
•.. .,

. -~

.:..:.;

1:-i
; ·!

i
I .
L

LI

• .

baZic Operator's Manual

Release II

developed for use with the

CP/M,CR)

Northstar™ DOS

and

MicroDozCR)

Operating Systems

Revisions 05/04
January 5. 1983

developed by

Micro Mike's, Inc.
814 S Lamar

Amarillo, TX 79106 USA

telephone: 806-372-3633

making technology uncomplicated ••• for PeopleSM

Copyright 1980, 1981, 1982 by Micro Mike's, Inc.

Unauthorized duplication and/or transfer of this software or
manual is illegal.

i
': ·j

L;

~--....

r.

I
L ..

r 1
L_

i' l_

COPYRIGHT NOTICE

Copyright (c) 1982 by Micro Mike's, Inc. All rights reserved.
No part of this publication or associated programs may be
reproduced, transmitted, transcribed, stored in a retrieval
system, or translated into any language or computer language, in
any form or by any means, electronic, mechanical, magnetic,
optical, chemical, manual or otherwise, without the prior written
permission of Micro Mike's, Inc., 3015 Plains Blvd., Amarillo,
Texas 79102.

This program package is licensed for use on one (1) CPU.

DI SCI.AIMER

Micro Mike's, Inc. makes no representation or warranties with
respect to the contents hereof and specifically disclaims any
implied war ran ties of merchantability or fitness for a,ny
particular purpose. Further, Micro Mike's, Inc. reserves the
right to revise this publication and to make changes from time to
time in the content hereof without obligation of Micro Mike's,
Inc. to notify any persons of such revision or changes.

TRADEMARK NOTICES

This document will mention several names and products which have
been granted trademarks. It is the intent of Micro Mike's, Inc.
to acknowledge and respect the trademarks of these companies so
that all the rights and privileges of these companies are
preserved.

baZic(R) and Kicronoz(R) are registered trademarks of Micro
Mike's, Inc.

CP/M(R) and MP/M(R) are registered trademarks of Digital Research
Corp.

zs0(R) is a registered trademark of Zilog, Incorporated.

;. :

; ~.

r
L

I .

I
I

I
t.

L
8 .

.

baZic86 Notes Release I 01/01

CLS and I@

For CLS and I@ to function properly, an ASCII file called
CONFIG.SYS must reside in the root directory on the boot
disk. This file should contain the following:

DEVICE = ANSI.SYS

~he file ANSI.SYS must also reside in the root directory of
the boot disk. The ANSI.SYS file is found normally on the
MS-DOS (or PC-DOS) boot disk or root directory of the hard
disk.

For RTNX multi-user systems, an ASCII file called CONFIG.SLV
must reside in the root directory of the boot disk. It
should contain the following:

DEVICE = ANSI.SYS

!CHR$(27)+ 11 [2J 11

will also clear the screen.

BYE
BYE is now both a statement and command.

BREAK <numeric expression>
If the value of the expression is O Control C is disabled;
otherwise Control C is enabled. BREAK is both a statement
and a command. This release of baZic86 runs programs
considerably faster with Control C disabled.

DESTROY <file name> [,<file type>]
If file type is not specified an extension of .003 is
assummed.

CHOIR <string expression>
Changes the DOS current directory of the specified or
default drive.

X =CALL (<memory address> [,<argument>])
Memory address must be a numeric expression with a decimal
value in the range 0 to 1,048,575. The optional argument
must be a numeric expression with a value in the range 0 to
4,294,~36,225. It is passed as a 32-bit binary number with
the high word in dx and the low word in ax. The return
value is assumed to be a 32-bit binary number with the high
word in dx and the low word in ax. The ds, es ss, and sp
must be restored to the entry condition before returning.
MUST USE A FAR RETURN.

Copyright 1985 Page 1 · Micro Mike's, Inc.

.
. .

baZic86 Notes
Release I 01/01

ERRS ET
New error codes have been added to give more information on

CPMFN

critical errors. For disk errors 20 is added to the error
code returned by DOS. For character device errors 40 is
added to the error code returned by DOS.

The CPMFN statement/command is not functional under baZic86.

DOSCMD
Tne DUSCMD statement/command of the MicroDoZ version of
baZic is not functional under baZic86.

DOS critical error codes (INT 24)

0 Attempt to write on write-protected diskette
1 Unknown unit
2 Drive not ready
3 Unknown command
4 Data error (CRC)
5· Bad request structure length
6 Seek error
7 Unknown media type
8 Sector not found
9 Printer out of paper

10 Write fault
11 Read fault
12 General failure

For example, an error code of 22 indicates drive not ready.
An error code of 49 indicates printer out of paper.

Copyright 1985 Page 2 Micro Mike's, Inc.·

r··
!

I
!

r·

I

f:
D '

.

[

!"""\-"

' L

[

L
!
['

c
L
[

[

bazic II

1.

2.

3.

TABLE OF CONTENTS

TABLE OF CONTENTS

INTRODUCTION
1.1 Definition of Mnemonics
1.2 Definition of Terms

CONFIGURING baZic .
2.1 Configuring baZic for MicroDoZ
2.2 Configuring bazic for CP/M

Set Upper Memory Limit, Turnkey Command
CRT Configuration
Adapting baZic for MP/M I
Adapting baZic for MP/M II •••

2.2.1
2.2.2
2.2.3
2.2.5
2.2.6 baZic File Name Extensions • • • • • ••

2.3 Configuring baZic for Northstar DOS
2.4 Other CRTs • • • • • • ••

DIRECT COMMANDS
3.1 Programming Commands

3.1.1 List a program (LIST)
3.1.2 Delete Line Numbers (DEL)
3.1.3 Scratch a Program (SCR)
3.1.4 Renumber a Program (REN)
3.1.5 Automatic Line Numbering (AUTO)
3.1.6 Program Size (PSIZE)
3.1.7 Set Memory Upper Limits (MEMS ET)

3.2 Disk Commands
3.2.1 Catalog a Disk (CAT)
3.2.2 save a Program (SAVE)
3.2.3 Save a New Program (NSAVE)
3.2.4 Load a Program (LOAD)
3.2.5 Bye to Disk Operating System (BYE) . . .

3.3 Execution Commands
3.3.1 Run a Program (RUN)
3.3.2 Continue a Program (CONT) . . .

1

2
3

7

7
7

7
8

10
11
11

11
13

15

15

15
16
16
17
17
18
18

19

19
20
21
21
22

22

22
23

COPYRIGHT 1981 - i - MICRO MIKE'S, INC. 05/04

baZic II

4.

TABLE OF CONTENTS

STATEMENTS
4.1 Program Data Statements

4.2

4.1.l
4.1.2
4.1.3

Data Constants (DATA) • • ••
Read Data Constants (READ) • •
Restore Data Pointer (RESTORE)

Input and output Statements

4.2.1 Print a Variable (PRINT)

4.2.1.1
4.2.1.2

Formatted Printing • . •
Print at (PRINT@ and l@)

4.2.2
4.2.3
4.2.4

Input a variable (INPUT) ••••••
Input a variable (INPUTl) •••
Output a Byte (OUT) • • ••••

4.3 Branching Statements
4.3.1
4.3.2
4.3.3
4.3.4
4.3.5
4 .-3. 6
4.3.7

Go to a Line Number (GOTO) • • • • • ••
Go Subroutine (GOSUB) • • • • •
Return from Subroutine (RETURN) .•
On Value Go to a Line Number (ON GOTO)
On Value Go Subroutine (ON GOSUB) • • •
IF THEN ELSE • • • • • • • • • • • • • •
FOR NEXT STEP EXIT • • • • • • • • •

4.4 File Statements

4.4.1
4.4.2
4.4.3
4.4.4
4.4.5
4.4.6
4.4.7
4.4.8
4.4.9
4.4.10

Create a File (CREATE) • • •
Destroy a File (DESTROY)
Open a Channel (OPEN)

.
Close a Channel (CLOSE) ••••••
Read a File variable (READ)
Write a File Variable (Write) •••••
No End Mark (NO ENDMARK) • • • • • •
Append a Program (APPEND) • • •••
Chain to a Program (CHAIN) •••
DOS Command (DOSCMD) • • • • • • • •

4.5 Miscellaneous Statements

4.5.1
4.5.2
4.5.3
4.5.4
4.5.5
4.5.6
4.5.7
4.5.8
4.5.9

Dimension a Variable (DIM) •••
Remark a Comment (REM)
Assign a variable (LET)
CLear the Screen (CLS) •••••••••
Fill a Memory Location (FILL)
Set Error Trapping (ERRSET)
Line Length (LINE) •••••
Stop a Program (STOP) • • •

. . .

End a Program (END) ••••••••

25

25

25
26
27

27

27

28
30

31
32
32

32

32
33
34
34
34
35
36

37

38
38
39
40
41
41
42
42
43
43

44

44
45
45
46
46
47
47
48
48

COPYRIGHT 1981 - ii - -MICRO MIKE'S, INC._05/04

1 ··

R
I
I

[

[

L.

k~

[

c
l
\

l:

[

L
L!

l

~

1~~

L .

M .

l

bazic II

5.

6.

TABLE OF CONTENTS

BUILT-IN FUNCTIONS
5.1 Math Functions

5.2

5.3

5.1.l
5.1.2
5.1.3
5.1.4
5.1.5
5.1.6
5.1.7
5.1.8
5.1.9

String

5.2.l
5.2.2
5.2.3
5.2.4
5.2.5

Input

5.3.1
5.3.2
5.3.3
5.3.4

Absolute value (ABS)
Sign of a Number (SGN)
Integer Value (INT) . . .
Logarithmic Value (LOG)
Exponential Value (EXP) . . .
Square Root (SQRT) . . .
Sine (SIN)
Cosine (COS) . . .
Arctanget (ATN)
Functions
Length of a String (LEN) . .
Character String (CHR$)
ASCii Value (ASC)
Value (VAL)
String (STR$)

Functions
Input a Character String (INCHAR$)
Input a Byte (INP) •••
Input the Status {INSTAT)
Outs ta tus (OUTS TAT) • . • • • •

. ~ -
.
. . .
.
.

.
5.4 File Functions

5.4.1
5.4.2
5.4.3
5.4.4

Type
File
File
File

of File Pointer (TYP)
Type {FILE) • • • •
Size (FILESIZE)

.
Pointer Position (FILEPTR)

5.5 Miscellaneous Functions
5.5.1
5.5.2
5.5.3
5.5.4
5.5.5
5.5.6
5.5.7

Random (RND) •••••••••
Examine Memory (EXAM) .•••••••.
Free Memory (FREE) • • . • ••
Tabulate (TAB) • • • • • .
Call Machine Language (CALL) •.•
Address of a variable (ADDR) •••••
CPMFN Call Function (CP/M version Only)

OPERATORS
6.1
6.2
6.3
6.4

Arithmetic Operators
Relational Operators
Boolean Operators
Order of Evaluation

.

.
.

49

49

49
50
50
50
50
51
51
51
52

52

52
53
53
53
54

54

54
54
55
55

55

55
56
56
56

57

57
57
58
58
58
59
59

61

61
61
62
63

· COPYRIGHT ·19 81 - iii - MICRO MIKE'S, INC. 05/04

. ·~·--···------_..,_..-.---·-----

baZic II

7.

8.

9.

TABLE OF CONTENTS

USER-DEFINED FUNCTIONS
7.1
7.2
7.3

Define a Function (DEF) • • • • ••
Return from a Function (RETURN)
Function End (FNEND) ••••••••

ERROR MESSAGES . . .
8.1 Trappable Errors

8.1.1 ARGument (Error 1)
8.1.2 DIMENSION (Error 2)
8.1.3 OUT OF BOUNDS (Error 3)
8.1.4 TYPE (Error 4)
8.1.5 FORMAT (Error 5)
8.1.6 LINE NUMBER (Error 6)
8.1.7 FILE (Error 7)
8.1.8 HARD DISK (Error 8)
8.1.9 DIVIDE by ZERO (Error 9)
8.1.10 SYNTAX (Error 10)
8.1.11 READ (Error 11)
8.1.12 INPUT (Error 12)
8.1.13 ARGument MISMATCH (Error 13) . . .
8.1.14 NUMERIC overflow (Error 14) . . .
8.1.15 STOP/Control c (Error 15)
8.1.16 LENGTH (Error 16)

8.2 Non~trappable Errors
8.2.1
8.2.2
8.2.3
8.2.4
8.2.5
8.2.6
8.2.7
8.2.8
8.2.9
8.2.10

CONTINUE • • • • • • • • • • • •
CONTROL STACK • • • • • • • • • • • • •
DOUBLE DEFinition • • • • • • • • •
FUNCTION DEFinition
ILLEGAL DIRECT • • • • • • • • • •
INTERNAL STACK overflow
MEMORY FULL • • • • • • • • • • •
MISSING NEXT • • • • •
NO PROGRAM • • • • • • • • • • • • • •
TOO LARGE OR NO PROGRAM

MISCELLANEOUS TOPICS

9.1 Line Editor

9.1.1
9.1.2
9.1.3
9.1.4
9.1.5
9.1.6
9.1.7

Control G
Control N
Control A
Control Q
Control z
Control D
Control Y

.

.

65

66
66
66

67

67

67
68
68
70
71
71
72
73
73
73
75
75
75
75
75
76

76

76
76
76
77
77
77
77
77
77
77

79

79

80
80
80
81
81
81
81

·COPYRIGHT 1981 - iv - ·· MICRO MIKE'S, INC. 05/04

r
[

[

[

l
l~

[

L
L

·[

baZic II

HJ.

11.

12.

TABLE OF CONTENTS

9.2 Data Files •••
9.3 BASIC Differences

.
9.3.l
9.3.2
9.3.3

Strings • • • • • • •
IF THEN Evaluation
Miscellaneous

UTILITY PROGRAMS

10.l
10.2

SHOR TB
XREF

.

OPTIMIZING baZic PROGRAMS

PARTIAL SOURCE LISTING

12.1 MicroDoZbaZic Partial Source Listing
12.2 baZic for CP/M Partial Source Listing

APPENDIX

ASCII TABLE
OPCODE CHART

.

82
84

84
85
85

87

87
89

93

95

95
96

99
103

COPYRIGHT 1981 - v - MICRO MIKE'S, INC. 05/04

baZic II 1-INTRODUCTION

INTRODUCTION

baZic, one of the fastest BASIC interpreter languages available
for the 8-bit microprocessor, was written to utilize the full Z80
instruction set.

Originally developed to provide a Northstar-compatible BASIC
interpreter which allows execution of Northstar BASIC programs
w~th little or no modifications, versionT of Rel~ase II of bazic
will operate under Nor1;:hStar DOS, CP/M(R and Micro Mike's, Inc.
Disk Operating System (MicroDoZ.) All three versions are consid
ered separate products. With the addition of the MicroDoZ and
CP/M versions, baZic becomes highly transportable for software
developers.

Some of the advances of bazic over Northstar BASIC include much
faster execution of BASIC programs and increased power by the
addition of new statements and functions.

All Northstar features are supported through Release 5.2 of
Northstar BASIC. However, baZic will not run programs written
with BASIC 5 .2 which use the FILESIZE or FILEPTF. functions be
cause baZic· defines their associated operation codes (op codes)
differently ..

Additional bazic features include APPEND as an executable state
ment, ON GOSUB, additional print formatting capabilities, cursor
addressing, clear screen, INSTAT and OUTSTAT.

In the Microooz version, all MicroDoZ commands can be executed
from baZic as a statement or command.

References to Northstar BASIC in this manual will be made as
BASIC while references to Micro Mike's, Inc., Z80 BASIC will be
by its trade name, baZic.

Although baZic has several new features, it is upward-compatible
·with BASIC. Upward-compatible means that all programs written
under BASIC can be run under baZic with no modifications, except
in those few cases where programs use FILLS or CALLS to BASIC
locations which will be different or unnecessary under baZic.

Because baZic is written entirely in Z80 code and changes have
been made internally in the.way baZic handles information, there
are small external differences between BASIC and baZic that will
affect programs and programmers.

Other than the increased performance, the only external changes
result from the reassignment of operation codes for reserved

· words and the addition of new statements and functions.

COPYRIGHT 1981 - 1 - MICRO MIKE'S, INC. 05/04

baZic II 1-INTRODUCTION

Specifically, the direct commands no longer have an operation
code (op code) associated with them to allow the definition of
more statements. This change has no effect upon the way programs
operate but programmers will notice the change when reserved
words are encountered in REMark statements.

In many cases garbage will be substituted for occurrences of
reserved words in the REMark statements of programs written under
BASIC and LISTed under bazic. This problem has no solution
except to type the correct words back into the program using
bazic instead of BASIC.

The control stack has been relocated under bazic to allow the use
of Z80 block move instructions. The effects of this change are
that the first reference to variables in a baZic program may take
slightly more time than under BASIC, but all further operations
involving these variables will be much faster under bazic than
under BASIC.

The function look-up table has been expanded under baZic from 32
to 64 entries to allow the definition of more built-in functions.
This addition assures that baZic will not be soon obsolete and
that many new functions can be added in the future as they are
needed.

Because bazic has a new statement controlling cursor addressing,
the "at". sign (@) is no longer used to cancel a line while
editing a line of b~Zic code. Instead, the use of control N
(AN), as in BASIC, causes the line to be cancelled.

This manual is NOT designed to teach BASIC but rather to describe
the commands, statements, and function of bazic to those familiar
with programming in Northstar BASIC or other sophisticated
BASICs. If you do not know BASIC, please use one of the many
books on the market which teach BASIC before you try to use this
manual. (See the Beginner's Guide to baZic, Book I by Micro
Mike's, Inc.)

1.1 Definition of Mnemonics

To make the syntax examples of commands and statements easier to
recognize, several mnemonics are defined in this section. For
each command, statement, or function, the syntax will be given at
the beginning of the description, followed by the specific mean
ing of each argument passed to the commands, statements, and
functions. In most cases, examples will follow the description.

All arguments passed will be surrounded by the "less than/greater
than" (<>) symbol pair. Any argument with brackets ([]) sur
rounding the argument is an optional argument and need not be
included in any use of the command or statement.

A list of the mnemonics and their meanings follows:

COPYRIGHT 1981 - 2 - MICRO MIKE'S, INC. 05/04

r-·
! .

L
v,.
t-i

[

[

L
l
[

[

l
L
[

' I·.
I.

r·
l:

~
.

.
.

L -

bazic II .

LINE#
DEVICE#
DRIVE#
FILENAME
#EXPR
LOGEXPR
TYPEXPR
CHANNEL#

1-INTRODUCTION

baZic line number
Number of an input or output device
Number of a disk drive
The name of a file
A numeric expression
A logical expression
A type expression
A disk channel number

1.2 Definition of Terms

This section is designed to minimize ambiguity by defining the
numerous terms to be used throughout this documentation.

Arguments are values passed to commands, statements, and f unc
tions (both built-in and user-defined). The arguments for com
mands, statements, and functions will be different but are gener
ally similar in that the command, statement, or function will not
operate correctly unless these values are given. Some arguments
are optional and thus do not have to be passed. Arguments can
easily be recognized in the syntax example of each command,
statement, or function because they are enclosed by less than/
greater than signs (<>).

Bits are units of storage used by the computer. A bit is a
single yes/no response to an unambiguous question. Every opera
tion a computer performs can be reduced to a series.of true/false
situations that represent a bit or combination of bits. General
ly if a situition is true, the bit in question is a. one and if
the situation is false, the bit is zero.

Blocks are defined in this manual to be a unit for storing data
on disk files that is 256 bytes long. This convention was
initiated by Northstar in the pre-double density days and has re
mained despite the introduction of 512 (and greater) byte
sectors.

Bytes are units of storage used by the computer. A byte is eight
bits long and is generally equivalent to a single character.
Each character typed into a bazic program occupies one byte of
storage both in the internal memory and on disk unless the char
acter is part of a baZic reserved word (statement, function or
line number.) In the case of a reserved word (such as PRINT),
the entire word is converted to an operation code (op code) and
is stored as a .single byte. Line numbers are converted to a
three-byte code. The first byte signifies that this is a line
number. The second byte is the least significant byte of the
line number and the third is the most significant byte.

constants are data stored within a baZic pr_ogram that are "con
stant" and never change unless the program is changed. Constants
occur in DATA statements and can be used in all statements and
functions to signify a value which will not change. Good pro
gramming techniques dictate the use of as few constants in a
program as is possible.

COPYRIGHT 1981 - 3 - MICRO MIKE'S, INC. 05/04

bazic II I-INTRODUCTION

Current Program is defined as the program that is presently
residing in the internal Random Access Memory of the computer.
This program is different than the disk file programs (Type 2
files} in that the current program is lost if the computer's
power is turned off. The internal (current) program is the one
operated on by all direct commands. A program becomes the cur-

- rent program when it is LOADed from a disk or when the programmer
types a line number followed by any program statements while
creating a program.

Device Numbers are used to ref er to an input or output device
such as a printer or CRT. Eight.devices are supported by bazic
(0-7) except the CP/M version which supports three devices (0-2).
A number sign (#} always precedes a device number in a baZic
program. The device numbers are defined in the appropriate disk
operating system (MicroDoZ, CP/M or Northstar DOS.)

Drive Numbers are used to ref er to disk drives. As many as seven
drives are supported (1-7). If your system has a hard disk drive
and uses Micro Mike's, Inc. MDZ/OS or JOESHARE II, your hard disk
can be defined as virtually any number of "drives." However,
only seven drives can be "looked at" by baZic at any single
moment. Drives 1-7 correspond to CP/M Drives A-G.

File Channels are used by baZic when files are OPENed by a pro
gram to allow.the file to be referred to by a number only. Eight
channels can be defined (0-7}. An internal buffer is established
for each channel opened. ·

File Names can be any combination of letters, numbers, or special
symbols that uniquely define (name} a file. The file name must
be eight characters or less and must contain no commas or spaces.
File names for CP/M contain an optional decimal point followed by
a three character type extension (".003", ".002", etc.}.

File Type numbers are used to distinguish between different kinds
of files. File types may range from 0 to 63 under MicroDoZ.
Under CP/M the range is 0 to 127. The only types normally de
fined are: 1 for assembly language, 2 for a baZic program, and 3
for a baZic data file. Under CP/M, these conventions are re
tained as closely as possible by defining the type extension such
that: .001 is for assembly language, .002 is for a bazic program
and .003 is for a baZic data file.

I/O refers to the process of Inputting or Outputting information.
The CRTs and printers are the main devices that cause or accept
I/O but many other devices can perform these functions.

COPYRIGHT 1981 - 4 - MICRO MIKE'S, INC. 05/04

0

c
[

I : ..

[

[

L
I

L
l.
L

l

bazic II 1-INTRODUCTION

Legal will be used many times in different contexts. The overall
meaning of "legal" is "by the established rules." Legal may be
used in reference to line numbers (must be in the range of 0 to
65535, etc.), filenames (must have eight letters or fewer,) drive
number specifications (Drives 1-7), etc.

Line Numbers are used in a bazic program to indicate the· order of
processing. bazic programs are always executed from the lowest
to the highest line number unless a branching statement is en
countered. Line numbers must be positive integer values in the
range of 0 to 65535. Program statements or functions are as
signed to a specific line number and multiple statements are
allowed for each line number if they are separated by a back
slash (\).

Numeric Expressions are any combination of numeric constants,
numeric variables, array variables, subscripted array variables,
or numeric functions, enclosed in parentheses, joined together by
one or more arithmetic, logical, or relational operators in such
a way that the expression, as a whole, can be reduced to a single
numeric value when evaluated.

sectors can be any value ahd are hardware dependent. Double
density and quad capacity Northstar disk drives have 512 bytes
per sector while single density Northstar disk drives have 256
bytes per sector. All hard disk units supported by Micro Mike's,
Inc. are 512 bytes per sector. The user of an application pack
age should not .nqrmally need to know the sector size of the
equipment.

variables are· combinations of letters and numbers representing
data within a program. Legal variable nam.es are the letters of

_ _, the alphabet alternately followed by a number from 0 to 9.
String variable names are similar except a dollar sign ($) is

~ placed after the letter and number to show the variable is a
string variable. Arrays have an expression enclosed in paren
theses () immediately following the letter or number. Variables
can and do change their values many times during the execution of
a program. A numeric variables, a string, an array, a user
defined function can have the same name and not be related (e.g.
A9, A9$, A9(1) and FNA9(1).)

: .

1 ··

L
COPYRIGHT 1981 - 5 - MICRO MIKE'S, INC. 05/04

Ll
.. .
.

'·

bazic II 1-INTRODUCTION

This page left blank intentionally.

COPYRIGHT 1981 - 6 - MICRO MIKE'S, INC. 05/04

c
c
I
-~

··i
·'' d

[

[

L
l
[,

[

L
L
L

baZic II 2-CONFIGURING bazic

CONFIGURING baZic

Before configuring bazic for your system, the registration card
should be filled out and returned immediately to Micro Mike's,
Inc. A copy should be made of the master, using a gross copy
program supplied with the operating system. See your operating
system manual for instructions for copying diskettes.

The master diskette should be stored in a safe place. All up
dates will be supplied only with the return of the master
diskette to Micro Mike's, Inc., and only if the registration card
has been returned and that serial number is on file.

2.1 Configuring baZic for MicroDoZ

A configure program is delivered with MicroDoZbaZic which should
be run before attempting to use MicroDoZbaZic version. Consult
the Microooz manual for instructions. As delivered, MicroDoz
boots first to a copy program and then to a configure program.

2.2 Configuring bazic for CP/M

bazic for CP/M distributed on 5-1/4" Northstar disk is recorded
in Forma~ 16, or the standard CP/M 2.2 double density Lifeboat
format for NorthStai Horizon ~r Northstar Advantage.

bazic for CP/M distributed on 8" disk is recorded in a single
density, soft-sectored CP/M format, which virtually all machines

"' using 8" floppies and the CP/H operating system can read.

_

L

Make a copy of the bazic distribution disk and file the master
disk in a safe place. The copy of the disk should be write
enabled. Boot up CP/M 2.0 or a more recent version. The CP/M
operating system prompt will be displayed as follows:

A>

.2.2.1 Set Upper Memory Limit, Turnkey Command

bazic for CP/M, Release 05/04 and later, finds its own MEMSET
level at bootup time. Releases 03/03 and earlier require the
following MEMSET procedures:

In the following example, we will turnkey and set upper memory
limits for 10-digit software floating point baZic. We will load
10-digit software floating point baZic into memory, toggle on the
turnkey byte (271), enter a one-line turnkey program to be saved
as a part of bazic, set baZic upper memory limits for 56K CP/M,
exit baZic to CP/M and save the file "BAZIC10.COM," 54 blocks
long, on the disk to preserve these changes.

COPYRIGHT 1981 - 7 - MICRO MIKE'S, INC. 05/04

bazic II

Common MEMSET values for bazic for CP/M:

48K -- 42245
56K -- 50437

60K -- 54533
64K -- 58373

2-CONFIGURING bazic

The MEMSET value of bazic may be different for your hardware or
version of CP/M. You can use trial and error until you reach the
proper MEMSET level or you can enter the following (the under
lined responses are yours):

READY
J...EXAM(7)*256+EXAM(6)-l <CR>

The maximum MEMSET level should be printed on the screen. To set
the upper memory limits the syntax is as in the following example
(your response is underlined):

MEMSET 50437 ~

Either Sysgen the copy of the bazic disk or remove the CP/M boot
disk from Drive A and place the copy of the baZic disk in Drive A
and then do a warm boot (press CTRL and C keys simultaneously.)
Under some floppy disk systems, the disk in Logged Drive A must
be sysgened. The copy of the baZic distribution disk must be in
Drive A to continue with the configuration.

Following is an e~ample configuration of 10-digit software float
ing point bazic, 56K CP/M (you~ responses are underlined):

A>.:..C
A>BAZIC10 <CR>
READY
rn· 271.0 <CR>
READY
l...[CHAIN "MENU" <CR>
MEMSET 50437 <CR>
READY
]2ll <CR>
A>~ .5A. BAZIC10.COM <CR>
A>

2".2.2 CRT Configuration

bazic includes built-in cursor-addressing and clear screen com
mands/statements. If you want to run only existing Northstar
BASIC programs under baZic you do not need to use these features.
So that bazic users with a variety of CRTs can use these cursor
addressing and clear screen features, the bazic distribution disk
includes a CRT configuration program, "CRT.002." In the follow
ing example we will configure· HJ-digit software floating point
baZic for a SOROC IQ 120 terminal (your responses are
underlined):

COPYRIGHT 1981 - 8 - MICRO MIKE'S, INC. 05/04

r
I.:

[

[

[

[

l

l
l

l

L
u

baZic II

A>BAZIC10 ~
READY
L.QAO. QIT ~
READY
RUN~

2-Conf iguring baZic

The program "CRT.002" will be executed. You will now·see the
following on the screen:

THIS PROGRAM IS DESIGNED TO CONFIGURE BAZIC FOR A PARTICULAR CRT.
FOR THE PRINT@ AND THE CLS STATEMENTS TO WORK PROPERLY, BAZIC
MUST KNOW THE CURSOR-ADDRESSING PREFIX AND OFFSET FOR YOUR CRT AS
WELL AS THE CODES TO CLEAR THE SCREEN. THIS PROGRAM IS DESIGNED
TO CHANGE BAZIC FOR THE TERMINALS LISTED AND TO ALLOW CUSTOM
CHANGES IF YOU KNOW THE CODES FOR A CRT THAT IS NOT LISTED HERE.
SOME CRTS MAY REQUIRE REWRITING THE CURSOR ADDRESSING AND CLEAR
SCREEN ROUTINES. THIS PROGRAM CAN BE CHANGED SO THAT IT 'WRITES'
THE PROPER ROUTINE BY ADDING AN ENTRY TO THE TABLE OF DATA
STATEMENTS AT THE END OF THIS PROGRAM. THE FIRST FIELD IS THE
NUMBER OF PAIRS '!'HAT HAVE TO BE WRITTEN. EACH PAIR CONSISTS OF
THE VALUE TO BE WRITTEN AND THE NUMBER OF BYTES FROM THE
BEGINNING OF BAZIC OF WHERE THE BYTE IS TO BE WRITTEN.

THE BAZIC DISK MUST BE IN DRIVE ONE FOR THIS PROGRAM TO OPERATE.

PRESS RETURN TO CONTINUE

Press Return and the program will display a menu of 6 CRT options
and an "other" option.

l=ZENITH Z-19 OR HEATH WH-19
2=ADM-3A
3=INTERTEC INTERTUBE
4=HAZELTINE
S=SOROC
6=NORTHSTAR ADVA.J.~TAGE
?=DIGITAL VT-100
8=0THER

If your CRT is not one of those listed consult your CRT manual
for the values of your CRT and/or your programmer. We will, for
the purposes of this example, select 5 for SOROC.

Next you will see:

l= 8 DIGIT SOFTWARE FLOATING POINT BAZIC
2= HJ DIGIT SOFTWARE FLOATING POINT BAZIC
3= 12 DIGIT SOFTWARE FLOATING POINT BAZIC
4= 14 DIGIT SOFTWARE FLOATING POINT BAZIC
5= 8 DIGIT HARDWARE FLOATING POINT BAZIC
6= HI DIGIT HARDWARE FLOATING POINT BAZIC
7= 12 DIGIT HARDWARE FLOATING POINT BAZIC
8= 14 DIGIT HARDWARE FLOATING POINT BAZIC

ENTER NUMBER OF BAZIC TO BE CHANGED (0 TO END) 2

COPYRIGHT 1981 - 9 - MICRO MIKE'S, INC. 05/04

baZic II 2-Conf iguring baZic

We will select 2 for 10-digit software floating point baZic.
Hardware floating point baZic (those versions of baZic with an
"F" in the file name, e.g. BAZIC08F.COM) is for use with the
Northstar Floating Point Board.

Now you will see:

THIS LINE SHOULD BE AT THE TOP OF THE CRT AND THE REST OF THE
SCREEN SHOULD BE CLEAR. l=YES, 0=NO 1

Enter 1 if the above sentence is at the top of the screen and the
rest of the screen is clear.

At this point a series of loops (prolate cycloid or loop-de
loops) will appear on the screen. Below the loops the following
will be displayed on the screen:

THIS COMPLETES THE TEST. IF EVERYTHING IS OK THERE SHOULD
BE A DISTINCT PATTERN FROM THE PREVIOUS !@ STATEMENTS
ENTER l= EVERYTHING IS OK, 0= NOT OK

If everything is okay enter 1 and the next prompt will be:

READY

Configuration is now complete. To test the clear screen function
type (your response is underlined).:

READY
.c.LS~

The screen should clear and

READY

should appear at the top, left-hand corner of the screen.

2.2.3 Adapting baZic for MP/M I

T~e contiguration process is the same as for CP/M.

For baZic to function under the MP/M I operating system, you must
disable Control C. You can disable Control C by adding this line
of code as the first line number in the first program to be run:

l FILL 280,l

Either you must add this line of code to the program or FILL this
location manually for baZic to operate properly under the MP/M I
operating system. To disable Control C manually (your response
is underlined):

COPYRIGHT 1981 - 10 - MICRO MIKE'S, INC. 05/04

i ..
I
I

I

B
[

r

r
l
'

,- -

L

L
[

[

L

f
[

L

L
L

baZic II

READY
rn 2e0.1 ~
READY

2.2.5 Adapting baZic for MP/M II

2-Conf iguring baZic

Control C must be disabled (FILL 280,l, as in the MP/M I. example
above) •

Througn DDT, change the following locations in baZic from FF Hex
to FD Hex:

0319 Hex
1C00 Hex
1F24 Hex

2.2.6 baZic File Name Extensions

Under CP/M and MP/M, baZic programs will have a ".002" extension,
e.g., "PROGRAM.002." baZic data files generally will have a
".003" extension, unless specified otherwise. Type l machine
language programs will have a ".001" extension.

2.3 Configuring baZic for Northstar DOS

CRT is the program used to configure the DOS versions of baZic
for cursor aadressing and clear screen for use with different
CRTs. CRT is a baZic program and is LOADed and RUN in the normal
manner.

The program will display a menu of CRTs and if your CRT is one of
those listed then select the appropriate number and baZic on the
disk will be modified. The first menu will be similar to the
following:

l=~~NITH Z-19 OR HEATH WH-19
2=ADM-3A

6=0THER

Because the copy of baZic on the disk will be modified, please
·use a copy of the baZic disk and not the original. The disk copy
of baZic is modified by using the BYTE write feature of baZic to
modify its elf. The lo ca ti on of the bytes to be modified is shown
in the partial source listing provided. This modification can
also be made from a monitor if a machine language programmer is
available.

COPYRIGHT 1981 - 11 - MICRO MIKE'S, INC. 05/04

baZic II 2-CONFIGURING bazic

If your CRT is not listed on the menu and the cursor addressing
and clear screen are simple sequences of two characters or fewer,
the program CRT will allow you to enter this information and the
program will write to the baZic file as well as the copy of bazic
presently in the RAM of your computer. If your cursor addressing
and clear screen sequences are not short or uncomplicated, baZic
as delivered may not be capable of these functions on your CRT.
Special assemblies are available from Micro Mike's, Inc. for
additional fees.

After selecting your CRT from the first menu the program will
respond by displaying a second menu with a choice of which baZic
to modify. The listing includes all versions of baZic that are
provided. The second menu will appear as follows:

l= 8 DIGIT SOFTWARE FLOATING POINT BAZIC
2= 10 DIGIT SOFTWARE FLOATING POINT BAZIC
3= 12 DIGIT SOFTWARE FLOATING POINT BAZIC
4= 14 DIGIT SOFTWARE FLOATING POINT BAZIC
5= 8 DIGIT HARDWARE FLOATING POINT BAZIC
6= 10 DIGIT HARDWARE FLOATING POINT BAZIC
7= 12 DIGIT HARDWARE FLOATING POINT BAZIC
8= 14 DIGIT HARDWARE FLOATING POINT BAZIC

At this point the program will branch one of two ways depending
upon which option you selected from the first menu. If you
selected one of the CRTs displayed, the program will immediately
change the copy of the specified baZic on the disk and the copy
that is presently in the computer in RAM: If you select the last
option (OTHER), the program will ask you for additional
information.

Selecting the "OTHER" option will result in the program asking
for the cursor addressing pref ix, the off set values for the row
and column positions, and the clear screen code(s}. Instructions
are provided in the program and they should be followed closely.
After all the information is entered, the program will branch
back to the testing section to see if the changes made work
properly.

After the changes to baZic are completed a testing phase is
initiated. The first test is the clear screen (CLS} statement.
If this statement is working properly you should see the screen
clear and a message printed at the top of the CRT. If everything
appears in order at this stage, respond to the prompt by entering
a "l." Entering a "0" will cause the program to branch back to
the beginning menu.

If you entered a "l" indicating that the clear screen worked the
next test will be the cursor addressing test. The screen will
again be cleared and this time a distinct pattern will be printed
on the CRT. The pattern will appear similar to a "rope" looped
around itself several times. (i.e. a prolate cycloid).

COPYRIGHT 1981 - 12 - MICRO MIKE'S, INC. 05/04

r-
1
I·

i .• :

L
L
r
[

L

L
t
L
L

baZic II 2-CONFIGURING bazic

If this pattern appears, you are through using this program and
can exit by answering the last prompt with a "l" indicating that
the clear screen and cursor addressing have been installed pro
perly for your CRT. A no or "0" answer to the final prompt will
take you back to the beginning menu to let you try again.

Remember that running this program changes only the precision of
~ bazic you have requested. If you want another baZic changed you

will have to run the program again for each version of baZic you
want changed.

~ -·

I
L

L

2.4 Other CRTs

If your CRT is not listed in the menu of the IOEDIT or CRT
program, you will be required to manually "patch" the CRT inf or
mation before the PRINT@ and CLS statements will function cor
rectly. Consult the partial source listing provided in Section
11 to find the positions within bazic (or MicroDoZ) where the
proper codes should be placed. Also see the MDZ/OS PROGRAMMER
manual for more information on configuring a CRT for Microooz.

COPYRIGHT 1981 13 - MICRO MIKE'S, INC. 05/04

baZic II 2-CONFIGURING bazic

This page left blank intentionally.

COPYRIGHT 1981 - 14 - MICRO MIKE'S, INC. 05/04

I
l
r
I
I
'---

L

.. l
..

[

[

L

r
[

l_

L
L
/~

:.,\

J ..

baZic II 3-DIRECT COMMANDS

DIRECT COMMANDS

Direct Commands may be executed only from the direct mode. In
the direct mode, no line numbers are used and commands are exe
cuted immediately. Several Statements also can be executed from
the direct mode. These will be discussed in Section 4 (STATE
MENTS) •

The following Statements may be executed in the direct mode as
direct commands:

APPEND DIM LINE
CHAIN CREATE DESTROY
IF THEN ELSE PRINT PRINT@
RESTORE OOT OPEN
CLOSE READ# WRITE#
CLS FILL LET
DOSCMD (MicroDoZ version only)

3.1 Programming Commands

Programming Commands are commands used in the act of writing a
baZic program. Thes~ commands generally are actions that "do
something" to a baZic program sucb as LIST it, DELete line num
bers, RENumber line numbers, AOTOmatic generation of line num
bers, SCRatch a program, Program SIZE, or SET MEMory for larger
programs.

3 .1..1. List a program {LIST)

LIST [#<DEVICE#>] [,<LINE#>] [,<LINE#>]

The purpose of the LIST command is to output the listing of the
current program to an output device (usually the CRT or printer).
The DEVICE# is a legal output device (0-7) preceded by the number
sign (#=). If the DEVICE# is not used, the default device is
printed to (generally device 0.)

The LINE# is the program line number to start listing from or a
range of line numbers that you specifically want listed. If only
one line number is specified, bazic will list only that line. If
only one line number is specified, followed by a comma, all line
numbers from the specified line number to the end of the program
will be listed.

If two line numbers are specified (separated by a comma), baZic
will list the range of line numbers included. If a specified
line number does not exist, baZic will find the next larger line
number and execute the LIST command as if the larger line n~mber
had been entered by the user.

COPYRIGHT 1981 - 15 - MICRO MIKE'S, INC. 05/04

bazic II 3-DIRECT COMMANDS

If the optional line numbers are not specified, bazic will LIST
the entire program currently in memory.

Examples of the use of the LIST command are:

LIST
LIST 100
LIST 100,
LIST #2
LIST #2,100,500

(LIST all line numbers)
(LIST line number 100 only)
(LIST line number 100 to end)
(LIST all line numbers to Device #2)
(LIST lines 100 to 500 on Device #2)

3.1.2 Delete Line Numbers (DEL)

DEL <LINE#>,<LINE#>

This command is used to DELete all program lines (from the cur
rent program) that fall between the two line numbers, including
the two line numbers passed as arguments to this command. The
two line numbers must be legal and existing line numbers in the
current program.

The second line number must always be greater than the first or
an ARG ERROR will be returned. If either of the specified line
numbers does not exist, a LINE NUMBER ERROR will be generated.
The value of line numbers must always be in the range of 0 to
65535 or an OUT OF BOUNDS ERROR will occur.

If the programmer wants to DELete only one line number, type only
the _line numb~r to be deleted followed by a c~rriage return.

All variables within the current program are cleared upon the
completion of a DELete command.

Examples of the use of the DELete command are:

DEL 10,100
DEL 1,2
10<CR)

(DELete Lines 10 through 100)
(DELete Lines 1 and 2)
(DELete Line 10)

3.1.3 Scratch a Program (SCR)

SCR

The SCRatch command is issued to cause the current program and
all its associated variables to be SCRatched from internal memo
ry. After a program is SCRatched, it cannot be recovered from
RAM. If you want to use the program again, make sure the program
has been previously SAVEd on disk. The syntax guide serves as an
example since"no arguments are passed to this command.

COPYRIGHT 1981 - 16 - MICRO MIKE'S, INC. 05/04

I
r
[
,-
1
L

t
[

[

l

l
l
l

baZic II 3-DIRECT COMMANDS

If the optional line numbers are not specified, bazic will LIST
the entire program currently in memory.

Examples of the use of the LIST command are:

LIST
LIST 100
LIST 100,
LIST #2
LIST #2,100,500

(LIST all line numbers)
(LIST line number 100 only)
(LIST line number 100 to end)
(LIST all line numbers to Device #2)
(LIST lines 100 to 500 on Device #2)

3.1.2 Delete Line Numbers (DEL)

DEL <LINE#>,<LINE#>

This command is used to DELete all program lines (from the cur
rent program) that fall between the two line numbers, including
the two line n·umbers passed as arguments to this command. The
two line numbers must be legal and existing line numbers in the
current program.

The second line number must always be greater than the first or
an ARG ERROR will be returned. If either of the specified line
numbers does not exist, a LINE NUMBER ERROR will be generated.
The value of line numbers must always be in the range of 0 to
65535 or an OUT OF BOUNDS ERROR will occur.

If the programmer wants to D~Lete only one line number, type only
the line number to be deleted followed by ·a carriage return.

All variables within the current program are cleared upon the
completion of a DELete command.

Examples of the use of the DELete command are:

DEL 10,100
DEL 1,2
HJ<CR)

(DELete Lines 10 through 100)
(DELete Lines 1 and 2)
(DELete Line Hl)

3.1.3 Scratch a Program (SCR)

SCR

The SCRatch command is issued to cause the current program and
all its associated variables to be SCRatched from internal memo
ry. After a program is SCRatched, ·it cannot be recovered from
RAM. If you want to use the program again, make sure the program
has been previously SAVEd on disk. The syntax guide serves as an
example since"no arguments are passed to this command.

COPYRIGHT 1981 - 16 - MICRO MIKE'S, INC. 05/04

i~

L

[

r
L

[

l
L
[

baZic II 3-DIRECT COMMANDS

3.1.4 Renumber a Program (REN)

REN [<LINEt>] [,<INCREMENTAL VALUE>]

The RENumber command causes the line numbers of a program to be
RENumbered. All program references to a line number within the
program (GOTO, GOSUB, RESTORE, etc.) will also be RENumbered so

- that the program will continue to execute properly after the
program has been RENumbered. If there are references to line
numbers now present within the current program, these references
will not be changed. It is the programmers responsibility to
make the necessary changes after a RENumber. The RENumber com
mand has no way of knowing the value of a variable in a program.

..

;
l.

; .

I
!.__

I
L

The LINE# argument must be a legal line number in the current
program from which RENumbering is to start and the INCREMENTAL
VALUE must be the optional value you want between line numbers.

If no arguments are passed to this command, baZic will RENumber
starting with the line number 10 and automatically incrementing
by 10. The LINE# argument must be a positive integer in the
range of 0 to 65535 and the INCREMENTAL VALUE must be a positive
integer. No line number in the RENumbered program may be greater
than the largest legal line number (65535). If any error condi
tions occur while trying to RENumber a program, the program will
NOT be RENumbered.

Exam.pl es of this ·command are:

REN
REN 100, 20
REN 15

(Start with 10, increment by 10)
(Start with 100, increment by 20)
(Assumes INCREMENTAL VALUE of 10)

3.1.5 Automatic Line Numbering (AUTO)

AUTO [<LINE#>] [,<INCREMENTAL VALUE>]

This command causes baZic to generate line numbers AUTOmatically
as the programmer is entering program statements. The line
numbering will start with the LINE# argument and will increment

·each succeeding line number by the specified anount. If neither
value is specified, bazic will start at Line la and increment by
10. If no incremental value is specified, baZic will start at
the number specified and increment by 10.

The LINE# argument must be a legal line number from which you
want AUTOmatic line numbering to start. T~e INCREMENTAL value is
the amount by which you want each succeeding line number gener
ated to be incremented. The LINE# and the INCREMENTAL VALUE must
both be positive integers in the range of 0 to 65535.

COPYRIGHT 1981 - 17 - MICRO MIKE'S, INC. 05/04

baZic II 3-DIRECT COMMANDS

To terminate AUTO line numbering, press the return key immediate
ly after the line number before any other key is pressed. If any
lines in the current program have the same line number as those
generated by the AUTO command, the old line will be replaced by
the new line.

Examples of AUTOmatic line numbering are:

AUTO
AUTO 200
AUTO 300,15

{Start at line 10 and increment by 10)
(Start at line 200 and increment by 10)
(Start at line 300 and increment by 15)

3.1.6 Program Size (PSIZE)

PSIZE

This command causes bazic to return the size in blocks (256-byte
blocks) of the current program in memory. This command can be
used to determine if the current program will "fit" in a file
previously CREATEd. The command syntax guide serves as an exam
ple since no arguments are passed to this command.

3.1.7 Set Memory Opper Limits (MEMSET)

MEMSET <MEMORY ADDRESS>

MEMSET is used to adjust the high limit of internal memory. The
MEMORY ADDRESS must be the Decimal address of the new memory high
l·imit. The current program is left unchanged but all variables
will be lost. The baZic in memory is modified so that a disk
copy can be obtained by saving baZic from its operating location
in RAM to a properly created disk file. See your disk operating
system manual if you are uncertain how to save a file from the
operating system.

Various MEMSET values include:

Northstar DOS MicroDoz CP/M

32K 32767
48K 49151 43519 42245
56K 57343 51711 50437
60K 56319 54533
64K 58373

Under CP/M, the MEMSET level may vary according to a computers
particular implementation of CP/M.

To find a computer's MEMSET level, enter one of the following
formulas:

for MicroDoZ
for CP/r1

COPYRIGHT. 1981

!EXAM (1) + 256 * EXAM (2)-1
!EXAM (7) * 256 + EXAM (6)~1

- 18 - MICRO MIKE'S, INC. 05/04

I.
I

[

L

[

[

L

[.

[

L

L
[

·1

L
I .•
L

bazic II 3-DIRECT COMMANDS

Release 05/04 of bazic finds its own MEMSET level when loading
into memory.

3.2 Disk Commands

The following commands (with the exception of BYE) affect the
disk drives. If the command BYE is executed from direct mode,
bazic will return to the Disk Operating System where all disk
commands are available. The other commands cause the CATalog of
the specified disk to be displayed or programs to be LOADed from
the disk to internal memory or programs in internal memory to be
SAVEd on the disk.

3.2.l Catalog a Disk (CAT)

CAT [#<DEVICE#>] [<DRIVE#>] [,WILDCARD]

The CATalog command is used to "view" the directory (catalog) of
the disk drives. The device number must be a legal output device
(0-7) and the drive number a legal drive for your system hardware
(1-7). Both values must be a positive integer in t:ie proper
range.

The DEVICE# must be preceded by a number sign (#). If no device
is specified the default device is used (Device #0). If no drive
number is specified, baZic will assume the default drive (Drive
#1) •

The WILDCARD paramet~r may be passed, in the MicroDo~ Yersion
only, to view only those files which match the wildcarc sequence.
If the character "T" is used, only those files beginning with the
character "T" will be displayed. More than one character can be
used as the wildcard. If the user wants to match a character
occurring in the middle of a file name, an asterisk (*) may be
used to precede the character to be matched.

Examples of the CATalog command are:

CAT (CAT default drive to default device)
CAT #2 (CAT default drive to Device ;2)
CAT 5 (CAT Drive 5 to default device)
CAT #2 5 (CAT Drive 5 to Device #2)
CAT #2,5 MicroDoZ only (CAT Drive 1 to Device #2 only those

files beginning with 5)
CAT l,*I MicroDoZ only (CAT only_ those files with I as second

character)

The CATalog of a disk will appear different under each operating
system under which bazic can run. The CAT command under MicroDoZ
results in the following information being given for each file
listed in the directory of the affected disk:

COPYRIGHT 1981 - 19 - MICRO MIKE'S, INC. 05/04

baZic II 3-DIRECT COMMANDS

A

File Name (maximum of eight characters)
Starting Disk Address (Decimal)
Length of the File in Blocks {Decimal)
Density {Single or Double)
Type of File {0 to 127 Decimal)
GO Address {If Type 1 in Hex)
R/O if Read Only File
SYSTEM if System File
Attribute Field (0 to 63 Decimal)

sample CATalog under MicroDoZ would appear

READY
CAT

MICRODOZ 4 20 D 0
M2D00M 14 10 D 1 2D00

as follows:

AF 0
AF 0

TEST 19 2 D 2 R/O SYSTEM AF 0
BAZIC 20 54 D 1 0100 AF 0
READY

A CATalog of the disk can be obtained from a program by use of
the DOSCMD statement {MicroDoZ version only). The statement
would appear as follows:

10 DOSCMD "LI"

Under CP/M, the only items listed following a CAT command are the
file name and its extension. A CATalog under CP/M wil.l appear as
follows:

READY
CAT

: BAZIC08F COM : BAZIC10F COM
CRT 003

3.2.2 Save a Program (SAVE)

SAVE <FILENAME>

BAZIC12F COM BAZIC14F COM

The SAVE command is used to store the current program in a Type 2
disk file. The FILENAME must evaluate to a legal file name. If
the current program is larger than the specified file, an OUT OF
BOUNDS error will be generated. The SAVE command does not change
the current program as it is being saved. ·

If the current program is a new program and has no file created
for it, the command NSAVE must be used instead of SAVE. The size
of the current program can be determined by using the PSIZE
command and the size of the program file can be determined by the
CAT command.

Examples of the SAVE command are:

COPYRIGHT 1981 - 20 - MICRO MIKE'S, INC. 05/04

i .

[

[

l
[

[

l
I
l
l
l
l
l

.. ' ~

i
1-,· ,_

f-·:'.
L

bazic II

SAVE PROGRAN
SAVE CONTROL,S

3-DIRECT COMMANDS

3.2.3 Save a New Program {NSAVE)

NSAVE <FILENAME> [<FILESIZE>]

The NSAVE command is used when the current program is a new
program or an old program is too large to fit in its existi~g
file. NSAVE causes a new Type 2 directory entry to be made wi~h
the specified name. If the optional FILESIZE argument is not
passed, the file is created 3 or 4 blocks longer than the Progr~w
SIZE of the current program. (Double density files must alwa~·s
be an even number of blocks.) The FILESIZE araument can be used
to create the file of any legal file· size. -

Under CP/M, NSAVE is still used but the context is slight:y
different. Normally~ NSAVE would not be needed under CP/M be
cause CP/M supports dynamic file alloction and the file "grows"
as ·the program expands. To retain as much compatibility with t~e
MicroDoZ version, NSAVE is still a valid command. If the f i:e
already exists and an NSAVE command is issued, baZic will retu:n
an AR G e r r o r to i n f o r rn the p r c g r am m e r o f a m i s ta k e .

Examples of the NSAVE command are:

NSAVE CONTRCL ·
NS.?-.VE COK':'ROL I 5
NSAVE HENU'20
NSAVE MENU,2 30

(Save on default drive, PSIZE+3)
(Save on Drive 5 to file PSIZE+3)
(Create file 20 blocks long)
(Save on Drive 2 file 30 blocks long)

3.2.4 Load a Program (LOAD)

LOAD <FILENAHE>

The LOAD co cm and is used to LOAD the specified file from the disk
into internal memory. The program now be~omes the current pr~
gram. Any previous "current prograrr." is SCRatched and all varia
bles are cleared upor: a LOAD command. The specified file mt.:.st :;e
a type 2 file.

If the specified program is too large to fit into internal meToc:y
or t~ere is no valid program in the file (a valid end of file
marker is not found), a TOO LAP.GE OR NO PROGRAM EP.ROR is gene:-
ated.

Examples of the LOAD co~mand are:

LOAD MENU,2
LOAD CONTROL

COPYRIGHT 1981

(Load "MENU" from Drive 2)
(Load "CONTROL" from default drive)

- 21 - MICRO MIKE'S, INC. 05/04

baZic II 3-DIRECT COMMANDS

3.2.S Bye to Disk Operating system {BYE)

BYE

The BYE command is used to exit from baZic to the disk operating
system. Upon the execution of the BYE command the disk operating
system prompt will be displayed. See the disk operating system
manual for more information.

When baZic is exited using BYE, the current program (if any) is
not disturbed and may be re-entered if it is not changed by the
execution of operating system commands. baZic has three entry
points. The entry points are given in relation to the Origin
(ORG) of the baZic. The normal origin for bazic under MicroDoZ
and CP/M is 0100 Hex.

The following table describes the three entry points for baZic.

Hex Address Entry characteristics

ORG Clears program and all variables
ORG + 04 Hex
ORG + 14 Hex

Retains the program but clears the variables
Retains the program and variables

The command syntax serves as the example since no arguments are
passed to this command.

3.3 Execution Commands

The following two commands cause baZic to begin executing a
program. The RUN command is generally used to initiate a program
execution but the CONTinue command can be used to re-start a
program that was stopped by the STOP statement or a control C.
The APPEND and CHAIN statements also can affect the execution of
programs.

3.3.1 Run a Program {RUN)

RUN [<LINE#>]

The RUN command is used to execute the current bazic program. If
the optional LINE# argument is not passed, baZic n1ooksn for the
first line number to begin execution. If the LINE# argument is
passed, execution begins on the specified line. The LINE# must
be a legal and existing line. If the LINE# does not exist, a
LINE NUMBER ERROR will be displayed.

The execution of the RUN command causes all variables to b set
to their default conditions.

Examples of the use of the RUN command are:

RUN (Program starts execution at first ine)
RUN 500 (Program starts at LINE 500)

COPYRIGHT 1981 - 22 - MICRO MIKE'S, INC. 05/04

l ·

r

[

[
r-
!
L

L
[

l

l
I
l

-.

.;

-··

baZic II 3-DIRECT COMMANDS

3.3.2 Continue a Program (CONT)

CONT

The CONTinue command is used to resume execution of a program
that was stopped by the STOP statement or a control C by the
user. If the statement where program execution was stopped is an
INPUT statement, CONTinue causes the program to begin executing
the INPUT statement again. Otherwise CONTinue causes the next
statement after the interruption to begin executing.

The current program cannot be changed after a program is stopped
and before the CONTinue command is executed, but variables in a
program can be changed before the CONTinue command is invoked.
The program cannot be CONTinued after a program error or an END
statement is encountered. A CONT ERROR message will be displayed
if a Control C is issued during an INCHAR$(0) statement in a
program.

The syntax line serves as an example since the user must simply
type the letters "CONT" for a program to continue.

3.3.3 Execution Statements

Two statements can be used to cause programs to be executed from
other programs. These statements are mentioned in this section
because they are very similar in their actions to the RON com
mand. The ·CHAIN statement can be used as a command which has the
same effect as issuing the two commands LOAD a program and RUN
it. In addition, the CHAIN command can be used to transfer
control from one program to another by CHAINing.

The APPEND statement also can be used to change control from one
program to another. If the user has a series of subroutines or
functions common to more than one program, he/she can position
these routines in the beginning line numbers and APPEND the
remaining program. Programs can be changed by using the APPEND
statement with the optional line number command to cause only
that portion of the specified program to be exchanged, leaving
the common portion in memory.

·See the statements CHAIN (Section 4.4.9) and APPEND (Section
4.4.8) for more information.

COPYRIGHT 1981 - 23 - MICRO MIKE'S, INC. 05/04

baZic II 3-DIRECT COM s

This page left blank intentionally.

COPYRIGHT 1981 - 24 - MICRO MIKE'S, INC. 05/04

Q
[

L
[

[

l-

[

. [

[

L

l
[

L
L
[

baZic II 4-STATEMENTS

STATEMENTS

Statements are the "stuff" programs are made of. To define a
program to do any useful task, the task must be divided into
exact operations. A statement is an exact operation. Statements
direct the flow of the program and cause variables to be ex
changed between the user and internal memory and between internal
memory and external disk storage. A series of statements placed
sequentially in a logical manner is a program.

Statements begin with the statement name and are optionally
followed by arguments. Many arguments are optional and some
statements take no arguments at all. If arguments are included,
they control the way the statement is executed.

4.1 Program Data Statements

The following three statements are concerned with the storage of
data within a program. Constant data can be stored in DATA
statements with in a program. An internal pointer can be set to
"point" to different sets of data with the RESTORE statement and
the data can be passed to variables within the program by the
READ statement. ·

4.1.1 Data Constants (DATA)

DATA <LIST OF CONSTANTS>

The DATA statement is used to define constant data within a baZic
program. The LIST OF CONSTANTS can be numeric or string data in

, any combination with each data element separated by _commas. All
data stored as strings must be enclosed in quotation marks.

DATA statements may be READ by a program to pass the constant
information to program variables. DATA statements may be placed
anywhere within a program and are "passed over" by baZic if
encountered while executing a program. If DATA statements will
·be used only a few times in a program, place the DATA statements
near the end of the program to speed the execution of the pro
gram.

If a READ statement cannot READ a DATA statement, a SYNTAX or
READ error is returned depending upon the problem encountered.

·:: If a DATA statement is encountered during program execution, it
is "ignored." The only effect upon the program is to slow execu
tion slightly. If a DATA item or items are to be READ many times
in a program, it may be advantageous to locate the DATA state
ments close to the beginning of the program.

COPYRIGHT 1981 - 25 - MICRO MIKE'S, INC. 05/04

baZic II

Examples of the use of the DATA statement are:

DATA -1,"ENTER OPTION NUMBER",.42,0,2,0,99,l
DATA "FIRST MESSAGE","SECOND MESSAGE"

4.1.2 Read Data Constants (READ)

READ <LIST OF VARIABLES>

4-STATEMENTS

The READ statement causes the specified variables to be "filled"
by the constant data listed in the DATA statement. The READ is
always sequential in that the first DATA element is read followed
by the next until the end. The only variation to this is when a
RESTORE is executed between READs.

READS must always match data types. A numeric variable must
always READ a numeric constant and a string variable must always
READ a string constant.

The DATA elements are always pointed to by an internal pointer in
baZic. When the program is first RUN the pointer will always
"point" to the first DATA statement in the pr~gram. This pointer
can be changed by using the RESTORE statement.

As each DATA element is READ into a variable, the pointer is
advanced automatically to the next DATA item. The DATA pointer
doesn't care if the next DATA elem·ent is on the same line as the·
previous element or separated by many lines and always "points"
to the next logical DATA element. ·

The DATA pointer "knows" when the last DATA element has been
READ. If an. attempt is made to READ past the end of data, baZic
will find the end of program mark before finding the additional
data. Attempts to READ beyond the end of data will generate a
READ ERROR. If the DATA elements are to be READ again, a RESTORE
must be executed.

A short program is given as an example of the READ statement:

10 FOR N=l TO 3
20 READ X
30 PRINT X
40 NEXT N
50 RESTORE 100
60 READ X$
70 PRINT X$
80 DATA 1,2,3
90 DATA 4,5,6
100 DATA "THE END"

'

When this program is RUN the output would appear as follows:

COPYRIGHT 1981 - 26 - MICRO MIKE'S, INC. 05/04

! .

p
I

[

r·
[

[

L

[

[

l
L.

L

L

baZic II

4.1.3

READY
RUN
1
2
3
THE END
READY

Restore Data Pointer (RESTORE}

RESTORE [<LINE#>]

4-STATEHENTS

The RESTORE command is used to change the data pointer so that it
"points" to the specified DATA statements. If no line number is
specified, the first (lowest number) line number containing DATA
statements is pointed to. (The pointer is not actually set until
the first READ statement is executed.) If a line number is
specified, the pointer "points" to the first DATA element in that
line number.

The example in Section 4.1.2 (READ data constants) shows the use
of the RESTORE statement.

4.2 Input and Output Statements

Input and output statements cause informa~ion to pass between
devices such as CRTs or printers and internal memory. In some
systems, file information is "input." However, baZic has sepa
rate file statements which cause information to pass between
files and internal memory. ·

4.2.1 Print a Variable (PRINT)

or
PRINT [#<DEVICE#>] [,<LIST OF EXPRESSIONS>]

[#<DEVICE#>] [,<LIST OF EXPRESSIONS>]

The PRINT (or ! for shorthand print) statement causes string or
numeric variables to be output to a device (normally a printer or

.CRT). If no device expression is used, the default device is
assumed. If the device expression is used, it must be preceded
by the number sign (#) and followed by a comma. The device
expression must evaluate to a positive integer from 1 to 7.
Under baZic for CP/M, PRINT #0 is the console direct device,
PRINT #1 is the list device and PRINT #2 is the punch device.

If no LIST OF EXPRESSIONS is specified, a carriage return and
line feed is all that is output. If the LIST OF EXPRESSIONS is
followed by a comma, the carriage return and line feed is sup
pressed and aaditional PRINT statements will continue printing on
the same line. Each element in the LIST OF EXPRESSIONS must be
separated by a comma.

COPYRIGHT 1981 - 27 MICRO MIKE'S, INC. 05/04

bazic II 4-STATEMENTS

Other versions of BASIC use a semicolon (;) to signify no car
riage return after printing a series of variables, but in bazic
the comma (,) has this function. The comma in these other ver
sions of BASIC is used to TABulate to preset tab stops but in
bazic the TAB function can accomplish the same job. See Section
5.5.4.

A sample program and RUN follow as an example of the PRINT state
ment:

5 D=l \REM 1 IS THE PRINT DEVICE
10 PRINT "THIS IS A TEST"
20 FOR N=l TO 3
30 PRINT N, \REM SUPPRESS THE RETURN
40 NEXT N
50 PRINT \REM SINGLE PRINT TO ISSUE RETURN
60 PRINT iD,"TO PRINTER" \REM PRINT TO PRINTER
70 ! "THE END" \REM USE ! INSTEAD OF PRINT

When this program is RUN the CRT (Device #0) would appear like
this:

READY
RUN
THIS IS A TEST
1 2 3 .
THE END

and the printer (Device il) would appear like this:

TO PRINTER

4.2.1.1 Formatted Printing

The formatted printing capabilities of bazic are used when de
fault printing of numeric information is not desirable. Default
printing involves printing a space character () and printing of
a number without regard to its· characteristics.

As an example, if we want to print a dollar amount that was
calculated to be 45.586889, we would normally not want the extra
digits to be printed. Also, we would want the number to be
preceded by a dollar sign ($) and if printed in a column with
other dollar amounts, printed so that the decimal points "line
up." In this instance, we would want the number printed using
the format feature of baZic.

baZic can switch automatically to formatted output in certain
instances. This switch occurs when the number to be printed is
too large or too small to be printed by the current precision of
baZic. baZic will print these numbers in the E (or exponential)
format automatically. This will occur only in the default
format. In other formats, a FORMAT ERROR will occur.

COPYRIGHT 1981 - 28 - MICRO MIKE'S, INC. 05/04

r
l
r

[

r
[

[

[

l
l
I
L

l

. _~

' ,.

,
. '.J

I:
I_.

L
Ll

. -
-

baZic II 4-STATEMENTS

Formatted printing involves the inclusion of format characters
within the print statement to "tell" bazic how you want the
numbers to be printed. If no format characters are specified the
variable will be printed in "free format."-

In "free format," bazic is free to choose which format (normal or
exponential) is best and the number of characters printed will
vary according to the number of characters in the number. The
field length is always set to 1 greater than required to print
the number to allow for the assumed plus sign (+). The number to
its full precision is printed right justified with all trailing
zeros suppressed.

Under formatted printing, the print field is expressly defined
and each subsequent print under the same format will result in
the same number of characters being printed. Three formats can
be specified: F format, I format, and E format.

The F format (nFm) is used to print numerics which have a Fixed
decimal place. The field length is specified as "n" and the
number of digits to the right of the decimal is "m." This format
will always be printed right justified with the printing starting
"n" digits to the left of the right margin. If the numbe·r is too
large, a FORMAT ERROR will occur.

The I format (nI) is the Integer format. The field will be "n"
characters wide, but will have .no decimal p6int~ This format
will always be right justified. Only integer values can be
printed under this format. Attempts to print decimal values will
result in a FORMAT ERROR.

The E format (nEm) is the Exponential format. The: f_ield will be
"n" characters wide and will be right justified; "m"-digits will
be to the right of the mantissa decimal point.

When using print formatting, the programmer tells baZic that
formatted printing follo~s by the use of the percent sign(%).
When "%" is used in a PRINT statement, the output is to be
formatted. The syntax of print formatting is as follows:

PRINT [<%FORMAT CHARACTERS FORMAT SPECIFICATION>],[<VARIABLES>]

Several characters are defined in bazic to have special meaning
when they appear in the format syntax. These characters are
called FORMAT CHARACTERS. Format characters can be mixed in a
formatted print. They must always come after the percent sign
(%) and before the FORMAT SPECIFICATION. A list of FORMAT CHAR
ACTERS follows:

A A is the Accounting format. All negative numbers are
printed with a "less than/greater than" pair (<>) a
round the number.

COPYRIGHT 1981 - 29 - MICRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

c

z

C is the Comma format. Commas will be inserted after
each group of three digits to the left of the decimal
in numbers large enough to warrant this attention.
This format character does not have an effect in the E
format.

z is the suppress zeros format character. All zeros
trailing the decimal point will be suppressed and
spaces will be printed instead.

+ + is the positive number format character. All
positive numbers are printed with the plus sign (+) to
the left of the number.

$ $ is the dollar sign format character. This format
character causes a dollar sign ($) to be printed to the
left of the number.

is the default format character. The appearance of
the# format character in a format field will cause the
current format to become the default format. This
means that all further PRINTS will print in the speci
fied format even though no further format specif ica
tions follow. A%# for mat causes free format to be re
instated.

The print field is calculated to be all the digits, the decimal
point and any other characters specified such as a dollar sign or
comma. Care must be used in calculating the field length as ~ny
number which generates more digits (including the format charac
ters) than the specified field length will result in a FORMAT
ERROR.

Examples of print formatting follow:

FORMAT

%A8F2
%A8F2
%$CA13F2
% $CA13F2
%CSI

VAL OE

19.355
-19.355

201758.88
-201758.88

1000

4.2.1.2 Print at (PRINT@ and !@}

PRINT@ (ROW,COLOMN)
or

!@ (ROW, COLOMN)

RESULT UPON PRINTING

19.36
<19.36>

$201,758.88
$<201,758.88>

1,000

PRINT@ and !@ are further enhancements of the print statements of
baZic. This print statement is CRT-specific and will work only
if baZic has been "set upn for your CRT. The CRT program is used
to establish the proper cursor addressing pref ix for the CP/M
version of baZic. For MicroDoZbaZic, the program IOEDIT serves
the same purpose.

COl?YRIGHT 1981 30 MICRO MIKE'S, INC. 05/04

r.;
1_1

l.
[

[

l~

\
~!
..

[

[

l

l
l
L
[

_.: ..

l -

baZic II 4-STATEMENTS

To use this print function, pass the ROW and COLUMN coordinates
of the position on the CRT where you want the cursor to be
positioned. If your CRT does not support cursor addressing, do
not use this print feature. The ROW and COLUMN values can be
numeric expressions as long as they evaluate to a legal ROW and
COLUMN number.

An example of this piint function is illustrated with a "CRT"
that has 10 lines and 20 spaces per line. If the following
program were RUN on this CRT, the output would appear as follows:

10 PRINT@(2,15),"*"

I
I
I READY
I
I

*

4.2.2 Input a Variable (INPUT)

INPUT [#<DEVICE#>] [,<STRING PROMPT>,] <VARIABLE LIST>

The INPUT statement is used to input a value f ram the user of the
program and assign this value to a variable. If no DEVICE# is
specified, the input is taken from the default device. If the
DEVICE; is specified it must be preceded by the number sign (#)
and must be a legal device number (0 to 7). Under baZic for
CP/M, INPUT#0 is the console direct device, INPUT#l is the reader
device.

The STRING PROMPT argument is.optional but can.be used to specify
a prompt string to the user •. This string constant (delimited by
quotation marks) will be printed before taking the input and will
suppress the normal question mark (?) that is printed as the
prompt when the STRING PROMPT argument is not passed to the INPUT
statement.

The VARIABLE LIST can be one or more variables to be "f ilred" by
the user's response. If only one numeric or string variable is
to be input, the user enters the value and presses RETURN to
signify the value has been entered.

If more than one numeric variable is specified, the user must
separate each value entered by a comma. If the user fails to
enter all variables asked for, baZic will prompt the user with
two question marks (??). Another RETURN terminates the input.
More than one string variable cannot be entered by this method.

COPYRIGHT 1981 - 31 - MicRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

If a number and a string are to be input from the same INPUT
statement, the numeric variable should be input first. Otherwise
the comma and the number will be input as part of the string
since baZic has no way of knowing the end of the string input.

If the input is to be numeric and a string is entered, baZic will
respond with an INPUT ERROR -- PLEASE RETYPE. If the input is to
be a string input, a carriage return only is acceptable and
results in a null string for the specified variable.

Examples of the INPUT statement follow:

10 INPUT A
20 INPUT "ENTER OPTION (1 TO 10) ",X
30 INPUT #2,X$
40 INPUT "WHAT IS YOUR ADDRESS ",A$

4.2.3 Input a Variable (INPUT1}

INPUTl [#<DEVICE#>] [,<STRING PROMPT>,] <VARIABLE LIST>

The INPUTl statement is identical to the INPUT statement except
the INPUTl input does not echo a carriage return and line feed
when the user makes an entry. This input is used when multiple
inputs are required on the same line. The examples for INPUTl
are the same as INPUT.

4.2.4 Output a Byte (OUT)

OUT <PORT NUMBER>,<BYTE VALUE>

The OUT statement is used when the programmer wants to output
information directly to a specific Z80 port. The PORT NUMBER and
the BYTE VALUE must be constants or numeric expressions which
evaluate in the range of 0 to 255 (the range of a byte). This
statement (as do all baZic statements) uses decimal numbers.

4.3 Branching Statements

In baZic, the "normal" flow of processing is from the smallest
line number to the largest line number. This situation is rarely
efficient in writing a program. Some method must be available to
allow the program to branch from one section to another. The
following sections explain the branching statements of baZic.

4.3.1 Go to a Line Number (GOTO)

GOTO <LINE#>

Upon execution of the GOTO statement, program flow is immediately
branched to the specified line number. "Normal" execution re
sumes at that point unless another branching statement is en
countered. The LINE# argument must be a positive integer in the
range of 0 to 65535.

COPYRIGHT 1981 32 - MICRO MIKE'S, INC. 05/04

I
I

[

[

[
-

[

[

l

r

L
L
l
l

- -
·:.i
l~

: .

.I

baZic II 4-STATEMENTS

Because GOTO is a reserved word, GO and TO may not be separated
by spaces as in some BASICs.

An example program is provided to demonstrate the GOTO statement.
Notice that this program "branches forever" or until a control C
is detected (if Control C is enabled).

HJ PRINT "THIS IS THE FIRST MESSAGE"
20 PRINT "THIS MESSAGE WILL APPEAR MANY TIMES"
30 GOTO 20

4.3.2 Go Subroutine (GOSUB)

GOSUB <LINE#>

The GOSUB statement is one of the most powerful statements in
baZic. A subroutine is a series of statements which need to be
used over and over in a program. Therefore, these program lines
are made into a subroutine. The difference between a GOTO state
ment and a GOSUB statement is a GOSUB always RETURNS to the
statement immediately following the GOSUB statement, assuming
that the subroutine has a RETURN instruction somewhere within the
subroutine and the RETURN statement is executed.

The GOSUB statement can be used within a subroutine to call
another subroutine. These GOSUB statements can be "nested" as
deep as available memory allows. All good programmers make
extensive use of subroutines because subroutines can help struc
ture the program and conserve memory.

An example of the use of a subroutine follows:

10 !"THIS IS THE BEGINNING"
20 GOSUB 50
30 !"THIS IS THE END"
40 END
50 !"THIS IS THE SUBROUTINE"
60 RETURN

The results of RUNning this program would appear as follows:

READY
RUN
THIS IS THE BEGINNING
THIS IS THE SUBROUTINE
THIS IS THE END
READY

COPYRIGHT 1981 - 33 - MICRO MIKE'S, INC. 05/04

bazic II 4-STATEMENTS

4.3.3 Return from Subroutine (RETURN)

RETURN

The RETURN statement is used to exit a subroutine and RETURN to
the statement which follows the GOSUB statement that called the
subroutine. No arguments are passed to this statement be~ause
baZic "remembers" the exact GOSUB statement which called the
routine. An example is provided in the previous section under
GOSUB.

A special form of the RETURN statement is used to return from a
User-Defined Function. See Section 7.2 for more details. A
RETURN also "EXITs" all FOR NEXT loops within the subroutine.
See Section 4.3.7 for more information.

4.3.4 On Value Go to Line Number (ON GOTO)

ON <#EXPR> GOTO <LIST OF LINE NUMBERS>

The ON GOTO statement is used when a program needs to branch to
many line numbers from one line based on the results of an
expression. The numeric expression (#EXPR) is evaluated to
determine the line number in the list of line numbers to which
the program is to branch. The #EXPR must evaluate to a positive
integer from 1 to the maximum number of line numbers in the list.
The maximum number is determined by how many line numbers can be
plac~d on a line.

If the #EXPR evaluates to 1, the program branches to the first
line number in the list. If the #EXPR evaluates to 2, the pro
gram br~nches to the second line number in the list, etc.

Examples of the ON GOTO statement follow:

50 ON X GOTO 100, 200, 300, 400
100 ON INT(Y+l) GOTO 10,20,30,40

(X must be 1 to 4)
(Y must be 0 to 3)

4.3.5 On Value Go Subroutine (ON GOSUB)

ON <#EXPR> GOSUB <LIST OF LINE NUMBERS>

The ON GOSUB statement is very similar to the ON GOTO statement
except in this case a subroutine is branched to. Upon the occur
rence of a RETURN instruction, control passes to the statement
immediately following the ON GOSUB statement. An example program
is:

COPYRIGHT 1981 - 34 - MICRO MIKE'S, INC. 05/04

l_ ..

l-: .•:

[

[

L
I
r

l
l
L
L

' •.
L. -~

' .. ··:.;.:

~.·.~

... -

baZic II

10 FOR N=l TO 3
20 ON N GOSUB 100,200,300
30 NEXT N
40 END
100 !"THIS IS SUBROUTINE ONEn\RETURN
200 !"THIS IS SUBROUTINE TWOn\RETURN
300 !"THIS IS SUBROUTINE THREE"\RETURN
READY

4.3.6

RUN

THIS IS SUBROUTINE ONE
THIS IS SUBROUTINE TWO
THIS IS SUBROUTINE THREE
READY

IF THEN ELSE

IF <LOGEXPR> THEN <STATEMENT> [ELSE <STATEMENT>]

4-STATEMENTS

The IF THEN ELSE statement is used to branch based upon the
results of the evaluation of a logical expression (LOGEXPR). (A
Boolean Variable also can be used as a logical expression.) If
the expression evaluates as true the THEN statement is executed.

If the expression evaluates as false the ELSE statement is exe
cuted (if present) or the program flow executes the next sequen
tial statemen~ See Section 9.3.2 (IF THEN Evaluation} for more
information •.

IF THEN ELSE statements can be nested, but care should be
exercised when doing so.

Examples of the IF THEN ELSE statement are:

10 IF X=S THEN 100
20 IF ABS(Y)>X THEN 210 ELSE 440
30 IF A$="YES" THEN PRINT "YES" ELSE PRINT "NO"

10 INPUT A
20 IF A THEN "YES" ELSE ! "NO"

If A=0, the preceding program prints "NO." If ll.<>0, the
preceding program prints "YES." (See Section 6.2) The Boolean
evaluation in this program would execute faster than the "normal"
method of programming which would appear as follows:

10 INPUT A
20 IF A<>0 THEN ! "YES" ELSE ! "NO"

COPYRIGHT 1981 - 35 - MICRO MIKE'S, INC. 05/04

bazic II 4-STATEMENTS

4.3.7 FOR NEXT STEP EXIT

FOR <CONTROL>=<INITIAL> TO <LIMIT> [STEP <VALUE>]
NEXT [<CONTROL>]
EXIT <LINE#>

The FOR NEXT loop is used to control programming situations where
a similar process is taking place many times and is controlled by
the CONTROL variable.

The CONTROL variable is used to determine the status of the loop.
Each time through the NEXT statement, the value of the CONTROL
variable is incremented (if no STEP value is given) by 1 and a
comparison is made with the LIMIT value to determine if program
flow should remain within the FOR NEXT loop or "fall through" to
the following statement.

If the comparison indicates the CONTROL variable has not yet
exceeded the LIMIT, the loop is executed again and the process
repeated until the LIMIT is exceeded at which time program flow
continues with the statement following the loop.

The STEP value is optional and can be used to cause the loop to
be incremented by any value or even decremented (if STEP equals a
negative number and the INITIAL VALUE of the CONTROL variable is
greater than the LIMIT). The STEP value adds extra flexibility
to the FOR NEXT loop.

FOR NEXT loops may be "nested" to any level that memory allows·.
A FOR NEXT loop is nested when a second loop starts and ends
entirely within a previous loop. The innermost loop must always
be completed before trying to terminate any outside loops. The
example will demonstrate nested loops.

FOR NEXT loops may be executed 0 times if the CONTROL variable
already exceeds the LIMIT value when control passes to the loop.
This feature can be very handy.in programming, allowing a loop to
be used or not depending upon.the conditions set. If a loop is
executed 0 times, it is not executed at all.

When using the NEXT statement at the end of a FOR NEXT loop, the
argument variable can be omitted from the NEXT statement. This
condition results in faster execution of the loop but offers more
opportunities for the programmer to make mistakes. If the con
trol variable is named in the NEXT statement, bazic makes a
comparison with the CONTROL variable to determine if you are
"NEXTing" the correct variable and associated loop.

If the programmer wants to leave a FOR NEXT loop without the
CONTROL variable reaching the LIMIT value, an EXIT statement must
be used. The EXIT has the effect of cancelling the "unused" loop
and transferring program control to another line number. EXIT
can be thought of as a GOTO out of FOR NEXT loop. If loops are
nested, each loop must have an associated EXIT statement if that
loop is to be EXITed prematurely.

COPYRIGHT 1981 - 36 - MICRO MIKE'S, INC. 05/04 ·

,.-
!

·-·
i
L

[

[

[

l
l
l
l
l

!_ .

L
L

bazic II 4-STATEMENTS

The only exception to this rule is when a RETURN is executed from
a subroutine or a user-defined Function. A RETURN causes all FOR
NEXT loops within the subroutine or user defined function to be
closed (EXITed).

The following example program demonstrates FOR NEXT loops, STEP
values, the EXIT statement, nested loops, and the fact that the
control variable is incremented the last time through the loop:

10 FOR N=l TO 2 STEP .2
20 FOR M=l TO 10
30 IF M=S THEN EXIT 50
40 NEXT M
50 PRINT "N=",N,TAB(l0) ,"M=",M
60 NEXT N
70 PRINT "N=" ,N

If the preceding program was RUN, the following results would
appear on the output device:

READY
RUN

N= 1
N= 1.2
N= 1.4
N= 1.6
N= 1.8
N= 2
N= 2.2
READY

M= S
M= S
M= 5
M= S
M= 5
M= S

4.4 File Statements

The following statements allow the manipulation of disk data
files. Statements are provided to CREATE, DESTROY, OPEN, CLOSE,
READ, and WRITE data files. bazic can "look" at all file types
as a data file, even if the data within the file is a machine
language or baZic program. Files can be accessed in sequential
or random fashion and information read or written as bytes,
~trings or numbers.

COPYRIGHT 1981 - 37 - MICRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

If you are using the CP/M version.of baZic, all files which are
to be accessed should have a numeric extension which is equiva
lent to the Northstar convention. All baZic program files must
have a •.002• extension and all data files must have a ".003"
extension (unless the program specifies another numeric type).

The Northstar convention of drive naming has been retained even
in the CP/M version of baZic. Drive 1 is equivalent to CP/M
Drive A, Drive 2 is equivalent to Drive B, etc. If the drive
number is not specified, the default drive is assumed.

4.4.1 Create a File (CREATE)

CREATE <FILENAME>,<FILESIZE>[,<FILETYPE>]

The CREATE statement is used to create a file on the disk. A
file is created with the specified FILENAME and FILESIZE. If the
optional FILETYPE argument is passed, the file is created with
that type. The FILENAME must be a legal file name.

The FILESIZE is in 256-byte blocks and should be an even number.
It must be within the range of available space on your disk
drives. This value can be as much as 16 megabytes (16,776,960
bytes) on a hard disk system but is hardware dependent.

The FILETYPE argument can be any positive integer number in the
cange of· 0 to 127. If the FILETYPE is not specified, bazic
assumes a type 3 file ·which is a "normal" baZ ic data file.

When the CREATE command is executed, a directory entry is made
according to the specifications of the command call and a dummy
file the size of the variable, if it is specified, is created.
This means that the space specified in the CREATE statement is
reserved on the disk when the create statement is executed.

Examples of the CREATE statement are:

CREATE "DATAFILE,2",100
10 CREATE "MENUl",20,2
20 CREATE N$+D$,Nl,N2

(Create file for baZic program)

4.4.2 Destroy a File (DESTROY)

DESTROY <FILENAME>

The DESTROY statement is ·used to delete a file name from the
directory of the specified drive. This command is equivalent to
the DE command of MicroDoZ or the ERA command in CP/M. The only
action taken is the removal of the specified file name from the
directory of its disk. The actual file is not changed.

COPYRIGHT 1981 - 38 - MICRO MIKE'S, INC. 05/04

["""
..;

f
l,:

[_

E
[

[

l
I
l
L
l
I
l

:·.·

I
L
r. ...

baZic II 4-STATEMENTS

If the specified file does not exist, an ARGument error is
returned.

Examples of the DESTROY statement are:

DESTROY "DATAFILE,2"
10 DESTROY "MENUl"
20 DESTROY N$+D$

caution: To be compatible with other versions of baZic and with
BASIC, the DESTROY statement in the CP/M version destroys all
files of the specified name on the specified disk.

For example:

If you have CP/M file on Drive B:

TEST.COM
TEST.SRM
TEST.LST
TEST.003

DESTROY "TEST,2" will wipe out all of these files.

REMEMBER: Your file names must be unique when using bazic.

4.4.3 Open a Channel {OPEN)

OPEN #<CHANNEL#>[%<TYPEXPR>],<FILENAME>[,<SIZEVAR>]

The OPEN statement is used to open a file channel number so the
file can be accessed by a baZic program. The specified file is
given the specified channel number. All references to this file
are made via the channel number until the file is closed. When
t.his command is executed, bazic internally defines a buffer
region for transfer of information to and from the file.

The TYPEXPR is an optional argument which can be passed to speci
fy the type of the file to be opened. If no type expression is
specified, baZic will assume a Type 3 (data file). The TYPEXPR
allows a baZic program to open any file, including baZic programs
and machine language programs. The OPEN will be successful only
if the TYPEXPR matches the actual type of the file.

The optional SIZEVARiable is passed to determine the size of the
file. Upon a successful file OPEN, the SIZEVAR will contain the
size of the file in blocks.

COPYRIGHT 1981 - 39 - MICRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

Only one file at a time may be assigned to a channel number.
That file must be CLOSEd to free the channel number before any
other file can claim it by the OPEN statement. Legal file chan
nels are numbered 0 to 7.

An example of the OPEN statement follows:

OPEN il,"DATAFILE"
10 OPEN #7%2,"MENU",S
20 OPEN #2,A$+D$

4.4.4 Close a Channel (CLOSE)

CLOSE #<CHANNEL#>

The CLOSE statement is used to terminate a channel number so that
the file previously associated with that channel number is no
longer OPEN. The channel buff er is "flushed" so that all file
data in RAM is written to the file before the file is CLOSEd.
The internal buffer space is now available when the specified
channel number needs to be reused by another OPEN statement.

A program can CLOSE a channel without having previously OPENed
the channel.

Channels are automatically CLOSEd by baZic when any of the fol-
lowing conditions are met: ·

One program CHAINs to another program.

A program encounters an END statement.

The program terminates execution because of an error.

If a program encounters a STOP statement or a control C is en
tered by the user, the buffer is flushed but the channel still
remains "OPEN."

Examples of the CLOSE statement are as follows:

CLOSE #1
10 CLOSE #A
20 CLOSE #7

COPYRIGHT 1981 - 40 - MICRO MIKE'S, INC. 05/04

I
[

I

r-
' I

L

[

[

[

I
[

[

L
L
l

. J

I)

;

I
I -

. L
l

baZic II 4-STATEMENTS

4.4.5 Read a File Variable (READ)

READ t<CHANNELt>[%<RANDOM ADDRESS>J,<LIST OF VARIABLES>

The READ statement is used to READ variables from disk files into
internal variables for use in a program. The specified CHANNEL#
must have been previously OPENed for the READ statement.to work.
The CHANNEL# must be in the range of 0 to 7. A READ increments
the file pointer to the byte following the variable read.

The optional RANDOM ADDRESS argument can be passed to read a file
randomly. The value passed to this argument must be a positive
integer in the range of 0 to the last byte of the file. The
address passed is the offset from the beginning of the file to
the position you want to read.

If any variable in the LIST OF VARIABLES argument is preceded by
the ampersand sign(&), the variable will be "filled" with the
byte value at the specified location. This value will be in the
range of 0 to 255, the range of a byte value.

Examples of the use of the READ statement follow:

READ #1,A,B,C
10 READ #1%512*N,A,B,B$
20 READ #1,&A,&B,&C

4.4.6 Write a File Variable (Write).

WRITE #<CHANNEL#>[%<RANDOM ADDRESS>J,<LIST OF EXPRESSIONS>

The WRITE statement is used to write the specified LIST OF VARIA
BLES to the file associated with the CHANNEL#. The file must
have been OPENed to the proper CHANNEL# before writing can take
place. The CHANNEL# must evaluate to a positive integer in the
range of 0 to 7. After a WRITE, the file pointer points to the
byte after the last variable written.

The optional RANDOM ADDRESS can be specified for random writing
of the file. This value is the offset (number of bytes) from the
beginning of the file to the position to which you want to WRITE.
The value must be a positive integer number and must be smaller
than the number of bytes in the file.

The file pointer can be set to the beginning of the file by
issuing a random write to position 0 followed by a NOENDMARK.
The fourth example demonstrates this feature.

COPYRIGHT 1981 - 41 - MICRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

WRITE(ing) begins at the current position of the file pointer and
continues in a sequential fashion until all the variables speci
fied have been written. An ENDMARK is written following the list
unless the list specifies that no end mark is to be written by
the NOENDMARK reserved word.

Variables can be written to the file in byte mode by the.use of
the ampersand sign (&) before each variable that is to be written
bytewise. These variables must have a byte value in the range of
0 to 255.

Examples of the use of the WRITE statement are:

WRITE ~n ,A,B,C
10 WRITE #D%512*N,A,B,C,B$
20 WRITE #4%256,&A,&B,&C,NOENDMARK
30 WRITE #1%0,NOENDMARK (Position pointer to beginning

4.4.7 No End Mark {NOENDMARK)

NOENDMARK

of file)

When baZic WRITEs to a file, it places an ENDMARK after the data
written. The NOENDMARK command generally is used in random
writes to avoid the loss of the following record.

Examples of the NOENDMARK can be found in Section 4.4.6.

4.4.8 Append a Program (APPEND)

APPEND [<LINE#>,]<FILENAME>

The APPEND statement is a special file_statement: It is used
only with type 2 files (bazic program files). This statement
causes the specified program to be appended (added} to the pro
gram already in internal memory. The combination of the two
programs now becomes the current program.

If the optional LINE# argument is not passed, the line numbers of
the APPENDed program must be greater than the maximum line number
of the program already in memory. If the LINEt argument is
passed, all lines equal to or greater than the specified line
number will be deleted and the lines in the specified program
(FILENAME) will be tacked on to the loaded program.

COPYRIGHT 1981 - 42 - MICRO MIKE'S, INC. 05/04

I
r

l
r
[
i

L.

[

[

L
l
[

[

L
[

[

r .
l·

baZic II 4-STATEMENTS

Upon the execution of the APPEND statement, all variables are
cleared and processing resumes at the first statement of the
following line. Multiple APPENDS are allo.wed, but each APPEND
must be on a separate line. Nothing following an APPEND on a
line is executed and therefore no statements should follow the
APPEND on a line except a REMark statement. The only exception
to this is if the APPEND statement is used in an IF THEN state
ment. In the following program, if A does not equal zero (A<>0),
the GOTO will be executed.

3 APPEND 1000,A$
3 APPEND "CSUB"
10 IF A=0 THEN APPEND A$ ELSE GOTO 500

4.4.9 Chain to a Program (CHAIN)

CHAIN <FILENAME>

The CHAIN statement is another special file statement. The CHAIN
statement causes the current program to be SCRatched from inter
nal memory and the specified program to be LOADed into memory
with an implied RUN command. All variables from the previous
program are cleared and all files are CLOSEd automatically.

The file name must be a legal program file name with a type of 2.
The CHAIN statement is used so the operator of the program need

.not worry about LOADing programs or RONning them.

Examples ·of the CHAIN-statement follow:

CHAIN "MENU,2"
10 CHAIN A$+B$

4.4.10 DOS Command (DOSCMD)

DOSCMD <ANY MICRODOZ COMMAND>

The DOSCMD statement is available only in the MicroDoZ version of
baZic.

The DOSCMD statement is a very powerful statement allowing any
MicroDoZ command to be executed from baZic. DOSCMD can be exe
cuted in the direct mode as a command or as a statement in a
baZic program. The argument to DOSCMD can be any string expres
sion that evaluates to a legal MicroDoZ command. If the command
is invalid or cannot be executed, a trappable FILE error is
returned. Multiple commands can be passed to MicroDoZ at one
time as long as the total length of the commands is not greater
than 127 bytes. Commands should be separated by a backslash (\).

COPYRIGHT 1981 - 43 - MICRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

This statement has no limitations on commands that can be passed,
making this command capable of destroying any programs or data.
This statement should be used with care since it is possible to
issue a Read Disk (RD) command that would overlay baZic,
Microooz, or your program. Likewise, a WRite disk (WR) command
could be used to completely "wipe out" a disk file of valuable
information.

DOSCMD can be used to great benefit. DOSCMD makes initializing a
floppy diskette from a baZic program very easy. Also, disk to
disk transfers are made easy and fast through the use of the
DOSCMD statement. By DIMensioning a string variable to a large
number and then calling the ADDRess function to determine the RAM
location of the string, a large buffer can be established in the
middle of a baZic program. After the buffer is established,
successive RD and WR commands can be issued to transfer informa
tion from one disk to another.

Consult the MicroDoZ manual for information on its commands.

4.5 Miscellaneous Statements

The following statements are general in nature and perform numer
ous tasks for the baZic programmer.

4.5.1 Dimension a Variable (DIM}

DIM <VARIABLE NAME> (<ARRAY OR STRING SIZE >)

The DIMension statement is used to allocate space needed for
numeric array variables or string variables that will be longer
than 10 bytes. Multiple DIMensions can be performed on the same
program line by separating each variable by a comma.

A numeric array variable is DIMensioned automatically to 11
(elements 0 to 10) simply by using the variable. If a numeric
array is to contain more than 11 elements, it must be DIMensioned
to the proper number of elements to be stored within the array.

Multiple dimensioned arrays are allowed. Each numeric variable
can be defined by the DIMension statement to as many dimensions
a~ space in internal memory will allow. Each dimension within an
array DIM statement must be separated by a comma. See the exam
ples for multi-dimensioned arrays.

COPYRIGHT 1981 - 44 - MICRO MIKE'S, INC. 05/04

I []
...J

[

[

c·.
1.··

[

[

[

L_

[

L
L
[

baZic II 4-STATEMENTS

Strings under bazic may not be arrays as such. However, string
arrays can be simulated easily under baZic. Strings can be any
length, limited only by the amount of internal memory available.
A string is DIMensioned automatically to 10 bytes (or characters)
simply by using the string in a program before it is dimensioned.

Once a string or array is used in a program or DIMensioned, its
dimension cannot be changed within that program. The argument
passed to a DIMension statement for a string is the maximum
number of bytes allowed in the string. All the positions in a
string are set to ASCII spaces when a string is dimensioned. All
of the elements within a numeric array are set to 0.

Examples of the use of the DIM statement follow:

10 DIM A(20) ,B(20)
20 DIM S$(200)

(DIM numeric A and B to 21 elements)
(DIM S$ to 200 spaces)

3 0 DIM B (10 , 10) (DIM numeric B to 2-dimensional array
with 10 by 10 elements)

4.5.2 Remark a Comment (REM)

REM <ANY LINE OF TEXT>

The REMark statement is one of the most valuable statements in
baZic. This statement lets the programmer describe what he/she
is doing without the description interfering with the program
execution. When baZic "sees" a REM statement it takes no action
and goes to the next line number to begin operation. No state
ments will be executed after a REM on a statement line because
everything following a REM statement on a line is assumed to be
part of the REMark field.

Examples of the REMark statement follow:

10 REM 'IBIS IS A REMARK SI'ATEMENT
20 A=20\REM A (SET 'IO 20) IS 'IEE ?-UMBER OF RECORDS 'IO PRINI' PER PAGE

30 REM A SEORr REMARK\X=20\REM X WILL OC1l' BE SET TO 20

4.5.3 Assign a variable (LET)

[LET] <NUMERIC VARIABLE>=<NUMERIC EXPRESSION>
or [LET] <STRING VARIABLE>=<STRING EXPRESSION>

COPYRIGHT 1981 - 45 - MICRO MIKE'S, INC. 05/04

bazic II 4-STATEMENTS

The LET statement is used to assign a value to a variable. Most
programmers do not use the optional reserved word "LET." In any
case, the value of the expression is assign~d to the variable.
Al though LET can assign only one variable at a time, multiple LET
statements are allowed on any program line.

When assigning string variables, full use of substrings is al
lowed. In other words, any part of any string can be assigned
any part or all of any other string as long as there is enough
room in the destination string variable.

Examples of the LET statement are:

LET A=S
B=75
10 LET A$=B$+C$+D$
20 B$(1,15)="FIRST NAME"
3 0 A=B*C+ (X-Y/Z)

4.5.4 CLear the Screen (CLS)

CLS [#<DEVICE#>]

The CLS statement is used to clear the screen of the CRT. This
command is CRT-specific and cannot be used until MicroDoZ or
baZic has been configured for your CRT. The program IOEDIT is
used to establish the clear screen sequence for MicroDoZbaZic and
the program CRT is used for the CP/M ano pos versions. CLS can
be used as a direct command or as a statement in a program.

Examples of the CLS statement follow:

CLS il
100 CLS\REM CLEAR THE SCREEN
220 IF D=0 THEN CLS

4.5.5 Fill a Memory Location (FILL)

FILL <LOCATION>,<BYTE VALUE>

The FILL statement is used to place a byte value directly in
internal memory. Care must be taken in using this statement
since bazic and the operating system reside in internal memory
and FILLS to locations within these programs can result in
catastrophic system failures.

The LOCATION must be a positive integer Decimal address of a
valid memory location (0 to 65535). The BYTE VALUE must be a
positive integer in the range of 0 to 255.

COPYRIGHT-1981 - 46 - MICRO MIKE 1.S, INC. 05/04

r .

~
I
I

L

l
r
[

l

l

baZic II 4-STATEMENTS

Examples of the FILL statement follow:

FILL D2,6
10 FILL 12405,201

4.5.6 Set Error Trapping (ERRSET)

-.::! ERRSET [<LINE#>,<ERROR LINE NUMBER>,<ERROR NUMBER>] ·-.

:· .. •.

L
I·'

h.;.

The ERRSET statement is used to enable or disable the error
trapping mode. If the ERRSET statement is used without the
arguments, error trapping is disabled.

If the ERRSET statement is used in a program followed by the
optional line number and two numeric variables and a trappable
error occurs in the program, processing will branch to the speci
fied line number and the first numeric variable will contain the
line number where the error occurred and the second numeric will
contain the number of the error that occurred. The number and
meaning of the trappable errors can be found in Section 8.1
(Trappable Errors).

Once an error has occurred under ERRSET, the ERRSET statement
must be executed again to re-enable the error setting mode.
Control C can be trapped as an error if desired.

If the value of the line number is used in the recovery routine,..
it is the programmers responsibility to make"the necessary
changes after a RENumber. The RENumber command has no way of
knowing the value of a variable in a program.

Examples of the ERRSET statement follow:

10 ERRSET 200,El,E2
20 ERRSET

4.5.7 Line Length (LINE)

LINE l*<DEVICE#>,]<#EXPR>[,<#EXPR>]

The LINE statement is used to set the line length of any device.
The default line length is 80 characters. The line length can be
set for any value from 10 to 165 characters. The DEVICE# must be
a legal device in your system and must evaluate to a positive
integer from 0 to 7.

Normally, bazic echos a carriage return and line feed auto
matically when the line length is reached while printing to a
device number. If this is not desirable, the automatic carriage
return and line feed can be suppressed by passing an additional
optional numeric expression which evaluates to zero (0). To re
enable output of the carriage return and line feed when the line
length is reached, the optional numeric expression should
evaluate to a non zero value.

COPYRIGHT 1981 - 47 - MICRO MIKE'S, INC. 05/04

baZic II 4-STATEMENTS

When a LINE length is set, the value remains only through the
current session with bazic. The LINE statement may be executed
in a program or as a direct command.

Examples of the LINE statement follow:

LINE 132
10 LINE i2,88
20 LINE il,132,0

4.5.8 Stop a Program {STOP)

STOP

The STOP statement causes a program to stop executing. The
program may be CONTinued after a STOP is encountered by the CONT
command. The program may not be modified during a STOP, but
variables can be modified and printed to det~rmine their values
before CONTinuing.

The STOP command is a powerful debugging tool because it halts
program execution at a specific place and allows variables to be
examined and modified.

Examples of the use of the STOP statement are:

. 10 STOP
20 IF N<>l THEN STOP

4.5.9 End a Program {END)

END

The END statement is similar to the STOP statement except the END
statement causes the program to terminate to the direct mode with
no recourse to CONTinue. - END need not be the last line in baZic
as with many other BASICs since baZic will assume an END state
ment when the last line of a program is executed.

The END statement may occur anywhere in a program and will not
cause the program to "end" unless the END statement is executed.
There may be any number of END statements in a program, or there
may be none. There is an implied END statement at the end of the
program.

Examples of the use of the END statement follow:

100 END
120 IF A$="END" THEN END

COPYRIGHT 1981 - 48 - MICRO MIKE'S, INC. 05/04

r
i '

r-

L
[

[

[

L
l
l
I

,-..

I .
I~ .- .
~

baZic II 5-BUILT-IN FUNCTIONS

BUILT-IN FUNCTIONS

baZic contains numerous "built-in" functions to facilitate pro
gramming with the language. These functions provide easy access.
to many routines which are used frequently in the course of writ
ing a program. The built in functions can be used for ma thema
tical purposes, string manipulations, I/O, file manipulations,
and other miscellaneous jobs.

In the examples of functions that follow, the result of the
function call will appear to the right of the function example
and will be enclosed in parenthesis.

Numeric functions may be freely used in all numeric expressions.
Functions may also be used in FOR NEXT loops or IF THEN ELSE
statements. Several examples of the general use of functions
follow:

10 IF COS(A)=INT(B) THEN PRINT SQRT(C) ELSE PRINT LOG(D)
20 FOR N=l TO ABS(X)\NEXT N
30 ON ABS(INT(Y)) GOSUB 40,50,60,70
40 IF LEN(A$)>32 THEN 500
50 ON VAL(A$) GOTO 10,20,30,40
6 0 PRINT ABS (C)

Many of the nu.mer ic functions can be removed from baZ ic by the
program SHORTB to reclaim additional programming space.

5.1 Math Functions

All of the following functions are related to mathematical
calculations.

5.1.1 Absolute Value (ABS)

ABS(<NUMERIC EXPRESSION>)

The ABSolute value of an expression is the positive result of the
numeric expression without regard to the sign. All positive
numbers remain positive and :.rall negative numbers are made posi
tive.

Examples of the use of the ABS function follow:

A=ABS(l0)
B=ABS (-15)
C=ABS (0)

COPYRIGHT 1981

(A=l0)
(B=lS)
(C=0)

- 49 - MICRO MIKE'S, INC. 05/04

baZic II

5.1.2 Sign of a Number (SGN)

SGN(<NUMERIC EXPRESSION>)

5-BUILT-IN FUNCTIONS

The SiGN function is used to determine the sign of a number
(i.e., is it positive or negative?). The function accomplishes
this by returning a +l if the expression is positive, -1 if the
expression is negative, and a 0 if the value of the expression is
zero (0).

Examples of the SGN function follow:

5.1.3

A=SGN(0)
B=SGN(577*21)
C=SGN(43-55)

(A=0)
(B=l)
(C=-1)

Integer Value (INT)

INT(<NUMERIC EXPRESSION>)

The INTeger function is used to return only the integer value
which is less than or equal to the value of the numeric expres
sion. Any fractional part of the number is discarded. Notice
that this function does not round off a number, it only returns
the integer part of the expression.

Examples of the INT function are:

A=INT(0)
B=INT(l4.9455)
C=INT(-6.5367)

(A=0)
(B=l4)
(C=-7)

5.1.4 Logarithmic Value (LOG)

LOG(<NUMERIC EXPRESSION>)

This function returns an approximation (accuracy is based on the
precision of bazic) to the natural logarithm of the value passed
as a numeric expression. The value of the argument must always
be positive (greater than 0).

Examples of the LOG function are:

A=LOG(l)
B=LOG(.S)
C=LOG(23 .14069)

(A=0)
(B=-.69314717)
(C=3.1415925)

5.1.S Exponential Value (EXP)

EXP(<NUMERIC EXPRESSION>)

This function returns an approximation (accuracy is based on the
precision of baZic) to the value of e raised to the power of the
numeric expression.

COPYRIGHT 1981 - 50 - MICRO MIKE'S, INC. 05/04

[

[

[

[

I
L
l
L

L
L

-'" .•

.·~

bazic II

Examples of the EXP function are:

A=EXP(0)
B=EXP(-.69314717)
C=EXP(3.1415925)

(A=l)
(B=.5)
(C=23.14069)

5.1.6 Square Root (SQRT)

SQRT(<NUMERIC EXPRESSION>)

5-BUILT-IN FUNCTIONS

This function returns an approximation of the square root of the
numeric expression. The argument to this function must be great
er than or equal to zero (0). NOTE: Many BASIC interpreters use
"SQR" for the square root function instead of "SQRT" as in bazic.

Examples of the SQRT function are:

A=SQRT(0)
B=SQRT (4)
C=SQRT(3)

5.1.7 Sine (SIN)

(A=0)
(B=2)
(C=l.7320508)

SIN(<NUMERIC EXPRESSION>)

This function returns an approximation of the trigonometric sine
of the value passed as the numeric expression. -The expression
must pass the angle in radians.

Examples of the SIN function are:

5.1.a

0=SIN(0)
l=SIN(3.1415926/2)

Cosine (COS)

COS(<NUMERIC EXPRESSION>)

This function returns an approximation of the trigonometric co
sine of the value passed as the numeric expression. The expres
sion must pass the angle argument in radians.

Examples of the COS function are:

A=COS(0)
B=COS(3.1415926)

.COPYRIGHT 1981

(A=l)
(B=-1)

- 51 - · MICRO MIKE'S, INC. 05/04

bazic II

5.1.9 Arctanget (ATN)

ATN(<NUMERIC EXPRESSION>)

5-BUILT-IN FUNCTIONS

This function returns an approximation of the trigonometric arc
tangent of the value passed as the numeric expression. The value
returned is an angle expressed in radians.

Examples of the ATN function are:

A=ATN(3)
B=ATN(. 75)

5.2 String Functions

(A=l.2490457)
(B=.6435011)

The following functions are designed to facilitate the use of
strings by providing functions that tell the LENgth of strings,
functions that convert string information to numeric and vice
versa and functions that convert string information to their
ASCII equivalent and back again.

5.2.1 Length of a String (LEN)

LEN(<STRING NAME>)

The LENgth function is designed to return the length of the
specified string. The length of a string is the numbe: of char
acters within the string. The length of a null stri~g -is zero
(0) •

Examples of the LEN function follow:

10 DIM AS(20) ,BS(20) ,CS(20)
20 AS="MICRO MIKE'S"
30 BS=""
40 PRINT "THE LENGTH OF AS IS" ,LEN(AS)
50 PRINT "THE LENGTH OF BS IS" ,LEN(BS)
60 PRINT "THE LENGTH OF cs IS",LEN(CS)

When this program is RUN the results will be:

READY
RUN

THE LENGTH OF AS IS 12
THE LENGTH OF BS IS 0
THE LENGTH OF CS IS 20
READY

COPYRIGHT 1981 - 52 - MICRO MIKE'S, INC. 05/04

L

r
r
L-

l

l
I
I
l

~
I

i

L

...... ~

L

bazic II 5-BUILT-IN FUNCTIONS

5.2.2 Character String (CHR$)

CHR$(<NUMERIC EXPRESSION>)

The CHaRacter String function is passed the decimal ASCII value
of a character and the function returns a one-character string
that represents the selected ASCII character. The range of
arguments for this function is from 0 to 255. See APPENDIX A for
the value of all ASCII characters.

Examples of the use of the CHR$ function follow:

A$=CHR$(33)
B$=CHR$(49)
C$=CHR$ (65)
D$=CHR$ (122)

(A$="!")
(B$="1 ")
(C$="A")
(D$="z")

5.2.3 ASCii Value (ASC)

ASC(<STRING EXPRESSION>)

The ASCii function is the inverse of the CHR$ function. The ASC
function returns the ASCII value of the first character of the
specified string. The null string is not a valid argument for
this function. The specified string can be a substring of a

. larger string.

Examples of the ASC function are:

A=ASC(II ")

B=ASC("B")
C=ASC ("BOB")

10 A$="ABC"
20 A=ASC(A$(2))

(A=32)
(B=66)
(C=66)

(A=66)

5.2.4 Value (VAL)

VAL(<STRING EXPRESSION>)

The VALue function is used to convert a numeral in a string to a
numeric variable. This function allows numbers to be entered
into a string variable and then converted into a numeric vari
able. Leading blanks (ASCII spaces) are ignored. If the speci
fied character(s) are not legal numeric constants, an error will
be returned. Non-numeric values are allowed after the numeric
values.

Examples of the VAL function follow:

A=VAL("00STRING")
B=VAL ("10 ")

COPYRIGHT 1981

(A=0)
(B=l0)

- 53 - MICRO MIKE'S, INC. 05/04

baZic II

5.2.5 String (STR$)

STR$(<NUMERIC EXPRESSION>)

5-BUILT-IN FUNCTIONS

The STRing$ function is the inverse of the VALue function. The
STR$ function returns a string which corresponds to the numeric
argument that is passed. The format of the returned string is
dependent on the current default format. If the current default
format is the free format, a space will always be inserted in the
string as the first character of the number.

Examples of the STR$ function are:

A$= STR$ (123 4)

If the current print formatting default is %il0F2, the preceding
example would convert as follows:

B$=STR$(1234) (B$=n

5.3 Input Functions

The input functions are involved with inputting a character or a
byte from an input device.

5.3.1 Input a Character String (INCHAR$)

INCHAR$(<DEVICE#>)

This function takes in one character from the specified de7ice
number. The returned value is a single character string. This
function does not echo the input character back to the input
device. Control characters are allowed, but Control C can only
be returned when control C is inhibited.

An example of the INCHAR$ function follows:

· A$=INCHAR$(0) (Input a character from device # 0)

5.3.2 Input a Byte (INP)

INP(<PORT NUMBER>)

This input function takes one byte from the specified Z80 port
and returns this byte as a numeric value from 0 to 255. ~his
function is equivalent to the Z80 IN instruction. The INP func
tion does not validate the data it receives, but merely ngrabsn
whatever value is at the specified port at the time of the func
tion call. The PORT NUMBER argument must be in Decimal. The
value INPut is not echoed to the input device.

An example of the INP function follows:

I=INP(6) (Input a byte from port 6)

COPYRIGHT 1981 - 54 - MICRO MIKE'S, INC. 05/04

r

!
!._

L

[

L
I

l
l
L
L

:.-

,- -
I

i_._,

!

[_

I •· I _;
L....:

baZic II

5.3.3 Input the Status (INSTAT)

INSTAT(<DEVICE#>)

5-BOILT-IN FUNCTIONS

The INSTAT function is available only in the MicroDoZ version of
bazic.

The INSTAT function is used to determine the status of an input
device to determine if the device is ready to send another char
acter. If the value of INSTAT is one (1), the port is ready to
send information. If the value of INSTAT is zero (0), the port
is not ready to send information.

This function can be used to allow programs to be executing while
waiting for the user to input information. The INSTAT function
must be called of ten enough by the program to insure that all
user keystrokes are "caught."

5.3.4 Outstatus (OOTSTAT)

OUTSTAT(<DEVICE#>)

The OOTSTAT function is available only in the Microooz version of
bazic.

The OUTSTAT function is similar to INSTAT except the OOTSTAT
function is used to determine·the status of an output device. If
the device is ready to accept information, an OUTSTAT call will
be equal to one (1). If· the device is not ready to accept
information, the status of the device will be zero (0).

This function can be used to print information and do other
processing simultaneously. If OUTSTAT is not called often enough
the printer will appear to slow down.

5.4 File Functions

The following functions are used to return useful information
about the files and associated file pointers.

5.4.1 Type of File Pointer (TYP)

TYP (<CHANNEL if>)

The TYPe function returns the type of data currently being
"pointed to" by the file pointer of the specified CHANNEL#. The
CHANNEL# must have been previously OPENed by an OPEN statement.
If the functions returns a "0," the next item in the file is an
END MARK. If the function returns a "l," the next item in the
file is a string. If the function returns a "2," the next item
in the file is a numeric. This function has no provisions for
byte values.

COPYRIGHT 1981 - 55 - MICRO MIKE'S, INC. 05/04

baZic II 5-BUILT-IN FUNCTIONS

An example of the TYP function follows:

A=TYP(2) (Where 2 is a previously OPENed file)

The previous discussion assumes a sequential file. With random
or byte level files, the file pointer can be pointing at a 0, 1,
or 2 by coincidence and not be pointing at an endmark, string, or
number.

5.4.2 File Type {FILE)

FILE (<FILENAME>)

The FILE function returns the type of the specified file. The
FILENAME argument must evaluate to a legal file name. The type
information is returned as a numeric value. If the file does not
exist, the function returns a -1. If the file does exist, the
type of the file is returned. A machine language file is gener
ally a Type l, a baZic program is Type 2, and a baZic data file
is generally a Type 3. Values for the type function can range
from 0 to 127.

Examples of the FILE function follow:

A= FILE (nBAZICn)
B=FILE(nDATAFILE")
C=FILE (A$)

5.4.3 File Size (FILESIZE)

FILESIZE(<CHANNEL*>)

The FILESIZE function is used to return the size of the specified
CHANNEL#. The channel must have previously been opened by an
OPEN statement. The value returned will be the size of the file
in 256-byte blocks.

An example of the FILESIZE function follows:

A=FILESIZE (2) (Return the size of the Channel 2 file)

5:.4.4 File Pointer Position {PILE:PTR)

FILEPTR(<CHANNEL#>)_

The FILE:PoinTeR function causes the position of the file pointer
in the specified CHANNELi to be returned. The CHANNEL# must have
been previously opened with an OPEN statement.

An example of the FILEPTR function follows:

A=FILEPTR(3) (Return the pointer position of channel 3)

COPYRIGHT 1981 - 56 - MICRO MIKE'S, INC. 05/04

r

l
[

[
, ..
:
I

L

t
[

[

l
\

[

L

l
l
l

'
i
I
L

l
L

baZic II 5-BUILT-IN FUNCTIONS

5 .5 Miscellaneous Functions

The following functions are unrelated and perform different
tasks. Functions performed include generating RaNDom numbers,
EXAMining and CALLing internal memory locations, positioning the
cursor by TABulating, determining the amount of FREE memory, and
returning the RAM ADDRess of a variable.

5.5.1 Random (RND)

RND (< #EXPR>)

The RaNDom function returns a psuedo-random value between 0 and
l. The argument passed as a ~EXPR is called the seed and deter
mines which psuedo-random sequence is to be generated. A random
seed can be generated by baZic by passing a negative one (-1) as
the argument. When a negative one is passed as the argument,
baZic uses the value of the Z80 refresh register for the seed.

If the NUMERIC EXPRESSION evaluates to a zero (0), the previous
seed is used so that the next number in that particular random
sequence is generated. In this way the same "random" sequence
can be duplicated by calling the RND function first with a seed
value and then all successive calls with a "0" argument.

The random seed tends to cycle. Use a -1 at the beginning of the
program and zeros -thereafter insteaa of -l's exclusively.

Examples of the RND function f ol1ow:

A=RND(-1)
B=RND(.0998)
C=RND(0)

(baZic should "pick" the seed)
(seed is .0998)
(use previous number to generate next #)

5.5.2 Examine Memory (EXAM)

EXAM(<MEMORY LOCATION>)

The EXAMine function is used to allow bazic programs to "look" at
specific bytes in internal memory. The MEMORY LOCATION argument
must be a positive integer between 0 and 65535 and must be a

·Decimal number. The value returned from the function call will
be a byte value in the range of 0 to 255.

Examples of the EXAM function follow:

10 A=EXAM(l2405)
20 IF EXAM(l2405)=201 THEN D2=12405
3 0 PRINT EXAM (N)

COPYRIGHT 1981 - 57 - MICRO MIKE'S, INC. 05/04

baZic II 5-BUILT-IN FUNCTIONS

5.5.3 Free Memory (FREE)

FREE(<DUMMY ARGUMENT>)

The FREE memory function is used to return the amount of internal
memory that is free within baZic. This is memory not used for
bazic itself, the current program, the used and dimensioned
variables, and the data storage of the bazic program. The DUMMY
ARGUMENT is not evaluated by the function and any numeric value
will work.

An example of the FREE function follows:

PRINT FREE(0)

5 .5 .4 Tabulate (TAB)

TAB (< #EXPR>)

The TAB function is used in PRINT statements to cause the cursor
or print head to be positioned to the value of the #EXPR argu
ment. The TAB position is always the absolute position and not a
relative position calculated from any previous position. No
value is returned from the function but the print head or cursor
is positioned to the argument value. No action is taken by the
function if the argument is before the current position of the
cursor or print head. TABs may be used after a PRINT@ statement.
since the PRINT@ statement always updates the print head position
table.

Examples of the TAB function follow:

10 PRINT TAB(20), "THIS IS POSITION 20"
20 IF X<>Y THEN !TAB(l0) ,"X" ELSE !TAB(20) ,"Y"

5 .5 .5 Call Machine Language (CALL)

CALL(<MEMORY ADDRESS> [,<DE ARGUMENT>])

The CALL machine language function is designed to allow baZic
programs to interface with machine language subroutines. This
feature can be very desirable since many routines in machine
language operate as much as 100 times faster than the same rou
tine in baZic or any other BASIC interpreter.

COPYRIGHT 1981 - 58 - MICRO MIKE'S, INC. 05/04

i.
t

[

I

I
I

l
i-

I

L

l .

r
[

l

l
I
l
l

.. · ...

baZic II 5-BUILT-IN FUNCTIONS

The MEMORY ADDRESS argument is a positive Decimal integer in the
range of 0 to 65535. This value is the address of the routine to
be CALLed. The second optional DE ARGUMENT is a value in the
same range that will be placed in the DE register pair to pass a
value to the machine language routine. The CALL function returns
the value of the HL register pair.

To terminate the machine language routine, execute a RETurn
instruction. All registers except the IX and IY can be used by
the machine language routine; however the stack and stack pointer
should not be modified. If stack operations are required, the
stack pointer should be saved and a new stack established. The
IX and IY can be used if they are returned to baZic unmodified.
All other registers can be freely modified by the user's rou
tines.

Examples of the CALL function follow:

A=CALL (63455)
B=CALL(A,H)

5.5.6 Address of a variable (ADDR)

ADDR{<VARIABLE NAME>)

The ADDRess function is used to return the address of a variable
within the current baZic Erogram. If the specified variable is a
string, the function will return a decimal number that points to
the RAM address of the first byte of the string. If the argument
to the function call is a numeric variable, the function will
return the address of the exponent (last) byte of the number.

An example of the ADDR function is as follows:

A=ADDR(A$)
B=ADDR(C)

(A = the RAM address of first byte of A$)
(B = the RAM address of the exponent of C)

5.5.7 CPMFN Call Function (CP/M Version Only)

i.. CPMFN allows for execution of any of the CP/M System Function
Calls directly from bazic and may be issued directly as a command
·Or executed as a statement. The syntax follows the function
syntax.

'
!
I
1_

The function is called by passing the function number as the
first argument to the function call. The value passed as the
first argument will be "inserted" in the C register when the
system call is made.

Many system calls require a second argument which is passed to
the DE register pair. This argument is optional to the CPMFN,
but if the system call requires a second argument, this value in
the CPMFN call must be included.

COPYRIGHT 1981 - 59 - MICRO MIKE'S, INC. 05/04

bazic II 5-BOILT-IN FUNCTIONS

When the function returns, the variable set equal to the Function
call (A in the example) will be equal to the value of the HL
register pair.

An example is as follows:

CPMFN (<C ARGUMENT>) [,<DE ARGUMENT>]

COPYRIGHT 1981 - 60 - MICRO MIKE'S, INC. 05/04

[.

I:
[;~

L
.r
[

[

L

I
[

L

I
L

L

.. •
.:.

' '
! •

L
1 ·.
'. !. .:

L:

baZic II 6-0PERATORS

OPERATORS

Operators in bazic are special signs, characters, or words that
cause one or more numeric values (operands) to be changed by the
operation. The operators in baZic are classified as arithmetic,
relational, and logical.

Any combination of numeric constants, numeric variables, opera
tors, function calls, and array variables can be considered to be
a numeric expression. This feature gives tremendous flexibility
in programming complex situations.

6.1 Arithmetic Operators

The arithmetic operators are the common operators seen in every
day arithmetic. Some special symbols must be defined for use in
bazic because most CRTs do not have a multiplication sign and
have to use the asterisk (*) to signify multiplication.

The arithmetic operators are defined in the following table:

OPERATOR FUNCTION EXAMPLE

EXPONENTIATION 64=8"2
* MULTIPLICATION 50=5*10
I DIVISION 10=50/5

SUBTRACTION 12=25-13
+ ADDITION 15=5+10

NEGATION -5=-(+5)

6.2 Relational Operators

The relational operators are the true/false operators. The re
sult of a relational comparison is either true (=l) or false
(=0). The relational operators are mainly used in the IF THEN
ELSE statement to determine a branching condition.

COPYRIGHT 1981 - 61 - MICRO MIKE'S, INC. 05/04

baZic II 6-0PERATORS

The relational operators are defined in the following table:

EXAMPLES
OPERATOR RELATION TRUE (1) FALSE (0)

= EQUAL l=l 1=2
< LESS THAN 1<2 l<l
> GREATER THAN 2>1 2>2
<= LESS THAN OR EQUAL 2<=2 2<=1
>= GREATER THAN OR EQUAL 2>=1 2>=3
<> NOT EQUAL 2<>1 2<>2

6.3 Boolean Operators

The three Boolean operators are AND, OR, and NOT. These opera
tors may be combined with the relational and arithmetic operators
to handle more complex situations. All non zero values are
considered true while zero values are considered false.

For the AND condition to be true, both the first operand AND the
second operand must be true. The following program evaluates the
AND condition as true AND false:

10 X=l
20 Y=5
30 IF X=l AND Y=S THEN (THE EXPRESSION IS TRUE)
40 IF X=l AND Y=3 THEN (THE. EXPRESSION IS FALSE)

For the OR condition
evaluate to be true.
operation false. The
dition.

10 X=l
20 Y=S

to be true, one operand· OR the other must
Only if both operands are false is the OR

following program demonstrates the OR con-

30 IF X=l OR Y=S THEN (TEE EXPRESSION IS TRUE)
40 IF X=l OR Y=l THEN (THE EXPRESSION IS TRUE)
50 IF X=0 OR Y=S THEN (THE' EXPRESSION IS TRUE)
60 IF X=0 OR Y=l THEN (THE EXPRESSION IS FALSE)

The NOT condition is true when the operand is NOT false. The NOT
operator negates the Boolean value of an operation. If <OPERAND>
is false, NOT<OPERAND> is true. The following program demon
strates the NOT condition:

COPYRIGHT 1981 - 62 - MICRO MIKE'S, INC. 05/04

[

L
[

\.:
L

[

[

[

[

[

[

L
[
r.:
L

. -·~--

baZic II

10 x=l
20 Y=S

6-0PERATORS

30 IF NOT (X>Y) THEN (THE EXPRESSION IS TRUE)
40 IF NOT (X<Y) THEN (THE EXPRESSION IS FALSE)

Boolean expression may also be "formed" by the use of numeric
variables and constants. The following sets of programs will
demonstrate the use of several abstract Boolean expressions:

10
20
30

Since x
will be
(true).

10
20
30

X=l
Y=S
Z=X=Y

does
zero

X=3
Z=X>S
A=NOT

not equal
(false).

z

y
If

the value of z upon executing Line 30
X and Y were equal, Z would be set to 1

In this example, z is set to 1 (true) if x is greater than 5,
otherwise z will be set to 0 (false). The variable A will be the
complement of z.

10 N= (X=Y) = (Z=W)

c~.~ This example shows a hybrid logical expression. The expression
is evaluated such that N will be set to 1 (true) when X=Y and
Z=W. If X<>Y or Z<>W, N will be set to 0 (false).

The expression "IF NOT X" is equivalent to "IF X=0" and uses one -
~~ less byte of program storage. In a similar manner, "IF X" is

equivalent to "IF X<>0" and saves three bytes of program storage.

6.4 Order of Evaluation

To avoid confusion in the evaluation of arithmetic, relational
and boolean operators, bazic defines the precedence of the opera
tors. This precedence may be changed by the use of parentheses.

The higher precedence operators are always evaluated first and
operators of equal precedence are evaluated from left to right.
Operators enclosed in parentheses are evaluated before operators
not enclosed in parentheses. Parenthesis pairs can be nested
within other parentheses but the innermost pair is evaluated
first.

COPYRIGHT 1981 - 63 - MICRO MIKE'S, INC. 05/04

bazic II
6-0PERATORS

The following table lists the precedence of the operators start
ing with those of highest precedence. All operators listed on
the same line are of equal precedence.

()
NOT, -....

*,/
+,
=,<,>,<=,>=,<>
AND
OR

COPYRIGHT 1981

(not an operator, but evaluated first)
(logical operator, negate a number)
(exponentiation)
(multiplication and division)
(addition and subtraction)
(relational operators)
(logical operator)
(logical operator)

- 64 - MICRO MIKE'S, INC. 05/04

r
l :

r·

[

[

t
r
[

l

.•

,_

L
I .•

I "<

l·-

baZic II 7-USER-DEFINED FUNCTIONS

USER-DEFINED FUNCTIONS

baZic has the ability to let the user define his own functions.
All of the built-in functions could be defined in baZic but their
operations would be much slower. This ability greatly enhances
the usefulness of baZic. User-defined functions are "handy"
because they can be defined at any place in the program and can
be called from any place in the program without regard to line
numbers. User-defined functions, in general, do not execute as
quickly as a subroutine which performs the same function.

User-defined functions may be defined to return one numeric or
string value. Functions are named the same as variables except a
function has "FN" followed by the name. If the function name is
a string name, the function is a string function. As many argu
ments as can fit on one line can be passed to user defined
functions and these can be either string or numeric but only one
value is returned.

A user function is defined by the reserved word "DEF" which
"tells" baZic the user is defining a function. Functions can be
one line or as many as required. The definition will include
variables enclosed in parentheses to.represent the arguments to
pe passed to the function. These variables defined in the para~
meter list of a function DEFinition become local variables to the
function itself.

All numeric variables used within a function DEFinition and
declared in the function definition will be local to the func
tion. Changing these variables within the function will not
effect variables of the same name used elsewhere in the program.
All numeric variables not declared in the function DEFinition are
global variables and any use of these variables in the function
will affect and change the value of the variable elsewhere in the
program.

String variables are always global and the use of string vari-
·ables in the DEFinition of the function will not change their
global nature.

baZic allows single and multiple line function DEFinitions. A
single line user-defined function must have the entire function
defined on a single line. The single line function DEFinition
appears as follows:

DEF FNA(R,C)=!@(R,C)

COPYRIGHT 1981 65 - MICRO MIKE'S, INC. 05/04

baZic II 7-USER-DEFINED FUNCTIONS

Multiple line function DEFinitions contain only the DEFinition
reserved word, the function name, and the parameter list. The
same function defined in the single line example defined as a
multiple line function would appear as follows:

10 DEF FNA(R, C)
20 !@(R,C)
30 RETURN R
40 FNEND

7 .1 Define a Function (DEF)

DEF <FUNCTION NAME> (<PARAMETER LIST>) [=<EXPRESSION>]

The DEF statement is used to inform bazic that the user is def in
ing a function. If the function is to be a single line function,
the =EXPRESSION must be included in the definition. If the
function is to be a multiple line function then the =EXPRESSION
is omitted. All user-defined functions are defined at RUN time
before the actual program execution begins.

Examples of the use of the DEF statement appear in the previous
section.

7 .2 Return from a Function (RETURN)

RETURN <NUMERIC OR STRING VARIABLE>

The RETURN statement is used to terminate a multi-line function
and RETURN a variable to the calling program. The.value assigned
in the RETURN statement is the value that will be returned from
th~ function call. If the function is a numeric function, the
value RETURNed from the function call must be numeric and if the
functLon is a string function, ·a string variable must be
returned.

A function may contain more than ·one RETURN statement. The first
RETURN executed terminates the function call. A RETURN also
"EXITs" all FOR NEXT loops within the function call. See Section
4.3.7 for more information.

Examples of the use of the RETURN statement follow:

100 RETURN A
200 RETURN B$

7.3 Function End (FNEND}

The FuNctionEND statement is used to signify the end of each
multiple line function defined. If the function doesn't have a
FNEND statement, an error will be generated.

. An example of the FNEND statement can be found in Section 7 (USER
DEFINED FUNCTIONS).

COPYRIGHT 1981 66 - MICRO MIKE'S, INC. 05/04

-...
~
I

r-
1

[

[

[

[

L

I
I
l
l
I
l

. ,

baZic II 8-ERROR MESSAGES

ERROR MESSAGES

This section is designed to detail the error messages which can
be returned by baZic. The error messages are divided into two
sections: the trappable errors and the non-trappable. Many of
the errors listed are followed by the statements, commands, or
internal routines which cause the error. Internal routines are
assembly language routines. These routines are named with sym
bolic names and shouldn't necessarily make sense to a reader of
this manual. The names are provided so that the user can gain
insight into the conditions which will cause an error to be
generated.

8.1 Trappable Errors

Trappable errors are errors which can be trapped using the ERRSET
statement of baZic. (See Section 8.1) These errors are
generally ones that are not catastrophic and the programmer
usually has some recourse when these errors occur. The errors
are listed in the sequence of their error number to facilitate
finding the error when the error number is known.

8.1.l · ARGument (Error 1)
. .

The ARGument error is returned any time a function, command, or
statement is given an invalid argument. All functions can return
this error as well as the following commands, statements, and
internal routines:

LIST Improper command format.

MEMS ET Not followed by a number.

No memory at that address.

DEL Not followed by a number.

LOAD

NSAVE

SAVE

LN2LC

COPYRIGHT 1981

Second line number less than the first.

DLOOK failure - Normally no file by that name.

File name in use.

Size specification is not a number •

DLOOK failure - Normally no file by that name.

This is a subroutine used by RUN,
DEL. It converts a line number
buffer to an address. An error
argument is not a number.

LIST, EDIT, and
in the command
occurs if the

- 67 - MICRO MIKE'S, INC. 05/04

baZic II 8-ERROR MESSAGES

REN Improper command format.

AUTO Improper command format.

APPEND DLOOK failure - Normally no file by that name.

CHAIN DLOOK failure - Normally no file by that name.

8.1.2 DIMENSION (Error 2)

The DIMENSION error refers to a problem using the DIM statement.
Either the programmer has tried to redimension a numeric array or
string variable, or the programmer has tried to DIMENSION a
numeric array or string variable after the variable has been used
in the program. The following statement can cause this error:

DIM DIM is not followed by a variable.

zero dimension for a string.

Same variable dimensioned twice.

8.1.3 OUT OF BOUNDS (Error 3)

The OUT OF BOUNDS error can be returned on most functions and
many commands and statements. This error can be caused when a
num~ric argument is not within the prescribed range or the pro
grammer makes a reference to a numeric array or string variable
that is outside the limits of the variable. The error will also
occur when the programmer attempts to READ or WRITE beyond the
limits of a disk file.

The following commands, statements, functions, and internal rou
tines can generate an OUT OF BOUNDS error:

MEMS ET

AUTO

REN

DEL

SAVE

ON

TAB

OUT

COPYRIGHT 1981

Specified value will truncate current program.

Line number increment is zero.

Line number increment is zero.

Line numbers not in range of 0 to 65535

Not enough space on disk or program larger than
file.

Argument greater than 255.

Argument greater than 255.

Port and/or value greater than 255.

- 68 - MICRO MIKE'S, INC. 05/04

[

1 ·

[

[

[

L

l
L
I
L
L

i.
!

i
I_

I
L

I
l-.
~

baZic II

WRITE

FLSTAT

FCOM

LINE

CREATE

ASC

INP

LVR

REN

ATOBI

BCDA

EXTBI

COPYRIGHT 1981

8-ERROR MESSAGES

Attempting to write a byte value greater than 255.
Not enough space in file to complete this opera
tion.

This subroutine locates the status byte for the
specified file. An error results if the specified
file number is greater than 7.

An initialization routine used by READ# and WRITE#
prior to calling the DOS DCOM routine. An error is
given if the file pointer value is greater than
the number of blocks in the file.

Attempting to set the line length to a value
greater than 165 or less than 10. Device number
greater than 7.

Specified file type greater than 127.

Argument is a null string.

Port greater than 255.

A subroutine used to locate variables. An error
occurs when an attempt is made to locate an ele
ment of an array which is outside the specified
dimensions.

Attempting to access string element zero.

For a partial string if the specified end is
actually before the specified beginning.

RENumbering would result in a line number greater
than or equal to 65535.

A subroutine which converts ASCII numbers to bina
ry. Any attempt to convert a number greater than
65535 gives an error.

A subroutine which converts binary coded decimal
to formatted ASCII. This routine automatically
rounds if necessary. When the E format is used
rounding may result in a number which is larger
than the maximum; ie. 9.9999999E+62 for 8-digit
precision.

A subroutine used to convert numerical expressions
to file pointers. An error occurs if the block
pointer exceeds 65535.

A error occurs if the pointer is negative.

- 69 - MICRO MIKE'S, INC. 05/04

baZic II

BIMPY

SQRT

EXP

LOG

SETPO

8-ERROR MESSAGES

A subroutine for binary multiplication. Used by
DIM, FLSTAT, LVR, and another subroutine which
allocates memory space for arrays. An error is
given if the result will exceed 65535.

Attempting to take the square root of a negative
number.

Argument greater than 145.062

zero argument

Argument less than 3.1622776E-64.

Argument less than zero.

Any attempt to set print device greater than 7.

8.1.4 TYPE (Error 4)

The TYPE error is returned when the programmer tries to assign a
numeric value to a string variable or assign a string value to a
numeric variable. The error also occurs when an attempt is made
to OPEN a file whose type does not agree with the type specified
in the program.

The following can cause a TYPE error:

OPEN

SAVE

LOAD

EXCFN

EVSTR

LEN

ASC

EVLN

COPYRIGHT 1981

File type specified is not the same as
found.

Block variable is a string variable.

Not a type 2 file.

Not a type 2 file.

the file

A routine used to initialize FN execution. An
error occurs if a string function is used in a
numerical expression or vice versa.

A routine used to evaluate string expressions. An
error occurs if a numerical variable is used in a
string expression.

Argument is a variable but not a string variable.

Argument is a variable but not a string variable.

Routine used to evaluate numeric expressions. An

error occurs if the expression contains a string
variable.

- 70 - MICRO MIKE'S, INC. 05/04

I
L

p
[

[

[

I
[

[

L
L
L

i
I _

bazic II 8-ERROR MESSAGES

ERRS ET The variable for error type is a string variable.

READi

FOR

The variable for line number is a string variable.

Attempting to read a single byte to a string.

First string overhead byte neither 2 nor 3.

High nibble of BCD number is zero.

Index variable is a ~tring variable.

8.1.5 FORMAT (Error 5)

The FORMAT error is associated only with PRINT statements. The
error occurs when the format parameters are net legally defined
and when attempts are made to print a variable whose number of
characters exceed the format length. The error can also occur
when numbers containing fractions are printed in the I format.

The following statement and internal routine can cause the FORMAT
error:

FORMAT

BCDA

Field greater than 33.

Not I, E, A, or F.

For E and F types

Digits right of decimal not specified.
Digits right of decimal greater than or
equal the field less one.

I format specified for non-integer value.

Field too small.

8.1.6 LINE NUMBER (Error 6)

The LINE NUMBER error is generated when a branching statement
makes a reference to a line number that doesn't exist in the
·current program, or the reference to the line number contains
some error such that a valid line number is not given as the
argument to the statement.

The following commands, statements, and internal routines can
cause a LINE NUMBER error:

FNDLNS

APPEND

COPYRIGHT 1981

A routine which finds the address for a given line
number. Used by GOTO, GOSUB, and RESTORE. Gives an
error if the line number does not exist.

The first line number of the appended program is
less than the last line number of the original
program.

- 71 - MICRO MIKE'S, INC. 05/04

baZic II 8-ERROR MESSAGES

LIST Line number does not exist.

DEL Line number does not exist.

RUN Line number does not exist.

ERRS ET Line number does not exist.

EXIT Line number does not exist.

8.1.7 FILE (Error 7)

FILE errors are always related to disk files. The error occurs
when the program tries to access a disk file that doesn't exist
or is of the wrong type. If the CHANNEL NUMBER is not within the
legal range or an attempt is made to OPEN a CHANNEL NUMBER al
ready OPENed, a FILE ERROR will result. Attempts to CREATE or
NSAVE files that will not fit in the remaining space on a disk or
attempts to change any information on.a write protected disk will
cause the FILE ERROR message to be generated.

The following commands, statements, functions and internal rou
tines can cause the FILE error to occur:

TYP

NSAVE

CREATE

DOS

FCOM

READ#

WRITE#

·oPEN

SAVE

LOAD

COPYRIGHT 1981

File not open.

·Directory full.

Not enough space.

Directory full.

Not enough space.

File already exists.

Error detection in DOS.

Unsuccessful DCOM.

File not open.

File not open.

File not found.

File already OPEN.

Unsuccessful DCOM.

Unsuccessful DCOM.

File has zero sectors of valid data.

- 72 - MICRO MIKE'S, INC. 05/04

I
I"

[

r
[

[

l

l
[

I
L

L

' ""':;j

·-:

baZic II 8-ERROR MESSAGES

CAT File not found.

DESTROY File not found.

APPEND File not found.

CHAIN File not found.

8.1.8 BARD DISK (Error 8)

The HARD DISK error always is associated with the disk drives.
This error can be caused by an improperly seated diskette or a
diskette formatted incorrectly or for some reason has unreadable
data in floppy disk systems. Micro Mike's, Inc., hard disk
systems should not return a HARD DISK error unless there is a
hardware problem or all the substitution sectors on the hard disk
have been used.

All error detection for the HARD DISK ERROR occurs in the DOS.
The following commands and statements can generate a HARD DISK
error:

CAT
DESTROY

SAVE
CHAIN

'LOAD
WRITE

APPEND
OPEN

CREATE
READ

.. · 8.1.9 DIVIDE by ZERO (Error 9)

:·'.' The DIVIDE by ZERO error can occur only in conjunction with the
LET (or implied LET) statement or a numeric function. This error
occurs when an attempt is made to divide by zero. The following
internal routine can generate a DIVIDE ZERO error:

' •:..--

i.
I .

L
I
..
..

'-'-

FPDIV Attempt floating point divide by zero. (Software
floating point version only. With the Hardware
floating point version all errors are reported as
numeric overflow)

8.1.10 SYNTAX (Error 10)

The SYNTAX error is the most prevalent error to occur under
baZic. Every function, statement, and command can cause a SYNTAX
error if the function, statement, or command is not spelled
~orrectly or if the attempted use is not in accord with the
specifications of the function, statement, or command.

All commands, statements, and functions can generate this error
but the following statements generate the error in ways that are
often not obvious to the programmer:

COPYRIGHT 1981 - 73 - MICRO MIKE'S, INC. 05/04

baZic II

DATA

ON GOTO

ON GOSUB

RETURN

READ

8-ERROR MESSAGES

Trying to READ a numeric constant into a string
variable

On variable larger than number of line numbers

On variable larger than number of line numbers

No return variable (from a user defined function)

Trying to READ a numeric constant into a string
variable

The following statements and internal routines can generate a
SYNTAX error:

PRSTR The print string routine. Finds 0DH (carriage
return) before a double quote.

EXCFN Missing right parenthesis.

$CONST

VFYB

CHEKEYl

LVR

CHK$

EVSTR

EVLN

ERRS ET

IF

ON

GO SUB

-coPYRIGBT 1981

String constant. Finds 0DE before a double quote.

Verify that next token is equivalent to value in
Register B. Most frequent use is to verify expect
ed left and right parenthesis and commas.

A routine which checks end of statement. ·Gives
error on improper ending.

Expecting a variable but didn't find one.

A routine which checks for string variable. Error
if it doesn't find a variable of any type.

String constant expected but not found.

Expression ends-with an op code.

Expression begins with a non-unary op code.

Adjacent non-unary op codes.

No line number or one or both variables missing.

With strings the only valid operators are >=, <=,
<>, <, >, and -. Any other operator gives an
error. The boolean expression includes a string
constant without double quote at end.

No line number after comma.

Not GOTO or GOSUB

No line number.

- 74 MICRO MIKE'S, INC. 05/04

r·
["
I~.

l ..
[

[

[

L

'

I_

[
[~
Ii

i
'--

bazic II 8-ERROR MESSAGES

GOTO No line number.

EDIT No line number.

PROP Parses primary opcodes. Error given when a direct
command is used in a program.

READY Initialization routine. Error occurs when a state
ment doesn't end properly.

8.1.11 READ (Error 11)

The READ error only occurs with the READ statement. If the
programmer attempts to READ a string constant into a numeric
variable, the error will occur. Also, if the READ statement
attempts to read beyond t~e available DATA statements or there
are no DATA statements, a ~EAD error will occur.

8.1.12 INPUT (Error 12)

The INPUT error occurs only with the INPUT or INPUTl statement or
the VAL function. If the programmer is "asking" for a numeric
input and the user enters a string or any characters not consti
tuting a numeric value, the error is returned. In this case
baZic asks the user to RETYPE the input.

If the argument.to the VAL function is not numeric, an INPUT
error will occur. This error.is trappable by ERRSET as an INPUT
error.

8.1.13 ARGument MISMATCH (Error 13)

The ARGument MISMATCH error occurs when an attempt is made to
access a user-defined function but the number of arguments passed
does not agree with the parameter list established in the func
tion DEFinition.

8.1.14 NUMERIC OVerflow (Error 14)

This error is returned when attempts are made to exceed the range
of the precision of baZic being used. If the precision of the

·baZic is 8, numbers that are greater than 9.9999999E+62 are not
allowed. Numbers smalle~ than lE-64 are converted to zero (0).
This error is reported for all hardware floating point board
arithmetic errors and all software floating point errors except
an attempt to divide by zero.

8.1.15 STOP/Control C (Error 15)

This "error" occurs when Control c is enabled and error trapping
is set by the ERRSET stateraent and the user presses the control C
keys on the keyboard. This error is used to trap the control C
input so the programmer can change program flow based on the user
input.

COPYRIGHT 1981 - 75 - · MICRO MIKE'S, INC. 05/04

bazic II 8-ERROR MESSAGES

8.1.16 LENGTH (Error 16)

The LENGTH error is returned when using the INPUT or INPUT!
statements or when the programmer is entering a program in the
direct mode. This error occurs when the number of characters
input is longer than the current line length. The line length
can be set using the LINE statement to any value up to 165
characters.

8.2 Non-trappable Errors

Non-trappable errors are usually catastrophic in nature and pre
clude any chance of continuing the program. For this reason
these errors cannot be trapped using the ERRSET command. These
errors are generally gross programming errors where the program
mer's logic has broken down.

8.2.1 CONTINUE

This error occurs when an illegal attempt is made to issue the
CONT command to continue program execution. The program may not
be CONTinued if a program error caused the program to terminate,
or an END statement was encountered by the program, or the pro
gram has been changed, or the Control c or a STOP was executed.
For this reason these errors cannot be trapped using the ERRSET
command.

8.2.2 CONTROL STACK

The control stack is used to store the loop counts on FOR NEXT
loops and to store the RETURN addresses for subroutines and user
defined functions. The improper use of any of these statements
can cause a CONTROL STACK error to occur.

The following statements can cause a CONTROL STACK error:

FOR

NEXT

EXIT

RETURN

The statement containing FOR is the last statement
of the program.

FOR-NEXT data not at top of control stack as
expected.

Wrong index variable.

FOR-NEXT data not at top of control stack.

No return data in control stack •.

8.2.3 DOUBLE DEFinition

The DOUBLE DEFinition error always occurs at RUN time when all
user defined functions are evaluated. This error is returned
when two or more user defined functions are found to have the
same name.

COPYRIGHT 1981 - 76 - MICRO MIKE'S, INC. 05/04

I
I

[
r
I
L

r
[

l
l
l
l

\

I

-~ --

baZic II 8-ERROR MESSAGES

8.2.4 FUNCTION DEFinition

This error occurs in user defined functions when a new DEF state
ment is encountered before baZic can find the FNEND statement of
the preceding function. This error is also generated when the
programmer tries to access an undefined user function.

8.2.5 ILLEGAL DIRECT

This error is returned when an attempt is made to use illegally a
statement or function in the direct mode. User defined functions
cannot be used in the direct mode. See Section 3 (DIRECT COM
MANDS) for a list of statements that can be used in the direct
mode.

8.2.6 INTERNAL STACK overflow

This error is not normal and should not occur under normal use.
If this error does occur, contact Micro Mike's, Inc. A copy of
all disks and a description of the circumstances may be required
to duplicate the problem.

8.2.7 MEMORY FOLL

This error is caused when the current program and its associated
variables are too large to fit in the memory available for baZic
and its programs. If you~ system contains more memory than which
baZic is MEMSET, you can use the MEMSET command to claim more
memory. Otherwise the program needs to be broken into smaller
"pieces" if possible and linked using the CHAIN statement.

8.2.8 MISSING NEXT

This error is very specific to the FOR NEXT loop. This error
means that a FOR NEXT loop was started, but baZic can't find the
NEXT statement to define the loop. Every FOR in a program must
have a NEXT directly associated with it.

8.2.9 NO PROGRAM

This error only occurs when an attempt is made to use the RUN
command but no current program is in the internal memory of the
computer.

8.2.10 TOO LARGE OR NO PROGRAM

This error is returned when an attempt is made to LOAD, CHAIN, or
APPEND a program which isn't a valid program or the program is
too large to fit into the available memory in your system. ,

COPYRIGHT 1981 - 77 - MICRO MIKE'S, INC. 05/04

baZic II 8-ERROR MESSAGES

This error can occur when a program is partially loaded which
contains "garbage" caused by an improperly saved program or from
a magnetically damaged disk. A disk can be damaged by turni~g
off the power to the computer without opening the drive door or
by opening the drive door while the computer is writing to the
disk.

The following internal routine can cause this error to occur:

INTLS Part of initialization routine which is used on
ORG+4 entry or re-entry following LOAD, CHAIN, or
APPEND. The error occurs on failure to find an end
of program marker. Either the program was too
large for memory or the program is invalid.

MISCELLANEOUS TOPICS

This section is designed to cover several different topics that
will be of concern to programmers using baZic. The first section
will consider the internal line editor of bazic. The following
sections will cover how baZic stores information in disk files
and the major differences between baZic and other dialects of
BASIC.

· 9.1 Line Editor

To allow the easy creation and changing of programs, baZic has a
"built-in" line editor. This editor may be used while entering a
program, changing a program, or in response to the INPUT or
INPUTl statements.

Internally, baZic has ·two lin~ buffers. As you type in any line
of baZic code, you are typing into the primary input buffer.
Once the line has been entered and Return key pressed, the line
just typed in is moved to the editor buffer. This means that any
line .of program just typed is available for editing.

Any other line of text can be placed in the editor buffer by
issuing the EDIT command with the desired line number as t~e
argument. The editor works the same no matter which method was
used to place a line of text in the editor buffer (i.e. typing in
an original line of text or invoking the EDIT command).

To keep track of the changes in a line of bazic program, an
intetnal pointer is used to "point" to characters in both the
editor buffer and the input buffer. As each character of text
(except the editor commands) is typed in, both pointers are
advanced one character at a time so that the pointer to the input
buff er is always pointing to the current character position. The
editor keeps track of both pointers and allows the programmer to
transfer information from the editor buffer to the input buffer.

COPYRIGHT 1981 - 78 - MICRO MIKE'S, INC. 05/04

r
I

\

r
[

L
[

l
I
[

[

l
L
L

l

L

baZic II 9-MISCELLANEOUS TOPICS

When the editor is invoked by issuing the EDIT command, bazic
displays the line number requested automatically. The editor
also "looks" at two different types of backspace characters. If
your system uses the underline (ASCII 95), the editor will output
an underline to the device to signify the backspace. The editor
assumes that you have a teletype-like device that is not capable
of backing up. However, if you define your backspace as ASCII 8,
the editor upon receiving this code, will issue a backspace
(ASCII 8), a space (ASCII 32) and another backspace.

The following commands are available in the line editor and are
used to copy characters or sets of characters from the editor
buffer to the input buffer: ""'G (cont:ol G), ""'N, "'A, ""'Q, ""'z, ""'o,
and ""'Y. All of the editor commands a:e control characters (the
control key is pressed at the same time the letter is pressed.)

9.1.1 control G

Control G copies the entire contents of the editor buffer from
the current cursor position within the line to the input buffer.
Control G may be used to view the editor buffer after a line has
been placed in the editor buffer. After the control G has been
executed, the programmer should be able to see the line that was
in the editor buffer and the cursor will be at the end of the
line.

At this point the programmer can take one of three actions: press
the return key which enters the edited li.ne· into the program, or
press the control N command which leaves the line in the editor
buff er and returns the cursor to the beginning of the line, or
add to the line. This procedure is very useful when viewing a
line of text in the editor buffer prior to doing the actual
editing.

If there is no line of text or the pointer is.already at the end
of the text in the editor buffer, the bell will be sounded if a
control G command is issued by the programmer.

9.1.2 Control N

-The Control N command is discussed partially in the control G
section. The purpose of the control N command is to allow the
programmer to restart the editing of the line in the editor
buff er by cancelling the line presently on the screen and return
ing the cursor to the beginning of the line for further editing.
An "@" sign is printed when the Control N command is typed to
indicate to the programmer the line has been cancelled.

9.1.3 control A

The Control A command is used to copy one character from the
editor buffer to the input buffer. The pointers can be pointing
to different characters in each buffer so the command "takes" the
character pointed to in the editor buffer and places it in the

COPYRIGHT 1981 79 - MICRO MIKE'S, INC. 05/04

baZic II

input buffer.

,,

9-~ISCELLANEOUS TOPICS

The character is also printed to the CRT as if the programmer had
typed the character into the input buff er. Both pointers are
incremented after this command. If no character is in the editor
buffer, the "bell" is sounded on the CRT to let the programmer
know that the command was illegal.

9.1.4 Control Q

The backspace command, Control Q is identical to the backspace
key on many CRTs or the Control H key. Both pointers are decre
mented by this command. If your baZic is set to recognize the
underline character (ASCII 95) for a backspace, the command
prints an underline character each time it is executed to inform
the programmer how many characters the command has "backed over."

If your bazic is set to recognize a backspace character (ASCII
8), a backspace is printed followed by a space (ASCII 32) fol
lowed by another backspace. If .one or both pointers are at the
beginning of a line, the command sounds the "bell" of the CRT to
let the programmer know of the mistake.

9.1.5 Control z

This command is used to erase one character at a time from the
input buff er. The command prints a "%" sign to inform the pro
grammer that the character position occupied by the "%" sign has
been erased and is no longer in the inpu·t buff er. If the input
buff er pointer is already at the beginning of the line, the bell
is sounded to inform the programmer of the error. These
characters are not part of the line itself but are placed in the
line shown on the CRT so the programmer will know the status of
the insert mode.

9.1.6 Control D

The Control D command is the search-and-find command. Upon
executing the command, bazic will wait for one additional charac
ter to be input. Once this character is input, the editor buffer
is searched until the first occurrence of the specified character
is found and the contents of the editor buffer up to but not
including that character is copied to the :nput buff er. If the
character is not located in the editor buffer, nothing is copied
to the input buff er ·and the bell is sounded.

9.1.7 control Y

The Control Y command is used to "turn on and off" the insert
mode. By executing the Control Y command to turn on the insert
mode, characters may be inserted into the input buff er that were
not in the editor buffer. Once the characters have been entered,
control Y can be toggled off again to allow other characters to
be copied or deleted from the input buff er.

COPYRIGHT 1981 - 80 - MICRO MIKE'S, INC. 05/04

[

I
I

l
r
[

L

[

[

l
i

./

L
IL·

.

bazic II 9-MISCELLANEOUS TOPICS

When the insert mode is toggled on, a "less than" character (<)
will be printed to inform the programmer that the editor is in
the insert mode. When the insert mode is toggled off, a "greater
than" character (>) is printed to inform the programmer that the
insert mode is off. These characters are not part of the line
itself but are placed in the line shown on the CRT so the pro
grammer will know the status of the insert mode.

9.2 Data Files

Data files are used for the permanent storage of data collected
or ordered by baZic programs. A data file essentially is a
section of a disk that is given a file na~e and a specific
location and size. The Disk Operating System (MicroDoZ, CP/M or
Northstar DOS) is responsible for keeping track of all files, and
the accessing of these files is done from baZic through the Disk
Operating System. See your operating syste~ manual for more
information concerning files and the information that is kept
associated with each one.

The file names for data files follow the same rules as all other
files under the respective Disk Operating System. The file name
is a string value that must be no longer than 8 characters. Any
combination of characters is allowed except an ASCII space or a
comma. The comma is used to separate the file name from its
drive number reference.

The maximum size of any one file is 16.7 million characters
(16 1.776 ,96 0 bytes) under MicroDoz and 4 megabytes under CP/M, if
your system has this much storage. Otherwise files are limited
only by the amount of storage available on your system hardware.

Files under Microooz can have up to 128 different types (0 to
127). Generally baZic data files are given a type of 3 but can
be any type if the type argument is specified when the file is
OPENed.

MicroDoZ does not support dynamic file allocat~on. (i.e. MicroDoZ
files cannot expand automatically when the file size is ex
ceeded.) This means that all files should be the proper size or
greater when created. CP/M files are Dynamic

Before any file can be used by bazic, it must be OPENed. See
Section 4.4.3 for more information on OPENing a file. When the
programmer is finished with a file it should be CLOSEd as soon as
possible so that any data remaining in the internal RAM buff er is
"flushed" out of RAM and into the file.

Data files under bazic may contain four types of information;
strings, numbers, bytes, and "end marks." End marks are written
after every file WRITE that doesn't contain the reserved word
NOENDMARK. In sequential writes, the ENDMARK is overwritten by
the new record and a new ENDMARK is written after the last data
so that normally files contain only one ENDMARK. The inclusion
of the NOENDMARK reserved word at the end of any variable list

COPYRIGHT 1981 - 81 - MICRO MIKE'S, INC. 05/04

baZic II 9-MISCELLANEOUS TOPICS

that is to be written to a file will suppress the writing of an
end mark. The end mark is represented by a l (byte value} in the
file.

If strings are written to a file, a variable amount of space is
required to store them, depending upon the length of the string.
If the string is less than 255 characters, two bytes of "over
head" are required for each string stored. If the string length
is more than 255 characters, three bytes of overhead are re
quired. This overhead value must be taken into account when
reading or writing files in a random manner.

The first byte of a string stored on disk is the byte value of 3
if the string is greater than or equal to 255 bytes or 2 if the
string is less than 255 bytes. Strings are written this way so
that the TYP function can recognize a string. The next byte (or
two bytes if the string is over 255 characters long) is the
length of the string.

Numerics take a predefined amount of file storage
precision of the bazic that is writing the file.
required to store a numeric in a file is contained
ing table:

based upon the
The precision
in the follow-

PRECISION OF BAZIC

8
10
12
14

BYTES REQUIRED FOR FILE STORAGE

5.
6
7
8

Numerics are stored in the files as packed binary-coded-decimal
(BCD) values. The digits of the number are stored in the appro
priate number of bytes with each digit being stored in a nibble
(4 bits). The first byte of a number contains two nibbles, the
first nibble being the most significant digit in BCD.

Each nibble from the first byte to the last byte contains each
succeeding BCD digit. The number of these bytes is dependent
upon the precision. The last byte is the sign and exponent of
the number. Bit 7 is the sign (l=negative, 0=positive) and the
remaining bits (6-0) are the exponent of the number.

Byte writes, of course, only take one byte of storage. However,
a NOENDMARK is generally required when writing bytes so that an
end mark is not written after every byte.

When reading and writing strings and numerics, baZic uses a very
structured approach so that it can always recognize these two
entities. The TYP function can be used to determine the type of
data that is currently at the file pointer location. The TYP
function can recognize strings (type 1), numbers (type 2), and
end marks (type 0).

COPYRIGHT 1981 - 82 - MICRO MIKE'S, INC. 05/04

,......

I

[

' -

[

[

r
[

[

L

1

[

l
l
l
l

..

i
!

I_

L

baZic II 9-MISCELLANEOUS TOPICS

When a file is OPENed, an internal buffer is established in baZic
for reading and writing files. This buffer is 512 bytes long for
each channel opened. When a file is closed, the buffer i:nmedi- ·
ately is written back to the disk (but not in the case where only
read operations were performed on the file). The memory space
occupied by the buff er is not recovered but if the channel is
OPENed again the same buffer will be used •

9.3 BASIC Differences

Every BASIC on the market is different from every other BASIC in
some way. bazic has been written to be quite similar to North
Star BASIC in operation but is different in several ways. North
Star BASIC is different from most other BASICS on the =arket,
mainly in its string handling capabilities.

9.3.l. strings

Most BASICs allow strings to be only 255 characters long but
support string arrays. bazic allows strings to be any length,
limited only by internal memory, but string arrays are not sup
ported per se. String arrays can be simulated very easily under
baZic.

A string array can be simulated by DIMensioning a string large
enough to hold the entire array. A simple string position cal
culation is then performed to access the "element" of the array
that is needed. The following example shows how to access.the Eth
element (E is the element number) in string A$, where each ele
ment is L bytes long:

A$(E*L-(L-l) ,E*L)

All s~rings greater than 10 bytes long
they are used. If a string is used in
cally DIMensioned to a length of 10.
limited only by available memory.

must be DIMensioned before
a program, it is automati
Str ings can be any length

baZic does not use LEFT$, MID$, and RIGHT$ as many other BASICS
do. baZic has a more convenient method of defining substrings
within a larger string.

The position of the substring is passed to any string arqument
exactly the same as the string name would be. The following
examples show the method of converting LEFT$, MID$, and RIGHT$ to
equivalent baZic string representations:

COPYRIGHT 1981 - 83 - MICRO MIKE'S, INC. 05/04

baZic II

LEFT$ (A$, L)
RIGHT$ (A$, R)
MID$ (A$, L,R)

would be
would be
would be

9-MISCELLANEOUS TOPICS

A$(1,L)
A$(LEN(A$)-R+l)
A$ (L, L+R-1)

A$(L) is the string of characters from position L to the end of
the string.

9.3.2 IF THEN Evaluation

Many BASICS evaluate the IF THEN condition differently than
baZic. In bazic, should the IF THEN evaluation be false, bazic
skips over one statement fallowing the TEEN sta tern en t and
executes the next instruction in that line or the next line if
there are no other statements on the IF THEN line. Manv other
BASICS skip everything else on the IF THEN line if the evaiuation
of the IF THEN clause is false.

The statement separator of baZic acts the same way as an implied
ELSE statement when the initial IF THEN evaluates false. The
following example shows how baZic handles the IF THEN statement:

10 X=0
20 Y=6
30 GOSUB 70\REM PRINT VALUE OF X AND Y
40 IF X=Y THEN 50\GOSUB 70\Y=21\X=21\GOTO 30
50 GOSUB 70\REM PRINT VALUE OF X AND Y
60 END .
70 PRINT "X=",X\REM SUBROUTINE TO PRINT VALUE OF X ANDY
80 PRINT "Y=", Y .
90 RETURN

Upon RONning the preceding program, the following would appear on
the CRT:

READY
RON
X= 0
Y= 6
X= 0
Y= 6
X= 21
Y= 21
X= 21
Y= 21

9.3.3 Miscellaneous

Many other BASICS return a -1 if the result of a relational
operation is true. bazic returns a +l. In both cases, a zero
(0) is returned if the operation is false.

COPYRIGHT 1981 - 84 - MICRO MIKE'S, INC. 05/04

' i
I -

c
[

[

[
r
L

I
l.

l ..
L
r
L

: .. ·.

: ,_

baZic II 9-MISCELLANEOOS TOPICS

Many BASICS do not support the zero dimension of an numeric
array. When an array is dimensioned to 10 under bazic (B(l0)),
the array actually has 11 elements (0 to 10). If memory is at a
premium in your system and you only need 10 elements, dimension
your arrays to 9 (B(9)).

The NEXT control variable is incremented in baZic upon finishing
a FOR NEXT loop. Many BASICS do not increment this variable at
this time. Upon leaving a FOR NEXT loop, the control variable
will be one step value greater than the limit value.

COPYRIGHT 1981 - 85 - MICRO MIKE'S, INC. 05/04

baZic II 10-0TILITY PROGRAMS

UTILITY PROGRAMS

The following are assembly language programs designed to run in
conjunction with baZic. SHORTB is a program that removes the
mathematics functions from bazic to regain more usable RAM work
space. XREF does a variable cross reference of a baZic program
that is loaded into RAM.

10.l SHORTB

The SHORTB program is not available with the CP/M version of
baZic.

For many applications the bazic mathematical routines, SIN, cos,
ATN, etc. are excess baggage. The assembly language program,
SHORTB, can be used to delete unused routines from baZic. The
deletion is irreversible. KEEP A SAFE COPY of the original.

The following instructions for using SHORTB assume that you are
in baZic.

Type
Type

BYE
SHORTB,n where n is the applicable

drive if:.

A selection menu will appear:

KEY THE
THROUGH

1.
2.
3.
4.
5.
6.
7.
8.

APPROPRIATE NUMBER TO REMOVE FUNCTIONS FROM ATN . . .
ATN
SIN-COS
LOG
EXP
RAISE TO POWER, A,

SQRT
RND
NONE OF THE ABOVE

The routine essentially moves the end of baZic. It is not possi
ble to delete SQRT, for example, and retain ATN, SIN-COS, etc.
Selection of option 6 deletes ATN, SIN-COS, LOG, EXP, A' and
SQRT.

COPYRIGHT 1981 . - 86 - MICRO MIKE'S, INC. 05/04

L

f

r
[

l
L

,_ ~·

:- _.j

. ~.;

.... ,
1 :i
l..;

L
(... ·

k·

bazic II 10-0TILITY PROGRAMS

In addition to moving the end of baZic; SHORTB substitutes a JMP
to SYNTAX ERROR for all internal calls to the affected routines.
This avoids visits to never-never land if you should attempt to
run a program which uses a deleted routine.

The RAISE TO POWER operator (or "' as it appears in bazic pro
grams) requires additional explanation. baZic uses the LOG and
EXP routines to evaluate "' for non-integer powers, negative
powers, and all powers greater than 30. Hence, if you delete
LOG, the expression, 12"'3 , will be evaluated properly. However,
the expressions, 12"'3.l , 12"'-3 , and 12"'31 will result in SYNTAX
ERRORS.

On completion of the selected modification SHORTB does a
the 2D00H entry point of baZic. Selection of item 8, NONE
ABOVE, returns you to bazic without modifying baZic.
cases , any program which was in RAM w i 11 be 1 o st.

JMP to
OF THE
In all

If you want a permanent copy of the shortened baZic, you must
exit to MicroDoZ by typing BYE and save baZic on the disk by
typing SF BAZIC 0100 (Microooz version.) The procedure would
appear as follows:

READY
BYE
l>SF BAZIC 100
l>JP.100
READY

Table 1 lists the number of bytes of memory that can be recovered
for your programs or data by selecting the various options. The
savings are the same for both the hardware floating point and
software floating point versions •

Table 1

BYTES RECOVERED BY DELETING MATHEMATICAL FUNCTIONS

baZic08 baZicl0 baZicl2 ,bazicl4

ATN 166 177 188 199
·cos-SIN 395 432 454 476
LOG 657 704 750 784
EXP 957 HHS 1079 1125

..... 1025 1083 1147 1193
SQRT 1174 1234 1300 1348
RND 1266 1326 1392 1440

COPYRIGHT 1981 - 87 - MICRO MIKE'S, INC. 05/04

bazic II 10-0TILITY PROGRAMS

10.2 XREF

The XREF program is not available with the CP/M version of bazic.

XREF is an assembly language program which analyzes a baZic
program and prepares a table of the variables used and the pro
gram lines in which these variables occur. such a table can be
extremely useful in documenting or debugging your programs. XREF
requires RAM from BD00 to BFFF Hex to operate.

The following instructions for using XREF assume that you are in
baZic and have your program loaded:

Type
Type

BYE
XREF,n where n is the applicable drive ~.

When the program is loaded and executed the prompt message will
appear:

Select print option:
1) CRT
2) Printer

Printing of the table begins immediately on selection. Following
is a sample listing, which in turn is followed by a sample XREF
table which shows the number of symbols used by the program and
the total number of times all symbols are used. On successful
completion of the listing, or if an error is encountered, XREF
returns to the XX4H (ORIGIN+4) entry point of baZic, leaving the
baZic program undisturbed.

XREF makes no attempt to determine if the baZic program will run.
However, there are three programming errors which will cause XREF
to abort. These are:

1. Quotation marks not closed.
2. No comma after a print format specification.
3. No letter after FN.

In each case the error message will be the same:

ERROR IN LINE xxx

If you examine the indicated line and do not find one of the
three errors listed above, there is a fourth possibility unique
to XREF. As currently written, XREF cannot list a program in
which the same symbol is referenced in more than 126 program
lines. The probability of this occurring is small.

COPYRIGHT 1981 88 - MICRO MIKE'S, INC. 05/04

r··

[

l.
r

I_

[

r
[

[

[

L

l
L

L

I

L
t .
!.::'
G...:i.

bazic II 10-0TILITY PROGRAMS

The fifth and final error condition which may be encountered in
using XREF is a MEMORY FOLL error. XREF occupies memory area
from BD00H to BFFFH. Data for the output is accumulated between
the end of your baz ic program and the beg inning of XREF. For a
very long program memory capacity may be exceeded.

It is not necessary to perform a MEMSET prior to running XREF.
It in no way affects the baZic program, unless of course your
program extends to or beyond BD00E. The return to baZic will
however, wipe out the copy of XREF in RAM. If you want a second
copy of the variable table you must again execute XREF.

This program will work with all eight versions of bazic, i.e., 8,
10, 12, and 14 digit precisions in both the hardware floating
point and software floating point versions.

Sample EXREF Listing

10 REM A program to deteonine BASIC memory requirements.
20 REM Filename MffiREQR
30 0=11520\ REM Address of first byte of BASIC.
40 INl?UT"BASIC USED ",AS
50 INfUT"Key 1 for printer, 0 for~' 2 for both.",P
60 IF A$(3 ,3) ="Z" THEN X=31 ELSE X=25
70 El=256*EXAM(Ol-7)+.EXAM(o+6)\REM Address of last byte of BASIC.
80 A=EXAM(Ol-X)+256*EXAM(Ol-X+l)\REM Address of ATN routine
90 C+EXAM(Ol-X+2)+256*EXAM(Ol-X+3)\REM Address of Cl)S routine
100 L=EXAM(Ol-X+4)+256*EXAM(Ol-X+5)\REM Address of LCG routine
110 E=EXAM(Ol-X+6)+256*EXAM(Ol-X+7)\REM Address of EXP routine
120 IF A$ (3 ,3) = "S" 'IEEN 160
130 T=EXAM(Ol-X+8)+256*EXAM(Ol-X+9)\REM Address of "" routine
140 S=EXAM(Ol-X+l0)+256*EXAM(Ol-X+ll)\REM Address of SQRT routine
150 R=EXAM(Ol-X+l2)+256*EXAM(Ol-X+l3)\REM Address of RND routine
160 ! #P, "Memory requirements for ",A$
170 !#P,"ENDBP-.S at",El,TAB(20) ,"Total memory occupied is",El.;.0+1," bytes."
180 !tP,"A'lN AT",A,TAB(20) ,"Deletion recovers",El-A," bytes."
190 !#P,"COS at",C,TAB(20),"Deletion. recovers an additional",A-C," bytes."
200 UP, "LCG at" ,L,TAB(20), "Deletion recovers an additional" ,C-L," bytes."
210 !#P,"EXP at",E,TAB(20) ,"Deletion recovers an additional",L-E," bytes."
220 IF A$(3,3)="Z" THEN 250
230 !'lfP,"Total m:mory recovered by deleting all 4 routines is",El-E," bytes."
240 Garo 290
250 !#P, """ at" ,T,TAB(20), "Deleticn recovers an additional" ,E-T," bytes."
260 !#P,"SQRT at",S,TAB(20) ,"Deletion recovers an additional",T-S," bytes."
270 l#P,"RND at",R,TAB(20),"Deleticn recovers an additional",S-R," bytes."
280!#P,"Total memory recovered by deleting all routines is",El-R," bytes."
290 !#P\1*P
300 END

COPYRIGHT 1981 - 89 - MICRO MIKE'S, INC. 05/04

baZic II 10-UTILITY PROGRAMS

Sample EXREF Table

A
AS
c
E
El
L
0
p

R
s
T
x

80,180,190
40,60,120,160,220
90,190,200
110,210,230,250
70,170,180,230,280
100,200,210
30,70,80,90,100,110,l30,l40,l50,l70
50,160,170,180,190,200,210,230,250,260,270,280,290
150,270,280
140,260,270
130,250,260
60,80,90,100,110,130,l40,150

Symbols 12
References 88

10.3 Interfacing COPY Programs to baZic Programs

(for MicroDoZ version only)

All of the initialize, copy, and compact programs can be inter
faced very easily to MicroDoZbaZic. All functions are used by
either CHAINing to the appropriate program or by using the
DOSCMD feature of bazic to. call a machine language program
(ICOPY, COPYFILE, COMPACT). See the MicroDoZ manual for a
description of these programs.

ICOPY, FILECOPY, and COMPACT can be used by a baZic program. In
the case of these three programs, the program is called by using
the DOSCMD statement of baZic. The DOSCMD statement can be used
to execute a GO ICOPY command from baZic.

When a DOSCMD statement is used,
command being passed to MicroDoZ
Command Buffer) located at 80H.
command in the CCB.

the contents of the entire
is moved to the CCB (Common

MicroDoZ then acts on the

The programs ICOPY, FILECOPY, and COl1PACT all have the additional
capability of using values in the CCB to answer the prompts
displayed when the program is executed. When any of these pro
grams are executed, they locate the next separator byte in the
CCB. If two separators are together, the programs assume that no
commands follow and they use the file name after the second
separator as the program to load when the copy program is exited.

- COPYRIGHT 1981 - 90 - MICRO MIKE'S, INC. 05/04

r
l .

I
I

[

[

[

[

f

[

[

L
L
[

baZic II 10-UTILITY PROGRAMS

If the copy programs do not find a double separator at the cur
rent separator byte, the programs assume that what follows in the
buffer is additional commands which are to be used by the program
to answer its own prompts.

As an example, the following sequence could be sent to MicroDoZ
from baZic and would result in the files listed in the file FNAME

· being copied from Drive 1 to Drive 2 without operator
intervention. When FILECOPY has finished executing the copy, the
program will return to baZic which will LOAD and execute the
program "CSUB." The MicroDoZ command appears as follows:

~-· ,.

l_

10 DOSCMD "COPYFILE\1\2\N\Y\Y\FNAME \l\N\N\E\\BAZIC\CSUB"

The result of this command sequence would be to execute the
program named COPYFILE. Once COPYFILE is executed it will
respond with the following prompts which are answered by the
values in the CCB. Each response that is in the CCB will be
underlined in the series of questions that follow. The sequence
of prompts is as follows:

COPY FROM DRIVE L
COPY TO DRIVE 2.
AUTO RENAME E .
AUTO REPLACE IF DUPLICATE FILE NAME X
USE A FILE OF FILE NAMES X
NAME OF FILE NAME TO USE FNAME
FILE IS ON DRIVE i
PROMPT DENSITY FOR EACH FILE N
PROMPT ATTRIBUTES FOR EACH FILE E
INPUT E)XIT OR C)ONTINUE ~

(The file-of-file-names file should be written sequentially, with
each file name stored as a string of 8 characters or less. The
list of file names should end with an endmark.)

This versatility of MicroD~ZbaZic allows th~ programmer great
power in programming. No longer does the end user have to know
the Disk Operating System, just to initialize a disk or make a
backup copy. All these things can be set up by the programmer
and the end user has only to press a key on the keyboard to
·accomplish these tasks.

COPYRIGHT 1981 - 91 - MICRO MIKE'S, INC. 05/04

baZic II 11-0PTIMIZING baZic PROGRAMS

OPTIMIZING baZic PROGRAMS

Programs written under baZic can be optimized to run faster by
following the general rules as set forth in this section.

In general, subroutines will execute faster than a similar rou
tine that is written as a user-defined function. However, there
are still advantages to user-defined functions that may outweigh
the speed advantage of a subroutine.

Since bazic (as well as BASIC) uses a branching linked structure
to "find" variables, programs will execute faster if different
variable names are used instead of different variables with the
same first letter such as Fl, F2, F3 etc.

The reason for this is that the location of each letter is known
to the interpreter but for each variable with the same first
letter the interpreter must search through all the variables with
that letter name to find the one in question.

If you do use the same variable letter, use or DI Mens ion the most
used early in the program. Variables are assigned space on a
"first-come, first-served" basis, .so those defined or used early_
get the "closest" space.

To increase the execution speed of a bazic program, frequently
executed subroutines should be at the beginning of the program,
especially if there are branches to other line numbers.

COPYRIGHT 1981 - 92 - MICRO MIKE'S, INC. 05/04

L_

[

r
[

[

L

[

[

L
[

L

.. · ...

p
:

l.

L

baZic II 11-0PTIMIZING bazic PROGRAMS

This page left blank intentionally •

...

COPYRIGHT 1981 - 93 - MICRO MIKE'S, INC. 05/04

baZic II 12-PARTIAL SOURCE LISTING

PARTIAL SOURCE LISTING

This section is designed to allow the user to change easily the
features of baZic that can be changed by the user. A partial
source is included for_ each version of baZic.

12.1 MicroDoZbaZic Partial Source Listing

0100
0100 AF
0101 18 02
0103 01
0104 37
0105 21 32AA
0108 11 8000
010B C3 0138

010E 50
010F 01
0110 ES
0111 2820
0113 18

0114 C3 0231

0117 08
0118 00

0122 0003
0125 FB
0126 C9
0127 00

0128 31F9
012A 30FA
012C 2FEA
012E 2EB3
0130 2E6F
0132 2DD8
0134 2D8C
0136 2EB1

ORG ORIGIN
ENTRYl XRA A

JR RENTRl
MEMFLG DB 1
ENTRY2 STC
RENTRl LXI H,ENDBAS

LXI D,08000H
JMP INTLl

LINECT DB 50H
AUTOS DB l
PROM DB 0E8H
LINETB DW PHPOS
PAGES DB 18H
*
ENTRY3 JMP READYl
*
BSPC DB 8H
CONC DB 0

DS 3
ENABLE EI

RET
NOP

;
SBDATA DW ATN

DW COS
DW LOG
DW EXP
DW TOPWR
DW SQRT
DW RNDl
DW TOPWR4+1

Clears program

Auto MEMSET if l
Saves program

End memory

Initial line length
Auto-start flag
Disk controller origin
Print head table
CRT Lines per page

Saves data

Character delete
Control C inhibit flag

Addresses used by SHORTB
program.

Control C can be inhibited by FILLing the byte at 280 Decimal
with a byte value of l. Control C can be re-enabled by FILLing
this byte back to zero (0).

COPYRIGHT 1981 - 94 - MICRO MIKE'S, INC. 05/04

..
I
I

[J

I

L

[

u
[

[

L

i
L

l
L

L

bazic II 11-0PTIMIZING baZic PROGRAMS

This page left blank intentionally.

i .
l -

COPYRIGHT 1981 - 93 - MICRO MIKE'S, INC. 05/04

baZic II 12-PARTIAL SOURCE LISTING

PARTIAL SOURCE LISTING

This section is designed to allow the user to change easily the
features of baZic that can be changed by the user. A partial
source is included for_ each version of bazic.

12.1 MicrooozbaZic Partial Source Listing

0100
0100 AF
0101 18 02
0103 01
0104 37
0105 21 32AA
0108 11 8000
010B C3 0138

010E 50
010F 01
0110 ES
0111 2820
0113 18

0114 C3 0231

0117 08
0118 00

0122 0003
0125 FB
0126 C9
0127 00

0128 31F9
012A 30FA
012C 2FEA
012E 2EB3
0130 2E6F
0132 2DD8
0134 2D8C
0136 2EB1

ORG ORIGIN
ENTRYl XRA A

JR RENTRl
MEMFLG DB 1
ENTRY2 STC
RENTRl LXI H,ENDBAS

LXI D,08000H
JMP INTLl

LINECT DB 50H
AUTOS DB 1
PROM DB 0E8H
LINETB DW PHPOS
PAGES DB 18H
*
ENTRY3 JMP READYl
*
BSPC DB SH
CONC DB 0

DS 3
ENABLE EI

RET
NOP

i
SBDATA DW ATN ..

DW COS
DW LOG
DW EX?
DW TO?WR
DW SQ?..T
DW RNDl
DW TOPWR4+1

Clears program

Auto MEMSET if l
Saves program

End memory

Initial line length
Auto-start flag
Disk controller origin
Print head table
CRT Lines per page

Saves data

Character delete
Control c inhibit flag

Addresses used by SHORTB
program.

Control c can be inhibited by FILLing the byte at 280 Decimal
with a byte value of 1. Control C can be re-enabled by FILLing
this byte back to zero (0).

COPYRIGHT 1981 - 94 - MICRO MIKE'S, INC. 05/04

[

[

r
i

i_

[

[

r
[

,...._,.,

L
r·
P··· ..._

baZic II 12-PARTIAL SOURCE LISTING

baZic can be made to automatically RUN a program upon bootup by
setting the AUTOS byte (010FH) to 0 (FILL 201,0) and saving baZic
with a program attached. A file should be made first that is
large enough to contain bazic and the turnkey program. Boot up
baZic and LOAD or write the turnkey program.

FILL the turnkey byte with the proper value (0) and BYE to the
Disk Operating System. Save bazic with its turnkey program as a
single file from its normal operating location by using the SF
(Save File) command of DOS.

Alternately, MicroDoZ can be used to "send" a turnkey command to
bazic.

12.2 baZic for CP/M Partial Source Listing

CPM BAZIC

0100
0100 M
0101 18 02
0103 01
0104 37
0105 21 355F
0108 11 8000
010B C3 0169

010E 50
010F 01
0110 E8
0lll 29DD
0113 18

0114 C3 0267

0ll7 08
0118 00

·0119 FF
011A D5
011B 0E 06
011D lE lB
011F ()) 2934
0122 0E 06
0124 lE 59
0126 ()) 2934

ORG ORIGIN
ENTRYl XRA A

JR REm'Rl
MEMFLG DB l
fil."TRY2 SIC
RENTRl LXI H,ENDBAS

LXI D,08000H
JMP INI'Ll

·***
LINECT DB S 0H
AD'IOS DB l
PRCM DB 0E8H
LINETB i:w PHros
PAGES DB 18H
*
ENTRY3 JMP READYl
*

Clears program

Auto MEMSET if l
Saves program

End memory

Initial ·line length
Auto-start flag
Disk controller origin
Print head table
CRI' Lines i::er page

Saves data

BSPC DB SH Character delete
CONC DB 0 Control C inhibit flag
; cursor addressing routine. The example belcw is
; for t...11e Zenith WH19 CRI'. On entry register A
; contains the device number, register D the
; colurrn and register E the line.
GOI'OYX DB 0FFE Indicates asserrbly language routine

PUSH D follows.
MVI C,6
MVI E,27
CALL BDOSC
MVI C,6
MVI E, "Y"
CALL BDOSC

Use this address for BDOS calls to save
IX & IY if you have a CJ?/M look-a-like
that uses the IX & IY registers.

COPYRIGHT 1981 - 95 - MICRO MIKE'S, INC. 05/04

baZic II

0129 2A 0144
012C Dl
0120 19
012E ES
012F 0E 06
0131 SD
0132 CD 2934
013S El
0136 0E 06
0138 SC
0139 CD 2934
013C C9

LBLD OFFSET
rop D
DADD
PUSH H
MVI C,6
n:N E,L
CALL BOOSC
rop H
MVI C,6
n:N E,H
CALL BIXlSC
RET
END IF
DS 7

12-PARTIAL SOURCE LISTING

0130 0007
0144 lFlF OFFSET I:W lFlFH Zenith w1U9 offset

; Clear screen routine. The example below is for the
; Zenith WHl9 CRI'. en entry register A contains the
; device number.

0146 FF CLSl DB 0FFH
0147 0E 06 MVI C,6
0149 lE lB MVI E,27
014B CD 2934 CALL BCOSC
014E 0E 06 MVI C,6
0150 lE 45 MVI E,nEn
0152 CD 2934. CALL BOOSC
015S C9 RET
0156 0003 DS 3

. 0lS9 34AE SBDATA tw A'I'N
015B 33AF tw CDS
015D 329F I:W I.CG
015F 3168 r:w EXP
0161 3124 tw 'roPWR
0163 308D r:w SJRT
0165 3041 r:w RNDl
0167 3166 r;w 'roEWR4+1

Direct console output
Zenith WH19 clear screen sequence

Addresses used by SEORm
program.

Control C can be inhibited by FILLing the byte at 0118H (Decimal
280) with a byte value of 1. Control c can be re-enabled by
FILLing this byte back to zero (0).

A panic stop, normally a Control C, can be changed to another
control character by modifying the following locations within
baZic for CP/M (Release 0S/04): 03368, 1C0FH and 1F28H. A 3H
(AC) value will be found at these locations and should be changed
to the value needed.

Other locations within baZic for CP/M (0S/04) which may be needed
include:

Control A 0377H Control y 0398H
Control G 037BH Control D 039SH
Control H 0383H Control N 039EH
Control z 0387H Control Q 037FH

. COPYRIGHT. 1981 - 96 - MICRO MIKE'S, INC. 05/04

!
i

I
I

l .

r
[

[

I :
[

[

L

r.
[

l
L
L

L

!:

bazic II 12-PARTIAL SOURCE LISTING

baZic can be made to RUN a program automatically upon bootup by
setting the AUTOS byte (010FH) to 0 (FILL 271,0) and saving baz i-c
with a program attached.

Boot up baZic and LOAD or write the turnkey program. FILL the
turnkey byte with the proper value (0) and BYE to the Disk
Operating System. Save bazic with its turnkey program as a
single file from its normal operating location by using the SAVE
command of CP/M.

Alternately, baZic can be turnkeyed from CP/M by following bazic
with the name of the program to be executed, e.g.:

A>BAZIC10 PROGRAM

COPYRIGHT 1981 - 97 - MICRO MIKE'S, INC. 05/04

bazic II APPENDIX A

ASCII TABLE r
ASCII DECIMAL HEX OCTAL ASCII DECIMAL HEX OCTAL 0

NUL 0 00 000 SP 32 20 040
SOB 1 01 001 ! 33 21 041 [STX 2 02 002 " 34 22 042
ETX 3 03 003 .IL 35 23 043 'It

EOT 4 04 004 $ 36 24 044 r
ENQ 5 05 005 % 37 25 0_45 I

ACK 6 06 006 & 38 26 046
BEL 7 07 007 39 27 047

BS 8 08 010 (40 28 050
L HT 9 09 011) 41 29 051

LF 10 0A 012 * 42 2A 052
VT 11 0B 013 + 43 2B 053 [FF 12 0C 014 , 44 2C 054
CR 13 0D 015 45 2D 055
so 14 0E 016 . 46 2E 056
SI 15 0F 017 I 47 2F 057 [

DLE 16 10 020 0 48 30 060 [
DCl 17 11 021 1 49 31 061
DC2 18 12 022 2 50 32 062

[DC3 19 13 023 3 51 33 063
DC4 20 14 024 4 52 34 064
NAK 21 15 025 5 53 35 065
SYN 22 16 026 6 54 36 066 L ETB 23 17 027 7 55 37 067

CAN 24 18 030 8 56 38 070
EM 25 19 031 9 57 39 071

r SUB 26 lA 032 58 3A 072
ESC 27 lB 033 i 59 3B 073

FS 28 lC 034 < 60 3C 074
·,

29 lD 035 61 30 075 L GS =
RS 30 lE 036 > 62 3E 076
us 31 lF 037 ? 63 3F 077

[

L
COPYRIGHT 1981 - 98 - MICRO MIKE'S, INC. 05/04 l

..

.·,

~ ..
~. .·

·--

';"·.:

I
'-

I .
I

.. i....:..

baZic II

ASCII DECIMAL

@ 64
A 65
B 66
c 67
D 68
E 69
F 70
G 71

H 72
I 73
J 74
K 75
L 76
M 77
N 78
0 79

p 80
Q 81
R 82
s 83
T 84
u 85
v 86
w 87

x 88
y 89
z 90
[91
\ 92
] 93

94
95

COPYRIGHT 1981

ASCII

HEX OC':'AL

40 100
41 101
42 102
43 103
44 104
45 105
46 106
47 107

48 lHJ
49 111
4A 112
4B 113
4C 114
4D 115
4E 116
4F 117

50 120
51 121
52 122
53 123
54 124
55 125
56 126
57 127

58 13fJ
59 131
SA 132
SB 133
SC 134
SD 135
SE 135
SF 137

- 99 -

APPENDIX A

TABLE

ASCII DECIMAL HEX OCTAL

...
96 6" 140

a 97 61 141
b 98 62 142
c 99 63 143
d 100 64 144
e 101 65 145
f 102 66 146
g 103 67 147

h HJ4 68 150
i 105 69 151
j 106 6A 152
k 107 6E 153
1 108 6C 154
m 109 6D 155
n 110 6E 156
0 111 6F 157

p 112 70 160
q 113 71 161
r 114 72 162
s 115 73 163
t 116 74 164
u 117 75 165
v 118 76 166
w 119 77 167

x 120 78 170
y 121 79 171
z 122 7A 172
{ 123 7B 173
I 124 7C 174
} 125 7D 17S

126 7E 176
DEL 127 7F 177

MICRO MIKE'S, INC. 05/04

bazic II APPENDIX A

ASCII TABLE

DECIMAL HEX OCTAL DECIMAL HEX OCTAL r
128 80 200 160 AO 240

[129 81 201 161 Al 241
130 82 202 162 A2 242
131 S3 203 163 A3 243
132 S4 204 164 A4 244 I 133 S5 205 165 AS 245
134 S6 206 166 A6 246
135 S7 207 167 A7 247

136 S8 210 16S A8 250
137 89 211 169 A9 251
13S 8A 212 170 AA 252
139 SB 213 171 AB 253
140 SC 214 172 AC 254
141 SD 215 173 AD 255
142 SE 216 174 AE 256

[_ 143 8F 217 175 AP 257

144 90 220 176 B0 260 [
145 91 221 177 Bl 261
146 92 222 17S B2 262 r 147 93 223 179 B3 263 l
14S 94 224 1S0 B4 264
149 95 225 181 BS 265

r 150 96 226 182 B6 266
151 97 227 1S3 B7 267 I

152 98 230 184 B8 270
153 99 231 185 B9 271
154 9A 232 186 BA 272
155 9B 233 187 BB 273
156 9C 234 188 BC 274
157 90 235 189 BD 275
158 9E 236 190 BE 276
159 9F 237 191 BF 277

COPYRIGHT 1981 100 - MICRO MIKE'S, INC. 05/04

l_

I:.
L:.:

bazic II

DECIMAL

192
193
194
19S
196
197
198
199

200
201
202
203
204
205
206
207

208
209
210
211
212
213
214
215

216
217
218
219
220
221
222
223

COPYRIGHT 1981

ASCII TABLE

HEX OCTAL

C0 300
Cl 301
C2 302
C3 303
C4 304
cs 30S
C6 306
C7 3 07

ca 310
C9 311
CA 312
CB 313
cc 314
CD 31S
CE 316
CF 317

D0 320
Dl 321
D2 322
D3 323
04 324
DS 32S
D6 326
D7 327

D8 330
D9 331
DA 332
DB 333
DC 334
DD 33S
DE 336
DF 337

- 101 -

APPENDIX A

DECIMAL HEX OCTAL

224 E0 340
22S El 341
226 E2 342
227 E3 343
228 E4 344
229 ES 345
23 0 E6 346
231 E7 347

232 ES 350
233 E9 3Sl
234 EA 352
235 EB 353
236 EC 354
237 ED 355
238 EE 356
239 EF 357

240 F0 360
241 Fl 361
242 F2 362
243 F3 363
244 F4 364
245 F5 365
246 F6 366
247 F7 367

248 F8 370
249 F9 371
250 FA 372
251 FB 373
252 FC 374
2S3 FD 375
254 FE 376
255 FF 377

MICRO MIKE'S, INC. 05/04

bazic II

L
0
w

8

0 LET

1 FOR

2 PRINT

3 NEXT

4 IF

9 A

FN CLS

DEF

!

ON

OUT

FILL 5 READ

6 INPUT EXIT DOSCMD

7 DATA OPEN APPEND

8 GOTO CLOSE

9 GOSUB WRITE

A RETURN NOTEl

B DIM CHAIN

C STOP LINE

D END DESTROY

E RESTORE CREATE

F REM ERRS ET

OPCODE CHART

High Nibble

B C

STEP

TO

THEN

TAB

ELSE

CHR$

ASC

VAL

STR$

SQRT

INT

NOENDHARK CPMFN

IN CHAR$ SGN

FILE SIN

LEN

CALL

RND

APPENDIX B

D E F

<=

<>

ATN *
FILESIZE +

FILEPTR <

ADDR =
IN STAT >

OUT STAT / NOT

FREE

INP NOTE2

EXAM

ABS

cos AND

LOG OR

EXP

TYP >=

NOTE1--9A indicates the next two bytes are a binary line number.
NOTE2--E9 is used internally as negate
DOSCMD available in MicroDoZ version only.
INSTAT and OUTSTAT available in Microooz version only.
CPMFN available in CP/M version only.

COPYRIGHT 1981 - 102 - MICRO MIKE'S, INC. 05/04

l
I

[

r
-[

[

l

L
[

L
L
L

L
I .
I ..
1 ·:
'-'....:

bazic II

Absolute Value (ABS) , 49
Address of a Variable (ADDR), 59
App:nd a Program (APPEND), 23, 42
Arctangent (ATN), 52
Argument Error

Append, 68
Auto, 68
Chain, 68
Delete Lines, 67
Lisr, 67
LN2LC, 67
Load File, 67
MEMSET, 67
Renumber, 68
Save File, 67
Save New File, 67

Argument Error (1) , 67
Argument Mi.snatch Error (13) , 75
Arguments, 3
Arithmetic Operators, 61
ASCii Value (ASC) , 53
Assign a Variable ·(LET) , 45
Automatic Line NUirbering {AIJ'ro) ·, 17

BASIC Differences, 84
IF 'IHEN Evaluation, 85
Miscellaneous, 85
Strings, 84

baZic
Ccmmand Summary

!@, 30
ABS, 49
ADDR, 59
APPEND, 42
ASC, 53
A'IN, 52
AIJ'ID, 17
BYE, 22
CALL, 58
CllAIN, 43
ams, 53
CLOSE, 40
CLS, 46
CO~IT, 23
COS, 51
C?MFN, 59
CREATE, 38
DATA, 25
DEF, 66

INDEX

COPYRIGHT 1981 - i -

Ccmnand Surmrary (con' t)
DEL, 16
DES'I'ROY, 38
DIM, 44
OOSOID, 43
END, 48
ERRSET, 47
EXAM, 57
EXP, 50
FILE, 56
FILEPI'R, 56
FILESIZE, 56
FILL, 46
FNEND, 66
FOR NEXT STEP EXIT, 36
FREE, 58
GOSUB, 33
GO'IO, 32
IF 'IEEN ELSE, 35
INCllARS, 5 4
INP, 54
Il1PUT, 31
INEU'I'.l. , 3 2
IllSTAT, 55
INI', 50
LEN, 52
LET, 45
Lll"IE, 47
LIST, 15
LOAD, 21
MEMSET, 18
NJ~, 42
NSAVE, 21
ON GOSUB, 34
ON Garo, 34
OPEN, 39
arr, 32
aJTSTAT, 55
PRINI', 27
PRINr@, 30
PSIZE, 18
READ, 26, 41
REM, 45
REN, 17
RESI'CRE, Zl
RE'IURN, 34' 66
RND, 57
P!JN, 22
SAVE, 20

INDEX

MICRO MIKE'S, INC. 05/04

baZic II

Ccmnand SUimtary (con' t)
srn, 16
SGN, S0
SIN, Sl
SJRl', Sl
Sl'OP, 48
SIR$, 54
TAB, S8
TYP, SS
T,]'F.L, 53
WRITE, 41

baZic for CP/M
Caution, 39
Configure, 7
Partial Source Listing, 96

baZic UP"ard Canratible, 1
Bits, 3
Blocks, 3
Boolean ap:rators, 62
Branching Statements, 32
Built-in Functions

see also ?4..ath
see also Miscellaneous
File, SS
Input, S4
Miscellaneous, S7

!>..ddress of variable (ADDR) ., S9
Call ?A..achine Language .

Program (CALL), S8
CP/M Call Function (CPMFN), S9
EXamine Memory (EXAM), S7
Free Memory (FREE), S8
Random (RND) , S7
Tabulate (TAB) , 58

String, S2
Bye to q;:erating System (BYE) , 22
Byte

TUrnkey, 7
Bytes, 3

Call Machine Language
Program (CALL), S8

catalog a Disk (CAT), 19
Chain a Program (CliAIN), 23, 43
Character String (Qffi.$), S3
Clear Screen Ccrmiand, 8
Clear the screen (CLS), 46
Close a Channel (ClOSE), 40
Ccmnands

Execution, 22
Comnent, see Remark
Configuration

Terminal, 8

COPYRIGHT 1981 - ii -

INDEX

Configure baZic
For CP/M, 7
For MicroCOZ, 7
for Northstar, 11

Constants, 3
Continue a Program (CCNr), 23
Continue Error, 76
Control

A, 80
D, 81
G, 80
N, 80
Q, 81
Y, 81
Z, 81

Control Stack, 2
Control Stack Error, 76

EXIT, 76
FOR, 76
NEXT, 76
RE'.IllRN, 7 6

Cosine (CCS), Sl
CP/M, 7

File Name Extensions, 11
MP/M I Considerations, 10
MP/M II Considerations, 11

CP/M Call Function (CPMF?-n, S9
CP/M Format

S-in. Floppy Disk, 7
8-in. Floppy Disk, 7

Create a File (CREATE), 38
CRT

Northstar, 11
Other, 13

eurrent Program, 4 ·
cursor Addressing, 2, 30
eursor Addressing camrand, 8

Data Constants (DATA) , 2S
Data Files, 82

Bytes Required for Storage,
Limits, 82
!'1..icroDoZ Not Dynamic, 82
Numerics, 83
Open-Close, 82
rrypes, 82

83

Default Fonrat Character (#), 30
Define a Function (DEF) , 66
Delete Line Numbers (DEL) , 16
Destroy a File (DESTROY) , 38
Device Number, 4
Dimension a Variable (DIM) , 44
Dimension Error (2) , 68

MICRO MIKE'S, INC. 0S/04

i.
I

L_:_

[

L •·,

[

[

r
l

I
L

baZic II

Direct Commands
Auto Line Numbering (AIJ'IO), 17
Delete Line Numbers (DEL) , 16
Lisr, 15
Program Size (PSIZE) , 18
Renurober a Program (REN) , 17
Scratch a Program (Sm) , 16
Set Memory (MEMSET) , 18

Disk Commands, 19
Bye to Operating system (BYE), 22
catalog at Disk (CAT), 19
Device Number, 19
Load a Program (LOAD), 21
Save a New Program (NSAVE) , 21
save a Program (SAVE), 20
Wildcard Parameter, 19

Divide by zero Error (9) , 73
Dollar Sign Format($), 30
OOS Conunand (OOSOID), 43
Double Definition Error, 76
Drive Number, 4

Editor, see Line Editor
End a Program (END), 48
Error

Dimension (2) , 68
OUt of Bounds (3), 68

Error Messages, 67
1-Argument, 67
2-Dimension, 68
3-0Ut of Bounds, 68
4-Type, 70
5-Format, 71
6-Line, 71
7-File, 72
8-Hard Disk, 73
9-Divide by Zero, 73

HJ-Syntax, 73
11-Read, 75
12-Input, 75
13-Argument Mismatch, 75
14-Numeric Overflow, 75
15-SICP/Control C, 75
16-Length, 76
Argument Mismatch (13) , 75
Dimension Error (2) , 68
Divide by zero (9) , 73
Double Definition, 76
File Error (7), 72
Format (5) , 71
Function Definition, 77
Hard Disk (8), 73
Illegal Direct, 77
Input (12) , 75
Internal Stack overflow, 77

COPYRIGHT 1981 - iii -

Error Messages (con't)
Length (16) , 76
Line NUmber (6) , 71
Memory Full, 77
Missing Next, 77
No Program, 77
Non-trappable, 76

INDEX

Numeric overflow (14) , 75
OUt of Bounds Error (3), 68
Read (11) , 75
SI'OP/Control C (15), 75
syntax (Hl) , 73
Too Large or No Program, 77
Trappable, 67

Append, 68
Argument (Error 1) , 67
Auto, 68
Chain, 68
Delete Lines, 67
LIST, 67
LN2LC, 67
Load File, 67
MEMSET, 67
Renumber, 68
Save File, 67
Save New File, 67

ERRSET, 47
Examine Memory (EXAH) , 57
Execution Commands, 22

Continue a Program (CONI'), 23
Run a Program (RUN), 22

Execution Statements, 23
Append a Program (APPEND) , 23
Chain a Program (OlAil1) , 23

E::q:onential Format (E) , 29
E::q:onential Value (EXP) , 50

Field Calculate for Print Format, 30
File

Channels, 4
CP/M Extensions, 11
Create, 38
Destroy, 38
Names, 4
Open a Channel, 39
Statements, 37

Append a Program (APPEND) , 42
Chain a Program (aIAil1) , 43
Close a Channel (CLOSE), 40
DOS CcmrtE.nd (OOSO·ID) , 43
No End ~..ark (IDENI:MARK), 42
Read File Variable (READ) , 41
Write File Variable(WRITE), 41

Type, 4

MICRO MIKE'S, INC. 05/04

baZic II

File Error
APPEND, 73
CAT, 73
CHAIN, 73
GIBATE, 72
DESI'ROY, 73
:cos, 72
FCCM, 72
LOAD, 72
NSAVE, 72
OPEN, 72
READ*, 72
SAVE, 72
TYP, 72
WRITE#, 72

File Error (7) , 72
File Functions, 55

File
Pointer Position (FILEPI'R), 56

Size (FILE.SIZE) , 56
Type (FILE) , 56
Type of File Pointer (TYP) , 55

Fill Memory Location (FILL) , 46
Fixed Decimal Place (F), 29
FOR NEXT STEP EXIT, 36
Format Errors

BCDA, 71
Format Errors (5) , 71
Formatted Printing, 28
Free Memory (FREE) , 58
Function Defined (DEF) , 65
Function Definition Error, 77
Function End (FEND), 66
Function Look-Up Table, 2
Functions,

see also String Functions
see also Input Functions
CP/M Call Function (CPMFN) , 59
Math, 49 .

Go to a Line Nt.mlber (GOI'O) , 32
Go to a Subroutine (GCSU13) , 33

Hard Disk Errors (8), 73

I/O, 4
IF 'IEEN ELSE, 35
IF 'IHEN Evaluation, 85
Illegal Direct Error, 77
Input

a Byte (INF), 54
a Character String (INOiAR.$), 54
a variable (INPUT) , 31
a variable (INEU'I1) , 32

COPYRIGHT 1981 - iv -

INDEX

Input and Output Statements, 27
Formatted Printing, 28
Print a variable (PRINr) , Tl

Input Error (12), 75
Input Functions, 54

Input
Byte (INP) , 54
Character String (INOiAR.$) , 54
the Status (INSI'AT), 55

output the Status (aITSTAT) , 55
Input the Status (INsrAT) , 55
Integer Format (I), 29
Integer Value (INI'), 50
Internal Stack overflew Error, 77
Legal, 5
Length Error (16) , 76
Length of a String (LEN) , 52
Line Editor, 79

Control A, 80
Control D, 81
Control G, 80
Control N, 80
Control Q, 81
Control Y, 81
Control z, 81
EDIT camrand, 79
Line Buffers, 79

Line Length (LINE) , 47
Line Nurrber, 5
Line Nt.mlber Error (6) , 71

APPEND, 71
DEL, 72
ERRSET, 72
EXIT, 72
FNDLNS, 71
Lisr, 72
RUN, 72

List a Program (Lisr) , 15
Load a Program (LOAD) , 21
Logarithmic Value (ICG) , 50

Machine Language Program Call, 58
Master Diskette, 7
lvf.a th Functions, 49

Absolute Value (ABS) , 49
Arctangent (A'I'N) , 52
Cosine (COS), 51
E:q:onential Value (EXP), 50
Integer Value (INI'), 50
Logarithmic Value (INI'), 50
Sign of a Nt.mlber (SGN) , 50
Sine (SIN) , 51
.square Root (SJRT) , 51

Memory Full Error, 77

MICRO MIKE'S, INC. 05/04

r·
[

[

r
[

[

[

L
l
l
L

~ ··:

l

L

baZic II

MEMSET, 7 , 18
CCinrnon Values, 8

MicroDoZ, 7
MicroDoZbazic

Partial Source Listing, 95
Missing Next Error, 77
Mnemonics, 2
MP/M I Considerations, 10
MP/M II Considerations, 11

No End Mark (OOENI11ARK), 42
No Program Error, 77
}bn-trapFillJle Errors, 76

Continue, 76
Control Stack, 76
Double Definition, 76
Function Definition, 77
Illegal Direct, 77
Internal Stack overflow, 77
Memory Full, 77
Missing Next, 77
No Program, 77
Too Large or No Program, 77

Northstar OOS, 11
NorthStar OOS supported, 1
NSAVE Save a New Program, 21
Numeric Expressions, 5
Nurr~ric overflow Error (14) , 75

On Value Go
to Line Number (ON GOIO), 34
to Subroutine (ON C-OSUB) , 34

OI;:en a Channel (OPEN), 39
Operators, 61

Arithmetic, 61
Boolean, 62
Order of Evaluation, 63
Relational, 61

Optimizing ba.Zic Programs, 93
Order of ot:erators Evaluation, 63
CUt of Bounds Error

P...SC, 69
A'.I'OBI, 69
AUTO, 68
BCDA, 69
BL'1PY, 70
CREATE, 69
DEL, 68
EXP, 70
EXTBI, 69
FCCM, 69
FLSI'AT, 69
IllP, 69

COPYRIGHT 1981 - v -

Out of Bounds Error (con• t)
LillE, 69
I.CG, 70
LVR, 69
MEMSET, 68
ON, 68
arr, 68
REN, 68, 69
SAVE, 68
SETPO, 70
SQRI', 70
TAB, 68
WRITE, 69

out of Bounds Error (3), 68
Output

Byte (CUT) , 32
Status (Cl.JTS'l'l\..T), 55

Partial Source Listings
baZic for CP/M, 96
MicroCoZbaZic, 95

INDEX

Positive Number Forrrat (+), 30
Print a Variable (PRINI'), 27
Print Formats, 28

Accounting Format (A), 29
Comma Format (C), 30
Default Format (:If), 30
Dollar Sign ($), 30
Exfenential Format (E), 29
Field Calculation, 30
Fixed Decinal Place (F) , 29
Format Olaracters, 29
Free Format, 29
Integer Forrrat (I) , 29
Positive Number (+), 30
PRINr@ AND !@, 30
Suppress Zeros (Z), 30

Program Data Statements, 25
App:nd a Program (APPEND) , 42
Branching Statsr.ents, 32
Chain a Program (CHAIN), 43
Close a Olannel (CLOSE), 40
Create a File (CREATE) , 38
Data Constants (DATA), 25
Destroy a File (DESTROY) , 38
ros Canmand (OOSCMD), 43
File Staterr.ents, 37
FOR NEXT SI'EP EXIT, 36
Go to a Line Nurrber (C-01'0) , 32
Go to a Subroutine (GOSUB) , 33
IF 'IBEN ELSE, 35
Input a Variable (IllPUT) , 31
Input a Variable (INEUT.l) , 32

MICRO MIKE'S, INC. 05/04

bazic II

Miscellaneous, 44
Assign a variable (LET), 45
Clear the Screen (Cl.S) , 46
Dimension a variable (DIM) , 44
End a Program (END), 48
Fill Memory LOCation(Fn.L), 46
Line Length (LINE), 47
Remark a Comment (REM) , 45
Set Error Trapping(EBRSE.T), 47
Stop a Program (Sl'OP), 48

No End Mark (NJENI:MARK), 42
On value Go TO

Line Number (CN GOIO), 34
Subroutine (ON GOSUB) , 34

Oten a Channel (OPEN), 39
Read a File variable (READ) , 41
Read Data constants (READ) , 26
Restore Data Pointer (RESTORE) , 27
Retum from Subroutine(RETORN), 34
Write a File Variable (WRITE) , 41

Program Size (PSIZE), 18
Programming eomnands, 15

Random (RND) , 57
Read a File variable (READ) , 41
Read Data constants (READ), 26
Read Error (11) , 75
Relational Operators, 61
Remark a ecrnment (REM) , 45
Renumber a Program (REN), 17
Reserved words, 2
Restore Data Pointer {RESI'ORE) , 27
Retum from a Function (REIURN}, 66
Re tum f ram Subroutine (RETURN) , 34
Rl.lI1 a Program (RUN) , 22

save a New Program (NSAVE) , 21
save a Program (SAVE) , 20
scratch a Program (SCR) , 16
Screen Formatting

cursor Addressing, 30
sectors, 5
Set Error Trapping (ERRSET) , 47
Set Memory Upper Limits (Hemset) , 18
SHORIB, 87
Sign of a Number (SQl}, 50
Sine (SIN) , 51
SqUare Root (OORI') , 51
Statements

Execution, 23
Input/Output, Tl

Stop a Program (SI'OP), 48
Stop/control C Error {15), 75

INDEX

String { STR$) , 54
String Functions, 52

ASCii Value (ASC) , 53
Character String (OIR$) , 53
Length of a String (LEN) , 52 '
String (STR$), 54
value (VAL), 53

Strings, 84
SUppress Zeros Format {Z), 30
syntax Error

$CONsr, 74
QlEKEYl, 74
CE<$, 74
DATA, 74
EDIT, 75
ERRSET, 74
EVLN, 74
EVSTR, 74
EXCFN, 74
GOSUB, 74
ooro, 75
IF, 74
LVR, 74
CN, 74
CN GOSUB, 74
ON GO'ID, 74
PROP, 75
PRSIR, 74
READ, 74
READY, 75
RE'IURN, 74
VFYB, 74

syntax Error (10), 73
· Sysgen, 8

Tabulate (TAB) , 58
Terminal COnf iguration, 8
TOo Large or No Program Error,
TUrnkey Byte, 7
Type Error

ASC, 70
ERRSET, 71
EVLN, 70
EVSTR, 70
EXCFN, 70
FOR, 71
LEN, 70
I.CAD, 70
OPEN, 70
READ#, 71
SAVE, 70

Type Errors (4), 70
Tyt:e of File Pointer ('l"l) , 55

COPYRIGHT 1981 - vi - MICRO MIKE'S, INC. 05/04

\::l ..]

