FF, the command
would appear as follow:

>FM F000-FFFF FF
>

The printing of the prompt immediately after the command
indicates the command was completed sucessfully.

COPYRIGHT 1981 - 42 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

7.1.3 Move Memory

MM <BLOCK> <ADDRESS>

The Move Memory command is used to move the contents of the
memory defined in BLOCK to the location specified in ADDRESS.
All moves are performed correctly reqardless of whether the move
is "up" or "down" in memory or if the specification cause an
overlap between the BLOCK and the ADDRESS.

As an example, if we wanted to move the block of memory from
4000H to 6000H to 1000H, the command would appear as follows:

>MM 4000-6000 1000
>

The printing of the prompt immediately after the command
indicates the command was completed sucessfully.

7.1.4 Search Memory

SM <BLOCK> <BYTE> [,<STRING OF BYTES>)

The Search Memory command is used to search the specified BLOCK
of memory for one or more BYTES. If more than one BYTE is
specified, each BYTE must be separated from the others by a comma
(,). In addition, if a STRING OF BYTES is given, the Monitor
will only search for the series of values that you have specified
and not for the occurrence of any one value.

As an example, if we wanted to search the region from F000H to
FFFFH for an ASCII space, the command would appear as follows:

>SM F000-FFFF "P","A","S"
>

The preceeding example indicates that the specified values were
not located within the range of memory specified. If the value
had been found, the command and output from the monitor would
appear as follows:

>SM F000,100T "f"
F045
>

The preceeding example indicates the Monitor "found" the
requested value at memory location F045H. If the value had been
found at other locations, these would have been listed also.

The Search Memory command also has the ability to use the Boolean
operator NOT. This operation is performed by placing an N before
any BYTE that is to be acted upon by the Boolean NOT.

COPYRIGHT 1981 - 43 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

As an example, the.NOT operator can be used to find areas of Read
Only Memory by the following sequence:

>FM E800,100 20
>SM E800,100 N20

In the example, we first fill the memory area in question with
any BYTE such as 20 and then issue the Search Memory command to
look for all occurrences of "NOT 20" (memory that was not set to
the value specified).

7.1.S Test Memory

TM <BLOCK> <BYTE>

This command is used to test the region of memory as defined by
BLOCK. Each byte in this region is written to with an ascending
pattern and after an amount of time approximately equal to the
value of BYTE, the location is read and compared to the value
written. If the two values do not compare, the address is re
ported as bad.

After each pass through the specified region, the results of the
all passes are reported. The starting value is decremented and
another pass is initiated.

An example of a memory test reporting no errors follows:

>TM 4000-5000 1
WRITING
READING

1 PASSES COMPLETE 0 BAD PASSES
WRITING
READING

2 PASSES COMPLETE 0 BAD PASSES

An example of a memory test reporting errors follows:

>TM E000,2 0
WRITING
READING
E000 FF READ AS C3
E000 FE READ AS 61

1 PASSES COMPLETE
WRITING
READING
E000 FE READ AS C3
E000 FD READ AS 61

2 PASSES COMPLETE
>

COPYRIGHT 1981 - 44 -

1 BAD PASSES

2 BAD PASSES

MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

7.1.6 Display memory Hexadecimal

DH <BLOCK>

The Display Hex command is used to display the hexadecimal
contents of the range of memory as specified in BLOCK. Two hex
digits are displayed per byte with sixteen pairs displayed on
each line.

As an example, if you wanted to display the contents of ten
memory locations starting at address F000, the command and re
sulting display would appear as follows:

>DH F000,10T
F000 FE 7F FB E3 BE FE F7 FD ES FF

>

7.1.7 Display memory Ascii

DA <BLOCK>

This command displays the memory of the specified BLOCK but shows
the ASCII representation of the memory address directly below the
actual value. This command is useful in finding string of
characters or messages that may be imbedded in assembly code.
Any control characters encountered are displayed as blanks (ASCII
32) and any values encountered that have the seventh (high order
bit) high are printed with a minus sign directly preceeding the
value.

If you wanted to display the ASCII value of the block of memory
that started at F000H and continued for 10H bytes, the command
and resulting display would appear as follows:

>DA F000,10
F000 ES ES

-e -e

>

2 47 4S 66 ES ES ES ES ES ES ES ES ES ES
G E f -e -e -e -e -e -e -e -e -e -e

7.1.8 Display memory and Substitute

OS <ADDRESS>

The Display and Substitute command is usefull for determining the
value at any single location and having the option of replacing
that value with one selected by yourself. After each memory
location is displayed, the contents can be changed by entering a
hexadecimal number in the range of 0 to FF. If the value is not
to be changed, the space bar may be pressed to see the next
memory location. Entering a carriage return in response to the
Monitor display of a memory value will terminate the command.

COPYRIGHT 1981 - 4S - MICRO MIKE'S, INC.

MicroDoZ, Release l 7-MONITOR

The Display and Substitute command was used to create the example
as shown in the Display Ascii command. After first Filling
Memory in the range of F000,100 with the value ES, the pattern of
the previous example was created by the following sequence:

>DS F002
F002 ES 02
F003 ES "G"
F004 ES 4S
F004 ES 66
F00S ES
>

7.1.9 Jump Program

JP <ADDRESS>

The Jump Program command is used to transfer control from the
Monitor to another assembly language program. The ADDRESS
specified must be the proper address for executing the program.

7.1.10 Operating System

OS

This command causes control to be passed back to MicroDoZ (the
disk operating system). No parameters are passed to this
command. Remember that all MicroDoZ commands can be executed
from the monitor without returning to the operating system.

7.1.11 Initial Load

IL

The Initial Load command is used to "re-boot" the computer. This
command has the same affect as if the operator had got up from
his/her chair and physically rebooted the computer by pressing
the red reboot switch. This command performs a Jump Program
command with E800H (the disk controller ROM) as the argument.

7.1.12 INPut a byte from a port

INP <PORT ADDRESS>

The INPut command is useful for determining
currently resides at one of the 2S6 Z80 ports.
be displayed directly below the command as shown
example:

>INP 6
3S
>

the value that
The value will

in the following

COPYRIGHT 1981 - 46 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

7.1.13 OUTput a byte to a port

OUT <PORT ADDRESS> <VALUE>

7-MONITOR

The OUTput command is used to output a byte value directly to the
specified port. This command will not be checking the status of
the port as is the normal sequence in printer output but will
issue the value to the port regardless of its status. As an
example, the value 12 (Form Feed) is output to the "printer port"

~ which is port 4 in this example.

>OUT 4 12

>

The value OUTput to the port must be a BYTE value in the range of
0 to FFH. Care must be taken in using this command because the
outputting of the wrong BYTE to the wrong port can cause disturb
ing results. If an incorrect value is output to many status
ports, the port can "lock down", resulting in the user having to
reboot the computer to again do I/O.

7 .2 Line Edi tor

To allow the easy creation and changing of commands, Monitor has
a "built in" line editor. This editor may be used while entering
a command or any time before the carriage return is entered.

Internally in the Monitor are two 1 ine buffers. As you type in
any command, you are typing into the editor input buffer. This
means that any line of program just typed is available for edit
ing.

To keep track of the changes in a command, an internal pointer is
used to "point" to characters in both the editor buffer and the
input buffer. As every character of text (except the editor
commands) is typed in, both pointers are advanced one character
at a time so that the pointer to the input buffer is always
pointing to the current character position. The editor keeps
track of both pointers and allows the programmer to transfer
information from the editor buffer to the input buffer.

The following commands are available in the line editor and are
used to copy characters or sets of characters from the editor
buffer to the input buffer: "G (control G), "N, "A, "Q, "z, "D,
and "Y. All of the editor commands are control characters (the
control key is pressed at the same time the character is press
ed).

COPYRIGHT 1981 - 47 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

7.2.1 Control G

Control G copies the entire contents of the editor buffer from
the current cursor position within the line to the input buffer.
Control G may be used to view the editor buffer after a command
has been placed in the editor buffer. After the control G has
been executed, the user should be able to see the command that
was in the editor buffer and the cursor will be at the end of the
line.

~t this point the can take one of two actions: press the return
key which executes the command or press the control N command
which leaves the command in the editor buffer and returns the
cursor to the beginning of the line. This procedure is very
useful when viewing a command prior to doing the actual editing.

If the pointer is already at the end of the command in the editor
buffer, the bell will be sounded if a control G command is issued
by the programmer.

7.2.2 Control H

The control N command is partially discussed in the control G
section. The purpose of the control N command is to allow the
programmer to restart the editing of a command by cancelling the
command presently on the screen and returning the cursor to the
beginning of the line for further editing. An 11 @11 sign is print
ed when the control N command is typed to indicate to the pro
grammer the line has been cancelled.

7.2.3 Control A

The control A command is used to copy one character from the
editor buffer to the input buffer. The pointers can be pointing
to different characters in each buffer so the command "takes11 the
character pointed to in the editor buffer and places it in the
input buffer.

The character is also printed to the CRT as if the user had typed
the character into the input buff er. Both pointers are in
cremented after this command. If no character is in the editor
buffer, the "bell 11 is sounded on the CRT to let the user know
that the command was illegal.

7.2.4 Control Q

This is the backspace command. It is identical to the backspace
key on many CRTs or the control H key. Both pointers are decre
mented by this command.

When a backspace command is detected a backspace is printed
followed by a space (ASCII 32) followed by another backspace. If
one or both pointers are at the beginning of a line, the command
sounds the 11 bell" of the CRT to let the programmer know of the
mistake.

COPYRIGHT 1981 - 48 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

7.2.5 Control z

This command is used to erase one character at a time from the
input buffer. The command prints a "%" sign to inform the pro
grammer that the character position occupied by the "%" sign has
been erased and is no longer in the input buffer. If the input
buffer pointer is already at the beginning of the line, the bell
is sounded to inform the programmer of the error.

7.2.6 Control D

The control D command is the search and find command. Upon
executing the command, Monitro will wait for one additional
character to be input. Once this character is input, the editor
buffer is searched until the first occurrence of the specified
character is found and the contents of the editor buffer up to
but not including that character is copied to the input buffer.
If the character is not located in the editor buffer, nothing is
copied to the input buff er and the bell is sounded.

7.2.7 Control Y

The control Y command is used to "turn on and off" the insert
mode. By executing the control Y command to turn on the insert
mode, characters may be inserted into the input buffer that were
not in the editor buffer. Once the characters have been entered,
control Y can be toggled off again to allow other characters to
be copied or deleted from the input buff er.

When the insert mode is toggled on, a "less than" character (<}
will be printed to inform the programmer that the editor is in
the insert mode. When the insert mode is toggled off, a "greater
than" character (>} is printed to inform the programmer that the
insert mode is off. These characters are not part of the command
itself but are placed in the line shown on the CRT so the user
will know the status of the insert mode.

7.3 Execute MicroDoZ Commands

As has been previously mentioned, the monitor is capable of
executing all of the MicroDoZ commands. This feature is
extremely "handy" because files can be loaded, chages made
through the use of Monitor commands, and the file saved back on
the disk without the user having to swith from one program to
another. The following is a list of the MicroDoZ commands that
are available from the Monitor:

List the directory
INitialize a disk
WRite disk or Read Disk
Save File or Load File
Jump Program
GO program
CReate a file

COPYRIGHT 1981 - 49 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

TYpe a file
DElete a file
Output Device or Input Device
Define Drive
REname a file
Read Only or Write Enable
Set System or Non System
Attribute Field

7-MONITOR

When a command is issued from the Monitor, the Monitor searches
its internal command list. If the command is not found in its
command table, the Monitor calls the DOZCOMMAND location (0005h)
with the users input in the command buffer. The MicroDoZ command
table is then searched to determine if the command is a legal
MicroDoZ command. If the command is found in the MicroDoZ com
mand table, the command is executed.

If MicroDoZ does not find the command in its command table, it
assumes the command is an implied GO command, so the proper disk
directory is searched for a type 1 file with the same name as the
command. If such a file is found, it is immediately loaded at
its GO address and control is transferred to the program. Thus,
any other program can be executed directly from the Monitor.

7.4 Source Listing

To facilate the use of MicroDoZ, the complete source listing is
included to the Monitor program. Most of the features of the
machine language interface are demonstrated in the Monitor pro
gram. This source listing shows how easy it is to write programs
while using the resources of MicroDoZ.

*MONITOR
*1-14-81
*COPYRIGHT (C) 1981, MICRO MIKE'S, INC.

ORG 100H
JP BEGIN

IOBYTE EQU 3
MDOS EQU 5

*DEFINE MICRODOZ ROUTINES
*DEFAULT I/O LOCATION
*MICRODOZ CALL LOCATION

INPUT LD C,7 *INPUT CHARACTER INTO A REG USING IOBYTE FOR DEVICE
JP MDOS

OUTPUT LD C,8 *OUTPUT CHARACTER IN B TO DEVICE DEFINED BY IOBYTE
JP MDOS

PANIC LD C,9 *PANIC CHECK CONSOLE STATUS FOR CONTROL C
JP MOOS

CLS LD C,12*CLEAR THE CRT SCREEN HOME CURSOR
JP MOOS

CRLF LD C,14 *OUTPUT A CARRIAGE RET LINE FEED TO IOBYTE DEVICE
JP MDOS

MSG LD C,15 *OUTPUT TO IOBYTE DEVICE
JP MDOS*THE MESSAGE POINTED TO BY HL REGISTERS

*MESSAGE ENDS WHEN A 0 SEEN

COPYRIGHT 1981 - 50 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

HEX16 LD C,16 *CONVERT BINARY NUMBER IN HL REGISTER PAIR TO
JP MDOS*4 DIGIT HEX NUMBER SUPPRESS LEADING ZEROS

*PRINT NUMBER ON IOBYTE DEVICE WITH TRAILING SPACE
HEX8 LD C,17 *SAME AS HEX16 BUT A 2 DIGIT HEX NUMBER

JP MDOS
DEC16 LD C,18 *SAME AS HEX16 BUT DECIMAL

JP MDOS
DEC8 LD C,19 *SAME AS HEX16 BUT DECIMAL 0 •• 255

JP MDOS
TAB LD C,22 *TAB CURSOR THE VALUE IN THE A REGISTER

JP MDOS

DODOS LD C,23 *DO A DOS COMMAND POINTED TO BY HL REGISTER PAIR
JP MDOS*COMMAND MUST END WITH 0DH (CARRIAGE RETURN)

EXIT JP 0

*END MICRODOZ ROUTINE DEFINITIONS

*
*BEGIN MONITOR

BEGIN LD SP,STACK
CALL CLS
CALL IBUFFINIT
CALL CRLF
LD HL,SIGNON
CALL MSG

BEGIN0 CALL CRLF
BEGINl LD HL,PROMPT

CALL MSG
XOR A
LD (IBFLAG) ,A
CALL !BUFF
CALL NC,EXECUTE
JR NC,BEGINl
LD HL,ERROR
CALL MSG
CALL CRLF
JR BEGINl

*SIGNON MESSAGE
SIGNON "MONITOR II

"COPYRIGHT "
"(C) "
"1980 "
"MICRO "
"MIKE'S "
"INC."
DEFB 0

*PROMPT MESSAGE
PROMPT ">"

DEFB 0

COPYRIGHT 1981

*SETUP STACK
*CLEAR THE SCREEN
*INITIALIZE INPUT BUFFER
*PRINT CARRIAGE RET LINE FEED
*LOAD HL WITH ADDRESS OF SIGN ON MESSAGE
*PRINT SIGN ON MESSAGE

*LOAD HL WITH ADDRESS OF PROMPT MESSAGE
*PRINT THE PROMPT

*SET FLAG FOR COMMAND INPUT
*INPUT A LINE OF COMMANDS
*IF INPUT OK THEN GO PARSE COMMANDS
*DO ANOTHER COMMAND LINE

*PRINT ERROR MESSGAE

*DO ANOTHER COMMAND LINE

*MESSAGE ENDS WITH 0

- 51 - MICRO MIKE'S, INC.

--~-------

MicroDoZ, Release l

*ERROR MESSAGE
ERROR "?"

DEFB 0

*STACK SPACE
DEFS 80

STACK DEFS 0

7-MONITOR

*ECHO THE FOLLOWING WHEN A BACKSPACE IS INPUT
BKSPSTR DEFB 8

DEFB " "
DEFB 8
DEFB 0

IBFLAG DEFB 0
IBUFFINIT RET *UNUSED ROUTINE

*
*PARSE COMMANDS

*
EXECUTE LD DE,COMMDS

LD C,NCMDS
EXEC0 LD A, (DE)

CP (HL)
JR NZ,EXECl
INC HL
INC DE
LD A, (DE)
CP (HL)
DEC HL
DEC DE
JR Z,EXEC2

EXECl INC DE
INC DE
INC DE
INC DE
DEC C

*

JR NZ,EXEC0
JP DODOS

*DE POINTS TO COMMAND TABLE
*C= NUMBER OF COMMANDS IN TABLE

*COMPARE lST BYTE OF COMMAND
*JMP IF NOT A MATCH

*COMPARE SECOND BYTE OF COMMAND

*JMP IF COMMAND MATCH
*MOVE DE TO NEXT ENTRY IN CMD TABLE

*HOW MANY ENTRIES
*JMP IF MORE ENTRIES IN CMD TABLE
*CMD NOT IN MON GIVE IT TO MICRODOZ

*FOUND COMMAND IN MONITOR TABLE NOW EXECUTE IT
*
EXEC2 INC HL

INC HL
INC DE
INC DE
PUSH HL
EX DE,HL
LD E, (HL)
INC HL
LD D, (HL)
EX DE,HL
EX (SP),HL

RET

COPYRIGHT 1981

*POINT HL TO CHARACTER IN !BUFF AFTER CMD

*POINT DE TO ADDRESS OF COMMAND IN TABLE

*SAVE IBUFF POINTER
*HL= ADDRESS OF ADDRESS OF ROUTINE

*PUT COMMAND ADDRESS IN DE
*MOVE COMMAND ADDRESS TO HL
*PUT COMMAND ADDRESS ON STACK
*HL = !BUFF POINTER
*RE'IURN TO COMMAND ADDRESS

- 52 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

*
*COMMAND TABLE
*'!WO CHARACTER COMMAND FOLLOWED BY ADDRESS OF COMMAND

*
COMMDS "CM"

DEFW CM
"FM"
DEFW FM
"MM"
DEFW MM
"SM"
DEFW SM
"TM"
DEFW TM
"DH"
DEFW DH
"DA"
DEFW DA
"DS II
DEFW DS
"OS"
DEFW OS
"IL"
DEFW IL
II IN"
DEFW INP
"OU"
DEFW OUT

NCMDS EQU 12 *NUMBER OF COMMANDS IN THE TABLE
*END OF COMMAND TABLE
*

*COMPARE MEMORY
CM CALL BLOCK

RET C
*BLOCK RE'IURNS WITH DATA ON THE STACK IF CARRY=0

*ERROR IN BLOCK
CALL ADDRESS
JP C,BLKERR

CMl POP HL
LD A, (DE)
CP (HL)
INC HL
INC DE
PUSH HL
JR Z,CM2
PUSH DE

*ADDRESS RE'IURNS WITH DATA IN DE REGISTER PAIR
*ERROR IN ADDRESS
*THE START OF THE DATA BLOCK
*A= BYTE OF <ADDRESS>
*COMPARE WITH BYTE OF <BLOCK>
*BUMP <BLOCK START>
*BUMP <ADDRESS>
*SAVE <BLOCK START>
*IF <BLOCK BYTE>=<ADDRESS BYTE>
*SAVE <ADDRESS>

*ADJUST <BLOCK START> AND <ADDRESS> TO POINT TO
*BYTE INEQUALITY

DEC DE
PUSH DE
DEC HL
PUSH HL
CALL HEX16 *PRINT HEX <BLOCK START>
POP HL
LD A, (HL)

COPYRIGHT 1981 - 53 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

CM2 EXX

LD L,A
LD H,0
CALL HEX8
POP HL
PUSH HL
LD A, (HL)
LD L,A
LD H,0
CALL HEX8
POP HL
CALL HEX16
CALL CRLF
POP DE

7-MONITOR

*PRINT HEX VALUE OF BYTE AT <BLOCK START>
*HL= <ADDRESS>

*PRINT HEX VALUE OF BYTE AT <ADDRESS>

*PRINT HEX OF <ADDRESS>
*DO A CARRIAGE RET LINE FEED

*EXCHANGE HL HL' DE DE' BC BC'

*LIMIT CHECKS FOR CONTROL C
*AND IF <BLOCK START> > <BLOCK END> ON STACK

CALL LIMIT
EXX
JR NC,CMl *DO SOME MORE

CEXIT OR A
POP HL *CLEAR <BLOCK PARAMETERS FROM STACK>
POP HL
RET

*
*FILL MEMORY

FM CALL BLOCK
RET C
CALL BYTE
JR NC,FM0
CP 22H
JP NZ,BLKERR
INC HL
LD A, (HL)
LD E, A *PUT

FM0 LD A,E
FMl POP HL

*

LD (HL),A
INC HL
PUSH HL

CALL LIMIT
JR NC, FMl
JR CEXIT

*MOVE MEMORY

MM CALL BLOCK
RET C
CALL ADDRESS
JP C,BLKERR

COPYRIGHT 1981

*JMP IF VAILID BYTE
*IS IT A QUOTE
*NOT A QUOTE REPORT ERROR

LITERAL VALUE OF BYTE AFTER QUOTE IN E
*PUT VALUE TO FILL IN A
*<BLOCK START>
*FILL <BLOCK START>,A
*BUMP <BLOCK START>
*PUT BACK ON STACK

*LIMIT CHECKS PANIC AND BLOCK LIMITS
*DO MORE
*CLEAR STACK AND RET

*ERROR IN BLOCK

*ERROR IN ADDRESS

- 54 - MICRO MIKE'S, INC.

Microooz, Release 1

*THE FOLLOWING DETERMINES WHICH DIRECTION TO MOVE
POP HL *START
EX DE,HL *DE=START HL=ADDR
EX (SP),HL *HL=END STK=ADDR
PUSH DE *START

*NEGATE DE FOR SUBTRACTION
LD A,E
CPL
LD E,A
LD A,D
CPL
LD D,A
INC DE
ADD HL,DE
POP DE
EX (SP),HL
LD A,D
CP H
JR NZ ,MMl
LD A,E
CP L

MMl EX DE,HL
POP BC
JR C,MM2

*INRCREMENTING MOVE
LDIR
RET

MM2 ADD HL,BC
DEC HL
EX DE,HL
ADD HL,BC
DEC HL
EX DE,HL

*DECREMENTING MOVE
LDDR
OR A
RET

*
*SEARCH MEMORY
SM CALL BLOCK

RET C
CALL LIST

*HL=LENGHT
*START
*HL=ADDR STK=LEN

*DE=DEST HL=START
*LENGTH
*START < DEST

*LIST COMPILES THE BYTES TO SEARCH FOR ALONG WITH
*THE BOOLEAN OPERATOR
*THE LIST IS COMPILED AT BUFFER
*FORMAT BOOLEAN,BYTE
*C REG = NUMBER OF BYTES TO COMPARE

7-MONITOR

COPYRIGHT 1981 - 55 - MICRO MIKE'S, INC.

MicroDoZ, Release 1 7-MONITOR

JR NC, SMl
BLKERR POP HL

POP HL
RET

*CLEAR BLOCK PARAMETERS FROM STACK

SMl POP DE
PUSH DE
PUSH BC
LD HL,BUFFER

SM2 LD B, (HL)
INC HL
LD A, (DE)
CP (HL)
INC DE
INC HL
JR NZ,SM3
LD A,B
OR A
JR NZ,SMS

SM6 DEC C
JR NZ,SM2

*MATCH PRINT IT

*DE=<BLOCK START>

*LOGIC SENSE

*MEMORY BYTE
*LIST BYTE

*NOT A MATCH

*NOTMATCH

*DO NEXT LIST BYTE

POP HL *OLD BC
LD (TEMP),HL *SAVE IT
POP HL
PUSH HL *ADDRESS
CALL HEX16 *PRINT HEX ADDRESS OF MATCH
CALL CRLF

SM4 POP HL *BUMP <BLOCK START>
INC HL
PUSH HL
CALL LIMIT
LD HL,(TEMP) *RESTORE BC VALUE
PUSH HL
POP BC
JR NC, SMl *DO MORE
POP HL *CLEAR STACK OF BLOCK PARAMETERS
POP HL
OR A *CLEAR CARRY SO ERROR MESSAGE DOESN'T DISPLAY
RET

TEMP DEFW 0 *STORAGE FOR BC IN SM ROUTINES
SM3 LD A,B

OR A
JR NZ,SM6

SMS POP HL
LD (TEMP),HL
JR SM4

COPYRIGHT 1981 - 56 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

*
*DISPLAY HEX
DH CALL BLOCK

RET C *ERROR IN BLOCK
DHl POP HL *<BLOCK START>

LD (ZIPPER),HL
PUSH HL
CALL HEX16 *PRINT HEX ADDRESS
LD A,2
CALL TAB *TAB 2 SPACES

* SETUP TO PRINT 16 BYTES
LD A,16
LD (COUNT),A

DH2 POP HL
LD A,(HL) *BYTE AT <BLOCK START>
INC HL *BUMP <BLOCK START>
PUSH HL
LD L,A
LD H,0
CALL HEX8 *PRINT HEX VALUE OF BYTE
CALL LIMIT
JR C,DH3 *END OF BLOCK
LD A, (COUNT)
DEC A
LD (COUNT) ,A
JR NZ,DH2 *16 BYTES NOT FINISHED
CALL DAl *IF DA THEN DISPLAY CHR$(BYTE)
JR DH!

DH3 CALL DAl
POP HL *CLEAR BLOCK PARAMETERS
POP HL
CALL CRLF

7-MONITOR

OR A *RESET CARRY SO ERROR DOESN'T DISPLAY
RET

COUNT DEFB 0

*
* DISPLAY ASCII USING DISPLAY HEX WITH DAFLAG SET
DA LD A,-1

LD (DAFLAG),A
CALL DH
LD A,0
LD (DAFLAG) ,A
RET

DAFLAG DEFB 0

COPYRIGHT 1981 - 57 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

DAl CALL CRLF
LD A, (DAFLAG)
OR A
RET Z
POP HL
POP DE
PUSH DE
PUSH HL
LD HL, (ZIPPER)
PUSH HL
LD A,6
CALL TAB

DA2 LD A,l
CALL TAB
POP HL
PUSH HL
LD A, (HL) *BYTE TO DISPLAY

*IF BYTE>l27 THEN PRINT "-" ELSE PRINT " "
AND 80H
LD B," "
JR Z,DA3
LD B,"-"

DA3 CALL OUTPUT
POP HL
LD A, (HL)
AND 7FH
LD B,A

*IF BYTE IS LESS THAN A
*A CONTROL CHARACTER SO
*ELSE PRINT CHR$(BYTE)

CP II "

JR NC,DA4
LD B," II

DA4 CALL OUTPUT
INC HL
LD A,E
CP L
JP Z,CRLF
PUSH HL
JR DA2

ZIPPER DEFS 2

*
*DISPLAY SUBSTITUTE
DS CALL ADDRESS

RET C
EX DE,HL
LD A,-1
LD (IBFLAG) ,A

COPYRIGHT 1981

*BYTE TO DISPLAY
*STRIP BIT 7

SPACE IT MUST BE
PRINT A SPACE

*HL= <ADDRESS>

*SET !BUFF FLAG

- 58 -

FOR DS

7-MONITOR

MODE

MICRO MIKE'S, INC.

MicroDoZ, Release 1

DSl PUSH HL
CALL HEX16
LD A,2
CALL TAB
POP HL
PUSH HL
LD A, (HL)
LD L,A

7-MONITOR

*PRINT HEX ADDRESS

LD H,0
CALL HEX8
CALL !BUFF
JR C,DS2
LD A, (HL)
CP 32

*PRINT HEAX VALUE OF BYTE AT <ADDRESS>
*INPUT VALUE OR RESPONSE

JR Z,DS4
CP 0DH
JR NZ,DS3

DS2 POP HL
RET

DS3 CP 22H
JR NZ,DS5

*QUOTE GET LITERAL
INC HL
LD E, (HL)
JR DS6

DS5 CALL BYTE
RET C

DS6 POP HL
LD (HL),E
INC HL
JR DSl

DS4 POP HL

*

INC HL
JR DSl

*EXIT TO MICRODOZ
OS JP EXIT

*EXIT TO BOOT PROM
IL JP 0E800H

*
*LIMIT

*ERROR IN !BUFF
*LOOK AT INPUT STREAM

*IF SPACE THEN NEXT ADDRESS

*IF NOT CARR RET THEN IS A VALUE

*IS INPUT A QUOTE

VALUE OF BYTE IN E

*CONVERT HEX TO BINARY IN E

*SUBSTITUTE BYTE AT <ADDRESS>

*BUMP <ADDRESS>

*NO SUBS JUST BUMP <ADDRESS>

*LIMIT ASSUMES THAT BLOCK PARAMETERS ARE ON THE STACK
*LIMIT CHECKS FOR A CONTROL C (LIMITl DOESN'T)
*LIMIT & LIMIT! CHECKS FOR <BLOCK START> > <BLOCK END>
*RETURN CARRY=! IF CONTROL C OR LIMIT PASSED
LIMIT PUSH AF

CALL PANIC
JR C,LIMl *FOUND A CONTROL C
POP AF

COPYRIGHT 1981 - 59 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

LIM I Tl POP BC
POP HL
POP DE <BLOCK
PUSH DE
PUSH HL
PUSH BC
PUSH AF

*RETURN FOR LIMIT
*<BLOCK START>

END>

*NEGATE DE REGISTER PAIR
LD A,E
CPL
LD E,A
LO A,D
CPL
LD D,A
INC DE
POP AF

*SUBTRACT EFFECTIVLY HL=HL-DE
ADD HL,DE
RET

LIMl POP AF
SCF
RET

*
*LIST ON RE'IURN, REG C=NUMBER OF BYTES IN LIST
*FORMAT BOOLEAN,BYTE
*BOOLEAN=01 THEN MATCH BYTE
*BOOLEAN=-! THEN MATCH NOT BYTE

LIST LD DE,BUFFER
LD C,0

LISTI CALL SKIPSP
CP "N"
LD A,0
JR NZ,LIST2
INC HL
LD A,-1

LIST2 LD (DE),A
INC DE
CALL SKIPSP
CP 22H
JR NZ,LIST3
INC HL
LD A, (HL)
LD (DE) ,A
INC DE
INC C
INC HL
CALL SKIPSP
CP 22H
SCF
RET NZ
INC HL

COPYRIGHT 1981

*CHECK FOR NOT

*IS IT A QUOTE VALUE

- 60 -

7-MONITOR

MICRO MIKE'S, INC.

MicroDoZ, Release 1

LIST4 CALL SKIPSP
INC HL
CP ","
JR Z,LISTl
OR A
RET

LIST3 PUSH DE
CALL BYTE
LD A,E
POP DE
RET C
LD (DE) ,A
INC DE
INC C
JR LIST4

*MORE ITEMS. lN LIST

*DO A HEX OR DECIMAL VALUE

*BYTE CONVERTS HEX OR DECIMAL INPUT TO BINARY IN DE
*CARRY=l IF VALUE > 255 DECIMAL
*HL POINTS TO INPUT STREAM BUFFER

BYTE CALL SKIPSP
CALL NUMB
RET C

*

LD A,D
OR A
RET Z
SCP
RET

*ADDRESS CONVERTS HEX OR DECIMAL TO BINARY IN DE
ADDRESS CALL SKIPSP

JP NUMB

* *SKIP SPACES
SKIPSP LD A, (HL)

*BLOCK

CP " "
RET NZ
INC HL
JR SKIPSP

*HL POINTS TO STRING
*CARRY=l ERROR
*CARRY=0 THEN STACK IN ORDER OF POPS
*CONTAINS BEGINNING ADDRESS AND ENDING ADDRESS

7-MONITOR

COPYRIGHT 1981 - 61 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

BLOCK CALL SKIPSP
CALL NUMB
RET C
EX DE,HL
EX (SP),HL
PUSH HL
EX DE,HL
CALL SKIPSP
CP 0DH
JR NZ,BLOCKl
POP HL
POP DE
PUSH DE
PUSH DE
PUSH HL
OR A
RET

BLOCKl CP "-"
JR NZ,RANGE
INC HL
CALL SKIPSP
CALL NUMB
JR NC,BLOCK2

RERR POP HL
POP DE
PUSH HL
SCP
RET

BLOCK2 EX DE,HL
POP BC
EX (SP),HL
PUSH HL
PUSH BC
EX DE,HL
OR A
RET

RANGE CP ","
JR NZ,RERR
INC HL
CALL SKIPSP
CALL NUMB
JR C,RERR
POP BC
EX (SP),HL
PUSH BC
LD B,H
LD C,L
ADD HL,DE
LD D,B
LD E,C
POP BC
EX (SP) ,HL
PUSH DE
PUSH BC
RET

COPYRIGHT 1981

*SKIP SPACES
*EVALUATE A NUMBER

*SKIP SPACES
*LOOK FOR CARRIAGE RETURN

*LOOK FOR BLOCK SEPARATOR
*NO, SEE IF RANGE

*SKIP SPACES
*EVALUATE SECOND NUMBER

*ERROR CONDITION

*SET CARRY FLAG
*AND RETURN

*RET
*HIGH TO STK
*LOW TO STK
*RET TO STK

*LOOK FOR RANGE SEARATOR
*NO, SO ERROR CONDITION

*SKIP SPACES
*EVALUATE SECOND NUMBER
*IF CARRY SET THEN ERROR
*RET
*HL = LOW
*RET
*BC= LOW

*DE= LOW
*RET
*HIGH TO STK HL= POINTER

7-MONITOR

- 62 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

*NUMB
*NUMBER PART OF MONITOR
*HL POINTS TO STRING OF NUMBERS
*CKNUM RET C=l IF NOT "0" •• "9 11

CKNUM CP 11 0"
RET C
CP ":"
CCF
RET

*CKHEXLET RET C=l IF NOT HEX LETTER
CKHEXLET CP "A 11

RET C
CP "G"
CCF
RET

NUMBER CALL CKNUM *SEE IF VALID NUMBER
JR NC, NUMBER!
CALL CKHEXLET *SEE IF VALID HEX LETTER
RET C
SUB 11 A"-10
OR A
RET

NUMBER! SUB "0 11

OR A
RET

*NUMB COUNTS DIGITS IN C
*PUSHES BINARY OF VAILID DIGIT ONTO STACK
NUMB LD C,0

LD A,(HL)
CALL NUMBER
RET C

NUMB! PUSH AF
INC C
INC HL
LD A, (HL)
CALL NUMBER
JR NC,NUMBl

*NUMBER IS ON STACK NOW ASSEMBLE INTO 16 BIT BINARY
CP "T 11 *LOOK FOR DECIMAL INDICATOR
JR Z,DECIMAL

HEX CP "H 11 *LOOK FOR HEX INDICATOR
JR NZ,HEXl
INC HL

HEX! POP AF
LD D,0
LD E,A
DEC C
JR Z,NRET
POP AF
CALL ROT
OR E
LD E,A

COPYRIGHT 1981 - 63 -

7-MONITOR

I

MicroDoZ, Release 1

DEC C
JR Z,NRET
POP AF
LD D,A
DEC C
JR Z,NRET
POP AF
CALL ROT
OR D
LD D,A
DEC C
JR Z,NRET
SCF
RET

NRET OR A
RET

ROT RLCA
RLCA
RLCA
RLCA
AND 0F0H
RET

DECIMAL INC HL
POP AF
LD E,A
LD D,0
DEC C
JR Z,NRET
LD B,l

DEC! POP AF
PUSH HL
LD L,A
LD H,0
PUSH DE
PUSH BC
CALL X10
POP BC
POP DE
ADD HL,DE
EX DE,HL
POP HL
INC B
DEC C
JR Z,NRET
LD A,B
CP 5
CCF
RET C
JR DECl

COPYRIGHT 1981

7-MONITOR

- 64 - MICRO MIKE"S, INC.

MicroDoZ, Release 1

Xl0 LD D,H
LD E,L
ADD HL,HL
ADD HL,HL
ADD HL,DE
ADD HL,HL
DEC B
RET Z
JR Xl0

*TEST MEMORY0
*PART OF MONITOR
TM CALL BLOCK

RET C
CALL BYTE
JR NC,TMl
POP HL
POP HL
RET

TMl LD A,E
INC A
LD (TIME) ,A
XOR A
LD (ZIP) ,A
LD HL,0
LD (TMPASS) ,HL
LD (TMBAD),HL

TM2 LD HL,WRITING
XOR A
LD (TMBADF),A
CALL MSG
CALL CRLF
LD B,-1
LD (CUP) ,BC
POP HL
POP DE
PUSH DE
PUSH HL
PUSH DE

TM3 PUSH HL
LD (CUP) ,BC
LD A, (ZIP)
ADD B
LD (HL) ,A
POP HL
INC HL
PUSH HL
CALL LIMIT!
JR C,TM4
CALL PANIC
JP Z ,TMX
LD BC, (CUP)
POP HL
DJNZ TM3
LD B,-1

COPYRIGHT 1981

7-MONITOR

*RANGE TO TEST

*VALUE OF TIME DELAY

*4 POPS RET

- 65 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

LD (CUP) ,BC
JR TM3

TM4 LD A,(TIME)
TMS DEC A

JR Z, TM6
LD B,l

Xl LD H,0
X2 LD L,0
X3 EX (SP),HL

EX (SP) ,HL
DEC L
JR NZ,X3
DEC H
JR NZ,X2
DEC B
JR NZ,Xl
JR TMS

TM6 CALL PANIC
JP Z,TMX
LD HL,READING
CALL MSG
CALL CRLF
LD B,-1
LD (CUP) ,BC
POP HL
POP HL
POP HL
POP DE
PUSH DE
PUSH HL
PUSH DE

TM7 PUSH HL
LD (CUP),BC
LD A, (ZIP)
ADD B
CP (HL)
JR Z, TM8
PUSH HL
PUSH BC
CALL HEX16
POP BC
LD L,B
LD H,0
CALL HEX8
LD HL,READAS
LD A,l
LD (TMBADF),A
CALL MSG
POP HL
LD L, (HL)
LD H,0
CALL HEX8
CALL CRLF

COPYRIGHT 1981

7-MONITOR

*CHECK FOR CONTROL C

*LOAD HL WITH ADDRESS OF READING MESSAGE
*DISPLAY MESSAGE
*OUTPUT CARRIAGE RE'IURN AND LINE FEED

- 66 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

TM8 POP HL
INC HL
PUSH HL
CALL LIMIT!
JR C,TM9
CALL PANIC
JP z, TMX
LD BC, (CUP)
POP HL
DJNZ TM7
LD B,-1
LD (CUP) ,BC
JR TM7

TM9 LD HL,(TMPASS)
INC HL
LD (TMPASS),HL
LD A, (TMBADF)
OR A
JR Z, TM90
LD HL, (TMBAD)
INC HL
LD (TMBAD),HL

TM90 LD HL,(TMPASS)
CALL DEC16
LD HL,PASSCOM
CALL MSG
LD HL, (TMBAD)
CALL DEC16
LD HL,BADPASS
CALL MSG
CALL CRLF
POP HL
POP HL
LD A, (ZIP)
INC A
LD (ZIP) ,A
JP TM2

ZIP DEFB 0
CUP DEFW 0
TIME DEFB 0
BADPASS " BAD PASSES"

DEFB 0
PASSCOM " PASSES "

"COMPLETE "
DEFB 0

READAS " READ "
n AS "
DEFB 0

READING "READING"
DEFB 0

WRITING "WRITING"
DEFB 0

COPYRIGHT 1981

7-MONITOR

- 67 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

TMX POP HL
POP HL
POP HL
POP HL
OR A
RET

TMPASS DEFW 0
TMBAD DEFW 0
TMBADF DEFB 0

*
*INPUT
INP LD A, (HL)

CP "P"
JR Z, INPl

*NOT INP SO GIVE IT TO MICRODOZ
DEC HL
DEC HL
JP DODOS

INPl INC HL
CALL BYTE
RET C
LD C,E *C= PORT NUMBER
LD B,E
IN L, (C)
LD H,0
CALL HEX8
CALL CRLF
OR A
RET

*
*OUTPUT PORT,VALUE
OUT LD A, (HL)

CP "T"
JR Z,OUTl

*NOT OUT GIVE IT TO MICRODOZ
DEC HL
DEC HL
JP DODOS

OUTl CALL CRLF
INC HL
CALL SKIPSP
CALL BYTE *GET PORT NUMBER
RET C
PUSH DE
CALL SKIPSP
CP 22H
JR NZ,OUT2
INC HL
LO A,(HL) *QUOTED VALUE

COPYRIGHT 1981 - 68 -

7-MONITOR

MICRO MIKE'S, INC.

MicroDoZ, Release 1

OUT3 POP BC
OUT (C),A
CALL CRLF
OR A
RET

OUT2 CALL BYTE
LD A,E
POP DE
RET C
PUSH DE
JR OUT3

*IBUFF

*GET HEX OR DECIMAL BYTE VALUE

BUFFER DEFS 80 *MAIN INPUT BUFFER
DEFB 0DH

BUFFER! DEFS 80 *EDITOR BUFFER
DEFB 0DH

BlLEN DEFB 0
BlPOINT DEFB 0
IBUFF LD HL,BUFFER

LD DE,80

*D=CHARS INPUT E= SPACE REMAINING
IBUFFl CALL INPUT

CP 32
JR C,CCODES

*NOT A CONTROL CODE
JR NZ,IBUFF2
LD A, (IBFLAG)

*IBFLAG<>0 THEN SPACE ACTS LIKE CARRIAGE RETURN
OR A
LD A,32
JR NZ,CR

IBUFF2 CP 95
JR Z,BKSP

*PUT CHARACTER IN BUFFER
LD (HL) ,A
INC HL
LD B,A
CALL OUTPUT
LD A, (CYFLG)
OR A
CALL Z,INX
INC D
DEC E
JR NZ,IBUFFl
SCF
RET

7-MONITOR

COPYRIGHT 1981 - 69 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

*PARSE CONTROL CODES
CCODES CP 8

JR Z,BKSP
CP llH
JR Z,BKSP
CP 0DH
JR Z,CR
CP 3
JP Z ,BEGIN0
CP 1
JR Z,CONTA
CP 7
JR Z,CONTG
CP 0EH
JP Z,CONTN
CP 19H
JP Z,CONTY
CP lAH
JP Z ,CONTZ
CP 4
JP Z,CONTD
JR IBUFFl

*BACKSPACE
BKSP LD A,D

OR A
JR Z,IBUFFl
PUSH HL
LD HL,BKSPSTR
CALL MSG
POP HL
DEC HL
LD A, (BlPOINT)
DEC A
LD (BlPOINT),A
INC E
DEC D
JR IBUFFl

*CARRIAGE RETURN END OF INPUT
CR LD (HL) ,A

CALL CRLF
LD A,D
OR A
JR Z ,CRl
LD (BlLEN),A
LD HL,BUFFER
LD DE,BUFFERl
LD C,A
LD B,0
LDIR

CRl XOR A
LD (BlPOINT),A
LD HL,BUFFER
RET

COPYRIGHT 1981 - 70 -

7-MONITOR

MICRO MIKE'S, INC.

MicroDoZ, Release 1

*CONTROLA (BUFFER)=(EDITBUFFER)
CONTA CALL CKEND

JR C,CONTAl
BELL LD B, 7

CALL OUTPUT
JP IBUFFl

CONTAl CALL BPOINT
JP IBUFF2

CONTG CALL CKEND
JR NC,BELL

CONTGl CALL BPOINT
LD (HL),A
INC HL
LD B,A
CALL OUTPUT
CALL INX
INC D
DEC E
SCP
RET Z
CALL CKEND
JR C,CONTGl
JP !BUFF!

CONTN LD B,64
CALL OUTPUT
CALL CRLF
CALL CR
LD DE,80
JP !BUFF!

CONTZ CALL CKEND
JR NC,BELL

CONTZl LD B,"%"
CALL OUTPUT
LD A, (BlPOINT)
INC A
LD (BlPOINT) ,A
JP !BUFF!

INX LD A,(BlPOINT)
INC A
LD (BlPOINT),A
RET

CKEND LD BC,(BlLEN)
LD A,B
CP C
RET

BPOINT LD A, (BlPOINT)
LD IX,BUFFERl
LD C,A
LD B,0
ADD IX,BC
LD A, (IX)
RET

CYFLG DEFB 0

COPYRIGHT 1981 - 71 -

7-MONITOR

MICRO MIKE'S, INC.

MicroDoZ, Release 1

CONTY LD A,(CYFLG)
OR A
JR Z,INSERT
XOR A
LD (CYFLG),A
LD B, II> II

CALL OUTPUT
JP IBUFFl

INSERT DEC A
LD (CYFLG) ,A
LD B,"<"
CALL OUTPUT
JP IBUFFl

CONTD PUSH DE
PUSH HL

CONTD! CALL INPUT
CP 32
JR NC,CONTD2
POP HL
POP DE
JP IBUFFl

CONTD2 LD (CHAR),A
CONTOS CALL CKEND

JR C,CONTD3
POP HL
POP DE
JP BELL

CONTD3 CALL BPOINT
LD B,A
LD A, (CHAR)
CP B
JR NZ,CONTD4
POP BC
POP BC
JP IBUFFl

CONTD4 LD (HL),B
INC HL
CALL OUTPUT
CALL INX
INC D
DEC E
JR NZ,CONTDS
POP HL
POP DE
SCP
RET

CHAR DEFB 0
LD DE,80
JP IBUFFl

CONTZ CALL CKEND
JR NC,BELL

COPYRIGHT 19 81

7-MONITOR

- 72 - MICRO MIKE'S, INC.

MicroDoz, Release 1 7-MONITOR

CONTZl LOB,"%"
CALL OUTPUT
LO A, (Bl POINT)
INC A
LD (BlPOINT) ,A
JP IBUFFl

INX LD A, (BlPOINT)
INC A
LD (BlPOINT) ,A
RET

CK END LD BC, (BlLEN)
LD A,B
CP C
RET

BPOINT LD A, (BlPOINT)
LD IX,BUFFERl
LD C,A
LD B,0
ADD IX,BC
LD A, (IX)
RET

CYFLG DEFB 0
CON TY LD A, (CYFLG)

OR A
JR Z,INSERT
XOR A
LD (CYFLG) ,A
LO B, ">"
CALL OUTPUT
JP IBUFFl

INSERT DEC A
LO (CYFLG) ,A
LOB,"<"
CALL OUTPUT
JP IBUFFl

CONTD PUSH DE
PUSH HL

CONTDl CALL INPUT
CP 32
JR NC,CONTD2
POP HL
POP DE
JP IBUFFl

CONTD2 LO (CHAR) , A
CONTOS CALL CKEND

JR C,CONTD3
POP HL
POP DE
JP BELL

COPYRIGHT 1981 - 73 - MICRO MIKE'S, INC.

MicroDoZ, Release 1

CONTD3 CALL BPOINT
LD B,A
LD A, (CHAR)
CP B
JR NZ,CONTD4
POP BC
POP BC
JP IBUFFl

CONTD4 LD (HL) ,B
INC HL
CALL OUTPUT
CALL INX
INC D
DEC E
JR NZ,CONTD5
POP HL
POP DE
SCF
RET

CHAR DEFB 121

COPYRIGHT 1981

7-MONITOR

- 74 - MICRO MIKE'S, INC.

