
csUB(R)

Release VI

Common SUBroutines

developed for use with baZic(R)

a high-level computer language

and the

CP/M, (R)

Northstar™ DOS

and

Micronoz(R)

Operating Systems

Revisions 01/03
June 8, 1981

developed by

Micro Mike's, Inc.
3015 Plains Blvd.

Amarillo, TX 79102 USA

telephone: 806-372-3633

making technology uncomplicated ••• for People(SM)

Copyright 1979, 1980, 1981, 1982 by Micro Mike's, Inc.

Unauthorized duplication and/or transfer of this software or
manual is illegal.

COPYRIGHT NOTICE

Copyright (c) 1982 by Micro Mike's, Inc. All rights reserved.
No part of this publication or associated programs may be
reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written
permission of Micro Mike's, Inc., 3015 Plains Blvd., Amarillo,
Texas 79102.

This program package is licensed for use on one (1) CPU.

DISCLAIMER

Micro Mike's, Inc. makes no representation or warranties with
respect to the contents hereof and specifically disclaims any
implied warranties of merchantability or fitness for any
particular purpose. Further, Micro Mike's, Inc. reserves the
right to revise this publication and to make changes from time to
time in the content hereof without obligation of Micro Mike's,
Inc. to notify any persons of such revision or changes.

TRADEMARK NOTICES,

This document will mention several names and products which have
been granted trademarks. It is the intent of Micro Mike's, Inc.
to acknowledge and respect the trademarks of these companies so
that all the rights and privileges of these companies are
,preserved.

baZic(R) and KicroDoz(R) are registered trademarks of Micro
Mike's, Inc.

CP/M(R) and MP/M(R) are registered trademarks of Digital Research
Corp.

za0CR) is a registered trademark of Zilog, Incorporated.

NOTICE

Before CSUB or any of the programs that execute under CSUB can be
run, MicroDoZbaZic (or baZic for the DOS and CP/M versions of
CSUB) must be configured for your CRT. The program CONFIG (or
CRT for the DOS and CP/M versions) is used for this purpose.
CONFIG is automatically chained to the first time the CSUB disk
is booted. See Section 9.5 for details on using the CON FIG
program. CRT must be LOADed and RUN to configure the CRT for the
DOS and CP/M versions of CSUB.

After this page and the preceding page have been read, they may
be moved to the back of this manual to make the table of contents
more accessable. This manual is designed so that information can
be easily found by using the table of contents.

COPYRIGHT 1981 MICRO MIKE'S, INC. 01/03

Common SUBroutines VI TABLE OF CONTENTS

TABLE OF CONTENTS

1 INTRODUCTION 1

2 FUNCTION DESCRIPTIONS 4

2.1 CRT Functions 4

2.1.1 FNA (Cursor Addressing) 5
2.1.2 FNC (Display Error Message) 5
2.1.3 FNCl (Display Error Message) 6
2.1.4 FND (Display N Items) 6
2.1.5 FNE (Input Nth Variable) 6
2.1.6 FNF (Display Nth Prompt and Input Variable). 8
2.1.7 FNM (Display a Mask) 8

2.2 Miscellaneous Functions 9

2.2.1 FNX (CHAIN to Another Program) . . . 9
2.2.2 FND$ (Change a Numeric Date into a String) . 10
2.2.3 FNL$ (Left Justify a String) 10

2.3 File Accessing Functions 11

2.3.1 FNG (Sequential File Access) 12

2.3.1.l FNG Errors 13

2.3.2 FNGl (Channel Open and Close) . . . 13
2.3.3 FNH (Key File Accessing) 15

2.3.3.1 FNH Errors 17

2.4 Function Summary . • . . . • • • 18

3 FILE STRUCTURES . 19

3.1 Structure of Files Accessed by FNG 19
3.2 Structure of the Keyf ile 20
3.3 Structure of a Mask File 21

4 LINE NUMBER ASSIGNMENTS • • . • • . • . . 22

COPYRIGHT 1981 MICRO MIKE'S, INC. 01/03

Common SUBroutines VI TABLE OF CONTENTS

5

6

7

8

FNE DATA TABLES 24

5.1· FNE Reference Chart • • • • • • • • • • • • • • 24
5.2 First Field (FNE) • • • • • • • • • • • • • • • 25
5.3 Second Field (FNE) • • • • • • • • 26
5.4 Third Field (FNE) • • • • • • • • • • • • • 27
5.5 Fourth Field {FNE) • • • • • • • • • • 27
5.6 Fifth Field (FNE) • • • • • • • • • • • • • • • • • 27
5.7 Sixth and Seventh Fields (FNE) • • • • • • 27
5.8 Eighth Field (FNE) •••••••••••••• 28

FNF DATA TABLES
6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

FNF Reference Chart • • • • • . • • .
First Field (FNF) .
Second Field (FNF) ••••••••••
Third Field (FNF) • • • • • • • • • • • • •
Fourth Field (FNF) • • •
Fifth Field (FNF) • • • • • • • • • • • • • • •
Sixth and Seventh Fields (FNF) • • • •
Eighth Field (FNF) • • • • • • • • • • • • • •

VARIABLE RESERVATIONS
WRITING CSUB PROGRAMS
8.1 File Structure

8.2

8.1.1
8.1.2
8.1.3

Masks

8.2.1
8.2.2
8.2.3

Define Index •••••
Numeric or String • •
File Structure Sheet •

.
. . . . Mask Sheet

MASKEDIT • •
Mask Size • • •

.
8.3 FNE Inputs .

8.3.1
8.3.2
8.3.3

FNE Resembles File Structure ••••
Field Characteristics • • •
FNE DATA TABLES Work Sheet • • • • •

8.4 Display, Input, and File Variable Map •

8.4.1
8.4.2

FNE and FNF Variables • •
Mask Variables • • • • • •

.
. . . .
. . . .

29

29
30
30
30
30
31
31
31

32

35

35

36
37
37

38

38
39
39

39

39
40
40

40

41
42

COPYRIGHT 1981 MICRO MIKE'S, INC. 01/03

Common SUBroutines VI TABLE OF CONTENTS

9

8.5 Program Flow (FNF)

8.6
8.7

8.5.l
8.5.2
8.5.3
8.5.4
8.5.5
8.5.6
8.5.7

ESC or AB • • • • • • • • • • • • • • •
ADD, INQUIRE, DELETE, RENAME, PRINT • • • •
ADD • • • • • • .. • • • • • • • • • • • • •
INQUIRE OR CHANGE • • • • • • • • • • •••
DELETE • • • • • • • • •
RENAME INDEX • • • • • • • • • • • •
PRINT • • • • • • • • • • • • • • •

Changing BONES • • • • • • • • •
Converting From CSUB 5.2 to VI •••

.
PROGRAM DESCRIPTIONS •
9.1 CSUB

9.2

9.1.1
9.1.2
9.1.3
9.1.4

BONES

9.2.1
9.2.2
9.2.3

.
CSUBEO • • • • • • •
CSUBEN • • • • • • • •
CSUBW • • • • • • • • • • • •
CSUB I • • • • • • • • • •

.
BONE ••
BONEK • • • • •
BONES& • • • •

.
. . . .
. .

.
9.3 MASKEDIT

9.3.1
9.3.2
9.3.3
9.3.4
9.3.5
9.3.6
9.3.7
9.3.8
9.3.9
9.3.10
9.3.11
9.3.12
9.3.13
9.3.14
9.3.15

Commands • • • • • • • • • • • • • • • •
Cursor Commands (1-4, 6-9) •••••••
Enter Text (5) • • • • • • • • • • • • • • •
Line Drawing (.) ••••••••••••••
Record the Mask (0) • • • • • • • • ••
Delete a Field (D) • • • • • • • • • • •
Move a Field (M) • • • • • • • • • • • •
Edit a Field (E) • • • • • • • •••••
Jump to a Screen Position (J) •••••••
Reverse Video Mode (R) • • • • • • • • •
Sort a Mask (S) • • • • • • • • • • • •
Print a Mask (P) • • • • • • • • • • • • • •
Quit to baZic •••••••••••••
Length of Mask (L) • • • • • • • • • • • • •
Miscellaneous • • • • • • • • • • • • • • •

9.4 FILEWORK .
9.4.1 Create Key File . . . • •
9.4.2 Create Sequential File . • •
9.4.3 Transfer Any File • . •
9.4.4 Print Any File • . • • • •
9.4.5 Add Records To Key File • • . • . •

42

42
42
43
43
44
45
45

46
48

50

50

50
50
51
51

51

51
51
51

52

53
53
54
54
55
55
55
55
56
56
56
57
57
57
58

58

58
59
60
60
61

COPYRIGHT 1981. MICRO MIKE'S, INC. 01/03

Common SUBroutines VI TABLE OF CONTENTS

HJ

9.5 CONFIG • 61
9.6 DUP (Diskette Utility Program) • • • • • • • • 65

Initialize •••
Gross Copy • • • • •
Intelligent Copy • • • • • • •
File Copy •••

. . . 9.6.1
9.6.2
9.6.3
9.6.4
9.6.5
9.6.6

Compact • • • • • • • • • • • • • • • • • •
Interfacing COPY Programs to baZic Programs.

9.7 CONVRT

USING CSUB ••

10.1 Using CSUB Programs •••••••
10.2 CSUB Line Editor •••
10.3 Error Messages and Bulletins ••

.

66
67
69
72
77
78

80

81

81
84
85

10.3.1 Process Bulletins • • • • • 85
10.3.2 CSUB Non-fatal • • • • • •••••• 85
10.3.3 CSUB Fatal • • • • • • • • • • • • • • • • • 86
10.3.4 baZic Fatal • • • • • • • • • • • • 87

APPENDIX A (BONES Listing) 89

93 APPENDIX B (Sample Work Sheets)

COPYRIGHT 1981 MICRO MIKE'S, INC. 01/03

Common SUBroutines VI !-INTRODUCTION

INTRODUCTION

NOTE: This program package requires Micro Mike's, Incorporated
uDoZbaZic computer language to operate as described in this
manual. Specifically, Sections 9.5 (CONFIG) and 9.6 (DUP) do not
operate under the DOS and CP/M versions of CSUB.

The purpose of this programming package is to allow easy, rapid
creation of application software and data bases that run under
Micro Mike's, Incorporated uDoZ and baZic. CSUB establishes a
Common set of SUBroutines that eliminate a programmer's need to
"re-invent the wheel" for every program written. All functions
generally required in an application program are contained in the
Common SUBroutine package.

CSUB requires a 24 line by 80 column addressable cursor CRT. We
have found that the use of the addressable cursor is the most
efficient method of data entry, particularly for inexperienced or
first time computer users.

baZic differs from many other BASICs in that string length is
limited only by available memory. Most other BASICs allow string
arrays with a maximum of 255 characters in a string, but in
baZic, strings can be as long as available memory and string
arrays are simulated by baZic programs. This feature allows
"string arrays" to be created with string variables that are
different lengths.

Most BASIC programmers use a different string variable for each
field they need to store. As an example, if they want to store
the name, address, and city/state, they will use three strings.
One string would be used for the name, one for the address, and
one for the city/state.

This method of string use is very ineffecient, since baZic allows
virtually unlimited string length. CSUB encourages the prog
rammer to use one string for all string information. CSUB sup
ports this feature by keeping track of the position in the string
of all information that is stored in the string.

CSUB takes advantage of the string capabilities of baZic in
several important ways. All string information (variables) in
application programs written under CSUB are stored in a single
string (B$). This gives the programmer rapid random access to
any portion of the string, resulting in quick and easy accessing
and printing of string information.

COPYRIGHT 1981 - 1 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI !-INTRODUCTION

The programmer merely references the part of B$ that contains the
string information to be dealt with (B$(101,110)). This means
many separate strings are stored in one string and individual
strings can be variable in length.

For storing strings on disk, baZic requires 2 BYTES of overhead
for each string stored that is less than 255 characters, and 3
BYTES for each string more than 255. By storing all string
information in one string, a minimum of disk space is used.

In the same way that all string information is stored in one
string, all numeric information is stored in one numeric variable
(B(SUBS)) array. Fields 6 and 7 of the DATA statements table for
strings, and field 8 for all other variables, represent the
location in the string or array where the particular variable is
located. The DATA statements table will be discussed in Sections
5 or 6, but generally it uniquely defines each variable which is
used for input and/or display on the CRT by the parameters that
are set in the DATA statement for each variable.

CSUB Input routines are accessed by calling the appropriate
function. Each of the two input functions (FNE and FNF) act by
first RESTOREing to the appropriate set of data statements and
then taking the input based upon the parameters that are defined
in the DATA table. Each line of data statements completely and
uniquely defines all parameters associated with every variable
input from or displayed on the CRT. ·

Virtually any application program needs a data base for storage
of information. Therefore, the first program needed by an appli
cation programmer is one that allows the entering of the data
base. One program that accomplishes this task is the demonstra
tion file maintenance program (F/M) "BONES" provided on the CSUB
disk.

CSUB supports three file accessing functions: FNG, FNGl, and FNH.
FNG is the sequential and random file function. It works on a
structured type file specifically set up for FNG. It can read or
write the specified file in a random mode and can write sequen
tially to FNG files.

FNGl is used in conjunction with FNG for special cases, usually a
sequential read where the file channel must remain open. Normal
ly FNG OPENs and CLOSEs the file every time a function call is
made. FNGl allows the programmer to specify a channel number and
keep it open for the duration of the FNG function calls.

FNH is the keyed file accessing function.
the main file (FNG file) to be created,
located for use in conjunction with FNG.
supported, although these involve special
tions.

FNH allows indexes to
deleted, renamed, or
Multiple indexes are

programming considera-

COPYRIGHT 1981 - 2 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI I-INTRODUCTION

The basic functions of the file maintenance program (BONES) are:
(1) allow new records to be placed into the data base; (2) allow
all fields within every record to be viewed, changed, and copied
back into the file; (3) allow old records to be deleted (4) allow
the index to be renamed, and (5) allow one or all records to be
printed on the print device.

Use of a table-driven package for programming offers numerous
advantages over programming in baZic by itself. The routines of
CSUB define standards for both the programmer and the operator.
The operator, after becoming familiar with the operation of the
subroutines, learns standard formats and operating procedures
which follow through each and every program, reducing training
time and operator fatigue.

The programmer has similar benefits. Program creation is stan
dardized by CSUB, allowing the programmer to concentrate on how
the data base is to be manipulated, rather than writing seemingly
endless input and file accessing statements. CSUB's tested rou
tines are very dependable, reducing program errors to only the
specific lines added for any particular program.

Typically only one line of baZic code will accomplish a complete
input with full parameter checking and display formatting. Also
one line of baZic code can result in a complete disk access,
including all error trapping.

CSUB makes BASIC a much more structured language, resulting in
easier program construction. Programs become more understandable
among different programmers, allowing one person to more quickly
and easily understand another's program. Fewer errors result,
programs are more easily modified and program construction is
simplified. If the programmer uses the CSUB worksheets and
appropriate REM statements, the program is documented quickly and
easily.

Section 8 (WRITING CSUB PROGRAMS) will provide more information
on the actual writing of programs under CSUB.

NOTE: uDoZbaZic (or baZic for the DOS and CP/M versions of CSUB)
.must be modified for cursor addressing before CSUB can be used.
This procedure is accomplished by the baZ ic program CONFIG for
the uDoZ version and CRT for the DOS and CP/M versions of CSUB
provided on this disk. See Section 9.5 for details on using the
program CONFIG and the baZic manual for the program CRT.

COPYRIGHT 1981 - 3 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

FUNCTION DESCRIPTIONS

To better understand the functions of CSUB, they are broken into
several catagories. The first catagory provides functions for
controlling the passage of information between the CRT and inter
nal memory (specifically B$ for alpha-numeric information and B
array for numeric information).

The second class of functions operates mostly in the internal
memory of the computer. These routines generally move or change
information directly in RAM operating on B$ and B array (B()).

The third class of functions control the passage of information
between the disk storage devices and internal memory (again B$
and B ()).

CSUB should be used to control the passage of information in
virtually all of the three situations mentioned. To "picture"
the relationship more easily the following "chart" is presented:

FNC
FNCl.
FND
FNE
FNF
FNM

FND$
FNL$

FNG
FNGl
FNH

CRT
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I
I

FILES

2.1 CRT Functions

Passes information between CRT and B$,B()

B$ () , B ()
Acts internally on B$ and B()

Passes information between files and B$,B()

The following functions are all associated with the CRT and its
displays. The functions handle all cursor addressing, displaying
of variables, and input of variables, including formatting and
parameter checking.

COPYRIGHT 1981 - 4 - MICRO MIKE'S, INC. 01/03
I
I

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

2.1.1 FNA (Cursor Addressing}

This function is called by passing the row and column coordinates
of the position on the CRT that you want the cursor to appear.
The function call would appear as follows:

X=FNA(6 ,10)

"X" is a dummy variable (no useful information is returned to "X"
by the function call). "6" is the row (line number), and "10" is
the column (position on the line) coordinates to which the cursor
is to be addressed. In this example the cursor would appear on
the sixth line down from the top of the CRT and ten character
positions over from the left side.

Version 5 of CSUB supported FNA because it was the only means of
cursor addressing. However version VI is designed to run under
baZic which has its own cursor addressing statement (PRINT@ or
!@) which is much faster and more versatile. FNA has been left
in CSUB for compatabilit- with older CSUB programs, but it is
recommended that all users of CSUB use the PRINT@ statement. FNA
is now defined by the use of the PRINT@ statement. FNA can be
deleted from CSUB if you are writing new programs and have no
need for FNA. FNA is defined on lines 154 and 156 of CSUB.

2.1.2 FNC (Display Error Message}

This function displays an. error message or bulletin. A string of
up to 80 characters is passed to this function which then dis
plays the message on the 4th line of the CRT. This function
flashes the error message on the CRT and rings the bell to alert
the operator that an error message or bulletin is being dis
played.

The number of times an error message or bulletin is displayed is
controlled by a variable (C6) at the beginning of CSUB. This
variable may be modified so that you can control the number of
times the error message is displayed. If you do not want the
messages displayed you may set this variable to "0" so that the
error message will be displayed zero times. This variable can be
changed within a program written under CSUB so that different
messages are displayed different numbers of times.

A sample call of the function would appear as follows:

X=FNC ("THIS IS AN ERROR MESSAGE TO BE DISPLAYED")

X is a dummy variable for this function. The message to be
displayed can be passed as a string with quotes or as a variable:

X=FNC(A$)

COPYRIGHT 1981 - 5 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

2.1.3 FNCl (Display Error Message)

FNCl is very similar to FNC in that an error message is displayed
to inform the user of an error condition. FNCl differs from FNC
in that FNCl displays the message, rings the bell to alert the
operator, and then waits for the operator to press any key before
the message is erased and the program continues.

2.1.4 FND {Display N Items)

This function call is generally preceded by a RESTORE statement
to the line number that contains the DATA statements that corre
spond to the variables you want to display. Normally the program
would RESTORE to line number 51000 (or any other line number)
where the FNE DATA table is located. Items can be displayed from
the "middle" of the table by restoring to the proper line number
and calling FND to display the correct number of items.

The set of parameters for each variable concerned should be on a
different line number. Each should also be REMarked appropriate
ly so that easy variable identification is possible. For more
information on the DATA statements see sections 5 and 6 (FNE DATA
TABLES and FNF DATA TABLES).

A sample call of this function would appear as follows:

RESTORE 51000\X=FND(l0)\REM DISPLAY 10 ITEMS

This call of the function would result in 10 items being dis
played on the CRT. This display would take place with full
formatting and cursor addressing as implied by the DATA state
ments located at 51000 in this example.

By setting the DATA sta tern en ts' pointer to the beginning of the
DATA tables and specifying the appropriate number, all the varia
bles can be printed with a single call. By setting the pointer
within the table and specifying the number "l" (or any other
number), one or more items can be displayed.

2.1.5 FNE {Input the Nth Variable)

The DATA statements associated with this function are located at
line number 51000. This function does an automatic RESTORE 51000
and then an INPUT on the variable described by the Nth DATA
statement in the table. This function call will only accept
responses which fall within the parameters described in the DATA
statement. The screen position, prompt characters, and variable
name are also contained in the DATA statement. The parameters of
the INPUT are discussed in section 5 (FNE DATA TABLES).

A sample call of the function would appear as follows:

X=FNE(l)

COPYRIGHT 1981 - 6 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

In this case the input would be on the first value in the table.
If the number is greater than 1, the function skips over all
other entries and does only the entry requested. If several
items are to be input in order, the program would appear as
follows:

FOR N=l TO 10
X=FNE (N)
NEXT N

On any input function (FNE or FNF) the possibility may exist that
the µser has made a mistake and wants to "back up". CSUB is set
up as delivered to respond to a Control B or the escape key (ESC)
as a signal to back up. If either of these keys has been press
ed, the function call will return a "2"- signifying the user wants
to backup.

NOTE: Many "older" CSUB programs used the value of A9 to deter
mine if the user wanted to "back up". A9 is the value used in
the function itself and is returned from the function call.
Therefore, A9 can be examined to determine if the user wants to

·back up.

The following program shows how to evaluate the variable returned
from the function call in the situation where multiple inputs are
to take place yet we want the user to have the ability to back up
at any time.

10 X=FNF(l)\IF X=2 THEN END\REM FIRST INPUT
20 FOR N=l TO 10\REM FOR EACH OF TEN VARIABLES DO INPUT
30 X=FNE(N)\REM INPUT NTH VARIABLE
40 IF N=l AND X=2 THEN EXIT 10\REM BACK UP TO FIRST INPUT
50 IF X<>2 THEN 60 ELSE N=N-1\GOTO 30\REM BACKUP
60 NEXT N\REM DO NEXT VARIABLE

Line number 10 of this example is an FNF input to be discussed in
section 2.1.6. If a Control B ("B) or ESCape is entered in
response to this input, X will equal 2 and the program will END.
In line 20 the FOR NEXT loop is established for the number of
inputs we want to do. In line 30 the function always RESTORES to

- the top of the table and does the input as controlled by the FOR
NEXT loop.

In line 40 we check for the special case where we are on the
first FNE input and the user wants to back up to the previous
input. We must EXIT from the FOR NEXT loop in this case. Line
50 then looks for the condition where the user wants to back up
from any of the other inputs. The value of the loop is decre
mented by one and we return to do the input again.

COPYRIGHT 1981 - 7 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

This is a simple program but we can see the flexibility and power
of the subroutines from this example. Remember that this se
quence is all that is needed (after writing the DATA statements)
to do the input of many variables with full cursor addressing and
input parameter checking as well as the redisplay of the vari
ables with full formatting.

2.1.6 FNF (Disp1ay the Nth Pr011pt and Input Variable)

Upon calling this function, the Nth prompt is displayed at the
beginning of line 2 and the INPUT is executed on line 3 according
to the parameters of the DATA statement. The data table asso
ciated with this input should start at line 50000.

This function works very similarly to FNE except that this f unc
tion displays a prompt string on line 2 of the CRT. The prompt
is contained in the DATA statement describing the input.

The input from this function normally takes place on the third
line of the CRT. This position can be off set by certain vari
ables so that the input occurs at any position on the CRT al
though the prompt will always be displayed on the second line.
See Section 7 (VARIABLE RESERVATIONS) for more information on
off setting the input of FNF.

A sample call of this function would appear as follows:

X=FNF(S)

This call would result in the fifth (5th) prompt in the table
being displayed and an input accomplished using the remaining
values in the DATA table.

2.1.7 FNM (Display a Mask)

This function is used to display a mask. Each mask contains the
row and column coordinates for each entry in the mask. The mask
is displayed by calling the function with the starting position
of the mask within B$ and the mask number (1 for the first mask).
Upon calling the function, the mask is displayed on the CRT by

. reading the row and column values, positioning the cursor through
PRINT@, and printing the strings in their proper places.

The mask system has the ability of handling multiple masks.
Consult Section 9.3 for more information on how masks are created
and displayed.

A· sample call of the function would appear as follow:

X=FNM(l05,l)\REM DISPLAY A MASK

The argument 105 is the beginning position of the mask in B$ and
1 is the number of the mask.

COPYRIGHT1981 - 8 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

If the INTeger portion of the first argument (105 in the example)
is equal to the argument (no fractional portion), the function
will execute an automatic CLS (clear screen) before the mask is
printed. If you do not want the screen to be cleared before the
mask is printed, add .1 to the first argument (105.1).

If A9$="Z", the FNM function will assume that you have a CRT that
is capable of reverse video and line drawing and will display the
reverse video and line drawing characters within the mask. If
A9$ is not equal to "Z", the function will display only the text
portion of the mask.

Presently, CSUB and its masks are set up to do reverse video and
line drawing on the Zenith Z-19 CRT. If you have another CRT
that has these features, you will have to change the MASKEDIT
program to fit the requirements of your CRT.

2.2 Misce1laneous Functions

These functions involve internal operations within the computer.
FNX allows an orderly CHAIN (or APPEND) from one CSUB program to
another. FND$ and FNL$ manipulate data in RAM.

2.2.l FNX (CHAIN to Another Program)

This function clears the screen and prints a message indicating
which program is being CHAINed from and to. If the drive number
parameter is a whole number the function will APPEND 1000, which
causes CSUB (or any other program below line number 1000) to be
preserved in RAM and the specified program APPENDed starting at
line number 1000. This APPENDed program will completely replace
all line numbers from 1000 on up. If there is a fractional por
tion to the drive number then the function CHAINs to the appro
priate program, completely replacing CSUB or any program that is
in internal memory.

A typical call of this function would appear as follows:

X=FNX("THIS PROGRAM CHAINS TO", "THIS PROGRAM", "NAME" ,DRV.CMD}

or:

X=FNX($1,$2,$3,N.M)

where the parameters passed are:

$1 = Descriptive Name of Program That has Terminated
$2 = Descriptive Name of Program CHAINing to
$3 = Actual file name of program to CHAIN to

N = Disk drive number of program to CHAIN to
M = 0 means the specified program is to be APPENDed
M = 1 means the specified program is to be CHAINed

COPYRIGHT 1981 - 9 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

The parameters passed to the function can be variables. Using
variables can be especially useful in a program such as a menu
program that may branch to many different programs.

The value returned from the function is a dummy variable.

2.2.2 FND$ (Change a Numeric Date into a String)

All dates under CSUB are stored as numeric variables. This was
first implemented when CSUB was only supported under 8 digit
precision BASIC to save file space. It does not save space under
10 or more digits of precision but has been left this way because
it does offer convienence to the programmer. Since dates are
normally stored as numerics this function is called to convert a
numeric date into the familiar string date with slashes between
the month and day and month and year.

This function is generally called when printing a date on paper.
A numeric argument is passed and the function returns a string.
A typical call of the function would appear as follows:

!#l,FND$(B(l))

where the variable B(l) contains the numeric version of the date.
If B(l) contains the value 82680 and function D$ is called with
B(l) as the argument, the printed value would appear as follows:

8/26/80

The value returned from the function can be printed directly as
in the example or a string can be set to the value as in the
following example:

X$=FND$ (N)

2.2.3 FNL$ (Left Justify a String)

Originally (release 5.2 and earlier), all string information
input using FNE or FNF is right justified within B$ where it is
stored. In other words, if a string was input and the user did

.not enter a character in all of the positions available, the
information entered would have been justified (moved) to the
right and leading spaces would have been inserted in that portion
of the string not filled.

The FNL$ function reverses this process (usually for printing) so
that the information is moved left and trailing spaces are en
tered. The values passed to FNL$ ref er to the Left$ and Right$
positions within B$ which you want left justified. B$ is the
only string the arguments of FNL$ act upon.

As an example, if:

B$(1,10)=• DOG•

COPYRIGHT 1981 - 10 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

and we call function L$ with the following call:

X$=FNL$(1,10)

then X$ would now appear as follows:

X$="DOG n

A typical function call would appear as follows:

!#l,FNL$(1,10)

This function may be called to fill a variable as in the DOG
example or may be called to directly print the results as in the
previous example.

A much better and faster way is now provided by CSUB for left
justifying a string. FNE and FNF can now be passed an additional
command that causes the input to be left justified, right justi
fied, or centered. This feature should eliminate most of the
need for FNL$. This function is left in the CSUB package to
remain compatible with older CSUB based programs. It may be
removed to recover space if you do not need it.

2.3 File Accessing Functions

The following functions were designed to handle most of the disk
accesses required by a programmer. The G function is designed to
stand by itself to write sequential or random records or work in
conjunction with function H, the key file acce~sing function, for
single or multikeyed access capability.

Since function G calls do an OPEN and a CLOSE for each call of
the function, using this function for sequential reading of a
file may be too slow on a floppy disk based system. FNGl can be
used when you want the file OPENed and CLOS Ed by your command.
In many cases a sequential read is accomplished better by OPENing
the file and reading the records without function G but this has
the disadvantage of not having any error trapping during the disk
access.

·when using non CSUB routines to access a file, it may be advan
tageous to make one call of a CSUB function for the first record
because the function contains numerous error trapping features.
This will insure that the file is in the proper place and every
thing is in order before the records are read in a non-CSUB mode.

All writes of CSUB based files should be made through FNG, FNGl,
or FNH since they very strictly control the format of data pass
ing into the files. If writes are made into the files without
the use of these functions, often the functions will •bomb" at a
later time since they recognize that something is wrong with the
file structure.

COPYRIGHT 1981 - 11 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

2.3.1 FNG (Sequential File Access)

This function reads or writes a file randomly or sequentially.
The parameters passed to this function are:

G=FNG("FILE NAME", DRIVE.CMD, LEFT$, SUBS, RECORD.CHANNEL)

"FILE NAME" is the name of the file to be accessed. The name
must be a legal name as defined by baZic. The value passed to
the function can be a literal string or a string variable.

DRIVE.CMD is the drive number where the file is located and the
command that is to be executed by this call of the function. The
integer portion of this numeric value is evaluated to arrive at
the drive number. The drive number must be a legal drive as
supported by your system hardware.

The fractional or decimal part of this field is the command that
the function is to execute. If the INT(Drive)=Drive (1.0, 2.0,
1, etc.) then this function READs the file. If the INT(Drive)
<>Drive (1.1, 2.1, etc.), then this function WRITES to the file.
The integer portion of Drive is the drive number. The commands
are summarized as follows:

.0 = read

.1 = write

LEFT$ is the value within B$ where the read or write to B$ will
start. If B$ is several hundred characters (or more) in length
and several different file records are contained within B$, each
file access must know where to read or write its information
within B$.

Function G will know the length of the string information of each
file by reading the first three numerics of each FNG file. This
information, combined with the LEFT$ value, allows FNG to read or
write information from many files directly into or out of B$
without interfering with information contained in B$ from other
files •

. SUBS is the B(subscript) value where a read or write to the B
subscript variable will start. This situation is completely
analogous to the previous discussion on LEFT$. The value of SUBS
controls the position of numeric data written to or read from the
B subscript variable.

RECORD is the record number of the file one wants to read to or
write from the file. Record 0 doesn't exist and numbering starts
with 1. If record = -1 and the operation is a write, then the
record is written onto the end of the file in a sequential man
ner.

The RECORD number can be passed as a constant or as a variable
(recommended).

COPYRIGHT 1981 - 12 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

The CHANNEL argument is added as the fractional part of RECORD if
FNGl has been called to OPEN a file channel. The actual channel
number opened should be the value passed as the CHANNEL argument.
If FNGl is called to open channel 7 for a particular file, 7
should be passed as the CHANNEL argument to FNG when it is called
to read or write the file.

2.3.1.1 FNG Errors

After calling this function (G=FNG()), G contains the number of
records in the file if everything went correctly. However, if an
error condition has occurred, then G will be negative and will
indicate what type of error has occurred. Programmers using this
function should check G to make sure it is positive before using
the variable and to assure themselves that the function performed
its job correctly. Function errors returned in G are:

-1 = File Error
-2 = Hard Disk Error
-3 = File Not Found
-4 = Incorrect File TYPE
-5 = File Lengt~ Exceeded
-6 = TYPE Error
-7 = File Name Longer than 8 Characters
-8 = Record Doesn't Exist (Record # incorrect)
-9 = B$ Length Not Valid or B() Not Diminsione-·
-10= Attempt to Write Beyond End Mark (Record # passed was

too large)

A subroutine has been implemented at 55000 to handle secondary
error messages when a negative value is returned from FNG. The
routine expects a negative value in G and prints the appropriate
secondary error message. These secondary messages may be used or
not at the discretion of the programmer. Function G returns a
primary error message when the error is encountered. Additional
error messages may be passed to the user to instruct him as to
what action to take when the errors occur.

This function contains its own error trapping routines. This
means that anyone using the routine must disable his own error
trapping before calling the function and re-enable his error
trapping upon completion of the function call.

2.3.2 FNGl (Channel Open and Close)

The purpose of this function is to allow the user to be able to
control the file channel to open, as well as the ability to keep
the file open for as long as desired. Normally a call to func
tion G would result in the channel being opened and closed by the
single function call. By calling FNGl first, a channel can be
specified to be left open for the entire procedure.

COPYRIGHT 1981 - 13 - MICRO MIKE'S, INC. 01/03

··1
. I

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

By calling FNGl before the FNG call, significant time advantage
can be gained, since the file does not have to be opened every
time the file is accessed. When the program is finished using a
file, FNGl should be called again to close the file.

FNGl will only allow the opening of channels 2 to 7 so as not to
interfere with the operation of "regular" FNG function calls. If
the function call is accomplished without an error, the value
returned from the function call will be the channel number open
ed. If an error occurs, the value returned from the function
call will be a negative number and will correspond to the errors
listed under FNG. When closing a channel, FNGl will return a 0
from the function call.

A sample use of this function would appear as follows:

Gl=FNGl ("FILE" ,DRIVE. CMD, CHANNEL)

where:

"FILE" is the file name
DRIVE.CMD is the drive number and command where

.0=open

.l=close
CHANNEL is the channel number to be opened or closed

In an actual programming situation the function call would be
made as follows:

100 G=FNG("FILE",2,1,1,1)\REM GET NUMBER OF RECORDS IN FILE
110 IF G<=0 THEN STOP\REM CHECK FOR ERRORS
120 Nl=G\REM SAVE THE NUMBER OF RECORDS IN Nl
130 G=FNGl("FILE",2,3)\REM OPEN CHANNEL NUMBER 3
140 FOR N=l TO Nl\REM FOR THE NUMBER OF RECORDS
150 G=FNG("FILE",2,1,1,N+.3)\REM READ EACH RECORD
160 IF G<=0 THEN STOP\REM CHECK FOR ERRORS
170 GOSUB XXX\REM SUBROUTINE TO PRINT RECORDS OR WHATEVER
180 NEXT N\REM PROCESS NEXT RECORD
190 G=FNGl("FILE",2.1,3)\REM CLOSE CHANNEL 3

.Notice that the last field (RECORD #) in the FNG call has the
CHANNEL number added as the fractional part of the record number
field. The FNGl call will not cause the CHANNEL to remain open
unless the CHANNEL number is added to the FNG call as described.

This technique will allow much faster file accessing than use of
FNG only. Write operations can be performed using a similar
technique.

COPYRIGHT 1981 - 14 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

2.3.3 FNB (Key File Accessing)

This function returns a pointer to a main data file (or multiple
data files) by looking up an index in a keyf ile and returning the
appropriate information (key) about the location of data in the
main file. Multiple keyfiles are allowed for any particular data
file. The actual file accessing is accomplished by using the
sequential access file routine FNG.

Keyed access differs from sequential access in that the sequen
tial file starts with only three numeric values initialized to 0
at the beginning of the file and one blank record, while keyed
access has to have all records in the file completely initialized
by setting them to blank records. In keyed access, a large file
is divided into records of uniform length so that a record index
can be looked up quickly in the keyf ile and the main file ac
cessed directly by passing the value returned from FNH to FNG.
FNH can perform the following tasks:

1. Create an Index
2. Delete an Index
3. Find an Index
4. RENAME an Index

A typical call of function H would appear as follows:

H=FNH ("FILE", DRIVE.CMD, "INDEX", "RENAME", "KEYFILE :fl:")

where:

"FILE" is the pref ix of the name of the file being accessed.
Function H will look for the proper key file by attaching the
value in the last field of the function call ("KEYFILE :fl:") to the
file name as passed in the first field. If the value of "FILE"
is equal to "PART" and the value of "KEYFILE :fl:" is "K" then the
keyf ile accessed will be named "PARTK".

"DRIVE.CMD" is the drive number of the file to be accessed plus
the command (CMD) that is to be executed. The integer portion of
DRIVE is the actual drive number while the decimal value is the
.command. The commands are interpreted by the function as fol
lows:

.0=look up the index and read the key from the key file

.l=look up the index and return the value of the key

.2=delete an index

.3=create an index

.4=rename an index

"INDEX" is normally the index name that you want function H to
search the keyf ile for and perform the indicated operation on.
The only exception to this is when you are renaming the index.
In this case INDEX will represent the name you want the index to
be renamed TO. --

COPYRIGHT 1981 - 15 - MICRO MIKE'S, INC. 01/03

·,-'

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

"RENAME" is normally just two quote marks to signify a blank
string (•"). The only time this field will have a value is when
you are calling the function to rename the index. In this case
the value of RENAME will be the OLD index name that you want
changed to the new value that is contained in the field INDEX.

"KEYFILE i" (added to the FILE name) is the name of the keyf ile
being accessed. Many keyf iles are allowed for any data file.
This field is a string of one character (0-9, A-Z, etc.) that is
added to the main file name by the routines of CSUB when keyed
access is being used.

The example under "FILE" shows how a keyfile name is constructed
by the function. "KEYFILE I" must always be only a single char
acter in length.

FNH becomes very convenient if any particular data file exceeds
the length of a disk. For example, if one has a data file with
1000 associated keys in the keyf ile, and the size of the disks
and records are such that only 500 records can be placed on a
disk, then FNH can be used to access both sections of the file.
After calling FNH, -simply examine the returned value. If it is
less than or equal to 500, use FNG to access the information on
the first drive. If the returned value is greater than 500,
subtract 500 and increment drive i by 1, and access the informa
tion on the next drive.

Normally, the fourth argument of FNH is set t6 "". This argument
is only used when renaming an index. If one wants to rename the
index "JOE" to "SAM" for the File "TEST" on drive 2, then:

H=FNH("TEST",2.4,"SAM","JOE","K").

"SAM" will replace the index "JOE" and "JOE" will no longer be an
index to the data file.

When deleting an index from a keyf ile, a 0 is returned in H if
the deletion was successful.

Programmers should always check the value returned from FNH and
.FNG to make sure that no error conditions have occurred. One way
of accomplishing this is:

10 H=FNH("TEST",Dl,"JOE","","K")\REM CALL KEY FILE FUNCTION
20 IF H>0 THEN 30 ELSE GOSUB 55200\GOTO ~ \REM ERROR CK
30 G=FNG("TEST",Dl,1,1,H)\READ RECORD H
40 IF G>=0 THEN 50 ELSE GOSUB 55000\REM 0 CHECKS FOR MT FILE
50 REM

55200 contains optional file error messages which are displayed
based upon the ABSolute value of H after its return from FNH.
55200 is similar to the routines at 55000 for FNG but works on
the ABSolute value of H after the FNH call.

COPYRIGHT 1981. - 16 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

Index strings are processed as follows:

1. Delete leading spaces.
2. Delete trailing spaces.
3. Add spaces to the right until the length of the string equals

the index string length.

Index strings are sorted alphanumerically, NOT NUMERICALLY OR
ALPHABETICALLY. Thus, the following order would result after
sorting:

100
--> 11
--> 1100
--> 900

901
ALPHA
BETA
ZETA
ZFF

Remember that this file is ordered by the ASCII value starting
with the first character. Since an ASCII space " " is 32 and the
ASCII value for a "0" is 48, a space will always fall before a
number. Also, all numbers will come before letters and upper
case letters will come before lower case letters. Care should.be
taken to study this order, as problems can arise if the program
mer isn't aware of the sorting technique used.

2.3.3.1 FNH Errors

Upon returning from the function, H contains the record number of
the data in the main file if no error conditions were encount
ered. Thus, H may be passed to FNG in the RECORD field to
actually read or write the appropriate information from the file.

If an error condition has occurred, H will have a negative value
such that:

-1 = File Name Too Long
-2 = Key File Not Found
-3 = Key File Incorrect Type
-4 = Blank Index String
-5 = File is Empty
-6 = File is Full
-7 = Duplicate Record Name
-8 = Record Not Found
-9 = Index String Too Long
-10= Hard Disk Error

COPYRIGHT 1981 - 17 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 2-FUNCTION DESCRIPTIONS

2.4 Function Summary

The functions in CSUB are summarized as follows:

FNA (N,N) - Non-destructive cursor positioning
FNC($) - Flash String error message
FNC1($) - Display String error message and hold
FND(N) - Display N items on CRT
FNE(N) - Input Nth item
FNF(N) - Display Prompt and Input Nth item
FNM(N,N) - Display a Mask
FNG($,N,N,N) - Sequential file access
FNG1($,N,N) - Opens and Closes FNG files
FNH($,N,$,$,$) - Keyed File access
FNX($,$,$,N) - Exit to another program
FND$(N) - Converts a number into a date
FNL$(N,N) - Left justify a string from B$

COPYRIGHT 1981 - 18 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 3-FILE STRUCTURES

FILE STRUC'l'URES

For CSUB to access its data base quickly, the files have been
structured so that records are essentially all the same length •.
This structure imposes some restrictions on the types of applica
tions that CSUB can handle, but these are generally few and far
between for an imaginative programmer. The flexibility of the
routines means that many different situations can be handled by
using the routines in different ways.

Although the structure of CSUB seems to dictate very structured
files, this is not the case. Depending upon the application,
several things can be done to increase the flexibility. One
record can be made to change the contents of other associated
records by the use of flags. Linking can be accomplished by
letting one or more fields in a particular record "point" to
other records or records in separate files so that they are
completely linked in as many directions as the programmer wants.
Another technique is to let the first record in a file have a
different meaning than other records so that the first record can
act as a control for that file or others.

3.1 Structure of Files Accessed by FNG

The sequential file is set up with three numeric values and one
blank record placed at the beginning of the file. The first
numeric value contains the number of records written to the file
(0 if the file is empty, or the maximum number allowed if the
file is being used in conjuctio- with a keyfile).

The second numeric value contains the length of the string con-
taining all string information stored in each record of the file.
If this value is 0, there is not a string variable in each
record.

The third numeric value contains the number of numeric variables
for each record in the file. C9 must be set to the number of
·bytes of storage required for any particular precision of BASIC.
This is discussed in section 7 (VARIABLE RESERVATIONS).

If we were looking into an FNG file we would see the following:

A, B, c, 1st record's string, 1st record's numerics, 2nd record's
string, 2nd record's numerics, etc., where:

A is the number of records written, 0 if none, or the
maximum number if the file has an associated keyf ile.

B is the length of the string variables of each record,
0 if none.

COPYRIGHT 1981 - 19 - MICRO MIKE'S, INC. 01/0:3

Common SUBroutines VI 3-FILE STRUCTURES

C is the number of numeric variables of each record,
0 if none.

1st record's string is the one string which contains all of
the string information of the first record.

1st record's numerics are all the numeric entries for the
first record.

etc.

3.2 Structure of the Keyfile

The keyfile is created with the name of the main file plus an
alphanumeric digit from 0-9 or A-Z (etc.), which indicates the
keyf ile for any particular data file that is to be accessed.
Thus, for any one data file, 36 (or more) keyf iles are allowed,
permitting the programmer to access information in the main file
from any of at least 36 different indexes.

At the first of the keyfile are three numeric entries which
contain information about the structure of each particular key
f ile. The first numeric value is the number of keys in the file,
while the second numeric contains the number of keys in use. The
third numeric indicates the length of the index string.

When the keyfile is initially set up, the first numeric is writ
ten with the number of keys, the second numeric is set to 0, and
the third is set to the length of the index. The actual indexes
and keys start immediately following the three numerics. Each
index string is first filled with spaces and written into the··
file, followed by a numeric key which indicates the record number
in the main file.

As entries are made to the keyfile by FNH, the second numeric
will be updated to reflect the number of entries in the file.
Likewise, on a delete, the second numeric will be decremented.
Also upon a deletion, FNH does "housekeeping" on the keyf ile so
that the space is recovered for use in both the keyf ile and the
main file (FNG file).

FNH does all necessary maintenance on the keyf ile so that records
can be added and/or deleted for as long as is necessary without
the programmer having to worry about internal ordering and point
ers. A deletion causes the space to be recovered from the key
file, but nothing is done by FNH to the FNG file so that informa
tion in the main file is not lost until the key is used by
another index.

The key in the keyf ile still points to the record number in the
FNG file but the index is blank and reusable. This means that
the information is still contained in the FNG file, but no index
is associated with that record in the keyfile. A subsequent call
for a new index by FNH will-~esult in the previous key being
assigned the new index.

COPYRIGHT 1981 - 20 - MICRO MIKE'S, INC~ 01/03

Common SUBroutines VI 3-FILE STRUCTURES

3.3 Structure of a Mask File

Masks are stored in FNG compatible files in that all mask files
contain the first three numerics. Mask file names always end in
an ampersand (&) to indicate they are mask files. The mask file
name is generally the same as the program that uses the mask
except that the ampersand has be en added at the end of the file
name to form the mask file name.

If the program name were PGM, the mask(s) file name for that
program would be named PGM&.

Internally in the file, the first numeric will always be a "l"
indicating there is only one string in each record. Even if
there are multiple masks, they will all be stored in the single
string.

The second numeric is the length of the string (or mask if there
is only one mask in the file) including all masks stored within
the file. The third numeric should always be zero (0), indicat
ing there are no numerics within the file.

The mask string is divided internally so that some bytes are
control bytes while others are actually the text bytes of the
mask. ·

COPYRIGHT 1981 - 21 - MICRO MIKE'S, INC. 01/03

~-.

Common SUBroutines VI 4-LINE NUMBER ASSIGNMENTS

LINE NUMBER ASSIGNMENTS

Lines 1 to 999 are reserved for CSUB.

Lines 900-999 are reserved for user-defined print formatting
routines. These routines control all printing done on the CRT.
Print formatting for hard copy is presently left up to the pro
grammer.

Line 999 is usually a standard FNX function call so that applica
tion programs have a standard location to call when they need to
change to the next program.

Lines 1000-65535 are the unreserved program line numbers (see
exceptions below) available to all programmers for writing their
programs. User application programs normally start at Hl00 and
are APPENDed to CSUB to "RUN".

Lines 50000-50999 mark the area of the DATA table used by FNF
inputs. The prompts contained within this data table are what
guide the user through the program while it is RUNning. Inputs
occur automatically at position 1 on line 3, while the prompt
string specified always appears at position 1 on line 2. Line
number 50000 is the line number RESTOREd to by an FNF call. The
inputs can be moved from line 3 by the use of C2 and C3 offset
variables discussed in section 7 (VARIABLE RESERVATIONS).

Lines 51000-51999 mark the area of the DATA table used by FNE
inputs. Inputs or displays occur at the position described by
the DATA statements themselves.

The previous two sections (50000 and 51000) are normally a part
of the application program.

Lines 52000-58999 are reserved for subroutines or additional
function definitions needed by the programmer.

User-defined formatting statements should have the following
form:

900 ONINT(A5) GOTO 910,920,930,940,950,960
910 1%$10F2,B(A8)\RETURN\REM 1
920 !%9F4,B(A8)\RETURN\REM 2
930 1%2I,B(A8)\RETURN\REM 3
940 1%1I,B(A8)\RETURN\REM 4
950 !%6I,B(A8)\RETURN\REM 5
960 !%9F2,B(A8)\RE'IURN\REM 6

COPYRIGHT 1981 - 22 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 4-LINE NUMBER ASSIGNMENTS

The variable AS is extracted from the appropriate DATA statements
and passed to this user-defined routine by the printing routines
of CSUB. The number used is the integer portion of the format
variable contained in row five of the NUMERIC (Type 1) DATA
statements. A8 is also passed from the appropriate routines in
CSUB to this formatting section to indicate which subscript of B
is to be printed. String and Date printing on the CRT are hand
led by other routines contained within CSUB.

If the programmer chooses, additional error trapping can be done
in the 900 section. The most probable cause of error in this
section would be a FORMAT ERROR. These can be eliminated by
checking the range of the variable before it is printed and
skipping to another unformatted routine. The variable would be
printed and not formatted correctly but the program would not
"bomb". An example of this situation would appear as follows:

900 ONINT(B(AB)) GOTO 910,920
910 IF INT(AS)<-99999.99 OR INT(AS)>999999.99 THEN 930
915 !%$10F2,B(A8)\RETURN\REM 1
920 IF INT(A5)<-9 OR INT(A5)>99 THEN 930
925 !%2I,B(A8)\RETURN\REM 2
930 !B(AB)\RETURN\REM PRINT UNFORMATTED

COPYRIGHT 1981 - 23 - MICRO MIKE'S, INC. 01/93

,.--·-.

Common SUBroutines VI 5-FNE DATA TABLES

FNE DATA TABLES

FNE does input on the selected value by "looking up" its charac
teristics in a table. That table is called the FNE DATA table
and is always located at line number 51000. An FNE input is
accomplished by reading down the table until the correct set of
parameters is found and then controlling the input so that only
values meeting the requirements are accepted.

The DATA statements contain information that uniquely and com
pletely defines all variables that are to be printed on or input
from the CRT. Please check the FNE REFERENCE CHART for summa
tion of the DATA that is contained in the DATA statements.

5.1 FNE Reference Chart

DATA
~YPE l 2 3
NUMERIC l.X LINE#.Y POS
STRING 2.X LINE#.Y POS
STR/NUM 3.X LINE#.Y POS
DATE 4.X LINE# POS

where FIELD # is:

1 X=0 display and/or input
X=l display only
X=2 input only

FIELD #
~ 5 2 2 8

#CHAR FORMAT.A LOOLIM HILIM B (SUBS)
#CHAR 0 LEFT$ RIGHT$ z
#CHAR 0 LEFT$ RIGHT$ B (SUBS)

0 0 LEFT$ RIGHT$ B (SUBS)
(0) (0)

2 LINE# is the number of the line where CSUB is to take input
Y=ASCII value of character to be displayed on input

3 POS is the position on the line where CSUB is to take input

4 #CHAR is the number of prompt characters to be displayed

·s FORMAT is the number of the format statement to use
.A=nurnber of spaces to the right to displace numeric input

6&7 LOWLIM is the lower limit to be accepted for numeric inputs.
HILIM is upper limit to be accepted for numeric inputs.

For Type 2 LEFT$, is the left position in B$ of where the
string is to be started.

For Type 2 RIGHT$, is the right position in B$ of where the
string will end.

For Type 3 LEFT$, is the left position in C$ of where the
input is to be considered valid.

COPYRIGHT 1981 ·- 24 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 5-FNE DATA TABLES

For Type 3 RIGHT$, is the right position in C$ of where the
input is to be considered valid.

For Type 4, if the input is to be a numeric date then:

LEFT$ = 0
RIGHT$ = 0

and the date is returned as MMDDYY.

For Type 4, if the input is to be a string date then:

LEFT$ = Starting position of date in B$.
RIGHT$ = Ending position of date in B$.

and the date is returned as YYMMDD.

8 B(SUBS) is the subscript number assigned to this variable.

z is the justify command for string inputs such that:

0 = right justify
1 = left justify
2 = center

5.2 First Field (FNE)

The DATA statements for input, display, or input and display deal
with four basic TYPES of DATA:

TYPE 1 is NUMERIC
TYPE 2 is ALPHA-NUMERIC (STRINGS)
TYPE 3 is STRING-NUMBER
TYPE 4 is DATE

This information is entered as the integer portion of the first
field in the DATA statements. The fraction portion of this field
defines what kind of DATA statement is being used, where:

.0 = Input and Display

.1 = Display Only

.2 = Input Only

Examples:

1.0 = Numeric Input and Display
4.1 = Date to be Displayed Only
2.2 = String to be Input Only

COPYRIGHT 1981 - 25 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 5-FNE DATA TABLES

TYPEs 1, 2, and 4 are mostly self-explanatory to anyone familiar
with BASIC, but TYPE 3 may not be readily understood. TYPE 3
(STRING-NUMBERS) was implemented to deal with a specific problem
that arises constantly in the writing of application programs.
If a particular input is asking a question where only specific
alphanumeric responses are allowed, this is the TYPE DATA state
ment to use. As an example, if a particular input is requesting
a yes or no response (Y/N), a problem arises if another character
is entered as the programmer has to check for the appropriate
response.

TYPE 3 DATA statements do this check automatically. This is done
by entering the appropriate DATA into C$ (C$="YNRST") and speci
fying the appropriate range allowed for each input in fields 6
and 7 of the DATA statement. In this particular instance, if 1
and 2 are specified for fields 6 and 7 respectively, the input
will allow only a response of "Y" or "N", but not "R", "s" or
"T". If field 7 is a 3, inputs of "Y", "N", and "R" are accept
ed. If a "Y" is input, the function returns to the specified B
subscript (field 8) the value 0. If an "N" is input, a 1 is
returned, and if an "R" is input, a 2 is returned, etc.

If a letter is entered that is not correct, an error message will
be displayed that will appear as follows:

YN ONLY (where Y and N represent the acceptable response)

Care must be used in ordering the letters contained in C$ since
the error message display could cause unwanted words to be inad
vertantly displayed on the CRT.

5 .3 Second Field (FNE)

The Second Field passes two pieces of information to the defined
functions and uses the form of "LINE#.ASCII character". The
integer portion of this field represents the line number on the
CRT where the input or display function is to take place for any
specific variable. Line numbering starts with one (1) as the
first line on the CRT. The fractional part of this field repre
sents the ASCII code of the character to be displayed on the CRT

.while taking an input. Generally, if money is to be input, a "$"
(ASCII=36) is displayed. The standards normally used are:

$ (36) = Dollars
i (35) = Numbers
% (37) = Percentage
* (42) = String Information

For TYPE 4 - DATE input and display, the integer portion only is
entered in field 2, as date input and displays are formatted
automatically to MM/DD/YY. The variable C2 works on the integer
portion of this field to displace downward the input or display
line number by the value of C2. C2 may be positive or negative
as long as its value is a position within ·the limits of the CRT.

COPYRIGHT 1981 - 26 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 5-FNE DATA TABLES

5.4 Third Field (FNE)

This field represents the position on the line where the input or
display is to take place on the CRT. C3 works on this field by
displacing the input or display to the right by the value of C3.
If the input is to take place on line 6 at column 40, the value
of the third field would be 40. C3 may be positive or negative
as long as its value is a position within the limits of the CRT.

5.5 Fourth Fie1d (FNE)

This field represents the number of characters to be displayed
upon an input. The character displayed will be the one repre
sented by the fractional part of field 2. If a 10 digit string
is to be input, field 4 will be 10 ~nd field 2 will be X.42,
where X is the line number of the input. For TYPE 4 - DATE
inputs, this field should be set to 0, as the routines handle the
number of characters displayed automatically.

5.6 Fifth Field (FNE)

This field is used to specify the format of all numeric printing
on the CRT. For TYPEs 2, 3, and 4, this field should be set to
0. For numerics, the value in this field will be converted to
AS, where it is passed to the user-defined formatting routines at
900. Standard formats are provided. The fractional portion of
this field represents a displacement to the right, which is used

·to displace an input from its normal position.

5.7 Sixth and Seventh Fields (FNE)

These fields have different definitions for each of the four
TYPES of DATA.

For TYPE 1 - NUMERIC, field 6 represents the lowest numerical
value that this input will accept, and field 7 represents the
maximum numerical value that will be accepted. These fields are
very important and are used for strict control of all numeric
inputs so that only appropriate numeric responses are allowed •

. For TYPE 2 - STRING inputs and displays, fields 6 and 7 represent
the LEFT$ and RIGHT$, respectively, of the position within B$
from which the string information is to be input or displayed.

For TYPE 3 - STR/NUM, fields 6 and 7 represent the LEFT$ and
RIGHT$, respectively, of the range within C$ from which inputs
are to be allowed. See the discussion of TYPE 3 - STR/NUM for
more explanation on the workings of this TYPE data input.

For TYPE 4 - DATE, if the date is to be numeric, these fields are
both set to 0. If the date is to be a string input, fields 6 and
7 should have the LEFT$ and RIGHT$ position within B$ of where
the date is to be input.

COPYRIGHT 1981 - 27 - MICRO MIKE'S, I~C. 01/03

. I

Common SUBroutines VI 5-FNE DATA TABLES

5.8 Eighth Field (FNE)

For TYPE 1 this field represents the subscript of B array (B())
for all numeric variables to be displayed or input.

For TYPE 2 inputs and displays, this field can have one of three
meanings:

0 means to right justify the text within its B$ limits
1 means to left justify the text within its B$ limits
2 means to center the text within its B$ limits

For TYPE 3 or TYPE 4 numeric date inputs, field 8 is the sub
script number of the B array for the variable being input.

COPYRIGHT 1981 - 28 - MICRO MIKE'S, INC. 01/03.

Common SUBroutines VI 6-FNF DATA TABLES

FNF DATA TABLES

FNF inputs are the inputs which "guide" the user through the
programs. These inputs contain the prompts which interface to
the user to let the user know what the choices are at any parti
cular point in the program execution. The 8 fields associated
with FNF inputs are very similar to FNE fields. The main differ
ence is the addition of a string field (the prompt). Fields 4 to
8 are identical to the FNE fields.

The DATA statements contain information that defines uniquely and
completely all variables that are to be printed on or input from
the CRT. Please check the FNF REFERENCE CHART for summarization
of the DATA that is contained in the DATA statements.

NOTE: Version 5 of CSUB contained an extra field in the FNF data
statements table. This field was eliminated in version VI be
cause it was not needed. Older CSUB programs will have to use
CSUBEO to execute properly.

6.1 FNF Reference Chart

DATA FIELD #
TXPE l 2 3 ~
NUMERIC l.X "PROMPT" y #CHAR

·STRING 2.X "PROMPT" y #CHAR
STR/NUM 3.X "PROMPT" y #CHAR
DATE 4.X "PROMPT" y 0

where FIELD # is:

1 X=0 display and/or input
X=l display only
X=2 input only

5
FORMAT.A

0
0
0

2 2
LOWLIM HILIM
LEFT$ RIGHT$
LEFT$ RIGHT$
LEFT$ RIGHT$

(0) (0)

2 "PROMPT" is the prompt to be displayed by the input

3 Y=ASCII value of character to be displayed on input

8
B (SUBS)

z
B (SUBS)
B (SUBS)

4 #CHAR is the number of prompt characters to be displayed

5 FORMAT is the number of the format statement to use
.A=number of spaces to the right to displace numeric input

6&7 LOWLIM is the lower limit to be accepted for numeric inputs.
HILIM is upper limit to be accepted for numeric inputs.

For Type 2, LEFT$ is the left position in B$ of where the
string is to be started.

COPYRIGHT 1981 - 29 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 6-FNF DATA TABLES

For Type 2 RIGHT$, is the right position in B$ of where the
string w il 1 end.

For Type 3 LEFT$, is the left position in C$ of where the
input is to be considered valid.

For Type 3 RIGHT$, is the right position in C$ of where the
input is to be considered valid.

For Type 4, if the input is to be a numeric date then:

LEFT$ = 0
RIGHT$ = 0

For Type 4, if the input is to be a string date then:

LEFT$ = Starting position of date in B$.
RIGHT$ = Ending position of date in B$.

8 B(SUBS) is the subscript number assigned to this variable.

Z is the justify command for string inputs such that:

0 = right justify
1 = left justify
2 = center

6.2 First Fie1d (FNF)

This field is identical to FNE's first field (Section 5.2).

6.3 Second Field (FNF)

This field contains the prompt to be displayed on the 2nd line of
the CRT to "prompt" the user as to what information is to be
input.

6.4 Third Field {FNF)

This field contains the ASCII value of the prompt you want print
. ea when the input is taken.

6.5 Fourth Field {FNF}

This field represents the number of characters to be displayed
upon an input. The character displayed will be the one repre
sented by the ASCII value of field 2. If a 10 digit string is to
be input, field 4 will be 10 and field 2 will be 42. For TYPE 4
- DATE inputs, this field should be set to 0, as the routines
handle automatically the number of characters displayed.

COPYRIGHT 1981 - 30 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 6-FNF DATA TABLES

6.6 Fifth Field (FNF)

This field is used to specify the format of all numeric printing
on the CRT. For TYPE 2, 3, and 4, this field should be set to 0.
For numerics, the value in this field will be converted to AS,
where it is passed to the user-defined formatting routines at
900. Standard formats are provided. The fractional portion of
this field represents a displacement to the right which is used
to displace an input from its normal position.

6.7 Sixth and Seventh Fields (FNF)

These fields have different definitions for each of the four
TYPES of DATA.

For TYPE 1 - NUMERIC, field 6 represents the lowest numerical
value that this input will accept, and field 7 represents the
maximum numerical value that will be accepted. These fields are
very important and are used to stricl- control all numeric inputs
so that only appropriate numeric responses are allowed.

For TYPE 2 - STRING inputs and displays, fields 6 and 7 represent
the LEFT$ and RIGHT$, respectively, of the position within B$
from where the string information is to be input or displayed.

For TYPE 3 - STR/NUM, fields 6 and 7 represent the LEFT$ and
RIGHT$, respectively, of the range within C$ from which inputs
are to be allowed. See the discussion of TYPE 3 - STR/NUM in
Section 5.2 for more explanation on the workings of this TYPE
data input.

For TYPE 4 - DATE, If the date input is to be numeric, these
fields are both set to 0. If the date input is to be a string
input, fields 6 and 7 should have the LEFT$ and RIGHT$ position
within B$ of where the date is to be input.

6.8 Eighth Fie1d (FNF)

For TYPE 1 this field represents the subscript of B array (B())
for all numeric variables to be displayed or input.

For TYPE 2 inputs and displays, this field can have one of three -
meanings:

0 means to right justify the text within its B$ limits
1 means to left justify the text within its B$ limits
2 means to center the text within its B$ limits

For TYPE 3 or TYPE 4 numeric date inputs field 8 is the subscript
number of the B array for the variable being input.

COPYRIGHT 1981 - 31 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 7-VARIABLE RESERVATIONS

VARIABLE RESERVATIONS

All variables A, B, C, and D are reserved for CSUB functions.
These include string variables, numerics, and numeric arrays.
These variables must not be used in the course of programming
your application programs except in the exact context as present
ed below.

A9 is the "back up" variable. This variable will equal 2 after
any input in which a control B ("'B) or ESC has been entered. A9
is returned from the input functions ·(FNE and FNF) as the value
of the function call.

AS$ is defined at the beginning of CSUB to clear one line of the
CRT. If your CRT has a clear-to-end-of-line code, define A5$ as
this code. If your CRT does not have this feature, define A5$ as
79 or 80 spaces (79 if your CRT does an automatic carriage return
from the last column position).

A9$ is used as a flag to the FNM function to tell the function if
the CRT being used is a Zenith. If the CRT is a Zenith, A9$ will
equal a "Z". If the CRT is not a Zenith, A9$ can remain un
defined.

B() contains ALL numeric file, input and display variables.

B$ contains ALL string file, input, display and mask variables.

B7 is the password protect variable. If B7 is equal to 1, an "X"
will be echoed for each character typed by the user in response
to an FNE or FNF input. This feature is implemented so that the
password is not displayed when entered by the user.

C$ contains ALL string references for TYPE 3 inputs. Use of C$
is explained in the introduction to section 5 (FNE DATA STATE
MENTS).

·c1 is the subscript offset variable which allows one to input or
display multiple records from any particular file or multiple
files. For example, if we read a data file consisting of 5
records, each with 10 numeric values, into B(l) through B(50),
and set Cl=0, function calls will display or input to the first
record. If Cl=l0, the second record will be displayed or input;
if Cl=20, the third record will be displayed or input, and so on.
Programmers must be sure to reset Cl to the appropriate value
after function calls are made.

COPYRIGHT 1981 - 32 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 7-VARIABLE RESERVATIONS

C2 is the Line Number offset variable that offsets any CRT dis
play or input by the value of the variable. This is a non
destructive off set used primarily for formatting or displays when
inputs and displays need to be relocated slightly from their
•normal" positions.

C3 is the offset for character position on a line. This variable
is similar to C2 except the off set is on the same line. The
offset is to the right.

C4 is the string offset variable. This variable is similar to Cl
except that this variable controls the off set of B$.

CS is the STRING-NUMERIC (TYPE 3) offset variable which controls
the offset for working with the string-numbers of C$. If C5=0,
then the string-number functions work as described elsewhere. If
CS=l, the first character of C$ is ignored and processing con
tinues in the normal manner, starting with the second character
in the string.

C6 controls the number of times that an FNC error message is
displayed.

C9 is the precision variable. This variable must be set to the
number of bytes required to store a numeric variable (5 for 8
digit precision, 6 for 10 digit precision, etc.).

D3$ is the name of the program that called your program original
ly. This variable is currently set to MENU but can be anything
you want. This value will be passed to FNX, the exit function,
which will control needs to pass out of this program.

D5$ is the descriptive name of the program you are writing. This
variable is printed on the CRT during a program chain by the exit
function FNX.

D7$ is the descriptive name of the program that originally called
the present program. This name will be printed on the CRT by the
exit function FNX •

. The following two variables define the drive numbers associated
with the program and data files. The assumption is made that all
data files will be on the same drive and that the mask will be on
the same drive as the programs.

Dis the drive number of the programs and the mask.

Dl is the drive number of the keyf ile and the main data file
associated with this program.

Zl$ is printed when a CSUB program needs to issue a "formfeed" to
the printer. The normal value for Zl$ is 12 (Zl$=CHR$(12)).

COPYRIGHT 1981 - 33 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 7-VARIABLE RESERVATIONS

Z2$ is printed when a CSUB program needs to compress the print on
the printer to print a 132 column printout. If your printer uses
14• wide paper, this string should be set to the null value (0).

Z3$ is printed when a CSUB program needs to return the printer to
normal print (80 columns). If your printer does not need this
attention, Z3$ should be set to the null value (0).

COPYRIGHT 1981 - 34 - MICRO MIKE'S, INC. Ol/03

'Common SUBroutines VI 8-WRITING CSUB PROGRAMS

WRITING CSUB PROGRAMS

This section describes some of the uses of CSUB. It would be
impossible to describe all the ways that CSUB could be used, but
this section will detail the basic procedures involved in writing
a File Maintenance (F/M) program under CSUB.

The F/M demonstration program (BONES) allows the user to add
records, inquire or change a record, delete records, rename the
index, and to print one or all records. This program can be set
up completely and be operational in less than one hour of pro
gramming time if the programmer is experienced with CSUB and
knows what kind of "data base" he wants to establish.

Of course, the F/M program is not the only program that is needed
in business applications, but it is the heart of most business
application packages. The BONES program should provide enough
information to write any CSUB program if the programmer will take
the time to study the fully REMarked listing Of BONES (APPENDIX
A)•

The following procedure describes the steps necessary to set up a
F/M program. The heart of this procedure is the BONES program.
BONES is a general purpose F/M program that can be easily changed
to virtually any set of file variables (fields) accessed by a
single field (the index).

The BONES program is to be used as an example in demonstrating
the use of CSUB. The program listing can be found in Appendix A
of this manual and should be consulted while reading this sec
tion.

8.1 File Structure

The single most important item for the programmer to decide is
the structure of the F/M file. By this, we mean which set of

.variables are to be stored in this file, which are string vari
ables, and which are numeric variables.

Start by deciding what information is to be stored in the main
file. An example might be a list of customers where we would
want to store the name, address, city, state, zip, amount owed
and a date. The programmer should write down all the different
fields he intends to store and how many bytes are to be included
in each string field.

COPYRIGHT 1981 - 35 - MICRO MIKE'S, INC. 01/03

.... ··
·- ',•

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

Remember that the F/M program will be handling one record at a
time. As each record is entered into the data base, the program
will prompt the user through a mask to enter each of the fields.
Although there are no limits within CSUB or BONES on how many
fields can be entered, there shouldn't be more than can be dis
played on the CRT. This problem can be easily overcome, but the
programmer learning CSUB probably should start with a simple
situation for the first CSUB program.

8.1.1 Define Index

After all the fields have been decided upon, the programmer must
decide which field is going to be used to access the information.
BONES allows only a single index (the field that will be used to
access each record). If we are using our hypothetical customer
list, we would probably use the customer name as the index. An
alternate method would be to assign a number or code to each
customer and access the records through this code. This field
will become the index.

The index doesn't have to be included in the information being
stored in the main file because the index will be stored sepa
rately in the keyfile. However, it is generally a good program
ming practice to keep the index in the main file in case some
thing happens to the keyf ile and the records need to be resorted.

The index will be stored in the keyfile that is created using the
name of the main file plus some letter or character that distin
guishes the keyf ile from any other keyf iles which might be asso
ciated with the main file. The index will be the name, number,
or code that is typed in by the end user when he wants to access
a record.

If the user wants to enter a new record, the procedure, from the
program point of view, could be illustrated easily. First, the
user will select the option that indicates the user wants to
create a new record. Next the user will be asked by the program
for the index. The program will then (through FNH) search the
keyfile and make sure the index is not a duplicate.

If there is no duplicate record, FNH will sort the keyfile and
insert the new index in the correct place. Associated with that
index entry will be a number pointing to a particular record in
the main file. This number is returned from the FNH call and is
passed by the programmer to FNG to write the actual record into
the main file after all other fields that comprise the record are
input. At this point the program will return to the first prompt
and await the next command.

The programmer should be able to identify which field would best
be used as the index in the situation he wants to program. This
decision is very important and affects not only the way the
entire program will operate but also the way the user will inter
act with the program.

COPYRIGHT 1981 - 36 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

The length (number of characters) in the index should be deter
mined at this time. If the index is a four digit number, the
index length would be 4. If the index is a name, the length
would probably be 20 or 30 characters. Once the index is chosen
the programmer may move on to the next step.

8.1.2 Numeric or String

Each of the fields within a record must be examined to decide if
the input should be a string or numeric. Space must be reserved
in B$ as well as B() to contain not only the records but also the
masks and other transitory information. Most fields will be
easily determined.

Dates can be input as a string or as a numeric. Generally, if
the date will NOT be used as an index or will not be used at a
later date to sort the file, it should be input as a numeric.
However, if the date IS to be an index or is to be used as a
field to sort records, the date should be input as a string. All
dates input as strings are converted automatically to a YYMMDD
format so the dates are in a form that is easy for the programmer

_to manipulate.

8.1.3 File Structure Sheet

The next task is to fill out the File Structure work sheet (See
Appendix B). This sheet organizes all the information that has
been decided upon, based on the -previous discussion. This sheet
asks for the name of the main file, a descriptive name, the
programmer's name and a revision date. Once this information has
been entered, the programmer specifies if the file is to be
sequential or keyed access. If the file is keyed access (as in
this case), a second file will be created that will be called the
keyfile.

The programmer should enter the total number of numerics to be
stored in the main file, as well as the string length. The
string length is computed by adding all of the lengths of the
individual string fields together. The number of records per
block is computed by dividing 512 (double density) by the total
of the number of numerics times the bytes required to store a
single numeric, plus the total string length, plus 2 if the
string length is under 255 or 3 if the total string length is
greater than 255.

If the file is to be keyed access, enter the length of the index.
This is the number of bytes that will be used to store the index.
The index should have a name by which it can be referred, such as
•account number". The last item in the heading of the File
Structure sheet is the key file name, which is generally "K" for
the first keyfile and is always a single character in length.

COPYRIGHT 1981 - 37 - MICRO MIKE'S~ INC. 91/93

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

At this point the programmer should be ready to enter the var i
able descriptions. The numerics should be entered in the order
they will appear in the file.

The strings also should be entered. It is generally best to let
the index be the first string. Enter the string positions under
the label "Strings", such (1,30), and the number of bytes in each
string field followed by a description of what the variable is to
be called.

After all the variable information is entered, the last items to
be addressed are the programs which access the file. This is not
a problem when only one program (F/M) is accessing a set of data
but becomes very important when many programs access the same
data files.

At this point, all the fields of each record should be defined
completely. Also, the index should be decided upon and documented
in the File Structure work sheet. If this information is clear
to the programmer, you are ready to proceed to the next section.

8.2 Masks

The next step is to define and create the mask. Remember that
the screen (under a F/M program) will show a record exactly as it
"appears" in the file. This means you must draw a mask that
describes each field within the records. The mask will be dis
played by the program and· will remain on the screen even if
multiple records are displayed. The records will be displayed in
a logical way so that the user can easily determine what informa
tion the program is acting upon at any one time. Consult the
examples if the purpose of a mask is not clear.

8.2.1 Mask Sheet

The Mask Work Sheet (See Appendix B) is designed to help the
programmer lay out the mask before it is created by the MASKEDIT
program. The mask sheet asks for the mask name, the program name,
the date, a descriptive name of the program and the mask length.
The mask length will not be known until the mask has been created

-and the program MASKEDIT gives the length of the mask. The mask
name is ALWAYS made with the program name and an "&" added to the
end. Therefore, any file on a CSUB based program that has an "&"
on the end of the name is a mask.

The Mask Sheet is divided into 25 lines with 80 characters in a
line. This grid allows the programmer to quickly define the
position of each field on the CRT. The description of each field
should be entered and a place left for the actual information
which will be displayed by CSUB. In this way, each field can be
fully defined for both the mask and the input field so that no
trial and error techniques have to be used.

COPYRIGHT 1981 - 38 - MICRO MIKE'S, INC. ei/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

8.2.2 MASKEDIT

MASKEDIT is the mask edit program. MASKEDIT is used to create or
modify a mask. MASKEDIT should be run at this time to create the
mask for the example program. The use of the MASKEDIT program is
described in Section 9.3. MASKEDIT allows the programmer to type
in his mask so that it can be stored as a file. The file will be
read by BONES (or whichever program needs it) to be displayed at
the appropriate time to aid the end user in entering the informa
tion into each of the fields.

8.2.3 Mask Size

The mask size will be very important when the programmer begins
writing the program. B$ will have to be DIMensioned large enough
to hold not only all the string information, but also the mask or
masks concerned with the program.

The mask size is printed when MASKEDIT is given a command to
store a mask on the disk or the "L" command is executed. This
size should be recorded on the Mask Sheet for future reference.

8.3 FNE Inputs

The FNE inputs are the "mask prompted" inputs. Inputs from FNF
are always prompted by the prompt string located in the FNF DATA
statements. On the other hand, FNE inputs have no prompt in
their DATA statements. FNE inputs rely on a mask having been
generated and displayed prior to the input to prompt the user on
what information is to be entered at any one certain time.

FNE inputs can be taken at any position on the CRT except lines
2, 3, and 4 which are reserved for FNF inputs and error messages.
The position of the inputs and several other factors are con
trolled by the values in the FNE DATA statement table. The DATA
table is programmed from the FNE DATA TABLES work sheet which
will be "filled out" in this section.

8.3.1 FNE Resembles File Structure

.In the case of a F/M program such as BONES, the FNE DATA table
will be essentially a mirror image of the actual file structure.
This makes the FNE DATA TABLES work sheet seem redundant for a
F/M program. This form should still be filled out completely so
that the programmer can remember at a later date how the table
was generated. When more than one file is being accessed, this
work sheet becomes very important.

This work sheet, upon completion, should look essentially like
the file structure sheet completed in a previous section.

COPYRIGHT 1981 - 39 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

8.3.2 Field Characteristics

The most important feature of the FNE DATA TABLES work sheet is
that it lets the programmer decide ALL the parameters of each
item to be input at this time. The programmer can look at each
variable and decide where on the CRT he wants the items to be
entered. Here formatting is specified, as well as several other
characteristics described in Section 5 (FNE DATA TABLES).

When the programmer begins writing the program, he will not have
to be concerned with the validity of the information input since
he knows that the information input will conform to the parame
ters specified by the DATA statements. Another advantage to the
programmer is that all the parameters can be decided upon before
the programmer even begins to write the programs. When the
program is written, the programmer can take a more structured
approach to writing, since he/she will only have to decide which
variable is to be input and call FNE to do the "work".

8.3.3 FNE DATA TABLES Work Sheet

The work sheet (See Appendix B) can be used to decide and record
the parameters of the FNE inputs. The programmer should fill out
this form at this time. All of the fields are discussed in
section 5 (FNE DATA TABLES). Information to be entered includes
the type of the input (numeric, ·string, string-number, or date),
the line number and prompt character, the position on the line,
the number of prompt characters to be displayed, the low and high
range of the input, the variable subscript number, and the de
scription of the variable.

The information in this work sheet will be tranforme- directly
into a set of DATA statements to be located at line number 51000.
The information will be entered into the program in a later step.

8.4 Display, Input, and File Variable Map

The Display, Input, and File Variable Map (See Appendix B) is
used to define and map all variables stored in internal memory
(B$ or B()) of a CSUB program. Since B$ and B() can have tens or

. hundreds of variables from one or more files, this form is filled
out to help keep all variables that will be going through B$ and
B() separate and distinct from one another.

The Display, Input, and File Variable Map can generally be filled
out at this time. The only exception is if the FNF inputs re
quire B$ or B() assignments. Normally, FNF inputs are used to
control the flow of the program and don't generate variables that
need to be stored. Most FNF inputs appear as follows:

Is Information Correct? (l=yes, 0=no)

COPYRIGHT 1981 - 40 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

The B(0) variable is generally used for inputs of this nature,
since the variable can be used over and over for taking the users
response to program flow questions. If other inputs are taken
from FNF, this space must be accounted for in the Display, Input,
and File Variable Map work sheet.

In the program BONES, B(0) is used for transitory inputs concern
ed with program flow. The only B$ reference in BONES is the
three positions to take the delete code (DEL) from the user when
the user wants to delete a record. A delete code is used so that
the record won't be deleted by accident.

Care should be used when using variables more than one time (such
as B (0)). If B(fZJ) contains a date from a previous input
(123180), and the current prompt is a request for a small number
(INPUT l=YES, fZJ=NO), a format error may result when CSUB tries to
redisplay the date as a single digit integer.

In some programs it may be more logical for the programmer to
advance to the next section and define the FNF prompts and inputs
before filling out the Display, Input and File Variable Map. If
the program is to be a simple F/M program, the form can be filled
out at this time. FNF requires much thought on the programmer's
part, because the FNF prompts and inputs are very important to
the end user and how they interreact to the program.

8.4.1 FNE and FNF Variables

The Display, Input, and File Variable Map sheet can be filled out
at this time. Start by entering the heading information, which
includes the program name, the descriptive name, the programmer's
name and date of last revision.

At this point the variables can be defined. Remember, every
variable that is used internally in the program and is input from
the CRT or is to be displayed on the CRT or that is coming from
or going to a file must be recorded on this sheet. Start with
the numeric array variables (B()) and fill in the subscript
number and the description of the variable. B(fZJ) should be the
first variable and is generally used for non-specific inputs as
.described in the previous section.

If you have more than 11 numeric variables (B(fZJ)) through B(l0)),
you will have to remember to DIMension the B array when you write
the actual program. After you finish with the numeric variables
proceed to the string variables. Here you will define the posi
tion within B$ of where the variable will be, the number of bytes
each variable takes, and the description of the variable.

Any other variables used should be assigned at this time, such as
the delete code variable previously discussed. These variables
are generally placed at the end of the file variables and before
the mask variables start.

COPYRIGHT 1981 - 41 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

8.4.2 Mask Variables

The mask or masks are generally placed at the end of B$. Define
the position of your mask or masks in the Display, Input and File
Variable Map work sheet. You must remember to DIMension B$ for
the total number of characters needed, including all string vari
ables, miscellaneous variables (delete code), and all masks. The
mask or masks will be read into B$ by FNG and will be displayed
by FNM.

8.5 Program Flov (FNF)

This section describes how program flow is controlled. The FNF
function is normally used to control the flow of the program but
there is nothing to keep the programmer from using FNE if he/she
desires. The FNF inputs have the advantage of always displaying
a prompt for input. Also, because they always display the prompt
on 1 ine 2 of the CRT and the input on 1 ine 3, they position
themselves in a "familiar" location that helps the end user
figure out what is "going on" in the program.

8.5.1 -ESC or -B

The ESC key and a control B ("'B) have been tied together in CSUB
so that the function is the same when either key has been press
ed. The purpose of these keys is to allow the user a chance to
back up from one entry to another.

The programmer must examine every input to determine if the user
wants to "back up". This is done by checking to see if the value
returned from a FNF or FNE input is a 2. If the value is a 2,
the programmer should make a decision about where would be the
logical place to "back up" to. This feature is extremely useful
to the end user, since he has the ability to change mistakes even
after he has made an entry.

An example of how to determine if ESC has been entered would
appear as follows:

10 X=FNF(l)\REM DO THE FIRST PROMPT
20 IF X=2 THEN END\REM END IF ESC OR "'B WAS ENTERED

8.5.2 ADD, IHQUIRE, DELETE, RENAME, PRIRT

This section gives an overview of the sections that will follow
and guides you through the BONES program and describes how BONES
controls the flow of processing. This should give the programmer
enough information to design his own program.

The first prompt in the BONES program appears as follows:

ENTER l=ADD, 2=INQUIRE OR CHANGE, 3=DELETE, 4=RENAME, S=PRINT

COPYRIGHT 1981 - 42 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

This prompt is the major branching prompt that allows the user
access to the 5 main sections of the BONES program. If the user
presses the ES Cape key or a "B the effect would be to "back out"
of the program or CHAIN to the program that originally branched
to BONES. Each of the options will now be discussed individual
ly.

8.5.3 ADD

This option allows a record to be added to the main file. The
program asks for an index and then continues by asking for each
of the additional fields associated with this record. Upon
entering the index, the index is passed to FNH to assign a new
key which points to a record in the main file. This record is
then written using FNG. The index is stored in the keyfile as
well as the main file.

·When the option is selected the cursor immediately goes to the
first field (the index) and waits for the input. Once that field
is input the cursor goes to the next field and so on until all
fields are entered. At anytime the user can back up from one
input to the previous one. When all the entries are completed,
the program prompts the user with a FNF input that says:

ENTER FIELD NUMBER TO CHANGE (0 TO RECORD)

The user now has the opportunity to correct any field that may
not be correct. If everything is correct the user -can record the
information by entering a "0". Once a "0" is entered the program
records the data and branches to the first prompt.

The program flow in this section is controlled initially by the
FNE inputs for the selected data fields. If the user presses
"ESC" on the first input (the index), the program assumes the
user changed his mind or didn't want this option and branches
back to the first prompt.

Once all of the entries are made, program control is passed to
the FNF prompt which allows the user to change any field. Again,
if an ESC is detected, the program assumes the user wants to back
out of this option and control is passed to the first prompt.

8.5.4 INQUIRE OR CHARGE

When this option is selected the program immediately calls a sub
routine that is used to recall one record. The first prompt in
this subroutine is:

ENTER INDEX

COPYRIGHT 1981 - 43 - MICRO MIKE'S, INC. 01/03

~·. ' ~·r ,..,.. ·- ,; . •:•. - • . . •- .; ., ·. ,,,,.~--

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

If the ESC key is pressed the program assumes the user doesn't
want to continue with this option and RETURNS from the subroutine
where control is transferred immediately back to the first
prompt. If the user does not enter a valid index, an error is
returned from FNH, X is set to "2" and the program RETURNs from
the subroutine and branches to the first prompt.

If the user does enter an index that is found by FNH, the record
number is passed to FNG to read that record into B$. At this
point the subroutine RESTOREs to 51000 and displays the record on
the CRT using FND and RETURNS to the INQUIRE OR CHANGE section.

The program now calls FNF to do the second prompt:

ENTER FIELD NUMBER TO CHANGE (0 TO RECORD)

Notice that this is the same input that was executed under the
ADD section. The program checks B(0) for the field that was
input and if B(0) is a "0" then the program branches to the
record routine. If a field number was input the program allows
that field to be changed. If an ESC was detected for this input
the program branches to the previous input.

There is one special case when the program is allowing the user
to change any field. The index cannot be changed without dis
rupting the key file so the program assumes that the index is the
first field and doesn't allow the user to change the first field.

Once the program is instructed to record the information, FNG is
called to write the information back. FNH doesn't need to be
called at this point since the value in variable H hasn't been
changed and still points to the appropriate record.

The INQUIRE OR CHANGE section is exited by pressing the ESC key
when the prompt is requesting the index name.

8.5.5 DELETE

The delete sequence starts the same as the inquire or change
section by calling a subroutine asking for the index name and

·returns the record in B$ if the record is found. The same error
conditions apply for this section as for the inquire or change
section.

After a valid record has been returned, the fourth prompt is
displayed which asks for the delete code:

ENTER DELETE CODE (DEL)

If an ESC is detected at this input the program branches back to
the first prompt, otherwise a comparison is made between the
three positions in B$ immediately preceding the mask location
with the letters "DEL•. If the comparison is false and doesn't
match, the program DOESN'T do anything to the record and branches
back to the first prompt.

COPYRI(;HT 1981 - 44 -· MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

If a match does occur, FNH is called to delete the index. In
this case the information is still in the main file under the
record number but the index is no longer in the key file and the
program "thinks" the record is gone.

If a disk error occurs during this activity, the program assumes
something is wrong because the program had already accessed the
record to get to its present state. If a disk error occurs, the
program aborts. This logic could be changed easily if the pro
grammer doesn't like the present way of handling the error.

8.5.6 RENAME INDEX

The beginning of this routine is exactly like the two previous
routines in that a subroutine is called to get the record in
question. The index is saved in D8$ and the fifth FNF prompt is
called to get the new index name. If an ESC is detected at this
point, the program assumes the user has changed his mind and
branches to the first prompt.

Otherwise the program calls FNH to rename the index then calls
FNG to read the record in, changes the index that is stored in
the main file and stores that record back on the disk. A message
is then printed that tells the user the index was changed from
"X" to "Y".

8.5.7 PRINT

If this option is selected from the first prompt, an FNF prompt
will be printed that asks:

PRINT O)NE OR A)LL

The purpose of this input is to show the use of the TYPE 3 input
which allows the user to enter only an "O" or an "A" in response
to the input. Of course, the user can still elect to "back up"
by pressing the ESC key and control will pass back to the first
prompt. If a valid response was entered the program branches to
one of two locations.

If "O" was entered then B(f2J) will contain a "0". "l" is added to
this value so the ON GOTO statement can be used. This response
will cause the program to call the same subroutine to retrieve
one record. Once the record is passed successfully to B$ a
subroutine is called to print a heading on print device il and
then the record is printed followed by a f ormfeed character. At
this point the program passes control back to the first prompt of
the program.

COPYRIGHT 1981 - 45 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

If "A" was entered, B(0) will contain a "l" and the program will
branch to the routine to print all of the records. The key file
is OPENed to read the first three numerics. The second numeric
tells us the number of records in the keyf ile. At this point
FNGl is called to OPEN a channel for the upcoming FNG calls. The
heading is printed by a subroutine and a FOR-NEXT loop is esta
blished from 1 to the number of records.

The keyf ile is now read to get the first record number. This
value is then passed to FNG to recall the record into B$. The
record is displayed on the CRT and a subroutine is called to
print the desired parts of the record. Anytime the line counter
(F) reaches the desired number of lines per page, a forrnfeed is
output to the printer and a new heading is printed. The page
number is incremented as well.

All the records are processed in this manner. The program then
calls FNGl to CLOSE the channel previously OPENed. Another
formfeed is output to the printer and the program again branches
to the first prompt.

8.6 Changing BONES

If you are changing BONES to be a F/M program for a different
file structure than as delivered, you should have filled out all
the work sheets and should be ready to make the programming
changes. You should keep the work sheets handy and make a paper
listing of the BONES program. Start by changing the variables
defined at the first of BONES. These varible- are REMarked fully
but will be described here to reinforce their meanings.

B$ and B() should be DIMensioned to fit your requirements. If
there are fewer than 10 numerics in your program, B() will not
have to be dimensioned. DIMension any other variables you need
at this time.

Next follow the file reference variables. The description of
these follow:

D2$ is the name of the main data file. This name will have
the name of the keyf i 1 e added to it to de term ine the name of
the keyfile.

D3$ is the name of the keyf ile. This variable should be
only one character in length. Remember this variable will
be added to D2$ to arrive at a keyfile name.

D4$ is the name of the program. In this case the name is
BONES but you will probably want to give your program a
different name.

COPYRIGHT 1981 - 46 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

D6$ is the name of the program that called BONES originally.
This variable is currently set to MENU but can be anything
you want. This value will be passed to FNX, the exit func
tion, to assure an orderly transition from one program to
another.

D5$ is the descriptive name of the program you are writing.
In this case, BONES is described as a "GENERAL PURPOSE FILE
MAINTENANCE" program. This title will be printed on the CRT
by the exit function FNX.

D7$ is the descriptive name of the program that originally
called the present program. This name will be printed on
the CRT by the exit function FNX.

The next set of variables definitions affect where items are
placed in either B$ or B().

D3 is the beginning position of the index within B$. This
position will be passed to all functions requiring the
position of the index in B$.

D4 is the ending position of the index within B$.

DB is the beginning position of the mask in B$. In this
example there is only one mask.

D9 is the mask number. Additional masks would each be
assigned a separate mask number.

D6 is the position in B$ to read in the string data from the
file. If more than one file is to be read into B$, addi
tional starting positions will have to be defined so that
the information doesn't overlap.

D7 is the position within B() to read in the numeric file
data. Again, if more than one file is to be read into B{),
additional positions will have to be defined for each file
read into B().

DS is equal to the number of fields in each record.

The following two variables define
with the program and data files.
files will be on the same drive and
same drive as the programs.

the drive numbers associated
These assume that all data

that the mask will be on the

D is the drive number of the programs and the mask.

Dl is the drive number of the keyfile and the main data file
associated with this program.

The following are miscellaneous variable definitions.

COPYRIGHT 1981 - 47 - MICRO MIKE'S, INC. 01/03

---------- --------- .. .o::

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

P is defined as the print device number. This is generally
device number 1.

Fl is a flag that is set to the number of records to be
printed on one page on the print device.

F2 is the page counter and is initially set to 1.

C$ is the definition of characters allowed under the type 3
input that occurs when the print option is selected.

Once these variables have been defined, the only other changes
required are in the FNF and FNE DATA tables. If BONES is to be
left as strictly a F/M program, probably no changes will be re
quired for the FNF DATA statements, since they are general in
nature. Often you may want to change the prompt that asks for
the index to one that asks for your index by name such as:

ENTER CUSTOMER NUMBER

The FNE DATA statements can be written directly from your FNE
work sheet. DELETE the FNE statements in BONES and replace them
with your own. Once these changes have been made and the program
SAVEd, you will be almost ready to try your new program. The
only thing left to do will be to create the files needed. This
is accomplished by selecting option 1 from the FILEWORK program
provided on the CSUB diskette. Refer to section 9.4 (FILEWORK)
for information on how to use this program.

8. 7 Converting From. CSUB 5.2 to VI

Every attempt was made to keep CSUB VI as close as possible to
version 5.2. However, there are several changes that must be
made to take advantage of the new features and increased speed of
version VI.

Under CSUB VI, CSUB has been renumbered so that all functions are
located in low memory (line numbers 1 to 999) instead of high
memory (line numbers 55,000 and up). This eliminates the need
for CSUB to be APPENDed to each program and therefore saves one

.LOAD each time an option is selected from a menu.

Now CSUB VI remains in the memory and APPENDS the needed program
at location 1000. This change allows a 40% increase in speed of
CHAINing from one menu option to another.

In addition, the masks have been given a new format. Under CSUB
5.2; all masks contained the cursor addressing information needed
to position the mask. ,This caused a great deal of trouble when
masks had to be converted from one CRT to another. Under VI, the
masks contain only the relative position to print each field of
the mask and a new function is defined (FNM) to position the
cursor using the PRINT@ statement of uDoZbaZic.

COPYRIGHT 1981 - 48 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 8-WRITING CSUB PROGRAMS

For each and every program written under CSUB 5.2, the following
changes must be made to run under release VI:

1. Load the program and delete all line numbers except the DATA
statements located at line numbers 50000 and 51000.

2. Save the DATA statements in a temporary file.

3. LOAD the program into internal memory again.

4. Delete the following items from the program:

APPEND CSUB
GOSUB 65000 and GOSUB 65100
DATA statements at 50000 and 51000
All FILL D2,X statements

5. Optionally, you can change all !Z$ (clear the screen) to the
CLS statement and all FNA function calls (position the
cursor) to PRINT@ or !@ statements.

6. RENumber the program to start at line number 1000. The
command would appear as follows:

REN 1000,10

7. APPEND the DATA statements (at 50000 and 51000) previously
saved to the temporary file.

8. Optionally, if you are using CSUBEN (with the new ·FNF for
mat), remove the minus signs from the first field of the
DATA statement and remove field 3 (always a zero under CSUB
5.2). If you do not want to modify these lines, use CSUBEO
(with the old format) so that your programs will continue to
work properly.

9. If you use the secondary error messages at 55000 and 55200,
APPEND HGERROR from the CSUB disk on to your program.

10. SAVE the program under the original name.

11. Change all mask displays to use FNM {the mask display
function). Run the program CONVRT on all old CSUB mask
files to convert them from the old mask format to the new
mask format.

For the CSUB program itself, you will have to modify the first
line so that A$ is equal to the name of the program you want to
branch to when CSUB is loaded and executed.

COPYRIGHT 1981 - 49 - MICRO MIKE'S, INC. 91/93

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

PROGRAM DESCRIPTIONS

This section contains the program descriptions for CSUB and its
associated utility and demonstration programs.

9.1 CSUB

CSUB is the set of functions (actually not subroutines) which
accomplish the actions described by this manual. The CSUB file
on the disk may contain any one of the four CSUB files included
on the CSUB disk. Any one of these files can be LOADea into RAM.
and then SAVEd into the CSUB file. Each of the four CSUBs has
its own characteristics and special purposes as described below.

9.1.1 CSUBEO

CSUBEO is the version containing the line editor (E) but uses the
old (0) format for FNF inputs. When CSUB was first devised, an
attempt was made to include all DATA statements for FNE and FNF
at the same location (50000). However, after further develop
ment, the FNE and FNF data statements were separated (FNF at
50000 and FNE at 51000). ·

Two remnants of the original CSUB became illogical for the new
format that remained in CSUB through Release 5.2. The data type
(first field of the DATA table) for FNF required a minus sign in
front of the data type number. In addition, the FNF DATA state
ments table required an extra field that was not used and was
always set to zero (0). This field was the position field, but
under FNF the position of the input is always on the third line,
except if the position is modified using the C2 or C3 variables.
CSUBEO still supports those programs written with these features.

9.1.2 CSUBEN

CSUBEN is the version that contains the line editor (E) but uses
.the new (N) format for FNF inputs. This version is the primary
version of CSUB and should be used in most situations. CSUBEN
occupies the most memory of any of the three CSUBs.

Under CSUBEN, FNF DATA statements no longer need to have a nega
tive sign before the first field and the position field has been
eliminated.

The only difference between CSUBEO and CSUBEN can be found at
line numbers 148 and 236. In line 148 the READ A2 has been
removed from the list of variables read in the READ statement.
In line 236, the statement taking the INT(A4) has been modified
to ABS (INT(A4)).

COPYRIGHT 1981 - se - MICRO MIKE'S, INC. 01/0·3

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.1.3 CSUBW

CSUBW is the version of CSUB that does not contain a line editor.
This version is used when the program is so large that CSUBE can
not be used. This version of CSUB uses the new format for FNF
inputs.

9.1.4 CSUBI

CSUBI contains only the Input section of CSUB. This version is
to be used when there is no file accessing to be done under the
CSUB file accessing routines. This version of CSUB uses the new
format for FNF inputs.

9.2 BONES

BONES is a demonstration keyed access file maintenance program.
This program can be used to very quickly establish a F/M program
for any new data base by merely changing a few parameters. Pro
gram and file names should be changed at the beginning of the
program. A new set of DATA statements (FNE at 51000) should be
written to accurately reflect your file structure. The FNF DATA
statements may need to be changed if they do not reflect what you
want the program to do.

See Section 8 for more information on the BONES program.

9.2.l BONE

The file BONE is not a program but the main (FNG) data file for
the demonstration program BONES. This file is in place on the
CSUB disk so that the user can quickly try the BONES program once
the cursor addressing features have been established by the
CONFIG program. You can use FILEWORK to examine the contents of
the BONE file if you have questions concerning how the file is
set up.

9.2.2 BONEK

Again, BONEK is not a program but the key file (FNH) for the BONE
file and the BONES program. This file (as well as BONE) was
created using option 1 (Create Key File) from the FILEWORK menu.
The contents of the file can be printed using option 4 (Print Any
File) from the same program.

9.2.3 BONES&

This file contains the mask that is displayed when BONES program
is run. Notice this file follows the rule that the mask file
should be identical to the program file name except that an
ampersand (&) is added to the program file name. To examine the
contents of this file, use the MASKEDIT program. The file name
is BONES& and the mask number is 1.

COPYRIGHT 1981 - 51 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.3 MASKEDIT

The MASKEDIT program is used to create, edit, store on disk,
retrieve from disk, and print masks. Three modes to MASKEDIT
are; command, enter text, and enter lines. In the command mode,
any of several commands may be given MASKEDIT on which to oper
ate. The command mode is used to initiate moving the cursor,
adding to the mask, deleting fields from the mask, moving fields
within the mask, sorting the mask for proper displaying, and
printing the mask on the printer.

In the enter mode, text may be entered as part of the mask. After
the command is executed, all printable characters on the keyboard
may be entered into the mask at the current cursor position.

The enter line mode is used to draw lines and/or boxes on the CRT
{if your CRT has this capability). Once in the line drawing
mode, the cursor is moved horizontally or vertically by the
cursor control keys and a line or box is drawn following the
cursor movement.

Either text or lines may be entered into the mask in normal or
reverse video {again, if your CRT supports this feature).

Line two is used to keep the user informed of the present cursor
position and the mode of operation. The cursor position and mode·
message will always display in reverse video when the "R" command
is executed and in normal video when the "N" command is executed
to indicate the current status of the program. Since line two is
reserved for FNF prompts, fields should never be placed there.

When the MASKED IT program is RUN, the first prompt to appear on
the CRT reads as follows:

MASK NAME, DRIVE NUMBER:

The user should enter the name of the mask, a comma and the drive
number. The comma and drive number may be omitted if the file is
on the default drive. If the file does not exist, the program
will branch immediately into the command mode, clear the screen,
·and print the following message on the CRT:

1, 1 ENTER COMMAND

If the mask name is an existing file name on the specified drive,
the program will respond with the following prompt:

MASK NUMBER:

Since this program can handle multiple masks in the same file,
this prompt is requesting the number of the mask you want. If
you have only one or want the first mask, enter a •1°.

COPYRIGHT 1981 - 52 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.3.1 Commands

MASKEDIT provides commands to perform several functions. The
movement of the cursor is controlled by several commands allowing
the cursor to be moved to any position on the CRT. The commands
are summarized as follows:

1 Move cursor down and left.
2 Move cursor down.
3 Move cursor down and right.
4 Move cursor left.
5 Enter text.
6 Move cursor right.
7 Move cursor up and left.
8 Move cursor up.
9 Move cursor up and right.
0 Save the mask on disk.

Enter lines.
D Delete a field.
R Reverse video.
N Normal video.
p Print a mask.
s Sort a mask.
M Move a mask field.
E Edit a mask field.
Q Quit to baZic.
J Jump to a screen position.
L Length of mask (:It of bytes in mask string).

9.3.2 Cursor Commands (1-4, 6-9)

The cursor commands are arranged so that a numeric keypad may be
used to enter the direction of cursor motion. Using the center
of the keypad as a reference, you may move the cursor up, down,
to both sides, and to all four diagonals by pressing the key that
corresponds to that direction. If your CRT does not have a
numeric keypad, you may use the number keys on the keyboard. In
this situation the command numbers won't be as easy to use.

The following number keys cause the cursor to move in the
· direction indicated:

KEY

1
2
3
4
6
7
8
9

COPYRIGHT 1981

DIRECTION .Q.f: MOVEMENT

down and left
down
down and right
left
right
up and left
up
up .. --

and

...
-~

right

- 53 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.3.3 Enter text (S)

The cursor commands are used to move the cursor to the proper
position on the CRT. To enter text at the cursor position, press
the "5" key. Upon pressing the "S" key the program will enter
the text mode whereby all succeeding characters pressed are en
tered as text. The enter mode is terminated by a carriage re
turn. The enter text mode is shown on the second line of the CRT
by the following message:

1, 1 ENTER TEXT

9.3.4 Line Drawing (.)

The "." key is used to begin and end lines. When a line or box
is to be drawn on the screen, position the cursor at the begin
ning of the line or box and press the "." key. At this time you
should see the following message on line 2 of the CRT:

:ff:, :ff: LINES

Now move the cursor horizontally or vertically and a line will
follow the cursor. Another "."will terminate the line drawing
mode. Remember, the line will be drawn only where the cursor has
been and not at its current position. Since there are so many
decisions to be made in the line drawing mode by the program, the
cursor should be moved slowly, so that the program can keep up
with the user.

If you want a line to be drawn in reverse video, first enter the
line drawing mode by using the"." command. Next press the "R"
command for reverse video. Draw the line or lines as you want
using the cursor movement keys. Before terminating the line
drawing mode, use the "N" command to return to normal video. Now
the line drawing mode can be exited by the "." command.

If a mistake is made while drawing lines, push the space bar and
use the cursor motion keys to "back up" over the incorrect lines.
This will cause the line to be erased. When the erasing is
finished, push the space bar again to exit the space drawing
mode. If you are drawing reverse video lines, remember to place
the program in the normal video mode (N key) before printing
spaces or else the spaces will print in reverse video.

To draw a box, position the cursor to one corner of where the box
is to be drawn. Enter the line drawing mode by pressing the "."
key. Using the cursor movement keys, draw the box. For the last
corner, you will have to "turn the corner" of the box before the
second "." command is issued to terminate the line drawing mode.

9.3.S Record the Mask (8)

The •0• key is used to record the present mask on disk. Before
saving a mask on the disk, the user should generally perform a
sort using the "S" command to optimize· the display of the mask.

COPYRIGHT 19 81 - 54 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.3.6 Delete a Field (D)

The "D" (DELETE) command is used to delete fields from the mask.
When the "D" key is pressed, the program responds with a prompt
on line 2 that appears as follows:

1, 1 'B' TO SPACE, 'D' TO DELETE, 1 Q1 TO EXIT

Pressing the "B" key will space you from one field to the next in
the order in which they are stored internally. Use the "B" key
to advance to the field which you want to delete. The "D" key is
used at this time to delete the field following the cursor. If
you decide you do not want to delete the field after all, use the
"Q" key to quit.

9.3.7 Move a Field (M)

The "M" (MOVE) command is used to move a field from one place on
the CRT to another. Once the "M" command is pressed the second
line will have the following message:

1, 1 'B' TO SPACE, 1 M' AT FIELD TO MOVE, 1 Q1 TO EXIT

The "B" key is used to space to the field to be moved. The M key
is again pressed to specify the field when the cursor is at the
beginning of the field to be moved. Once the proper field has
been reached and the "M" key has been pressed, the following will
appear on line 2 of the CRT:

MOVE CURSOR TO NEW POSITION, 1 M1 TO MOVE, 'Q' TO EXIT

Now move the cursor (using the numeric keypad) to the position on
the CRT to which the field is to be moved. Once at this position
the "M" key can be used to move the previously defined field to
the present location of the cursor. The "Q" key may be pressed
to quit the command and return to the command mode if a decision
is made to not move the field.

9.3.8 Edit a Field (E)

The "E" (EDIT) command may be used to edit a field either during
text entry or at anytime while using the MASKEDIT program. When
the edit command is executed, the following display will be on
line 2 of the CRT:

1, 1 1 B1 TO SPACE, 'E' AT FIELD TO EDIT, 'Q' TO EXIT

The edit command works similarly to several of the other commands
in that the "B" key is pressed to move the cursor to the begin
ning of the field to be edited. Once at the proper field the "E"
key is again pressed to signify that the present field is to be
edited. The following display is shown on line 2 when the "E"
key is pressed and the program is in the edit mode:

COPYRIGHT 1981 - 55 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

EDIT

The edit commands are similar to the baZic line editor commands.
These commands are all executed by holding the control key down
at the same time the command key is pressed. All control keys
are represented by the "up arrow", followed by the specific
letter (AA). The control keys and their meanings are summarized
in the following chart:

AA
""H
AZ
"y
"N
""B
"G

<CR>

Move cursor right.
(backspace) Move cursor left.
Delete character at cursor position.
Toggle insert mode on/off.
Display to end of line and return cursor to beginning.
Quit edit and leave field unchanged.
Copy to end of line and terminate edit mode.
(carriage return) End edit at present cursor position.

9.3.9 Jump to a Screen Position (J}

The "J" command is used to allow the programmer to specify the
exact position on the CRT of where he/she would like the cursor
to be. Upon entering the "J" command, the following display is
shown on line 2:

JUMP ENTER ROW,COLUMN:

At this time, enter the row and column coordinates of the posi
tion on the CRT of where you want the cursor. Be sure to enter
the row value first and to separate the row and column values
with a comma. When the carriage return is pressed, the cursor
will advance to the position specified.

9.3.10 Reverse Video Mode (R}

The "R" (REVERSE VIDEO) command is used to cause the program to
enter into reverse video mode. In this mode, both text and lines
entered will be in reverse video. When you are finished with
reverse video, use the "N" (NORMAL) command to cause the program
to return to the normal mode.

To draw lines in reverse video, first enter the line drawing mode
using the "." command. Enter reverse video by using the "R"
command. When you are finished drawing the lines, exit the
reverse video mode by the "N" command and then exit the line
drawing mode by pressing the"." key again. See Section 9.3.15
for more information on the "R" command.

9.3.11 Sort a Field (S)

The "S" (SORT) command is used to sort the mask. When fields are
entered into the mask out of their normal "top-down" order, the
mask will display in the same order the mask was entered. By
using the sort command, the mask can be arranged so that it
always displays in a top-down, left-to-right manner.

COPYRIGHT 1981 - 56 - MICRO MIKE'S, INC. Bl/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

As a general practice, the mask should always be sorted prior to
saving on disk with the "0" command and after every deletion.
Two sort commands may not be issued one after another.

9.3.12 Print a Mask (P)

The "P" (PRINT) command is used to print the mask on the printer.
Upon pressing the "P" key, the program asks for the device number
with the following prompt:

PRINT ON DEVICE NUMBER:

The response shoula be a legally defined device on your system
but is generally device 1. After answering the previous ques
tion, the program will ask if you want the grid suppressed on the
printout with the following prompt:

SUPPRESS GRID (YN)

If you answer "Y" for yes, the mask will be printed as it appears
on the CRT. If you answer "N" for no, the mask will be printed
with a grid showing the location of all mask fields.

9.3.13 Quit to baZic (Q)

The "Q" (QUIT) command is used to quit the program and return to
baZic. Upon entering the "Q" command, the program will ask if
you want to quit by displaying the following prompt:

DO YOU WANT TO QUIT (YN)

If you press the "Y" key for yes, the program will terminate and
you will see the READY message of baZic. If you press the "N"
key for no, the program will return to the command mode.

9.3.14 Length of Mask (L)

At any time during the editing of a mask (while the program is in
the command mode) the "L" command can be executed to determine
the length of the present mask. The value returned will be the
·number of bytes that the mask occupies. The value will be
displayed and the following prompt will be given:

PRESS RETURN TO CONTINUE

To continue editing, press the return key. When a save command
is executed (0), the program will report the length of the mask
automatically without having to use the "L" command.

COPYRIGHT 1981 - 57 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.3.15 Miscellaneous

If you want to reverse the video on a field already created,
position the cursor to the beginning of the field and press the R
key. Move the cursor to the end of the field and press the N
key. Now use the sort command (S) to sort the mask and the
selected field will be converted to reverse video.

9.4 FILEWORK

The FILEWORK program is used to manipulate CSUB type files. The
program is menu driven, allowing the user to select the option
from the menu. The program is not written under CSUB itself but
appears very similar to a CSUB program. Upon LOADing and RUNning
this program the following menu will be displayed:

FILE UTILITY PROGRAM
Input Option Number

1. Create Key File
2. Create Sequential File
3. Transfer Any File
4. Print Any File
5. Add Records To Key File

Option 1 is used to create a keyed access file pair (a file for
FNG and FNH). Option 2 is used to create a single FNG type
sequential file. Option 3 is used to transfer information from
one file to another. Option 4 is used to print one or more
records of any CSUB type file on the CRT or printer. Option 5 is
used to expand a keyed access file and its keyfile when the
number of records has expanded past the length of the file.

9.4.1 Create Key File

When this option is selected, the following display will appear
on the CRT:

File Name
Key File Name
String Length
Number of Numerics
Key Index Length
Number of Records
Drive Number

CREATE KEY FILE

The cursor will move to the first input and will proceed down the
list as each item is entered. A control B (AB) can be entered at
any time to back up to the previous input.

COPYRIGHT 1981 - 58 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PRcx;RAM DESCRIPTIONS

The File Name should have seven characters or fewer and is the
name of the main (FNG) file you want to create. The Key File
Name is the single letter that will be added to the main file
name to arrive at the key file name.

The String Length is the length of all the string information to
be stored in each record of the file. The program automatically
adds the overhead bytes required to store a string, so the user
of this program should enter only the number of characters re
quired in the string.

The Number of Numerics is the number of numeric entries to be
stored in each record of the file.

The Key Index Length is the size of the string used as the index
in the keyed access file (key file).

The Number of Records is the number of records that you want in
the file. The program will automatically create both files (key
file and main file) large enough to hold the number of records
specified.

The Drive Number is the number of the drive on which you want the
files created.

As the files are being created the program prints the names and
sizes of the files being created on line 2 of the CRT.

9.4.2 Create Sequentia1 Pile

This option is used to create a standard FNG type sequential
file. When this option is selected, the following display will
result:

CREATE SEQUENTIAL FILE

File Name
String Length
Number of Numerics
Number of Records
Drive Number

The File Name is the name of the file to be created. It, of
course, must follow the standard rules for flle names.

The String Length is the length of the string portion of each
record in the file.

The Number of Numerics is the number of numeric fields within
each record of the file.

The Number of Records is the maximum number of records to be
entered in the file. This value controls the size of the file to
be created.

COPYRIGHT 1981 - 59 - MICRO MIKE'S, INC. Bl/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

The Drive Number is the drive number on which the file is to be
created.

As the file is being created, the program prints the name and
size of the file being created on line 2 of the CRT.

9.4.3 Transfer Any File

This option is used to transfer information from one file to
another. This option works on all CSUB type files, including key
files. When the option is selected, the screen is cleared and
the following display is printed:

TRANSFER ANY FILE

Source File Name , Drive #
Destination File Name , Drive #

The cursor will again move to the first input and then to the
second when the first is completed. The Source File Name and
drive number should be entered. The Source File is the file from
which you want the information transferred. Don't forget to
separate the file name and the drive number by a comma.

The Destination File Name is the name of the file that you want
the source file transferred to. If the Destination File Name
does not exist, the program will automatically create the speci
fied file. This name and the drive number should follow the
standard file name and drive number rules.

9.4.4 Print Any File

This option is used to print the contents of a CSUB type file on
the CRT or printer. This option can print one or all of the
records in the specified file. Files with byte accessing cannot
be printed with this option since they are not standard CSUB type
files. When this option is selected, the following display re
sults:

File Name , Drive #
1-Printer 0-CRT
1-0ne Record 0-List

PRINT ANY FILE

The File Name and Drive i is the name and disk drive number of
the file that you want printed. The second option is used to
tell the program whether you want the information printed on the
CRT or printer. Enter the appropriate number as shown in the
mask. The last prompt is to indicate if you want only one record
or the entire file (List) to be printed.

If you decide to print only one record, the program will prompt
you for the record number.

COPYRIGHT 1981 - 60 - MICRO MIKE'S, INC. e1/e3
.,

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

When the requested information has been entered, the program will
print the name of the file and the first three numerics on the
second· line of the CRT. The record or records specified will be
printed under the file name. If the file is printed on the CRT
the program will print about 10 records before stopping and
printing a "PRESS RETURN TO CONTINUE" message. At this time you
may press the RETURN key to see more records or the AB key to
return to the first menu.

9.4.S Add Records To Key File

This option supports the expansion of a key file pair, if the
number of records in the file has grown beyond the size of the
file. This option does not work on sequential files because they
are very easy to expand by just creating the file larger and
using the file transfer option to move the records from the old
file to the new file. The new file and key file must be on a
separate drive than the files being expanded.

When the option is selected, the following display results:

ADD RECORDS TO KEY FILE

File Name
Key File Name
Source Drive :fl:
Destination Drive :fl:
Number of Records

Enter the File Name and the single letter Key File Name. The
Source Drive :fl: is the drive you want to copy from (old file that
is now too small). The Destination Drive :fl: is the drive you want
to create the new files on and must be different than the Source
Drive :fl:.

The Number of Records is the number of records you want the file
expanded to hold. This number should be larger than the number
of records in the file to be expanded.

9.5 CONFIG

This program is not supplied nor does it work with the DOS and
CP/M versions of CSUB.

This program is designed to allow changing the features of uDoZ
baZic, which are of ten different from one system to another. This
program is generally the first program run on a system when it is
initially installed. If the user does not know the correct
response to any of the questions, the default conditions can be
specified by simply entering a carriage return in response to the
questions.

COPYRIGHT 1981 - - 61 - MICRO MIKE'S, INC. 01/03

------------------'-~"'----""--'----" -- ... ·-·· . .,

'' -~-

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

The program CCOPY is used to make the initial copy of the master
diskette. This program must be on the same diskette as the
program CONFIG.

The most important item to be considered is the configuration for
the proper CRT. If the CRT you are using is 1 isted, merely
select the number of that CRT in response to the prompt under the
CRT selection menu and the program will set up the system for
your CRT automatically. If your CRT is not listed and you are a
programmer, you should be able to set up uDoZbaZic for your CRT
by following the instructions in the program.

In response to all requests for information by this program, the
carriage return must be pressed either by itself to signify the
default condition, or after making any entry in response to any
input for the program to "know" that you are finished with your
entry.

The first prompt to appear on the CRT will inquire if you need to
make a copy of the program disk before you continue. The prompt
will appear as follows:

DO YOU NEED TO MAKE A BACKUP COPY OF THE PROGRAM DISK? (Y OR N)

You must enter a "Y" if you want to make a copy. Any other
response will allow you to continue with the. program without
making a copy. If you are making a copy, the next prompt will
instruct you to place a blank disk in drive two of your computer.
The program disk should remain write protected throughout the
entire procedure. Your program disk should still be in drive
one. The prompt will appear as follows:

TO MAKE A COPY OF THE PROGRAM DISK, LEAVE THE PROGRAM DISK IN
DRIVE ONE (1) AND PLACE A BLANK DISK IN DRIVE TWO (2) •

THE DISK IN DRIVE l SHOULD BE WRITE PROTECTED AND THE DISK
IN DRIVE 2 SHOULD NOT BE WRITE PROTECTED.

PRESS RETURN TO CONTINUE

.When the return key is pressed, the program will first initialize
the diskette in drive two and then copy the contents of the disk
in drive one to drive two. The following message will be
displayed while the copy is in progress:

THE COPY WILL TAKE BE'IWEEN 1 AND 2 MINUTES. PLEASE BE PATIENT.

When the process is complete, the first prompt will appear again
as follows:

DO YOU NEED TO MAKE A BACKUP COPY OF THE PROGRAM DISK? (Y OR N)

COPYRIGHT ·1981 - 62 - MICRO MIKE'S, INC• 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

This time enter an "N" for no. The program will now tell you to
store the original disk from drive one, and to change the disk in
drive two to drive one. This procedure is followed so as to save
the original disk and to place the copy made in drive two into
drive one where it can be modified to work with your hardware.
The message will appear as follows:

IF YOU HAVE JUST MADE A COPY OF YOUR MASTER DISKETTE, YOU SHOULD
REMOVE THE MASTER DISKETTE FROM DRIVE 1 AND STORE THIS DISKETTE
IN A SAFE LOCATION. REMOVE THE DISKETTE FROM DRIVE 2 AND PLACE
IT IN DRIVE 1. THIS DISKETTE WILL BECOME YOUR WORKING DISKETTE.
MAKE SURE THE WRITE PROTECT TAB IS NOT IN PLACE ON THIS DISKETTE.

PRESS RETURN TO CONTINUE

After the copy procedure has been completea, you may continue
with the rest of the configuration process.

The sign on message is the next item to appear on the screen.
This message will remain displayed until you press the carriage
return key. Note the message also indicates that the uDoZ disk
must be in drive one for this program to function properly.

The first prompt of the configuration section of this program
will ask for the value of the PAGE byte. The program will first
display the current value of the PAGE byte and give a short
description of the purpose of this byte. The value of the PAGE
byte is the number of lines to be displayed on the CRT before the
display is "held" by the PRESS RETURN TO CONTINUE message.

This value is normally only needed by programmers and does not
affect anything in the application programs. For most users, the
value of 24 lines per page is correct and therefore the user
should enter only a carriage return in response to this prompt
indicating the default value is to be used.

The next value to be set is the verify byte. This byte controls
whether uDoZ is to verify all information that it writes to the
diskettes. It is recommended that the verify be left "on" as
delivered. A verified write takes longer to perform than a non
.verified write, but the accuracy of information is better if the
writes are verified.

If you do not want verified writes, enter a zero (0) in response
to the verify prompt. If you want all writes verified, enter a
one (1) or press only the carriage return to specify the default
condition (writes verified).

The CONFIG byte is the next situation to be covered. This value
•tells" uDoZ which drives in the system are quad capacity drives.
The default assumes that there are no quad capacity drives in the
system and that all drives are just double density single sided
drives.

COPYRIGHT 1981. - 63 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

The program will ask eight questions in regard to the quad
capacity drives. If you do not know which drives are quad
capacity in your system, enter a return only in response to the
eight questions. The system will work even if you have quad
drives but specify them as double density only. The reverse
situation will not work (if you have double density drives and
you specify them as quad capacity).

Two questions are asked about each drive. The first question
asks if the drive is a quad capacity drive and the second ques
tion asks if the drive has fast stepping capability. Generally,
both questions about a drive should be answered with the same
response. If the drive is a quad, it should have fast stepping
capability. If the drive is not a quad, it should not have fast
stepping capability.

In response to the eight questions, enter the correct answer.
Enter a "Y" to indicate each drive that is a quad capacity drive.
If the drive is not a quad capacity drive, enter a "N" or a
carriage return only to signify the default condition.

After the four drives have been specified correctly, the next -
value to consider is the Display SYStem byte. This byte controls
the listing of system level files during a CATalog of a disk. If
the system files are to be displayed this byte should be a zero.
If the system files are not to be displayed this byte should be a
one. If you are unsure how your system is to be set up, select
·the default condition by pressing only the carriage return key.

The next item to be displayed on the CRT is a short note
explaining the setting of the cursor addressing and clear screen
information to allow uDoZ to communicate properly with your CRT.
After reading this message, press return to continue, and you
will see a short menu of CRTs for which the program "knows" the
correct cursor addressing and clear screen values.

If your CRT is listed, select the number corresponding to your
CRT and press the carriage return. The program will take care of
all the "details" for your CRT. If your CRT is not listed, the
"OTHER" option may be of value to you if you know the cursor
-addressi- prefix, the offset values, and the clear screen se
quence for your CR~

If you do not know these values, you should not select the
"OTHER" option. You should locate some knowledgeable person to
configure your CRT for you.

Assuming your CRT was listed and you selected the correct option,
the next i tern to consider is the turnkey command which is to be
given to uDoZ whenever it is booted. The default turnkey command
for uDoZ is to load baZic and then for baZic to begin executing
the. program called •csuB".

COPYRIGHT 1981 - 64. - MICRO MIKE'S, INC. 01/03 ·

....... ·.

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

This condition should be selected by most users by simply press
ing the carriage return key in response to the prompt. If de
sired, a new turnkey command can be entered before pressing the
return key. A new turnkey command should be entered only by a
programmer who knows the consequences of the command entered.

At this point, all the necessary information has been gathered by
the program and a testing phase is begun. The program will first
clear the screen on the CRT and print a message on the first two
lines of the CRT. If this has happened, you should enter a "l"
and a return to indicate that the clear screen command is working
properly. If you enter a "0" in response to this prompt, the
program will branch back to the CRT configuration section to let
you try again.

The program will draw a "looping rope" (prolate cycloid) on the
CRT, followed by numbers and asterisks to signify the limit posi
tions on the CRT. The right side and bottom of the CRT will be
covered by the asterisks. The top and left side will have a
number at every position to represent the rows and columns of the
CRT. A message will be printed, explaining the display and a
prompt will be shown at the bottom asking if everything is O.K.

If you enter a "l" at this point, the information gathered by
this program will be written to the disk in drive one of the
computer.· If you enter a "0", indicating that some problem still
exists, the program will branch back to the CRT configuration
section to allow you to try again.

Once the correct cursor addressing and clear screen sequences
have been established and the user enters a "l" in response to
the last prompt, the program writes the updated information on
the disk, clears the screen and prints a message indicating the
configuration is complete, and reboots the computer. At this
time you should be running your application program.

9.6 DUP (Diskette Utility Program)

This program is not supplied, nor does it work with the DOS and
CP/M versions of CSUB.

This program is the basic utility program which allows the user
to initialize and copy diskettes. The "source" disk or drive is
always the drive that you will copy from while the "destination"
disk is the drive that will be copied to.

To run this program the COPY option must be selected from the
appropriate menu. The utility menu and prompt appear as follows:

-
COPYRIGHT 1981 - 65 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI

DISKETTE UTILITY MENU
PICK OPTION NUMBER (l-5)
i

1) Initialize
2) Gross Copy
3) Intelligent Copy
4) Copy Files
5) Compact Disk

9-PROGRAM DESCRIPTIONS

If you have decided you do not want this program, you may return
to the program that called this one by pressing the ESCape key.

At this time you should select the appropriate option number.
Option 1 allows the user to initialize a diskette. Option 2 is
used for a complete disk to disk copy where all data is trans
ferred, regardless of directory entries or how much actual data
is on the disk. Option 3 is a copy by directory where files are
copied file by file based on the directory information and the
user's choice.

Option 4 allows the user to copy a single file by its file name
or a group of files as specified by a programmer. Option 5 is
used to compress a disk when file deletions have left "holes" in
the u~able space.

9.6.1 Initialize

If you select Option 1 (Initialize), the first prompt for this
·option is:

*** DISK INITIALIZATION ***
ENTER DRIVE NUMBER TO INITIALIZE

If you decide you do not want to initialize a diskette, you may
return to the DISKETTE UTILITY MENU by pressing the ESCape key.

If you are not familiar with the numbering of drives on your
computer, consult your hardware manual and/or request help from

.someone who is familiar with your system. Generally, drive 1 is
the left-most drive and drive 2 is the right-most drive. With
the optional hard disk drive, drives may be assigned in a rela
tive manner without regard to physical location. Be careful that
you know in which drive you want to initialize a diskette.

After you have made your choice of drive, the initialize program
will "look" at the disk you wish to initialize and determine if
there are any files on the disk. Any files on the disk will be
displayed on the CRT so that the user may decide if the initial
ization is to continue.

- 66 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

After viewing the partial directory of the disk, you will see the
following prompt:

THESE ARE SOME OF THE FILES ON THE DISK. l=INITIALIZE, 0=DO NOT

If you enter "ESC" the program will return to the first prompt in
the initialization section {ENTER DRIVE NUMBER TO INITIALIZE) and
the disk will not be initialized. If you enter "0", the program
will branch to the DISKETTE UTILITY MENU and the diskette will
not be initialized. If you enter "l" in response to this prompt,
the program will initialize the disk, thereby erasing all infor
mation that is on the disk.

While the diskette is being initialized, the program will print
the following message on line 4 of the CRT:

Initializing Drive X

Upon completion of the initialization, the program will ask if
you would like to initialize another disk by displaying the
following prompt:

INITIALIZE ANOTHER DISK ? {l=YES, 0=NO)

To initialize more diskettes simply respond with a "l". If you
respond with a "0" or any other value, the program will return to
the DISKETTE UTILITY MENU.

9.6.2 Gross Copy

Gross copy is used when you want to copy every byte of informa
tion from one diskette to another. This copy pays no attention
to the directory and copies all information from one disk to
another. Always write protect the disk you are copying from.

The first prompt displayed upon selecting this option is:

GROSS COPY PROGRAM
INPUT SOURCE DRIVE NUMBER

The user should respond with the drive number of the disk that is
to be copied. Once this information has been entered the program
will respond with the following prompt:

INPUT DESTINATION DRIVE NUMBER
i

COPYRIGHT 1981 - 67 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

The user should respond with the drive number of the disk that is
to be copied to. If one drive specified is a quad (two sided)
drive and the other drive is a single sided drive, the program
will copy only one side and will inform the user with the fol1ow
ing message:

QUAD AND SINGLE SIDED DRIVES MIXED CAN ONLY COPY ONE SIDE

If the same drive is selected as the SOURCE and DESTINATION disk,
the program will initiate a one drive copy. The following mes
sage will appear on the screen to inform the user that the one
drive copy is in the "on" mode:

ONECOPY ON

In this situation, the program will ask you to insert the source
disk in drive 1 with the following prompt:

INSERT SOURCE DISK IN DRIVE 1 AND PRESS RE'IURN

The bell is sounded to alert the user of each change of diskette.
Information is read from the source disk and "held" in the
internal memory of the computer. Now the program will ask you to
place the destination disk in drive 1 with the following prompt:

INSERT DESTINATION DISK IN DRIVE l AND PRESS RETURN

This process will continue until the entire diskette is copied or
until an error condition occurs.

If the source and destination drives are specified as different
drives, the program will attempt an automatic copy of information
from the source diskette to the destination diskette. If the
destination disk was initialized properly, the program will copy
all information on the source disk to the destination.

If the destination diskette is not initialized, the program will
display the first six entries of the destination diskette and
will ask if you want to continue with the copy. The prompt will
appear as follows:

DESTINATION DISK HAS FILES. CONTINUE WITH COPY ? (l=YES, 2=NO)

Enter a "l" to continue the copy or "2" to branch to the DISKETTE
UTILITY MENU.

As the copy is being made, the program will display the following
message on the CRT:

COPY IN PROGRESS

If a hard disk error occurs during the copy process, a message
will be displayed, indicating which drive caused the error to
occur. The message will appear as follows:

COPYRIGHT 1981 - 68 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

HARD DISK ERROR ON DRIVE X

When this condition (hard disk error) occurs the program will ask
if you want to continue with the copy program (try the copy
again), or exit back to the DISKETTE UTILITY MENU. The prompt
will appear as follows:

PRESS E TO EXIT OR A TO TRY AGAIN

If the door was not closed properly or the disk was not seated
properly, the chances are excellent that the copy can be com
pleted successfully by merely opening the offending drive door
and closing it slowly a time or two, without using force.

When the "E" option is selected, the program will display one
last prompt before branching to the DISKETTE UTILITY MENU. This
prompt will tell you to insert your utility diskette in the
default drive (normally drive 1). The prompt will appear as
follows:

PLACE UTILITY DISK IN DEFAULT DRIVE AND PRESS RETURN

Press return after placing the proper disk in the proper drive.

9.6.3 Intelligent Copy

This option copies in A)uto or S)ingle step mode. A)uto mode
copies file-by-file until the entire disk is copied or will stop
when the destination f ilespace is too small to continue or a
duplicate filename is encountered. S)ingle step mode copies
file-by-file but prompts the operator as to the action to be
taken for each file.

The first prompt is the request to place the source and destina
tion diskettes in the proper drives. The prompt reads as fol
lows:

INTELLIGENT COPY COPYRIGHT (C) 1981, MICRO MIKE'S, INC.
INSERT DISKETTES THEN PRESS ANY KEY

.After inserting the correct diskettes in the proper drives, press
any key to continue with the copy.

The second prompt is the request for the drive number to copy
from:

INTELLIGENT COPY COPYRIGHT (C) 1981, MICRO MIKE'S, INC.
INPUT SOURCE DRIVE NUMBER
i

followed by the request for the drive to copy to:

INPUT DESTINATION DRIVE NUMBER
i

COPYRIGHT 1981. - 69 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

If the user enters the same response to both drive number
requests, the program will print the following message and return
to the first prompt:

SOURCE DRIVE CAN'T EQUAL DESTINATION DRIVE

The mode is selected in response to the third prompt:

CHOOSE A)UTO OR S)INGLE STEP
*

To select your choice respond with the first letter of the name
of the option you want ("A" for auto or "S" for single step).
The A)UTO option begins copying from the point where it is in
voked to the end of the disk. The S)INGLE STEP option allows the
user to view each file before deciding if the file is to be
copied.

If the A)UTO mode is selected, the screen will appear as follows:

INTELLIGENT COPY COPYRIGHT (C) 1981, MICRO MIKE'S, INC.
c

FILENAME AF=0

The file name and the attribute will display on the fourth line
of the CRT as the files are being copied. When the copy is
complete, the program -will respond with the following prompt:

INPUT E)XIT OR C)ONTINUE

If the user selects the "E" option, the user is returned to the
DISKETTE UTILITY MENU. If the user selects the "C" option, the
program will branch to the initial prompt (INPUT THE SOURCE DRIVE
NUMBER).

Several conditions will terminate the A)UTO mode. If space on
the destination disk (the one being copied TO) is too small, the
program will terminate with the message:

DISK IS FULL

If the directory space becomes full, the program will issue the
following message:

DIRECTORY IS FULL

If a hard disk error occurs, the program will display the
following message:

HARD DISK ERROR ON DRIVE X

If the destination disk is write protected (write protect tab in
place), the program will respond with the following message:

COPYRIGHT 1981 - 70 - MICRO MIKE'S, INC. Bl/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

FILE IS WRITE PROTECTED

The occurrence of any of the these messages will result in the
following prompt:

INPUT E)XIT OR C)ONTINUE

If the user selects the "E" option, the user is returned to the
DISKETTE UTILITY MENU. If the user selects the "C" option, the
program will branch to the initial prompt (INPUT THE SOURCE DRIVE
NUMBER).

If the program encounters a file that already exits on the desti
nation disk, the program will respond with the following prompt
and message:

CHOOSE S)KIP, R)EPLACE, N)EWNAME, OR E)XIT
*
DUPLICATE FILE NAME

The S)KIP option skips the present file and goes to the next
file. The file is NOT copied if you specify S)KIP.

The R)EPLACE option will cause the file on the destination disk
to be over-written by the file of the same name on the source
disk (the disk being copied from). The program will then con
tinue to the end or will stop if any of the terminating condi
tions are found again (file space too small or duplicate file
name).

The N)EWNAME option will allow you to give the file a new name.
In this instance you will still retain the file on the destina
tion drive with the duplicate name but the file will be copied
from the source to the destination drive and be named whatever
you choose.

If the N)EWNAME option is chosen, the program will ask for the
new file name with the following prompt:

INPUT NEW FILE NAME

If the name has fewer than eight characters, enter a RETURN after
the name. If the name has eight characters the program will
supply the RETURN.

The E)XIT option allows you to exit to the error condition
prompt:

INPUT E)XIT OR C)ONTINUE

If the user selects the "E" option, the user is returned to the
DISKETTE UTILITY MENU. If the user selects the "C" option, the
program will branch to the initial prompt (INPUT THE SOURCE DRIVE
NUMBER).

COPYRIGHT 1981 - 71 - MICRO MIKE'S, INC. 01/03

i

I
I

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

In S)INGLE STEP mode, the program works very similarly to the
auto mode except each file is displayed on the CRT one at a time,
allowing the operator to make decisions based on the file name.
Under S)INGLE STEP the program will display the name of the first
file on the source drive and issue the following prompt:

CHOOSE C)OPY, S)KIP, A)UTO, OR E)XIT
*
FILENAME AF= 0

The C)OPY option performs a copy of the file and then displays
the next file. If a duplicate record is encountered, the program
performs exactly as stated in the A)UTO mode description of
duplicate file names.

The S)KIP option skips the currently displayed file and brings up
the next file for the operator to act upon.

The A)UTO option allows the user to A)UTO copy all files on the
disk. A)UTO may be invoked anytime under S)ingle Step to copy to

· - the end of the disk. The previous description of A) UTO applies
anytime it is invoked.

The E)XIT option works exactly as previously described.

All files are compacted automatically as they are copied. Using
ICOPY, files are transferred onto the "tail end" of any data
already on the disk being copied to. Filenames are displayed on
the CRT screen as they are being copied. !COPY employs read
after-write verification of data being transferred.

Anytime the user is at the INPUT E)XIT OR C)ONTINUE prompt and
the user specifies the "E" option and !COPY was called from
another program, ICOPY will prompt the user to insert the utility
diskette in the default drive. (This diskette must have the
files baZic and DUP on it for proper functioning.) When this
situation occurs, the program will respond with the following
prompt and will wait for you to place the correct disk in the
default drive and press return to continue:

INSERT SYSTEM DISK AND PRESS ANY KEY

9.6.4 File Copy

The copy file option allows the user to copy a single file or
multiple files from the user's choice of drives. This program
will not normally be used by the end user because of the complex
ity of the program. This program is "programmable", in that all
the questions asked by this program can be answered by another
program. In this mode, the program will answer its own prompts
automatically and no operator intervention is required.

The program first prompts the user to insert the proper
diskettes by the following prompt:

COPYRIGHT 1981 - 72 - MICRO MIKE'S, INC. 01/03

- .-'>.·

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

COPY FILE COPYRIGHT (C) 1981, MICRO MIKE'S, INC.
INSERT DISKETTES AND PRESS ANY KEY

The program next prompts the user for the drive number containing
the f ile(s) to be copied. The prompt appears as follows:

COPY FILE COPYRIGHT (C) 1981, MICRO MIKE'S, INC.
INPUT SOURCE DRIVE NUMBER

After entering the source drive number, the program asks for the
drive number to copy the f ile(s) to:

INPUT DESTINATION DRIVE NUMBER

If the source drive number is equal to the destination drive
number, the program will consider the file copy a special case.
This situation will be discussed later. The "normal" flow of the
program is for the source and destination drives to be different.
For this -situation (drives different), the program begins a
series of prompts requesting information on how you want the file
copies to be made. The first prompt in this series is:

DO YOU WANT TO RENAME FILES? Y OR N

Many times the file you want to copy from has already been
created on the destination disk. The previous prompt asks if you
want to automatically rename each file encountered on the desti
nation disk having the same name as the file being copied from
the source disk. Answer "Y" if you want all duplicate files
renamed automatically or "N" if you do not want duplicate files
renamed.

The next prompt is:

DO YOU WANT ALL DUPLICATE FILES REPLACED? Y OR N

If you answer "Y" for this prompt, any duplicate files on the
destination disk will be replaced automatically by the file of
the same name on the source disk. An "N" response will allow you
to decide individually what action is taken for each duplicate
file name encountered.

The next prompt is:

DO YOU WANT TO USE A FILE OF FILE NAMES? Y OR N

COPYRIGHT 1981 - 73 - MICRO MIKE'S, INC. 01/03

.'i

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

The "N" option specifies that the user will enter the names of
each file to be copied. Alternately, the user may have a file
established which contains the names of all the files that are to
be copied. Selecting the "Y" option places the file copy program
in a mode allowing the program to "look" at the specified file
and perform a copy of all files listed in the file of file names.
If the "Y" option is selected the next prompt will be:

INPUT FILE NAME

The file name of the file of file names should be entered. If
the file is not 8 characters long, a carriage return will have to
be entered by the user, otherwise the program will supply the
carriage return. After entering the file name, the program will
prompt you for the drive number of the file of file names.

The next prompt reads as follows:

DO YOU WANT TO SET INDIVIDUAL FILE DENSITIES? Y OR N

This option allows the user to set the densities (single or
double) for each file encountered in the current copy session.
If the "Y" option is selected, the user will be prompted for the
file density for each file copied. If the "Y" option is select
ed, the following prompt will be displayed for each file to be
copied:

INPUT DESTINATION FILE DENSITY. S ORD

The user may specify the density for each file copied. If the
"N" option is selected to the DENSITY prompt, the program will
set automatically the density of each file copied to the density
of the directory on the destination disk. The density of the
destination disk is determined when the disk is initialized.
Normally only double density is used.

The next prompt to be displayed is:

ALL FILE ATTRIBUTES=0 DO YOU WANT TO SET THE FILE ATTRIBUTES?
*

Each file on the disk can have one of 64 attributes (0 to 63).
This prompt is asking if you want to be able to select the
a ttr i but es of each file that is to be copied. If you select "N"
for no, the program will copy each file to the destination disk
and preserve the attribute of the file so that the destination
file attribute is the same as the source file attribute. If you
select the "Y" option, the program will respond with the
following two prompts for each file to be copied:

INPUT THE SOURCE FILE ATTRIBUTE. 0 •• 63
ii

COPYRIGHT 1981 - 74 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

INPUT THE DESTINATION FILE ATTRIBUTE. 0 •• 63

At this point, the program is ready to take in the file name to
be copied. The prompt appears as follows:

INPUT FILE NAME TO COPY

Enter the name of the file to be copied. If the file name is not
8 characters long, press the carriage return after the file name
is entered. If the file name is 8 characters in length, the
program will supply the carriage return.

If the file name selected is not on the destination drive, the
program will create a file the same size as the file on the
source disk and will copy the file to the destination disk. If
the file already exists on the destination disk, the program will
check the responses to the previous questions to determine what
action it is to take.

If the answer to-the auto replace prompt was positive, the file
on the destination disk will be replaced automatically by the
file of the same name on the source disk. The program will make
the replacement and print the following message on the CRT to
inform the user the auto replace mode is in effec·t:

AUTO REPLACE

If the new name option is selected as positive, the program will
automatically prompt the user for the new name the file is to be
given when it is copied to the destination disk. The prompt
appears as follows:

INPUT NEW FILE NAME

Once the copy is completed, the program will ask the user if he
wants to exit the program, copy another file using the answers to
all previous questions, or start over with the program and answer
all questions again. The prompt appears as follows:

CHOOSE E)XIT, M)ORE FILES, OR R)ESTART COPY

The "E" option always takes the user to the program that orig
inally called the COPYFILE program. The "M" option allows the
user to copy more files. In this mode, the user is not asked for
the source and destination drive number nor the other questions
pertaining to how the copy is to be made. Selecting the "R"
option takes the user back to the original prompt of the program
(INPUT SOURCE DRIVE NUMBER).

COPYRIGHT 1981 - 75 MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

If, at any time during the copy, the user encounters a du pl i ca te
file and the user specified that the program was NOT to replace
automatically the destination file with the source file, the
program will display the following prompt and message:

CHOOSE E)XIT, S)KIP, R)EPLACE, OR N)EWNAME
*
DUPLICATE FILE NAME

If the user selects the "E" option, the program displays the
following prompt:

INPUT E)XIT OR C)ONTINUE

The "E" option in this case takes the user back to the calling
program. The "C" option allows the user to start over at the
original prompt (INPUT SOURCE DRIVE NUMBER) •

If the user selects the "S" option, the file is skipped and is
not copied from the source disk to the destination disk.

The "R" option specifies that the destination file is to be
overwritten by the source file.

The "N" option allows the file to be copied from the source disk
to the destination disk and be given a new name on the destina
tion disk. The program issues the following prompt when the "N"
option is selected:

INPUT NEW FILE NAME

If the initial two prompts (INPUT SOURCE AND DESTINATION DRIVE
NUMBERS) result in the same drive number being input by the user,
the program will continue to function but two prompts will not be
issued as in the normal sequence. These two prompts are:

DO YOU WANT TO RENAME FILES? Y OR N
DO YOU WANT ALL DUPLICATE FILES REPLACED? YORN

The program assumes that duplicate files will be encountered
.since the source disk and destination disk are the same. The
general procedure in this situation is to rename the file as
described previously. The DUPLICATE FILE NAME messages and
prompts will also be as previously described.

During the course of a file copy, several error messages may be
displayed on the CRT. The following messages are essentially
self explanatory:

FILE NOT FOUND
DESTINATION DIRECTORY IS FULL
DESTINATION DISK IS FULL
DUPLICATE FILE NAME

COPYRIGHT 1981 - 76 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

In the automatic mode, where the program is using a file of
files, two additional messages are displayed on the CRT to inform
the user of proper operation of the program:

READING FILE NAMES FROM FILE
END OF FILE NAME FILE

Any time the "E" option is selected from the "INPUT E)XIT OR
C)ONTINUE" option, the program will tell you to insert the
diskette containing the utility programs into the default drive.
The prompt will appear as follows:

INSERT SYSTEM DISKETTE AND PRESS ANY KEY

9.6.5 Compact

The compact option is used to recover file space lost on a drive
because of the deletion of files that were not at the end of the
data area. The compact option re-organizes the data on a disk so
that all the files are at the beginning of the disk and all of
the "blank" room is at the "end" of the disk. A copy should
always be made of a disk before it is compacted.

The first prompt of this option is:

COMPACT COPYRIGHT (C) 1981, MICRO MIKE'S, INC:
INSERT DISKETTE TO COMPACT AND PRESS ANY KEY

After inserting the proper diskette, press any key and the next
prompt of this option will display: · ·

COMPACT COPYRIGHT (C) 1981, MICRO MIKE'S, INC.
INPUT DRIVE TO COMPACT

If a hard disk error occurs during the compaction, the program
will print the following message:

HARD DISK ERROR ON DRIVE X

When the compaction is complete or an error occurs, the following
prompt is displayed:

INPUT E)XIT OR C)ONTINUE

If the user selects the "C" option to continue, the program
branches to the first prompt of the compaction (INPUT DRIVE TO
COMPACT). The "E" option takes the user to the DISKETTE UTILITY
MENU.

COPYRIGHT 1981 - 77 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

Anytime the user is at the INPUT E)XIT OR C)ONTINUE prompt and
the user specifies the "E" option and the program has been called
from another program, the program will prompt the user to place
the diskette containing the system utilities in the proper drive.
When this situation occurs, the program will respond with a
prompt and will wait for you to place the correct disk in the
default drive and press return to continue:

INSERT SYSTEM DISKETTE AND PRESS ANY KEY

9.6.6 Interfacing COPY Programs to baZic Programs

All of the initialize, copy, and compact programs can be inter
faced very easily to uDoZbaZic. The DUP program is written in
baZic and can be CHAINed to by any other baZic program. Pressing
the ESCape key or ~B from the DISKETTE UTILITY MENU will cause
DUP to CHAIN back to the program that called DUP. For this to
work properly, the programmer may have to make some slight
changes to the DUP program to set the CHAIN to program if the
name of the program is not "CSUB".

DUP actually is only a menu system to call the appropriate pro
grams. Initialize is the only function accomplished in the
program DUP. All other functions are used by either CHAINing to
the appropriate program {GCOPY) or by using the DOSCMD feature of
baZic to call a machine language program {!COPY, COPYFILE,
COMPACT).

Since GCOPY is a baZic program, it can be CHAINed to like any
other program. By listing the program and making the correct
modifications, GCOPY can be made to do about anything the pro
grammer may want to do. The program CCOPY is a shortened version
of GCOPY that is used to make the initial copy of the master
diskette from the program CONFIG.

This program (CCOPY) demonstrates the modification of the copy
program so that a baZic program tells the user what to do {which
drive to place the diskettes, etc.) and CHAINs to the copy pro
gram so that no user intervention or special knowledge is re
quired to make the copy.

In a similar manner, !COPY, FILECOPY, and COMPACT can be used by
a baZic program. In the case of these three programs, the
program is called by using the DOSCMD statement of baZic. The
DOSCMD statement can be used to execute a GO !COPY command from
baZic.

When a DOSCMD statement is used, the contents of the entire
command being passed to uDoZ is moved to the CCB (Common Command
Buffer) located at 80H. MicroDoz then acts on the command in the
CCB.

COPYRIGHT 1981 78 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

The programs !COPY, FILECOPY, and COMPACT all have the additional
capability of using values in the CCB to answer the prompts
displayed when the program is executed. When any of these pro
grams are executed, they locate the next separator byte in the
CCB. If two separators are together, the programs assume that no
commands follow and they use the file name after the second
separator as the program to load when the copy program is exited.

If the copy programs do not find a double separate- at the cur
rent separator byte, the programs assume that what follows in the
buffer is additional commands which are to be used by the program
to answer its own prompts.

As an example, the following sequence could be sent to uDoZ from
baZic and would result in the files listed in the file FNAME
being copied from drive 1 to drive 2 without operator interven
tion. When FILECOPY has finished executing the copy, the program
will return to baZic which will LOAD and execute the program
"CSUB". The uDoZ command appears as follows:

10 DOSCMD "COPYFILE\1\2\N\Y\Y\FNAME \l\N\N\E\\BAZIC\CSUB"

The result of this command sequence would be to execute the
program named COPYFILE. Once COPYFILE is executed it will re
spond with the following prompts which are answered by the values
in the CCB. Each response in the CCB will be underlined in the
series of questions that follow. The sequence of prompts is as
follows:

COPY FROM DRIVE i
COPY TO DRIVE .2.
AUTO RENAME N
AUTO REPLACE IF DUPLICATE FILE NAME X
USE A FILE OF FILE NAMES X
NAME OF FILE NAME TO USE FNAME
FILE IS ON DRIVE i
PROMPT DENSITY FOR EACH FILE N
PROMPT ATTRIBUTES FOR EACH FILE .N
INPUT E)XIT OR C)ONTINUE E

(The file-of-file-names file should be written sequentially, with
each file name stored as a string of 8 characters or fewer. The
list of file names should end with an endmark.)

This versatility of uDoZbaZic allows the programmer great power
in programming. No longer does the end user have to know the
Disk Operating System just to initialize a disk or make a backup
copy. All these things can be set up by the programmer and the
end user has only to press a key on the keyboard to accomplish
these tasks.

COPY'RIGHT 1981 - 79 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI 9-PROGRAM DESCRIPTIONS

9.7 CONVRT

This program is used to convert a mask from the "old" type mask
(which contained cursor addressing information) to the "new"
style mask (which does not contain cursor addressing informa
tion) •

The program CONVRT prompts for the file name and changes a single
mask. The program CONVRTA requests the name of a diskette di
rectory and changes all masks on the diskette to the new format.

COPYRIGHT 1981 - 80 - MICRO MIKE'S, INC. 01/03

.:-... '

Comm,onSUBroutines VI 10-USING CSUB

USING CSUB

The following section is the end user's documentation on how to
use CSUB and explains the features of CSUB common to all programs
written under CSUB.

10.l Using CSUB Programs

CSUB is a set of programs designed to help keep the users of this
application program from making mistakes as the program package
is used. CSUB checks each input to determine, to the best of its
ability, if the information you have entered is correct and is
the information that the application program is requesting.

CSUB is not infallible and cannot catch every mistake a user can
make. However, many of the common mistakes can be trapped and
"thrown away" by CSUB so that no harm is done to the programs or
data. When an answer is thrown away-, you will be given another
chance to answer correctly.

Certain safety features have been written into the CSUB program
to reduce the possibility of errors. The computer will prompt
you in entering your data. A "prompt" is a message that the
program displays telling you what the computer is looking for in
response to its message. You will be expected to enter some
information or answer a question each time a prompt is displayed.

Where information or data is demanded for program operation, CSUB
will not allow you to continue until you have entered that data.
When information is not essential, such as descriptions or com
ments, you may enter a space or carriage return for alpha-numeric
entries or a zero (0) for numeric entries and the program will
continue.

When your program is in operation, a white rectangular dot,
underline, or some other marker called the CURSOR, will appear on
.the screen. The cursor indicates where you are in the pro gr am' s
operation at any given time. Each time you press a key the
letter associated with that key will appear at the cursor posi
tion and the cursor will be advanced one position.

The cursor will appear at the beginning of a block of characters,
ranging in number from 1 to 79, called PROMPT CHARACTERS. The
CSUB program is so designed that when the prompt character field
is filled, the cursor will move automatically to the next block
where data are to be inserted. If the prompt character field is
not filled completely by your response, simply press RETURN and
the cursor will move automatically to the next position.

COPYRIGHT 1981 - 81 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI 10-USING CSUB

Typing errors within a block of prompt characters can always be
corrected by using the back space key (Control H if your CRT
doesn't have a back space key) to back the cursor to the incor
rect character where it can be corrected by typing the correct
letter over the incorrect one. Some versions of CSUB have a
complete line editor that allow the insertion and deletion of
characters within the prompt characters block. See Section 10.2
for more information on the line editor.

Pressing the ESCape key will return the cursor to the previous
block during an input, or if at the beginning of a program to the
Main Menu. If your CRT has no ESCape key, a "Control B" command
(simultaneously pressing the CTRL and "B" keys) may be substi
tuted for the ESCape key. (Some CRTs may use special function
keys for the purpose of backing up.) ESCape may be considered to
be, in many cases, a "back-up key". Pressing the Escape key will
be represented in this manual by "ESC".

When entering numeric values, only the characters "-" and "." can
be used. Unfilled spaces have no effect on the value of the
number entered. If you entered 345.00 into a display field
containing eight dollar signs, the screen would appear as follows
before you make your entry:

$$$$$$$$

and as follows after your entry, before you press the RETURN key:

345.00$$

Once you press the return key to tell the program to "take" the
amount, the screen would appear as follows:

$345.00

PLEASE NOTE the difference between the small letter "l" and the
number "l" and the capital letter "O" and the digit "0" (zero).
The computer makes a distinction between these characters and
they cannot be interchanged.

A few prompts will request a reply that must be entered in ALL
.CAPITAL LETTERS, i.e.:

Enter Password (PASS)
or,
Y=Yes, N=No.

You must abide the computer's requests. When the computer calls
for numerical data, only numbers can be entered and these must
be within the particular range of that part of the program, or
the computer will reject the entry and notify you of the input
error.

COPYRIGHT 1981 - 82 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI 10-USING CSUB

The prompt characters may be examined to determine what kind of
input is being requested. The following table demonstrates the
common prompt characters and their meanings:

%

$

*

A number is to be input that represents a percentage.

A number is to be input that represents a dollar value.

A number is to be input.

Any character on the keyboard is acceptable.

Dates represent a special type of data to be entered. The format
for a date input will always appear as follows:

MM/DD/YY

MM represents a two digit month entry, DD represents a two digit
day entry, and YY represents a two digit year entry. Any dates
that have only one digit possible will advance automatically to
the next field within the date input. For example, if you enter
a 3 for the month of March, CSUB will know that there are no
months that have a value of 30 or more and the program will
automatically advance the cursor to the day section.

The cursor can be "backed up" from one field within the date
input to the previous field by pressing the ESCape key. If the
cursor is already on the month field (MM), pressing the Escape
key will cause the cursor to jump to the last logical input.

Some programs will require a response to the question, "Correct
Program?" You must respond according to the directions given by
the computer before you can proceed. Responses can range from
Y or N to l=Yes and 0=No. You must follow the computer's instruc
tions.

Basically, a Yes response will permit you to continue in that
program. A No response, in the menu programs, will return you to
the Main Menu. If the prompt is "l=Printer, 0=CRT," pressing "l"
will activate the printer, if it is turned on and is on line. A
."0" response will display the information on the screen.

In the File Maintenance (FM) programs there are generally three
options:

Enter l=Add, 2=Change, 3=Delete

Option 1 allows you to enter a new record. Option 2 allows you
to make changes in any field in the record except the field that
is used to "look up" the record (index). Option 3 allows you to
delete the entire record. Remember not to delete a record unless
it is no longer needed and there are no valid data in the record.

COPYRIGHT 1981 - 83 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI 10-USING CSUB

Your terminal keyboard is similar to the keyboard of an electric
typewriter. The touch is set at the factory and cannot be adjust
ed. Only the appropriate pressure is required. You do not have to
"hit" a key for a response. Pressing a key rapidly two or more
times, either as a nervous habit or in agitation, may result in
the computer "scolding" you for giving it an improper command or
of entering too many characters into your response.

10.2 CSUB Line Editor

Most versions of CSUB contain a built in line editor that allows
the user to edit any alpha-numeric entry. The line editor is
deleted from some versions of CSUB in order to recover more
internal memory for use by the application program. All other
versions of CSUB incorporate the line editor.

Upon selecting any alpha-numeric field (the prompt character is
an asterisk), the contents of the field can be edited by pressing
control N (AN). This action places CSUB in the edit mode. Once
in the edit mode, the editing control characters become
operational.

The following is a list of the editor commands of CSUB:

-N Enter the edit mode.
AZ Erase the character at the cursor position.
AA Move the cursor one character to the right.
AY Make a space to insert one character.
-G Terminate the edit mode.
AB Back out of the current input and return to the last

previous input or program.

To insert a character or characters into a field, move the cursor
to the place where you want the character inserted (AA moves the
cursor to the right and backspace moves the cursor to the left).
Type a AY for each character to be inserted. Each time the AY is
typed, the characters in the field to the right of the cursor
will move over one position and a space will be inserted at the
cursor position •

. Any character within the field may be changed by simply position
ing the cursor over the character and typing the correct charac
ter. As characters are inserted, all characters to the right of
the insert position are moved to the right. The last character
on the right hand side of the field is "dropped" off the end of
the 1 ine.

To back up (move to the left) one character, use the backspace
key, or ~H, or AQ. These codes cause the cursor to back up one
space without destroying any information.

COPYRIGHT 1981 - 84 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI 10-USING CSUB

The ~z key is used to delete a character. To delete a character,
position the cursor over the character and type AZ. The charac
ter will be deleted and all characters to the right of the char
acter deleted will be moved to the left one space to fill in the
space left by the deleted character.

10.3 Error Messages and Bulletins

Although there are several types of bulletins, they all fall into
one general class. There are three types of error messages,
including: CSUB Non-fatal, CSUB Fatal, and baZic Fatal. When
bulletins or CSUB Non-fatal errors occur, no harm is done to
programs or data. When either of the fatal errors occur, a
programmer should be consulted to determine the cause of the
error.

Sometimes the computer will display a message on the screen to
the user. A message can be either an error or notification of a
computer process. An error message is flashed three or four
times across the screen. Bulletins generally remain displayed
until the process is complete.

10.3.1 Process Bulletins

The first type of message is the notification of a process.
These messages are printed only once and remain on the screen
until the process is completed at which time they disappear
automatically. Be patient and wait for the process to finish
before attempting to type on the keyboard. The computer will
usually ignore any keystrokes that occur during these messages.
Examples of these types of messages appear below:

File Maintenance Program Loading Main Menu
Computer is Printing--Do Not Interrupt

10.3.2 CSUB Non-fatal

This type of error message occurs normally during the course of
running an application program. When these errors occur there is
no cause for alarm. These errors indicate that you have made

. some mistake in your entry, but CSUB has discovered the error and
rejected your entry. Continue by determining what mistake you
made and trying your entry again.

The meanings of several CSUB Non-fatal error messages are given
below:

OUT OF RANGE

This error occurs when you enter data out of the range limit
of the particular input. If a menu selection has only 5 op
tions and you enter a 6 in response to the prompt o·f nEnter
Option", this message will occur.

COPYRIGHT·l981 - 85 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI 10-USING CSUB

NOTH ING ENTERED

This error occurs when you do not make an entry but you
press the return key, indicating to the computer that you
are through with the entry.

YN ONLY

This error occurs when you type in an incorrect entry. If
the computer is expecting a "Y" or "N" entry in response to
a prompt of "Enter Y for Yes or N for No", and any other
entry is made, this message will result. This message can
contain any combination of letters.

RECORD NOT FOUND

This message can be displayed in many situations. It gener
ally means you have typed the index (account number, etc.)
incorrectly. Normally you will have a chance to re-enter
the information that was entered incorrectly.

DUPLICATE RECORD NAME or
DUPLICATE ENTRIES NOT ALLOWED

These error messages occur when you are trying to make a new
entry into a file, but a record of the same name or account
number already exists. Try again with a different account
number or name.

FILE ERROR

This error can be caused by many different situations. It
usually indicates an error in a disk file. Check your
diskette and make sure it is not write protected.

RECORD DELETED
RECORD CREATED

These are not errors but are displayed in a manner similar
to error messages. These messages occur when deleting or
creating records in key-access files.

19.3.3 CSUB Fatal

These errors are potentially very damaging although not necessar
ily so. When one of these errors occurs it means that CSUB has
detected an internal error which indicates that something has
gone wrong in the program. Occurrences of these errors generally
warrant the attention of a programmer as there is usually nothing
the end user can do to correct the situation.

COPYRIGHT 1981 - 86 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI 10-USING CSUB

Examples of CSUB Fatal errors follow:

FILE IS FULL

When this error occurs it is time to call your programmer.
This error means that your files were not created large
enough for the data you have to store. A programmer is
needed to "fix" this error. Sometimes it is possible to
delete entries to regain extra file space.

The following is a list of other errors that can occur:

B$ to spaces initially
Check Disk Drives
Hard Disk Error
File Not Found
Incorrect File Type
Key File Not Found
Key File Type Incorrect
File Name Too Long
Can't Write Beyond Endmark
AC Use During XXXX File Use
baZic error XX
Type error in XXX CK for C9 precision
File Length Exceeded
Blank Index String
Index Too Big

10.3.4 baZic Fatal

The occurrence of these errors means that CSUB has failed to
catch and handle properly an error that has occurred. The pro
grammer should be called when any of these errors occur in a
program. These errors will be characterized by the baZic prompt
"READY··, preceded by one of the following baZic errors:

ARG
DIMENSION
OUT OF BOUNDS
TYPE
FORMAT
LINE NUMBER
FILE
HARD DISK
DIVIDE BY ZERO
SYNTAX
READ
INPUT
ARG MISMATCH
NUMERIC OV
STOP IN LINE XX
LENGTH
CONTINUE
CONTROL STACK
DOUBLE DEF

COPYRIGHT 1981· - 87 - MICRO MIKE'S, INC. 01/03

CommonSUBroutines VI

FUNCTION
ILLEGAL DIRECT
INTERNAL STACK OV
MEMORY FULL
MISSING NEXT
NO PROGRAM
TOO LARGE OR NO PROGRAM

COPYRIGHT 1981 - 88 -

10-USING CSUB

MICRO MIKE'S, INC. 01/03

.·

Common SUBroutines VI APPENDIX A

BONES Listing

Lines that are more than 66 columns in the program listing are
continued on the next line without a line number in this
APPENDIX.

1000 REM BONES *** SINGLE KEY--KEYED ACCESS FILE
MAINTENANCE DEMO ***

1010REM DIMENSION VARIABLES NEEDED
1020 DIMB$(75+1035)\REM STRING VARIABLES AND MASK
1030 DIM D3$(30) ,D5$(30) ,D7$(30)
1040REM FILE NAME DEFINITIONS AND DESCRIPTIONS
1050 D2$="BONE"\REM DATA FILE NAME
1060 D3$="K"\REM KEY FILE NAME
1070 D4$="BONES"\REM PROGRAM NAME
1080 D6$="MENU"\REM NAME OF CALLING PROGRAM
1090 D5$="GENERAL PURPOSE FILE MAINTENANCE"\REM DESCRIPTIVE PGM

NAME
1100 D7$="SYSTEM MENU"\REM DESCRIPTIVE NAME OF CALLING PROGRAM
1110REM B$ AND B() DELIMITERS
1120 D3=1\REM BEGINNING POSITION OF INDEX IN B$
1130 D4=4\REM ENDING POSITION OF INDEX IN B$
1140 D8=76\REM STARTING POSITION OF MASK IN B$
1150 D9=1\REM NUMBER OF MASK
1160 D6=1\REM POSITION IN B$ TO READ IN STRING DATA
1170 D7=1\REM POSITION IN B() TO READ IN NUMERIC DATA
llt!0 D5=10\REM # FIELDS IN EACH RECORD
1190REM DRIVE # SPECIFICATIONS
1200 D=l\REM PROGRAM DRIVE #
1210 Dl=l\REM DATA DRIVE #
1220REM MISC DEFINITIONS
1230 P=l\REM PRINT DEVICE
1240 Fl=20\REM NUMBER OF RECORD TO PRINT ON ONE PAGE
1250 F2=1\REM PAGE COUNTER SET TO ONE
1260 C$="0A"\REM ACCEPTABLE ANSWERS TO FNF PROMPT 6
1270 G=FNG(D4$+"&",D,D8,0,l)\REM READ MASK INTO B$ STARTING AT D8
1280 IF G>0 THEN 1300\GOSUB 55000\GOTO 1710\REM IF ERROR HAS

OCCURED THEN END
1290REM START OF PROGRAM
1300 CLS\X=FNM(D8,D9)\REM DISPLAY MASK
1310X=FNF(l)\REM DO lST PROMPT
1320 IF X=2 THEN 1710\REM CHECK FOR CONTROL B (IF AB THEN END)
1330 ON B(0) GOTO 1340,1500,1610,1720,1850\REM l=ADD,2=INQ,3=DEL,

4=REN ,5=PRT
1340 REM ADD A RECORD
1350 X=FNE(l)\IF X=2 THEN 1300\REM GET INDEX
1360 H=FNH(D2$,Dl+.3,B$(D3,D4),"",D3$)\REM CALL FNH TO CREATE A

NEW INDEX
1370 IF H>0 THEN 1390\IF H=-7 THEN 1380\GOSUB 55200\GOTO 1300\REM

CH ECK ERROR -
131::!0 X=FNC("INDEX IN USE. TRY ANOTHER.")\GOTO 1340

COPYRIGHT 1981 - 89 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI APPENDIX A

1390 FOR N=2 TO D5\REM FOR N=2 TO NUMBER OF FIELDS
1400 X=FNE(N)\IF X<>2 THEN 1410\N=N-l\IF N=l THEN EXIT 1300

ELSE 1400
1410 NEXT N
1420 X=FNF(i)\REM CALL 2ND PROMPT AND INPUT
1430 IF X=2 THEN 1300\REM BACK OUT OF CHANGE SECTION
1440 IF B(0)=0 THEN 1480\REM RECORD DATA
1450 X=FNE(B(0)+1)\REM INPUT ON SELECTED FIELD
1460 IF X=2 THEN 1420\REM BACK OUT OF INPUT
1470 GOTO 1420
1480 G=FNG(D2$,Dl+.1,D6,D7,H)\REM NO ERROR SO CALL FNG TO WRITE

RECORD
1490 I.I:' G>0 THEN 1300\GOSUB 55000\GOTO 1300\REM CHECK FOR ERROR
1500 REM CHANGE OR INQUIRE
1510 GOSUB 2160\REM GET RECORD
1520 IF X=2 THEN 1300\REM AB CHECK
1530 X=FNF(2)\REM DO 2ND PROMPT & INPUT
1540 IF X=2 THEN 1500\REM AB CHECK
1550 IF B(0)=0 THEN 1590\REM CHECK FOR 0 TO RECORD
1560 X=FNE(B(0)+1)\REM DO INPUT ON SELECTED FIELD
15/0 IF X=2 THEN 1530\REM AB CHECK
1580 GOTO 1530\REM GO DO 2ND PROMPT AGAIN
1590 G=FNG(D2$,Dl+.l,D6,D7,H)\REM WRITE INFO BACK INTO FILE
1600 IF G>0 THEN 1300\GOSUB 55000\GOTO 1300\REM ERROR CHECK & END
1610 REM DELETE-DO 3RD INPUT
1620·GOSUB 2160\REM GET RECORD
1630 IF X=2 THEN 1300\REM AB CHECK
1640 X=FNF(F)\REM DO 4TH PROMPT
16~0 IF B$(D8-3,D8-l)="DEL" THEN 1660\X=FNC("RECORD NOT DELETED")

\GOT01300
1660 H=FNH(D2$,Dl+.2,B$(D3,D4),"",D3$)\REM DELETE INDEX & RECOVER

KEY
1670 I.I:' H=0 THEN 1680\GOSUB 55200\GOTO 1300\REM DO ERROR CHECK
1680 G=FNG(D2$,Dl+.l,D6,D7,H)\REM WRITE INFO BACK INTO FILE
1690 IF G>0 THEN 1300\GOSUB 55000\GOTO 1300\REM ERROR CHECK & END
1700 X=FNC("DISK ERROR HAS OCCURED--PROGRAM ABORTING!")
1710 X=FNX(D5$,D7$,D6$,D)
1720 REM RENAME THE INEX
1730 GOSUB 2160\REM GET RECORD
1740 IF X=2 THEN 1300
1750 D8$=B$(D3,D4)\REM SAVE OLD INDEX IN D8$
1760 X=FNF(5)\REM NEW INDEX NAME
1770 IF X=2 THEN 1300
1780 REM RENAME AN INDEX
1790 H=FNH(D2$,Dl+.4,B$(D3,D4) ,D8$,D3$)\REM CALL FNH TO RENAME

INDEX
1800 IF H>0 THEN 1810\GOSUB 55200\GOTO 1700\REM ERROR CONDITION
1810 G=FNG(D2$,Dl+.l,D6,D7,H)\REM WRITE INFO BACK INTO FILE
1820 IF G>0 THEN 1830\GOSUB 55000\GOTO 1300\REM ERROR CHECK
1830 X=FNC("INDEX HAS BEEN CHANGED FROM "+D8$+" TO "+B$(D3,D4))
1840 GOTO 1300
1850 REM PRINT SECTION
1860 X=FNF(b)\REM PRINT ONE RECORD OR ALL
1870 IF X=2 THEN 1300
1880 ON B(0)+1 GOTO 1890,1950\REM Goro PRINT ONE, PRINT ALL

COPYRIGHT 1981 - 90 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI

1890 GOSUB 2160\REM GET RECORD
1900 IF X=2 THEN 1860
1910 GOSUB 2310\REM PRINT THE HEADING
1920 GOSUB 2250\REM PRINT THE RECORD
1930 !#P,Zl$\REM OUTPUT A FORM FEED TO PRINTER
1940 GOTO 1300

APPENDIX A

1950 D9$=STR$(Dl)\D9$(1,l)=","\REM CONVERT DRIVE # TO STRING
1960 OPEN#2,D2$+D3$+D9$\REM OPEN THE KEYFILE
1970 READ #2,Nl,N2,N3\REM READ THE lST THREE NUMERICS
1980 Gl=FNGl(D2$,Dl,7)\REM OPEN MAIN FILE THROUGH CHANNEL NUMBER 7
1990 GOSUB 2310\REM PRINT HEADING
2000 FOR N=l TO N2\REM N2 EQUALS NUMBER OF RECORDS
2010 READ #2,N$,N3\REM READ THE INDEX AND RECORD NUMBER
2020 G=FNG(D2$,Dl,D6,D7,N3+.7)\REM READ A RECORD FROM MAIN FILE
2030 IF G>0 THEN 2040\GOSUB 55000\GOTO 1850\REM CHECK FOR ERROR
2040 RESTORE 51000\X=FND(D5)\REM DISPLAY ON CRT
2050 GOSUB 2250\REM PRINT RECORD
2060 IF F<Fl THEN 2110\REM PRINT RECORD IF MORE WILL FIT ON PAGE
2070 GOSUB 2310\REM PRINT HEADING
2080 !#P,Zl$\REM OUTPUT A FORM FEED TO PRINTER
2090 F=0\REM ZERO RECORD COUNTER
2100 F2=F2+1\REM INCREMENT PAGE COUNTER
2110 NEXT N
2120 Gl=FNGllD2$,Dl+.l,7}\REM CLOSE FILE
2130 CLOSE#2
2140 !#P,Zl$\REM OUTPUT FORM FEED TO PRINTER
2150 GOTO 1300
2160 REH SECTION TO RECALL A RECORD
2170 X=FNF(3)\REM ENTER INDEX
2180 IF X=2 THEN RE'IURN\REM ~B CHECK
2190 H=FNH(D2$,Dl,B$(D3,D4),"",D3$)\REM CALL FNH TO GET KEY
2200 IF H>0 THEN 2210\GOSUB 55200\X=2\GOTO 2240\REM CHECK FOR

ERROR
2210 G=FNG(D2$,Dl,D6,D7,H)\REM READ A RECORD FROM MAIN FILE
2220 IF G>0 THEN 2230\GOSUB 55000\GOTO 1700\REM CHECK FOR ERROR
2230 RESTORE 51000\X=FND(D5)\REM DISPLAY ITEMS
2240 RETURN
2250 REM SUBROUTINE TO PRINT ONE RECORD
2 2 6 0 ! # p I B $ (1 I 4) I TAB (7) I B $ (2 5 , 4 0) I TAB (3 0) , % $ CAl 5 F2 , B (2) I

22/0 !#P,TAB(46) ,%$CA15F2,B(3) ,TAB(64) ,%6F3,B(4) ,TAB(71) ,FND$(B(5))
2280 !#P
2290 F=F+l
2300 RETURN
2310 REM SUBROUTINE TO PRINT HEADING
2320 !#P\!#P
2330 !#P,TAB(33) ,"TESTING COMPANY"
2340 !iP
2350 liP,TAB(37) ,"PAGE",F2
2360 l iP\liP
2370 !#P,"INDEX LEFT JUSTIFIED STRING POSITIVE DOLLAR NEGATIVE

DOLLAR" I

23H0 liP," PERCENT DATE"
23~0 FOR X=l TO 78\liP,"-",\NEXT X\!iP,"-"\REM PRINT SEPARATOR
2400 liP
2410 RETURN

COPYRIGHT 1981 - 91 - MICRO MIKE'S, INC. 01/03

Common SUBroutines VI APPENDIX A

50000 DATAl
50010 DATA"ENTER l=ADD, 2=INQUIRE OR CHANGE, 3=DELETE, 4=RENAME

INDEX, 5=PRINT"
50020 DATA.35,1,4,l,5,0
50030 DATAl,"ENTER FIELD NUMBER TO CHANGE (0 TO RECORD)"
50040 DATA.35,1,4,0,9,0
50050 DATA2,"ENTER INDEX"
50060 DATA.42,4,0,1,4,0
50070 DATA2,"ENTER DELETE CODE (DEL)"
50080 DATA.42,3,0,73,75,0
50090 DATA2,"ENTER THE NEW INDEX NAME"
50100 DATA.42,4,0,1,4,0
50110 DATA3,"PRINT O)NE OR A)LL
50120 DATA.42,1,0,l,2,0
51000 DATA2,7.42,18,4,0,l,4,0\REM INDEX
51010 DATA2,12.42,32,20,0,5,24,0\REM STRING RIGHT J,USTIFIED
51020 DATA2,13.42,32,20,0,25,44,l\REM STRING LEFT JUSTIFIED
51030 DATA2,14.42,32,20,0,45,64,2\REM STRING CENTERED
51040 DATAl,19.35,34,8,10,l,99999999,l\REM POSITIVE NUMERIC
51050 DATAl,20.35,34,ll,l,l,9999999.99,2\REM POSITIVE DOLLAR
51060 DATAl,21.36,34,ll,1,-9999999.99,-l,3\REM NEGATIVE DOLLAR
51070 DATAl,22.37,34,6,2,-9.999,99.999,4\REM PERCENT
51080 DATA4,7,45,0,0,0,0,5\REM DATE AS NUMERIC
51090 DATA4,8,45,0,0,65,72,0\REM DATE AS STRING
550000NABS(G)GOT055010,55020,55020,55010,55010,55010,55010,55010,

5501·0, '55010
55010X=FNC ("PROGRAM MALFUNCTION--CALL YOUR PROGRAMMER") \RE'IURN
55020X=FNC(-"CHECK DRIVES FOR CLOSED DOOR AND CORRECT DISKETTE")

\REW RN
552000NABS(H)GOT055010,55010,55010,55010,55010,55010,55220,55220,

55010,55020
55220X=FNC("TRY ENTRY AGAIN")\RE'IURN

COPYRIGHT 1981 - 92 - MICRO MIKE'S, INC. 01/03

i '

Common SUBroutines VI
APPENDIX B

Sample Work Sheets

The five work sheets are provided to aid the programmer in writ
ing CSUB programs. The work sheets are explained in Section 8
(WRITING CSUB PROGRAMS). These work sheets may be reproduced by
any programmer without prior written consent by Micro Mike's,

Inc.

COPYRIGHT 1981 - 93 -
MICRO MIKE'S, INC. 01/03

